WorldWideScience

Sample records for hydrogen isotope analysis

  1. Isotopic disproportionation during hydrogen isotopic analysis of nitrogen-bearing organic compounds

    Science.gov (United States)

    Nair, Sreejesh; Geilmann, Heike; Coplen, Tyler B.; Qi, Haiping; Gehre, Matthias; Schimmelmann, Arndt; Brand, Willi A.

    2015-01-01

    Rationale High-precision hydrogen isotope ratio analysis of nitrogen-bearing organic materials using high-temperature conversion (HTC) techniques has proven troublesome in the past. Formation of reaction products other than molecular hydrogen (H2) has been suspected as a possible cause of incomplete H2 yield and hydrogen isotopic fractionation. Methods The classical HTC reactor setup and a modified version including elemental chromium, both operated at temperatures in excess of 1400 °C, have been compared using a selection of nitrogen-bearing organic compounds, including caffeine. A focus of the experiments was to avoid or suppress hydrogen cyanide (HCN) formation and to reach quantitative H2 yields. The technique also was optimized to provide acceptable sample throughput. Results The classical HTC reaction of a number of selected compounds exhibited H2 yields from 60 to 90 %. Yields close to 100 % were measured for the experiments with the chromium-enhanced reactor. The δ2H values also were substantially different between the two types of experiments. For the majority of the compounds studied, a highly significant relationship was observed between the amount of missing H2and the number of nitrogen atoms in the molecules, suggesting the pyrolytic formation of HCN as a byproduct. A similar linear relationship was found between the amount of missing H2 and the observed hydrogen isotopic result, reflecting isotopic fractionation. Conclusions The classical HTC technique to produce H2 from organic materials using high temperatures in the presence of glassy carbon is not suitable for nitrogen-bearing compounds. Adding chromium to the reaction zone improves the yield to 100 % in most cases. The initial formation of HCN is accompanied by a strong hydrogen isotope effect, with the observed hydrogen isotope results on H2 being substantially shifted to more negative δ2H values. The reaction can be understood as an initial disproportionation leading to H2 and HCN

  2. Demonstration of compound-specific isotope analysis of hydrogen isotope ratios in chlorinated ethenes.

    Science.gov (United States)

    Kuder, Tomasz; Philp, Paul

    2013-02-05

    High-temperature pyrolysis conversion of organic analytes to H(2) in hydrogen isotope ratio compound-specific isotope analysis (CSIA) is unsuitable for chlorinated compounds such as trichloroethene (TCE) and cis-1,2-dichloroethene (DCE), due to competition from HCl formation. For this reason, the information potential of hydrogen isotope ratios of chlorinated ethenes remains untapped. We present a demonstration of an alternative approach where chlorinated analytes reacted with chromium metal to form H(2) and minor amounts of HCl. The values of δ(2)H were obtained at satisfactory precision (± 10 to 15 per thousand), however the raw data required daily calibration by TCE and/or DCE standards to correct for analytical bias that varies over time. The chromium reactor has been incorporated into a purge and trap-CSIA method that is suitable for CSIA of aqueous environmental samples. A sample data set was obtained for six specimens of commercial product TCE. The resulting values of δ(2)H were between -184 and +682 ‰, which significantly widened the range of manufactured TCE δ(2)H signatures identified by past work. The implications of this finding to the assessment of TCE contamination are discussed.

  3. Development of a new method for hydrogen isotope analysis of trace hydrocarbons in natural gas samples

    Directory of Open Access Journals (Sweden)

    Xibin Wang

    2016-12-01

    Full Text Available A new method had been developed for the analysis of hydrogen isotopic composition of trace hydrocarbons in natural gas samples by using solid phase microextraction (SPME combined with gas chromatography-isotope ratio mass spectrometry (GC/IRMS. In this study, the SPME technique had been initially introduced to achieve the enrichment of trace content of hydrocarbons with low abundance and coupled to GC/IRMS for hydrogen isotopic analysis. The main parameters, including the equilibration time, extraction temperature, and the fiber type, were systematically optimized. The results not only demonstrated that high extraction yield was true but also shows that the hydrogen isotopic fractionation was not observed during the extraction process, when the SPME device fitted with polydimethylsiloxane/divinylbenzene/carbon molecular sieve (PDMS/DVB/CAR fiber. The applications of SPME-GC/IRMS method were evaluated by using natural gas samples collected from different sedimentary basins; the standard deviation (SD was better than 4‰ for reproducible measurements; and also, the hydrogen isotope values from C1 to C9 can be obtained with satisfying repeatability. The SPME-GC/IRMS method fitted with PDMS/DVB/CAR fiber is well suited for the preconcentration of trace hydrocarbons, and provides a reliable hydrogen isotopic analysis for trace hydrocarbons in natural gas samples.

  4. Analysis of Hydrogen Isotopic Exchange: Lava Creek Tuff Ash and Isotopically Labeled Water

    Science.gov (United States)

    Ross, A. M.; Seligman, A. N.; Bindeman, I. N.; Nolan, G. S.

    2015-12-01

    Nolan and Bindeman (2013) placed secondarily hydrated ash from the 7.7 ka eruption of Mt. Mazama (δD=-149‰, 2.3wt% H2Ot) in isotopically labeled water (+650 ‰ δD, +56 ‰ δ18O) and observed that the H2Ot and δ18O values remained constant, but the δD values of ash increased with the surrounding water at 20, 40 and 70 °C. We expand on this work by conducting a similar experiment with ash from the 640 ka Lava Creek Tuff (LCT, δD of -128 ‰; 2.1 wt.% H2Ot) eruption of Yellowstone to see if significantly older glass (with a hypothesized gel layer on the surface shielding the interior from alteration) produces the same results. We have experiments running at 70, 24, and 5 °C, and periodically remove ~1.5 mg of glass to measure the δD (‰) and H2Ot (wt.%) of water extracted from the glass on a TC/EA MAT 253 continuous flow system. After 600 hours, the δD of the samples left at 5 and 24 °C remains at -128 ‰, but increased 8‰ for the 70 °C run series. However, there is no measurable change in wt.% of H2Ot, indicating that hydrogen exchange is not dictated by the addition of water. We are measuring and will report further progress of isotope exchange. We also plan to analyze the water in the LCT glass for δ18O (‰) to see if, as is the case for the Mt. Mazama glass, the δ18O (‰) remains constant. We also analyzed Mt. Mazama glass from the Nolan and Bindeman (2013) experiments that have now been sitting in isotopically labeled water at room temperature for ~5 years. The water concentration is still unchanged (2.3 wt.% H2Ot), and the δD of the water in the glass is now -111 ‰, causing an increase of 38 ‰. Our preliminary results show that exchange of hydrogen isotopes of hydrated glass is not limited by the age of the glass, and that the testing of hydrogen isotopes of secondarily hydrated glass, regardless of age, may not be a reliable paleoclimate indicator.

  5. Chromatographic hydrogen isotope separation

    Science.gov (United States)

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  6. Hydrogen isotope analysis of amino acids and whole cells reflects biosynthetic processing of nutrient- and water-derived hydrogen

    Science.gov (United States)

    Griffin, P.; Newsome, S.; Steele, A.; Fogel, M. L.

    2011-12-01

    Hydrogen (H) isotopes serve as sensitive tracers of biochemical processes that can be exploited to answer critical questions in biogeochemistry, ecology, and microbiology. Despite this apparent utility, relatively little is known about the specific mechanisms of H isotope fractionation involved in biosynthesis. In order to understand how organisms incorporate hydrogen from their chemical milieu into biomass, we have cultured the model bacterium E. coli MG1655 in a variety of media composed of deuterium-labeled nutrients and waters. Isotopic analysis of bulk cell mass reveals that the H fractionation between media water and cell material varies as a function of the nutrient source, with commonly used organic food sources (glucose and tryptone) leading to far smaller fractionation signals than non-standard ones (such as formamide, adenine, and urea). In addition, we have completed compound specific isotope analysis of amino acids using combined GC-IRMS. Amino acids harvested from E. coli cultured on glucose in water of varied D/H composition posses an extraordinary range of isotopic compositions (400-600 %). Furthermore, these amino acids follow a systematic distribution of D/H where proline is always heaviest and glycine is always lightest. However, when the short-chain peptide tryptone is used in place of glucose, only the non-essential amino acids reflect media water D/H values, suggesting the direct incorporation of some media-borne amino acids into cellular protein. These observations provide a foundation for understanding the cellular routing of hydrogen obtained from food and water sources and indicate that D/H analysis can serve as a powerful probe of biological function.

  7. Evaluation of the plasma hydrogen isotope content by residual gas analysis at JET and AUG

    Science.gov (United States)

    Drenik, A.; Alegre, D.; Brezinsek, S.; De Castro, A.; Kruezi, U.; Oberkofler, M.; Panjan, M.; Primc, G.; Reichbauer, T.; Resnik, M.; Rohde, V.; Seibt, M.; Schneider, P. A.; Wauters, T.; Zaplotnik, R.; ASDEX-Upgrade, the; EUROfusion MST1 Teams; contributors, JET

    2017-12-01

    The isotope content of the plasma reflects on the dynamics of isotope changeover experiments, efficiency of wall conditioning and the performance of a fusion device in the active phase of operation. The assessment of the isotope ratio of hydrogen and methane molecules is used as a novel method of assessing the plasma isotope ratios at JET and ASDEX-Upgrade (AUG). The isotope ratios of both molecules in general shows similar trends as the isotope ratio detected by other diagnostics. At JET, the absolute values of RGA signals are in relatively good agreement with each other and with spectroscopy data, while at AUG the deviation from neutral particle analyser data are larger, and the results show a consistent spatial distribution of the isotope ratio. It is further shown that the isotope ratio of the hydrogen molecule can be used to study the degree of dissociation of the injected gas during changeover experiments.

  8. An innovative molybdenum column liner for oxygen and hydrogen stable isotope analysis by pyrolysis.

    Science.gov (United States)

    Stuart-Williams, Hilary; Wong, S Chin; Farquhar, Graham D; Keitel, Claudia; Clayton, Stephen

    2008-04-01

    The most widely used method for pyrolysing samples for hydrogen or oxygen isotopic analysis involves heating them to greater than 1300 degrees C in a helium stream passed through a glassy carbon tube in an alumina casing. There are a number of difficulties with this. Glassy carbon tubes are expensive and interaction between the carbon tube and the outer casing produces unwanted carbon monoxide by reduction of the alumina at high temperatures. The latter effect is overwhelming if temperatures of 1400 degrees C or greater are used for pyrolysis. We experimented with lining alumina casings with pure molybdenum sheet. It is relatively cheap, conforms well to the interior of the reactor tube (to avoid carrier and sample bypassing of the carbon pack), resists high temperatures and neither oxidises excessively nor absorbs the gases. The main disadvantages are that silver sample cups must be used and that the molybdenum degrades over time by formation of the carbide. We can maintain sharp peaks, high precision and good accuracy over more than 700 solid samples for both hydrogen and oxygen. The reactors last longer for water injections. The molybdenum in the columns does not contribute greatly to memory effects. The precision of analysis is dependent on other factors as well as the pyrolysis column, but for oxygen we typically achieve approximately <0.2 per thousand (sucrose), <0.25 per thousand (water) and <0.25 per thousand (leaf), sometimes using only a linear correction of drift, after dividing the run into 1 to 3 segments.

  9. Compound-specific hydrogen isotope analysis of heteroatom-bearing compounds via gas chromatography-chromium-based high-temperature conversion (Cr/HTC)-isotope ratio mass spectrometry.

    Science.gov (United States)

    Renpenning, Julian; Kümmel, Steffen; Hitzfeld, Kristina L; Schimmelmann, Arndt; Gehre, Matthias

    2015-09-15

    The traditional high-temperature conversion (HTC) approach toward compound-specific stable isotope analysis (CSIA) of hydrogen for heteroatom-bearing (i.e., N, Cl, S) compounds has been afflicted by fractionation bias due to formation of byproducts HCN, HCl, and H2S. This study presents a chromium-based high-temperature conversion (Cr/HTC) approach for organic compounds containing nitrogen, chlorine, and sulfur. Following peak separation along a gas chromatographic (GC) column, the use of thermally stable ceramic Cr/HTC reactors at 1100-1500 °C and chemical sequestration of N, Cl, and S by chromium result in quantitative conversion of compound-specific organic hydrogen to H2 analyte gas. The overall hydrogen isotope analysis via GC-Cr/HTC-isotope ratio mass spectrometry (IRMS) achieved a precision of better than ± 5 mUr along the VSMOW-SLAP scale. The accuracy of GC-Cr/HTC-IRMS was validated with organic reference materials (RM) in comparison with online EA-Cr/HTC-IRMS and offline dual-inlet IRMS. The utility and reliability of the GC-Cr/HTC-IRMS system were documented during the routine measurement of more than 500 heteroatom-bearing organic samples spanning a δ(2)H range of -181 mUr to 629 mUr.

  10. Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase

    Science.gov (United States)

    Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.

    2015-01-01

    The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.

  11. Authenticity and Traceability of Vanilla Flavors by Analysis of Stable Isotopes of Carbon and Hydrogen

    DEFF Research Database (Denmark)

    Hansen, Anne-Mette Sølvbjerg; Fromberg, Arvid; Frandsen, Henrik Lauritz

    2014-01-01

    to differentiate these two groups of natural vanillin from vanillin produced otherwise. Vanilla flavors were also analyzed for ratios of hydrogen stable isotopes (delta H-2). A graphic representation of delta C-13 versus delta H-2 revealed that vanillin extracted from pods grown in adjacent geographic origins......Authenticity and traceability of vanilla flavors were investigated using gas chromatographyisotope ratio mass spectrometry (GC-IRMS). Vanilla flavors produced by chemical synthesis (n = 2), fermentation (n = 1), and extracted from two different species of the vanilla orchid (n = 79) were analyzed....... The authenticity of the flavor compound vanillin was evaluated on the basis of measurements of ratios of carbon stable isotopes (delta C-13). It was found that results of delta C-13 for vanillin extracted from Vanilla planifolia and Vanilla tahitensis were significantly different (t test) and that it was possible...

  12. Hydrogen isotopes transport in fusion reactor first wall materials

    Energy Technology Data Exchange (ETDEWEB)

    Gervasini, G. (Consiglio Nazionale delle Ricerche, Istituto di Fisica del Plasma, Associazione Euratom-ENEA-CNR, Via Bassini 15, 20133, Milano (Italy)); Reiter, F. (Commission of the European Communities, Joint Research Centre, Ispra Site, 21020, Ispra (Vatican City State, Holy See) (Italy))

    1994-09-01

    The transport of the hydrogen isotopes in various metals and alloys as the first wall materials and in a ITER geometry is presented in this work. This analysis has been performed with a computer code which includes thermal diffusion accompanied with heat transport, hydrogen trapping and can work with three hydrogen isotopes. This code calculates as a function of time the hydrogen isotopes recycling from the inner surface of the first wall, inventory in the first wall and permeation through the first wall. ((orig.))

  13. Analysis of hydrogen isotope ratios by SIMS, and application to determining mineral-fluid isotope fractionation factors

    Energy Technology Data Exchange (ETDEWEB)

    Riciputi, L.R.; Chacko, T.; Cole, D.R.; Horita, J.

    1997-09-01

    Due to the large mass difference between the two isotopes, D/H ratios can be strongly affected by chemical processes. Thus, they can be sensitive monitors of fluid source, temperature, and fluid-rock interactions in geologic settings. The lack of confidence in fractionation factors has significantly hindered realization of the potential of D/H ratios in geochemical studies. The authors describe a new experimental method, relying on SIMS analysis, that allows the precise determination of mineral-water D/H fractionation factors, and the analytical considerations that are required to make both precise and accurate measurements. The development of this method is based on the fact that diffusion rates are markedly anisotropic in many hydrous minerals, varying by over five orders of magnitude depending on the crystallographic orientation. The diffusion rates can be determined by conducting controlled exchange experiments of fixed duration using isotopically labeled waters that are enriched (strongly) with D, and then measuring the depth profile by SIMS.

  14. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  15. Rayleigh-based concept to tackle strong hydrogen fractionation in dual isotope analysis-the example of ethylbenzene degradation by Aromatoleum aromaticum.

    Science.gov (United States)

    Dorer, Conrad; Höhener, Patrick; Hedwig, Normen; Richnow, Hans-Hermann; Vogt, Carsten

    2014-05-20

    Compound-specific isotope analysis (CSIA) is a state-of-the-art analytical tool that can be used to establish and quantify biodegradation of pollutants such as BTEX compounds at contaminated field sites. Using isotopes of two elements and characteristic Lambda values (Λ) in dual-isotope-plots can provide insight into reaction mechanisms because kinetic isotope effects (KIEs) of both elements are reflected. However, the concept's validity in the case of reactions that show strong isotope fractionation needs to be examined. The anaerobic ethylbenzene degradation pathway of Aromatoleum aromaticum is initiated by the ethylbenzene dehydrogenase-catalyzed monohydroxylation of the benzylic carbon atom. Measurements of stable isotope ratios revealed highly pronounced hydrogen fractionation, which could not be adequately described by the classical Rayleigh approach. This study demonstrates the nonlinear behavior of hydrogen isotope ratios caused by anaerobic ethylbenzene hydroxylation both mathematically and experimentally, develops alternative dual plots to enable the comparison of reactions by considering the reacting atoms, and illustrates the importance of the stereochemical aspects of substrate and product for the quantification of hydrogen fractionation in an enzymatic reaction. With regard to field application, proposals for an improved CSIA evaluation procedure with respect to pronounced hydrogen enrichment are given.

  16. Carbon and hydrogen isotope fractionation during anaerobic quinoline degradation.

    Science.gov (United States)

    Fischer, Anko; Weber, Stefanie; Reineke, Anne-Kirsten; Hollender, Juliane; Richnow, Hans-H

    2010-09-01

    Quinoline is a N-heterocyclic compound often found at tar oil contaminated field sites. To provide information whether stable isotope analysis can help to characterize the fate of quinoline within contaminated aquifers, carbon and hydrogen isotope fractionation of quinoline were investigated during biodegradation under sulfate-reducing conditions. No significant carbon isotope effect was observed, however, substantial hydrogen isotope fractionation was detected. Thus, hydrogen isotope fractionation may be used as an indicator for in situ biodegradation of quinoline. The bulk hydrogen isotope enrichment factor was εH(bulk)=-33±12‰. During the biodegradation of quinoline the primary intermediate 2-hydroxyquinoline was detected indicating hydroxylation at the C2-position. According to this reaction mechanism, the reactive position specific hydrogen enrichment factor (εH(reactive position)) and apparent kinetic hydrogen isotope effect (AKIE(H)) were calculated and gave values of εH(reactive position)=-205±75‰ and AKIE(H)=1.26±0.12, respectively. The missing carbon isotope effect may be explained by strong masking or an enzymatic direct side-on insertion of oxygen from the MoOH(H) group of the molybdenum center across the CH bond at the C2-position of quinoline with concomitant hydride transfer. The later assumption is supported by recent studies showing that initial step of hydroxylation of N-heteroaromatic compounds proceeds via a similar reaction mechanism. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. An ion species model for positive ion sources - part II analysis of hydrogen isotope effects

    CERN Document Server

    Surrey, E

    2014-01-01

    A one dimensional model of the magnetic multipole volume plasma source has been developed for application to intense ion/neutral atom beam injectors. The model uses plasma transport coefficients for particle and energy flow to create a detailed description of the plasma parameters along an axis parallel to that of the extracted beam. In this paper the isotopic modelling of positive hydrogenic ions is considered and compared with experimental data from the neutral beam injectors of the Joint European Torus. The use of the code to gain insights into the processes contributing to the ratios of the ionic species is demonstrated and the conclusion is drawn that 75% of the atomic ion species arises from ionization of dissociated molecules and 25% from dissociation of the molecular ions. However whilst the former process is independent of the filter field, the latter is sensitive to the change in distribution of fast and thermal electrons produced by the magnetic filter field and an optimum combination of field stre...

  18. Hydrogen and oxygen isotopes of water from inclusions in minerals: design of a new crushing system and on-line continuous-flow isotope ratio mass spectrometric analysis.

    Science.gov (United States)

    Dublyansky, Yuri V; Spötl, Christoph

    2009-09-01

    An analytical line for stable isotope analyses of water recovered from fluid inclusions in minerals was built and successfully tested. The line is based on the principle of continuous-flow analysis of water via high-temperature reduction on glassy carbon. It includes a custom-designed set of high-efficiency crushers and a cryo-focusing cell. This paper provides details of the line design and discusses strategies for line conditioning and mitigation of memory effects. The line allows measurements of hydrogen and oxygen isotopes during a single acquisition. The precision of the analyses depends on the amount of water released from the inclusions. The best results are obtained for samples containing at least 0.1-0.2 microL (0.06-0.11 micromol) H(2)O. For such samples precision is better than 1.5 per thousand for deltaD and 0.5 per thousand for delta(18)O (1sigma). Smaller amounts of water can be measured but at lower precision. Analyses of modern calcite formed under stable conditions in a deep cave allowed assessment of the accuracy of the analyses. The deltaD values measured in fluid inclusions of this working standard match the deltaD value of the parent water, and the oxygen isotope values agree within ca. 0.5 per thousand. This indicates that fluid inclusions trapped in calcite at near-ambient temperatures (e.g. speleothems and low-temperatures phreatic calcite) faithfully preserve the original isotopic composition of the parent waters. Copyright (c) 2009 John Wiley & Sons, Ltd.

  19. Letter Report: Stable Hydrogen and Oxygen Isotope Analysis of B-Complex Perched Water Samples

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nims, Megan K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-13

    Fine-grained sediments associated with the Cold Creek Unit at Hanford have caused the formation of a perched water aquifer in the deep vadose zone at the B Complex area, which includes waste sites in the 200-DV-1 Operable Unit and the single-shell tank farms in Waste Management Area B-BX-BY. High levels of contaminants, such as uranium, technetium-99, and nitrate, make this aquifer a continuing source of contamination for the groundwater located a few meters below the perched zone. Analysis of deuterium (2H) and 18-oxygen (18O) of nine perched water samples from three different wells was performed. Samples represent time points from hydraulic tests performed on the perched aquifer using the three wells. The isotope analyses showed that the perched water had δ2H and δ18O ratios consistent with the regional meteoric water line, indicating that local precipitation events at the Hanford site likely account for recharge of the perched water aquifer. Data from the isotope analysis can be used along with pumping and recovery data to help understand the perched water dynamics related to aquifer size and hydraulic control of the aquifer in the future.

  20. Caution on the storage of waters and aqueous solutions in plastic containers for hydrogen and oxygen stable isotope analysis.

    Science.gov (United States)

    Spangenberg, Jorge E

    2012-11-30

    The choice of containers for storage of aqueous samples between their collection, transport and water hydrogen ((2)H) and oxygen ((18)O) stable isotope analysis is a topic of concern for a wide range of fields in environmental, geological, biomedical, food, and forensic sciences. The transport and separation of water molecules during water vapor or liquid uptake by sorption or solution and the diffusive transport of water molecules through organic polymer material by permeation or pervaporation may entail an isotopic fractionation. An experiment was conducted to evaluate the extent of such fractionation. Sixteen bottle-like containers of eleven different organic polymers, including low and high density polyethylene (LDPE and HDPE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), and perfluoroalkoxy-Teflon (PFA), of different wall thickness and size were completely filled with the same mineral water and stored for 659 days under the same conditions of temperature and humidity. Particular care was exercised to keep the bottles tightly closed and prevent loss of water vapor through the seals. Changes of up to +5‰ for δ(2)H values and +2.0‰ for δ(18)O values were measured for water after more than 1 year of storage within a plastic container, with the magnitude of change depending mainly on the type of organic polymer, wall thickness, and container size. The most important variations were measured for the PET and PC bottles. Waters stored in glass bottles with Polyseal™ cone-lined PP screw caps and thick-walled HDPE or PFA containers with linerless screw caps having an integrally molded inner sealing ring preserved their original δ(2)H and δ(18)O values. The carbon, hydrogen, and oxygen stable isotope compositions of the organic polymeric materials were also determined. The results of this study clearly show that for precise and accurate measurements of the water stable isotope composition in aqueous solutions, rigorous sampling and

  1. Variation in catchment areas of Indiana bat (Myotis sodalis) hibernacula inferred from stable hydrogen (δ2H) isotope analysis.

    Science.gov (United States)

    E.R. Britzke; S.C. Loeb; C.S. Romanek; K.A. Hobson; M.J. Vonhof

    2013-01-01

    Understanding seasonal movements of bats is important for effective conservation efforts. Although female Indiana bats (Myotis sodalis Miller and Allen, 1928) have been documented to migrate >500 km, knowledge of their migratory patterns is still extremely limited. We used the relationship between latitude and stable hydrogen isotope ratio in bat hair (δ...

  2. Multidimensional isotope analysis of carbon, hydrogen and oxygen as tool for identification of the origin of ibuprofen.

    Science.gov (United States)

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans Hermann

    2015-11-10

    Multidimensional isotope profiling is a useful tool for the characterization of the provenance of active pharmaceutical ingredients (API). To evaluate this approach, samples of the nonsteroidal anti-inflammatory drug (NSAIDs) ibuprofen were collected from 32 manufactures and 13 countries, and carbon, hydrogen and oxygen isotope ratios were analyzed by elemental analyzer, chromium-filled elemental analyzer and high temperature conversion elemental analyzer (EA, Cr-EA and TC/EA) coupled to an isotope ratio mass spectrometry (IRMS). The range of isotope values of ibuprofen (δ(13)C: -33.2±0.1‰ to -27.4±0.1‰; δ(2)H: -121.4±1.5‰ to -41.2±0.8‰; and δ(18)O: -12.6±0.3‰ to 19.0±0.6‰) allowed characterization and distinction of 5 groups, which reflect synthetic pathways and/or use of different raw materials, as well as possible isotope fractionation during the synthesis reactions. This study highlights that multi isotope fingerprinting has potential for identification of sources, and provides a database of isotope composition of ibuprofen (δ(2)H, δ(13)C, δ(18)O) that might improve the tracing of origin, transport pathways and environmental fate of ibuprofen. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Compound-specific hydrogen isotope analysis of fluorine-, chlorine-, bromine- and iodine-bearing organics using gas chromatography-chromium-based high-temperature conversion (Cr/HTC) isotope ratio mass spectrometry.

    Science.gov (United States)

    Renpenning, Julian; Schimmelmann, Arndt; Gehre, Matthias

    2017-07-15

    The conventional high-temperature conversion (HTC) approach towards hydrogen compound-specific isotope analysis (CSIA) of halogen-bearing (F, Cl, Br, I) organics suffers from incomplete H2 yields and associated hydrogen isotope fractionation due to generation of HF, HCl, HBr, and HI byproducts. Moreover, the traditional off-line combustion of highly halogenated compounds results in incomplete recovery of water as an intermediary compound for hydrogen isotope ratio mass spectrometry (IRMS), and hence also leads to isotope fractionation. This study presents an optimized chromium-based high-temperature conversion (Cr/HTC) approach for hydrogen CSIA of various fluorinated, chlorinated, brominated and iodinated organic compounds. The Cr/HTC approach is fast, economical, and not affected by low H2 yields and associated isotope fractionation. The performance of the modified gas chromatography/chromium-based high-temperature conversion (GC-Cr/HTC) system was monitored and optimized using an ion trap mass spectrometer. Quantitative conversion of organic hydrogen into H2 analyte gas was achieved for all halogen-bearing compounds. The corresponding accuracy of CSIA was validated using (i) manual dual-inlet (DI)-IRMS after off-line conversion into H2 , and (ii) elemental analyzer (EA)-Cr/HTC-IRMS (on-line conversion). The overall hydrogen isotope analysis of F-, Cl-, Br- and I-bearing organics via GC-Cr/HTC-IRMS achieved a precision σ ≤ 3 mUr and an accuracy within ±5 mUr along the VSMOW-SLAP scale compared with the measured isotope compositions resulting from both validation methods, off-line and on-line. The same analytical performance as for single-compound GC-Cr/HTC-IRMS was achieved compound-specifically for mixtures of halogenated organics following GC separation to baseline resolution. GC-Cr/HTC technology can be implemented in existing analytical equipment using commercially available materials to provide a versatile tool for hydrogen CSIA of halogenated and non

  4. Theoretical analysis of geometry and NMR isotope shift in hydrogen-bonding center of photoactive yellow protein by combination of multicomponent quantum mechanics and ONIOM scheme.

    Science.gov (United States)

    Kanematsu, Yusuke; Tachikawa, Masanori

    2014-11-14

    Multicomponent quantum mechanical (MC_QM) calculation has been extended with ONIOM (our own N-layered integrated molecular orbital + molecular mechanics) scheme [ONIOM(MC_QM:MM)] to take account of both the nuclear quantum effect and the surrounding environment effect. The authors have demonstrated the first implementation and application of ONIOM(MC_QM:MM) method for the analysis of the geometry and the isotope shift in hydrogen-bonding center of photoactive yellow protein. ONIOM(MC_QM:MM) calculation for a model with deprotonated Arg52 reproduced the elongation of O-H bond of Glu46 observed by neutron diffraction crystallography. Among the unique isotope shifts in different conditions, the model with protonated Arg52 with solvent effect reasonably provided the best agreement with the corresponding experimental values from liquid NMR measurement. Our results implied the availability of ONIOM(MC_QM:MM) to distinguish the local environment around hydrogen bonds in a biomolecule.

  5. Reconstructing hydroclimatic variations using compound-specific hydrogen isotope analysis of biomarkers from a maar lake in the Central Highlands, Vietnam

    Science.gov (United States)

    Doiron, Kelsey; Stevens, Lora; Sauer, Peter

    2017-04-01

    Monsoonal variation in Southeast Asia affects a significant portion of the global population, but knowledge regarding response of the monsoon system to changing boundary conditions is limited. The paleoclimatic tool of compound-specific isotope analysis(CSIA) provides the ability to reconstruct past precipitation using a diverse set of biomarkers preserved in the sedimentary record. Limited proxies in tropical southeast Asia and difficult site access have led to a deficit in paleoclimate records. Ia M'He (14˚ 10'45" N, 107˚ 52' E) is a shallow volcanic crater (maar) lake, approximately 57 ha, located in the Central Highlands of Vietnam. Precipitation in the Central Highlands is sensitive to reorganizations of major climatic features, such as the migration of the ITCZ and the coupled Indo-Asian monsoon, ENSO and related shifts in the Pacific Walker Circulation and typhoon frequency. To examine this complex behavior, this pilot study aims to provide a 500-year record of effective moisture inferred from CSIA of hydrogen isotopes on biomarkers. Carbon/nitrogen ratios and carbon isotope ratios indicate that bulk organic matter is a combination of algae and C3 vegetation, offering the potential to use compound-specific hydrogen isotopes of aquatic and terrestrial organic matter in tandem. Preliminary analysis of the core shows dominant alkane chain lengths of C27 and C29, associated with terrestrial plant leaf waxes. The hydrogen isotope ratios of the plant wax components provide a proxy for paleo precipitation in a region where rainfall and droughts heavily influence population dynamics and create social discord. The CSIA record is expected to correlate with records from northern Vietnam, the South China Sea and Indonesia, with greater precipitation during the Little Ice Age. The degree to which evaporative modification of lake water (i.e., seasonal drying) occurs will be estimated by comparing the terrestrial CSIA values indicative of meteoric water with aquatic CSIA

  6. Coupling of a headspace autosampler with a programmed temperature vaporizer for stable carbon and hydrogen isotope analysis of volatile organic compounds at microgram per liter concentrations.

    Science.gov (United States)

    Herrero-Martín, Sara; Nijenhuis, Ivonne; Richnow, Hans H; Gehre, Matthias

    2015-01-20

    One major challenge for the environmental application of compound-specific stable isotope analysis (CSIA) is the necessity of efficient sample treatment methods, allowing isolation of a sufficient mass of organic contaminants needed for accurate measurement of the isotope ratios. Here, we present a novel preconcentration technique--the coupling of a headspace (HS) autosampler with a programmed temperature vaporizer (PTV)--for carbon (δ(13)C) and hydrogen (δ(2)H) isotope analysis of volatile organic compounds in water at concentrations of tens of micrograms per liter. The technique permits large-volume injection of headspace samples, maintaining the principle of simple static HS extraction. We developed the method for multielement isotope analysis (δ(13)C and δ(2)H) of methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and o-xylene (BTEX), and analysis of δ(13)C for chlorinated benzenes and ethenes. Extraction and injection conditions were optimized for maximum sensitivity and minimum isotope effects. Injection of up to 5 mL of headspace sample from a 20 mL vial containing 13 mL of aqueous solution and 5 g of NaCl (10 min of incubation at 90 °C) resulted in accurate δ(13)C and δ(2)H values. The method detection limits (MDLs) for δ(13)C were from 2 to 60 μg/L (MTBE, BTEX, chlorinated ethenes, and benzenes) and 60-97 μg/L for δ(2)H (MTBE and BTEX). Overall, the HS-PTV technique is faster, simpler, isotope effect-free, and requires fewer treatment steps and less sample volume than other extraction techniques used for CSIA. The environmental applicability was proved by the analysis of groundwater samples containing BTEX and chlorinated contaminants at microgram per liter concentrations.

  7. Hydrogen isotope adsorption on nano-carbons

    Energy Technology Data Exchange (ETDEWEB)

    Hideki, Tanaka; Daisuke, Noguchi [Chiba Univ., Diversity and Fractal Science, Graduate School of Science and Technology, (Japan); Hirofumi, Kanoh; Katsumi, Kaneko [Chiba Univ., Dept. of Chemistry, Faculty of Science (Japan)

    2005-07-01

    Hydrogen adsorption on carbonaceous materials has received considerable attention in recent decades, because physisorption of hydrogen was considered to be the most promising hydrogen storage technology to achieve the US Department of Energy (DOE) target for fuel cell powered vehicles. Many simulation studies of hydrogen adsorption on single-wall carbon nano-tubes (SWNTs) and graphitic slit pores have been performed by assuming that hydrogen can be modeled as a classical fluid above 77 K, to predict their hydrogen storage capacities; however, Wang et al. recently developed path integral grand canonical Monte Carlo (PI-GCMC) technique to explore statistical properties of quantum fluids [1] and then they applied the PI-GCMC simulation to a study of hydrogen adsorption on SWNTs including quantum effects [2]. Surprisingly, they showed that quantum effects are very important even at 298 K for adsorption in interstices of SWNT bundles: the interstitial adsorption of hydrogen from the quantum simulations is quite smaller than that from classical simulations. Recently, we also showed that quantum effects on adsorption of hydrogen isotopes on single-wall carbon nano-horn (SWNH) are significant at 77 K by comparing experiment and simulations [3]. We have thus measured adsorption isotherms of H{sub 2} and D{sub 2} on nano-carbons [activated carbon fibers (ACFs) and single-wall carbon nano-tubes (SWNTs)] to evaluate quantum effects on adsorption at low temperatures, and found that, for example, adsorption of H{sub 2} on ACFs are about 10% larger than D{sub 2} at 77 K and 0.1 MPa. We have also performed grand canonical Monte Carlo (GCMC) simulations for hydrogen isotope adsorption on graphitic slit pore, SWNT and SWNT bundle models. Quantum effects were incorporated in the simulations through the Feynman-Hibbs (FH) effective potential based on the classical Lennard-Jones (LJ) potential. Fig. 1 shows simulated hydrogen isotope adsorption isotherms on the (10,10) nano-tube bundle

  8. Hydrogen isotope adsorption on nano-carbons

    Energy Technology Data Exchange (ETDEWEB)

    Hideki Tanaka; Daisuke Noguchi [Diversity and Fractal Science, Graduate School of Science and Technology, Chiba University 1-33 Yayoi, Inage, Chiba 263-8522, (Japan); Hirofumi Kanoh; Katsumi Kaneko [Department of Chemistry, Faculty of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, (Japan)

    2005-07-01

    Hydrogen adsorption on carbonaceous materials has received considerable attention in recent decades, because physi-sorption of hydrogen was considered to be the most promising hydrogen storage technology to achieve the US Department of Energy (DOE) target for fuel cell powered vehicles. Many simulation studies of hydrogen adsorption on single-wall carbon nano-tubes (SWNTs) and graphitic slit pores have been performed by assuming that hydrogen can be modeled as a classical fluid above 77 K, to predict their hydrogen storage capacities; however, Wang et al. recently developed path integral grand canonical Monte Carlo (PI-GCMC) technique to explore statistical properties of quantum fluids and then they applied the PI-GCMC simulation to a study of hydrogen adsorption on SWNTs including quantum effects. Surprisingly, they showed that quantum effects are very important even at 298 K for adsorption in interstices of SWNT bundles: the interstitial adsorption of hydrogen from the quantum simulations is quite smaller than that from classical simulations. Recently, we also showed that quantum effects on adsorption of hydrogen isotopes on single-wall carbon nano-horn (SWNH) are significant at 77 K by comparing experiment and simulations. We have thus measured adsorption isotherms of H{sub 2} and D{sub 2} on nano-carbons [activated carbon fibers (ACFs) and single-wall carbon nano-tubes (SWNTs)] to evaluate quantum effects on adsorption at low temperatures, and found that, for example, adsorption of H{sub 2} on ACFs are about 10% larger than D{sub 2} at 77 K and 0.1 MPa. We have also performed grand canonical Monte Carlo (GCMC) simulations for hydrogen isotope adsorption on graphitic slit pore, SWNT and SWNT bundle models. Quantum effects were incorporated in the simulations through the Feynman-Hibbs (FH) effective potential based on the classical Lennard-Jones (LJ) potential. Fig. 1 shows simulated hydrogen isotope adsorption isotherms on the (10,10) nano-tube bundle at 77 K

  9. Sulfur isotopic fractionation in vacuum UV photodissociation of hydrogen sulfide and its potential relevance to meteorite analysis

    Science.gov (United States)

    Chakraborty, Subrata; Jackson, Teresa L.; Ahmed, Musahid; Thiemens, Mark H.

    2013-01-01

    Select meteoritic classes possess mass-independent sulfur isotopic compositions in sulfide and organic phases. Photochemistry in the solar nebula has been attributed as a source of these anomalies. Hydrogen sulfide (H2S) is the most abundant gas-phase species in the solar nebula, and hence, photodissociation of H2S by solar vacuum UV (VUV) photons (especially by Lyman-α radiation) is a relevant process. Because of experimental difficulties associated with accessing VUV radiation, there is a paucity of data and a lack of theoretical basis to test the hypothesis of a photochemical origin of mass-independent sulfur. Here, we present multiisotopic measurements of elemental sulfur produced during the VUV photolysis of H2S. Mass-independent sulfur isotopic compositions are observed. The observed isotopic fractionation patterns are wavelength-dependent. VUV photodissociation of H2S takes place through several predissociative channels, and the measured mass-independent fractionation is most likely a manifestation of these processes. Meteorite sulfur data are discussed in light of the present experiments, and suggestions are made to guide future experiments and models. PMID:23431159

  10. Oxygen and hydrogen isotope geochemistry of zeolites

    Science.gov (United States)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  11. A Hydrogen and He Isotope Nanoprobe

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Deusen, Stuart B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Materials that incorporate hydrogen and helium isotopes are of great interest at Sandia and throughout the NNSA and DOE. The Ion Beam Lab at SNL-NM has invented techniques using micron to mm-size MeV ion beams to recoil these light isotopes (Elastic Recoil Detection or ERD) that can very accurately make such measurements. However, there are many measurements that would benefit NW and DOE that require much better resolution, such as the distribution of H isotopes (and 3He) in individual grains of materials relevant to TPBARs, H and He-embrittlement of weapon components important to Tritium Sustainment Programs, issues with GTSs, batteries… Higher resolution would also benefit the field of materials science in general. To address these and many other issues, nm-scale lateral resolution is required. This LDRD demonstrated that neutral H atoms could be recoiled through a thin film by 70 keV electrons and detected with a Channeltron electron multiplier (CEM). The electrons were steered away from the CEM by strong permanent magnets. This proved the feasibility that the high energy electrons from a transmissionelectron- microscope-TEM can potentially be used to recoil and subsequently detect (e-ERD), quantify and map the concentration of H and He isotopes with nm resolution. This discovery could lead to a TEM-based H/He-isotope nanoprobe with 1000x higher resolution than currently available.

  12. Isotopic tracing of hydrogen transport and trapping in nuclear materials

    Science.gov (United States)

    Chêne, Jacques; Martin, Frantz

    2017-06-01

    Some illustrations of the use of deuterium or tritium for isotopic tracing of hydrogen absorption, transport and trapping in nuclear materials are presented. Isotopic tracing of hydrogen has been shown to be successful for the determination of the boundaries conditions for hydrogen desorption or absorption in a material exposed to a hydrogen source. Also, the unique capabilities of isotopic tracing and related techniques to characterize H interactions with point defects and dislocations acting as moving traps has been demonstrated. Such transport mechanisms are considered to play a major role in some stress corrosion cracking and hydrogen embrittlement mechanisms. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  13. Hydrogen isotope fractionation in methane plasma

    Science.gov (United States)

    Robert, François; Derenne, Sylvie; Lombardi, Guillaume; Hassouni, Khaled; Michau, Armelle; Reinhardt, Peter; Duhamel, Rémi; Gonzalez, Adriana; Biron, Kasia

    2017-01-01

    The hydrogen isotope ratio (D/H) is commonly used to reconstruct the chemical processes at the origin of water and organic compounds in the early solar system. On the one hand, the large enrichments in deuterium of the insoluble organic matter (IOM) isolated from the carbonaceous meteorites are interpreted as a heritage of the interstellar medium or resulting from ion-molecule reactions taking place in the diffuse part of the protosolar nebula. On the other hand, the molecular structure of this IOM suggests that organic radicals have played a central role in a gas-phase organosynthesis. So as to reproduce this type of chemistry between organic radicals, experiments based on a microwave plasma of CH4 have been performed. They yielded a black organic residue in which ion microprobe analyses revealed hydrogen isotopic anomalies at a submicrometric spatial resolution. They likely reflect differences in the D/H ratios between the various CHx radicals whose polymerization is at the origin of the IOM. These isotopic heterogeneities, usually referred to as hot and cold spots, are commensurable with those observed in meteorite IOM. As a consequence, the appearance of organic radicals in the ionized regions of the disk surrounding the Sun during its formation may have triggered the formation of organic compounds.

  14. Hydrogen and oxygen isotope values in hydrogen peroxide.

    Science.gov (United States)

    Barnette, Janet E; Lott, Michael J; Howa, John D; Podlesak, David W; Ehleringer, James R

    2011-05-30

    Hydrogen peroxide (H(2)O(2)) is a widely used oxidizer with many commercial applications; unfortunately, it also has terrorist-related uses. We analyzed 97 hydrogen peroxide solutions representing four grades purchased across the United States and in Mexico. As expected, the range of hydrogen (δ(2)H, 230‰) and oxygen (δ(18)O, 24‰) isotope values of the H(2)O(2) solutions was large, reflecting the broad isotopic range of dilution waters. This resulted in predictable linear relationships of δ(2)H and δ(18)O values of H(2)O(2) solutions that were near parallel to the Meteoric Water Line (MWL), offset by the concentration of H(2)O(2) in the solution. By grade, dilute (3 to 35%) H(2)O(2) solutions were not statistically different in slope. Although the δ(2)H values of manufactured H(2)O(2) could be different from those of water, rapid H(2)O(2)-H(2)O exchange of H atoms eliminated any distinct isotope signal. We developed a method to measure the δ(18)O value of H(2)O(2) independent of dilution water by directly measuring O(2) gas generated from a catalase-induced disproportionation reaction. We predicted that the δ(18)O values of H(2)O(2) would be similar to that of atmospheric oxygen (+23.5‰), the predominant source of oxygen in the most common H(2)O(2) manufacturing process (median disproportionated δ(18)O=23.8‰). The predictable H-O relationships in H(2)O(2) solutions make it possible to distinguish commercial dilutions from clandestine concentration practices. Future applications of this work include synthesis studies that investigate the chemical link between H(2)O(2) reagents and peroxide-based explosive products, which may assist law enforcement in criminal investigations. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methane

    Energy Technology Data Exchange (ETDEWEB)

    Jewett, J.R., Fluor Daniel Hanford

    1997-02-24

    Suitable analytical methods must be tested and developed for monitoring the individual process steps within the fuel cycle of a fusion reactor and for tritium accountability. The utility of laser-Raman spectroscopy accompanied by mass spectrometry with an Omegatron was investigated using the analysis of all hydrogen isotopes and isotopically labeled methanes as an example. The Omegatron is useful for analyzing all hydrogen isotopes mixed with the stable helium isotopes. The application of this mass spectrometer were demonstrated by analyzing mixtures of deuterated methanes. In addition, it was employed to study the radiochemical Witzbach exchange reaction between tritium and methanes. A laser-Raman spectrometer was designed for analysis of tritium-containing gases and was built from individual components. A tritium-compatible, metal-sealed Raman cuvette having windows with good optical properties and additional means for measuring the stray light was first used successfully in this work. The Raman spectra of the hydrogen isotopes were acquired in the pure rotation mode and in the rotation-vibration mode and were used for on. The deuterated methanes were measured by Raman spectroscopy, the wavenumbers determined were assigned to the corresponding vibrations, and the wavenumbers for the rotational fine-structure were summarized in tables. The fundamental Vibrations of the deuterated methanes produced Witzbach reactions were detected and assigned. The fundamental vibrations of the molecules were obtained with Raman spectroscopy for the first time in this work. The @-Raman spectrometer assembled is well suited for the analysis of tritium- containing gases and is practical in combination with mass spectrometry using an Omegatron, for studying gases used in fusion.

  16. Deciphering the "chemical" nature of the exotic isotopes of hydrogen by the MC-QTAIM analysis: the positively charged muon and the muonic helium as new members of the periodic table.

    Science.gov (United States)

    Goli, Mohammad; Shahbazian, Shant

    2014-04-14

    This report is a primarily survey on the chemical nature of some exotic species containing the positively charged muon and the muonic helium, i.e., the negatively charged muon plus helium nucleus, as exotic isotopes of hydrogen, using the newly developed multi-component quantum theory of atoms in molecules (MC-QTAIM) analysis, employing ab initio non-Born-Oppenhiemer wavefunctions. Accordingly, the "atoms in molecules" analysis performed on various asymmetric exotic isotopomers of the hydrogen molecule, recently detected experimentally [Science, 2011, 331, 448], demonstrates that both the exotic isotopes are capable of forming atoms in molecules and retaining the identity of hydrogen atoms. Various derived properties of atomic basins containing the muonic helium cast no doubt that apart from its short life time, it is a heavier isotope of hydrogen while the properties of basins containing the positively charged muon are more remote from those of the orthodox hydrogen basins, capable of appreciable donation of electrons as well as large charge polarization. However, with some tolerance, they may also be categorized as hydrogen basins though with a smaller electronegativity. All in all, the present study also clearly demonstrates that the MC-QTAIM analysis is an efficient approach to decipher the chemical nature of species containing exotic constituents, which are difficult to elucidate by experimental and/or alternative theoretical schemes.

  17. Hydrogen isotope systematics of submarine basalts

    Science.gov (United States)

    Kyser, T.K.; O'Neil, J.R.

    1984-01-01

    The D/H ratios and water contents in fresh submarine basalts from the Mid-Atlantic Ridge, the East Pacific Rise, and Hawaii indicate that the primary D/H ratios of many submarine lavas have been altered by processes including (1) outgassing, (2) addition of seawater at magmatic temperature, and (3) low-temperature hydration of glass. Decreases in ??D and H2O+ from exteriors to interiors of pillows are explained by outgassing of water whereas inverse relations between ??D and H2O+ in basalts from the Galapagos Rise and the FAMOUS Area are attributed to outgassing of CH4 and H2. A good correlation between ??D values and H2O is observed in a suite of submarine tholeiites dredged from the Kilauea East Rift Zone where seawater (added directly to the magma), affected only the isotopic compositions of hydrogen and argon. Analyses of some glassy rims indicate that the outer millimeter of the glass can undergo lowtemperature hydration by hydroxyl groups having ??D values as low as -100. ??D values vary with H2O contents of subaerial transitional basalts from Molokai, Hawaii, and subaerial alkali basalts from the Society Islands, indicating that the primary ??D values were similar to those of submarine lavas. Extrapolations to possible unaltered ??D values and H2O contents indicate that the primary ??D values of most thoteiite and alkali basalts are near -80 ?? 5: the weight percentages of water are variable, 0.15-0.35 for MOR tholeiites, about 0.25 for Hawaiian tholeiites, and up to 1.1 for alkali basalts. The primary ??D values of -80 for most basalts are comparable to those measured for deep-seated phlogopites. These results indicate that hydrogen, in marked contrast to other elements such as Sr, Nd, Pb, and O, has a uniform isotopic composition in the mantle. This uniformity is best explained by the presence of a homogeneous reservoir of hydrogen that has existed in the mantle since the very early history of the Earth. ?? 1984.

  18. Isotopic fractionation during soil uptake of atmospheric hydrogen

    Directory of Open Access Journals (Sweden)

    A. Rice

    2011-03-01

    Full Text Available Soil uptake of atmospheric hydrogen (H2 and the associated hydrogen isotope effect were studied using soil chambers in a Western Washington second-growth coniferous forest. Chamber studies were conducted during both winter and summer seasons to account for large natural variability in soil moisture content (4–50% and temperature (6–22 °C. H2 deposition velocities were found to range from 0.01–0.06 cm s−1 with an average of 0.033 ± 0.008 cm s−1 (95% confidence interval. Consistent with prior studies, deposition velocities were correlated with soil moisture below 20% soil moisture content during the summer season. During winter, there was considerable variability observed in deposition velocity that was not closely related to soil moisture. The hydrogen kinetic isotope effect with H2 uptake was found to range from −24‰ to −109‰. Aggregate analysis of experimental data results in an average KIE of −57 ± 5‰ (95% CI. Some of the variability in KIE can be explained by larger isotope effects at lower (<10% and higher (>30% soil moisture contents. The measured KIE was also found to be correlated with deposition velocity, with smaller isotope effects occurring at higher deposition velocities. If correct, these findings will have an impact on the interpretation of atmospheric measurements and modeling of δD of H2.

  19. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    Science.gov (United States)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  20. Analysis of trace levels of impurities and hydrogen isotopes in helium purge gas using gas chromatography for tritium extraction system of an Indian lead lithium ceramic breeder test blanket module.

    Science.gov (United States)

    Devi, V Gayathri; Sircar, Amit; Yadav, Deepak; Parmar, Jayraj

    2018-01-12

    In the fusion fuel cycle, the accurate analysis and understanding of the chemical composition of any gas mixture is of great importance for the efficient design of a tritium extraction and purification system or any tritium handling system. Methods like laser Raman spectroscopy and gas chromatography with thermal conductivity detector have been considered for hydrogen isotopes analyses in fuel cycles. Gas chromatography with a cryogenic separation column has been used for the analysis of hydrogen isotopes gas mixtures in general due to its high reliability and ease of operation. Hydrogen isotopes gas mixture analysis with cryogenic columns has been reported earlier using different column materials for percentage level composition. In the present work, trace levels of hydrogen isotopes (∼100 ppm of H 2 and D 2 ) have been analyzed with a Zeolite 5A and a modified γ-Al 2 O 3 column. Impurities in He gas (∼10 ppm of H 2 , O 2 , and N 2 ) have been analyzed using a Zeolite 13-X column. Gas chromatography with discharge ionization detection has been utilized for this purpose. The results of these experiments suggest that the columns developed were able to separate ppm levels of the desired components with a small response time (<6 min) and good resolution in both cases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Room temperature Sieving of Hydrogen Isotopes Using 2-D Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krentz, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Serkiz, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Xiao, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed here suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.

  2. Transport hysteresis and hydrogen isotope effect on confinement

    Science.gov (United States)

    Itoh, S.-I.; Itoh, K.

    2018-03-01

    A Gedankenexperiment on hydrogen isotope effect is developed, using the transport model with transport hysteresis. The transport model with hysteresis is applied to case where the modulational electron cyclotron heating is imposed near the mid-radius of the toroidal plasmas. The perturbation propagates either outward or inward, being associated with the clockwise (CW) hysteresis or counter-clockwise (CCW) hysteresis, respectively. The hydrogen isotope effects on the CW and CCW hysteresis are investigated. The local component of turbulence-driven transport is assumed to be the gyro-Bohm diffusion. While the effect of hydrogen mass number is screened in the response of CW hysteresis, it is amplified in CCW hysteresis. This result motivates the experimental studies to compare CW and CCW cases in order to obtain further insight into the physics of hydrogen isotope effects.

  3. Hydrogen Isotope Fractionation As a Tool to Identify Aerobic and Anaerobic PAH Biodegradation.

    Science.gov (United States)

    Kümmel, Steffen; Starke, Robert; Chen, Gao; Musat, Florin; Richnow, Hans H; Vogt, Carsten

    2016-03-15

    Aerobic and anaerobic polycyclic aromatic hydrocarbon (PAH) biodegradation was characterized by compound specific stable isotope analysis (CSIA) of the carbon and hydrogen isotope effects of the enzymatic reactions initiating specific degradation pathways, using naphthalene and 2-methylnaphtalene as model compounds. Aerobic activation of naphthalene and 2-methylnaphthalene by Pseudomonas putida NCIB 9816 and Pseudomonas fluorescens ATCC 17483 containing naphthalene dioxygenases was associated with moderate carbon isotope fractionation (εC = -0.8 ± 0.1‰ to -1.6 ± 0.2‰). In contrast, anaerobic activation of naphthalene by a carboxylation-like mechanism by strain NaphS6 was linked to negligible carbon isotope fractionation (εC = -0.2 ± 0.2‰ to -0.4 ± 0.3‰). Notably, anaerobic activation of naphthalene by strain NaphS6 exhibited a normal hydrogen isotope fractionation (εH = -11 ± 2‰ to -47 ± 4‰), whereas an inverse hydrogen isotope fractionation was observed for the aerobic strains (εH = +15 ± 2‰ to +71 ± 6‰). Additionally, isotope fractionation of NaphS6 was determined in an overlaying hydrophobic carrier phase, resulting in more reliable enrichment factors compared to immobilizing the PAHs on the bottle walls without carrier phase. The observed differences especially in hydrogen fractionation might be used to differentiate between aerobic and anaerobic naphthalene and 2-methylnaphthalene biodegradation pathways at PAH-contaminated field sites.

  4. Retention of hydrogen isotopes and helium in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Mitsumasa; Sato, Rikiya; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    In the present study, a thin foil of nickel was irradiated by H{sub 2}{sup +}, D{sub 2}{sup +} and He{sup +} to a fluence of 1.2-6.0x10{sup 20}/m{sup 2} using the TBTS (Tritium Beam Test System) apparatus. The thermal desorption spectroscopy (TDS) technique was employed to evaluate the total amount of retained hydrogen isotope and helium atoms in nickel. In the spectra, two peaks appeared at 440-585K and 720-735K for helium. Hydrogen isotopes irradiation after helium preirradiation were found to enhance the helium release and to decrease the peak temperatures. Helium irradiation after hydrogen isotopes preirradiation were found to enhance the helium release, but the peak temperature showed little difference from that without preirradiation. (author)

  5. H/D Isotope Effects in Hydrogen Bonded Systems

    Directory of Open Access Journals (Sweden)

    Aleksander Filarowski

    2013-04-01

    Full Text Available An extremely strong H/D isotope effect observed in hydrogen bonded A-H…B systems is connected with a reach diversity of the potential shape for the proton/deuteron motion. It is connected with the anharmonicity of the proton/deuteron vibrations and of the tunneling effect, particularly in cases of short bridges with low barrier for protonic and deuteronic jumping. Six extreme shapes of the proton motion are presented starting from the state without possibility of the proton transfer up to the state with a full ionization. The manifestations of the H/D isotope effect are best reflected in the infra-red absorption spectra. A most characteristic is the run of the relationship between the isotopic ratio nH/nD and position of the absorption band shown by using the example of NHN hydrogen bonds. One can distinguish a critical range of correlation when the isotopic ratio reaches the value of ca. 1 and then increases up to unusual values higher than . The critical range of the isotope effect is also visible in NQR and NMR spectra. In the critical region one observes a stepwise change of the NQR frequency reaching 1.1 MHz. In the case of NMR, the maximal isotope effect is reflected on the curve presenting the dependence of Δd (1H,2H on d (1H. This effect corresponds to the range of maximum on the correlation curve between dH and ΔpKa that is observed in various systems. There is a lack in the literature of quantitative information about the influence of isotopic substitution on the dielectric properties of hydrogen bond except the isotope effect on the ferroelectric phase transition in some hydrogen bonded crystals.

  6. H/D isotope effects in hydrogen bonded systems.

    Science.gov (United States)

    Sobczyk, Lucjan; Obrzud, Monika; Filarowski, Aleksander

    2013-04-16

    An extremely strong H/D isotope effect observed in hydrogen bonded A-H…B systems is connected with a reach diversity of the potential shape for the proton/deuteron motion. It is connected with the anharmonicity of the proton/deuteron vibrations and of the tunneling effect, particularly in cases of short bridges with low barrier for protonic and deuteronic jumping. Six extreme shapes of the proton motion are presented starting from the state without possibility of the proton transfer up to the state with a full ionization. The manifestations of the H/D isotope effect are best reflected in the infra-red absorption spectra. A most characteristic is the run of the relationship between the isotopic ratio nH/nD and position of the absorption band shown by using the example of NHN hydrogen bonds. One can distinguish a critical range of correlation when the isotopic ratio reaches the value of ca. 1 and then increases up to unusual values higher than . The critical range of the isotope effect is also visible in NQR and NMR spectra. In the critical region one observes a stepwise change of the NQR frequency reaching 1.1 MHz. In the case of NMR, the maximal isotope effect is reflected on the curve presenting the dependence of Δd (¹H,²H) on d (¹H). This effect corresponds to the range of maximum on the correlation curve between dH and ΔpKa that is observed in various systems. There is a lack in the literature of quantitative information about the influence of isotopic substitution on the dielectric properties of hydrogen bond except the isotope effect on the ferroelectric phase transition in some hydrogen bonded crystals.

  7. Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S.; Stolper, E.

    1992-01-01

    The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

  8. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    Science.gov (United States)

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  9. Hydrogen recycle and isotope exchange from dense carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E.; Heatherly, L.

    1987-03-01

    Dense carbon films were prepared by deposition from hydrogen plasmas to which methane was added. The initial hydrogen recycle coefficient from the films ranges from more than two to less than one. The films contain large amounts of hydrogen (up to 50 at. %). They adjust themselves to provide recycling coefficients near unity. Isotope changeover times tend to be long. The reservoir of hydrogen instantly available to the plasma to maintain or stabilize the recycle coefficient and isotopic composition of the plasma is 10/sup 15/ cm/sup -2/ or greater depending on film preparation, temperature, and prior plasma exposure conditions. Simulator observations tend to support and improve the understanding of the observations in TEXTOR and JET; however, they also point out the need for control of film deposition and operating parameters to provide desirable and reproducible properties. The films and the hydrogen isotopes they contain can be removed easily by plasma processes. Since the hydrogen in these films is relatively immobile except in the zone reached by energetic particles, or at temperatures above 400/sup 0/C, dense carbon films may be useful in managing the tritium recovery from near-term fusion experiments.

  10. Experimental studies and modeling of processes of hydrogen isotopes interaction with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibaeva, I.L.; Chikhray, Y.V.; Romanenko, O.G.; Klepikov, A.Kh.; Shestakov, V.P.; Kulsartov, T.V. [Science Research Inst. of Experimental and Theoretical Physics of Kazakh State Univ., Almaty (Kazakhstan); Kenzhin, E.A.

    1998-01-01

    The objective of this work was to clarify the surface beryllium oxide influence on hydrogen-beryllium interaction characteristics. Analysis of experimental data and modeling of processes of hydrogen isotopes accumulation, diffusion and release from neutron irradiated beryllium was used to achieve this purpose as well as the investigations of the changes of beryllium surface element composition being treated by H{sup +} and Ar{sup +} plasma glowing discharge. (author)

  11. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  12. Carbon and hydrogen isotope fractionation of benzene and toluene during hydrophobic sorption in multistep batch experiments.

    Science.gov (United States)

    Imfeld, G; Kopinke, F-D; Fischer, A; Richnow, H-H

    2014-07-01

    The application of compound-specific stable isotope analysis (CSIA) for evaluating degradation of organic pollutants in the field implies that other processes affecting pollutant concentration are minor with respect to isotope fractionation. Sorption is associated with minor isotope fractionation and pollutants may undergo successive sorption-desorption steps during their migration in aquifers. However, little is known about isotope fractionation of BTEX compounds after consecutive sorption steps. Here, we show that partitioning of benzene and toluene between water and organic sorbents (i.e. 1-octanol, dichloromethane, cyclohexane, hexanoic acid and Amberlite XAD-2) generally exhibits very small carbon and hydrogen isotope effects in multistep batch experiments. However, carbon and hydrogen isotope fractionation was observed for the benzene-octanol pair after several sorption steps (Δδ(13)C=1.6 ± 0.3‰ and Δδ(2)H=88 ± 3‰), yielding isotope fractionation factors of αC=1.0030 ± 0.0005 and αH=1.195 ± 0.026. Our results indicate that the cumulative effect of successive hydrophobic partitioning steps in an aquifer generally results in insignificant isotope fractionation for benzene and toluene. However, significant carbon and hydrogen isotope fractionation cannot be excluded for specific sorbate-sorbent pairs, such as sorbates with π-electrons and sorbents with OH-groups. Consequently, functional groups of sedimentary organic matter (SOM) may specifically interact with BTEX compounds migrating in an aquifer, thereby resulting in potentially relevant isotope fractionation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Hydrogen isotope recycling at a tungsten target

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, M., E-mail: sakamoto@prc.tsukuba.ac.jp [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nakashima, Y. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Higashizono, Y. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Ogawa, K. [Interdisciplinary Graduate School for Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Hosoi, K. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Rusinov, A. [Interdisciplinary Graduate School for Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Takeda, H.; Akabane, Y.; Kohagura, J.; Yoshikawa, M.; Ichimura, M.; Imai, T. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

    2013-07-15

    Hydrogen recycling has been studied focusing on the neutral behavior in front of tungsten target in the plasma–wall interaction simulator APSEDAS and the tandem mirror GAMMA 10. The line intensity of hydrogen Balmer series decreased toward the target corresponding to a decrease in the electron density in APSEDAS. The relative population of n = 3 and n = 4 increased and that of n = 5 and n = 6 decreased just in front of the target (Z < 5 mm). This might be attributed to the reflected atom or reemitted molecule from the target. In GAMMA 10, the intensity of hydrogen Balmer (H{sub α}) line decreased exponentially with distance from the target with two decay lengths: ∼16 mm and ∼53 mm. These two short decay lengths are attributed to the fact that a fraction of the reflected atoms and atoms dissociated from molecules are at excited energy states.

  14. Chromatographic measurement of hydrogen isotopic and permanent gas impurities in tritium

    Energy Technology Data Exchange (ETDEWEB)

    Warner, D.K.; Kinard, C.; Bohl, D.C.

    1976-06-04

    This paper describes a gas chromatograph that was designed for dedicated analysis of hydrogen isotopic and permanent gas impurities in tritium and tritium-deuterium mixtures. The instrument that was developed substantially improved the accuracy and precision of hydrogen isotopic analysis in the 20 ppM to one mole percent range as compared with other analytical methods. Several unique design features of the instrument were required due to the radiation and isotopic exchange properties of the tritium in the samples; descriptions of these features are presented along with details of the complete chromatographic system. The experimental procedures used to calibrate the detector and statistically evaluate its performance are given, and the sources of analytical error are cited. The limitations of the present system are also discussed.

  15. Hydrogen isotopic substitution experiments in nanostructured porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, W.D. [Facultad de Ciencias Exactas y Naturales y Agrimensura - (UNNE), Avenida Libertad 5500, 3400 Corrientes (Argentina); Koropecki, R.R. [INTEC (CONICET-UNL), Gueemes 3450, 3000 Santa Fe (Argentina)], E-mail: rkoro@intec.ceride.gov.ar; Arce, R.D. [INTEC (CONICET-UNL), Gueemes 3450, 3000 Santa Fe (Argentina); Busso, A. [Facultad de Ciencias Exactas y Naturales y Agrimensura - (UNNE), Avenida Libertad 5500, 3400 Corrientes (Argentina)

    2008-04-30

    Nanostructured porous silicon is usually prepared by electrochemical anodization of monocrystalline silicon using a fluorine-rich electrolyte. As a result of this process, the silicon atoms conserve their original crystalline location, and many of the dangling bonds appearing on the surface of the nanostructure are saturated by hydrogen coming from the electrolyte. This work presents an IR study of the effects produced by partial substitution of water in the electrolytic solution by deuterium oxide. The isotopic effects on the IR spectra are analyzed for the as-prepared samples and for the samples subjected to partial thermal effusion of hydrogen and deuterium. We demonstrate that, although deuterium is chemically indistinguishable from hydrogen, it presents a singular behaviour when used in porous silicon preparation. We found that deuterium preferentially bonds forming Si-DH groups. A possible explanation of the phenomenon is presented, based on the different diffusivities of hydrogen and deuterium.

  16. Assessing carbon and hydrogen isotopic fractionation of diesel fuel n-alkanes during progressive evaporation.

    Science.gov (United States)

    Muhammad, Syahidah A; Hayman, Alan R; Van Hale, Robert; Frew, Russell D

    2015-01-01

    Compound-specific isotope analysis offers potential for fingerprinting of diesel fuels, however, possible confounding effects of isotopic fractionation due to evaporation need to be assessed. This study measured the fractionation of the stable carbon and hydrogen isotopes in n-alkane compounds in neat diesel fuel during evaporation. Isotope ratios were measured using a continuous flow gas chromatograph/isotope ratio mass spectrometer. Diesel samples were progressively evaporated at 24 ± 2°C for 21 days. Increasing depletion of deuterium in nC12-nC17 alkanes in the remaining liquid with increasing carbon chain length was observed. Negligible carbon isotope fractionation was observed. Preferential vaporization was measured for the shorter chain n-alkanes and the trend decreased with increasing chain length. The decrease in δ(2) H values indicates the preferential vaporization of the isotopically heavier species consistent with available quantitative data for hydrocarbons. These results are most important in the application of stable isotope technology to forensic analysis of diesel. © 2014 American Academy of Forensic Sciences.

  17. A revision in hydrogen isotopic composition of USGS42 and USGS43 human-hair stable isotopic reference materials for forensic science

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2016-01-01

    The hydrogen isotopic composition (δ2HVSMOW-SLAP) of USGS42 and USGS43 human hair stable isotopic reference materials, normalized to the VSMOW (Vienna-Standard Mean Ocean Water)–SLAP (Standard Light Antarctic Precipitation) scale, was originally determined with a high temperature conversion technique using an elemental analyzer (TC/EA) with a glassy carbon tube and glassy carbon filling and analysis by isotope-ratio mass spectrometer (IRMS). However, the TC/EA IRMS method can produce inaccurate δ2HVSMOW-SLAPresults when analyzing nitrogen-bearing organic substances owing to the formation of hydrogen cyanide (HCN), leading to non-quantitative conversion of a sample into molecular hydrogen (H2) for IRMS analysis. A single-oven, chromium-filled, elemental analyzer (Cr-EA) coupled to an IRMS substantially improves the measurement quality and reliability of hydrogen isotopic analysis of hydrogen- and nitrogen-bearing organic material because hot chromium scavenges all reactive elements except hydrogen. USGS42 and USGS43 human hair isotopic reference materials have been analyzed with the Cr-EA IRMS method, and the δ2HVSMOW-SLAP values of their non-exchangeable hydrogen fractions have been revised:where mUr = 0.001 = ‰. On average, these revised δ2HVSMOW-SLAP values are 5.7 mUr more positive than those previously measured. It is critical that readers pay attention to the δ2HVSMOW-SLAP of isotopic reference materials in publications as they may need to adjust the δ2HVSMOW–SLAP measurement results of human hair in previous publications to ensure all results are on the same isotope-delta scale.

  18. Calculation of hydrogen isotopic fractionations in biogeochemical systems

    Science.gov (United States)

    Sessions, Alex L.; Hayes, John M.

    2005-02-01

    Hydrogen-isotopic data are often interpreted using mathematical approximations originally intended for other isotopes. One of the most common, apparent in literature over the last several decades, assumes that delta values of reactants and products are separated by a constant fractionation factor: δ p = δ r + ɛ p/r. Because of the large fractionations that affect hydrogen isotopes, such approximations can lead to substantial errors. Here we review and develop general equations for isotopic mass balances that include the differential fractionation of each component in a mixture and discuss their use in three geochemical applications. For the fractionation of a single component, the reactant and product are related by δ p = α p/rδ r + ɛ p/r, where α and ɛ refer to the same fractionation. Regression of δ p on δ r should give equivalent fractionations based on the intercept and slope, but this has not generally been recognized in studies of D/H fractionation. In a mixture of two components, each of which is fractionated during mixing, there is no unique solution for the three unknown variables (two fractionation factors and the elemental mixing ratio of the two hydrogen sources). The flow of H from CH 4 and H 2O to bacterial lipids in the metabolism of Methylococcus capsulatus provides an example of such a case. Data and conclusions from an earlier study of that system (Sessions et al., 2002) are reexamined here. Several constraints on the variables are available based on plausible ranges for fractionation factors. A possible refinement to current experimental procedures is the measurement of three different isotopes, which would allow unique determination of all variables.

  19. Hydrogen isotopes transport parameters in fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Serra, E. [Politecnico di Torino (Italy). Dipartimento di Energetica; Benamati, G. [ENEA Fusion Division, CR Brasimone, 40032 Camungnano, Bologna (Italy); Ogorodnikova, O.V. [Moscow State Engineering Physics Institute, Moscow 115409 (Russian Federation)

    1998-06-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned. (orig.) 62 refs.

  20. Conceptual design of an extraction system for cryogenic hydrogen isotopes distillation

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirache, M.; Stefanescu, I.; Bornea, A.; Balteanu, O.; Bidica, N.

    2007-07-01

    One of the main problems of the hydrogen isotopes separation by cryogenic distillation is represented by the extraction of the heavy fraction from a distillation column. This can be achieved by an optimal design of the cycle scheme. The main problem consist of the possibility to make an extraction from a distillation column when the mixture that feed the column is made from one prevalent isotope as hydrogen and small amounts of other two isotopes (deuterium and/or tritium). Another problem that affects the design of the extraction system is the relation between the hold-up of the cryogenic distillation column and the extraction flow rate. The present study is focused on the realization of the conceptual design for the extraction system from a cryogenic distillation column used in the hydrogen isotopes separation process. In the hydrogen distillation process by cryogenic distillation, the heavy fraction (DT,T{sub 2}) is separated and increase in the bottom of the distillation column. The extraction will be made in gas phase in the bottom of the column. The extraction system from a cryogenic column is used for the temporary extraction inside a vessel filled with adsorption material, and also the system has the possibility to provide samples to a gas chromatographer. The paper presents the conceptual design of the extraction system, and also the connection to all the process systems as automatization, gas analysis devices and storage. (orig.)

  1. Diamond and Diamond-Like Materials as Hydrogen Isotope Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, L.R.; Barbero, R.S.; Carroll, D.W.; Archuleta, T.; Baker, J.; Devlin, D.; Duke, J.; Loemier, D.; Trukla, M.

    1999-07-10

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project was to develop diamond and diamond-like thin-films as hydrogen isotope permeation barriers. Hydrogen embrittlement limits the life of boost systems which otherwise might be increased to 25 years with a successful non-reactive barrier. Applications in tritium processing such as bottle filling processes, tritium recovery processes, and target filling processes could benefit from an effective barrier. Diamond-like films used for low permeability shells for ICF and HEDP targets were also investigated. Unacceptable high permeabilities for hydrogen were obtained for plasma-CVD diamond-like-carbon films.

  2. CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, S.; Heung, L.

    2010-10-07

    Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

  3. Unexpected hydrogen isotope variation in oceanic pelagic seabirds

    Science.gov (United States)

    Ostrom, Peggy H.; Wiley, Anne E.; Rossman, Sam; Stricker, Craig A.; James, Helen F.

    2014-01-01

    Hydrogen isotopes have significantly enhanced our understanding of the biogeography of migratory animals. The basis for this methodology lies in predictable, continental patterns of precipitation δD values that are often reflected in an organism's tissues. δD variation is not expected for oceanic pelagic organisms whose dietary hydrogen (water and organic hydrogen in prey) is transferred up the food web from an isotopically homogeneous water source. We report a 142% range in the δD values of flight feathers from the Hawaiian petrel (Pterodroma sandwichensis), an oceanic pelagic North Pacific species, and inquire about the source of that variation. We show δD variation between and within four other oceanic pelagic species: Newell's shearwater (Puffinus auricularis newellii), Black-footed albatross (Phoebastria nigripes), Laysan albatross (Phoebastria immutabilis) and Buller's shearwater (Puffinus bulleri). The similarity between muscle δD values of hatch-year Hawaiian petrels and their prey suggests that trophic fractionation does not influence δD values of muscle. We hypothesize that isotopic discrimination is associated with water loss during salt excretion through salt glands. Salt load differs between seabirds that consume isosmotic squid and crustaceans and those that feed on hyposmotic teleost fish. In support of the salt gland hypothesis, we show an inverse relationship between δD and percent teleost fish in diet for three seabird species. Our results demonstrate the utility of δD in the study of oceanic consumers, while also contributing to a better understanding of δD systematics, the basis for one of the most commonly utilized isotope tools in avian ecology.

  4. Combination of carbon isotope ratio with hydrogen isotope ratio determinations in sports drug testing.

    Science.gov (United States)

    Piper, Thomas; Emery, Caroline; Thomas, Andreas; Saugy, Martial; Thevis, Mario

    2013-06-01

    Carbon isotope ratio (CIR) analysis has been routinely and successfully applied to doping control analysis for many years to uncover the misuse of endogenous steroids such as testosterone. Over the years, several challenges and limitations of this approach became apparent, e.g., the influence of inadequate chromatographic separation on CIR values or the emergence of steroid preparations comprising identical CIRs as endogenous steroids. While the latter has been addressed recently by the implementation of hydrogen isotope ratios (HIR), an improved sample preparation for CIR avoiding co-eluting compounds is presented herein together with newly established reference values of those endogenous steroids being relevant for doping controls. From the fraction of glucuronidated steroids 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-Hydroxy-5β-androstane-11,17-dione, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 3β-hydroxy-androst-5-en-17-one (DHEA), 5α- and 5β-androstane-3α,17β-diol (5aDIOL and 5bDIOL), 17β-hydroxy-androst-4-en-3-one and 17α-hydroxy-androst-4-en-3-one were included. In addition, sulfate conjugates of ANDRO, ETIO, DHEA, 3β-hydroxy-5α-androstan-17-one plus 17α- and androst-5-ene-3β,17β-diol were considered and analyzed after acidic solvolysis. The results obtained for the reference population encompassing n = 67 males and females confirmed earlier findings regarding factors influencing endogenous CIR. Variations in sample preparation influenced CIR measurements especially for 5aDIOL and 5bDIOL, the most valuable steroidal analytes for the detection of testosterone misuse. Earlier investigations on the HIR of the same reference population enabled the evaluation of combined measurements of CIR and HIR and its usefulness regarding both steroid metabolism studies and doping control analysis. The combination of both stable isotopes would allow for lower reference limits providing the same statistical

  5. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Matthias

    2014-02-15

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  6. Experimental verification of hydrogen isotope separation by pressure swing adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Kotoh, K. [Faculty of Eng., Kyushu Univ., 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Tanaka, M. [National Inst. for Fusion Science, 322-6 Oroshi-cho, Toki-shi, Gifu 509-5292 (Japan); Nakamura, Y.; Sakamoto, T. [Faculty of Eng., Kyushu Univ., 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Asakura, Y.; Uda, T. [National Inst. for Fusion Science, 322-6 Oroshi-cho, Toki-shi, Gifu 509-5292 (Japan); Sugiyama, T. [Faculty of Eng., Nagoya Univ., Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2008-07-15

    Focusing on synthetic zeolites that adsorb hydrogen isotopes at liquid N{sub 2} temperature with priority in the order of T{sub 2}, DT, D{sub 2}, HT, HD and H{sub 2}, we have been developing a pressure swing adsorption process system for hydrogen isotope separation. For this purpose, we carried out fundamental experiments of adsorption and desorption of a tracer D{sub 2} in bulk H{sub 2} with zeolite packed-bed columns. In this paper, the results are reported that D{sub 2} is enriched in the adsorbed phase at separation factors near 2.0, flowing through zeolite 5A and 13X packed-beds at 77.4 K. These are in agreement with values predicted from the multi-component equilibrium characteristics. In the gas samples recovered by evacuating the packed-beds, however, D{sub 2} was detected at a relative concentration of 1.20 or 1.32 to that in the feed gas. This lower range results from the isotopic mass effect in kinetic process. That suggests a highly D{sub 2}-enriched residual left during evacuation. This is verified with an unusually high enrichment factor of 6.68 or 9.21 for zeolite 5A or 13X measured in the residual sample desorbed from the packed-bed by heating up to room temperature. (authors)

  7. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  8. The Laboratory for Laser Energetics’ Hydrogen Isotope Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Shmayda, W.T., E-mail: wshm@lle.rochester.edu; Wittman, M.D.; Earley, R.F.; Reid, J.L.; Redden, N.P.

    2016-11-01

    The University of Rochester’s Laboratory for Laser Energetics has commissioned a hydrogen Isotope Separation System (ISS). The ISS uses two columns—palladium on kieselguhr and molecular sieve—that act in a complementary manner to separate the hydrogen species by mass. The 4-sL per day throughput system is compact and has no moving parts. The columns and the attendant gas storage and handling subsystems are housed in a 0.8 -m{sup 3} glovebox. The glovebox uses a helium cover gas that is continuously processed to extract oxygen and water vapor that permeates through the glovebox gloves and any tritium that is released while attaching or detaching vessels to add feedstock to or drawing product from the system. The isotopic separation process is automated and does not require manual intervention. A total of 315 TBq of tritium was extracted from 23.6 sL of hydrogen with tritium purities reaching 99.5%. Deuterium was the sole residual component in the processed gas. Raffinate contained 0.2 TBq of activity was captured for reprocessing. The total emission from the system to the environment was 0.4 GBq over three weeks.

  9. [Solid state isotope hydrogen exchange for deuterium and tritium in human gene-engineered insulin].

    Science.gov (United States)

    Zolotarev, Yu A; Dadayan, A K; Kozik, V S; Gasanov, E V; Nazimov, I V; Ziganshin, R Kh; Vaskovsky, B V; Murashov, A N; Ksenofontov, A L; Haribin, O N; Nikolaev, E N; Myasoedov, N F

    2014-01-01

    The reaction of high temperature solid state catalytic isotope exchange in peptides and proteins under the action of catalyst-activated spillover hydrogen was studied. The reaction of human gene-engineered insulin with deuterium and tritium was conducted at 120-140° C to produce insulin samples containing 2-6 hydrogen isotope atoms. To determine the distribution of the isotope label over tritium-labeled insulin's amino acid residues, oxidation of the S-S bonds of insulin by performic acid was performed and polypeptide chains isolated; then their acid hydrolysis, amino acid analysis and liquid scintillation counts of tritium in the amino acids were conducted. The isotope label was shown to be incorporated in all amino acids of the protein, with the peptide fragment FVNQHLCGSHLVE of the insulin β-chain showing the largest incorporation. About 45% of the total protein isotope label was incorporated in His5 and His10 of this fragment. For the analysis of isotope label distribution in labeled insulin's peptide fragments, the recovery of the S-S bonds by mercaptoethanol, the enzymatic hydrolysis by glutamyl endopeptidase from Bacillus intermedius and HPLC division of the resulting peptides were carried out. Attribution of the peptide fragments formed due to hydrolysis at the Glu-X bond in the β-chain was accomplished by mass spectrometry. Mass spectrometry analysis data of the deuterium-labeled insulin samples' isotopomeric composition showed that the studied solid state isotope exchange reaction equally involved all the protein molecules. Biological studying of tritium-labeled insulin showed its physiological activity to be completely retained.

  10. Hydrogen isotope alteration of normal alkanes during artificial maturation experiments

    Science.gov (United States)

    Wang, C.; Eley, Y.; Oakes, A.; Hren, M. T.

    2016-12-01

    Hydrogen isotopes of normal alkanes provide a record of past climate, hydrocarbon source and migration, and thermal history. Numerous authors have investigated the preservation potential of organic compounds during burial diagenesis and developed a range of molecular indicators of thermal maturity. A key uncertainty in application of organic biomarkers for paleoenvironmental work is how the δD values of individual molecular compounds changes during burial heating and thermal cracking. Studies suggest that n-alkanes are unlikely to exchange hydrogen at modest temperatures (below 150°C) over geologic time, however there is still debate over the potential for alteration of primary isotopic signatures due to the combined effect of exchange and cracking of more complex molecules. We conducted a suite of heating experiments in ambient air and oxygen-free systems using pure alkane mixtures and natural soil extracts to evaluate the preservation potential of the hydrogen isotopic composition of both short (nC20) carbon chain n-alkanes. Our data show that for pure mixtures, there is a positive shift in the δD of long carbon chains during heating of up to 12‰ and a negative shift in short chains of up to 28‰. Experiments with natural sediment extracts show 2H enrichment of long carbon chains during heating in both ambient air and oxygen free systems, and at temperatures below 150°C. These changes are accompanied by shifts in the carbon preference and average chain length. Experimental data show that there is potential for 2H/1H alteration of long-carbon chain normal alkanes during shallow burial, however these changes rarely exceed 10-15‰ before compounds are degraded to quantities below useful abundances for isotope measurements. A potentially significant result is that low temperature alteration of organics within sediments can shift the average chain length, particularly in the presence of oxygen. Thus, lithology and gas permeability may play an important role in

  11. Structural properties of hydrogen isotopes in solid phase in the context of inertial confinement fusion

    Directory of Open Access Journals (Sweden)

    Guerrero Carlo

    2013-11-01

    Full Text Available Quality of Deuterium-Tritium capsules is a critical aspect in Inertial Confinement Fusion. In this work, we present a Quantum Molecular Dynamics methodology able to model hydrogen isotopes and their structural molecular organisation at extreme pressures and cryogenic temperatures (< 15 K. Our study sets up the basis for a future analysis on the mechanical and structural properties of DT-ice in inertial confinement fusion (ICF target manufacturing conditions.

  12. Hydrogen Isotope Biogeochemistry of Plant Biomarkers in Tropical Trees from the Andes to Amazon

    Science.gov (United States)

    Feakins, S. J.; Ponton, C.; West, A. J.; Malhi, Y.; Goldsmith, G.; Salinas, N.; Bentley, L. P.

    2014-12-01

    Plant leaf waxes are well known biomarkers for terrestrial vegetation. Generally, their hydrogen isotopic composition (D/H) records the isotopic composition of precipitation, modulated by leaf water processes and a large biosynthetic fractionation. In addition, the D/H of methoxyl groups on tree wood lignin is an emerging technique thought to record the D/H of source waters, without leaf water complications. Using each of these biomarkers as proxies requires understanding D/H fractionations in plant systems, but few studies have directly studied hydrogen isotope biogeochemistry in tropical plants. An approach that has proven helpful is the paired analysis of plant waters and plant biomarkers: in order that fractionations can be directly computed rather than assumed. This presents logistical challenges in remote tropical forest environments. We report on a unique dataset collected by tree-climbers from 6 well-studied vegetation plots across a 4km elevation transect in the Peruvian Andes and Amazonia. We have measured the D/H of stem water and leaf water, and we compare these to precipitation isotopes and stream waters. The goal of the plant water studies is to understand plant water uptake and stem-leaf water isotopic offsets which can vary due to both transpiration and foliar uptake of water in tropical montane forests. We are in the process of measuring the D/H of plant biomarkers (n-alkanoic acids, n-alkanes and lignin methoxyl) in order to assess how these water isotopic signals are encoded in plant biomarkers. We compare the species-specific modern plant insights to the plant leaf wax n-alkanoic acid D/H that we have recently reported from soils and river sediments from the same region, in order to understand how signals of plant biogeochemistry are integrated into geological sedimentary archives. Progress and open questions in tropical isotope biogeochemistry will be discussed at the meeting.

  13. Hydrogen and carbon isotopic composition of volatiles in Nakhla: Implications for weathering on Mars

    Science.gov (United States)

    Watson, L. L.; Epstein, S.; Stolper, E. M.

    1992-01-01

    Gases were collected at 120, 200, 300, 415, and 600 and 850 C. Hydrogen yields for the 600 and 850 C aliquots were measured separately and then the gases were combined for isotopic analysis. CO2 samples collected at the two lowest temperature steps amounted to less than 0.5 mu mole and were not analyzed isotopically. Excluding the 120 C temperature step, the bulk delta D of the sample was + 187 percent. Delta D values increase from -91 percent in the 120 C step to +518 percent in the 315 to 850 C step. The hydrogen content is greatest in the 120 C step and is roughly constant in the 200, 300, and 415 C aliquots. Between 415 C and 850 C, the yield drops off considerably. From 850 C to 950 C, virtually no H2 and only minor CO2 (less than 1 mu mole) were extracted. Using the isotopic analysis from the 300, 415, 600, and 850 C temperature collections, the bulk delta C-13 sub (PDB) is 0.0 percent. The heaviest component (delta C-13 sub (PDB) of +29 percent) was collected between 300 and 415 C. The release of hydrogen at the low temperatures reported here is consistent with the breakdown of the phases that constitute the alteration product between approx. 250 and 650 C. Although not as high as the present Martian atmosphere, the high delta D values are consistent with a Martian origin for the meteorites in question.

  14. An analytical system for the measurement of stable hydrogen isotopes in ambient volatile organic compounds

    Science.gov (United States)

    Meisehen, T.; Bühler, F.; Koppmann, R.; Krebsbach, M.

    2015-10-01

    Stable isotope measurements in atmospheric volatile organic compounds (VOCs) are an excellent tool to analyse chemical and dynamical processes in the atmosphere. While up to now isotope studies of VOCs in ambient air have mainly focussed on carbon isotopes, we herein present a new measurement system to investigate hydrogen isotope ratios in atmospheric VOCs. This system, consisting of a gas chromatography pyrolysis isotope ratio mass spectrometer (GC-P-IRMS) and a pre-concentration system, was thoroughly characterised using a VOC test mixture. A precision of better than 9 ‰ (in δ 2H) is achieved for n-pentane, 2-methyl-1,3-butadiene (isoprene), n-heptane, 4-methyl-pentane-2-one (4-methyl-2-pentanone), methylbenzene (toluene), n-octane, ethylbenzene, m/p-xylene and 1,2,4-trimethylbenzene. A comparison with independent measurements via elemental analysis shows an accuracy of better than 9 ‰ for n-pentane, n-heptane, 4-methyl-2-pentanone, toluene and n-octane. Above a minimum required pre-concentrated compound mass the obtained δ 2H values are constant within the standard deviations. In addition, a remarkable influence of the pyrolysis process on the isotope ratios is found and discussed. Reliable measurements are only possible if the ceramic tube used for the pyrolysis is sufficiently conditioned, i.e. the inner surface is covered with a carbon layer. It is essential to verify this conditioning regularly and to renew it if required. Furthermore, influences of a necessary H3+ correction and the pyrolysis temperature on the isotope ratios are discussed. Finally, the applicability to measure hydrogen isotope ratios in VOCs at ambient levels is demonstrated with measurements of outside air on 5 different days in February and March 2015. The measured hydrogen isotope ratios range from -136 to -105 ‰ forn-pentane, from -86 to -63 ‰ for toluene, from -39 to -15 ‰ for ethylbenzene, from -99 to -68 ‰ for m/p-xylene and from -45 to -34 ‰ for o-xylene.

  15. Isotope tracer study of hydrogen spillover on carbon-based adsorbents for hydrogen storage.

    Science.gov (United States)

    Lachawiec, Anthony J; Yang, Ralph T

    2008-06-17

    A composite material comprising platinum nanoparticles supported on molecular sieve templated carbon was synthesized and found to adsorb 1.35 wt % hydrogen at 298 K and 100 atm. The isosteric heat of adsorption for the material at low coverage was approximately 14 kJ/mol, and it approached a value of 10.6 kJ/mol as coverage increased for pressures at and above 1 atm. The increase in capacity is attributed to spillover, which is observed with the use of isotopic tracer TPD. IRMOF-8 bridged to Pt/C, a material known to exhibit hydrogen spillover at room temperature, was also studied with the hydrogen-deuterium scrambling reaction for comparison. The isotherms were reversible. For desorption, sequential doses of H2 and D2 at room temperature and subsequent TPD yield product distributions that are strong indicators of the surface diffusion controlled reverse spillover process.

  16. Dynamic nuclear polarization of high-density atomic hydrogen in solid mixtures of molecular hydrogen isotopes.

    Science.gov (United States)

    Sheludiakov, S; Ahokas, J; Järvinen, J; Zvezdov, D; Vainio, O; Lehtonen, L; Vasiliev, S; Mao, S; Khmelenko, V V; Lee, D M

    2014-12-31

    We report on magnetic resonance studies of high-density atomic hydrogen and deuterium in solid hydrogen matrices at temperatures below 1 K. Average concentrations of H atoms ≈3×10(19)  cm(-3) are obtained in chemical tunneling reactions of isotope exchange with D atoms. The products of these reactions are closely located pairs of H atoms near D2 molecules with strong exchange interactions. We discovered a dynamic nuclear polarization effect on H atoms created by pumping the center of the H electron spin resonance spectrum, similar to the Overhauser effect in metals. Our results indicate that H atoms may be arranged inside molecular matrices at separations equivalent to local concentrations of 2.6×10(21)  cm(-3). This opens up a way to build a metallic state of atomic hydrogen at zero pressure.

  17. Hydrogen isotope exchange experiments with Mt Mazama ash

    Science.gov (United States)

    Nolan, G. S.; Bindeman, I. N.; Palandri, J. L.

    2011-12-01

    The 2H/H ratio in hydrous minerals and volcanic glass are routinely used as paleo proxies to infer ∂2H value of meteoric waters and thus paleo-climate conditions. There is a widely held assumption that once environmental water is taken up by the ash to ~3-4 wt%, hydrogen isotopes preserve original hydrologic environmental conditions through time. We report a series of 2H -H aqueous exposure experiments of 7600BP Mt Mazama ash from the Crater Lake eruption. Native Mt. Mazama ash, ~69% SiO2 contains ~3.75% H2O with ∂2H -145 %. Water exposure experiments for this ash were done at 70, 40 and 25°C, time from 0 to >7000 h, to evaluate rates of hydrogen uptake from deuterated waters (650 % to pure D2O). Measurements were performed on 1-2 mg of ash using TCEA-MAT253 GSMS. We also employ a KBr pellet technique with infrared spectroscopy to measure total water and molecular water peaks. In this fashion an estimation of the distribution of water vs. SiOH is possible. Time series experiments aided by infrared measurements demonstrate the following new results: 1) Depending on exposure time and temperature we observe 5 to >100 % 2H uptake in dried samples positively correlated with temperature. In as little as 48 hours approximately 5% ∂2H increases are seen in samples incubated at 70 °C with 650 % water. At this rate the ash at 70 °C would take ~2.9 years to fully react with 2H. Other separate samples reacted with pure D2O develop a clear infrared signal at ~ 2600 cm-1 due to OD bond stretching. 2) Step heating experiments on native ash indicate the ∂2H of the remaining water does not change until the ash is heated to past 200-220 °C. 3) A sample immersed in 650 % ∂2H water for >300 days at 70 °C degassed and sampled at increasing temperature intervals as above shows an enrichment ranging from 250 % at no water lost to 20 % at .10 % water when compared to native ash. 4) Ash dried under vacuum at ~130 °C shows mostly (~80%) loss of molecular water accompanied by

  18. Preparation of hydrogen from water by reduction with lithium aluminium hydride for the analysis of delta(2)H by isotope ratio mass spectrometry.

    Science.gov (United States)

    Ward, S; Scantlebury, M; Król, E; Thomson, P J; Sparling, C; Speakman, J R

    2000-01-01

    An off-line technique is described for the preparation of H(2) from water prior to analysis of delta(2)H by dual-inlet isotope ratio mass spectrometry. H(2) is produced from sample water by reaction with LiAlH(4). This provides a rapid and inexpensive method for the analysis of delta(2)H in small (10 microL) samples of water. Precision was +/- 4.2 to 8.0 (1sigma(n), n = 8) delta(2)H(VSMOW) for samples between 428 and 1500 delta(2)H(VSMOW), +/- 14.5 delta(2)H(VSMOW) for water enriched to 3750 delta(2)H(VSMOW) and +/- 26.0 delta(2)H(VSMOW) for water enriched to 6100 delta(2)H(VSMOW). Accuracy was +/- 1.1 to 4.2 delta(2)H(VSMOW) for water standards from natural abundance to 1000 delta(2)H(VSMOW) (the highest enrichment at which water of accepted delta(2)H is currently available). This method for delta(2)H determination is most appropriate for use with small (enrichment such as those produced from doubly labelled water studies of small animals. The levels of measurement precision of delta(2)H would contribute 2.6-3.8% to the precision error in estimates of small animal energy expenditure made using the doubly labelled water technique when duplicate analyses are performed. Copyright 2000 John Wiley & Sons, Ltd.

  19. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    Directory of Open Access Journals (Sweden)

    Hannah B Vander Zanden

    2016-03-01

    Full Text Available The measurement of stable carbon (δ13C and nitrogen (δ15N isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H and oxygen (δ18O isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advantages and challenges associated with three applications of δ2H and δ18O values in food web studies. First, large δ2H differences between aquatic and terrestrial ecosystem end members can permit the quantification of energy inputs and nutrient fluxes between these two sources, with potential applications for determining allochthonous vs. autochthonous nutrient sources in freshwater systems and relative aquatic habitat utilization by terrestrial organisms. Next, some studies have identified a relationship between δ2H values and trophic position, which suggests that this marker may serve as a trophic indicator, in addition to the more commonly used δ15N values. Finally, coupled measurements of δ2H and δ18O values are increasing as a result of reduced analytical challenges to measure both simultaneously and may provide additional ecological information over single element measurements. In some organisms, the isotopic ratios of these two elements are tightly coupled, whereas the isotopic disequilibrium in other organisms may offer insight into the diet and physiology of individuals. Although a coherent framework for interpreting δ2H and δ18O data in the context of food web studies is emerging, many fundamental uncertainties remain. We highlight directions for targeted research that

  20. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  1. Effects of volatilization on carbon and hydrogen isotope ratios of MTBE.

    Science.gov (United States)

    Kuder, Tomasz; Philp, Paul; Allen, Jon

    2009-03-15

    Contaminant attenuation studies utilizing CSIA (compound-specific isotope analysis) routinely assume that isotope effects (IEs) result only from degradation. Experimental results on MTBE behavior in diffusive volatilization and dynamic vapor extraction show measurable changes in the isotope ratios of the MTBE remaining in the aqueous or nonaqueous phase liquid (NAPL) matrix. A conceptual model for interpretation of those IEs is proposed, based on the physics of liquid-air partitioning. Normal or inverse IEs were observed for different volatilization scenarios. The range of carbon enrichment factors (epsilon) was from +0.7 per thousand (gasoline vapor extraction) to -1 per thousand (diffusive volatilization of MTBE from gasoline), the range of hydrogen epsilon was from +7 per thousand (gasoline vapor extraction) to -12 per thousand (air sparging of aqueous MTBE). The observed IEs are lower than those associated with MTBE degradation. However, under a realistic scenario for MTBE vapor removal, their magnitude is within the detection limits of CSIA. The potential for interference of those IEs is primarily in confusing the interpretation of samples with a small extent of fractionation and where only carbon CSIA data are available. The IEs resulting from volatilization and biodegradation, respectively, can be separated by combined carbon and hydrogen 2D-CSIA.

  2. Using Stable Isotopes to Trace Microbial Hydrogen Production Pathways

    Science.gov (United States)

    Moran, J.; Hill, E.; Bartholomew, R.; Yang, H.; Shi, L.; Ostrom, N. E.; Gandhi, H.; Hegg, E.; Kreuzer, H.

    2010-12-01

    Biological H2 production by hydrogenase enzymes (H2ases) plays an important role in anaerobic microbial metabolism and community structure. Despite considerable progress in elucidating H2 metabolism, the regulation of and flux through key H2 production pathways remain largely undefined. Our goal is to improve understanding of biological H2 production by using H isotope ratios to dissect proton fluxes through different H2ase enzymes and from different substrates. We hypothesized that the isotope ratio of H2 produced by various hydrogenases (H2ase) would differ, and that the H isotope ratios would allow us to define the contribution of different enzymes when more than one is present in vivo. We chose Shewanella oneidensis (S.o.) MR-1, a facultative anaerobe capable of transferring electrons to a variety of terminal acceptors, including protons, as a model system for in vivo studies. S. o. encodes one [FeFe]- and one [NiFe]-H2ase. We purified three [FeFe]-H2ases (S.o., Clostridium pasteurianum, and Chlamydomonas reinhardtii) and two [NiFe]-H2ases (S. o. and Desulfovibrio fructosovorans) to test the isotope fractionation associated with activity by each enzyme in vitro. For in vivo analysis we used wild-type S.o. as well as electron transfer-deficient and H2ase-deficient strains. We employed batch cultures using lactate as an electron donor and O2 as an initial electron acceptor (with H2 production after O2 consumption). The five H2ases we tested all had a unique isotope fractionation. Measurements of H2 produced in vivo showed distinct periods of H2 production having isotope signatures consistent with in vitro results. Isotope data as well as studies of H2 production by mutants in the genes encoding either the [NiFe]-H2ase or the [FeFe]-H2ase, respectively, show that the [NiFe]- and [FeFe]- H2ases became active at different times. The [NiFe]-H2ase both produces and consumes H2 before the [FeFe]-H2ase becomes active. RNA analysis is consistent with up regulation of

  3. Diffusion Behaviors of Hydrogen Isotopes in Incoloy 800H: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Hongyu Chen

    2017-01-01

    Full Text Available Incoloy 800H is one of the main stainless steel materials used in steam generators with High Temperature Reactor Pebble-bed Modules (HTR-PM. In this study, the diffusion behaviors of hydrogen isotopes in Incoloy 800H were investigated with first-principle calculations. Numerical results reveal that the starting and ending positions of the diffusion process are the two adjacent and most stable octahedral sites surrounded by Fe atoms and Ni atoms, and the diffusion follows an indirect path via the metastable tetrahedral sites and octahedral sites surrounded by Fe atoms and Cr atoms. The diffusion activation energies of hydrogen (H, deuterium (D, and tritium (T in Incoloy 800H are investigated by first-principles calculations with the same approximate value of Q=0.757 eV; the diffusion coefficient frequency factors are also obtained with values of D0=1.56×10-6, 1.10×10-6, and 8.99×10-7 (m2/s for H, D, and T, respectively. Furthermore, the theoretical results are compared with the experimental data, and it is found that both are in agreement with each other. These results are very helpful for understanding the diffusion behaviors of hydrogen isotopes in Incoloy 800H and can be used to guide the tritium source term analysis of secondary circuits in HTR-PM, which are first studied from a microperspective.

  4. Development on the cryogenic hydrogen isotopes distillation process technology for tritium removal (Final report)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ki Woung; Kim, Yong Ik; Na, Jeong Won; Ku, Jae Hyu; Kim, Kwang Rak; Jeong, Yong Won; Lee, Han Soo; Cho, Young Hyun; Ahn, Do Hee; Baek, Seung Woo; Kang, Hee Seok; Kim, You Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    While tritium exposure to the site-workers in Wolsung NPP is up to about 40% of the total personnel exposure, Ministry of Science and Technology has asked tritium removal facility for requirement of post heavy-water reactor construction. For the purpose of essential removal of tritium from the Wolsung heavy-water reactor system, a preliminary study on the cryogenic Ar-N{sub 2} and H{sub 2}-D{sub 2} distillation process for development of liquid-phase catalytic exchange cryogenic hydrogen distillation process technology. The Ar-N{sub 2} distillation column showed good performance with approximately 97% of final Ar concentration, and a computer simulation code was modified using these data. A simulation code developed for cryogenic hydrogen isotopes (H{sub 2}, HD, D{sub 2}, HT, DT, T{sub 2}) distillation column showed good performance after comparison with the result of a JAERI code, and a H{sub 2}-D{sub 2} distillation column was made. Gas chromatography for hydrogen isotopes analysis was established using a vacuum sampling loop, and a schematic diagram of H{sub 2}-D{sub 2} distillation process was suggested. A feasibility on modification of H{sub 2}-D{sub 2} distillation process control system using Laser Raman Spectroscopy was studied, and the consideration points for tritium storage system for Wolsung tritium removal facility was suggested. 31 tabs., 79 figs., 68 refs. (Author).

  5. Effects of glow discharge cleanings on hydrogen isotope removal for plasma facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Y., E-mail: yamauchi@qe.eng.hokudai.ac.jp [Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Matsumoto, A.; Kosaka, Y.; Kimura, Y.; Takeda, K. [Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Hino, T.; Nobuta, Y. [Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Nishimura, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-15

    The effect of the discharge cleanings on hydrogen isotope removal have been evaluated for graphite, stainless steel, tungsten, boron and titanium. For all materials, the helium glow discharge cleaning was the most effective on the hydrogen isotope removal among the inert gas discharges. High efficiency of energy transfer to target atom and deep projected range for helium ion might be responsible for the high removal fraction. The effect of argon glow discharge cleaning was small. The small removal fraction for the argon might be owing to re-deposition layer, which acted as a screening to the removal. The hydrogen isotope in the tungsten was hardly removed by the inert gas discharge cleanings. The small removal fraction for the tungsten might be owing to hydrogen isotope retention in deeper regions resulting from diffusion along with the grain boundary or the porous structure. Surface impurity and morphologies significantly influenced the deuterium removal effects.

  6. Using hydrogen isotopes to assign origins of bats in the eastern United States

    Science.gov (United States)

    Eric R. Britzke; Susan C. Loeb; Keith A. Hobson; Christopher S. Romanek; Maarten J. Vonhof

    2009-01-01

    Stable hydrogen isotopes (dDs) in metabolically inert tissues such as feathers and hair provide a set of endogenous markers that may be useful for establishing migratory connectivity in animals. We tested the assumption...

  7. Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways

    NARCIS (Netherlands)

    Fischer, A.; Herklotz, I.; Herrmann, S.; Thullner, M.; Weelink, S.A.B.; Stams, A.J.M.; Richnow, H.H.; Vogt, C.

    2008-01-01

    Recently, combined carbon and hydrogen isotope fractionation investigations have emerged as a powerful tool for the characterization of reaction mechanisms relevant for the removal of organic pollutants. Here, we applied this approach in order to differentiate benzene biodegradation pathways under

  8. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds.

    Science.gov (United States)

    Hansen, Poul Erik

    2015-01-30

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between "static" and tautomeric systems. Isotope effects on chemical shifts are particularly useful in such studies. All kinds of intramolecular hydrogen bonded systems will be treated, typical hydrogen bond donors: OH, NH, SH and NH+, typical acceptors C=O, C=N, C=S C=N-. The paper will be deal with both secondary and primary isotope effects on chemical shifts. These two types of isotope effects monitor the same hydrogen bond, but from different angles.

  9. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    2015-01-01

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between “static......” and tautomeric systems. Isotope effects on chemical shifts are particularly useful in such studies. All kinds of intramolecular hydrogen bonded systems will be treated, typical hydrogen bond donors: OH, NH, SH and NH+, typical acceptors C=O, C=N, C=S C=N−. The paper will be deal with both secondary and primary...... isotope effects on chemical shifts. These two types of isotope effects monitor the same hydrogen bond, but from different angles...

  10. Hydrogen isotope accumulation in the helium implantation zone in tungsten

    Science.gov (United States)

    Markelj, S.; Schwarz-Selinger, T.; Založnik, A.

    2017-06-01

    The influence of helium (He) on deuterium (D) transport and retention was studied experimentally in tungsten (W). Helium was implanted 1 µm deep into W to a maximum calculated concentration of 3.4 at.%. To minimize the influence of displacement damage created during the He implantation on D retention, so-called self-damaged W was used. W was damaged by 20 MeV W ion bombardment and defects were populated by low-temperature D plasma at room temperature before He implantation. Deuterium depth profiling was performed in situ during isochronal annealing in the temperature range from 300 K to 800 K. It is shown for the first time unambiguously that He attracts D and locally increases D trapping. Deuterium retention increased by a factor of two as compared to a non-He implanted W reference after sample annealing at 450 K. Rate equation modelling can explain the measured D depth profiles quantitatively when keeping the de-trapping parameters unchanged but only increasing the number of traps in the He zone. This bolsters the confidence in the theoretical calculations predicting that more hydrogen isotopes can be stored around a He cluster zone.

  11. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  12. Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition

    Science.gov (United States)

    Nielson, Kristine E.; Bowen, Gabriel J.

    2010-03-01

    Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.

  13. Hydrogen Isotopes in Amino Acids and Soils Offer New Potential to Study Complex Processes

    Science.gov (United States)

    Fogel, M. L.; Newsome, S. D.; Williams, E. K.; Bradley, C. J.; Griffin, P.; Nakamoto, B. J.

    2016-12-01

    Hydrogen isotopes have been analyzed extensively in the earth and biogeosciences to trace water through various environmental systems. The majority of the measurements have been made on water in rocks and minerals (inorganic) or non-exchangeable H in lipids (organic), important biomarkers that represent a small fraction of the organic molecules synthesized by living organisms. Our lab has been investigating hydrogen isotopes in amino acids and complex soil organic matter, which have traditionally been thought to be too complex to interpret owing to complications from potentially exchangeable hydrogen. For the amino acids, we show how hydrogen in amino acids originates from two sources, food and water, and demonstrate that hydrogen isotopes can be routed directly between organisms. Amino acid hydrogen isotopes may unravel cycling in extremophiles in order to discover novel biochemical pathways central to the organism. For soil organic matter, recent approaches to understanding the origin of soil organic matter are pointing towards root exudates along with microbial biomass as the source, rather than aboveground leaf litter. Having an isotope tracer in very complex, potentially exchangeable organic matter can be handled with careful experimentation. Although no new instrumentation is being used per se, extension of classes of organic matter to isotope measurements has potential to open up new doors for understanding organic matter cycling on earth and in planetary materials.

  14. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by others as intermeadiary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II? quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  15. Extensive analysis of hydrogen costs

    Energy Technology Data Exchange (ETDEWEB)

    Guinea, D.M.; Martin, D.; Garcia-Alegre, M.C.; Guinea, D. [Consejo Superior de Investigaciones Cientificas, Arganda, Madrid (Spain). Inst. de Automatica Industrial; Agila, W.E. [Acciona Infraestructuras, Alcobendas, Madrid (Spain). Dept. I+D+i

    2010-07-01

    Cost is a key issue in the spreading of any technology. In this work, the cost of hydrogen is analyzed and determined, for hydrogen obtained by electrolysis. Different contributing partial costs are taken into account to calculate the hydrogen final cost, such as energy and electrolyzers taxes. Energy cost data is taken from official URLs, while electrolyzer costs are obtained from commercial companies. The analysis is accomplished under different hypothesis, and for different countries: Germany, France, Austria, Switzerland, Spain and the Canadian region of Ontario. Finally, the obtained costs are compared to those of the most used fossil fuels, both in the automotive industry (gasoline and diesel) and in the residential sector (butane, coal, town gas and wood), and the possibilities of hydrogen competing against fuels are discussed. According to this work, in the automotive industry, even neglecting subsidies, hydrogen can compete with fossil fuels. Hydrogen can also compete with gaseous domestic fuels. Electrolyzer prices were found to have the highest influence on hydrogen prices. (orig.)

  16. Evidence from Hydrogen Isotopes in Meteorites for a Subsurface Hydrogen Reservoir on Mars

    Science.gov (United States)

    Usui, Tomohiro; Alexander, Conel M. O'D.; Wang, Jianhua; Simon, Justin I.; Jones, John H.

    2015-01-01

    The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have conducted in situ hydrogen isotope (D/H) analyses of quenched and impact glasses in three Martian meteorites (Yamato 980459, EETA79001, LAR 06319) by Cameca ims-6f at Digital Terrain Models (DTM) following the methods of [1]. The hydrogen isotope analyses provide evidence for the existence of a distinct but ubiquitous water/ice reservoir (D/H = 2-3 times Earth's ocean water: Standard Mean Ocean Water (SMOW)) that lasted from at least the time when the meteorites crystallized (173-472 Ma) to the time they were ejected by impacts (0.7-3.3 Ma), but possibly much longer [2]. The origin of this reservoir appears to predate the current Martian atmospheric water (D/H equals approximately 5-6 times SMOW) and is unlikely to be a simple mixture of atmospheric and primordial water retained in the Martian mantle (D/H is approximately equal to SMOW [1]). Given the fact that this intermediate-D/H reservoir (2-3 times SMOW) is observed in a diverse range of Martian materials with different ages (e.g., SNC (Shergottites, Nakhlites, Chassignites) meteorites, including shergottites such as ALH 84001; and Curiosity surface data [3]), we conclude that this intermediate-D/H reservoir is likely a global surficial feature that has remained relatively intact over geologic time. We propose that this reservoir represents either hydrated crust and/or ground ice interbedded within sediments. Our results corroborate the hypothesis that a buried cryosphere accounts for a large part of the initial water budget of Mars.

  17. Biochemical Hydrogen Isotope Fractionation during Lipid Biosynthesis in Higher Plants

    Science.gov (United States)

    Kahmen, A.; Gamarra, B.; Cormier, M. A.

    2014-12-01

    Although hydrogen isotopes (δ2H) of leaf wax lipids are increasingly being applied as (paleo-) hydrological proxies, we still do not understand some of the basic processes that shape the δ2H values of these compounds. In general, it is believed that three variables shape the δ2H values of leaf wax lipids: source water δ2H values, evaporative deuterium (2H) enrichment of leaf water and the biosynthetic fractionation (ɛbio) during the synthesis of organic compounds. While the influences of source water δ2H values and leaf water evaporative 2H enrichment have been well documented, very little is known how ɛbio shapes the δ2H values of plant-derived lipids. I will present the results from recent experiments, where we show that the magnitude of ɛbio, and thus the δ2H value of plant-derived lipids, strongly depends on the carbon (C) metabolism of a plant. Specifically, I will show that plants that rely for their tissue formation on recently assimilated C have δ2H values in their n-alkanes that are up to 60‰ more negative than plants that depend for their tissue formation on stored carbohydrates. Our findings can be explained by the fact that NADPH is the primary source of hydrogen in plant lipids and that the δ2H value of NADPH differs whether NADPH was generated directly in the light reaction of photosynthesis or whether it was generated by processing stored carbohydrates. As such, the δ2H values of plant-derived lipids will directly depend on whether the tissue containing these lipids was synthesized using recent assimilates, e.g. in a C autonomous state or, if it was synthesized from stored or otherwise aquired C sources, e.g. in a not C autonomous state. Given the magnidude of this effect, our results have important implications for interpretation of plant-derived lipid δ2H values when used as (paleo-) hydrological proxies. In addition, our results suggest, that δ2H values of plant-derived lipids could be employed as a new tools to assess the C

  18. Strong Ionic Hydrogen Bonding Causes a Spectral Isotope Effect in Photoactive Yellow Protein

    Science.gov (United States)

    Kaledhonkar, Sandip; Hara, Miwa; Stalcup, T. Page; Xie, Aihua; Hoff, Wouter D.

    2013-01-01

    Standard hydrogen bonds are of great importance for protein structure and function. Ionic hydrogen bonds often are significantly stronger than standard hydrogen bonds and exhibit unique properties, but their role in proteins is not well understood. We report that hydrogen/deuterium exchange causes a redshift in the visible absorbance spectrum of photoactive yellow protein (PYP). We expand the range of interpretable isotope effects by assigning this spectral isotope effect (SIE) to a functionally important hydrogen bond at the active site of PYP. The inverted sign and extent of this SIE is explained by the ionic nature and strength of this hydrogen bond. These results show the relevance of ionic hydrogen bonding for protein active sites, and reveal that the inverted SIE is a novel, to our knowledge, tool to probe ionic hydrogen bonds. Our results support a classification of hydrogen bonds that distinguishes the properties of ionic hydrogen bonds from those of both standard and low barrier hydrogen bonds, and show how this classification helps resolve a recent debate regarding active site hydrogen bonding in PYP. PMID:24314088

  19. Intracrystalline site preference of hydrogen isotopes in the water of crystallization of copper sulfate pentahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Kita, I.; Matsuo, S.

    1981-04-02

    Difference in the isotopic partition at different sites of the water of crystallization of CuSO/sub 4/.5H/sub 2/O (the site preference) was estimated for the hydrogen isotopes. Fractional dehydration of CuSO/sub 4/.5H/sub 2/O under vacuum at 0 and 25/sup 0/C was used to determine the isotopic ratio, the amount of dehydrated water, and the rate process of dehydration. The following results were obtained. (1) Two maxima occur in the isotopic ratio in the dehydration range, F < 0.8. (2) The dehydration occurs by the three sequential zeroth-order rate processes which have different rate constants for dehydration. The three different rate constants may be explained by the combination of the rate constants of dehydration of the water molecules dehydrated. The estimation of the difference in hydrogen isotope distribution for different sites, i.e., four of the five water molecules in the coordination sphere of copper ion (site A) and one bonded to the sulfate ion through hydrogen bonding (site B) was made. The site preference of hydrogen isotopes (delta D,%) was concluded to be -3.20 +- 0.52 for site A and +2.26 +- 2.09 for site B, where the delta D value was referred to the isotopic ratio of the mother liquor from which the crystal was formed.

  20. Hydrogen and oxygen isotope exchange reactions between clay minerals and water

    Science.gov (United States)

    O'Neil, J.R.; Kharaka, Y.K.

    1976-01-01

    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  1. Compound Specific Hydrogen Isotope Composition of Type II and III Kerogen Extracted by Pyrolysis-GC-MS-IRMS

    Science.gov (United States)

    Socki, Richard A.; Pernia, Denet; Evans, Michael; Fu, Qi; Bissada, Kadry K.; Curiale, Joseph A.; Niles, Paul B.

    2013-01-01

    The use of Hydrogen (H) isotopes in understanding oil and gas resource plays is in its infancy. Described here is a technique for H isotope analysis of organic compounds pyrolyzed from oil and gas shale-derived kerogen. Application of this technique will progress our understanding. This work complements that of Pernia et al. (2013, this meeting) by providing a novel method for the H isotope analysis of specific compounds in the characterization of kerogen extracted by analytically diverse techniques. Hydrogen isotope analyses were carried out entirely "on-line" utilizing a CDS 5000 Pyroprobe connected to a Thermo Trace GC Ultra interfaced with a Thermo MAT 253 IRMS. Also, a split of GC-separated products was sent to a DSQ II quadrupole MS to make semi-quantitative compositional measurements of the extracted compounds. Kerogen samples from five different basins (type II and III) were dehydrated (heated to 80 C overnight in vacuum) and analyzed for their H isotope compositions by Pyrolysis-GC-MS-TC-IRMS. This technique takes pyrolysis products separated via GC and reacts them in a high temperature conversion furnace (1450 C) which quantitatively forms H2, following a modified method of Burgoyne and Hayes, (1998, Anal. Chem., 70, 5136-5141). Samples ranging from approximately 0.5 to 1.0mg in size, were pyrolyzed at 800 C for 30s. Compounds were separated on a Poraplot Q GC column. Hydrogen isotope data from all kerogen samples typically show enrichment in D from low to high molecular weight compounds. Water (H2O) average deltaD = -215.2 (V-SMOW), ranging from -271.8 for the Marcellus Shale to -51.9 for the Polish Shale. Higher molecular weight compounds like toluene (C7H8) have an average deltaD of -89.7 0/00, ranging from -156.0 for the Barnett Shale to -50.0 for the Monterey Shale. We interpret these data as representative of potential H isotope exchange between hydrocarbons and sediment pore water during formation within each basin. Since hydrocarbon H isotopes

  2. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    Science.gov (United States)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  3. Long-term stability of hydrogen isotope ratios in hydrated volcanic glass

    Science.gov (United States)

    Cassel, Elizabeth J.; Breecker, Daniel O.

    2017-03-01

    The advancement of conceptual and numerical geodynamic models necessitates quantitative, orogen-scale paleoelevation data. Felsic volcanic glasses, which record the hydrogen isotope compositions (δD) of meteoric water shortly after deposition, provide several advantages as a paleoelevation proxy. Questions remain, however, about the reliability of this relatively new proxy, including the effect of hydrofluoric (HF) acid abrasion in the preparation of glass shards for hydrogen isotope analysis and the stability of hydrogen isotope ratios in hydrated glass shards over geologic time (106-107 years). HF acid abrasion of natural ancient glass shards results in systematic shifts in glass δD values away from modern water δD values. To evaluate the effectiveness of HF acid abrasion, we treated 70-150 μm glass shards separated from various natural tephras with deuterium-labeled water (DLW; δD = +18,205‰) for up to 400 days. For all glasses, this treatment resulted in elevated δD values in comparison to untreated samples. HF acid abrasion after DLW exposure, however, removed this effect and restored glass shards to their original untreated δD values in samples older than 104 years. HF acid abrasion removes hydrous alteration precipitates at the glass surface without measurably changing the δD values of the underlying hydrated glass, regardless of abrasion duration or glass composition. Additionally, 45-34 Ma glasses record δD values that directly reflect their depositional environments as determined by stratigraphy: glasses from tuffs deposited in demonstrably evaporative lacustrine environments have relatively high δD values compared to glasses from contemporaneous tuffs deposited in nearby fluvial environments, which have much lower δD values. The preservation of δD values that systematically vary with original depositional environment, despite >30 Myr of post-hydration exposure to the same meteoric water, indicates that these volcanic glasses resisted

  4. Natural abundance hydrogen isotope affiliation between the reactants and the products in glucose fermentation with yeast.

    Science.gov (United States)

    Pionnier, Sebastien; Robins, Richard J; Zhang, Ben-Li

    2003-03-26

    In glucose fermentation, the hydrogen source of products such as ethanol and glycerol is the medium and the sugar. The site-specific natural isotope ratios of the products, (D/H)(i), and that of the medium and sugar, (D/H)(k), may be related by a matrix, A, of redistribution coefficients, a(ik), that characterizes the specific genealogies of the hydrogen atoms. (D/H)(i) = [A](D/H)(k), where (D/H)(i) and (D/H)(k) are the column vectors of the isotope ratios of sites i and k that can be measured by (2)H NMR. The complete redistribution matrix was determined in a set of isotope labeling experiments. Thus, we obtained a mathematical model representing the hydrogen isotope affiliation during alcoholic fermentation. It not only provides information about the biochemical reaction mechanism but also can be used to estimate the isotopic data of the products, based on those of the substrate and the medium. The results prove, in a quantitative way, that the metabolites contain isotopic information about the precursor in a biotransformation and can be used to identify its origin. The method established for the study of the hydrogen-transfer mechanism can be applied to other chemical and biochemical reactions.

  5. Isotope dependent, temperature regulated, energy repartitioning in a low-barrier, short-strong hydrogen bonded cluster

    NARCIS (Netherlands)

    Li, X. H.; Oomens, J.; Eyler, J. R.; Moore, D. T.; Iyengar, S. S.

    2010-01-01

    We investigate and analyze the vibrational properties, including hydrogen/deuterium isotope effects, in a fundamental organic hydrogen bonded system using multiple experimental (infrared multiple photon dissociation and argon-tagged action spectroscopy) and computational techniques. We note a

  6. Hydrogen isotope fractionation in lipids of the methane-oxidizing bacterium Methylococcus capsulatus

    Science.gov (United States)

    Sessions, Alex L.; Jahnke, Linda L.; Schimmelmann, Arndt; Hayes, John M.

    2002-11-01

    Hydrogen isotopic compositions of individual lipids from Methylococcus capsulatus, an aerobic, methane-oxidizing bacterium, were analyzed by hydrogen isotope-ratio-monitoring gas chromatography-mass spectrometry (GC-MS). The purposes of the study were to measure isotopic fractionation factors between methane, water, and lipids and to examine the biochemical processes that determine the hydrogen isotopic composition of lipids. M. capsulatus was grown in six replicate cultures in which the δD values of methane and water were varied independently. Measurement of concomitant changes in δD values of lipids allowed estimation of the proportion of hydrogen derived from each source and the isotopic fractionation associated with the utilization of each source. All lipids examined, including fatty acids, sterols, and hopanols, derived 31.4 ± 1.7% of their hydrogen from methane. This was apparently true whether the cultures were harvested during exponential or stationary phase. Examination of the relevant biochemical pathways indicates that no hydrogen is transferred directly (with C-H bonds intact) from methane to lipids. Accordingly, we hypothesize that all methane H is oxidized to H 2O, which then serves as the H source for all biosynthesis, and that a balance between diffusion of oxygen and water across cell membranes controls the concentration of methane-derived H 2O at 31%. Values for α l/ w, the isotopic fractionation between lipids and water, were 0.95 for fatty acids and 0.85 for isoprenoid lipids. These fractionations are significantly smaller than those measured in higher plants and algae. Values for α l/ m, the isotopic fractionation between lipids and methane, were 0.94 for fatty acids and 0.79 for isoprenoid lipids. Based on these results, we predict that methanotrophs living in seawater and consuming methane with typical δD values will produce fatty acids with δD between -50 and -170‰, and sterols and hopanols with δD between -150 and -270‰.

  7. Effects of hydrogen isotopes in the irradiation damage of CLAM steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M.Z.; Liu, P.P.; Zhu, Y.M.; Wan, F.R. [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); He, Z.B. [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Zhan, Q., E-mail: qzhan@mater.ustb.edu.cn [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-11-15

    The isotope effect of hydrogen in irradiation damage plays an important role in the development of reduced activation Ferritic/Martensitic steels in nuclear reactors. The evolutions of microstructures and mechanical properties of China low active martensitic (CLAM) steel subjected to hydrogen and deuterium ions irradiation are studied comparatively. Under the same irradiation conditions, larger size and smaller density of dislocation loops are generated by deuterium ion than by hydrogen ion. Irradiation hardening occurs under the ion irradiation and the hardening induced by hydrogen ion is higher than by deuterium ion. Moreover, the coarsening of M{sub 23}C{sub 6} precipitates is observed, which can be explained by the solute drag mechanisms. It turns out that the coarsening induced by deuterium ion irradiation is more distinct than by hydrogen ion irradiation. No distinct variations for the compositions of M{sub 23}C{sub 6} precipitates are found by a large number of statistical data after hydrogen isotopes irradiation. - Highlights: • The irradiation hardening caused by hydrogen ion is higher than deuterium ion. • No distinct variations on the composition of M{sub 23}C{sub 6} precipitates were found after hydrogen isotopes irradiation. • The coarsening of M{sub 23}C{sub 6} precipitates in both ion irradiated samples can be explained by the solute drag mechanisms.

  8. On-Line Hydrogen-Isotope Measurements of Organic Samples Using Elemental Chromium : An Extension for High Temperature Elemental-Analyzer Techniques

    NARCIS (Netherlands)

    Gehre, Matthias; Renpenning, Julian; Gilevska, Tetyana; Qi, Haiping; Coplen, Tyler B.; Meijer, Harro A. J.; Brand, Willi A.; Schimmelmann, Arndt

    2015-01-01

    The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by

  9. Site-Specific Hydrogen Isotope Composition of Propane: Mass spectrometric methods, equilibrium temperature dependence, and kinetics of exchange

    Science.gov (United States)

    Xie, H.; Ponton, C.; Kitchen, N.; Lloyd, M. K.; Lawson, M.; Formolo, M. J.; Eiler, J. M.

    2016-12-01

    Intramolecular isotope ordering can constrain temperatures of synthesis, mechanisms of formation, and/or source substrates of organic compounds. Here we explore site-specific hydrogen isotope variations of propane. Statistical thermodynamic models predict that at equilibrium methylene hydrogen (-CH2-) in propane will be 10's of per mil higher in D/H ratio than methyl hydrogen (-CH3) at geologically relevant temperatures, and that this difference is highly temperature dependent ( 0.5-1 ‰/°C). Chemical-kinetic controls on site-specific D/H in propane could constrain the mechanisms, conditions and extents of propane synthesis or destruction. We have developed a method for measuring the difference in D/H ratio between methylene and methyl hydrogen in propane by gas source mass spectrometry. The data were measured using the Thermo Fisher Double Focusing Sector high resolution mass spectrometer (DFS), and involve comparison of the D/H ratios of molecular ion (C3H8+) and the ethyl fragmental ion (C2H5+). We demonstrate the accuracy and precision of this method through analysis of D-labeled and independently analyzed propanes. In the exchange experiments, propane was heated (100-200 oC) either alone or in the presence of D-enriched water (δD=1,1419 ‰ SMOW), with or without one of several potentially catalytic substrates for hours to weeks. Propane was found to exchange hydrogen with water vigorously at 200 °C in the presence of metal catalysts. In the presence of Ni catalyst, methylene hydrogen exchanges 2.5 times faster than methyl hydrogen. Hydrogen exchange in the presence of Pd catalyst is more effective and can equilibrate hydrogen isotope distribution on propane on the order of 7 days. Isotopic exchange in the presence of natural materials have also been tested, but is only measurable in the methylene group at 200 °C. High catalytic activity of Pd permits attainment of a bracketed, time-invariant equilibrium state that we use to calibrate the site

  10. MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [University of Naples “Federico II,” Department of Physics, I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [University of Bari, Department of Physics, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Formato, V. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; Santis, C. De [University of Rome “Tor Vergata,” Department of Physics, I-00133 Rome (Italy); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Donato, C. De; Simone, N. De; Felice, V. Di [INFN, Sezione di Rome “Tor Vergata,” I-00133 Rome (Italy); and others

    2016-02-10

    The cosmic-ray hydrogen and helium ({sup 1}H, {sup 2}H, {sup 3}He, {sup 4}He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes {sup 2}H and {sup 3}He in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December.

  11. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping

    OpenAIRE

    Lozada Hidalgo, Marcelo; Zhang, Sheng; Hu, Sheng; Esfandiar, Ali; Grigorieva, Irina; Geim, Andre

    2017-01-01

    Thousands of tons of isotopic mixtures are processed annually for heavy-water production and tritium decontamination. The existing technologies remain extremely energy intensive and require large capital investments. New approaches are needed to reduce the industry's footprint. Recently, micrometre-size crystals of graphene are shown to act as efficient sieves for hydrogen isotopes pumped through graphene electrochemically. Here we report a fully-scalable approach, using graphene obtained by ...

  12. Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S.; Stolper, E.

    1992-03-01

    The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

  13. The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae

    NARCIS (Netherlands)

    Chivall, D.; M'Boule, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The isotopic fractionation of hydrogen during the biosynthesis of alkenones produced by marine haptophyte algae has been shown to depend on salinity and, as such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. The relationship between fractionation and salinity

  14. Holocene precipitation seasonality captured by a dual hydrogen and oxygen isotope approach at Steel Lake, Minnesota

    Science.gov (United States)

    Henderson, Anna K.; Nelson, David M.; Hu, Feng Sheng; Huang, Yongsong; Shuman, Bryan N.; Williams, John W.

    2010-12-01

    Middle-Holocene (8 to 4 ka BP) warmth and aridity are well recorded in sediment archives from midcontinental North America. However, neither the climatic driver nor the seasonal character of precipitation during this period is well understood because of the limitations of available proxy indicators. For example, an important challenge is to distinguish among the interacting effects of evaporation, temperature, or precipitation seasonality in existing δ 18O records from the region. Here we combine hydrogen isotopes of palmitic acid and oxygen isotopes of carbonate to derive lake-water isotopic values during the Holocene at Steel Lake in north-central Minnesota. In combination, these data enable us to separate variations in evaporation from variations in the isotopic composition of input-waters to lake. Variations in evaporation are used as a proxy for aridity and lake-water input isotopic values are used as a proxy for the isotopic values of meteoric precipitation. Our results suggest that lake-water input isotopic values were more negative during the middle Holocene than at present. To test whether these more negative values are related to temperature or precipitation seasonality, we compare pollen-inferred temperatures and the expected isotopic value of precipitation resulting from these temperatures to the reconstructed precipitation isotopic values. Results suggest that middle Holocene warmth and aridity were associated with increased evaporation rates and decreased summer precipitation. These inferences are consistent with climate simulations that highlight the role of seasonal insolation and sea surface temperatures in driving variations in precipitation seasonality during the Holocene. Results also suggest that changes in Holocene precipitation seasonality may have influenced the expansion of the prairie-forest border in Minnesota as well as regional variations in grassland community composition. This study demonstrates the efficacy of the dual hydrogen and

  15. On-line hydrogen-isotope measurements of organic samples using elemental chromium: an extension for high temperature elemental-analyzer techniques.

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Gilevska, Tetyana; Qi, Haiping; Coplen, Tyler B; Meijer, Harro A J; Brand, Willi A; Schimmelmann, Arndt

    2015-01-01

    The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by isotope-ratio mass spectrometry (IRMS). However, the TC/EA IRMS method may produce inaccurate δ(2)H results, with values deviating by more than 20 mUr (milliurey = 0.001 = 1‰) from the true value for some materials. We show that a single-oven, chromium-filled elemental analyzer coupled to an IRMS substantially improves the measurement quality and reliability for hydrogen isotopic compositions of organic substances (Cr-EA method). Hot chromium maximizes the yield of molecular hydrogen in a helium carrier gas by irreversibly and quantitatively scavenging all reactive elements except hydrogen. In contrast, under TC/EA conditions, heteroelements like nitrogen or chlorine (and other halogens) can form hydrogen cyanide (HCN) or hydrogen chloride (HCl) and this can cause isotopic fractionation. The Cr-EA technique thus expands the analytical possibilities for on-line hydrogen-isotope measurements of organic samples significantly. This method yielded reproducibility values (1-sigma) for δ(2)H measurements on water and caffeine samples of better than 1.0 and 0.5 mUr, respectively. To overcome handling problems with water as the principal calibration anchor for hydrogen isotopic measurements, we have employed an effective and simple strategy using reference waters or other liquids sealed in silver-tube segments. These crimped silver tubes can be employed in both the Cr-EA and TC/EA techniques. They simplify considerably the normalization of hydrogen-isotope measurement data to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation) scale, and their use improves accuracy of the data by eliminating evaporative loss and associated isotopic fractionation while

  16. On-line hydrogen-isotope measurements of organic samples using elemental chromium: An extension for high temperature elemental-analyzer techniques

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Gilevska, Tetyana; Qi, Haiping; Coplen, Tyler B.; Meijer, Harro A.J.; Brand, Willi A.; Schimmelmann, Arndt

    2015-01-01

    The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by isotope-ratio mass spectrometry (IRMS). However, the TC/EA IRMS method may produce inaccurate δ2H results, with values deviating by more than 20 mUr (milliurey = 0.001 = 1‰) from the true value for some materials. We show that a single-oven, chromium-filled elemental analyzer coupled to an IRMS substantially improves the measurement quality and reliability for hydrogen isotopic compositions of organic substances (Cr-EA method). Hot chromium maximizes the yield of molecular hydrogen in a helium carrier gas by irreversibly and quantitatively scavenging all reactive elements except hydrogen. In contrast, under TC/EA conditions, heteroelements like nitrogen or chlorine (and other halogens) can form hydrogen cyanide (HCN) or hydrogen chloride (HCl) and this can cause isotopic fractionation. The Cr-EA technique thus expands the analytical possibilities for on-line hydrogen-isotope measurements of organic samples significantly. This method yielded reproducibility values (1-sigma) for δ2H measurements on water and caffeine samples of better than 1.0 and 0.5 mUr, respectively. To overcome handling problems with water as the principal calibration anchor for hydrogen isotopic measurements, we have employed an effective and simple strategy using reference waters or other liquids sealed in silver-tube segments. These crimped silver tubes can be employed in both the Cr-EA and TC/EA techniques. They simplify considerably the normalization of hydrogen-isotope measurement data to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation) scale, and their use improves accuracy of the data by eliminating evaporative loss and associated isotopic fractionation while

  17. Discrimination of ginseng cultivation regions using light stable isotope analysis.

    Science.gov (United States)

    Kim, Kiwook; Song, Joo-Hyun; Heo, Sang-Cheol; Lee, Jin-Hee; Jung, In-Woo; Min, Ji-Sook

    2015-10-01

    Korean ginseng is considered to be a precious health food in Asia. Today, thieves frequently compromise ginseng farms by pervasive theft. Thus, studies regarding the characteristics of ginseng according to growth region are required in order to deter ginseng thieves and prevent theft. In this study, 6 regions were selected on the basis of Korea regional criteria (si, gun, gu), and two ginseng-farms were randomly selected from each of the 6 regions. Then 4-6 samples of ginseng were acquired from each ginseng farm. The stable isotopic compositions of H, O, C, and N of the collected ginseng samples were analyzed. As a result, differences in the hydrogen isotope ratios could be used to distinguish regional differences, and differences in the nitrogen isotope ratios yielded characteristic information regarding the farms from which the samples were obtained. Thus, stable isotope values could be used to differentiate samples according to regional differences. Therefore, stable isotope analysis serves as a powerful tool to discriminate the regional origin of Korean ginseng samples from across Korea. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Is it really organic?--multi-isotopic analysis as a tool to discriminate between organic and conventional plants.

    Science.gov (United States)

    Laursen, K H; Mihailova, A; Kelly, S D; Epov, V N; Bérail, S; Schjoerring, J K; Donard, O F X; Larsen, E H; Pedentchouk, N; Marca-Bell, A D; Halekoh, U; Olesen, J E; Husted, S

    2013-12-01

    Novel procedures for analytical authentication of organic plant products are urgently needed. Here we present the first study encompassing stable isotopes of hydrogen, carbon, nitrogen, oxygen, magnesium and sulphur as well as compound-specific nitrogen and oxygen isotope analysis of nitrate for discrimination of organically and conventionally grown plants. The study was based on wheat, barley, faba bean and potato produced in rigorously controlled long-term field trials comprising 144 experimental plots. Nitrogen isotope analysis revealed the use of animal manure, but was unable to discriminate between plants that were fertilised with synthetic nitrogen fertilisers or green manures from atmospheric nitrogen fixing legumes. This limitation was bypassed using oxygen isotope analysis of nitrate in potato tubers, while hydrogen isotope analysis allowed complete discrimination of organic and conventional wheat and barley grains. It is concluded, that multi-isotopic analysis has the potential to disclose fraudulent substitutions of organic with conventionally cultivated plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Hydrogen isotope fractionation in the photolysis of formaldehyde

    NARCIS (Netherlands)

    Rhee, T.S.; Brenninkmeijer, C.A.M.; Röckmann, T.|info:eu-repo/dai/nl/304838233

    2007-01-01

    Experiments investigating the isotopic fractionation in the formation of H2 by the photolysis of CH2O under tropospheric conditions are reported and discussed. The deuterium (D) depletion in H2 produced is 500(±20)‰ with respect to the parent CH2O. We also observed that complete photolysis of CH2O

  20. ANALYTICAL EMPLOYMENT OF STABLE ISOTOPES OF CARBON, NITROGEN, OXYGEN AND HYDROGEN FOR FOOD AUTHENTICATION

    Directory of Open Access Journals (Sweden)

    E. Novelli

    2011-04-01

    Full Text Available Stable isotopes of carbon, nitrogen, oxygen and hydrogen were used for analytical purposes for the discrimination of the type of production (farming vs. fishing in the case of sea bass and for geographical origin in the case of milk. These results corroborate similar experimental evidences and confirm the potential of this analytical tool to support of food traceability.

  1. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NARCIS (Netherlands)

    Haumann, F.A.; Batenburg, A.M.|info:eu-repo/dai/nl/313960453; Pieterse, G.|info:eu-repo/dai/nl/304840858; Gerbig, C; Krol, M.C.|info:eu-repo/dai/nl/078760410; Röckmann, T.|info:eu-repo/dai/nl/304838233

    2013-01-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço

  2. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NARCIS (Netherlands)

    Haumann, F.A.; Batenburg, A.M.; Pieterse, G.; Gerbig, C.; Krol, M.C.; Rockmann, T.

    2013-01-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H-2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H-2 and several other species as well as the H-2 isotopic composition in air samples that were collected in the BARCA

  3. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    NARCIS (Netherlands)

    Heinzelmann, S.M.; Villanueva, Laura; Sinke-Schoen, Daniëlle; Sinninghe Damste, J.S.|info:eu-repo/dai/nl/07401370X; Schouten, Stefan|info:eu-repo/dai/nl/137124929; Van der Meer, Marcel T J

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids

  4. Hydrogen isotope separation using molecular sieve of synthetic zeolite 3A

    Energy Technology Data Exchange (ETDEWEB)

    Kotoh, K.; Kimura, K.; Nakamura, Y.; Kudo, K. [Faculty of Engineering, Kyushu Univ., 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2008-07-15

    It is known that hydrogen isotope molecules can be adsorbed easily onto synthetic zeolite 4A, 5A, and 13X at the liquid-nitrogen temperature of 77.4 K. We show here that hydrogen and deuterium are not adsorptive onto zeolite 3A at the same temperature. This phenomenon is explained by assuming the molecular sieve function in zeolite-3A-crystalline lattice structure. From a series of pseudo-isobaric experiments, it is also shown that the sieving phenomenon appears in a range above 77.4 K. This behavior is interpreted as resulting on the dependence of sieve's mesh size on temperature, where the sieving effect is considered to appear at a certain temperature. In this interpretation, an isotopic difference between hydrogen and deuterium is suggested to exist in the sieving effect appearance temperatures. This is endorsed in the result of pseudo-isobaric experiments. This temperature deference is very significant because that indicates the possibility of an effective method of hydrogen isotope separation. This possibility is verified through an experimental series of adsorption-desorption with a mixture of H{sub 2} and D{sub 2}, where the gas samples adsorbed through the sieve operated at intentionally selected temperatures are isolated and then analyzed. The result demonstrates remarkable values of isotope separation factor. (authors)

  5. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae

    NARCIS (Netherlands)

    M'boule, D.; Chivall, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at

  6. Nuclear Quantum Effects in the Layering and Diffusion of Hydrogen Isotopes in Carbon Nanotubes.

    Science.gov (United States)

    Kowalczyk, Piotr; Terzyk, Artur P; Gauden, Piotr A; Furmaniak, Sylwester; Kaneko, Katsumi; Miller, Thomas F

    2015-09-03

    Although recent experimental studies have demonstrated that H2 and D2 molecules wet the inner surface of supergrowth carbon nanotubes at low temperatures, characterization of the structural and dynamical properties in this regime is challenging. This Letter presents a theoretical study of self-diffusion in pure and binary H2, D2, and T2 contact monolayer films formed on the inner surface of a carbon nanotube. Our results show that monolayer formation and self-diffusion both in pure hydrogen isotopes and in H2/T2 and H2/D2 isotope mixtures is impacted by nuclear quantum effects, suggesting potential applications of carbon nanotubes for the separation of hydrogen isotopes.

  7. Hydrogen isotope fractionation in the photolysis of formaldehyde

    Directory of Open Access Journals (Sweden)

    T. S. Rhee

    2008-03-01

    Full Text Available Experiments investigating the isotopic fractionation in the formation of H2 by the photolysis of CH2O under tropospheric conditions are reported and discussed. The deuterium (D depletion in the H2 produced is 500(±20‰ with respect to the parent CH2O. We also observed that complete photolysis of CH2O under atmospheric conditions produces H2 that has virtually the same isotope ratio as that of the parent CH2O. These findings imply that there must be a very strong concomitant isotopic enrichment in the radical channel (CH2O+hν → CHO+H as compared to the molecular channel (CH2O+hν → H2+CO of the photolysis of CH2O in order to balance the relatively small isotopic fractionation in the competing reaction of CH2O with OH. Using a 1-box photochemistry model we calculated the isotopic fractionation factor for the radical channel to be 0.22(±0.08, which is equivalent to a 780(±80‰ enrichment in D of the remaining CH2O. When CH2O is in photochemical steady state, the isotope ratio of the H2 produced is determined not only by the isotopic fractionation occurring during the photolytical production of H2m but also by overall fractionation for the removal processes of CH2O (αf, and is represented by the ratio of αmf. Applying the isotopic fractionation factors relevant to CH2O photolysis obtained in the present study to the troposphere, the ratio of αmf varies from ~0.8 to ~1.2 depending on the fraction of CH2O that reacts with OH and that produces H2. This range of αmf can render the H2 produced from the photochemical oxidation of CH4 to

  8. Hydrogen and oxygen isotope ratios in body water and hair: modeling isotope dynamics in nonhuman primates.

    Science.gov (United States)

    O'Grady, Shannon P; Valenzuela, Luciano O; Remien, Christopher H; Enright, Lindsey E; Jorgensen, Matthew J; Kaplan, Jay R; Wagner, Janice D; Cerling, Thure E; Ehleringer, James R

    2012-07-01

    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water ((2)H/(1)H, (18)O/(16)O expressed as δ(2) H and δ(18)O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ(2)H and δ(18)O values of body water and a second model to predict the δ(2)H and δ(18)O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ(2)H and δ(18)O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ(2)H and δ(18)O values of gut water and the (18)O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (α(ow)). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of α(ow) was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. © 2012 Wiley Periodicals, Inc.

  9. QUDeX-MS: hydrogen/deuterium exchange calculation for mass spectra with resolved isotopic fine structure.

    Science.gov (United States)

    Salisbury, Joseph P; Liu, Qian; Agar, Jeffrey N

    2014-12-11

    Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry permits analysis of structure, dynamics, and molecular interactions of proteins. HDX mass spectrometry is confounded by deuterium exchange-associated peaks overlapping with peaks of heavy, natural abundance isotopes, such as carbon-13. Recent studies demonstrated that high-performance mass spectrometers could resolve isotopic fine structure and eliminate this peak overlap, allowing direct detection and quantification of deuterium incorporation. Here, we present a graphical tool that allows for a rapid and automated estimation of deuterium incorporation from a spectrum with isotopic fine structure. Given a peptide sequence (or elemental formula) and charge state, the mass-to-charge ratios of deuterium-associated peaks of the specified ion is determined. Intensities of peaks in an experimental mass spectrum within bins corresponding to these values are used to determine the distribution of deuterium incorporated. A theoretical spectrum can then be calculated based on the estimated distribution of deuterium exchange to confirm interpretation of the spectrum. Deuterium incorporation can also be detected for ion signals without a priori specification of an elemental formula, permitting detection of exchange in complex samples of unidentified material such as natural organic matter. A tool is also incorporated into QUDeX-MS to help in assigning ion signals from peptides arising from enzymatic digestion of proteins. MATLAB-deployable and standalone versions are available for academic use at qudex-ms.sourceforge.net and agarlabs.com . Isotopic fine structure HDX-MS offers the potential to increase sequence coverage of proteins being analyzed through mass accuracy and deconvolution of overlapping ion signals. As previously demonstrated, however, the data analysis workflow for HDX-MS data with resolved isotopic fine structure is distinct. QUDeX-MS we hope will aid in the adoption of isotopic fine structure HDX

  10. Hydrogen and oxygen isotope ratios in human hair are related to geography.

    Science.gov (United States)

    Ehleringer, James R; Bowen, Gabriel J; Chesson, Lesley A; West, Adam G; Podlesak, David W; Cerling, Thure E

    2008-02-26

    We develop and test a model to predict the geographic region-of-origin of humans based on the stable isotope composition of their scalp hair. This model incorporates exchangeable and nonexchangeable hydrogen and oxygen atoms in amino acids to predict the delta(2)H and delta(18)O values of scalp hair (primarily keratin). We evaluated model predictions with stable isotope analyses of human hair from 65 cities across the United States. The model, which predicts hair isotopic composition as a function of drinking water, bulk diet, and dietary protein isotope ratios, explains >85% of the observed variation and reproduces the observed slopes relating the isotopic composition of hair samples to that of local drinking water. Based on the geographical distributions of the isotope ratios of tap waters and the assumption of a "continental supermarket" dietary input, we constructed maps of the expected average H and O isotope ratios in human hair across the contiguous 48 states. Applications of this model and these observations are extensive and include detection of dietary information, reconstruction of historic movements of individuals, and provision of region-of-origin information for unidentified human remains.

  11. Stable isotope dilution assays in mycotoxin analysis.

    Science.gov (United States)

    Rychlik, Michael; Asam, Stefan

    2008-01-01

    The principle and applications of stable isotope dilution assays (SIDAs) in mycotoxin analysis are critically reviewed. The general section includes historical aspects of SIDAs, the prerequisites and limitations of the use of stable isotopically labelled internal standards, and possible calibration procedures. In the application section actual SIDAs for the analysis of trichothecenes, zearalenone, fumonisins, patulin, and ochratoxin A are presented. The syntheses and availability of labelled mycotoxins for use as internal standards is reviewed and specific advances in food analysis and toxicology are demonstrated. The review indicates that LC-MS applications, in particular, require the use of stable isotopically labelled standards to compensate for losses during clean-up and for discrimination due to ion suppression. As the commercial availability of these compounds continues to increase, SIDAs can be expected to find expanding use in mycotoxin analysis.

  12. Stable isotope dilution assays in mycotoxin analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rychlik, Michael; Asam, Stefan [Universitaet Muenchen, Lehrstuhl fuer Lebensmittelchemie der Technischen, Garching (Germany)

    2008-01-15

    The principle and applications of stable isotope dilution assays (SIDAs) in mycotoxin analysis are critically reviewed. The general section includes historical aspects of SIDAs, the prerequisites and limitations of the use of stable isotopically labelled internal standards, and possible calibration procedures. In the application section actual SIDAs for the analysis of trichothecenes, zearalenone, fumonisins, patulin, and ochratoxin A are presented. The syntheses and availability of labelled mycotoxins for use as internal standards is reviewed and specific advances in food analysis and toxicology are demonstrated. The review indicates that LC-MS applications, in particular, require the use of stable isotopically labelled standards to compensate for losses during clean-up and for discrimination due to ion suppression. As the commercial availability of these compounds continues to increase, SIDAs can be expected to find expanding use in mycotoxin analysis. (orig.)

  13. Task D: Hydrogen safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R.; Sievert, B.G. [Univ. of Miami, Coral Gables, FL (United States); Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)

    1996-10-01

    This report covers two topics. The first is a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels. The second is an experimental investigation of hydrogen flame impingement. Four areas of concern in the conversion of natural gas safety publications to hydrogen safety publications are delineated. Two suggested design criteria for hydrogen vehicle fuel systems are proposed. It is concluded from the experimental work that light weight, low cost, firewalls to resist hydrogen flame impingement are feasible.

  14. The stable isotopic signature of biologically produced molecular hydrogen (H2

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2012-10-01

    Full Text Available Biologically produced molecular hydrogen (H2 is characterised by a very strong depletion in deuterium. Although the biological source to the atmosphere is small compared to photochemical or combustion sources, it makes an important contribution to the global isotope budget of H2. Large uncertainties exist in the quantification of the individual production and degradation processes that contribute to the atmospheric budget, and isotope measurements are a tool to distinguish the contributions from the different sources. Measurements of δ D from the various H2 sources are scarce and for biologically produced H2 only very few measurements exist. Here the first systematic study of the isotopic composition of biologically produced H2 is presented. In a first set of experiments, we investigated δ D of H2 produced in a biogas plant, covering different treatments of biogas production. In a second set of experiments, we investigated pure cultures of several H2 producing microorganisms such as bacteria or green algae. A Keeling plot analysis provides a robust overall source signature of δ D = −712‰ (±13‰ for the samples from the biogas reactor (at 38 °C, δ DH2O= +73.4‰, with a fractionation constant ϵH2-H2O of −689‰ (±20‰ between H2 and the water. The five experiments using pure culture samples from different microorganisms give a mean source signature of δ D = −728‰ (±28‰, and a fractionation constant ϵH2-H2O of −711‰ (±34‰ between H2 and the water. The results confirm the massive deuterium depletion of biologically produced H2 as was predicted by the calculation of the thermodynamic fractionation factors for hydrogen exchange between H2 and water vapour. Systematic errors in the isotope scale are difficult to assess in the absence of international standards for δ D of H2. As expected for a thermodynamic equilibrium, the fractionation factor is temperature dependent, but largely independent of the

  15. Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria

    Science.gov (United States)

    Osburn, Magdalena R.; Dawson, Katherine S.; Fogel, Marilyn L.; Sessions, Alex L.

    2016-01-01

    Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen—protium and deuterium—that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ2H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ2H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ2H suggest much potential as an environmental recorder of metabolism. PMID:27531993

  16. Solution and diffusion of hydrogen isotopes in tungsten-rhenium alloy

    Science.gov (United States)

    Ren, Fei; Yin, Wen; Yu, Quanzhi; Jia, Xuejun; Zhao, Zongfang; Wang, Baotian

    2017-08-01

    Rhenium is one of the main transmutation elements forming in tungsten under neutron irradiation. Therefore, it is essential to understand the influence of rhenium impurity on hydrogen isotopes retention in tungsten. First-principle calculations were used to study the properties of hydrogen solution and diffusion in perfect tungsten-rhenium lattice. The interstitial hydrogen still prefers the tetrahedral site in presence of rhenium, and rhenium atom cannot act directly as a trapping site of hydrogen. The presence of rhenium in tungsten raises the solution energy and the real normal modes of vibration on the ground state and the transition state, compared to hydrogen in pure tungsten. Without zero point energy corrections, the presence of rhenium decreases slightly the migration barrier. It is found that although the solution energy would tend to increase slightly with the rising of the concentration of rhenium, but which does not influence noticeably the solution energy of hydrogen in tungsten-rhenium alloy. The solubility and diffusion coefficient of hydrogen in perfect tungsten and tungsten-rhenium alloy have been estimated, according to Sievert's law and harmonic transition state theory. The results show the solubility of hydrogen in tungsten agrees well the experimental data, and the presence of Re would decrease the solubility and increase the diffusivity for the perfect crystals.

  17. Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material

    Science.gov (United States)

    Nguyen, T. X.; Jobic, H.; Bhatia, S. K.

    2010-08-01

    We report quasielastic neutron scattering studies of H2-D2 diffusion in a carbon molecular sieve, demonstrating remarkable quantum effects, with the heavier isotope diffusing faster below 100 K, confirming our recent predictions. Our transition state theory and molecular dynamics calculations show that while it is critical for this effect to have narrow windows of size comparable to the de Broglie wavelength, high flux requires that the energy barrier be reduced through small cages. Such materials will enable novel processes for kinetic molecular sieving of hydrogen isotopes.

  18. Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing.

    Science.gov (United States)

    Godwin, Scott; Kang, Alicia; Gulino, Lisa-Maree; Manefield, Mike; Gutierrez-Zamora, Maria-Luisa; Kienzle, Marco; Ouwerkerk, Diane; Dawson, Kerri; Klieve, Athol V

    2014-09-01

    Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.

  19. Stable-isotope probing reveals that hydrogen isotope fractionation in proteins and lipids in a microbial community are different and species-specific.

    Science.gov (United States)

    Fischer, Curt R; Bowen, Benjamin P; Pan, Chongle; Northen, Trent R; Banfield, Jillian F

    2013-08-16

    The fractionation of hydrogen stable isotopes during lipid biosynthesis is larger in autotrophic than in heterotrophic microorganisms, possibly due to selective incorporation of hydrogen from water into NAD(P)H, resulting in D-depleted lipids. An analogous fractionation should occur during amino acid biosynthesis. Whereas these effects are traditionally measured using gas-phase isotope ratio on 1H-1H and 1H-2H, using an electrospray mass spectrometry-based technique on the original biomolecular structure and fitting of isotopic patterns we measured the hydrogen isotope compositions of proteins from an acidophilic microbial community with organism specificity and compared values with those for lipids. We showed that lipids were isotopically light by -260 ‰ relative to water in the growth solution; alternatively protein isotopic composition averaged -370 ‰. This difference suggests that steps in addition to NAD(P)H formation contribute to D/H fractionation. Further, autotrophic bacteria sharing 94% 16S rRNA gene sequence identity displayed statistically significant differences in protein hydrogen isotope fractionation, suggesting different metabolic traits consistent with distinct ecological niches or incorrectly annotated gene function. In addition, it was found that heterotrophic, archaeal members of the community had isotopically light protein (-323 ‰) relative to growth water and were significantly different from coexisting bacteria. This could be attributed to metabolite transfer from autotrophs and unknown aspects of fractionation associated with iron reduction. Differential fractionation of hydrogen stable isotopes into metabolites and proteins may reveal trophic levels of members of microbial communities. The approach developed here provided insights into the metabolic characteristics of organisms in natural communities and may be applied to analyze other systems.

  20. Modeling 3D-CSIA data: Carbon, chlorine, and hydrogen isotope fractionation during reductive dechlorination of TCE to ethene.

    Science.gov (United States)

    Van Breukelen, Boris M; Thouement, Héloïse A A; Stack, Philip E; Vanderford, Mindy; Philp, Paul; Kuder, Tomasz

    2017-09-01

    Reactive transport modeling of multi-element, compound-specific isotope analysis (CSIA) data has great potential to quantify sequential microbial reductive dechlorination (SRD) and alternative pathways such as oxidation, in support of remediation of chlorinated solvents in groundwater. As a key step towards this goal, a model was developed that simulates simultaneous carbon, chlorine, and hydrogen isotope fractionation during SRD of trichloroethene, via cis-1,2-dichloroethene (and trans-DCE as minor pathway), and vinyl chloride to ethene, following Monod kinetics. A simple correction term for individual isotope/isotopologue rates avoided multi-element isotopologue modeling. The model was successfully validated with data from a mixed culture Dehalococcoides microcosm. Simulation of Cl-CSIA required incorporation of secondary kinetic isotope effects (SKIEs). Assuming a limited degree of intramolecular heterogeneity of δ37Cl in TCE decreased the magnitudes of SKIEs required at the non-reacting Cl positions, without compromising the goodness of model fit, whereas a good fit of a model involving intramolecular CCl bond competition required an unlikely degree of intramolecular heterogeneity. Simulation of H-CSIA required SKIEs in H atoms originally present in the reacting compounds, especially for TCE, together with imprints of strongly depleted δ2H during protonation in the products. Scenario modeling illustrates the potential of H-CSIA for source apportionment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Investigation of muonic hydrogen isotopes scattering from H{sub 2} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Jacot-Guillarmod, R.; Mulhauser, F. [Fribourg Univ. (Switzerland); Adamczak, A. [Institute of Nuclear Physics, Cracow (Poland); Beer, G.A.; Knowles, P.E.; Olin, A. [Victoria Univ., BC (Canada); Bystritsky, V.M.; Stolupin, V.A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Czaplinski, W.; Filipowicz, M.; Wozniak, J. [Akademia Gorniczo-Hutnicza, Cracow (Poland). Inst. of Physics and Nuclear Technology; Fujiwara, M.C. [British Columbia Univ., Vancouver, BC (Canada); Huber, T.M. [Gustavus Adolphus Coll., St. Peter, MN (United States); Kammel, P. [California Univ., Berkeley, CA (United States); Kunselman, A.R. [Wyoming Univ., Laramie, WY (United States); Markushin, V.E. [Rossijskij Nauchnyj Tsentr ``Kurchatovskij Inst.``, Moscow (Russian Federation); Marshall, G.M. [British Columbia Univ., Vancouver, BC (Canada). TRIUMF Facility; Petitjean, C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Rivkis, L.A. [VNIINM, Moscow (Russian Federation). Inst. Inorg. Mat.; Zmeskal, J. [Oesterreichische Akademie der Wissenschaften, Vienna (Austria)

    1996-10-01

    Knowledge of the cross sections for scattering of {mu}H, {mu}D and {mu}T on molecules of hydrogen isotopes is necessary not only for checking the algorithmic solution of the Coulomb three-body problem but also for a general and correct description of the kinetics of muonic and molecular processes in mixtures of hydrogen isotopes. We plan to measure the scattering cross-section energy dependence of the reactions {mu}x + H{sub 2} {yields} {mu}x + H{sub 2} (x = d, t) in the energy collision range from 0.1 to 45 eV, using a multilayered target system recently developed at TRIUMF. (orig.). 33 refs.

  2. Hydrogen isotopes as a tracer of the Precambrian hydrosphere

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Rosing, Minik Thorleif; Bird, Dennis K.

    compositions of serpentine and fuchsite from the ca. 3.8 Ga Isua supracrustal belt in West Greenland range from -99 to -53‰, and -115 to -61‰, respectively. The highest values indicate that Eoarchean seawater had a δD that was at most 25 ± 5‰ lower than modern oceans. Deuterium-poor water is potentially...... sequestered from oceans over geologic time by continental growth, large-scale glaciation events, biologically mediated hydrogen escape to space, and subduction of water that is chemically bound in alteration minerals of the ocean crust. The extent to which any of these fluxes have occurred since the Eoarchean...... the rise of atmospheric oxygen. Volatile ingassing to the mantle at subduction zones and outgassing in arcs and mid-ocean ridges are apparently equivocal on modern Earth, suggesting there is currently no net flux of water into the mantle. However, estimates that the mass equivalent of Earth’s modern oceans...

  3. Hydrogen Isotopes Record the History of the Martian Hydrosphere and Atmosphere

    Science.gov (United States)

    Usui, T.; Simon, J. I.; Jones, J. H.; Kurokawa, H.; Sato, M.; Alexander, C. M. O'D; Wang, J.

    2015-01-01

    The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. This study presents insights from hydrogen isotopes for the origin and evolution of Martian water reservoirs.

  4. Is it really organic? – Multi-isotopic analysis as a tool to discriminate between organic and conventional plants

    DEFF Research Database (Denmark)

    Laursen, K.H.; Mihailova, A.; Kelly, S.D.

    2013-01-01

    Novel procedures for analytical authentication of organic plant products are urgently needed. Here we present the first study encompassing stable isotopes of hydrogen, carbon, nitrogen, oxygen, magnesium and sulphur as well as compound-specific nitrogen and oxygen isotope analysis of nitrate...... for discrimination of organically and conventionally grown plants. The study was based on wheat, barley, faba bean and potato produced in rigorously controlled long-term field trials comprising 144 experimental plots. Nitrogen isotope analysis revealed the use of animal manure, but was unable to discriminate between...... plants that were fertilised with synthetic nitrogen fertilisers or green manures from atmospheric nitrogen fixing legumes. This limitation was bypassed using oxygen isotope analysis of nitrate in potato tubers, while hydrogen isotope analysis allowed complete discrimination of organic and conventional...

  5. Stable oxygen and hydrogen isotopes measurement by CF-IRMS with applications in hydrology studies

    Energy Technology Data Exchange (ETDEWEB)

    Costinel, Diana; Vremera, Raluca [National Research and Development Institute for Cryogenics and Isotopic Technologies, 4 Uzinei, POBox Raureni 7, 240050 Ramnicu Valcea (Romania); Grecu, Voicu V [University Bucharest, Faculty of Physics, Department of Atomic and Nuclear Physics, 405 Atomistilor, CP MG 11, 077125 Bucharest-Magurele (Romania); Cuna, Stela, E-mail: diana@icsi.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    The major changes in isotopic composition of natural waters occur in the atmospheric part of the water cycle and in surface waters which are exposed to the atmosphere. This study demonstrated the utility of the Continuous Flow - Isotope Ratio Mass Spectrometry method for measuring natural variation of the occurring isotopes of hydrogen ({sup 2}H) and oxygen ({sup 18}O) in meteoric waters. The variation of {delta}{sup 18}O and {delta}{sup 2}D values from precipitation fallen in Raureni-Valcea area between May-December 2007 and September 2008-March 2009 were measured together with the {delta}{sup 18}O and {delta}{sup 2}D values from the Bistrita River. The Local Meteoric Water Line was reported for this area. Also, the variation of {delta}{sup 18}O and {delta}{sup 2}D values was correlated with the temperature and humidity in the same period.

  6. Preliminary Hydrogen Isotope Data from Volcanic Glass in the Peruvian Andes

    Science.gov (United States)

    White, E.; Cassel, E. J.

    2016-12-01

    The Central Andes contain the highest ocean-continent subduction-driven plateau in the world, and are a model for the complex interactions between climate and topography. Existing tectonic models for Andean orogenesis vary widely in both the timing and driving mechanisms of surface uplift. Proposed mechanisms include early Cenozoic uplift in the west during contractional deformation, gradual late Cenozoic surface uplift resulting from continuous crustal thickening and shortening, and rapid late Cenozoic surface uplift from delamination of the South American lithosphere. To constrain the orogenic and climate history of southern Peru, we are using hydrogen isotope data from volcanic glasses sampled from Eocene-Pleistocene vitric ignimbrites deposited from the Pacific coast across the Western Cordillera magmatic arc and northern Altiplano. Ignimbrites are partially welded to unwelded, range in thickness from 10-65m, and are composed of 5-35% phenocrysts of biotite, quartz, and feldspar, with up to 40% lithic and pumice clasts. Many ignimbrites consist of multiple flow units and interbedded fluvial sediments and are commonly underlain or capped by andesitic, basaltic, and dacitic flows. Initial hydrogen isotope values from ancient meteoric water preserved in volcanic glasses (δDglass) from 40-2 Ma show decreasing δD values for samples located in the high Western Cordillera, while samples closer to the Pacific coast show little variation in δD over the past 40 Ma. Further sampling over a greater geographic range, coupled with new high precision geochronology and modeling of the influence of topography and climate on isotope distillation rates, is needed to determine the most likely drivers for changes in δD values and to quantify the magnitude of those changes. δDglass values will be compared with multiple topographic scenarios using a three-dimensional isotope-tracking global climate model, calibrated with modern hydrogen isotope values from soil, precipitation

  7. Stable carbon and hydrogen isotope fractionation of dissolved organic groundwater pollutants by equilibrium sorption.

    Science.gov (United States)

    Höhener, Patrick; Yu, Xianjing

    2012-03-15

    Linear free energy relationships (LFERs) were established which relate equilibrium vapor-liquid isotope effects to stable carbon and hydrogen isotope enrichment factors for equilibrium sorption to geosorbents. The LFERs were established for normal, cyclic or branched alkanes, monoaromatic hydrocarbons, and chloroethenes. These LFERs predict that isotopic light compounds sorb more strongly than their heavy counterparts. Defining fractionation as in classical literature by "heavy divided by light", carbon enrichment factors for equilibrium sorption were derived which ranged from -0.13±0.04‰ (benzene) to -0.52±0.19‰ (trichloroethene at 5-15 °C). Hydrogen enrichment factors for sorption of 14 different compounds were between -2.4 and -9.2‰. For perdeuterated hydrocarbons the predicted enrichment factors ranged from -19±5.4‰ (benzene) to -64±30‰ (cyclohexane). Equilibrium sorption experiments with a soil and activated carbon as sorbents were performed in the laboratory for perdeuterocyclohexane and perdeuterotoluene. The measured D/H enrichments agreed with the LFER prediction for both compounds and both sorbents within the uncertainty estimate of the prediction. The results of this work suggest that equilibrium sorption does create only very small isotope shifts for (13)C in groundwater pollutants in aquifers. It is also suggested that deuterium shifts are expected to be higher, especially for strongly sorbing pollutants. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Triple oxygen and hydrogen isotopes of gypsum hydration water for quantitative paleo-humidity reconstruction

    Science.gov (United States)

    Gázquez, Fernando; Morellón, Mario; Bauska, Thomas; Herwartz, Daniel; Surma, Jakub; Moreno, Ana; Staubwasser, Michael; Valero-Garcés, Blas; Delgado-Huertas, Antonio; Hodell, David A.

    2018-01-01

    Atmospheric relative humidity is an important parameter affecting vegetation yet paleo-humidity proxies are scarce and difficult to calibrate. Here we use triple oxygen (δ17O and δ18O) and hydrogen (δD) isotopes of structurally-bound gypsum hydration water (GHW) extracted from lacustrine gypsum to quantify past changes in atmospheric relative humidity. An evaporation isotope-mass-balance model is used together with Monte Carlo simulations to determine the range of climatological conditions that simultaneously satisfy the stable isotope results of GHW, and with statistically robust estimates of uncertainty. We apply this method to reconstruct the isotopic composition of paleo-waters of Lake Estanya (NE Spain) and changes in normalized atmospheric relative humidity (RHn) over the last glacial termination and Holocene (from ∼15 to 0.6 cal. kyrs BP). The isotopic record indicates the driest conditions occurred during the Younger Dryas (YD; ∼12-13 cal. kyrs BP). We estimate a RHn of ∼40-45% during the YD, which is ∼30-35% lower than today. Because of the southward displacement of the Polar Front to ∼42°N, it was both windier and drier during the YD than the Bølling-Allerød period and Holocene. Mean atmospheric moisture gradually increased from the Preboreal to Early Holocene (∼11 to 8 cal. kyrs BP, 50-60%), reaching 70-75% RHn from ∼7.5 cal. kyrs BP until present-day. We demonstrate that combining hydrogen and triple oxygen isotopes in GHW provides a powerful tool for quantitative estimates of past changes in relative humidity.

  9. Carbon and hydrogen isotopic compositions of algae and bacteria from hydrothermal environments, Yellowstone National Park

    Science.gov (United States)

    Estep, Marilyn L. F.

    1984-03-01

    Stromatolites forming today on a small scale in hydrothermal environments are chemical and biological analogues of much larger Precambrian formations. Carbon isotopic composition varied as a function of CO 2 concentration, pH, and species composition. Stratiform, layered stromatolites grew in silica-depositing springs at 55° to 70°C; they consisted mainly of a unicellular alga, Synechococcus, and a filamentous, photosynthetic bacterium, Chloroflexus. These thermophiles become enriched in 12C as the concentration of carbon dioxide in the effluent waters increases. At a concentration of 40 ppm total inorganic C, and δ 13C of organic carbon was ˜ -12%., whereas at 900 ppm total inorganic C, the δ 13C of similar species was ˜ -25%.. Conical stromatolites or conophytons (principally a filamentous, blue-green alga Phormidium and Chloroflexus) grew at 40°-55°C. In older, broader conophytons, Chloroflexus was the dominant organism. Their δ 13C values were ˜ -18%. in a variety of hot springs. In carbonate-depositing springs, i.e., carbon dioxide saturated, conophytons and stromatolites consisting of a variety of blue-green algae and photosynthetic bacteria had the most negative δ 13C values (to -30%.). These carbon isotope ratios are directly comparable to carbon isotope ratios of kerogen from Precambrian stromatolites. The presence and activity of methanogenic bacteria or heterotrophic, aerobic and anaerobic bacteria did not alter significantly the δ 13C of the original organic matter. The hydrogen isotopic fractionation between thermophilic organisms and water is 0 to -74 for temperatures of 85° to 46°C, respectively. Acidophilic algae fractionated hydrogen isotopes to a lesser extent than did the photosynthetic organisms inhabiting neutral pH springs. Because organic matter retains some of its original isotopic signature, relationships of CO 2 levels, pH, temperature, and species composition between modern stromatolites and their environment and those of

  10. Stable isotope analysis of dynamic lipidomics.

    Science.gov (United States)

    Brandsma, Joost; Bailey, Andrew P; Koster, Grielof; Gould, Alex P; Postle, Anthony D

    2017-08-01

    Metabolic pathway flux is a fundamental element of biological activity, which can be quantified using a variety of mass spectrometric techniques to monitor incorporation of stable isotope-labelled substrates into metabolic products. This article contrasts developments in electrospray ionisation mass spectrometry (ESI-MS) for the measurement of lipid metabolism with more established gas chromatography mass spectrometry and isotope ratio mass spectrometry methodologies. ESI-MS combined with diagnostic tandem MS/MS scans permits the sensitive and specific analysis of stable isotope-labelled substrates into intact lipid molecular species without the requirement for lipid hydrolysis and derivatisation. Such dynamic lipidomic methodologies using non-toxic stable isotopes can be readily applied to quantify lipid metabolic fluxes in clinical and metabolic studies in vivo. However, a significant current limitation is the absence of appropriate software to generate kinetic models of substrate incorporation into multiple products in the time domain. Finally, we discuss the future potential of stable isotope-mass spectrometry imaging to quantify the location as well as the extent of lipid synthesis. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope

    Science.gov (United States)

    Hamuro, Yoshitomo

    2017-03-01

    A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification.

  12. Hydrogen isotope composition of leaf wax n-alkanes in Arabidopsis lines with different transpiration rates

    Science.gov (United States)

    Pedentchouk, N.; Lawson, T.; Eley, Y.; McAusland, L.

    2012-04-01

    Stable isotopic compositions of oxygen and hydrogen are used widely to investigate modern and ancient water cycles. The D/H composition of organic compounds derived from terrestrial plants has recently attracted significant attention as a proxy for palaeohydrology. However, the role of various plant physiological and biochemical factors in controlling the D/H signature of leaf wax lipids in extant plants remains unclear. The focus of this study is to investigate the effect of plant transpiration on the D/H composition of n-alkanes in terrestrial plants. This experiment includes 4 varieties of Arabidopsis thaliana that differ with respect to stomatal density and stomatal geometry. All 4 varieties were grown indoors under identical temperature, relative humidity, light and watering regimes and then sampled for leaf wax and leaf water stable isotopic measurements. During growth, stomatal conductance to carbon dioxide and water vapour were also determined. We found that the plants varied significantly in terms of their transpiration rates. Transpiration rates were significantly higher in Arabidopsis ost1 and ost1-1 varieties (2.4 and 3.2 mmol m-2 s-1, respectively) than in Arabidopsis RbohD and Col-0 (1.5 and 1.4). However, hydrogen isotope measurements of n-alkanes extracted from leaf waxes revealed a very different pattern. Varieties ost1, ost1-1, and RbohD have very similar deltaD values of n-C29 alkane (-125, -128, and -127 per mil), whereas the deltaD value of Col-0 is more negative (-137 per mil). The initial results of this work suggest that plant transpiration is decoupled from the D/H composition of n-alkanes. In other words, physical processes that affect water vapour movement between the plant and its environment apparently cannot account for the stable hydrogen isotope composition of organic compounds that comprise leaf waxes. Additional, perhaps biochemical, processes that affect hydrogen isotope fractionation during photosynthesis might need to be invoked

  13. Fractionation of sulfur and hydrogen isotopes in Desulfovibrio vulgaris with perturbed DsrC expression.

    Science.gov (United States)

    Leavitt, William D; Venceslau, Sofia S; Pereira, Inês A C; Johnston, David T; Bradley, Alexander S

    2016-10-01

    Dissimilatory sulfate reduction is the central microbial metabolism in global sulfur cycling. Understanding the importance of sulfate reduction to Earth's biogeochemical S cycle requires aggregating single-cell processes with geochemical signals. For sulfate reduction, these signals include the ratio of stable sulfur isotopes preserved in minerals, as well as the hydrogen isotope ratios and structures of microbial membrane lipids preserved in organic matter. In this study, we cultivated the model sulfate reducer, Desulfovibrio vulgaris DSM 644T, to investigate how these parameters were perturbed by changes in expression of the protein DsrC. DsrC is critical to the final metabolic step in sulfate reduction to sulfide. S and H isotopic fractionation imposed by the wild type was compared to three mutants. Discrimination against 34S in sulfate, as calculated from the residual reactant, did not discernibly differ among all strains. However, a closed-system sulfur isotope distillation model, based on accumulated sulfide, produced inconsistent results in one mutant strain IPFG09. Lipids produced by IPFG09 were also slightly enriched in 2H. These results suggest that DsrC alone does not have a major impact on sulfate-S, though may influence sulfide-S and lipid-H isotopic compositions. While intriguing, a mechanistic explanation requires further study under continuous culture conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Experimental Investigation of Irradiation-driven Hydrogen Isotope Fractionation in Analogs of Protoplanetary Hydrous Silicate Dust

    Science.gov (United States)

    Roskosz, Mathieu; Laurent, Boris; Leroux, Hugues; Remusat, Laurent

    2016-11-01

    The origin of hydrogen in chondritic components is poorly understood. Their isotopic composition is heavier than the solar nebula gas. In addition, in most meteorites, hydrous silicates are found to be lighter than the coexisting organic matter. Ionizing irradiation recently emerged as an efficient hydrogen fractionating process in organics, but its effect on H-bearing silicates remains essentially unknown. We report the evolution of the D/H of hydrous silicates experimentally irradiated by electrons. Thin films of amorphous silica, amorphous “serpentine,” and pellets of crystalline muscovite were irradiated at 4 and 30 keV. For all samples, irradiation leads to a large hydrogen loss correlated with a moderate deuterium enrichment of the solid residue. The entire data set can be described by a Rayleigh distillation. The calculated fractionation factor is consistent with a kinetically controlled fractionation during the loss of hydrogen. Furthermore, for a given ionizing condition, the deuteration of the silicate residues is much lower than the deuteration measured on irradiated organic macromolecules. These results provide firm evidence of the limitations of ionizing irradiation as a driving mechanism for D-enrichment of silicate materials. The isotopic composition of the silicate dust cannot rise from a protosolar to a chondritic signature during solar irradiations. More importantly, these results imply that irradiation of the disk naturally induces a strong decoupling of the isotopic signatures of coexisting organics and silicates. This decoupling is consistent with the systematic difference observed between the heavy organic matter and the lighter water typically associated with minerals in the matrix of most carbonaceous chondrites.

  15. Laboratory and field methods for stable isotope analysis in human biology.

    Science.gov (United States)

    Reitsema, Laurie J

    2015-01-01

    Stable isotope analysis (SIA; carbon, hydrogen, nitrogen, sulfur, and oxygen) of human tissues offers a means for assessing diet among living humans. Stable isotope ratios of broad categories of food and drink food vary systematically, and stable isotope ratios in consumer tissues represent a composite of the isotopic ratios of food and drink consumed during an individual's life. Isotopic evidence for diet is independent of errors in informant recall, and accrues during time periods when researchers are absent. Beyond diet reconstruction, tissue stable isotope ratios are sensitive to excursions from homeostasis, such as starvation and rapid growth. Because of their relationship to diet, geographic location, hydration, and nutritional status, stable isotope signatures in human tissues offer a window into human biocultural adaptations, past and present. This article describes methods for SIA that may be usefully applied in studies of living humans, with emphasis placed on carbon and nitrogen. Some of the ecological, physiological, and evolutionary applications of stable isotope data among living humans are discussed. By incorporating SIA in research, human biologists facilitate a productive dialog with bioarchaeologists, who routinely use stable isotope evidence, mingling different perspectives on human biology and behavior. © 2015 Wiley Periodicals, Inc.

  16. An instrumental and numerical method to determine the hydrogenic ratio in isotopic experiments in the TJ-II stellarator.

    Science.gov (United States)

    Baciero, A; Zurro, B; Martínez, M

    2014-11-01

    The isotope effect is an important topic that is relevant for future D-T fusion reactors, where the use of deuterium, rather than hydrogen, may lean to improved plasma confinement. An evaluation of the ratio of hydrogen/deuterium is needed for isotope effect studies in current isotopic experiments. Here, the spectral range around Hα and Dα lines, obtained with an intensified multi-channel detector mounted to a 1-m focal length spectrometer, is analyzed using a fit function that includes several Gaussian components. The isotopic ratio evolution for a single operational day of the TJ-II stellarator is presented. The role of injected hydrogen by Neutral Beam Injection heating is also studied.

  17. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--discrimination of ammonium nitrate sources.

    Science.gov (United States)

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    An evaluation was undertaken to determine if isotope ratio mass spectrometry (IRMS) could assist in the investigation of complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. The focus of the research was on ammonium nitrate (AN), a common oxidiser used in improvised explosive mixtures. The potential value of IRMS to attribute Australian AN samples to the manufacturing source was demonstrated through the development of a preliminary AN classification scheme based on nitrogen isotopes. Although the discrimination utilising nitrogen isotopes alone was limited and only relevant to samples from the three Australian manufacturers during the evaluated time period, the classification scheme has potential as an investigative aid. Combining oxygen and hydrogen stable isotope values permitted the differentiation of AN prills from three different Australian manufacturers. Samples from five different overseas sources could be differentiated utilising a combination of the nitrogen, oxygen and hydrogen isotope values. Limited differentiation between Australian and overseas prills was achieved for the samples analysed. The comparison of nitrogen isotope values from intact AN prill samples with those from post-blast AN prill residues highlighted that the nitrogen isotopic composition of the prills was not maintained post-blast; hence, limiting the technique to analysis of un-reacted explosive material.

  18. The storage of tritium, radioactive isotope of hydrogen: materials and aging; Le stockage du tritium, isotope radioactif de l'hydrogene: materiaux et vieillissement

    Energy Technology Data Exchange (ETDEWEB)

    Thiebault, St.; Moysan, I.; Contreras, S.; Paul-Boncour, V.; Decamps, B.; Percheron-Guegan, A

    2007-07-01

    After some generalities on the reasons of using tritium, on the specificities of this hydrogen isotope and the interest of a solid storage, this work presents the different materials generally used. These materials studied in this work are called tritides. They all present the property of retaining {sup 3}He, product of the tritium radioactive decay, trapped in their matrix. This property allows to recover tritium which is practically free of {sup 3}He, but on the other hand, the presence of {sup 3}He, insoluble in the metal, generate some defects in the solid and induce changes of the tritides storage properties. These phenomena on the whole are called 'aging'. (O.M.)

  19. Isotopic fractionation in proteins as a measure of hydrogen bond length.

    Science.gov (United States)

    McKenzie, Ross H; Athokpam, Bijyalaxmi; Ramesh, Sai G

    2015-07-28

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric O-H⋯O bonds [R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the O-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization Φ(R), used previously to determine bond lengths.

  20. Isotopic fractionation in proteins as a measure of hydrogen bond length

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Ross H., E-mail: r.mckenzie@uq.edu.au [School of Mathematics and Physics, University of Queensland, Brisbane 4072 (Australia); Athokpam, Bijyalaxmi; Ramesh, Sai G. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India)

    2015-07-28

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric O–H⋯O bonds [R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the O–H stretch vibration, O–H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization Φ(R), used previously to determine bond lengths.

  1. Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean

    Science.gov (United States)

    Walter, Sylvia; Kock, Annette; Steinhoff, Tobias; Fiedler, Björn; Fietzek, Peer; Kaiser, Jan; Krol, Maarten; Popa, Elena; Chen, Qianjie; Tanhua, Toste; Röckmann, Thomas

    2017-04-01

    Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during five cruises along a transect between Punta Arenas (Chile) and Bremerhaven (Germany), as well as at the coast of Mauritania. The isotopic source signatures of dissolved H2 extracted from surface water are highly deuterium-depleted and correlate negatively with temperature, showing δD values of (-629±54) ‰ for water temperatures at (27±3) ˚ C and (-249±88) ‰ below (19±1) ˚ C. The results for warmer water masses are consistent with biological production of H2. This is the first time that marine H2 excess has been directly attributed to biological production by isotope measurements. However, the isotope values obtained in the colder water masses indicate that beside possible biological production a significant different source should be considered. The atmospheric measurements show distinct differences between both hemispheres as well as between seasons. Results from the global chemistry transport model TM5 reproduce the measured H2 mole fractions and isotopic composition well. The climatological global oceanic emissions from the GEMS database are in line with our data and previously published flux calculations. The good agreement between measurements and model results demonstrates that both the magnitude and the isotopic signature of the main components of the marine H2 cycle are in general adequately represented in current atmospheric models despite a proposed source different from biological production or a substantial underestimation of nitrogen fixation by several authors.

  2. Geographic variation of strontium and hydrogen isotopes in avian tissue: implications for tracking migration and dispersal.

    Directory of Open Access Journals (Sweden)

    Megan J Sellick

    Full Text Available BACKGROUND: Isotopes can provide unique solutions to fundamental problems related to the ecology and evolution of migration and dispersal because prior movements of individuals can theoretically be tracked from tissues collected from a single capture. However, there is still remarkably little information available about how and why isotopes vary in wild animal tissues, especially over large spatial scales. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe variation in both stable-hydrogen (deltaD(F and strontium ((87Sr/(86Sr(F isotopic compositions in the feathers of a migratory songbird, the Tree Swallow (Tachycineta bicolor, across 18 sampling sites in North America and then examine potential mechanisms driving this variation. We found that deltaD(F was correlated with latitude of the sampling site, whereas (87Sr/(86Sr(F was correlated with longitude. deltaD(F was related to deltaD of meteoric waters where molting occurred and (87Sr/(86Sr(F was influenced primarily by the geology in the area where feathers were grown. Using simulation models, we then assessed the utility of combining both markers to estimate the origin of individuals. Using 13 geographic regions, we found that the number of individuals correctly assigned to their site of origin increased from less than 40% using either deltaD or (87Sr/(86Sr alone to 74% using both isotopes. CONCLUSIONS/SIGNIFICANCE: Our results suggest that these isotopes have the potential to provide predictable and complementary markers for estimating long-distance animal movements. Combining isotopes influenced by different global-scale processes may allow researchers to link the population dynamics of animals across large geographic ranges.

  3. Geographic Variation of Strontium and Hydrogen Isotopes in Avian Tissue: Implications for Tracking Migration and Dispersal

    Science.gov (United States)

    Sellick, Megan J.; Kyser, T. Kurt; Wunder, Michael B.; Chipley, Don; Norris, D. Ryan

    2009-01-01

    Background Isotopes can provide unique solutions to fundamental problems related to the ecology and evolution of migration and dispersal because prior movements of individuals can theoretically be tracked from tissues collected from a single capture. However, there is still remarkably little information available about how and why isotopes vary in wild animal tissues, especially over large spatial scales. Methodology/Principal Findings Here, we describe variation in both stable-hydrogen (δDF) and strontium (87Sr/86SrF) isotopic compositions in the feathers of a migratory songbird, the Tree Swallow (Tachycineta bicolor), across 18 sampling sites in North America and then examine potential mechanisms driving this variation. We found that δDF was correlated with latitude of the sampling site, whereas 87Sr/86SrF was correlated with longitude. δDF was related to δD of meteoric waters where molting occurred and 87Sr/86SrF was influenced primarily by the geology in the area where feathers were grown. Using simulation models, we then assessed the utility of combining both markers to estimate the origin of individuals. Using 13 geographic regions, we found that the number of individuals correctly assigned to their site of origin increased from less than 40% using either δD or 87Sr/86Sr alone to 74% using both isotopes. Conclusions/Significance Our results suggest that these isotopes have the potential to provide predictable and complementary markers for estimating long-distance animal movements. Combining isotopes influenced by different global-scale processes may allow researchers to link the population dynamics of animals across large geographic ranges. PMID:19266102

  4. Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt

    Science.gov (United States)

    Johnson, Craig A.; Bookstrom, Arthur A.; Slack, John F.

    2012-01-01

    Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit

  5. Stable isotope ratios of carbon and hydrogen to distinguish olive oil from shark squalene-squalane.

    Science.gov (United States)

    Camin, Federica; Bontempo, Luana; Ziller, Luca; Piangiolino, Cristiana; Morchio, Gianni

    2010-06-30

    Squalene and its hydrogenated derivate squalane are widely used in the pharmaceutical and cosmetic fields. The two compounds are mainly produced from the liver oil of deep sea sharks and from olive oil distillates. Squalene and squalane from shark cost less than the same compounds derived from olive oil, and the use of these shark-derived compounds is unethical in cosmetic formulations. In this work we investigate whether (13)C/(12)C and (2)H/(1)H ratios can distinguish olive oil from shark squalene/squalane and can detect the presence of shark derivates in olive oil based products. The (13)C/(12)C ratios (expressed as delta(13)C values) of bulk samples and of pure compounds measured using isotope ratio mass spectrometry (IRMS) were significantly lower in authentic olive oil squalene/squalane (N: 13; -28.4 +/- 0.5 per thousand; -28.3 +/- 0.8 per thousand) than in shark squalene/squalane samples (N: 15; -20.5 +/- 0.7 per thousand; -20.4 +/- 0.6 per thousand). By defining delta(13)C threshold values of -27.4 per thousand and -26.6 per thousand for olive oil bulk and pure squalene/squalane, respectively, illegal addition of shark products can be identified starting from a minimum of 10%. (2)H/(1)H analysis is not useful for distinguishing the two different origins. Delta(13)C analysis is proposed as a suitable tool for detecting the authenticity of commercial olive oil squalene and squalane samples, using IRMS interfaced to an elemental analyser if the purity is higher than 80% and IRMS interfaced to a gas chromatography/combustion system for samples with lower purity, including solutions of squalane extracted from cosmetic products. Copyright 2010 John Wiley & Sons, Ltd.

  6. Multispectral dual isotope and NMR image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vannier, M.W.; Beihn, R.M.; Butterfield, R.L.; De Land, F.H.

    1985-05-01

    Dual isotope scintigraphy and nuclear magnetic resonance imaging produce image data that is intrinsically multispectral. That is multiple images of the same anatomic region are generated with different gray scale distribution and morphologic content that is largely redundant. Image processing technology, originally developed by NASA for satellite imaging, is available for multispectral analysis. These methods have been applied to provide tissue characterization. Tissue specific information encoded in the grapy scale data from dual isotope and NMR studies may be extracted using multispectral pattern recognition methods. The authors used table lookup minimum distance, maximum likelihood and cluster analysis techniques with data sets from Ga-67 / Tc-99m, 1-131 labeled antibodies / Tc-99m, Tc-99m perfusion / Xe-133 ventilation, and NMR studies. The results show; tissue characteristic signatures exist in dual isotope and NMR imaging, and these spectral signatures are identifiable using multispectral image analysis and provide tissue classification maps with scatter diagrams that facilitate interpretation and assist in elucidating subtle changes.

  7. Reconstruction of seawater chemistry from deeply subducted oceanic crust; hydrogen and oxygen isotope of lawsonite eclogites preserving pillow structure

    Science.gov (United States)

    Hamabata, D., VI; Masuyama, Y.; Tomiyasu, F.; Ueno, Y.; Yui, T. F.; Okamoto, K.

    2014-12-01

    In order to understand evolution of life, change of seawater chemistry from Hadean, Archean to present is significant. Pillow structure is well-preserved in the Archean greenstone belt (e.g. Komiya et al., 1999). Oxygen and hydrogen isotope of rims in the pillow is useful conventional tool to decipher chemistry of Paleao-seawater from Archean to Present. However, Archean greenstone belt suffered regional metamorphism from greenschist to Amphibolite facies conditions. Therefore, it is necessary to testify the validity of pillow chemistry from recent (Phanerozoic) metamorphosed greenstone. We have systematically collected pillowed greenstone from blueschist and eclogites. Two eclogite exhibiting pillow structures were chosen for oxygen and hydrogen isotope analysis. One is from Corsica (lawsonite eclogite collected with Dr. Alberto Vidale Barbarone) and another is from Cazadero, Franciscan belt (collected by Dr. Tatsuki Tsujimori). The both are ascribed as MORB from major and trace bulk chemistry and Ca is rich in the core and Na is poor in the rims. The former exhibits garnet, omphacite, lawsonite, and glacophane. Phengite is in core of the pillow and chlorite is in the rims. In the latter, besides garnet, omphacite, epdiote and glaucophane, chlorite is recognized with phengite in the core. Glaucophane is richer in the rims from the both samples, therefore istope analysis of glaucophane was done. Mineral separation was carefully done using micro-mill, heavy liquid and isodynamic separator. 20 mg specimens were used for oxygen isotope analysis and 2mg were for hydrogen analysis. δ18O of the all analysis (7.7 to 8.3) is within the range of unaltered igneous oceanic crust and high temperature hydrothermal alteration although rims (8.3 for Franciscan and 8.0 for Corsica) are higher than cores (7.7 for Franciscan and Corsica). δD data is also consistent with hydrothermal alteration. It is relative higher in core from the Corsica and Franciscan (-45 and -56) than of the

  8. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping

    Science.gov (United States)

    Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K.

    2017-05-01

    Thousands of tons of isotopic mixtures are processed annually for heavy-water production and tritium decontamination. The existing technologies remain extremely energy intensive and require large capital investments. New approaches are needed to reduce the industry's footprint. Recently, micrometre-size crystals of graphene are shown to act as efficient sieves for hydrogen isotopes pumped through graphene electrochemically. Here we report a fully-scalable approach, using graphene obtained by chemical vapour deposition, which allows a proton-deuteron separation factor of around 8, despite cracks and imperfections. The energy consumption is projected to be orders of magnitude smaller with respect to existing technologies. A membrane based on 30 m2 of graphene, a readily accessible amount, could provide a heavy-water output comparable to that of modern plants. Even higher efficiency is expected for tritium separation. With no fundamental obstacles for scaling up, the technology's simplicity, efficiency and green credentials call for consideration by the nuclear and related industries.

  9. Hydrogen isotopic compositions of organic compounds in plants reflect the plant's carbon metabolism

    Science.gov (United States)

    Cormier, M. A.; Kahmen, A.; Werner, R. A.

    2015-12-01

    The main factors controlling δ2H of plant organic compounds are generally assumed to be the plant's source water and the evaporative deuterium enrichment of leaf water. Hydrogen isotope analyses of plant compounds from sediments or tree rings are therefore mainly applied to assess hydrological conditions at different spatial and temporal scales. However, the biochemical hydrogen isotope fractionation occurring during biosynthesis of plant organic compounds (ɛbio) also accounts for a large part of the variability observed in the δ2H values. Nevertheless, only few studies have directly addressed the physiological basis of this variability and even fewer studies have thus explored possible applications of hydrogen isotope variability in plant organic compounds for plant physiological research. Here we show two datasets indicating that the plant's carbon metabolism can have a substantial influence on δ2H values of n-alkanes and cellulose. First, we performed a controlled experiment where we forced plants into heterotrophic and autotrophic C-metabolism by growing them under four different light treatments. Second, we assessed the δ2H values of different parasitic heterotrophic plants and their autotrophic host plants. Our two datasets show a systematic shift in ɛbio of up to 80 ‰ depending on the plant's carbon metabolism (heterotrophic or autotrophic). Differences in n-alkane and cellulose δ2H values in plants with autotrophic vs. heterotrophic metabolisms can be explained by different NADPH pools that are used by the plants to build their compounds either with assimilates that originate directly from photosynthesis or from stored carbohydrates. Our results have significant implications for the calibration and interpretation of geological records. More importantly, as the δ2H values reflect the plant's carbon metabolism involved during the tissue formation, our findings highlight the potential of δ2H values as new tool for studying plant and ecosystem carbon

  10. Site selective syntheses of [(3)H]omeprazole using hydrogen isotope exchange chemistry.

    Science.gov (United States)

    Pollack, Scott R; Schenk, David J

    2015-01-01

    Omeprazole (Prilosec®) is a selective and irreversible proton pump inhibitor used to treat various medical conditions related to the production of excess stomach acids. It functions by suppressing secretion of those acids. Radiolabeled compounds are commonly employed in the drug discovery and development process to support efforts including library screening, target identification, receptor binding, assay development and validation and safety assessment. Herein, we describe synthetic approaches to the controlled and selective labeling of omeprazole with tritium via hydrogen isotope exchange chemistry. The chemistry may also be used to prepare tritium labeled esomeprazole (Nexium®), the active pure (S)-enantiomer of omeprazole. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Oxygen, hydrogen, sulfur, and carbon isotopes in the Pea Ridge magnetite-apatite deposit, southeast Missouri, and sulfur isotope comparisons to other iron deposits in the region

    Science.gov (United States)

    Johnson, Craig A.; Day, Warren C.; Rye, Robert O.

    2016-01-01

    Oxygen, hydrogen, sulfur, and carbon isotopes have been analyzed in the Pea Ridge magnetite-apatite deposit, the largest historic producer among the known iron deposits in the southeast Missouri portion of the 1.5 to 1.3 Ga eastern granite-rhyolite province. The data were collected to investigate the sources of ore fluids, conditions of ore formation, and provenance of sulfur, and to improve the general understanding of the copper, gold, and rare earth element potential of iron deposits regionally. The δ18O values of Pea Ridge magnetite are 1.9 to 4.0‰, consistent with a model in which some magnetite crystallized from a melt and other magnetite—perhaps the majority—precipitated from an aqueous fluid of magmatic origin. The δ18O values of quartz, apatite, actinolite, K-feldspar, sulfates, and calcite are significantly higher, enough so as to indicate growth or equilibration under cooler conditions than magnetite and/or in the presence of a fluid that was not entirely magmatic. A variety of observations, including stable isotope observations, implicate a second fluid that may ultimately have been meteoric in origin and may have been modified by isotopic exchange with rocks or by evaporation during storage in lakes.Sulfur isotope analyses of sulfides from Pea Ridge and seven other mineral deposits in the region reveal two distinct populations that average 3 and 13‰. Two sulfur sources are implied. One was probably igneous melts or rocks belonging to the mafic- to intermediate-composition volcanic suite that is present at or near most of the iron deposits; the other was either melts or volcanic rocks that had degassed very extensively, or else volcanic lakes that had trapped rising magmatic gases. The higher δ34S values correspond to deposits or prospects where copper is noteworthy—the Central Dome portion of the Boss deposit, the Bourbon deposit, and the Vilander prospective area. The correspondence suggests that (1) sulfur either limited the deposition

  12. Hydrogen isotope detection in metal matrix using double-pulse laser-induced breakdown-spectroscopy

    Science.gov (United States)

    Fantoni, Roberta; Almaviva, Salvatore; Caneve, Luisa; Colao, Francesco; Maddaluno, Giorgio; Gasior, Pawel; Kubkowska, Monika

    2017-03-01

    The amount of hydrogen isotopes retained in plasma facing components (PFCs) and the determination of their surface layer composition are among the most critical issues for the next generation fusion device, ITER, under construction in Cadarache (France). Laser Induced Breakdown Spectroscopy (LIBS) is currently under evaluation as a technique suitable for quantitative, in situ, non-invasive measurements of these quantities. In order to detect traces of contaminant in metallic samples and improve its limit of detection (LOD), the Double Pulse LIBS (DP-LIBS) variant can be used instead of the standard Single Pulse LIBS (SP-LIBS), as it has been proven by several authors that DP-LIBS can considerably raise the analytical performances of the technique. In this work Mo samples coated with a 1.5-1.8 μm thick W-Al mixed layer, contaminated with co-deposited deuterium (D) were measured by SP- and DP-LIBS under vacuum (p 5 × 10- 5 mbar), with an experimental set-up simulating conditions that can be found in a real fusion device between plasma discharges. A partial Calibration Free procedure (pCF) was applied to the LIBS data in order to retrieve the relative concentration of W and Al in the mixed layer. The amount of deuterium was then inferred by using tungsten as internal standard, accounting for the intensity ratio between the Dα line and nearby W I lines. The results are in satisfactory agreement with those obtained from preliminary Ion Beam Analysis measurements performed immediately after the specimen's realization.

  13. A design study of hydrogen isotope separation system for ITER-FEAT

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Yasunori; Yamanishi, Toshihiko; Nishi, Masataka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Preliminary design study of the hydrogen isotope separation system (ISS) for the fuel cycle of the ITER-FEAT, a fusion experimental reactor, was carried out based on the substantial reduction of hydrogen flow to the ISS resulting from the design study for scale reduction of the formerly-designed ITER. Three feed streams (plasma exhaust gas stream, streams from the water detritiation system and that from the neutral beam injectors) are fed to the ISS, and three product streams (high purity tritium gas, high purity deuterium gas and hydrogen gas) are made in it by the method of cryogenic distillation. In this study, an original four-column cascade was proposed to the ISS cryogenic distillation column system considering simplification and the operation scenario of the ITER-FEAT. Substantial reduction of tritium inventory in the ISS was found to be possible in the progress of investigation concerning of the corresponding flow rate of tritium product stream (T>90 %) for pellet injector which depends upon the operation condition. And it was found that tritium concentration in the released hydrogen stream into environment from the ISS could easily fluctuate with current design of column arrangement due to the small disturbance in mass flow balance in the ISS. To solve this problem, two-column system for treatment of this flow was proposed. (author)

  14. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    Science.gov (United States)

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  15. Isotope ratio analysis by Orbitrap mass spectrometry

    Science.gov (United States)

    Eiler, J. M.; Chimiak, L. M.; Dallas, B.; Griep-Raming, J.; Juchelka, D.; Makarov, A.; Schwieters, J. B.

    2016-12-01

    Several technologies are being developed to examine the intramolecular isotopic structures of molecules (i.e., site-specific and multiple substitution), but various limitations in sample size and type or (for IRMS) resolution have so far prevented the creation of a truly general technique. We will discuss the initial findings of a technique based on Fourier transform mass spectrometry, using the Thermo Scientific Q Exactive GC — an instrument that contains an Orbitrap mass analyzer. Fourier transform mass spectrometry is marked by exceptionally high mass resolutions (the Orbitrap reaches M/∆M in the range 250,000-1M in the mass range of greatest interest, 50-200 amu). This allows for resolution of a large range of nearly isobaric interferences for isotopologues of volatile and semi-volatile compounds (i.e., involving isotopes of H, C, N, O and S). It also provides potential to solve very challenging mass resolution problems for isotopic analysis of other, heavier elements. Both internal and external experimental reproducibilities of isotope ratio analyses using the Orbitrap typically conform to shot-noise limits down to levels of 0.2 ‰ (1SE), and routinely in the range 0.5-1.0 ‰, with similar accuracy when standardized to concurrently run reference materials. Such measurements can be made without modifications to the ion optics of the Q Exactive GC, but do require specially designed sample introduction devices to permit sample/standard comparison and long integration times. The sensitivity of the Q Exactive GC permits analysis of sub-nanomolar samples and quantification of multiply-substituted species. The site-specific capability of this instrument arises from the fact that mass spectra of molecular analytes commonly contain diverse fragment ion species, each of which samples a specific sub-set of molecular sites. We will present applications of this technique to the biological and abiological chemistry of amino acids, forensic identification of

  16. The fractionation factors of stable carbon and hydrogen isotope ratios for VOCs

    Science.gov (United States)

    Kawashima, H.

    2014-12-01

    Volatile organic compounds (VOCs) are important precursors of ozone and secondary organic aerosols in the atmosphere, some of which are carcinogenic, teratogenic, or mutagenic. VOCs in ambient air originate from many sources, including vehicle exhausts, gasoline evaporation, solvent use, natural gas emissions, and industrial processes, and undergo intricate chemical reactions in the atmosphere. To develop efficient air pollution remediation strategies, it is important to clearly identify the emission sources and elucidate the reaction mechanisms in the atmosphere. Recently, stable carbon isotope ratios (δ13C) of VOCs in some sources and ambient air have been measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In this study, we measured δ13C and stable hydrogen isotope ratios (δD) of atmospheric VOCs by using the gas chromatography/thermal conversion/isotope ratio mass spectrometry coupled with a thermal desorption instrument (TD-GC/TC/IRMS). The wider δD differences between sources were found in comparison with the δ13C studies. Therefore, determining δD values of VOCs in ambient air is potentially useful in identifying VOC sources and their reactive behavior in the atmosphere. However, to elucidate the sources and behavior of atmospheric VOCs more accurately, isotopic fractionation during atmospheric reaction must be considered. In this study, we determined isotopic fractionation of the δ13C and δD values for the atmospheric some VOCs under irradiation conditions. As the results, δ13C for target all VOCs and δD for most VOCs were increasing after irradiation. But, the δD values for both benzene and toluene tended to decrease as irradiation time increased. We also estimated the fractionation factors for benzene and toluene, 1.27 and 1.05, respectively, which differed from values determined in previous studies. In summary, we were able to identify an inverse isotope effect for the δD values of benzene and toluene

  17. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon

    Science.gov (United States)

    Greenwood, James P.; Itoh, Shoichi; Sakamoto, Naoya; Warren, Paul; Taylor, Lawrence; Yurimoto, Hisayoshi

    2011-02-01

    Water plays a critical role in the evolution of planetary bodies, and determination of the amount and sources of lunar water has profound implications for our understanding of the history of the Earth-Moon system. During the Apollo programme, the lunar samples were found to be devoid of indigenous water. The severe depletion of volatiles, including water, in lunar rock samples has long been seen as strong support for the theory that the Moon formed during a giant impact event. Water has now been identified in lunar volcanic glasses and apatite, but the sources of water to the Moon have not been determined. Here we report ion microprobe measurements of water and hydrogen isotopes in the hydrous mineral apatite, derived from crystalline lunar mare basalts and highlands rocks collected during the Apollo missions. We find significant water in apatite from both mare and highlands rocks, indicating a role for water during all phases of the Moon's magmatic history. Variations of hydrogen isotope ratios in apatite suggest sources for water in lunar rocks could come from the lunar mantle, solar wind protons and comets. We conclude that a significant delivery of cometary water to the Earth-Moon system occurred shortly after the Moon-forming impact.

  18. Stable isotope analysis in primatology: a critical review.

    Science.gov (United States)

    Sandberg, Paul A; Loudon, James E; Sponheimer, Matt

    2012-11-01

    Stable isotope analysis has become an important tool in ecology over the last 25 years. A wealth of ecological information is stored in animal tissues in the relative abundances of the stable isotopes of several elements, particularly carbon and nitrogen, because these isotopes navigate through ecological processes in predictable ways. Stable carbon and nitrogen isotopes have been measured in most primate taxonomic groups and have yielded information about dietary content, dietary variability, and habitat use. Stable isotopes have recently proven useful for addressing more fine-grained questions about niche dynamics and anthropogenic effects on feeding ecology. Here, we discuss stable carbon and nitrogen isotope systematics and critically review the published stable carbon and nitrogen isotope data for modern primates with a focus on the problems and prospects for future stable isotope applications in primatology. © 2012 Wiley Periodicals, Inc.

  19. Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers

    Directory of Open Access Journals (Sweden)

    S. N. Ladd

    2017-09-01

    Full Text Available The hydrogen isotopic composition (δ2H of lipid biomarkers has diverse applications in the fields of paleoclimatology, biogeochemistry, and microbial community dynamics. Large changes in hydrogen isotope fractionation have been observed among microbes with differing core metabolisms, while environmental factors including temperature and nutrient availability can affect isotope fractionation by photoautotrophs. Much effort has gone into studying these effects under laboratory conditions with single species cultures. Moving beyond controlled environments and quantifying the natural extent of these changes in freshwater lacustrine settings and identifying their causes is essential for robust application of δ2H values of common short-chain fatty acids as a proxy of net community metabolism and of phytoplankton-specific biomarkers as a paleohydrologic proxy. This work targets the effect of community dynamics, temperature, and productivity on 2H∕1H fractionation in lipid biomarkers through a comparative time series in two central Swiss lakes: eutrophic Lake Greifen and oligotrophic Lake Lucerne. Particulate organic matter was collected from surface waters at six time points throughout the spring and summer of 2015, and δ2H values of short-chain fatty acids, as well as chlorophyll-derived phytol and the diatom biomarker brassicasterol, were measured. We paired these measurements with in situ incubations conducted with NaH13CO3, which were used to calculate the production rates of individual lipids in lake surface water. As algal productivity increased from April to June, net discrimination against 2H in Lake Greifen increased by as much as 148 ‰ for individual fatty acids. During the same time period in Lake Lucerne, net discrimination against 2H increased by as much as 58 ‰ for individual fatty acids. A large portion of this signal is likely due to a greater proportion of heterotrophically derived fatty acids in the winter and early

  20. Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers

    Science.gov (United States)

    Nemiah Ladd, S.; Dubois, Nathalie; Schubert, Carsten J.

    2017-09-01

    The hydrogen isotopic composition (δ2H) of lipid biomarkers has diverse applications in the fields of paleoclimatology, biogeochemistry, and microbial community dynamics. Large changes in hydrogen isotope fractionation have been observed among microbes with differing core metabolisms, while environmental factors including temperature and nutrient availability can affect isotope fractionation by photoautotrophs. Much effort has gone into studying these effects under laboratory conditions with single species cultures. Moving beyond controlled environments and quantifying the natural extent of these changes in freshwater lacustrine settings and identifying their causes is essential for robust application of δ2H values of common short-chain fatty acids as a proxy of net community metabolism and of phytoplankton-specific biomarkers as a paleohydrologic proxy. This work targets the effect of community dynamics, temperature, and productivity on 2H/1H fractionation in lipid biomarkers through a comparative time series in two central Swiss lakes: eutrophic Lake Greifen and oligotrophic Lake Lucerne. Particulate organic matter was collected from surface waters at six time points throughout the spring and summer of 2015, and δ2H values of short-chain fatty acids, as well as chlorophyll-derived phytol and the diatom biomarker brassicasterol, were measured. We paired these measurements with in situ incubations conducted with NaH13CO3, which were used to calculate the production rates of individual lipids in lake surface water. As algal productivity increased from April to June, net discrimination against 2H in Lake Greifen increased by as much as 148 ‰ for individual fatty acids. During the same time period in Lake Lucerne, net discrimination against 2H increased by as much as 58 ‰ for individual fatty acids. A large portion of this signal is likely due to a greater proportion of heterotrophically derived fatty acids in the winter and early spring, which are displaced by

  1. The Evolution of Water in Martian Atmosphere, Hydrosphere, and Cryosphere: Insights from Hydrogen Isotopes

    Science.gov (United States)

    Usui, T.; Kurokawa, H.; Alexander, C.; Simon, J. I.; Wang, J.; Jones, J. H.

    2016-12-01

    Mars exploration missions provide compelling evidence for the presence of liquid water during the earliest geologic era (Noachian: > 3.9 Ga) of Mars. The amount and stability of liquid water on the surface is strongly influenced by the composition and pressure of the atmosphere. However, the evolution of Noachian atmosphere has been poorly constrained due to uncertainties of atmospheric loss regimes and internal/external factors such as impact flux and volcanic degassing. We can trace the evolution of the early Martian atmosphere and its interaction with the hydrosphere and cryosphere with hydrogen isotope ratios (D/H) because they fractionate during atmospheric escape and during hydrological cycling between the atmosphere, surface waters, and the polar ice caps. This study reports D/H ratios of primordial and 4 Ga-old atmosphere by ion microprobe analyses of Martian meteorites. Analyses of olivine-hosted glass inclusions in the most primitive shergottite (Yamato 980459) provide a near-chondritic D/H ratio (1.3×SMOW) for the 4.5 Ga primordial water preserved in the mantle. On the other hand, carbonates in Allan Hills 84001 provide a D/H range (1.5-2.0×SMOW) for the Noachian surface water that was isotopically equilibrated with the 4 Ga atmosphere. The latter observation requires that even after the Noachian period the hydrogen isotopes were fractionated significantly to reach the present-day value of 6×SMOW. Using the one-reservoir model of Kurokawa et al. (2014) we can provide minimum estimates on the amounts of hydrogen loss before and after 4 Ga based on the D/H data from the meteorites (1.3×SMOW at 4.5 Ga and 1.5-2.0×SMOW at 4 Ga) assuming the volume of polar surface-ice (20-30 m global equivalent layers, GEL). The model indicates that the hydrogen loss during the first 0.5 billion years (16-54 m GEL) was comparable to those (42-93 mGEL) in the remaining Martian history. These values are distinctly lower than the geological estimates on the volumes of

  2. Biochemical hydrogen isotope fractionation during biosynthesis in higher plants reflects carbon metabolism of the plant

    Science.gov (United States)

    Cormier, Marc-André; Kahmen, Ansgar

    2015-04-01

    Compound-specific isotope analyses of plant material are frequently applied to understand the response of plants to the environmental changes. As it is generally assume that the main factors controlling δ2H values in plants are the plant's source water and evaporative deuterium enrichment of leaf water, hydrogen isotope analyses of plant material are mainly applied regarding hydrological conditions at different time scales. However, only few studies have directly addressed the variability of the biochemical hydrogen isotope fractionation occurring during biosynthesis of organic compounds (ɛbio), accounting also for a large part in the δ2H values of plants but generally assumed to be constant. Here we present the results from a climate-controlled growth chambers experiment where tested the sensitivity of ɛbio to different light treatments. The different light treatments were applied to induce different metabolic status (autotrophic vs. heterotrophic) in 9 different plant species that we grew from large storage organs (e.g. tubers or roots). The results show a systematic ɛbio shift (up to 80 ) between the different light treatments for different compounds (i.e. long chain n-alkanes and cellulose). We suggest that this shift is due to the different NADPH pools used by the plants to build up the compounds from stored carbohydrates in heterotrophic or autotrophic conditions. Our results have important implications for the calibration and interpretation of sedimentary and tree rings records in geological studies. In addition, as the δ2H values reflect also strongly the carbon metabolism of the plant, our findings support the idea of δ2H values as an interesting proxy for plant physiological studies.

  3. Temperature dependence of the rate constant of hydrogen isotope interactions with a lithium capillary-porous system under reactor irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Kulsartov, Timur; Gordienko, Yuri [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Mukanova, Aliya [Al’ Farabi Kazakh National University, Almaty (Kazakhstan); Ponkratov, Yuri; Barsukov, Nikolay; Tulubaev, Evgeniy [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Platacis, Erik [University of Latvia (IPUL), Riga (Latvia); Kenzhin, Ergazy [Shakarim Semey State University, Semey (Kazakhstan)

    2013-10-15

    Highlights: • The experiments with Li CPS sample were carried out at reactor IVG-1.M. • The gas absorption technique was used to study hydrogen isotope interaction with lithium CPS. • The temperature dependence of constants of interaction rate was obtained for various power rates of the reactor. • Determination of the activation energies, and pre-exponents of Arrhenius dependence. • The effect of increase of the rate constant under reaction irradiation. -- Abstract: Experiments with a sample of a lithium capillary-porous system (CPS) were performed at the reactor IVG-1.M of the Institute of Atomic Energy NNC RK to study the effects of neutron irradiation on the parameters of hydrogen isotope interactions with a lithium CPS. The absorption technique was used during the experiments, and this technique allowed the temperature dependences of the hydrogen isotope interaction rate constants with the lithium CPS to be obtained under various reactor powers. The obtained dependencies were used to determine the main interaction parameters: the activation energies and the pre-exponents of the Arrhenius dependence of the hydrogen interaction rate constants with lithium and the lithium CPS. An increase of the hydrogen isotope interaction rate with the lithium CPS was observed under reactor irradiation.

  4. Macroscopic rate equation modeling of trapping/detrapping of hydrogen isotopes in tungsten materials

    Energy Technology Data Exchange (ETDEWEB)

    Hodille, E.A., E-mail: etienne.hodille@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Bonnin, X. [LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse (France); Bisson, R.; Angot, T. [Aix-Marseille Université, PIIM, CNRS, UMR 7345, 13397 Marseille (France); Becquart, C.S. [Université Lille I, UMET, UMR 8207, 59655 Villeneuve d’Ascq cédex France (France); Layet, J.M. [Aix-Marseille Université, PIIM, CNRS, UMR 7345, 13397 Marseille (France); Grisolia, C. [CEA, IRFM, F-13108 Saint Paul lez Durance (France)

    2015-12-15

    Relevant parameters for trapping of Hydrogen Isotopes (HIs) in polycrystalline tungsten are determined with the MHIMS code (Migration of Hydrogen Isotopes in MaterialS) which is used to reproduce Thermal Desorption Spectrometry experiments. Three types of traps are found: two intrinsic traps (detrapping energy of 0.87 eV and 1.00 eV) and one extrinsic trap created by ion irradiation (detrapping energy of 1.50 eV). Then MHIMS is used to simulate HIs retention at different fluences and different implantation temperatures. Simulation results agree well with experimental data. It is shown that at 300 K the retention is limited by diffusion in the bulk. For implantation temperatures above 500 K, the retention is limited by trap creation processes. Above 600 K, the retention drops by two orders of magnitude as compared to the retention at 300 K. With the determined detrapping energies, HIs outgassing at room temperature is predicted. After ions implantation at 300 K, 45% of the initial retention is lost to vacuum in 300 000 s while during this time the remaining trapped HIs diffuse twice as deep into the bulk. - Highlights: • Code development to solve numerically the model equations of diffusion and trapping of hydrogen in metals. • Parametrization of the model trapping parameters (detrapping energies and density): fitting of experimental TDS spectrum. • Confrontation model/experiment: evolution of retention with fluence and implantation temperature. • Investigation of period of rest between implantation and TDS on retention and depth profile.

  5. Compound-Specific Isotope Analysis of Diesel Fuels in a Forensic Investigation

    Directory of Open Access Journals (Sweden)

    Syahidah Akmal Muhammad

    2015-02-01

    Full Text Available Compound-specific isotope analysis (CSIA offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin i.e. the very subtle differences in isotopic values between the samples.

  6. MEASUREMENT OF THE ISOTOPIC COMPOSITION OF HYDROGEN AND HELIUM NUCLEI IN COSMIC RAYS WITH THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [Department of Physics, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [Department of Physics, University of Naples ' ' Federico II' ' , I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [Department of Physics, University of Bari, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Borisov, S.; Casolino, M.; De Pascale, M. P. [INFN, Sezione di Rome ' ' Tor Vergata' ' , I-00133 Rome (Italy); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Danilchenko, I. A. [National Research Nuclear University MEPhI, RU-115409 Moscow (Russian Federation); De Santis, C. [Department of Physics, University of Rome ' ' Tor Vergata' ' , I-00133 Rome (Italy); and others

    2013-06-10

    The satellite-borne experiment PAMELA has been used to make new measurements of cosmic ray H and He isotopes. The isotopic composition was measured between 100 and 600 MeV/n for hydrogen and between 100 and 900 MeV/n for helium isotopes over the 23rd solar minimum from 2006 July to 2007 December. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C.

  7. Stable isotope analysis of the bioelements: an introduction.

    Science.gov (United States)

    Flenker, Ulrich

    2009-09-01

    The abundances of the stable isotopes of the bioelements are not constant. Subtle, but significant, variations may be induced by physical, physiological and biochemical processes. These variations may be detected and quantified. Often, isotope fingerprints are characteristic of certain processes and may reveal information concerning the sources and origins of compounds of interest. Moreover, natural variabilities of stable isotopes may be exploited in order to perform tracer experiments. The most accurate technology to perform stable isotope analysis is (gas) isotope ratio MS (IRMS). Compound-specific approaches employ hyphenation of GC and LC to IRMS. In these approaches, complete conversion to simple gases prior to MS is required. Analysis by stable isotope ratio spectroscopy currently approaches the accuracy of IRMS. However, for bioanalytical projects, it is still predominantly confined to material synthetically enriched with stable isotopes.

  8. Poisoning and saturation of St 737 getter alloy in the conversion of isotopic waters to isotopic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Venkataramani, N. (Ist. di Fisica del Plasma, CNR, Milano (Italy)); Conte, A. (Ist. di Fisica del Plasma, CNR, Milano (Italy)); Ghezzi, F. (Ist. di Fisica del Plasma, CNR, Milano (Italy)); Bonizzoni, G. (Ist. di Fisica del Plasma, CNR, Milano (Italy)); Boffito, C. (SAES Getters S.p.A., Milano (Italy))

    1993-05-01

    The results of the studies performed to investigate the saturation capacity of St 737 getter alloy (ZrV[sub 0.5]Fe[sub 0.5][sub 2]) in its application for conversion of water to hydrogen and the functional behaviour of the conversion reactor rate with large oxygen concentration in the alloy are reported. The experiment was performed with the getter alloy at a temperature of 400 C. The conversion process was monitored by two independent techniques - (i) by the hydrogen release, using a quadrupole mass spectrometer and (ii) by the quantity of water reduction in liquid phase. It was found that more than 100 mg of water was converted and 13 Pa m[sup 3] of hydrogen was released by a gram of alloy. A chemical analysis of the alloy performed after the experiment showed that the oxygen content in the alloy was about 7% by weight. The post-experiment diffraction analysis of the alloy showed that the crystalline structure of the alloy is almost completely destroyed and that the oxides formed are essentially amorphous. A brief discussion of the significance of the results for the application to tritiated water handling in future fusion reactions is also given. (orig.)

  9. Frontal and band displacement chromatography of the hydrogen isotopes on palladium; Chromatographies frontale et de deplacement de bande des isotopes de l'hydrogene sur palladium

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F.; Menes, J.; Tistchenko, S.; Dirian, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    As a result of hydrogen isotope separations which we have carried out on supports containing palladium, we believe that we can now make a double contribution, theoretical and experimental, to the work which has already been published in this field. From the fundamental point of view we have developed and studied the validity of a simple model, in our particular case of a separation coefficient {alpha} which is very different to unity. This model, which is of a counter-current isotopic exchange, neglects the longitudinal diffusion in the gas phase and the lateral diffusion in the adsorbed phase and only takes into account the surface resistance to exchange between the phases. It is therefore possible to estimate the efficiency of a chromatography column in terms of the height equivalent of a theoretical plate (HETP). The slight differences observed between the actual chromatograms and the simple model justify both the research undertaken into a more complex model taking into account the diffusion, and the adoption of a simple model for comparing the efficiency of several columns. We describe also a new and simple graphical method for deducing the number of theoretical plates of a column in chromatograms of the frontal and band displacement types. Experimentally we give in particular the criteria for the validity of the model used, the law as a function of the {sup {alpha}}H{sub 2}-HD temperature, the study of the HETP as a function of the various parameters on several palladium containing supports, and the possibilities of an application to preparative chromatography. (authors) [French] Grace aux separations des isotopes de l'hydrogene que nous avons realisees sur masses palladiees, nous pensons apporter aux etudes precedemment publiees dans ce domaine, une double contribution, theorique et experimentale. Du point de vue fondamental, on a developpe et etudie la validite d'un modele simple, dans notre cas particulier d'un coefficient de separation

  10. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Directory of Open Access Journals (Sweden)

    F. A. Haumann

    2013-09-01

    Full Text Available In this study, we identify a biomass-burning signal in molecular hydrogen (H2 over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO of 0.31 ± 0.04 ppb ppb−1 and an isotopic source signature of −280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2 / ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  11. Forensic isotope analysis to refine a hydrologic conceptual model.

    Science.gov (United States)

    Bassett, R L; Steinwand, Aaron; Jorat, Saeed; Petersen, Christian; Jackson, Randy

    2008-01-01

    Water resources in the arid southwestern United States are frequently the subject of conflict from competing private and public interests. Legal remedies may remove impasses, but the technical analysis of the problem often determines the future success of legal solutions. In Owens Valley, California, the source of water for the Los Angeles Aqueduct (LAA) is flow diverted from the Owens River and its tributaries and ground water from valley aquifers. Future management of ground water delivered to the LAA needs technical support regarding quantity available, interconnection of shallow and confined aquifers, impact on local springs, and rate of recharge. Ground water flow models and ground water composition are tools already in use, but these have large uncertainty for local interpretations. This study conducted targeted sampling of springs and wells to evaluate the hydrologic system to corroborate conceptual and numerical models. The effort included measurement of intrinsic isotopic composition at key locations in the aquifers. The stable isotopic data of boron (delta(11)B), sulfur (delta(34)S), oxygen (delta(18)O), hydrogen (delta D), and tritium ((3)H) supported by basic chemical data provided rules for characterizing the upper and the lower aquifer system, confirmed the interpretation of ground water flow near faults and flow barriers, and detected hydraulic connections between the LAA and the perennial springs at key locations along the unlined reach of the LAA. This study exemplifies the use of forensic isotopic approaches as independent checks on the consistency of interpretations of conceptual models of a ground water system and the numerical hydrologic simulations.

  12. Carbon and Hydrogen Isotope Measurements of Alcohols and Organic Acids by Online Pyroprobe-GC-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    The detection of methane in the atmosphere of Mars, combined with evidence showing widespread water-rock interaction during martian history, suggests that the production of methane on Mars may be the result of mineral surface-catalyzed CO2 and or CO reduction during Fisher-Tropsch Type (FTT) reactions. A better understanding of these reaction pathways and corresponding C and H isotope fractionations is critical to deciphering the synthesis of organic compounds produced under abiotic hydrothermal conditions. Described here is a technique for the extraction and analysis of both C and H isotopes from alcohols (C1-C4) and organic acids (C1-C6). This work is meant to provide a "proof of concept" for making meaningful isotope measurements on complex mixtures of solid-phase hydrocarbons and other intermediary products produced during high-temperature and high-pressure synthesis on mineral-catalyzed surfaces. These analyses are conducted entirely "on-line" utilizing a CDS model 5000 Pyroprobe connected to a Thermo Trace GC Ultra that is interfaced with a Thermo MAT 253 isotope ratio mass spectrometer operating in continuous flow mode. Also, this technique is designed to carry a split of the GC-separated product to a DSQ II quadrupole mass spectrometer as a means of making semi-quantitative compositional measurements. Therefore, both chemical and isotopic measurements can be carried out on the same sample.

  13. Differential isotopic enrichment to facilitate characterization of asymmetric multimeric proteins using hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Goswami, Devrishi; Tuske, Steve; Pascal, Bruce D; Bauman, Joseph D; Patel, Disha; Arnold, Eddy; Griffin, Patrick R

    2015-04-07

    Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry has emerged as a powerful tool for analyzing the conformational dynamics of protein-ligand and protein-protein interactions. Recent advances in instrumentation and methodology have expanded the utility of HDX for the analysis of large and complex proteins; however, asymmetric dimers with shared amino acid sequence present a unique challenge for HDX because assignment of peptides with identical sequence to their subunit of origin remains ambiguous. Here we report the use of differential isotopic labeling to facilitate HDX analysis of multimers using HIV-1 reverse transcriptase (RT) as a model. RT is an asymmetric heterodimer of 51 kDa (p51) and 66 kDa (p66) subunits. The first 440 residues of p51 and p66 are identical. In this study differentially labeled RT was reconstituted from isotopically enriched ((15)N-labeled) p51 and unlabeled p66. To enable detection of (15)N-deuterated RT peptides, the software HDX Workbench was modified to follow a 100% (15)N model. Our results demonstrated that (15)N enrichment of p51 did not affect its conformational dynamics compared to unlabeled p51, but (15)N-labeled p51 did show different conformational dynamics than p66 in the RT heterodimer. Differential HDX-MS of isotopically labeled RT in the presence of the non-nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz (EFV) showed subunit-specific perturbation in the rate of HDX consistent with previously published results and the RT-EFV cocrystal structure.

  14. Hydroclimate variability of High Arctic Svalbard during the Holocene inferred from hydrogen isotopes of leaf waxes

    Science.gov (United States)

    Balascio, Nicholas L.; D'Andrea, William J.; Gjerde, Marthe; Bakke, Jostein

    2018-03-01

    The response of the Arctic hydrologic cycle to global warming includes changes in precipitation patterns and moisture availability associated with variable sea ice extent and modes of atmospheric circulation. Reconstructions of past hydroclimate changes help constrain the natural range of these systems, identify the manners in which they respond to different forcing mechanisms, and reveal their connections to other components of the climate system, all of which lead to a better understanding of present and future changes. Here we examine hydroclimate changes during the Holocene in the High Arctic archipelago of Svalbard by reconstructing the isotopic composition of precipitation. We measured the hydrogen isotopic composition (δD values) of leaf wax compounds (n-alkanes; C25-C31) in a sediment core from Lake Hakluytvatnet on the island of Amsterdamøya, northwest Spitsbergen. We interpret δD values of mid-chain (C25) and long-chain (C29, C31) length n-alkanes to represent changes in the isotopic composition of lake water and precipitation over the last 12.9 ka. After deglaciation of the catchment, water supply became restricted and the lake experienced significant evaporative isotopic enrichment indicating warmer conditions from 12.8 to 7.5 ka. The isotope values suggest an increase in the delivery of moisture from warmer sub-polar air masses between 12.8 and 9.5 ka, followed by generally warm, but unstable conditions between 9.5 and 7.5 ka, possibly indicating a response to meltwater forcing. Sedimentary evidence indicates a hiatus in deposition c. 7.5-5.0 ka, likely as a result of desiccation of the lake. At c. 5.0 ka lacustrine sedimentation resumed and over the last 5 ka there was a progressive increase in the influence of polar air masses and colder conditions, which culminated in an abrupt shift to colder conditions at c. 1.8 ka. This late Holocene cooling ended c. 0.18 ka, when isotopic data indicate warmer conditions and greater influence of moisture

  15. A study of hydrogen isotopes fuel control by wall effect in magnetic fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Motevalli, S.M., E-mail: motavali@umz.ac.ir; Safari, M.

    2016-11-15

    Highlights: • A particle balance model for the main plasma and wall inventory in magnetic fusion device has been represented. • The dependence of incident particles energy on the wall has been considered in 10–300 eV for the sputtering yield and recycling coefficient. • The effect of fueling methods on plasma density behavior has been studied. - Abstract: Determination of plasma density behavior in magnetic confinement system needs to study the plasma materials interaction in the facing components such as first wall, limiter and divertor. Recycling of hydrogen isotope is an effective parameter in plasma density rate and plasma fueling. Recycling coefficient over the long pulse operation, gets to the unity, so it has a significant effect on steady state in magnetic fusion devices. Typically, sputtered carbon atoms from the plasma facing components form hydrocarbons and they redeposit on the wall. In this case little rate of hydrogen loss occurs. In present work a zero dimensional particle equilibrium model has been represented to determine particles density rate in main plasma and wall inventory under recycling effect and codeposition of hydrogen in case of continues and discontinues fueling methods and effective parameters on the main plasma decay has been studied.

  16. USGS42 and USGS43: Human-hair stable hydrogen and oxygen isotopic reference materials and analytical methods for forensic science and implications for published measurement results

    Science.gov (United States)

    Coplen, T.B.; Qi, H.

    2012-01-01

    Because there are no internationally distributed stable hydrogen and oxygen isotopic reference materials of human hair, the U.S. Geological Survey (USGS) has prepared two such materials, USGS42 and USGS43. These reference materials span values commonly encountered in human hair stable isotope analysis and are isotopically homogeneous at sample sizes larger than 0.2 mg. USGS42 and USGS43 human-hair isotopic reference materials are intended for calibration of δ(2)H and δ(18)O measurements of unknown human hair by quantifying (1) drift with time, (2) mass-dependent isotopic fractionation, and (3) isotope-ratio-scale contraction. While they are intended for measurements of the stable isotopes of hydrogen and oxygen, they also are suitable for measurements of the stable isotopes of carbon, nitrogen, and sulfur in human and mammalian hair. Preliminary isotopic compositions of the non-exchangeable fractions of these materials are USGS42(Tibetan hair)δ(2)H(VSMOW-SLAP) = -78.5 ± 2.3‰ (n = 62) and δ(18)O(VSMOW-SLAP) = +8.56 ± 0.10‰ (n = 18) USGS42(Indian hair)δ(2)H(VSMOW-SLAP) = -50.3 ± 2.8‰ (n = 64) and δ(18)O(VSMOW-SLAP) = +14.11 ± 0.10‰ (n = 18). Using recommended analytical protocols presented herein for δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) measurements, the least squares fit regression of 11 human hair reference materials is δ(2)H(VSMOW-SLAP) = 6.085δ(2)O(VSMOW-SLAP) - 136.0‰ with an R-square value of 0.95. The δ(2)H difference between the calibrated results of human hair in this investigation and a commonly accepted human-hair relationship is a remarkable 34‰. It is critical that readers pay attention to the δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) of isotopic reference materials in publications, and they need to adjust the δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) measurement results of human hair in previous publications, as needed, to ensure all results on are on the same scales.

  17. Effect of hydrogen isotope content on tensile flow behavior of Zr-2.5Nb pressure tube material between 25 and 300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Bind, A.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 (India); Sunil, S. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Singh, R.N., E-mail: rnsingh@barc.gov.in [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 (India)

    2016-08-01

    Tensile properties of autoclaved Zr-2.5Nb pressure tube material containing hydrogen isotope between 5 and 200 wppm were evaluated between 25 and 300 °C using specimens with its axis oriented along longitudinal direction of the tube. Analysis of tensile test results showed that both YS and UTS of this alloy decreased linearly with increasing test temperature. The uniform and total plastic strain decreased marginally with increase in test temperature. At all test temperatures, before necking tensile properties were unaffected by hydrogen isotope concentration whereas hydrogen isotope had clear effect on post-necking tensile properties especially at 25 and 100 °C. Post-necking ductility showed a transition behavior at 25 and 100 °C and it was able to capture the effect of hydride embrittlement in this material. - Highlights: • Tensile properties of Zr-2.5Nb pressure tube alloy were evaluated. • Effect of deuterium content and test temperature were studied. • Pre-necking tensile properties appeared to unaffected by the deuterium content. • Post-necking tensile properties captured the effect of hydride embrittlement.

  18. Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane

    Directory of Open Access Journals (Sweden)

    M. Brass

    2010-12-01

    Full Text Available We describe a continuous-flow isotope ratio mass spectrometry (CF-IRMS technique for high-precision δD and δ13C measurements of atmospheric methane on 40 mL air samples. CH4 is separated from other air components by utilizing purely physical processes based on temperature, time and mechanical valve switching. Chemical agents are avoided. Trace amounts of interfering compounds can be separated by gas chromatography after pre-concentration of the CH4 sample. The purified sample is then either combusted to CO2 or pyrolyzed to H2 for stable isotope measurement. Apart from connecting samples and refilling liquid nitrogen as coolant the system is fully automated and allows an unobserved, continuous analysis of samples. The analytical system has been used for analysis of air samples with CH4 mixing ratios between ~100 and ~10 000 ppb, for higher mixing ratios samples usually have to be diluted.

  19. Bird migration and avian influenza: a comparison of hydrogen stable isotopes and satellite tracking methods

    Science.gov (United States)

    Bridge, Eli S.; Kelly, Jeffrey F.; Xiao, Xiangming; Takekawa, John Y.; Hill, Nichola J.; Yamage, Mat; Haque, Enam Ul; Islam, Mohammad Anwarul; Mundkur, Taej; Yavuz, Kiraz Erciyas; Leader, Paul; Leung, Connie Y.H.; Smith, Bena; Spragens, Kyle A.; Vandegrift, Kurt J.; Hosseini, Parviez R.; Saif, Samia; Mohsanin, Samiul; Mikolon, Andrea; Islam, Ausrafal; George, Acty; Sivananinthaperumal, Balachandran; Daszak, Peter; Newman, Scott H.

    2014-01-01

    birds that have died as a result of infection. In the absence of feather based-isoscapes, we recommend a combination of isotope analysis and satellite-tracking as the best means of generating aggregate movement data for informing disease models.

  20. Stable hydrogen isotope composition of n-alkanes in urban atmospheric aerosols in Taiyuan, China

    Science.gov (United States)

    Bai, Huiling; Li, Yinghui; Peng, Lin; Liu, Xiangkai; Liu, Xiaofeng; Song, Chongfang; Mu, Ling

    2017-03-01

    The hydrogen isotope compositions (δD) of n-alkanes associated with particulate matter with a diameter of ≤10 μm from Taiyuan, China, during heating and non-heating periods were measured via gas chromatography-isotope ratio mass spectrometry to reveal the spatial and temporal characteristics of five functional zones and to provide another constraint on atmospheric pollutants. The δD values of n-C16 to n-C31 during the heating and non-heating periods ranged from -235.9‰ to -119.8‰ and from -231.3‰ to -129.2‰, respectively, but these similar spans had different distribution features. During the heating period, the δD distributions between non-central heating and commercial districts were consistent, as were those between residential and industrial districts; the n-alkanes came from two or more types of emission sources. Coal soot might be the primary local emission source, but not the only source. During the non-heating period, the n-alkanes of n-C16 to n-C20 were more depleted in D with the increasing carbon number in all functional zones, but there was no rule for n-C21 to n-C31. Specifically, coal soot and vehicle exhaust might be the primary sources of n-alkanes for non-central heating districts in the heating and non-heating periods, respectively, according to the δD distribution of n-C18 to n-C22; gasoline vehicle exhaust might be an n-alkane source, and the hydrogen isotope fractionation effect during the condensation process should be a pollution mechanism for the commercial district during the heating period; the δD distribution difference of n-C16 to n-C18 between the two periods in the residential and industrial districts was consistent, which indicates a similar source of fossil fuel combustion and a similar isotope fractionation effect during the non-heating period.

  1. Hydrogen Isotopic Composition of Particulate-Bound Fatty Acids From the California Borderland Basins

    Science.gov (United States)

    Jones, A. A.; Sessions, A. L.; Campbell, B. J.; Valentine, D. L.

    2006-12-01

    We examined the hydrogen-isotopic composition of fatty acids associated with particulate organic matter (POM) from depth transects in three California Borderland stations. Our goals were to determine (1) the natural variability of δD values in POM-associated fatty acids and (2) the magnitude of isotopic fractionations associated with fatty acid degradation in the marine environment. Some differences in molecular abundance were observed between completely ventilated and occasionally suboxic sites, but no corresponding shifts in δD values were measured. Values of δD for specific fatty acids were generally consistent between stations. Saturated fatty acids (C14, C16, and C18) yielded δD values ranging from -230‰ to -132‰, with δD values generally decreasing with chain length. We found no evidence of extreme D-enrichment of the C18 fatty acid as has been observed in studies of isolated macroalgae (Chikaraishi, et al, 2004). The unsaturated C16 and C18 fatty acids showed a similar trend while the polyunsaturated fatty acid 22:6 was somewhat enriched in D (δD values ranging from -186‰ to -68‰) relative to 20:5 (-208‰ to -93‰). Unsaturated fatty acids tended to have more positive δD values than their saturated counterparts, opposite the trend observed in sediments from the same location. The bacterial fatty acid C15 showed even greater deuterium enrichment with δD values ranging from - 145‰ to -88‰. This offset can likely be attributed to differences in biosynthetic fractionation between bacteria and eukaryotes, to differences in hydrogen isotopic composition of the food sources of these organisms, or some combination of these two factors. Within the surface waters, fatty acids become enriched with depth by an average of 25‰. The C18:0 acid is a significant exception, becoming depleted by 48‰ over that same interval. Below 100 meters depth, all fatty acids tend to become slightly depleted in D with increasing depth. The difference in δD values

  2. Investigating the Influence of Vegetation Type on Modern Leaf Wax Hydrogen Isotopes from a High Latitude Ombrotrophic Bog to Inform Paleoclimate Interpretation

    Science.gov (United States)

    Balascio, N.; D'Andrea, W. J.; Anderson, R. S.

    2016-12-01

    Leaf wax hydrogen isotopes have been used to track changes in the isotopic composition of meteoric waters in a variety of locations. However, leaf wax compounds preserved in sedimentary environments reflect a mix of plant sources that can have a large range of molecular distributions and biosynthetic fractionation factors potentially complicating paleoclimate interpretations. Here we attempt to constrain the influence of vegetation type on leaf wax hydrogen isotope values at an ombrotrophic bog in northern Norway. We present: (i) δD values of n-alkanes from modern bog vegetation to establish the influence of vegetation type on n-alkane distributions and to provide a site-specific assessment of the biosynthetic isotopic fractionation, and (ii) δD values of n-alkanes from a sediment core spanning the last 10 ka where vegetation changes have been reconstructed based on pollen analysis. We found 14 different vegetation types growing on the bog surface that have average chain lengths from 25 to 30.5 and δD values of n-C25 to n-C33 ranging from -197‰ to -116‰. These samples also have a range of δD values among n-alkane homologues, from 1‰ to 33‰. Based on isotopic measurements of modern bog water, we calculate the average apparent fractionation of n-alkanes to be -108 ± 22‰. Sedimentary δD values of n-C25 to n-C33 over the last 10 ka range from -229 to -158‰ with distinct trends among mid- and long-chain length homologues. Changes in chain lengths and δD values, at times, correspond to vegetation shifts documented by pollen data, but also show unique trends that we interpret to represent variations in local precipitation isotopes related to past hydroclimate change.

  3. Detailed assessment of isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters.

    Science.gov (United States)

    Zhao, Liangju; Xiao, Honglang; Zhou, Jian; Wang, Lixin; Cheng, Guodong; Zhou, Maoxian; Yin, Li; McCabe, Matthew F

    2011-10-30

    As an alternative to isotope ratio mass spectrometry (IRMS), the isotope ratio infrared spectroscopy (IRIS) approach has the advantage of low cost, continuous measurement and the capacity for field-based application for the analysis of the stable isotopes of water. Recent studies have indicated that there are potential issues of organic contamination of the spectral signal in the IRIS method, resulting in incorrect results for leaf samples. To gain a more thorough understanding of the effects of sample type (e.g., leaf, root, stem and soil), sample species, sampling time and climatic condition (dry vs. wet) on water isotope estimates using IRIS, we collected soil samples and plant components from a number of major species at a fine temporal resolution (every 2 h for 24-48 h) across three locations with different climatic conditions in the Heihe River Basin, China. The hydrogen and oxygen isotopic compositions of the extracted water from these samples were measured using both an IRMS and an IRIS instrument. The results show that the mean discrepancies between the IRMS and IRIS approaches for δ(18) O and δD, respectively, were: -5.6‰ and -75.7‰ for leaf water; -4.0‰ and -23.3‰ for stem water; -3.4‰ and -28.2‰ for root water; -0.5‰ and -6.7‰ for xylem water; -0.06‰ and -0.3‰ for xylem flow; and -0.1‰ and 0.3‰ for soil water. The order of the discrepancy was: leaf > stem ≈ root > xylem > xylem flow ≈ soil. In general, species of the same functional types (e.g., woody vs. herbaceous) within similar habitats showed similar deviations. For different functional types, the differences were large. Sampling at nighttime did not remove the observed deviations. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Carbon isotope analysis in apple nectar beverages

    Directory of Open Access Journals (Sweden)

    Ricardo Figueira

    2013-03-01

    Full Text Available The aims of this study were to use the isotope analysis method to quantify the carbon of C3 photosynthetic cycle in commercial apple nectars and to determine the legal limit to identify the beverages that do not conform to the safety standards established by the Brazilian Ministry of Agriculture, Livestock and Food Supply. These beverages (apple nectars were produced in the laboratory according to the Brazilian legislation. Adulterated nectars were also produced with an amount of pulp juice below the permitted threshold limit value. The δ13C values of the apple nectars and their fractions (pulp and purified sugar were measured to quantify the C3 source percentage. In order to demonstrate the existence of adulteration, the values found were compared to the limit values established by the Brazilian Law. All commercial apple nectars analyzed were within the legal limits, which enabled to identify the nectars that were in conformity with the Brazilian Law. The isotopic methodology developed proved efficient to quantify the carbon of C3 origin in commercial apple nectars.

  5. Studies of reactor irradiation effect on hydrogen isotope release from vanadium alloy V4Cr4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Kulsartov, T. [Kazakhstan State University, Tole-bi-str. 96a., Almaty (Kazakhstan); Shestakov, V. [Kazakhstan State University, Tole-bi-str. 96a., Almaty (Kazakhstan); Chikhray, Y. [Kazakhstan State University, Tole-bi-str. 96a., Almaty (Kazakhstan); Kenzhin, Y. [Institute of Atomic Energy NNC RK, Krasnoarmeyskaya-str. 10, Kurchatov (Kazakhstan); Kolbayenkov, A. [Institute of Atomic Energy NNC RK, Krasnoarmeyskaya-str. 10, Kurchatov (Kazakhstan); Tazhibayeva, I. [National Nuclear Center, Lenin-str. 6, Kurchatov (Kazakhstan)

    2007-08-01

    Vanadium alloys are most promising materials being considered for lithium blanket-breeder in future fusion reactors. The primary reason for these stems from good combination of physical-mechanical and radiation properties of vanadium alloys. In operational conditions of fusion reactors the very important issue is behavior of vanadium alloy with respect to hydrogen isotopes under neutron and gamma irradiation. This paper shows results of the experimental studies of reactor irradiation influence on parameters of hydrogen release from vanadium alloys. Experiments were carried out for various levels of reactor irradiation and showed the effect of irradiation on parameters of hydrogen release from vanadium alloy V4Cr4Ti.

  6. On the Development of Hydrogen Isotope Extraction Technologies for a Full LiMIT-Style PFC Liquid Lithium Loop

    Science.gov (United States)

    Christenson, Michael; Szott, Matthew; Stemmley, Steven; Mettler, Jeremy; Wendeborn, John; Moynihan, Cody; Ahn, Chisung; Andruczyk, Daniel; Ruzic, David

    2017-10-01

    Lithium has proven over numerous studies to improve core confinement, allowing access to operational regimes previously unattainable when using solid, high-Z divertor and limiter modules in magnetic confinement devices. Lithium readily absorbs fuel species, and while this is advantageous, it is also detrimental with regards to tritium inventory and safety concerns. As such, extraction technologies for the recovery of hydrogenic isotopes captured by lithium require development and testing in the context of a larger lithium loop recycling system. Proposed reclamation technologies at the University of Illinois at Urbana-Champaign (UIUC) will take advantage of the thermophysical properties of the lithium-hydrogen-lithium hydride system as the driving force for recovery. Previous work done at UIUC indicates that hydrogen release from pure lithium hydride reaches a maximum of 7 x 1018 s-1 at 665 °C. While this recovery rate is appreciable, reactor-scale scenarios will require isotope recycling to happen on an even faster timescale. The ratio of isotope dissolution to hydride precipitate formation must therefore be determined, along with the energy needed to recoup trapped hydrogen isotopes. Extraction technologies for use with a LiMIT-style loop system will be discussed and results will be presented. DOE/ALPS DE-FG02-99ER54515.

  7. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    CERN Document Server

    Fradera, Jorge

    2013-01-01

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in,e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAMR CFD tool for 0D to 3D simulations. Results for a 0D case show the impact of a He dispersed phase of na...

  8. Density functional theory calculations of point defects and hydrogen isotopes in Li4SiO4

    Directory of Open Access Journals (Sweden)

    Xiaogang Xiang

    2015-10-01

    Full Text Available The Li4SiO4 is a promising breeder material for future fusion reactors. Radiation induced vacancies and hydrogen isotope related impurities are the major types of point defects in this breeder material. In present study, various kinds of vacancies and hydrogen isotopes related point defects in Li4SiO4 are investigated through density functional theory (DFT calculations. The band gap of Li4SiO4 is determined by UV-Vis diffuse reflectance spectroscopy experiments. Formation energies of all possible charge states of Li, Si and O vacancies are calculated using DFT methods. Formation energies of possible charge states of hydrogen isotopes substitution for Li and O are also calculated. We found that Li-vacancies will dominate among all vacancies in neutral charge state under radiation conditions and the O, Li, and Si vacancies (VO,VLi,VSi are stable in charge states +2, -1, -4 for most of the range of Fermi level, respectively. The interstitial hydrogen isotopes (Hi and substitutional HLi are stable in the charge states +1, 0 for most of the range of Fermi level, respectively. Moreover, substitutional HO are stable in +1 charge states. We also investigated the process of tritium recovery by discussing the interaction between interstitial H and Li-vacancy, O-vacancy, and found that H O + and H Li 0 are the most common H related defects during radiation process.

  9. Comparison of Hydrogen Sulfide Analysis Techniques

    Science.gov (United States)

    Bethea, Robert M.

    1973-01-01

    A summary and critique of common methods of hydrogen sulfide analysis is presented. Procedures described are: reflectance from silver plates and lead acetate-coated tiles, lead acetate and mercuric chloride paper tapes, sodium nitroprusside and methylene blue wet chemical methods, infrared spectrophotometry, and gas chromatography. (BL)

  10. Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes

    Directory of Open Access Journals (Sweden)

    M. D. Wolhowe

    2009-08-01

    Full Text Available Recent works have investigated use of the hydrogen isotopic composition of C37 alkenones (δDK37s, lipid biomarkers of certain haptophyte microalgae, as an independent paleosalinity proxy. We discuss herein the factors impeding the success of such an application and identify the potential alternative use of δDK37s measurements as a proxy for non-thermal, physiological stress impacts on the U37K' paleotemperature index. Batch-culture experiments with the haptophyte Emiliania huxleyi (CCMP 1742 were conducted to determine the magnitude and variability of the isotopic contrasts between individual C37 alkenones. Further experiments were conducted with Emiliania huxleyi (CCMP 1742 andGephyrocapsa oceanica (PZ3-1 to determine whether, and to what extent, δDK37s varies between the physiological extremes of nutrient-replete exponential growth and nutrient-depleted senescence. Emiliania huxleyi was observed to exhibit an isotopic contrast between di- and tri-unsaturated C37 alkenones (αK37:3-K37:2≈0.97 that is nearly identical to that reported recently by others for environmental samples. Furthermore, this contrast appears to be constant with growth stage. The consistency of the offset across different growth stages suggests that a single, well-defined value for αK37:3-K37:2 may exist and that its use in an isotope mass-balance will allow accurate determination of δD values for individual alkenones without having to rely on time- and labor-intensive chemical separations. The isotopic fractionation between growth medium and C37 alkenones was observed to increase dramatically upon the onset of nutrient-depletion-induced senescence, suggesting that δDK37s may serve as an objective tool for recognizing and potentially correcting, at least semi-quantitatively, for the effects

  11. Screening analysis of solar thermochemical hydrogen concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Diver, Richard B., Jr.; Kolb, Gregory J.

    2008-03-01

    A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

  12. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group

    2016-06-22

    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  13. Hydrogen Isotope Fractionation during the Biodegradation of 1,2-Dichloroethane: Potential for Pathway Identification Using a Multi-element (C, Cl, and H) Isotope Approach.

    Science.gov (United States)

    Palau, Jordi; Shouakar-Stash, Orfan; Hatijah Mortan, Siti; Yu, Rong; Rosell, Monica; Marco-Urrea, Ernest; Freedman, David L; Aravena, Ramon; Soler, Albert; Hunkeler, Daniel

    2017-09-19

    Even though multi-element isotope fractionation patterns provide crucial information with which to identify contaminant degradation pathways in the field, those involving hydrogen are still lacking for many halogenated groundwater contaminants and degradation pathways. This study investigates for the first time hydrogen isotope fractionation during both aerobic and anaerobic biodegradation of 1,2-dichloroethane (1,2-DCA) using five microbial cultures. Transformation-associated isotope fractionation values (εbulkH) were -115 ± 18‰ (aerobic C-H bond oxidation), -34 ± 4‰ and -38 ± 4‰ (aerobic C-Cl bond cleavage via hydrolytic dehalogenation), and -57 ± 3‰ and -77 ± 9‰ (anaerobic C-Cl bond cleavage via reductive dihaloelimination). The dual-element C-H isotope approach (ΛC-H = Δδ2H/Δδ13C ≈ εbulkH/εbulkC, where Δδ2H and Δδ13C are changes in isotope ratios during degradation) resulted in clearly different ΛC-H values: 28 ± 4 (oxidation), 0.7 ± 0.1 and 0.9 ± 0.1 (hydrolytic dehalogenation), and 1.76 ± 0.05 and 3.5 ± 0.1 (dihaloelimination). This result highlights the potential of this approach to identify 1,2-DCA degradation pathways in the field. In addition, distinct trends were also observed in a multi- (i.e., Δδ2H versus Δδ37Cl versus Δδ13C) isotope plot, which opens further possibilities for pathway identification in future field studies. This is crucial information to understand the mechanisms controlling natural attenuation of 1,2-DCA and to design appropriate strategies to enhance biodegradation.

  14. Novel Hydrophobic Pt/Inorganic Catalyst Used in Hydrogen Isotope Exchange Reaction

    Directory of Open Access Journals (Sweden)

    JIA Qing-qing1;HU Shi-lin1;FENG Xiao-yan2;LIU Ya-ming1

    2016-11-01

    Full Text Available To improve the performance of hydrophobic catalyst and extend its using range, this research adopted the porous columnar inorganic carriers (ø=5 mm to prepare the hydrophobic catalyst used in hydrogen isotopes exchange reaction, the hydrophilic carriers became hydrophobic with the nanostructured CeO2 coating and the catalyst were then fabricated by convenient impregnation method. The samples were characterized by XRD、SEM、EDX、XPS and CO adsorption. The catalytic activity were tested through catalytic exchange reaction between hydrogen and saturated water vapor to investigate the effect of micro structured CeO2 on the catalyst properties. It turned out that the nano-CeO2 coating could build favorable hydrophobic environment for the catalysts and had almost no influence on the pore structure properties of carriers. Although the hydrophobic coating would lead to the decrease of Pt particle dispersion and metallic Pt content, it could make the Pt particles mostly deposit on the surface layer of the catalysts, which would make more Pt particle participate in the reaction at the same time. The catalytic activity of the novel Pt/inorganic catalyst could reach to 80% of the mature Pt/organic catalyst. After being flushed by water for 12 weeks, the catalytic activity of Pt/inorganic catalyst decreased less than 5%. The novel hydrophobic catalyst with good activity and stability was practical and had great application prospects.

  15. Bulk hydrogen stable isotope composition of seaweeds: Clear separation between Ulvophyceae and other classes.

    Science.gov (United States)

    Carvalho, Matheus C; Carneiro, Pedro Bastos de Macedo; Dellatorre, Fernando Gaspar; Gibilisco, Pablo Ezequiel; Sachs, Julian; Eyre, Bradley D

    2017-10-01

    Little is known about the bulk hydrogen stable isotope composition (δ(2) H) of seaweeds. This study investigated the bulk δ(2) H in several different seaweed species collected from three different beaches in Brazil, Australia, and Argentina. Here, we show that Ulvophyceae (a group of green algae) had lower δ(2) H values (between -94‰ and -130‰) than red algae (Florideophyceae), brown algae (Phaeophyceae), and species from the class Bryopsidophyceae (another group of green algae). Overall the latter three groups of seaweeds had δ(2) H values between -50‰ and -90‰. These findings were similar at the three different geographic locations. Observed differences in δ(2) H values were probably related to differences in hydrogen (H) metabolism among algal groups, also observed in the δ(2) H values of their lipids. The marked difference between the δ(2) H values of Ulvophyecae and those of the other groups could be useful to trace the food source of food webs in coastal rocky shores, to assess the impacts of green tides on coastal ecosystems, and to help clarify aspects of their phylogeny. However, reference materials for seaweed δ(2) H are required before the full potential of using the δ(2) H of seaweeds for ecological studies can be exploited. © 2017 Phycological Society of America.

  16. Effects of shock and Martian alteration on Tissint hydrogen isotope ratios and water content

    Science.gov (United States)

    Hallis, L. J.; Huss, G. R.; Nagashima, K.; Taylor, G. J.; Stöffler, D.; Smith, C. L.; Lee, M. R.

    2017-03-01

    The Tissint meteorite, a picritic shergottite, fell to Earth in Morocco on the 18th of July 2011, and is only the fifth Martian meteorite witnessed to fall. Hydrogen isotope ratios and water contents are variable within different minerals in Tissint. Ringwoodite and shock melt pockets contain elevated D/H ratios relative to terrestrial values (δD = 761-4224‰). These high ratios in recrystallized phases indicate significant implantation of hydrogen from the D-rich Martian atmosphere during shock. In contrast, although olivine has detectable water abundances (230-485 ppm), it exhibits much lower D/H ratios (δD = +88 to -150‰), suggesting this water was not implanted from the Martian atmosphere. The minimal terrestrial weathering experienced by Tissint gives confidence that the olivine-hosted water has a Martian origin, but its high concentration indicates direct inheritance from the parental melt is improbable, especially given the low pressure of olivine crystallisation. Incorporation of a low δD crustal fluid, or deuteric alteration during crystallisation, could explain the relatively high water contents and low D/H ratios in Tissint olivine.

  17. Lake Louise Water (USGS47): A new isotopic reference water for stable hydrogen and oxygen isotope measurements

    Science.gov (United States)

    Qi, Haiping; Lorenz, Jennifer M.; Coplen, Tyler B.; Tarbox, Lauren V.; Mayer, Bernhard; Taylor, Steve

    2014-01-01

    "RATIONALE: Because of the paucity of isotopic reference waters for daily use, a new secondary isotopic reference material has been prepared from Lake Louise water from Alberta, Canada for international distribution. MOTHODS: This water was filtered, homogenized, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This isotopic reference water is available by the case of 144 glass ampoules containing 5 mL of water in each ampoule.

  18. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

    Science.gov (United States)

    Weiss, Gabriella M.; Pfannerstill, Eva Y.; Schouten, Stefan; Sinninghe Damsté, Jaap S.; van der Meer, Marcel T. J.

    2017-12-01

    Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.

  19. H/D isotopic recognition in hydrogen bonded systems: H/D isotopic self-organization effects in the IR spectra of the hydrogen bond in 2-methylimidazole crystals.

    Science.gov (United States)

    Flakus, Henryk T; Hachuła, Barbara; Stolarczyk, Agnieszka

    2012-01-01

    Polarized IR spectra of H12(3)45 2-methylimidazole and of its H1D2(3)45, D1H2(3)45 and D12(3)45 deuterium derivative crystals are reported and interpreted within the limits of the "strong-coupling" theory. The spectra interpretation facilitated the recognition of the H/D isotopic "self-organization" phenomenon, which depends on a non-random distribution of protons and deuterons in the lattices of isotopically diluted crystal samples. The H/D isotopic "self-organization" mechanism engaged all four hydrogen bonds from each unit cell. These effects basically resulted from the dynamical co-operative interactions involving adjacent hydrogen bonds in each hydrogen bond chain. A weaker exciton coupling involved the closely spaced hydrogen bonds; each belonging to a different chain of associated 2-methylimidazole molecules. The high intensity of the narrow band at ca. 1880cm(-1) was interpreted as the result of coupling between the γ(N-H⋯N) proton bending "out of plane" vibration overtone and the ν(N-H) proton stretching vibration. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Quest for Inexpensive Hydrogen Isotopic Fractionation: Do We Need 2D Quantum Confining in Porous Materials or Are Rough Surfaces Enough? The Case of Ammonia Nanoclusters.

    Science.gov (United States)

    Mella, Massimo; Curotto, E

    2016-10-05

    We study the adsorption energetics and quantum properties of the molecular hydrogen isotopes H2, D2, and T2 onto the surface of rigid ammonia nanoclusters with quantum simulations and accurate model potential energy surfaces (PES). A highly efficient diffusion Monte Carlo (DMC) algorithm for rigid rotors allowed us to accurately define zero-point adsorption energies for the three isotopes, as well as the degree of translational and rotational delocalization that each affords on the surface. From the data emerges that the quantum adsorption energy (Eads) of T2 can be up to twice the one of H2 at 0 K, suggesting the possibility of exploiting some form of solid ammonia to selectivity separate hydrogen isotopes at low temperatures (≃20 K). This is discussed by focusing on the structural motif that may be more effective for the task. The analysis of the contributions to Eads, however, surprisingly indicates that the average kinetic energy (Ekin) and rotation energy (Erotkin) of T2 can also be, respectively, 2 times and 20 times higher than those of H2; this finding markedly deviates from what is predicted for hydrogen molecules inside carbon nanotubes (CNT) or metallic-organic frameworks (MOF), where Ekin and Erotkin is higher for H2 due to the unavoidable effects of confinement and hindrance to its rotational motion. The rationale for these differences is provided by the geometrical distributions for the rigid rotors, which reveal an increasingly stronger coupling between rotational and translational degrees of freedom upon increasing the isotopic mass. This effect has never been observed before on adsorbing surfaces (e.g., graphite) and is induced by a strongly anisotropic and anharmonic bowl-like potential experienced by the rotors.

  1. Effect of changes in the deuterium content of drinking water on the hydrogen isotope ratio of urinary steroids in the context of sports drug testing.

    Science.gov (United States)

    Piper, Thomas; Degenhardt, Karoline; Federherr, Eugen; Thomas, Andreas; Thevis, Mario; Saugy, Martial

    2013-03-01

    The hydrogen isotope ratio (HIR) of body water and, therefore, of all endogenously synthesized compounds in humans, is mainly affected by the HIR of ingested drinking water. As a consequence, the entire organism and all of its synthesized substrates will reflect alterations in the isotope ratio of drinking water, which depends on the duration of exposure. To investigate the effect of this change on endogenous urinary steroids relevant to doping-control analysis the hydrogen isotope composition of potable water was suddenly enriched from -50 to 200 ‰ and maintained at this level for two weeks for two individuals. The steroids under investigation were 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 5α-androstane-3α,17β-diol, and 5β-androstane-3α,17β-diol (excreted as glucuronides) and ETIO, ANDRO and 3β-hydroxyandrost-5-en-17-one (excreted as sulfates). The HIR of body water was estimated by determination of the HIR of total native urine, to trace the induced changes. The hydrogen in steroids is partly derived from the total amount of body water and cholesterol-enrichment could be calculated by use of these data. Although the sum of changes in the isotopic composition of body water was 150 ‰, shifts of approximately 30 ‰ were observed for urinary steroids. Parallel enrichment in their HIR was observed for most of the steroids, and none of the differences between the HIR of individual steroids was elevated beyond recently established thresholds. This finding is important to sports drug testing because it supports the intended use of this novel and complementary methodology even in cases where athletes have drunk water of different HIR, a plausible and, presumably, inevitable scenario while traveling.

  2. Verification of hydrogen isotope separation by pressure swing adsorption process: Successive volume reduction of isotopic gas mixture using SZ-5A column

    Energy Technology Data Exchange (ETDEWEB)

    Kotoh, K., E-mail: kotoh@nucl.kyushu-u.ac.jp [Dept. of Applied Quantum Phys. and Nucl. Eng., Faculty of Eng., Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Tanaka, M. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takashima, S.; Tsuge, T. [Dept. of Applied Quantum Phys. and Nucl. Eng., Faculty of Eng., Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Asakura, Y.; Uda, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Sugiyama, T. [Faculty of Eng., Nagoya University, Furo-cho, Chigusa-ku, Nagoya 464-8601 (Japan)

    2011-12-15

    For the purpose of verifying the applicability of pressure swing adsorption (PSA) process to such as volume reduction of tritiated waste storage, an experimental series was carried out by a PSA apparatus having a zeolite packed column operated at the liquefied nitrogen temperature, where synthetic zeolite 5A was used as a candidate of adsorbents. Experimental results are shown here which were obtained from cyclic operation of isolating a volume of hydrogen decontaminated with its heaver isotope from a mixture of H{sub 2} and D{sub 2} while reducing a volume of this mixture storage. Successive reduction during six cycles is observed in the inventory of this hydrogen mixture in a gas holder. Experimental data are analyzed in order to evaluate the performance of this PSA process operating the hydrogen isotope separation, where several factors are introduced defining efficiencies of decontamination, volumetric reduction, and so on. These factors suggest that the PSA process is available for successive reduction of a tritiated hydrogen storage inventory. A tritium waste management system of PSA process combined with electrolysis is considerable which is aiming at reducing the inventory of tritiated water in storage.

  3. Dual Carbon and Nitrogen Isotope Analysis

    African Journals Online (AJOL)

    According to Hemminga & Mateo. (1996), values of carbon and nitrogen isotope ratios vary considerably between seagrass species. It might also be expected that the remaining seagrass species could have some influence on the shrimp carbon signal. Isotopic evidence for mangroves being a carbon source for shrimps ...

  4. Analysis of Hydrogen Bonds in Crystals

    Directory of Open Access Journals (Sweden)

    Sławomir J. Grabowski

    2016-05-01

    Full Text Available The determination of crystal structures provides important information on the geometry of species constituting crystals and on the symmetry relations between them. Additionally, the analysis of crystal structures is so conclusive that it allows us to understand the nature of various interactions. The hydrogen bond interaction plays a crucial role in crystal engineering and, in general, its important role in numerous chemical, physical and bio-chemical processes was the subject of various studies. That is why numerous important findings on the nature of hydrogen bonds concern crystal structures. This special issue presents studies on hydrogen bonds in crystals, and specific compounds and specific H-bonded patterns existing in crystals are analyzed. However, the characteristics of the H-bond interactions are not only analyzed theoretically; this interaction is compared with other ones that steer the arrangement of molecules in crystals, for example halogen, tetrel or pnicogen bonds. More general findings concerning the influence of the hydrogen bond on the physicochemical properties of matter are also presented.

  5. 3D-CSIA: carbon, chlorine, and hydrogen isotope fractionation in transformation of TCE to ethene by a Dehalococcoides culture.

    Science.gov (United States)

    Kuder, Tomasz; van Breukelen, Boris M; Vanderford, Mindy; Philp, Paul

    2013-09-03

    Carbon (C), chlorine (Cl), and hydrogen (H) isotope effects were determined during dechlorination of TCE to ethene by a mixed Dehalococcoides (Dhc) culture. The C isotope effects for the dechlorination steps were consistent with data published in the past for reductive dechlorination (RD) by Dhc. The Cl effects (combined with an inverse H effect in TCE) suggested that dechlorination proceeded through nucleophilic reactions with cobalamin rather than by an electron transfer mechanism. Depletions of (37)Cl in daughter compounds, resulting from fractionation at positions away from the dechlorination center (secondary isotope effects), further support the nucleophilic dechlorination mechanism. Determination of C and Cl isotope ratios of the reactants and products in the reductive dechlorination chain offers a potential tool for differentiation of Dhc activity from alternative transformation mechanisms (e.g., aerobic degradation and reductive dechlorination proceeding via outer sphere mechanisms), in studies of in situ attenuation of chlorinated ethenes. Hydrogenation of the reaction products (DCE, VC, and ethene) showed a major preference for the (1)H isotope. Detection of depleted dechlorination products could provide a line of evidence in discrimination between alternative sources of TCE (e.g., evolution from DNAPL sources or from conversion of PCE).

  6. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    Science.gov (United States)

    Willms, R. S.; Taylor, D. J.; Enoeda, Mikio; Okuno, Kenji

    1994-04-01

    Earlier bench-scale work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. Recently, experiments including tritium were conducted using practical-scale adsorbers. These tests used existing cryogenic molecular sieve beds (CMSB's) which each contain about 1.6 kg of Linde 5A molecular sieve. They are part of the TSTA integrated tritium processing system. Gas was fed to each CMSB at about 13 SLPM with a nominal composition of 99% He, 0.98% H2, and 0.02% HT. In all cases, for an extended period of time, the beds allowed no detectable (via Raman spectroscopy) hydrogen isotopes to escape in the bed effluent. Thereafter, the hydrogen isotopes appeared in the bed exit with a relatively sharp breakthrough curve. This work concludes that cryogenic molecular sieve adsorption is a practical and effective means of separating low-concentration hydrogen isotopes from a helium carrier.

  7. Thermal Analysis of Cryogenic Hydrogen Liquid Separator

    Science.gov (United States)

    Congiardo, Jared F.; Fortier, Craig R. (Editor)

    2014-01-01

    During launch for the new Space Launch System (SLS) liquid hydrogen is bleed through the engines during replenish, pre-press, and extended pre-press to condition the engines prior to launch. The predicted bleed flow rates are larger than for the shuttle program. A consequence of the increased flow rates is having liquif hydrogen in the vent system, which the facilities was never designed to handle. To remedy the problem a liquid separator is being designed in the system to accumulated the liquid propellant and protect the facility flare stack (which can only handle gas). The attached document is a presentation of the current thermalfluid analysis performed for the separator and will be presented at the Thermal and Fluid Analysis Workshop (NASA workshop) next week in Cleveland, Ohio.

  8. Hydrogen isotope fractionation in leaf waxes in the Alaskan Arctic tundra

    Science.gov (United States)

    Daniels, William C.; Russell, James M.; Giblin, Anne E.; Welker, Jeffrey M.; Klein, Eric S.; Huang, Yongsong

    2017-09-01

    Leaf wax hydrogen isotopes (δDwax) are increasingly utilized in terrestrial paleoclimate research. Applications of this proxy must be grounded by studies of the modern controls on δDwax, including the ecophysiological controls on isotope fractionation at both the plant and landscape scales. Several calibration studies suggest a considerably smaller apparent fractionation between source water and waxes (εapp) at high latitudes relative to temperate or tropical locations, with major implications for paleoclimatic interpretations of sedimentary δDwax. Here we investigate apparent fractionation in the Arctic by tracing the isotopic composition of leaf waxes from production in modern plants to deposition in lake sediments using isotopic observations of precipitation, soil and plant waters, living leaf waxes, and waxes in sediment traps in the Brooks Range foothills of northern Alaska. We also analyze a lake surface sediment transect to compare present-day vegetation assemblages to εapp at the watershed scale. Source water and εapp were determined for live specimens of Eriophorum vaginatum (cottongrass) and Betula nana (dwarf birch), two dominant tundra plants in the Brooks Range foothills. The δD of these plants' xylem water closely tracks that of surface soil water, and reflects a summer-biased precipitation source. Leaf water is enriched by 23 ± 15‰ relative to xylem water for E. vaginatum and by 41 ± 19‰ for B. nana. Evapotranspiration modeling indicates that this leaf water enrichment is consistent with the evaporative enrichment expected under the climate conditions of northern Alaska, and that 24-h photosynthesis does not cause excessive leaf water isotope enrichment. The εapp determined for our study species average -89 ± 14‰ and -106 ± 16‰ for B. nana n-alkanes and n-acids, respectively, and -182 ± 10‰ and -154 ± 26‰ for E. vaginatum n-alkanes and n-acids, which are similar to the εapp of related species in temperate and tropical

  9. Investigations on hydrogen isotope ratios of endogenous urinary steroids: reference-population-based thresholds and proof-of-concept.

    Science.gov (United States)

    Piper, Thomas; Thomas, Andreas; Thevis, Mario; Saugy, Martial

    2012-09-01

    Carbon isotope ratio (CIR) analysis has been routinely and successfully used in sports drug testing for many years to uncover the misuse of endogenous steroids. One limitation of the method is the availability of steroid preparations exhibiting CIRs equal to endogenous steroids. To overcome this problem, hydrogen isotope ratios (HIR) of endogenous urinary steroids were investigated as a potential complement; results obtained from a reference population of 67 individuals are presented herein. An established sample preparation method was modified and improved to enable separate measurements of each analyte of interest where possible. From the fraction of glucuronidated steroids; pregnanediol, 16-androstenol, 11-ketoetiocholanolone, androsterone (A), etiocholanolone (E), dehydroepiandrosterone (D), 5α- and 5β-androstanediol, testosterone and epitestosterone were included. In addition, sulfate conjugates of A, E, D, epiandrosterone and 17α- and 17β-androstenediol were considered and analyzed after acidic solvolysis. The obtained results enabled the calculation of the first reference-population-based thresholds for HIR of urinary steroids that can readily be applied to routine doping control samples. Proof-of-concept was accomplished by investigating urine specimens collected after a single oral application of testosterone-undecanoate. The HIR of most testosterone metabolites were found to be significantly influenced by the exogenous steroid beyond the established threshold values. Additionally, one regular doping control sample with an extraordinary testosterone/epitestosterone ratio of 100 without suspicious CIR was subjected to the complementary methodology of HIR analysis. The HIR data eventually provided evidence for the exogenous origin of urinary testosterone metabolites. Despite further investigations on HIR being advisable to corroborate the presented reference-population-based thresholds, the developed method proved to be a new tool supporting modern

  10. Two-dimensional vibrational analysis of the Lippincott-Schröder potential for OHO, NHO and NHN hydrogen bonds and the deuterium isotope effect

    Science.gov (United States)

    Saitoh, T.; Mori, K.; Itoh, R.

    1981-09-01

    Two-dimensional vibrational analyses [i.e. crude adiabatic approximation, SCF approximation and variational method (crude adiabatic basis function)] are performed on the hydrogen bond systems consisting of the Lippincott-Schröder potentials for the OHO, NHO and NHN bonds. The OHO and NHN systems are supposed to be linear and the bent structure is considered for the NHO system. The frequency shift for the hydrogen bond length variation and its deuterium substitution effects are in good agreement with experiment. The anomalies in the frequency ratio ν OH/ν OD at an O—O distance of 2.5 Å, and in the interminimum distance shift on deuteration at 2.5 Å are well explained as the difference of double minimum behavior between the vibrational states of proton and deuterium. It is also shown that the Lippincott-Schröder model for the OHO system supplies the general features for proton tunneling, proton delocalization beyond the barrier and other type processes in hydrogen bonds.

  11. Strontium, boron, oxygen, and hydrogen isotope geochemistry of brines from basal strata of the Gulf Coast sedimentary basin, USA

    Science.gov (United States)

    Moldovanyi, Eva P.; Walter, Lynn M.; Land, Lynton S.

    1993-05-01

    Significant spatial heterogeneities exist in the stable isotopic composition of saline formation waters from reservoirs of the Smackover Formation (Upper Jurassic). We focused on the southwest Arkansas shelf, a structurally simple portion of one of the interior basins of the northern Gulf Coast sedimentary basin. Here, faulting and facies changes juxtapose dominantly oolitic carbonate strata against basal evaporites, red beds, and siliciclastics, as well as metamorphosed basement rocks. Brines from this area have exceptionally high Br and alkali element concentrations and have spatially heterogeneous hydrogen sulfide concentrations. Strontium, boron, oxygen, and hydrogen isotope compositions exhibit coherent relations with other aspects of brine geochemistry. Sr isotope compositions range from those expected for carbonates and evaporites deposited from Jurassic seawater (0.7071) to radiogenic ratios as high as 0.7107. Generally, most radiogenic Sr isotope values are associated with H 2S-rich waters which also have elevated alkali element (Li, B, K, Rb) concentrations. These alkali element-rich waters are associated with portions of the South Arkansas fault system which reach basement. Boron isotope compositions are similarly heterogeneous, ranging from values of +26 to +50%.. Brines with highest B contents are most depleted in 11B, consistent with boron input from brines generated from high-temperature siliciclastic diagenetic reactions. Normalizing B contents to Br in the brines reveals a reasonable mixing trend between a Dead Sea-type composition and Texas Gulf Coast-type shale/sand reservoir waters. Oxygen and hydrogen isotope data exhibit regional variations which are controlled by meteoric water invasion along the northern limb of the southwest Arkansas Fault, which has surface expression. Although oxygen isotope compositions are often near equilibrium with respect to reservoir carbonate, it is more difficult to ascribe trends in δD values to local water

  12. Influence of salinity on hydrogen isotope fractionation in Rhizophora mangroves from Micronesia

    Science.gov (United States)

    Ladd, S. Nemiah; Sachs, Julian P.

    2015-11-01

    Hydrogen isotope ratios (2H/1H or δ2H) of plant leaf waxes typically covary with those of precipitation, and are therefore used as a proxy for past hydrologic variability. Mangroves present an important exception to this relationship, as salinity can strongly influence 2H fractionation in leaf lipids. To better understand and calibrate this effect, δ2H values of taraxerol and n-alkanes were measured in the leaves of Rhizophora spp. (red mangroves) from three estuaries and four brackish lakes on the Micronesian islands of Pohnpei and Palau, and compared to the δ2H and δ18O values of leaf water, xylem water and surface water. Net 2H discrimination between surface water and taraxerol increased by 0.9 ± 0.2‰ per part per thousand (ppt-1) over a salinity range of 1-34 ppt. Xylem water was always depleted in 2H relative to surface water, and the magnitude of this depletion increased with salinity, which is most likely due to a combination of greater 2H discrimination by roots during water uptake and opportunistic use of freshwater. Changes in the 2H content of xylem water can account for up to 43% of the change in net taraxerol fractionation with salinity. Leaf water isotopes were minimally enriched relative to xylem water and there was not significant variability in leaf water enrichment with salinity, which is consistent with a Péclet-modified Craig-Gordon model of leaf water enrichment. As leaf water enrichment is therefore unlikely to be responsible for increased 2H/1H fractionation in mangrove leaf lipids at elevated salinities, the majority of this signal is most likely explained either by changes in biosynthetic fractionation in response to salt stress or by salinity influenced changes in the timing of water uptake and lipid synthesis.

  13. Evaluation of diffuse and preferential flow pathways of infiltratedprecipitation and irrigation using oxygen and hydrogen isotopes

    Science.gov (United States)

    Ma, Bin; Liang, Xing; Liu, Shaohua; Jin, Menggui; Nimmo, John R.; Li, Jingxin

    2017-01-01

    Subsurface-water flow pathways in three different land-use areas (non-irrigated grassland, poplar forest, and irrigated arable land) in the central North China Plain were investigated using oxygen (18O) and hydrogen (2H) isotopes in samples of precipitation, soils, and groundwater. Soil water in the top 10 cm was significantly affected by both evaporation and infiltration. Water at 10–40 cm depth in the grassland and arable land, and 10–60 cm in poplar forest, showed a relatively short residence time, as a substantial proportion of antecedent soil water was mixed with a 92-mm storm infiltration event, whereas below those depths (down to 150 cm), depleted δ18O spikes suggested that some storm water bypassed the shallow soil layers. Significant differences, in soil-water content and δ18O values, within a small area, suggested that the proportion of immobile soil water and water flowing in subsurface pathways varies depending on local vegetation cover, soil characteristics and irrigation applications. Soil-water δ18O values revealed that preferential flow and diffuse flow coexist. Preferential flow was active within the root zone, independent of antecedent soil-water content, in both poplar forest and arable land, whereas diffuse flow was observed in grassland. The depleted δ18O spikes at 20–50 cm depth in the arable land suggested the infiltration of irrigation water during the dry season. Temporal isotopic variations in precipitation were subdued in the shallow groundwater, suggesting more complete mixing of different input waters in the unsaturated zone before reaching the shallow groundwater.

  14. Mercury speciation in seafood using isotope dilution analysis: a review.

    Science.gov (United States)

    Clémens, Stéphanie; Monperrus, Mathilde; Donard, Olivier F X; Amouroux, David; Guérin, Thierry

    2012-01-30

    Mercury is a toxic compound that can contaminate humans through food and especially via fish consumption. Mercury's toxicity depends on the species, with methylmercury being the most hazardous form for humans. Hg speciation analysis has been and remains a widely studied subject because of the potential difficulty of preserving the initial distribution of mercury species in the analysed sample. Accordingly, many analytical methods have been developed and most of them incur significant loss and/or cross-species transformations during sample preparation. Therefore, to monitor and correct artefact formations, quantification by isotope dilution is increasingly used and provides significant added value for analytical quality assurance and quality control. This review presents and discusses the two different modes of application of isotope dilution analysis for elemental speciation (i.e. species-unspecific isotope dilution analysis and species-specific isotope dilution analysis) and the different quantification techniques (i.e. classical and multiple spike isotope dilution analyses). Isotope tracers are thus used at different stages of sample preparation to determine the extent of inter-species transformations and correct such analytical artefacts. Finally, a synthesis of the principal methods used for mercury speciation in seafood using isotope dilution analysis is presented. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Use of Stable Isotopes in Forensic Analysis of Microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer-Martin, Helen W.; Hegg, Eric L.

    2012-01-18

    The use of isotopic signatures for forensic analysis of biological materials is well-established, and the same general principles that apply to interpretation of stable isotope content of C, N, O, and H apply to the analysis of microorganisms. Heterotrophic microorganisms derive their isotopic content from their growth substrates, which are largely plant and animal products, and the water in their culture medium. Thus the isotope signatures of microbes are tied to their growth environment. The C, N, O, and H isotope ratios of spores have been demonstrated to constitute highly discriminating signatures for sample matching. They can rule out specific samples of media and/or water as possible production media, and can predict isotope ratio ranges of the culture media and water used to produce a given sample. These applications have been developed and tested through analyses of approximately 250 samples of Bacillus subtilis spores and over 500 samples of culture media, providing a strong statistical basis for data interpretation. A Bayesian statistical framework for integrating stable isotope data with other types of signatures derived from microorganisms has been able to characterize the culture medium used to produce spores of various Bacillus species, leveraging isotopic differences in different medium types and demonstrating the power of data integration for forensic investigations.

  16. Isotope analysis in the transmission electron microscope

    OpenAIRE

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T.; Pennycook, Timothy J.; Mangler, Clemens; Meyer, Jannik C.; Kotakoski, Jani

    2016-01-01

    The {\\AA}ngstr\\"om-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either $^{12}$C or $^{13}$C and describe the proc...

  17. Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria.

    Science.gov (United States)

    Jaekel, Ulrike; Vogt, Carsten; Fischer, Anko; Richnow, Hans-Hermann; Musat, Florin

    2014-01-01

    The anaerobic degradation of propane and butane is typically initiated by activation via addition to fumarate. Here we investigated the mechanism of activation under sulfate-reducing conditions by one pure culture (strain BuS5) and three enrichment cultures employing stable isotope analysis. Stable isotope fractionation was compared for cultures incubated with or without substrate diffusion limitation. Bulk enrichment factors were significantly higher in mixed vs. static incubations. Two dimensional factors, given by the correlation of stable isotope fractionation of both carbon and hydrogen at their reactive positions (Lambda reactive position, Λrp), were compared to analyse the activation mechanisms. A characteristic reactive position isotope fractionation pattern was observed, distinct from aerobic degradation. Λrp values ranged from 10.5 to 11.8 for propane and from 7.8 to 9.4 for butane. Incubations of strain BuS5 with deuterium-labelled n-alkanes indicated that butane was activated solely at the subterminal C atom. In contrast, propane was activated mainly at the subterminal C atom but also significantly at the terminal C atoms. A conservative estimate suggests that about 70% of the propane activation events occurred at the subterminal C atom and about 30% at the terminal C atoms. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Assessment of MTBE biodegradation pathways by two-dimensional isotope analysis in mixed bacterial consortia under different redox conditions.

    Science.gov (United States)

    Youngster, Laura K G; Rosell, Mònica; Richnow, Hans H; Häggblom, Max M

    2010-09-01

    The fuel oxygenate, methyl tert-butyl ether (MTBE), although now widely banned or substituted, remains a persistent groundwater contaminant. Multidimensional compound-specific isotope analysis (CSIA) of carbon and hydrogen is being developed for determining the extent of MTBE loss due to biodegradation and can also potentially distinguish between different biodegradation pathways. Carbon and hydrogen isotopic fractionation factors were determined for MTBE degradation in aerobic and anaerobic laboratory cultures. The carbon isotopic enrichment factor (epsilonC) for aerobic MTBE degradation by a bacterial consortium containing the aerobic MTBE-degrading bacterium, Variovorax paradoxus, was -1.1 +/- 0.2 per thousand and the hydrogen isotope enrichment factor (epsilonH) was -15 +/- 2 per thousand. This corresponds to an approximated lambda value (Lambda = epsilonH/epsilonC) of 14. Carbon isotope enrichment factors for anaerobic MTBE-degrading enrichment cultures were -7.0 +/- 0.2 per thousand and did not vary based on the original inoculum source, redox condition of the enrichment, or supplementation with syringic acid as a co-substrate. The hydrogen enrichment factors of cultures without syringic acid were insignificant, however a strong hydrogen enrichment factor of -41 +/- 3 per thousand was observed for cultures which were fed syringic acid during MTBE degradation. The Lambda = 6 obtained for NYsyr cultures might be diagnostic for the stimulation of anaerobic MTBE degradation by methoxylated compounds by an as yet unknown pathway and mechanism. The stable-isotope enrichment factors determined in this study will enhance the use of CSIA for monitoring anaerobic and aerobic MTBE biodegradation in situ.

  19. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by

    NARCIS (Netherlands)

    Weiss, G.M.; Pfannerstill, E.Y.; Schouten, S.; Sinninghe Damsté, J.S.; van der Meer, M.T.J.

    2017-01-01

    Over the last decade, hydrogen isotopes of longchainalkenones have been shown to be a promising proxy forreconstructing paleo sea surface salinity due to a strong hydrogenisotope fractionation response to salinity across differentenvironmental conditions. However, to date, the decouplingof the

  20. Final Report: Hydrogen Storage System Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel A. [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-30

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allow comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.

  1. MECHANICAL ALLOYING AND THERMAL TREATMENT FOR PRODUCTION OF ZIRCONIUM IRON HYDROGEN ISOTOPE GETTERS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2008-02-20

    The objective of this task was to demonstrate that metal hydrides could be produced by mechanical alloying in the quantities needed to support production-scale hydrogen isotope separations. Three starting compositions (ratios of elemental Zr and Fe powders) were selected and attritor milled under argon for times of 8 to 60 hours. In general, milling times of at least 24 hours were required to form the desired Zr{sub 2}Fe and Zr{sub 3}Fe phases, although a considerable amount of unalloyed Zr and Fe remained. Milling in liquid nitrogen does not appear to provide any advantages over milling in hexane, particularly due to the formation of ZrN after longer milling times. Carbides of Zr formed during some of the milling experiments in hexane. Elemental Zr was present in the as-milled material but not detected after annealing for milling times of 48 and 60 hours. It may be that after intimate mixing of the powders in the attritor mill the annealing temperature was sufficient to allow for the formation of a Zr-Fe alloy. Further investigation of this conversion is necessary, and could provide an opportunity for reducing the amount of unreacted metal powder after milling.

  2. Hydrogen and carbon vapour pressure isotope effects in liquid fluoroform studied by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Takao; Mitome, Ryota; Yanase, Satoshi [Sophia Univ., Tokyo (Japan). Faculty of Science and Technology

    2017-06-01

    H/D and {sup 12}C/{sup 13}C vapour pressure isotope effects (VPIEs) in liquid fluoroform (CHF{sub 3}) were studied at the MPW1PW91/6-31 ++ G(d) level of theory. The CHF{sub 3} monomer and CHF{sub 3} molecules surrounded by other CHF{sub 3} molecules in every direction in CHF{sub 3} clusters were used as model molecules of vapour and liquid CHF{sub 3}. Although experimental results in which the vapour pressure of liquid {sup 12}CHF{sub 3} is higher than that of liquid {sup 12}CDF{sub 3} and the vapour pressure of liquid {sup 13}CHF{sub 3} is higher than that of liquid {sup 12}CHF{sub 3} between 125 and 212 K were qualitatively reproduced, the present calculations overestimated the H/D VPIE and underestimated the {sup 12}C/{sup 13}C VPIE. Temperature-dependent intermolecular interactions between hydrogen and fluorine atoms of neighbouring molecules were required to explain the temperature dependences of both H/D and {sup 12}C/{sup 13}C VPIEs.

  3. Hydrogen Isotopic Constraints on the Evolution of Surface and Subsurface Water on Mars

    Science.gov (United States)

    Usui, T.; Kurokawa, H.; Wang, J.; Alexander, C. M. O’D.; Simon, J. I.; Jones, J. H.

    2017-01-01

    The geology and geomorphology of Mars provide clear evidence for the presence of liquid water on its surface during the Noachian and Hesperien eras (i.e., >3 Ga). In contrast to the ancient watery environment, today the surface of Mars is relatively dry. The current desert-like surface conditions, however, do not necessarily indicate a lack of surface or near-surface water/ice. In fact, massive deposits of ground ice and/or icy sediments have been proposed based on subsurface radar sounder observations. Hence, accurate knowledge of both the evolution of the distribution of water and of the global water inventory is crucial to our understanding of the evolution of the climate and near-surface environments and the potential habitability of Mars. This study presents insights from hydrogen isotopes for the interactive evolution of Martian water reservoirs. In particular, based on our new measurement of the D/H ratio of 4 Ga-old Noachian water, we constrain the atmospheric loss and possible exchange of surface and subsurface water through time.

  4. Hydrogen isotope composition of natural gases from the Tarim Basin and its indication of depositional environments of the source rocks

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.Y.; Dai, J.X.; Li, J.; Zhou, Q.H. [PetroChina, Beijing (China). Research Institute Petrology Exploration & Development

    2008-02-15

    By measuring carbon and hydrogen isotope compositions for C-1, C-2 and C-3 of 74 gas samples, natural gases from the Tarim Basin can be divided into six groups on the basis of their origins: (1) coal-type gas derived from coal measures; (2) coal-type gas generated from the T-J lacustrine mudstones; (3) oil-type gas derived from the Cambrian and low Ordovician marine source rocks; (4) oil-type gas from the source rocks deposited in the marine-transitional facies; (5) mixing gas between gas derived from the Carboniferous transitional source rocks and the Mesozoic humic gas, and (6) mixing gases of thermal genetic gas and little deep gas in the Southwest depression of the Tarim Basin. The {delta} D values of methane in natural gases originating from different type kerogens are affected by both palaeo-environments of the source rock formation (kerogen types) and thermal maturity, with sedimentary environment (kerogen type) as the main controlling factor. With the increase of thermal maturity and the increase of carbon atomic numbers of gaseous alkanes, the hydrogen isotopes become enriched in deuterium. The {delta} D values of ethane and propane are controlled mainly by thermal maturity and to a lesser degree by sedimentary environment of the source rock formation. The partial reversal of hydrogen isotopes for gaseous alkanes would be related to the microbial oxidation, mixing of sapropelic and humic gases and/or mixing of gases from similar kerogen sources with various thermal maturities.

  5. Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites.

    Science.gov (United States)

    Weinrauch, I; Savchenko, I; Denysenko, D; Souliou, S M; Kim, H-H; Le Tacon, M; Daemen, L L; Cheng, Y; Mavrandonakis, A; Ramirez-Cuesta, A J; Volkmer, D; Schütz, G; Hirscher, M; Heine, T

    2017-03-06

    The production of pure deuterium and the removal of tritium from nuclear waste are the key challenges in separation of light isotopes. Presently, the technological methods are extremely energy- and cost-intensive. Here we report the capture of heavy hydrogen isotopes from hydrogen gas by selective adsorption at Cu(I) sites in a metal-organic framework. At the strongly binding Cu(I) sites (32 kJ mol-1) nuclear quantum effects result in higher adsorption enthalpies of heavier isotopes. The capture mechanism takes place most efficiently at temperatures above 80 K, when an isotope exchange allows the preferential adsorption of heavy isotopologues from the gas phase. Large difference in adsorption enthalpy of 2.5 kJ mol-1 between D2 and H2 results in D2-over-H2 selectivity of 11 at 100 K, to the best of our knowledge the largest value known to date. Combination of thermal desorption spectroscopy, Raman measurements, inelastic neutron scattering and first principles calculations for H2/D2 mixtures allows the prediction of selectivities for tritium-containing isotopologues.

  6. Oxygen and hydrogen isotope compositions of eclogites and associated rocks from the Eastern Sesia zone (Western Alps, Italy)

    Science.gov (United States)

    Desmons, J.; O'Neil, J.R.

    1978-01-01

    Oxygen and hydrogen isotope analyses have been made of mineral separates from eclogites, glaucophanites and glaucophane schists from the eastern Sesia zone (Italian Western Alps). Regularities in (1) hydrogen isotope compositions, (2) order of 18O enrichment among coexisting minerals, and (3) ?? 18O (quartz-rutile) and ?? 18O (quartz-phengite) imply attainment of a high degree of isotopic equilibrium. However, some scattering of ??18O values of individual minerals indicates that the eclogitic assemblage did not form in the presence of a thoroughly pervasive fluid. Minerals from an eclogitic lens enclosed in marble have ??18O values distinctly different from those measured in the other rocks. The ??18O values are high in comparison with other type C eclogites of the world, and it is proposed that the fluid present during the high pressure metamorphism has to a large extent been inherited from the precursor rocks of amphibolite facies. An average formation temperature of 540 ?? C is inferred from the oxygen isotope fractionations between quartz and rutile and between quartz and white mica. This temperature is in accordance with petrologic considerations and implies subduction of the precursor rocks into the upper mantle to achieve the high pressures required. ?? 1978 Springer-Verlag.

  7. Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements : Caffeines, n-Alkanes, Fatty Acid Methyl Esters, Glycines, L-Valines, Polyethylenes, and Oils

    NARCIS (Netherlands)

    Schimmelrnann, Arndt; Qi, Haiping; Coplen, Tyler B.; Brand, Willi A.; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F.; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita T.; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Groeing, Manfred; Helie, Jean-Francois; Herrero-Martin, Sara; Meijer, Harro A. J.; Sauer, Peter E.; Sessions, Alex L.; Werner, Roland A.

    2016-01-01

    An international project developed, quality-tested, and determined isotope-delta values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and

  8. Isotopic analysis of oxidative pollutant degradation pathways exhibiting large H isotope fractionation.

    Science.gov (United States)

    Wijker, Reto S; Adamczyk, Pawel; Bolotin, Jakov; Paneth, Piotr; Hofstetter, Thomas B

    2013-01-01

    Oxidation of aromatic rings and its alkyl substituents are often competing initial steps of organic pollutant transformation. The use of compound-specific isotope analysis (CSIA) to distinguish between these two pathways quantitatively, however, can be hampered by large H isotope fractionation that precludes calculation of apparent (2)H-kinetic isotope effects (KIE) as well as the process identification in multi-element isotope fractionation analysis. Here, we investigated the C and H isotope fractionation associated with the transformation of toluene, nitrobenzene, and four substituted nitrotoluenes by permanganate, MnO4(-), to propose a refined evaluation procedure for the quantitative distinction of CH3-group oxidation and dioxygenation. On the basis of batch experiments, an isotopomer-specific kinetic model, and density functional theory (DFT) calculations, we successfully derived the large apparent (2)H-KIE of 4.033 ± 0.20 for the CH3-group oxidation of toluene from H isotope fractionation exceeding >1300‰ as well as the corresponding (13)C-KIE (1.0324 ± 0.0011). Experiment and theory also agreed well for the dioxygenation of nitrobenzene, which was associated with (2)H- and (13)C-KIEs of 0.9410 ± 0.0030 (0.9228 obtained by DFT) and 1.0289 ± 0.0003 (1.025). Consistent branching ratios for the competing CH3-group oxidation and dioxygenation of nitrotoluenes by MnO4(-) were obtained from the combined modeling of concentration as well as C and H isotope signature trends. Our approach offers improved estimates for the identification of contaminant microbial and abiotic oxidation pathways by CSIA.

  9. Isotope analysis in the transmission electron microscope

    Science.gov (United States)

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T.; Pennycook, Timothy J.; Mangler, Clemens; Meyer, Jannik C.; Kotakoski, Jani

    2016-10-01

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12C or 13C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  10. Isotopic ratio correlation for the isotopic composition analysis of plutonium in Am-Pu mixed samples having high americium content.

    Science.gov (United States)

    Patra, Sabyasachi; Agarwal, Chhavi; Chaudhury, Sanhita; Newton Nathaniel, T; Gathibandhe, M; Goswami, A

    2013-08-01

    Interference of high amount of americium in the plutonium isotopic composition analysis has been studied by simulating gamma-ray spectra for Am-Pu samples over a wide composition range (5-97% (241)Am) for both power and research reactor grade plutonium. An alternate way for isotopic composition analysis has been proposed by correlating the isotopic ratios available in our old database with the experimentally obtained (241)Pu/(239)Pu isotopic ratio. The proposed method has been validated using simulated spectra of known isotopic compositions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Isotopic abundance in atom trap trace analysis

    Science.gov (United States)

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  12. A vastly improved method for in situ stable isotope analysis of very small water samples.

    Science.gov (United States)

    Coleman, M. L.; Christensen, L. E.; Kriesel, J.; Kelly, J.; Moran, J.; Vance, S.

    2016-12-01

    The stable isotope compositions of hydrogen and oxygen in water, ice and hydrated minerals are key characteristics to determine the origin and history of the material. Originally, analyses were performed by separating hydrogen and preparing CO2 from the oxygen in water for stable isotope ratio mass spectrometry. Subsequently, infrared absorption spectrometry in either a Herriot cell or by cavity ring down allowed direct analysis of water vapor. We are developing an instrument, intended for spaceflight and in situ deployment, which will exploit Capillary Absorption Spectrometry (CAS) for the H and O isotope analysis and a laser to sample planetary ices and hydrated minerals. The Tunable Laser Spectrometer (TLS) instrument (part of SAM on the MSL rover Curiosity) works by infrared absorption and we use its performance as a benchmark for comparison. TLS has a relatively large sample chamber to contain mirrors which give a long absorption pathlength. CAS works on the same principle but utilizes a hollow optic fiber, greatly reducing the sample volume. The fiber is a waveguide, enhancing the laser - water-vapor interaction and giving more than four orders of magnitude increase in sensitivity, despite a shorter optical path length. We have calculated that a fiber only 2 m long will be able to analyze 5 nanomoles of water with a precision of less than 1 per mil for D?H. The fiber is coiled to minimize instrument volume. Our instrument will couple this analytical capability with laser sampling to free water from hydrated minerals and ice and ideally we would use the same laser via a beam-splitter both for sampling and analysis. The ability to analyze very small samples is of benefit in two ways. In this concept it will allow much faster analysis of small sub-samples, while the high spatial sampling resolution offered by the laser will allow analysis of the heterogeneity of isotopic composition within grains or crystals, revealing the history of their growth.

  13. Measurement system analysis (MSA) of the isotopic ratio for uranium isotope enrichment process control

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josue C. de; Barbosa, Rodrigo A.; Carnaval, Joao Paulo R., E-mail: josue@inb.gov.br, E-mail: rodrigobarbosa@inb.gov.br, E-mail: joaocarnaval@inb.gov.br [Industrias Nucleares do Brasil (INB), Rezende, RJ (Brazil)

    2013-07-01

    Currently, one of the stages in nuclear fuel cycle development is the process of uranium isotope enrichment, which will provide the amount of low enriched uranium for the nuclear fuel production to supply 100% Angra 1 and 20% Angra 2 demands. Determination of isotopic ration n({sup 235}U)/n({sup 238}U) in uranium hexafluoride (UF{sub 6} - used as process gas) is essential in order to control of enrichment process of isotopic separation by gaseous centrifugation cascades. The uranium hexafluoride process is performed by gas continuous feeding in separation unit which uses the centrifuge force principle, establishing a density gradient in a gas containing components of different molecular weights. The elemental separation effect occurs in a single ultracentrifuge that results in a partial separation of the feed in two fractions: an enriched on (product) and another depleted (waste) in the desired isotope ({sup 235}UF{sub 6}). Industrias Nucleares do Brasil (INB) has used quadrupole mass spectrometry (QMS) by electron impact (EI) to perform isotopic ratio n({sup 235}U)/n({sup 238}U) analysis in the process. The decision of adjustments and change te input variables are based on the results presented in these analysis. A study of stability, bias and linearity determination has been performed in order to evaluate the applied method, variations and systematic errors in the measurement system. The software used to analyze the techniques above was the Minitab 15. (author)

  14. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths.

    Science.gov (United States)

    Coplen, T. B.; Hanshaw, B. B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  15. Molecular hydrogen (H2 emissions and their isotopic signatures (H/D from a motor vehicle: implications on atmospheric H2

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2010-06-01

    Full Text Available Molecular hydrogen (H2, its isotopic signature (deuterium/hydrogen, δD, carbon monoxide (CO, and other compounds were studied in the exhaust of a passenger car engine fuelled with gasoline or methane and run under variable air-fuel ratios and operating modes. H2 and CO concentrations were largely reduced downstream of the three-way catalytic converter (TWC compared to levels upstream, and showed a strong dependence on the air-fuel ratio (expressed as lambda, λ. The isotopic composition of H2 ranged from δD = −140‰ to δD = −195‰ upstream of the TWC but these values decreased to −270‰ to −370‰ after passing through the TWC. Post-TWC δD values for the fuel-rich range showed a strong dependence on TWC temperature with more negative δD for lower temperatures. These effects are attributed to a rapid temperature-dependent H-D isotope equilibration between H2 and water (H2O. In addition, post TWC δD in H2 showed a strong dependence on the fraction of removed H2, suggesting isotopic enrichment during catalytic removal of H2 with enrichment factors (ε ranging from −39.8‰ to −15.5‰ depending on the operating mode. Our results imply that there may be considerable variability in real-world δD emissions from vehicle exhaust, which may mainly depend on TWC technology and exhaust temperature regime. This variability is suggestive of a δD from traffic that varies over time, by season, and by geographical location. An earlier-derived integrated pure (end-member δD from anthropogenic activities of −270‰ (Rahn et al., 2002 can be explained as a mixture of mainly vehicle emissions from cold starts and fully functional TWCs, but enhanced δD values by >50‰ are likely for regions where TWC technology is not fully implemented. Our results also suggest that a full hydrogen isotope analysis on fuel and exhaust gas may greatly aid at understanding process-level reactions in the exhaust gas, in particular in the TWC.

  16. Stable carbon isotope analysis of coprocessing materials

    Energy Technology Data Exchange (ETDEWEB)

    Burke, F. P.; Winschel, R. A.; Lancet, M. S.

    1989-06-01

    The program is designed to address a substantial, demonstrated need of the coprocessing community (both exploratory and development) for a technique to quantitatively distinguish the contributions of the individual coprocessing feedstocks to the various products. The carbon isotope technique is currently in routine use for other applications. Results achieved this quarter include: Feed and product fractions from a Kentucky 9 coal/Kentucky tar sand bitumen coprocessing bench unit run at the Kentucky Center for Applied Energy Research (CAER) were analyzed for carbon isotope ratios. Corrections were made to the coal carbon recoveries and selectivities from the products of HRI Run 227-53. Feeds (Westerholt coal/Cold Lake VSB) and products from two periods of HRI coprocessing Run 238-1 were analyzed. Three petroleum samples and three coal samples were pyrolyzed at 800{degree}F for 30 min to determine the effect of pyrolysis on the isotopic homogeneity of each petroleum and coal sample. Products from each pyrolysis test were separated into five fractions; an additional set of coprocessing samples and a set of two-stage coal liquefaction samples were obtained from HRI for future work; work performed by the Pennsylvania State University show that microscopy is a promising method for distinguishing coal and petroleum products in residual coprocessing materials; and coal and petroleums that have large differences in carbon isotope ratios were identified for Auburn University. 7 refs., 2 figs., 12 tabs.

  17. Molecular hydrogen (H2) emissions and their isotopic signatures (H/D) from a motor vehicle : implications on atmospheric H2

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Bond, S.W.; Soltic, P.; Röckmann, T.

    2010-01-01

    Molecular hydrogen (H2), its isotopic signature (deuterium/hydrogen, δD), carbon monoxide (CO) and other compounds were studied in the exhaust of a passenger car engine fuelled with gasoline or methane and run under variable air-fuel ratios and operating modes. H2 and CO concentrations were largely

  18. Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane

    NARCIS (Netherlands)

    Brass, M.|info:eu-repo/dai/nl/304823600; Roeckmann, T.|info:eu-repo/dai/nl/304838233

    2010-01-01

    We describe a continuous-flow isotope ratio mass spectrometry (CF-IRMS) technique for high-precision δD and δ13C measurements of atmospheric methane on 40 mL air samples. CH4 is separated from other air components by utilizing purely physical processes based on temperature, time and mechanical valve

  19. Specific equilibrium behavior of hydrogen isotopes adsorbed onto synthetic zeolite A-type governed by lithium cations

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, Shoji [Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Kotoh, Kenji, E-mail: kotoh@nucl.kyushu-u.ac.jp [Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Faculty of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395 (Japan)

    2013-10-15

    Highlights: • Isotherms for H{sub 2} and D{sub 2} adsorbed onto SZ-LiA at 77.4 K are shown. • The adsorption isotherms exhibit specific deviation in the range lower than 10 Pa. • SZ-LiA indicates the power of several 100-times at 0.1 Pa, compared with SZ-NaA. • Experimental isotherms are described empirically by a dual-site Langmuir equation. • The isotope effect on adsorption isotherms appears in the Langmuir constants. -- Abstract: Since synthetic zeolites (SZs) are powerfully adsorptive for hydrogen isotopes at cryogenic temperatures such as liquefied nitrogen, adsorption processes using these have been considered applicable to such as recovery of tritium from the lithium blanket of DT fusion reactor system. Onto these zeolites the adsorptions isotherms for hydrogen isotopes onto SZ-NaA, SZ-CaA and SZ-NaX at 77.4 K were already clarified experimentally and analytically. These isotherms exhibit similar profiles of Langmuir type. In this work, adsorption isotherms were examined for H{sub 2} and D{sub 2} on SZ-LiA at 77.4 K. SZ-LiA was made from SZ-NaA by exchanging its sodium ions for lithium ones, provided by TOSOH Corp. The experimental results demonstrate the specific equilibrium behavior of hydrogen isotopes adsorbed on SZ-LiA, deviating from isothermal profiles on SZ-CaA and SZ-NaX. SZ-LiA show the isothermal profiles of adsorption for H{sub 2} and D{sub 2} similar to on the conventional zeolites in the range from around 1 kPa to the atmospheric pressure, but exhibit a plateau around 1 mol/kg between 0.1 Pa and 100 Pa, while other zeolites show linearly profiling isotherms. This deviation indicates the adsorptive power of SZ-LiA remarkably greater than that of the others.

  20. Isotopic Characterisation of Anthropogenic CO2 Emissions Using Isotopic and Radiocarbon Analysis

    NARCIS (Netherlands)

    Meijer, H.A.J.; Smid, H.M.; Keizer, M.G.

    1996-01-01

    At the station Kollumerwaard (Netherlands), for monitoring tracers in the troposphere, air is sampled in sixteen containers for off-line 13C, 18O and 14C isotopic analysis of CO2. The timing of the sampling is chosen such that CO2 variations correlating with pollutants like CO and CH4 are optimally

  1. Isotopic characterisation of CO2 sources during regional pollution events using isotopic and radiocarbon analysis

    NARCIS (Netherlands)

    Zondervan, A; Meijer, HAJ

    At the station Kollumerwaard (The Netherlands), for monitoring tracers in the troposphere, air is sampled in 16 containers for off-line C-13, O-18 and C-14 isotopic analysis of CO2. The timing of the sampling is chosen such that CO2 variations correlating with pollutants like CO and CH4 are

  2. Dynamics of the reaction of the N/sup +/ ion with hydrogen isotopes and helium

    Energy Technology Data Exchange (ETDEWEB)

    Ruska, W.E.W.

    1976-06-28

    Molecular beam techniques were used to study the reactive and non-reactive scattering of the nitrogen positive ion from hydrogen isotopes and helium, at energies above the stability limit for spectator stripping. Reactive scattering was observed from H/sub 2/ and HD targets. Non-reactive scattering was observed from H/sub 2/ and D/sub 2/ targets, and from He at one energy. A correlation diagram for the system is presented and compared with the available a priori calculations. Two surfaces are expected to lead to reaction. One is a /sup 3/A/sub 2/ - /sup 3/PI surface, the other, a /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface. Collinear approaches are expected to be most reactive on the /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface; noncollinear, on the /sup 3/A/sub 1/ - /sup 3/PI surface. Theoretical models are presented in which an incident hard sphere A, representing the projectile ion, strikes one of a pair of hard spheres B-C representing the B hydrogen molecule. After an impulsive A-B collision, an impulsive B-C collision may take place. The relative energy of A to B is then examined, and a reactive event is considered to have occurred if the energy is less than the dissociation energy for the A-B molecule. This model is treated both in the collinear case and in three dimensions. A graphical technique for the collinear case is summarized and applied to reaction on the /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface. An integral equation for the three-dimensional case is developed. A synthesis of two treatments, representing the behavior of the system on both reactive surfaces, and considering the charge-exchange channel, correctly predicts the observed product distribution. Predictions are also presented for the as yet unobserved case of reactive scattering from a D/sub 2/ target.

  3. A Neogene Higher Plant N-Alkane Carbon and Hydrogen Isotope Record From the Gulf of Mexico

    Science.gov (United States)

    Tipple, B. J.; Pagani, M.

    2006-12-01

    Water availability and a plant's capacity to cope with water stress are expressed in carbon and hydrogen isotopic compositions of leaf waxes. Therefore, coupled sedimentary n-alkane δ13C and δD isotope records provide unique continental-scale information about the paleo-hydrological cycle and its influence on biology over long time scales. In this study, we assess the relationship between Neogene North American climate and floral change, particularly C4 grass expansion, by establishing δ13C and δD records of higher-plant leaf wax n-alkanes from Gulf of Mexico sediments (DSDP site 94). Changes in the hydrogen isotope composition of leaf water can be driven by changes in evaporation/evapotranspiration or changes in the evaporative source from which precipitation derives. However, for this study changes in moisture source are unlikely because these sediments located in Gulf of Mexico likely received the majority of precipitation from the Gulf of Mexico itself over the time interval studied. In general, δ13C and δD values shift in concert, with the most positive δ13C and δD values occurring near the Epoch boundaries. N-alkane δ13C values reflect factors other than water stress alone, including the isotopic composition of atmospheric CO2, plant community, and atmospheric pCO2. Notably, 13C enrichment occurring near the Oligocene/Miocene boundary potentially reflects the rapid decrease in pCO2 at this time. In addition, between 4.5 and 5.5 Ma, n-alkane δ13C values trend more negative as δD becomes increasingly D-enriched, indicative of increased evaporation. Given that contemporaneous North American terrestrial isotope (Passey et al., 2002) and equatorial Atlantic marine (Wagner, 2002) records show similar trends, it appears that major changes in the hydrological cycle took place at this time.

  4. Analysis of Published Hydrogen Vehicle Safety Research

    Science.gov (United States)

    2010-02-01

    Hydrogen-fueled vehicles (HFVs) offer the promise of providing safe, clean, and efficient transportation in a setting of rising fuel prices and tightening environmental regulations. However, the technologies needed to store or manufacture hydrogen on...

  5. Stable hydrogen isotopes record the summering grounds of eastern red bats (Lasiurus borealis

    Directory of Open Access Journals (Sweden)

    Cortney L. Pylant

    2014-10-01

    Full Text Available Bats face numerous threats associated with global environmental change, including the rapid expansion of wind-energy facilities, emerging infectious disease, and habitat loss. An understanding of the movement and migration patterns of these highly dispersive animals would help reveal how spatially localized the impacts from these threats are likely to be on bat populations, thus aiding in their conservation. Stable hydrogen isotope ratios (δ2H can be used to infer regions where bats have foraged during the summer molt season, thus allowing an assessment of summering location and distance of movement of bats sampled during other times of year. However, a major impediment to the application of δ2H for inference of bat movements is that the relationship between δ2H of bat hair and precipitation tends to be species specific and is still unknown for some key species of conservation concern. We addressed this issue by using geo-referenced museum specimens to calibrate the relationship between δ2H of hair (δ2Hhair and long-term δ2H of growing-season precipitation (δ2HGSprecip at the site of collection for eastern red bats (Lasiurus borealis, one of the main species of bats experiencing large numbers of fatalities at wind-energy facilities in North America. Based on comparison of δ2Hhair and δ2HGSprecip values for males we estimated a period of molt of June 14–August 7. Within this period, male and female red bats exhibited a significant positive relationship between δ2Hhair and δ2HGSprecip. These results establish the relationship between δ2Hhair and δ2HGSprecip for red bats, which is necessary for the use of δ2Hhair to infer the movement and migration patterns of this important species. These results provide a critical resource to conservation biologists working to assess the impacts of environmental change on bat populations.

  6. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    Directory of Open Access Journals (Sweden)

    A. M. Batenburg

    2012-05-01

    Full Text Available More than 450 air samples that were collected in the upper troposphere – lower stratosphere (UTLS region by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container have been analyzed for molecular hydrogen (H2 mixing ratios (χ(H2 and H2 isotopic composition (deuterium content, δD.

    More than 120 of the analyzed samples contained air from the lowermost stratosphere (LMS. These show that χ(H2 does not vary appreciably with O3-derived height above the thermal tropopause (TP, whereas δD does increase with height. The isotope enrichment is caused by H2 production and destruction processes that enrich the stratospheric H2 reservoir in deuterium (D; the exact shapes of the profiles are mainly determined by mixing of stratospheric with tropospheric air. Tight negative correlations are found between δD and the mixing ratios of methane (χ(CH4 and nitrous oxide (χ(N2O, as a result of the relatively long lifetimes of these three species. The correlations are described by δD[‰]=−0.35 · χ(CH4[ppb]+768 and δD[‰]=−1.90· χ(N2O[ppb]+745. These correlations are similar to previously published results and likely hold globally for the LMS.

    Samples that were collected from the Indian subcontinent up to 40° N before, during and after the summer monsoon season show no significant seasonal change in χ(H2, but δD is up to 12.3‰ lower in the July, August and September monsoon samples. This δD decrease is correlated with the χ(CH4 increase in these samples. The significant correlation with χ(CH4 and the absence of a perceptible χ(H2 increase that accompanies the δD decrease indicates that microbial production of

  7. [Determination of deuterium concentration in foods and influence of water with modified isotopic composition on oxidation parameters and heavy hydrogen isotopes content in experimental animals].

    Science.gov (United States)

    Basov, A A; Bykov, I M; Baryshev, M G; Dzhimak, S S; Bykov, M I

    2014-01-01

    The article presents the results of the study of the deuterium (D) content in food products as well as the influence of deuterium depleted water (DDW) on the concentration of heavy hydrogen isotopes in the blood and lyophilized tissues of rats. The most significant difference in the content of D was found between potato and pork fat, which indexes the standard delta notation (δ) D in promille, related to the international standard SMOW (Standard Mean Ocean of Water) amounted to -83,2 per thousand and -250,7 per thousand, respectively (pdeuterium concentration ranged from -75,5 per thousand (Narzan) to +72,1 per thousand (Kubai), that indicates the ability of some food products to increase the concentration of heavy hydrogen atoms in the body. The data obtained in the experimental modeling of the diet of male Wistar rats in the age of 5-6 mo (weight 235 ± 16 g) using DDW (δD = -743,2 per thousand) instead of drinking water (δD = -37,0 per thousand) with identical mineral composition showed that after 2 weeks significant (p deuterium-protium, D/H) gradient in the body is possible. Changing the direction of isotopic D/H gradient in laboratory animals in comparison with its physiological indicators (72-127 per thousand, "plasma>tissue") is due to different rates ofisotopic exchange reactions in plasma and tissues (liver, kidney, heart), which can be explained by entering into the composition of a modified diet of organic substrates with more than DDW concentration D, which are involved in the construction of cellular structures and eventually lead to a redistribution of D and change direction of D/H gradient "plasmaisotopic composition, aimed at reducing the level of heavy non-radioactive atoms will allow the targeted nutritional correction of prooxidant-antioxidant status of

  8. Hydrogen tunneling in adenosylcobalamin-dependent glutamate mutase: evidence from intrinsic kinetic isotope effects measured by intra-molecular competition †

    OpenAIRE

    Yoon, Miri; Song, Hangtian; Håkansson, Kristina; Marsh, E. Neil G.

    2010-01-01

    Hydrogen atom transfer reactions between substrate and coenzyme are a key mechanistic feature of all AdoCbl-dependent enzymes. For one of these enzymes, glutamate mutase, we have investigated whether hydrogen tunneling makes a significant contribution to the mechanism by examining the temperature-dependence of the deuterium kinetic isotope effect associated with hydrogen atom transfer from methylaspartate to the coenzyme. To do this we designed a novel intra-molecular competition experiment t...

  9. Microbial methane from in situ biodegradation of coal and shale: A review and reevaluation of hydrogen and carbon isotope signatures

    Science.gov (United States)

    Vinson, David S.; Blair, Neal E.; Martini, Anna M.; Larter, Steve; Orem, William H.; McIntosh, Jennifer C.

    2017-01-01

    Stable carbon and hydrogen isotope signatures of methane, water, and inorganic carbon are widely utilized in natural gas systems for distinguishing microbial and thermogenic methane and for delineating methanogenic pathways (acetoclastic, hydrogenotrophic, and/or methylotrophic methanogenesis). Recent studies of coal and shale gas systems have characterized in situ microbial communities and provided stable isotope data (δD-CH4, δD-H2O, δ13C-CH4, and δ13C-CO2) from a wider range of environments than available previously. Here we review the principal biogenic methane-yielding pathways in coal beds and shales and the isotope effects imparted on methane, document the uncertainties and inconsistencies in established isotopic fingerprinting techniques, and identify the knowledge gaps in understanding the subsurface processes that govern H and C isotope signatures of biogenic methane. We also compare established isotopic interpretations with recent microbial community characterization techniques, which reveal additional inconsistencies in the interpretation of microbial metabolic pathways in coal beds and shales. Collectively, the re-assessed data show that widely-utilized isotopic fingerprinting techniques neglect important complications in coal beds and shales.Isotopic fingerprinting techniques that combine δ13C-CH4 with δD-CH4 and/or δ13C-CO2have significant limitations: (1) The consistent ~ 160‰ offset between δD-H2O and δD-CH4 could imply that hydrogenotrophic methanogenesis is the dominant metabolic pathway in microbial gas systems. However, hydrogen isotopes can equilibrate between methane precursors and coexisting water, yielding a similar apparent H isotope signal as hydrogenotrophic methanogenesis, regardless of the actual methane formation pathway. (2) Non-methanogenic processes such as sulfate reduction, Fe oxide reduction, inputs of thermogenic methane, anaerobic methane oxidation, and/or formation water interaction can cause the apparent carbon

  10. Organic getter materials for the removal of hydrogen and its isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.M.; Shepodd, T.J.; Gilliom, L.R.

    1990-08-01

    Herein, we describe hydrogen getter technologies developed at SNL and KCD over the past decade. The technologies are based on the irreversible removal of hydrogen by catalytic hydrogenation of unsaturated organic compounds. Different types have been developed: crystalline getters, dialkynes combined with heterogeneous catalysts; and a polymeric getter, a thermoplastic elastomer capable of reacting with hydrogen in the presence of oxygen without producing water. These materials can remove up to 300 cc (STP) of hydrogen per gram of material, and can maintain atmospheres of less than 10 ppM hydrogen. Crystalline getters for tritium and the combination hydrogen(tritium), water, and oxygen are described. The accumulation of hydrogen is usually an undesired event. Large leaks from hydrogen storage and handling facilities pose explosion hazards. Small amounts of hydrogen that may build up in sealed containers after long storage times can damage integral components. Any tritium leak is an immediate health hazard. Hydrogen scavengers or getters can avert all of these potential problems by irreversibly removing hydrogen from such environments. In this paper, we describe the development of two types of organic getters: the first is a new crystalline getter, based on 1,4-bis(phenylethynyl)benzene{sup 5} (DEB); the second is a polymeric hydrogen getter, based on styrene-butadiene copolymer.

  11. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--preliminary study on TATP and PETN.

    Science.gov (United States)

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    The application of isotopic techniques to investigations requiring the provision of evidence to a Court is limited. The objective of this research was to investigate the application of light stable isotopes and isotope ratio mass spectrometry (IRMS) to solve complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. Due to the current threat of organic peroxide explosives, such as triacetone triperoxide (TATP), research was undertaken to determine the potential of IRMS to differentiate samples of TATP that had been manufactured utilising different starting materials and/or manufacturing processes. In addition, due to the prevalence of pentaerythritoltetranitrate (PETN) in detonators, detonating cord, and boosters, the potential of the IRMS technique to differentiate PETN samples from different sources was also investigated. Carbon isotope values were measured in fourteen TATP samples, with three definite groups appearing in the initial sample set based on the carbon data alone. Four additional TATP samples (in a second set of samples) were distinguishable utilising the carbon and hydrogen isotopic compositions individually, and also in combination with the oxygen isotope values. The 3D plot of the carbon, oxygen and hydrogen data demonstrated the clear discrimination of the four samples of TATP. The carbon and nitrogen isotope values measured from fifteen PETN samples, allowed samples from different sources to be readily discriminated. This paper demonstrates the successful application of IRMS to the analysis of explosives of forensic interest to assist in discriminating samples from different sources. This research represents a preliminary evaluation of the IRMS technique for the measurement of stable isotope values in TATP and PETN samples, and supports the dedication of resources for a full evaluation of this application in order to achieve Court reportable IRMS results.

  12. Analysis of Hybrid Hydrogen Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  13. Source Of Hydrogen Sulfide To Sulfidic Spring And Watershed Ecosystems In Northern Sierra De Chiapas, Mexico Based On Sulfur And Carbon Isotopes

    Science.gov (United States)

    Rosales Lagarde, L.; Boston, P. J.; Campbell, A.

    2013-12-01

    At least four watersheds in northern Sierra de Chiapas, Mexico are fed by conspicuous karst sulfide-rich springs. The toxic hydrogen sulfide (H2S) in these springs nurtures rich ecosystems including especially adapted microorganisms, invertebrates and fish. Sulfur and carbon isotopic analysis of various chemical species in the spring water are integrated within their hydrogeologic context to evaluate the hydrogen sulfide source. Constraining the H2S origin can also increase the understanding of this compound effect in the quality of the nearby hydrocarbon reservoirs, and the extent to which its oxidation to sulfuric acid increases carbonate dissolution and steel corrosion in surface structures. The SO42-/H2S ratio in the spring water varies from 70,000 to 2 meq/L thus sulfate is the dominant species in the groundwater system. This sulfate is mainly produced from anhydrite dissolution based on its isotopic signature. The Δ SO42--H2S range of 16 spring water samples (30-50 ‰) is similar to the values determined by Goldhaber & Kaplan (1975) and Canfield (2001) for low rates of bacterial sulfate reduction suggesting that this is the most important mechanism producing H2S. Although the carbon isotopes do not constrain the nature of the organic matter participating in this reaction, this material likely comes from depth, perhaps as hydrocarbons, due to the apparent stability of the system. The organic matter availability and reactivity probably control the progress of sulfate reduction. The subsurface environments identified in the area also have different sulfur isotopic values. The heavier residual sulfate isotopic value in the Northern brackish springs (δ34S SO42- ≥ 18 ‰) compared to the Southern springs (δ34S SO42- ~18 ‰) suggests sulfate reduction is particularly enhanced in the former, probably by contribution of organic matter associated with oil produced water. In comparison, the composition of the Southern aquifer is mainly influenced by halite

  14. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    Science.gov (United States)

    Batenburg, A. M.; Schuck, T. J.; Baker, A. K.; Zahn, A.; Brenninkmeijer, C. A. M.; Röckmann, T.

    2012-04-01

    Atmospheric molecular hydrogen (H2) has been little studied for some time, but has recently drawn more attention due to its expected future use as an energy carrier. Concerns have been raised that this use may lead to large-scale leakage of H2 into the atmosphere, with implications for the atmosphere's oxidative capacity and stratospheric ozone chemistry. A thorough understanding of the global H2 cycle is therefore needed, but at present, the uncertainties are still large. Studying the stable isotopic composition of H2 (δD(H2)) is a promising way to gain more information about the H2 cycle. Over the last decade, studies of the isotope effects in H2 source and sink processes have appeared, δD(H2) has been incorporated into global chemical transport models and many more environmental observations of δD(H2) have been published. However, some knowledge gaps can be easily identified. Stratosphere-Troposphere Exchange (STE) has a strong influence on tropospheric δD(H2), but very few δD(H2) data are available from samples taken around the tropopause, where this exchange takes place. For large regions of the globe, no δD(H2) data have been published. In the CARIBIC project, air samples are collected in the Upper Troposphere-Lower Stratosphere (UTLS) region with a commercial passenger aircraft and routinely analysed for various gases. This sampling platform can potentially provide global coverage. More than 450 CARIBIC samples have been analysed for H2 mixing ratios (m(H2)) and δD(H2). More than 120 of these samples consisted of lowermost stratosphere (LMS) air. They show the lack of variation in m(H2) and the δD(H2) increase that is typical for the stratosphere, caused by the competing and deuterium-enriching source and sink processes of H2 in the stratosphere. The deuterium-enrichment signal grows stronger with distance above the tropopause. As a result of the relatively long lifetimes of H2, CH4 and N2O, strong negative correlations appear between δD(H2) and m

  15. The tritium storage, radioactive isotope of the hydrogen: materials and aging; Le stockage du tritium, isotope radioactif de l'hydrogene: materiaux et vieillissement

    Energy Technology Data Exchange (ETDEWEB)

    Thiebaut, S.; Moysan, I.; Contreras, S. [CEA Valduc (DTMN/SHDT/LDMP), 21 - Is-sur-Tille (France); Paul-Boncour, V.; Percheron-Guegan, A. [Centre National de la Recherche Scientifique (CNRS-LCMTR), 94 - Thiais (France); Decamps, B

    2007-07-01

    After some generalities on the tritium utilization, this isotope specificities and the interest of the solid storage, this presentation detailed the different materials used: the hydrides. They have the advantage of delivering high purity tritium {sup 3}He free, but the {sup 3}He trapped in the metal induces large structural and microstructural changes in the host lattice leading to modifications of tritium storage properties with aging time which can be seen on Pressure-composition isotherms. In this paper the P-c isotherms evolution are followed and the created defects are characterized by X diffraction and transmission electronic microscopy. (A.L.B.)

  16. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  17. Enantioselective stable isotope analysis (ESIA) of polar Herbicides

    Science.gov (United States)

    Maier, Michael; Qiu, Shiran; Elsner, Martin

    2013-04-01

    The complexity of aquatic systems makes it challenging to assess the environmental fate of chiral micropolutants. As an example, chiral herbicides are frequently detected in the environment (Buser and Muller, 1998); however, hydrological data is needed to determine their degradability from concentration measurements. Otherwise declining concentrations cannot unequivocally be attributed to degradation, but could also be caused by dilution effects. In contrast, isotope ratios or enantiomeric ratios are elegant alternatives that are independent of dilution and can even deliver insights into reaction mechanisms. To combine the advantages of both approaches we developed an enatioselective stable isotope analysis (ESIA) method to investigate the fate of the chiral herbicides 4-CPP ((RS)-2-(4-chlorophenoxy)-propionic acid), mecoprop (2-(4-Chloro-2-methylphenoxy)-propionic acid) and dichlorprop (2-(2,4-Dichlorophenoxy)-propionic acid). After testing the applicable concentration range of the method, enantioselective isotope fractionation was investigated by microbial degradation using dichlorprop as a model compound. The method uses enantioselective gas-chromatography (GC) to separate enantiomers. Subsequently samples are combusted online to CO2 and carbon isotope ratios are determined for each enantiomer by isotope-ratio-mass-spectrometry (IRMS). Because the analytes contain a polar carboxyl-group, samples were derivatised prior to GC-IRMS analysis with methanolic BF3 solution. Precise carbon isotope analysis (2σ ≤0.5‰) was achieved with a high sensitivity of ≥ 7 ng C that is needed on column for one analysis. Microbial degradation of the model compound dichlorprop was conducted with Delftia acidovorans MC1 and pronounced enantiomer fractionation, but no isotope fractionation was detected. The absence of isotope fractionation can be explained by two scenarios: either the degrading enzyme has no isotopic preference, or another step in the reaction without an isotopic

  18. Impact of the carbon pore size and topology on the equilibrium quantum sieving of hydrogen isotopes at zero coverage and finite pressures

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, Piotr [Applied Physics, RMIT University, GPO Box 2476V, Victoria 3001 (Australia); Gauden, Piotr A; Terzyk, Artur P; Furmaniak, Sylwester [Department of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicholas Copernicus University, Gagarin Street 7, 87-100 Torun (Poland)], E-mail: E72231@ems.rmit.edu.au, E-mail: aterzyk@chem.uni.torun.pl

    2009-04-08

    Carbonaceous slit-shaped and square-shaped pores efficiently differentiate adsorbed hydrogen isotopes at 77 and 33 K. Extensive path integral Monte Carlo simulations revealed that the square-shaped carbon pores enhanced the selectivity of deuterium over hydrogen in comparison to equivalent slit-shaped carbon pores at zero coverage as well as at finite pressures (i.e. quantum sieving of hydrogen isotopes is pore-topology-dependent). We show that this enhancement of the D{sub 2}/H{sub 2} equilibrium selectivity results from larger localization of hydrogen isotopes in square-shaped pores. The operating pressures for efficient quantum sieving of hydrogen isotopes are strongly dependent on the topology as well as on the size of the carbon pores. However, for both considered carbon pore topologies the highest D{sub 2}/H{sub 2} separation factor is observed at zero-coverage limit. Depending on carbon pore size and topology we predicted monotonic decreasing and non-monotonic shape of the D{sub 2}/H{sub 2} equilibrium selectivity at finite pressures. For both kinds of carbonaceous pores of molecular sizes we predict high compression of hydrogen isotopes at 77 and 33 K (for example, the pore density of compressed hydrogen isotopes at 77 K and 0.25 MPa in a square-shaped carbon pore of size 2.6 A exceeds 60 mmol cm{sup -3}; for comparison, the liquid density of para-H{sub 2} at 30 K and 30 MPa is 42 mmol cm{sup -3}). Finally, by direct comparison of simulation results with experimental data it is explained why 'ordinary' carbonaceous materials are not efficient quantum sieves.

  19. Impact of the carbon pore size and topology on the equilibrium quantum sieving of hydrogen isotopes at zero coverage and finite pressures.

    Science.gov (United States)

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P; Furmaniak, Sylwester

    2009-04-08

    Carbonaceous slit-shaped and square-shaped pores efficiently differentiate adsorbed hydrogen isotopes at 77 and 33 K. Extensive path integral Monte Carlo simulations revealed that the square-shaped carbon pores enhanced the selectivity of deuterium over hydrogen in comparison to equivalent slit-shaped carbon pores at zero coverage as well as at finite pressures (i.e. quantum sieving of hydrogen isotopes is pore-topology-dependent). We show that this enhancement of the D(2)/H(2) equilibrium selectivity results from larger localization of hydrogen isotopes in square-shaped pores. The operating pressures for efficient quantum sieving of hydrogen isotopes are strongly dependent on the topology as well as on the size of the carbon pores. However, for both considered carbon pore topologies the highest D(2)/H(2) separation factor is observed at zero-coverage limit. Depending on carbon pore size and topology we predicted monotonic decreasing and non-monotonic shape of the D(2)/H(2) equilibrium selectivity at finite pressures. For both kinds of carbonaceous pores of molecular sizes we predict high compression of hydrogen isotopes at 77 and 33 K (for example, the pore density of compressed hydrogen isotopes at 77 K and 0.25 MPa in a square-shaped carbon pore of size 2.6 Å exceeds 60 mmol cm(-3); for comparison, the liquid density of para-H(2) at 30 K and 30 MPa is 42 mmol cm(-3)). Finally, by direct comparison of simulation results with experimental data it is explained why 'ordinary' carbonaceous materials are not efficient quantum sieves.

  20. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry

    Science.gov (United States)

    Frank, M.; O'Nions, R. K.; Hein, J.R.; Banakar, V.K.

    1999-01-01

    We compare the time series of major element geochemical and Pb- and Nd-isotopic composition obtained for seven hydrogenous ferromanganese crusts from the Atlantic, Indian, and Pacific Oceans which cover the last 60 Myr. Average crust growth rates and age-depth relationships were determined directly for the last about 10 Myr using 10Be/9Be profiles. In the absence of other information these were extrapolated to the base of the crusts assuming constant growth rates and constant initial 10Be/9Be ratios due to the lack of additional information. Co contents have also been used previously to estimate growth rates in Co-rich Pacific and Atlantic seamount crusts (Puteanus and Halbach, 1988). A comparison of 10Be/9Be- and Co-based dating of three Co-rich crusts supports the validity of this approach and confirms the earlier chronologies derived from extrapolated 10Be/9Be-based growth rates back to 60 Ma. Our data show that the flux of Co into Co-poor crusts has been considerably lower. The relationship between growth rate and Co content for the Co-poor crusts developed from these data is in good agreement with a previous study of a wider range of marine deposits (Manheim, 1986). The results suggest that the Co content provides detailed information on the growth history of ferromanganese crusts, particularly prior to 10-12 Ma where the 10Be-based method is not applicable. The distributions of Pb and Nd isotopes in the deep oceans over the last 60 Myr are expected to be controlled by two main factors: (a) variations of oceanic mixing patterns and flow paths of water masses with distinct isotopic signatures related to major paleogeographic changes and (b) variability of supply rates or provenance of detrital material delivered to the ocean, linked to climate change (glaciations) or major tectonic uplift. The major element profiles of crusts in this study show neither systematic features which are common to crusts with similar isotope records nor do they generally show

  1. Multi-element compound specific stable isotope analysis of volatile organic compounds at trace levels in groundwater samples

    Science.gov (United States)

    Herrero-Martín, Sara; Nijenhuis, Ivonne; Schmidt, Marie; Wolfram, Diana; Richnow, Hans. H.; Gehre, Matthias

    2013-04-01

    Groundwater pollution remains one of the major environmental and health concerns. A thorough understanding of sources, sinks and transformation processes of groundwater contaminants is needed to improve risk management evaluation, and to design efficient remediation and water treatment strategies. Isotopic tools provide unique information for an in-depth understanding of the fate of organic chemicals in the environment. During the last decades compound specific isotope analysis (CSIA) of complex mixtures, using gas chromatography-isotope ratio mass spectrometry (GC-IRMS), has gained popularity for the characterization and risk assessment of hazardous waste sites and for isotope forensics of organic contaminants. Multi-element isotope fingerprinting of organic substances provides a more robust framework for interpretation than the isotope analysis of only one element. One major challenge for application of CSIA is the analysis of trace levels of organic compounds in environmental matrices. It is necessary to inject 1 nmol carbon or 8 nmol hydrogen on column, to obtain an accurate and precise measurement of the isotope ratios, which is between two and three orders of magnitude larger than the amount of compound needed for conventional analysis of compound concentrations. Therefore, efficient extraction and pre-concentration techniques have to be integrated with GC-IRMS. Further research is urgently needed in this field, to evaluate the potential of novel and environmental-friendly sample pre-treatment techniques for CSIA to lower the detection limits and extending environmental applications. In this study, the novel coupling of a headspace autosampler (HS) with a programmed temperature vaporizer (PTV), allowing large volume injection of headspace samples, is proposed to improve the sensitivity of CSIA. This automatic, fast and solvent free strategy provides a significant increase on the sensitivity of GC-based methods maintaining the simple headspace instrumentation

  2. Results of Am isotopic ratio analysis in irradiated MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Shin-ichi; Osaka, Masahiko; Mitsugashira, Toshiaki; Konno, Koichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kajitani, Mikio

    1997-04-01

    For analysis of a small quantity of americium, it is necessary to separate from curium which has similar chemical property. As a chemical separation method for americium and curium, the oxidation of americium with pentavalent bismuth and subsequent co-precipitation of trivalent curium with BIP O{sub 4} were applied to analyze americium in irradiated MOX fuels which contained about 30wt% plutonium and 0.9wt% {sup 241}Am before irradiation and were irradiated up to 26.2GWd/t in the experimental fast reactor Joyo. The purpose of this study is to measure isotopic ratio of americium and to evaluate the change of isotopic ratio with irradiation. Following results are obtained in this study. (1) The isotopic ratio of americium ({sup 241}Am, {sup 242m}Am and {sup 243}Am) can be analyzed in the MOX fuels by isolating americium. The isotopic ratio of {sup 242m}Am and {sup 243}Am increases up to 0.62at% and 0.82at% at maximum burnup, respectively, (2) The results of isotopic analysis indicates that the contents of {sup 241}Am decreases, whereas {sup 242m}Am, {sup 243}Am increase linearly with increasing burnup. (author)

  3. Inverse Ubbelohde effect in the short hydrogen bond of photosystem II: Relation between H/D isotope effect and symmetry in potential energy profile.

    Science.gov (United States)

    Kanematsu, Yusuke; Tachikawa, Masanori; Takano, Yu

    2016-09-05

    The short hydrogen bond between tyrosine Yz and D1-His190 of photosystem II (PSII) was investigated using multicomponent quantum mechanics, where the quantum fluctuation of a hydrogen nucleus was incorporated into electronic structure calculation. Our computation demonstrated that the deuteration for hydrogen in the short hydrogen bond of PSII led to the reduction of the O…N distance. It indicated an inverse Ubbelohde effect typically recognized in strong and symmetric hydrogen-bonding clusters such as FHF(-) and H3O2-. We confirmed that the relation between the geometric isotope effect and the symmetry of the potential energy profile of FHF(-) was reasonably agreed with that of PSII. According to this agreement, the short hydrogen bond in PSII can be regarded as a short strong hydrogen bond. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of d13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  5. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, Tanja C. W.; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J.; Boschker, Henricus T. S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  6. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    Rationale: We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence,

  7. Advances in isotopic analysis for food authenticity testing

    DEFF Research Database (Denmark)

    Laursen, Kristian Holst; Bontempo, L.; Camin, Federica

    2016-01-01

    Abstract Stable isotope analysis has been used for food authenticity testing for more than 30 years and is today being utilized on a routine basis for a wide variety of food commodities. During the past decade, major analytical method developments have been made and the fundamental understanding...... of fractionation processes resulting in isotopic signatures suitable for food authentication has improved. In combination with an increasing use of multivariate statistics, development of new reference materials, establishment of reference sample databases, and complementation with other analytical methods, food...

  8. Trophic hierarchies illuminated via amino acid isotopic analysis.

    Directory of Open Access Journals (Sweden)

    Shawn A Steffan

    Full Text Available Food web ecologists have long sought to characterize the trophic niches of animals using stable isotopic analysis. However, distilling trophic position from isotopic composition has been difficult, largely because of the variability associated with trophic discrimination factors (inter-trophic isotopic fractionation and routing. We circumvented much of this variability using compound-specific isotopic analysis (CSIA. We examined the (15N signatures of amino acids extracted from organisms reared in pure culture at four discrete trophic levels, across two model communities. We calculated the degree of enrichment at each trophic level and found there was a consistent trophic discrimination factor (~7.6‰. The constancy of the CSIA-derived discrimination factor permitted unprecedented accuracy in the measurement of animal trophic position. Conversely, trophic position estimates generated via bulk-(15N analysis significantly underestimated trophic position, particularly among higher-order consumers. We then examined the trophic hierarchy of a free-roaming arthropod community, revealing the highest trophic position (5.07 and longest food chain ever reported using CSIA. High accuracy in trophic position estimation brings trophic function into sharper focus, providing greater resolution to the analysis of food webs.

  9. Application of carbon and hydrogen stable isotope analyses to detect exogenous citric acid in Japanese apricot liqueur.

    Science.gov (United States)

    Akamatsu, Fumikazu; Oe, Takaaki; Hashiguchi, Tomokazu; Hisatsune, Yuri; Kawao, Takafumi; Fujii, Tsutomu

    2017-08-01

    Japanese apricot liqueur manufacturers are required to control the quality and authenticity of their liqueur products. Citric acid made from corn is the main acidulant used in commercial liqueurs. In this study, we conducted spiking experiments and carbon and hydrogen stable isotope analyses to detect exogenous citric acid used as an acidulant in Japanese apricot liqueurs. Our results showed that the δ13C values detected exogenous citric acid originating from C4 plants but not from C3 plants. The δ2H values of citric acid decreased as the amount of citric acid added increased, whether the citric acid originated from C3 or C4 plants. Commercial liqueurs with declared added acidulant provided higher δ13C values and lower δ2H values than did authentic liqueurs and commercial liqueurs with no declared added acidulant. Carbon and hydrogen stable isotope analyses are suitable as routine methods for detecting exogenous citric acid in Japanese apricot liqueur. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Stable isotope analysis of safety matches using isotope ratio mass spectrometry--a forensic case study.

    Science.gov (United States)

    Farmer, N L; Meier-Augenstein, W; Kalin, R M

    2005-01-01

    Isotope ratio mass spectrometry (IRMS) was used to assess what contribution the technique could make towards the comparative analysis of matchstick samples within the 'normal' framework of a forensic investigation. A method was developed to allow the comparison of samples submitted as a result of an investigation, with the added advantage of rapid sample turn-around expected within this field. To the best of our knowledge this is the first time that wooden safety matches have been analysed using IRMS. In this particular case, bulk stable isotope analysis carrried out on a 'like-for-like' basis could demonstrate conclusively that matches seized from a suspect were different from those collected at the scene of crime. The maximum delta13C variability observed within one box was 2.5 per thousand, which, in conjunction with the error of measurement, was regarded to yield too wide an error margin as to permit differentiation of matchsticks based on 13C isotopic composition alone given that the 'natural' 13C abundance in wood ranges from -20 to -30 per thousand. However, from the delta2H values obtained for crime scene matches and seized matches of -114.5 per thousand and -65 per thousand, respectively, it was concluded that the matches seized were distinctly different from those collected at the crime scene. Copyright (c) 2005 John Wiley & Sons, Ltd.

  11. Decade to centennial resolution hydrogen isotopic record of climate change from southern New England for the past 16 kyr: proxy validation and multi-proxy comparisons

    Science.gov (United States)

    Huang, Y.; Gao, L.; Hou, J.; Shuman, B. N.; Oswald, W.; Foster, D.

    2009-12-01

    Open system lakes in New England offer excellent archives of precipitation isotopic ratios that yield quantitative paleoclimate information. We have demonstrated previously from a lake sediment transect that hydrogen isotopic ratios of a middle-chain length fatty acid, behenic acid (BA), faithfully record precipitation isotopic ratios. We hypothesized that mid-chain n-alkyl lipids in these small lakes were primarily derived from aquatic plants that record lake water isotopic ratios. To test this hypothesis, we conducted systematic and extensive sampling of both terrestrial and aquatic plants over the past two years at two typical kettle hole lakes, Blood Pond and Rocky Pond, MA, and used a linear algebra approach to delineate percentage inputs of aquatic and terrestrial plant contributions to mid-chain n-alkyl lipids. Our results demonstrate that >92 % of the mid-chain n-alkyl lipids is derived from submerged and floating aquatic macrophytes. Our new data provide a solid basis for the application of behenic hydrogen isotopic ratios as a paleoclimate proxy from small lakes. We will present a decadal to centennial scale 16 kyr record of BA hydrogen isotopic ratios from Blood Pond, and will discuss the results in light of published pollen and lake level data. Overall, our hydrogen isotopic record is fully consistent with regional climate scenarios, including the distinctive warming at B-A events, abrupt cooling at YD event, and transition from glacial to Holcoene climate conditions. However, our high-solution isotopic data provides important new insights concerning abrupt regional climate variability. We demonstrate that the New England climate is exceptionally senstive to AMOC changes and solar forcing and that many of the abrupt climate fluctuations exert major impacts on terrestrial ecosystems, hydrology and lake levels.

  12. Effects of trophic level and metamorphosis on discrimination of hydrogen isotopes in a plant-herbivore system.

    Directory of Open Access Journals (Sweden)

    Jacob M Peters

    Full Text Available The use of stable isotopes in ecological studies requires that we know the magnitude of discrimination factors between consumer and element sources. The causes of variation in discrimination factors for carbon and nitrogen have been relatively well studied. In contrast, the discrimination factors for hydrogen have rarely been measured. We grew cabbage looper caterpillars (Trichoplusia ni on cabbage (Brassica oleracea plants irrigated with four treatments of deuterium-enriched water (δD = -131, -88, -48, and -2‰, respectively, allowing some of them to reach adulthood as moths. Tissue δD values of plants, caterpillars, and moths were linearly correlated with the isotopic composition of irrigation water. However, the slope of these relationships was less than 1, and hence, discrimination factors depended on the δD value of irrigation water. We hypothesize that this dependence is an artifact of growing plants in an environment with a common atmospheric δD value. Both caterpillars and moths were significantly enriched in deuterium relative to plants by ∼45‰ and 23‰ respectively, but the moths had lower tissue to plant discrimination factors than did the caterpillars. If the trophic enrichment documented here is universal, δD values must be accounted for in geographic assignment studies. The isotopic value of carbon was transferred more or less faithfully across trophic levels, but δ(15N values increased from plants to insects and we observed significant non-trophic (15N enrichment in the metamorphosis from larvae to adult.

  13. Effects of trophic level and metamorphosis on discrimination of hydrogen isotopes in a plant-herbivore system

    Science.gov (United States)

    Peters, Jacob M.; Wolf, Nathan; Stricker, Craig A.; Collier, Timothy R.; Martinez del Rio, Carlos

    2012-01-01

    The use of stable isotopes in ecological studies requires that we know the magnitude of discrimination factors between consumer and element sources. The causes of variation in discrimination factors for carbon and nitrogen have been relatively well studied. In contrast, the discrimination factors for hydrogen have rarely been measured. We grew cabbage looper caterpillars (Trichoplusia ni) on cabbage (Brassica oleracea) plants irrigated with four treatments of deuterium-enriched water (δD = -131, -88, -48, and -2‰, respectively), allowing some of them to reach adulthood as moths. Tissue δD values of plants, caterpillars, and moths were linearly correlated with the isotopic composition of irrigation water. However, the slope of these relationships was less than 1, and hence, discrimination factors depended on the δD value of irrigation water. We hypothesize that this dependence is an artifact of growing plants in an environment with a common atmospheric δD value. Both caterpillars and moths were significantly enriched in deuterium relative to plants by ~45‰ and 23‰ respectively, but the moths had lower tissue to plant discrimination factors than did the caterpillars. If the trophic enrichment documented here is universal, δD values must be accounted for in geographic assignment studies. The isotopic value of carbon was transferred more or less faithfully across trophic levels, but δ15N values increased from plants to insects and we observed significant non-trophic 15N enrichment in the metamorphosis from larvae to adult.

  14. High-resolution measurements of atmospheric molecular hydrogen and its isotopic composition at the West African coast of Mauritania

    Directory of Open Access Journals (Sweden)

    S. Walter

    2013-05-01

    Full Text Available Oceans are a net source of molecular hydrogen (H2 to the atmosphere, where nitrogen (N2 fixation is assumed to be the main biological production pathway followed by photochemical production from organic material. The sources can be distinguished using isotope measurements because of clearly differing isotopic signatures of the produced hydrogen. Here we present the first ship-borne measurements of atmospheric molecular H2 mixing ratio and isotopic composition at the West African coast of Mauritania (16–25° W, 17–24° N. This area is one of the biologically most active regions of the world's oceans with seasonal upwelling events and characterized by strongly differing hydrographical/biological properties and phytoplankton community structures. The aim of this study was to identify areas of H2 production and distinguish H2 sources by isotopic signatures of atmospheric H2. For this more than 100 air samples were taken during two cruises in February 2007 and 2008. During both cruises a transect from the Cape Verde Islands towards the Mauritanian Coast was sampled to cover differing oceanic regions such as upwelling and oligotrophic regimes. In 2007, additionally, four days were sampled at high resolution of one sample per hour to investigate a possible diurnal cycle of atmospheric H2. Our results indicate the influence of local sources and suggest the Banc d'Arguin as a pool for precursors for photochemical H2 production, whereas oceanic N2 fixation could not be identified as a source for atmospheric H2 during these two cruises. The variability in diurnal cycles is probably influenced by released precursors for photochemical H2 production and also affected by a varying origin of air masses. This means for future investigations that only measuring the mixing ratio of H2 is insufficient to explain the variability of an atmospheric diurnal cycle and support is needed, e.g. by isotopic measurements. Nevertheless, measurements of atmospheric H2

  15. Stable isotopic analysis of fossil chironomids as an approach to environmental reconstruction: state of development and future challenges

    Directory of Open Access Journals (Sweden)

    Oliver Heiri

    2012-10-01

    Full Text Available Remains of chironomid larvae, especially their strongly sclerotized head capsules, can be found abundantly and well preserved in most lake sediment records. These remains mainly consist of chitin and proteins and, since their chemical composition does not seem to be strongly affected by decompositional processes, they can be used to develop palaeoenvironmental reconstructions based on their stable isotopic composition. Here we review available stable isotope studies based on fossil chironomids and indicate future research necessary to further develop this still relatively new research approach. Efforts to produce stable isotope records based on fossil chironomids have mainly examined the elements H, N, C, and O. They have focussed on (1 developing the methodology for preparing samples for isotopic analysis, (2 laboratory studies cultivating chironomid larvae under controlled conditions to determine the factors affecting their stable isotopic composition, (3 ecosystem-scale studies relating stable isotopic measurements of fossil chironomid assemblages to environmental conditions, and (4 developing first down-core records describing past changes in the stable isotopic composition of chironomid assemblages. These studies have shown that chemical sample pretreatment may affect the isotopic composition for some elements. Laboratory runs suggest that the diet of the larvae influences their stable isotopic composition for H, N, C and O, whereas stable isotopes in the ambient water also strongly influence their oxygen and to a lesser extent hydrogen isotopic composition. These experiments also indicate only minor offsets between the nitrogen and carbon isotopic composition of chironomid soft tissue and the fossilizing head capsules, whereas for hydrogen and oxygen this offset remains to be explored. Though few datasets have been published, the available ecosystem studies and developed down-core sediment records indicate that stable isotopes in

  16. Assessing the Utility of Hydrogen, Carbon and Nitrogen Stable Isotopes in Estimating Consumer Allochthony in Two Shallow Eutrophic Lakes.

    Directory of Open Access Journals (Sweden)

    Jari Syväranta

    Full Text Available Hydrogen stable isotopes (δ2H have recently been used to complement δ13C and δ15N in food web studies due to their potentially greater power to separate sources of organic matter in aquatic food webs. However, uncertainties remain regarding the use of δ2H, since little is known about the potential variation in the amount of exchangeable hydrogen (Hex among common sample materials or the patterns of δ2H when entire food webs are considered. We assessed differences in Hex among the typical sample materials in freshwater studies and used δ2H, δ13C and δ15N to compare their effectiveness in tracing allochthonous matter in food webs of two small temperate lakes. Our results showed higher average amounts of Hex in animal tissues (27% in fish and macroinvertebrates, 19% in zooplankton compared to most plant material (15% in terrestrial plants and 8% in seston/periphyton, with the exception of aquatic vascular plants (23%, referred to as macrophytes. The amount of Hex correlated strongly with sample lipid content (inferred from C:N ratios in fish and zooplankton samples. Overall, the three isotopes provided good separation of sources (seston, periphyton, macrophytes and allochthonous organic matter, particularly the δ2H followed by δ13C. Aquatic macrophytes revealed unexpectedly high δ2H values, having more elevated δ2H values than terrestrial organic matter with direct implications for estimating consumer allochthony. Organic matter from macrophytes significantly contributed to the food webs in both lakes highlighting the need to include macrophytes as a potential source when using stable isotopes to estimate trophic structures and contributions from allochthonous sources.

  17. Assessing the Utility of Hydrogen, Carbon and Nitrogen Stable Isotopes in Estimating Consumer Allochthony in Two Shallow Eutrophic Lakes.

    Science.gov (United States)

    Syväranta, Jari; Scharnweber, Kristin; Brauns, Mario; Hilt, Sabine; Mehner, Thomas

    2016-01-01

    Hydrogen stable isotopes (δ2H) have recently been used to complement δ13C and δ15N in food web studies due to their potentially greater power to separate sources of organic matter in aquatic food webs. However, uncertainties remain regarding the use of δ2H, since little is known about the potential variation in the amount of exchangeable hydrogen (Hex) among common sample materials or the patterns of δ2H when entire food webs are considered. We assessed differences in Hex among the typical sample materials in freshwater studies and used δ2H, δ13C and δ15N to compare their effectiveness in tracing allochthonous matter in food webs of two small temperate lakes. Our results showed higher average amounts of Hex in animal tissues (27% in fish and macroinvertebrates, 19% in zooplankton) compared to most plant material (15% in terrestrial plants and 8% in seston/periphyton), with the exception of aquatic vascular plants (23%, referred to as macrophytes). The amount of Hex correlated strongly with sample lipid content (inferred from C:N ratios) in fish and zooplankton samples. Overall, the three isotopes provided good separation of sources (seston, periphyton, macrophytes and allochthonous organic matter), particularly the δ2H followed by δ13C. Aquatic macrophytes revealed unexpectedly high δ2H values, having more elevated δ2H values than terrestrial organic matter with direct implications for estimating consumer allochthony. Organic matter from macrophytes significantly contributed to the food webs in both lakes highlighting the need to include macrophytes as a potential source when using stable isotopes to estimate trophic structures and contributions from allochthonous sources.

  18. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  19. Hydrogen engine performance analysis. First annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

    1978-08-01

    Many problems associated with the design and development of hydrogen-air breathing internal combustion engines for automotive applications have been identified by various domestic and foreign researchers. This project addresses the problems identified in the literature, seeks to evaluate potential solutions to these problems, and will obtain and document a design data-base convering the performance, operational and emissions characteristics essential for making rational decisions regarding the selection and design of prototype hydrogen-fueled, airbreathing engines suitable for manufacture for general automotive use. Information is included on the operation, safety, emission, and cost characteristics of hydrogen engines, the selection of a test engine and testing facilities, and experimental results. Baseline data for throttled and unthrottled, carburetted, hydrogen engine configurations with and without exhaust gas recirculation and water injection are presented. In addition to basic data gathering concerning performance and emissions, the test program conducted was formulated to address in detail the two major problems that must be overcome if hydrogen-fueled engines are to become viable: flashback and comparatively high NO/sub x/ emissions at high loads. In addition, the results of other hydrogen engine investigators were adjusted, using accepted methods, in order to make comparisons with the results of the present study. The comparisons revealed no major conflicts. In fact, with a few exceptions, there was found to be very good agreement between the results of the various studies.

  20. New organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl esters, glycines, L-valines, polyethylenes, and oils

    Science.gov (United States)

    Schimmelmann, Arndt; Qi, Haiping; Coplen, Tyler B.; Brand, Willi A.; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F.; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Gröning, Manfred; Hélie, Jean-François; Herrero-Martín, Sara; Meijer, Harro A.J.; Sauer, Peter E.; Sessions, Alex L.; Werner, Roland A.

    2016-01-01

    An international project developed, quality-tested, and determined isotope−δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope−δ scales. The RMs span a range of δ2HVSMOW-SLAP values from −210.8 to +397.0 mUr or ‰, for δ13CVPDB-LSVEC from −40.81 to +0.49 mUr and for δ15NAir from −5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a 2H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ2H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain 13C and carbon-bound organic 2H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.

  1. Modeling 3D-CSIA data : Carbon, chlorine, and hydrogen isotope fractionation during reductive dechlorination of TCE to ethene

    NARCIS (Netherlands)

    van Breukelen, B.M.; Thouement, H.A.A.; Stack, Philip E.; Vanderford, Mindy; Philp, Paul; Kuder, Tomasz

    2017-01-01

    Reactive transport modeling of multi-element, compound-specific isotope analysis (CSIA) data has great potential to quantify sequential microbial reductive dechlorination (SRD) and alternative pathways such as oxidation, in support of remediation of chlorinated solvents in groundwater. As a key

  2. Carbon Isotope Fractionation in Reactions of 1,2-Dibromoethane with FeS and Hydrogen Sulfide

    Science.gov (United States)

    EDB (1,2-dibromoethane) is frequently detected at sites impacted by leaded gasoline. In reducing environments, EDB is highly susceptible to abiotic degradation. A study was conducted to evaluate the potential of compound-specific isotope analysis (CSIA) in assessing abiotic degr...

  3. Laser spectrometer for CO2 clumped isotope analysis

    Science.gov (United States)

    Prokhorov, Ivan; Kluge, Tobias; Janssen, Christof

    2017-04-01

    Carbon dioxide clumped isotope thermometry has proven to be a reliable method for biogeochemical and atmospheric research. We present a new laser spectroscopic instrument for doubly-substituted isotopologues analysis. In contrast to a conventional isotope ratio mass spectrometry (IRMS), tunable laser direct absorption spectroscopy (TLDAS) has the advantage of isotopologue-specific determination free of isobaric interferences. Tunable infrared laser based spectrometer for clumped isotope analysis is being developed in collaboration between Heidelberg University, Germany, and LERMA-IPSL, CNRS, France. The instrument employs two continuous intraband cascade lasers (ICL) tuned at 4439 and 4329 nm. The spectral windows covered by the lasers contain absorption lines of the six most abundant CO2 isotopologues, including the two doubly substituted species 16O13C18O and 16O13C17O, and all singly substituted isotopologues with 13C, 18O and 17O. A Herriott-type multi-pass cell provides two different absorption pathlengths to compensate the abundance difference between singly- and doubly-substituted isotopologues. We have reached the sub-permill precision required for clumped isotope measurements within the integration time of several seconds. The test version of the instrument demonstrates a performance comparable to state of the art IRMS. We highlight the following features of the instrument that are strong advantages compared to conventional mass spectrometry: measurement cycle in the minute range, simplified sample preparation routine, table-top layout with a potential for in-situ applications.

  4. Gas and hydrogen isotopic analyses of volcanic eruption clouds in Guatemala sampled by aircraft

    Science.gov (United States)

    Rose, W.I.; Cadle, R.D.; Heidt, L.E.; Friedman, I.; Lazrus, A.L.; Huebert, B.J.

    1980-01-01

    Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft. ?? 1980.

  5. Isotope analysis (δ13C of pulpy whole apple juice

    Directory of Open Access Journals (Sweden)

    Ricardo Figueira

    2011-09-01

    Full Text Available The objectives of this study were to develop the method of isotope analysis to quantify the carbon of C3 photosynthetic cycle in pulpy whole apple juice and to measure the legal limits based on Brazilian legislation in order to identify the beverages that do not conform to the Ministry of Agriculture, Livestock and Food Supply (MAPA. This beverage was produced in a laboratory according to the Brazilian law. Pulpy juices adulterated by the addition of sugarcane were also produced. The isotope analyses measured the relative isotope enrichment of the juices, their pulpy fractions (internal standard and purified sugar. From those results, the quantity of C3 source was estimated by means of the isotope dilution equation. To determine the existence of adulteration in commercial juices, it was necessary to create a legal limit according to the Brazilian law. Three brands of commercial juices were analyzed. One was classified as adulterated. The legal limit enabled to clearly identify the juice that was not in conformity with the Brazilian law. The methodology developed proved efficient for quantifying the carbon of C3 origin in commercial pulpy apple juices.

  6. Stable isotope labeling for proteomic analysis of tissues in mouse.

    Science.gov (United States)

    Hölper, Soraya; Ruhs, Aaron; Krüger, Marcus

    2014-01-01

    Since the first metabolic labeling experiments with stable isotopes beginning of the last century, several approaches were pursued to monitor protein dynamics in living animals. Today, almost all model organisms from bacteria to rodents can be fully labeled with SILAC (stable isotope labeling of amino acids in cell culture) amino acids. The development of special media and diets containing the labeled amino acids provides an efficient way to metabolically label prokaryotic and eukaryotic organisms. Preferentially, the essential amino acid lysine ((13)C6-lysine) is used to label mice (Mus musculus) and after one generation the natural isotope is fully replaced by the stable (13)C6-lysine isotope. So far, the SILAC mouse approach has been used to analyze several transgenic and knockout mouse models. Spike-in of labeled proteins into non-labeled samples provides an accurate relative protein quantification method without any chemical modification. Here we describe how to establish a SILAC mouse colony and describe the analysis of skeletal muscle tissue with different metabolic and contractile profiles.

  7. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii.

    Science.gov (United States)

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D

    2011-03-15

    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Risk analysis of complex hydrogen infrastructures

    DEFF Research Database (Denmark)

    Markert, Frank; Marangon, Alessia; Carcassi, Marco

    2015-01-01

    delivered, stored and distributed, as e.g. biomass based methane, ethanol, gasoline, diesel as well as the traditional crude oil based products. Hydrogen is also in play as intermediate energy storage to secure the power supply based on large shares of fluctuating energy sources and as an intermediate...

  9. Hydrogen Technical Analysis -- Dissemination of Information

    Energy Technology Data Exchange (ETDEWEB)

    George Kervitsky, Jr.

    2006-03-20

    SENTECH is a small energy and environmental consulting firm providing technical, analytical, and communications solutions to technology management issues. The activities proposed by SENTECH focused on gathering and developing communications materials and information, and various dissemination activities to present the benefits of hydrogen energy to a broad audience while at the same time establishing permanent communications channels to enable continued two-way dialog with these audiences in future years. Effective communications and information dissemination is critical to the acceptance of new technology. Hydrogen technologies face the additional challenge of safety preconceptions formed primarily as a result of the crash of the Hindenburg. Effective communications play a key role in all aspects of human interaction, and will help to overcome the perceptual barriers, whether of safety, economics, or benefits. As originally proposed SENTECH identified three distinct information dissemination activities to address three distinct but important audiences; these formed the basis for the task structure used in phases 1 and 2. The tasks were: (1) Print information--Brochures that target the certain segment of the population and will be distributed via relevant technical conferences and traditional distribution channels. (2) Face-to-face meetings--With industries identified to have a stake in hydrogen energy. The three industry audiences are architect/engineering firms, renewable energy firms, and energy companies that have not made a commitment to hydrogen (3) Educational Forums--The final audience is students--the future engineers, technicians, and energy consumers. SENTECH will expand on its previous educational work in this area. The communications activities proposed by SENTECH and completed as a result of this cooperative agreement was designed to compliment the research and development work funded by the DOE by presenting the technical achievements and validations

  10. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.|info:eu-repo/dai/nl/304838233; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally

  11. Automated SIMS Isotopic Analysis Of Small Dust Particles

    Science.gov (United States)

    Nittler, L.; Alexander, C.; Gyngard, F.; Morgand, A.; Zinner, E. K.

    2009-12-01

    The isotopic compositions of sub-μm to μm sized dust grains are of increasing interest in cosmochemistry, nuclear forensics and terrestrial aerosol research. Because of its high sensitivity and spatial resolution, Secondary Ion Mass Spectrometry (SIMS) is the tool of choice for measuring isotopes in such small samples. Indeed, SIMS has enabled an entirely new sub-field of astronomy: presolar grains in meteorites. In recent years, the development of the Cameca NanoSIMS ion probe has extended the reach of isotopic measurements to particles as small as 100 nm in diameter, a regime where isotopic precision is strongly limited by the total number of atoms in the sample. Many applications require obtaining isotopic data on large numbers of particles, necessitating the development of automated techniques. One such method is isotopic imaging, wherein images of multiple isotopes are acquired, each containing multiple dispersed particles, and image processing is used to determine isotopic ratios for individual particles. This method is powerful, but relatively inefficient for raster-based imaging on the NanoSIMS. Modern computerized control of instrumentation has allowed for another approach, analogous to commercial automated SEM-EDS particle analysis systems, in which images are used solely to locate particles followed by fully automated grain-by-grain analysis. The first such system was developed on the Carnegie Institution’s Cameca ims-6f, and was used to generate large databases of presolar grains. We have recently developed a similar system for the NanoSIMS, whose high sensitivity allows for smaller grains to be analyzed with less sample consumption than is possible with the 6f system. The 6f and NanoSIMS systems are functionally identical: an image of dispersed grains is obtained with sufficient statistical precision for an algorithm to identify the positions of individual particles, the primary ion beam is deflected to each particle in turn and rastered in a small

  12. Influence of helium on hydrogen isotope exchange in tungsten at sequential exposures to deuterium and helium–protium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bobyr, N.P., E-mail: NPBobyr@gmail.com [NRC “Kurcharov Institute”, Ac. Kurcharov sq., 1/1, Moscow 123182 (Russian Federation); Alimov, V.Kh. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan); Khripunov, B.I.; Spitsyn, A.V. [NRC “Kurcharov Institute”, Ac. Kurcharov sq., 1/1, Moscow 123182 (Russian Federation); Mayer, M. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan); Golubeva, A.V.; Petrov, V.B. [NRC “Kurcharov Institute”, Ac. Kurcharov sq., 1/1, Moscow 123182 (Russian Federation)

    2015-08-15

    Hydrogen isotopes exchange in tungsten was investigated after sequential exposures to low energy deuterium (D) and helium–seeded protium (He–seeded H) plasmas at sample temperatures of 403 and 533 K. Deuterium depth profiles were measured by the D({sup 3}He, p){sup 4}He nuclear reaction with {sup 3}He{sup +} energies between 0.69 and 4.5 MeV allowing determination of the D concentration up to a depth of 8 μm. It was found that a significant part of the deuterium initially retained in tungsten after D plasma exposure was released during sequential exposure to a protium plasma. However, exposure of the D-plasma-exposed W samples to the He–seeded H plasma reduces the amount of released deuterium as compared to pure H plasma exposure.

  13. Hydrogen atom vs electron transfer in catecholase-mimetic oxidations by superoxometal complexes. Deuterium kinetic isotope effects.

    Science.gov (United States)

    Simándi, Tatiana M; May, Zoltán; Szigyártó, Imola Cs; Simándi, László I

    2005-01-21

    Dioximato-cobalt(II), -iron(II) and -manganese(II) complexes (1)-(6), acting as functional catecholase and phenoxazinone synthase models, exhibit a deuterium kinetic isotope effect predicted by theory (k4H/k4D < or = 3) in the catalytic oxidative dehydrogenation of 3,5-di-tert-butylcatechol and 2-aminophenol by O2. KIEs in the range of (k4H/k4D approximately 1.79-3.51) are observed with (1) and (2) as catalysts, pointing to hydrogen atom transfer in the rate-determining step from the substrate hydroxy group to the metal-bound superoxo ligand. Less significant KIEs (1.06-1.20) are exhibited by catalysts systems (3)-(6), indicating that proton-coupled electron transfer is the preferred route in those cases.

  14. Isotopic fractionation in proteins as a measure of hydrogen bond length

    CERN Document Server

    McKenzie, Ross H; Ramesh, Sai

    2015-01-01

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor $\\Phi$ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds we calculate $\\Phi$ as a function of the proton donor-acceptor distance $R$. For numerical results, we use a parameterization of the model for symmetric O-H.... O bonds. We consider the relative contributions of the O-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunnelling splitting effects at...

  15. Silicon ({sup 30}Si) isotope analysis by ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lilian A. de; Abreu Junior, Cassio H.; Fernandes, Henriqueta M.G. [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Nutricao Mineral de Plantas]. E-mails: laoliveira@cena.usp.br; cahabreu@cena.usp.br; hgimenes@cena.usp.br; Carneiro, Josiane M.T. [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis]. E-mail: josiane@cena.usp.br

    2007-07-01

    Recently, silicon had been included in the Brazilian Fertilizers Legislation as a beneficial micronutrient. Studies had been conducted to understand the effect of this element on properties of the soil-plant system, as well as to the yield and quality of several economical crops. However, researches related to the physiological processes of absorption, transport and relocation of silicon in plants have been rarely investigated. The use of isotopic method is justified by its precision and reliable characteristics on understanding of theses processes. During isotopic determination of silicon, important spectral interferents occur at mass of 28 (CO{sup +} e N{sub 2}{sup +}), 29 (N2H{sup +}) and 30 (NO{sup +}). The present work propose a methodology for silicon isotopic ratio determination by ICP-MS (Inductively Coupled Plasma Mass Spectrometry), which consists in a rapid and precise technique. For this work, natural silicon standard samples, as H{sub 4}SiO{sub 4} (Tritisol, MERCK), were used in concentrations of 100, 200, 300, 400 and 500 {mu}g L{sup -1} prepared with Mili-Q water (blank). The ICP-MS was optimized to a robust tune conditions aiming to minimize polyatomic interferences on m/z: 28, 29 and 30. The determined natural isotopic ratios were very high consistent among with the theoretical values of {sup 28}Si/{sup 29}Si and {sup 29}Si/{sup 30}Si ratios. These results demonstrated that silicon isotopic analysis can be carrying on by ICP-MS. (author)

  16. Gas chromatography flow rates for determining deuterium/hydrogen ratios of natural gas by gas chromatography/high-temperature conversion/isotope ratio mass spectrometry.

    Science.gov (United States)

    Jia, Wanglu; Peng, Ping'an; Liu, Jinzhong

    2008-08-01

    The effects of the gas chromatography flow rate on the determination of the deuterium/hydrogen (D/H) ratios of natural gas utilising gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/TC/IRMS) have been evaluated. In general, the measured deltaD values of methane, ethane and propane decrease with increase in column flow rate. When the column flow rate is 1 mL/min or higher, which is commonly used for the determination of D/H ratios of natural gas, the organic H in gas compounds may not be completely converted into hydrogen gas. Based on the results of experiments conducted on a GC column with an i.d. of 0.32 mm, a GC flow rate of 0.6 mL/min is proposed for determining the D/H ratios of natural gas by GC/TC/IRMS. Although this value may be dependent on the instrument conditions used in this work, we believe that correct deltaD values of organic compounds with a few carbon atoms are obtained only when relatively low GC flow rates are used for D/H analysis by GC/TC/IRMS. Moreover, as the presence of trace water could significantly affect the determination of D/H ratios, a newly designed inlet liner was used to remove trace water contained in some gas samples. Copyright (c) 2008 John Wiley & Sons, Ltd.

  17. High-level direct-dynamics variational transition state theory calculations including multidimensional tunneling of the thermal rate constants, branching ratios, and kinetic isotope effects of the hydrogen abstraction reactions from methanol by atomic hydrogen.

    Science.gov (United States)

    Meana-Pañeda, Rubén; Truhlar, Donald G; Fernández-Ramos, Antonio

    2011-03-07

    We report a detailed theoretical study of the hydrogen abstraction reaction from methanol by atomic hydrogen. The study includes the analysis of thermal rate constants, branching ratios, and kinetic isotope effects. Specifically, we have performed high-level computations at the MC3BB level together with direct dynamics calculations by canonical variational transition state theory (CVT) with the microcanonically optimized multidimensional tunneling (μOMT) transmission coefficient (CVT/μOMT) to study both the CH(3)OH+H→CH(2)OH+H(2) (R1) reaction and the CH(3)OH+H→CH(3)O+H(2) (R2) reaction. The CVT/μOMT calculations show that reaction R1 dominates in the whole range 298≤T (K)≤2500 and that anharmonic effects on the torsional mode about the C-O bond are important, mainly at high temperatures. The activation energy for the total reaction sum of R1 and R2 reactions changes substantially with temperature and, therefore, the use of straight-line Arrhenius plots is not valid. We recommend the use of new expressions for the total R1 + R2 reaction and for the R1 and R2 individual reactions. © 2011 American Institute of Physics.

  18. A Novel Framework for Quantifying past Methane Recycling by Sphagnum-Methanotroph Symbiosis Using Carbon and Hydrogen Isotope Ratios of Leaf Wax Biomarkers

    Science.gov (United States)

    Nichols, Jonathan E.; Isles, Peter D. F.; Peteet, Dorothy M.

    2014-01-01

    The concentration of atmospheric methane is strongly linked to variations in Earth's climate. Currently, we can directly reconstruct the total atmospheric concentration of methane, but not individual terms of the methane cycle. Northern wetlands, dominated by Sphagnum, are an important contributor of atmospheric methane, and we seek to understand the methane cycle in these systems. We present a novel method for quantifying the proportion of carbon Sphagnum assimilates from its methanotrophic symbionts using stable isotope ratios of leaf-wax biomarkers. Carbon isotope ratios of Sphagnum compounds are determined by two competing influences, water content and the isotope ratio of source carbon. We disentangled these effects using a combined hydrogen and carbon isotope approach. We constrained Sphagnum water content using the contrast between the hydrogen isotope ratios of Sphagnum and vascular plant biomarkers. We then used Sphagnum water content to calculate the carbon isotope ratio of Sphagnum's carbon pool. Using a mass balance equation, we calculated the proportion of recycled methane contributed to the Sphagnum carbon pool, 'PRM.' We quantified PRM in peat monoliths from three microhabitats in the Mer Bleue peatland complex. Modern studies have shown that water table depth and vegetation have strong influences on the peatland methane cycle on instrumental time scales. With this new approach, delta C-13 of Sphagnum compounds are now a useful tool for investigating the relationships among hydrology, vegetation, and methanotrophy in Sphagnum peatlands over the time scales of entire peatland sediment records, vital to our understanding of the global carbon cycle through the Late Glacial and Holocene.

  19. Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado; Part IV, source of fluids, from oxygen, hydrogen, and carbon isotope studies

    Science.gov (United States)

    Bethke, P.M.; Rye, R.O.

    1979-01-01

    The hydrogen isotopic composition of fluids responsible for formation of the near-surface silver-base metal vein deposits at Creede was measured by direct analysis of inclusion fluids in sphalerite, quartz, and rhodochrosite and was estimated from analyses of illite and chlorite. The oxygen isotopic composition was determined directly on inclusion fluids in sphalerite and was estimated from analyses of quartz, illite, rhodochrosite, siderite, and adularia. The carbon isotopic composition was estimated from analyses of rhodochrosite and siderite. The ranges in isotopic composition for water and CO2 in the fluids associated with the formation of each of the minerals is given below (number of determinations given in parentheses):Mineral delta D (sub H2) O ppm delta 18 O (sub H2) O ppm delta 13 C (sub CO2) ppmSphalerite -81 to -54 (4) -10.1 to -4.5 (4)Quartz -97 to -86 (4) -5.9 to 1.8 (18)Illite -62 to -50 (8) -1.6 to 1.2(7)Chlorite -64 to -55 (10) -2.2 to 0.8 (10)Adularia 4.2 (1)Rhodochrosite -82 to -78 (2) 4.2 to 9.4 (9) -5.7 to -4.2 (9)Siderite 4.9 to 9.9 (6) -6.9 to -2.7 (6)The delta D (sub H2) O and delta 18 O (sub H2) O values of fluids associated with the formation of sphalerite, quartz, illite/chlorite, and carbonate minerals differ substantially from one another, and these differences appear to have been maintained throughout the depositional history, regardless of the positions of the minerals in the paragenetic sequence.The data suggest that waters from three coexisting reservoirs fed the vein system alternately and episodically during vein formation, and apparently there was little mixing of the fluids from the different reservoirs. The hydrogen, oxygen, and carbon isotope data suggest that the carbonate waters were deep seated, probably dominantly magmatic, in origin. The sphalerite and illite/chlorite waters must have been dominantly meteoric in origin and substantially oxygen shifted by exchange with the volcanic country rocks. The quartz waters were

  20. Isotopic ratio outlier analysis global metabolomics of Caenorhabditis elegans.

    Science.gov (United States)

    Stupp, Gregory S; Clendinen, Chaevien S; Ajredini, Ramadan; Szewc, Mark A; Garrett, Timothy; Menger, Robert F; Yost, Richard A; Beecher, Chris; Edison, Arthur S

    2013-12-17

    We demonstrate the global metabolic analysis of Caenorhabditis elegans stress responses using a mass-spectrometry-based technique called isotopic ratio outlier analysis (IROA). In an IROA protocol, control and experimental samples are isotopically labeled with 95 and 5% (13)C, and the two sample populations are mixed together for uniform extraction, sample preparation, and LC-MS analysis. This labeling strategy provides several advantages over conventional approaches: (1) compounds arising from biosynthesis are easily distinguished from artifacts, (2) errors from sample extraction and preparation are minimized because the control and experiment are combined into a single sample, (3) measurement of both the molecular weight and the exact number of carbon atoms in each molecule provides extremely accurate molecular formulas, and (4) relative concentrations of all metabolites are easily determined. A heat-shock perturbation was conducted on C. elegans to demonstrate this approach. We identified many compounds that significantly changed upon heat shock, including several from the purine metabolism pathway. The metabolomic response information by IROA may be interpreted in the context of a wealth of genetic and proteomic information available for C. elegans . Furthermore, the IROA protocol can be applied to any organism that can be isotopically labeled, making it a powerful new tool in a global metabolomics pipeline.

  1. Hydrogen isotopes mobility and trapping in V sbnd Cr sbnd Ti alloys

    Science.gov (United States)

    Budylkin, N.; Voloschin, L.; Mironova, E.; Riazantseva, N.; Tebus, V.

    1996-10-01

    In the last years the V sbnd Ti sbnd Cr alloys were considered as candidate materials for different structures of Fusion Reactors (blanket, first wall, divertor and so on) due to their advantages over other structure materials. Mobility and trapping parameters of hydrogen are essential characteristics for an assessment of using the V sbnd Ti sbnd Cr alloys in FR. In this paper: hydrogen problems for V sbnd Ti sbnd Cr alloys are formulated; V sbnd H system data base is analyzed; study results of the hydrogen mobility and trapping in V sbnd 4Ti sbnd 4Cr and V sbnd 10Ti sbnd 5Cr alloys are given; the classification of V-alloys as radioactive waste according to the Russian Federation waste management rules is developed taking into account the residual amount of tritium ('inventory').

  2. Variation of hydrogen, carbon, nitrogen, and oxygen stable isotope ratios in an American diet: fast food meals.

    Science.gov (United States)

    Chesson, Lesley A; Podlesak, David W; Thompson, Alexandra H; Cerling, Thure E; Ehleringer, James R

    2008-06-11

    The stable isotopes of hydrogen, carbon, nitrogen, and oxygen provide insights into a heterotrophic organism's diet and geographic origin. Although the contribution of food delta (2)H and delta (18)O to the final tissue signal will not vary for constrained diets, it will for animals eating varied diets, that is, humans. This study surveyed the isotopic range in one portion of the American diet, fast food meals. Hamburger patties, buns, and French fries from national chain restaurants across the United States and from local restaurants (Salt Lake City, UT, and Charleston, SC) were analyzed for delta (2)H, delta (13)C, delta (15)N (patties only) and delta (18)O values. Patties and buns from local Utah restaurants were more depleted for delta (2)H, delta (13)C, and delta (18)O values than samples from other restaurants. There were no significant differences in delta values among French fries. All three components of the fast food meal displayed significant linear delta (2)H versus delta (18)O relationships (delta (2)H = 7.8delta (18)O - 237 per thousand, delta (2)H = 5.9delta (18)O - 258 per thousand, and delta (2)H = 3.3delta (18)O - 231 per thousand for patties, buns, and fries, respectively). The findings show that significant predictable variation exists in the stable isotopic composition of fast food meals. It is proposed that the variation in delta (13)C values of hamburger (beef) patties is indicative of differences in cattle-rearing practices, whereas delta (2)H and delta (18)O values are evidence of geographic variation in food sources. Although the patterns support the concept of a "continental" supermarket diet, there appears to be a strong regional component within the diet.

  3. The 35Cl/37Cl isotopic ratio in dense molecular clouds: HIFI observations of hydrogen chloride towards W3 A

    Science.gov (United States)

    Cernicharo, J.; Goicoechea, J. R.; Daniel, F.; Agúndez, M.; Caux, E.; de Graauw, T.; de Jonge, A.; Kester, D.; Leduc, H. G.; Steinmetz, E.; Stutzki, J.; Ward, J. S.

    2010-07-01

    We report on the detection with the HIFI instrument on board the Herschel satellite of the two hydrogen chloride isotopologues, H35Cl and H37Cl, towards the massive star-forming region W3 A. The J = 1-0 line of both species was observed with receiver 1b of the HIFI instrument at ~625.9 and ~624.9 GHz. The different hyperfine components were resolved. The observations were modeled with a non-local, non-LTE radiative transfer model that includes hyperfine line overlap and radiative pumping by dust. Both effects are found to play an important role in the emerging intensity from the different hyperfine components. The inferred H35Cl column density (a few times ~1014 cm-2), and fractional abundance relative to H nuclei (~7.5 × 10-10), supports an upper limit to the gas phase chlorine depletion of ≈200. Our best-fit model estimate of the H35Cl/H37Cl abundance ratio is ≈ 2.1 ± 0.5, slightly lower, but still compatible with the solar isotopic abundance ratio (≈3.1). Since both species were observed simultaneously, this is the first accurate estimation of the [35Cl] /[37Cl] isotopic ratio in molecular clouds. Our models indicate that even for large line opacities and possible hyperfine intensity anomalies, the H35Cl and H37Cl J = 1-0 integrated line-intensity ratio provides a good estimate of the 35Cl/37Cl isotopic abundance ratio. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important particiation from NASA.

  4. Stable isotope analysis of Dacryoconarid carbonate microfossils: a new tool for Devonian oxygen and carbon isotope stratigraphy.

    Science.gov (United States)

    Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R

    2015-04-30

    Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results

  5. Spectrum analysis of hydrogen plasma in spherically convergent beam fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Kazuki; Yamauchi, Kunihito; Watanabe, Masato; Sunaga, Yoshitaka; Hotta, Eiki [Tokyo Institute of Technology, Dept. of Energy Sciences, Yokohama, Kanagawa (Japan); Okino, Akitoshi [Tokyo Institute of Technology, Dept. of Electrical and Electronic Engineering, Tokyo (Japan)

    2001-09-01

    Spectroscopic analysis of spherical glow discharge fusion device was carried out using hydrogen gas. Effects of the discharge current and cathode voltage on spectrum profiles of hydrogen Balmar lines were measured. The profiles of all hydrogen lines were broadened with the cathode voltage. From the relationship between the maximum broadening width and the cathode voltage, it was indicated that the broadening was caused by the Doppler effect. From the spatial distribution of emission intensity, it was found that plasma core size became larger with discharge current and smaller with cathode voltage. (author)

  6. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere.

    Science.gov (United States)

    Gorski, Galen; Strong, Courtenay; Good, Stephen P; Bares, Ryan; Ehleringer, James R; Bowen, Gabriel J

    2015-03-17

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.

  7. Oxygen, hydrogen, and helium isotopes for investigating groundwater systems of the Cape Verde Islands, West Africa

    Science.gov (United States)

    Heilweil, V.M.; Solomon, K.D.; Gingerich, S.B.; Verstraeten, Ingrid M.

    2009-01-01

    Stable isotopes (??18O, ??2H), tritium (3H), and helium isotopes (3He, 4He) were used for evaluating groundwater recharge sources, flow paths, and residence times of three watersheds in the Cape Verde Islands (West Africa). Stable isotopes indicate the predominance of high-elevation precipitation that undergoes little evaporation prior to groundwater recharge. In contrast to other active oceanic hotspots, environmental tracers show that deep geothermal circulation does not strongly affect groundwater. Low tritium concentrations at seven groundwater sites indicate groundwater residence times of more than 50 years. Higher tritium values at other sites suggest some recent recharge. High 4He and 3He/4He ratios precluded 3H/3He dating at six sites. These high 3He/4He ratios (R/Ra values of up to 8.3) are consistent with reported mantle derived helium of oceanic island basalts in Cape Verde and provided end-member constraints for improved dating at seven other locations. Tritium and 3H/3He dating shows that S??o Nicolau Island's Ribeira Faj?? Basin has groundwater residence times of more than 50 years, whereas Fogo Island's Mosteiros Basin and Santo Ant??o Island's Ribeira Paul Basin contain a mixture of young and old groundwater. Young ages at selected sites within these two basins indicate local recharge and potential groundwater susceptibility to surface contamination and/or salt-water intrusion. ?? Springer-Verlag 2009.

  8. Stable isotope ratio analysis for authentication of lamb meat.

    Science.gov (United States)

    Piasentier, E; Valusso, R; Camin, F; Versini, G

    2003-07-01

    The effectiveness of the analysis of stable isotope ratios ((13)C/(12)C and (15)N/(14)N) in fractions of lamb meat, measured by isotope ratio mass spectrometry, was evaluated as a method of feeding and geographical origin authentication. Analyses were carried out on meat from 12 lamb types, produced in couples in six European countries (country of origin, CO) and divided in three groups according to the feeding regime during their finishing period: suckled milk only, pasture without any solid supplementation and supplementation containing maize grain (feeding regime, FR). These analyses were made on two samples of longissimus thoracis muscle, taken from the 13th rib section of the left side of two different lambs, randomly chosen between the 120 selected to represent each lamb type. δ(13)C values varied significantly in different meat fractions, the difference being higher in protein than in fat (average difference 5.0‰). However, the pairs δ(13)C values of crude fat and protein were highly correlated (r=0.976) and affected by lamb type in a similar fashion, mainly reflecting animals' feeding regime. Even δ(15)N values of meat protein fraction showed significant differences between lamb types, not dependant on the feeding regime. In fact, lambs fed on similar diets, but in different countries, gave meat with different (15)N relative abundances. These findings provide the possibility of discriminating lamb types within the same feeding regime. Canonical discriminant analysis was carried out to evaluate whether lamb meat from different CO or FR or CO×FR interaction could be mathematically distinguished by its stable isotope ratios. On the basis of CO, the corrected empirical allocation of 79.2% of the initial observations and the corrected cross-validation of two thirds of the individual meat samples was obtained. FR gave better results: 91.7% of the individual meat samples was both correctly allocated and cross-validated, indicating the high potential of

  9. Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

  10. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect

    Science.gov (United States)

    Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon

    2014-01-01

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen-deuterium (H-D) exchange of resorcinol by electrophilic aromatic substitution using D[subscript 2]O and a catalytic amount of H[subscript 2]SO[subscript 4]. The resulting labeled product is characterized by [superscript 1]H NMR. Students also…

  11. Global scale observations of atmospheric molecular hydrogen and its stable isotopic composition

    NARCIS (Netherlands)

    Batenburg, A.M.|info:eu-repo/dai/nl/313960453

    2012-01-01

    With average mixing ratios (χ) around 550 ppb (nmole/mole), molecular hydrogen (H2) is the most abundant reduced gas in our atmosphere after methane (CH4), but considerably less studied. H2 is also a promising energy carrier that might replace fossil fuels in vehicles with great sustainability

  12. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    NARCIS (Netherlands)

    Batenburg, A.M.; Schuck, T.J.; Baker, A.K.; Zahn, A.; Brenninkmeijer, C.A.M.; Röckmann, T.

    2012-01-01

    More than 450 air samples that were collected in the upper troposphere – lower stratosphere (UTLS) region around the tropopause (TP) by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) have been analyzed 5 for molecular hydrogen

  13. Storage of hydrogen isotopes. Investigation of the aging behaviour of metallic tritides; Stockage des isotopes de l'hydrogene etude du vieillissement des tritiures metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Thiebaut, St.

    2010-06-15

    This report aims at giving a synthesis of scientific works performed by the author while indicating the reasons for his choice of research topics, and the perspectives which could be interesting to follow. After an overview of his professional course, the author proposes an analysis of the available literature at the time he started his research works. Then, he comments the results he obtained during his research thesis in the field of short duration aging (more precisely with experimental investigations on the aging behaviour of palladium and palladium alloys which are used in tritium storage). The following periods of his research career dealt with long duration aging, and then with aging modelling

  14. Ab initio charge analysis of pure and hydrogenated perovskites

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Bonanos, Nikolaos; Rossmeisl, Jan

    2011-01-01

    We present a density functional theory based Bader analysis on the charge distribution in pure and hydrogenated SrTiO3. We find the hydrogen defect carries a +0.56e charge and the OH defect carrying a +0.50e charge compared to the host oxygen. Calculations on BaNbO3, CaTiO3, and SrZrO3 support th...

  15. Analysis of experimental hydrogen engine data and hydrogen vehicle performance and emissions simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.A. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    This paper reports the engine and vehicle simulation and analysis done at Lawrence Livermore (LLNL) as a part of a joint optimized hydrogen engine development effort. Project participants are: Sandia National Laboratory; Los Alamos National Laboratory; and the University of Miami. Fuel cells are considered as the ideal power source for future vehicles, due to their high efficiency and low emissions. However, extensive use of fuel cells in light-duty vehicles is likely to be years away, due to their high manufacturing cost. Hydrogen-fueled, spark-ignited, homogeneous-charge engines offer a near-term alternative to fuel cells. Hydrogen in a spark-ignited engine can be burned at very low equivalence ratios. NO{sub x} emissions can be reduced to less than 10 ppm without catalyst. HC and CO emissions may result from oxidation of engine oil, but by proper design are negligible (a few ppm). Lean operation also results in increased indicated efficiency due to the thermodynamic properties of the gaseous mixture contained in the cylinder. The high effective octane number of hydrogen allows the use of a high compression ratio, further increasing engine efficiency. In this paper, a simplified engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many experimental points obtained in a recent evaluation of a hydrogen research engine. The experimental data are used to adjust the empirical constants in the heat release rate and heat transfer correlation. The results indicate that hydrogen lean-burn spark-ignite engines can provide Equivalent Zero Emission Vehicle (EZEV) levels in either a series hybrid or a conventional automobile.

  16. Lake Van carbonates: Implications for lacustrine stable isotope analysis

    Science.gov (United States)

    McCormack, Jeremy; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    Carbonate stable isotope (δ18O and δ13C) analysis is a commonly applied and powerful proxy in lacustrine palaeoclimatology. In the absence of large quantities of detrital carbonates, the bulk carbonate is assumed to mainly represent inorganic carbonates precipitated in the epilimnion. In well-preserved, geologically young sediments (e.g. varves), post-depositional processes affecting the mineralogy or geochemistry of sedimentary carbonates are difficult to recognise. In case of terminal and alkaline Lake Van, the interpretation of the δ18O and δ13C signals of bulk carbonates is, in comparison to other proxies, far from straightforward when relying on traditional interpretative approaches. Consequently, using a multi-component approach we studied, individually and in detail, various components comprising Lake Van's bulk carbonates. Samples investigated here cover the last glacial/interglacial period. Inorganic ( 63 μm) carbonates were isolated by wet-sieving and analysed by means of XRD, SEM and isotope mass spectrometry. High-resolution mineralogical analysis revealed variable amounts of aragonite and calcite as well as early diagenetic non-stoichiometric (calcian) dolomite. The early diagenetic dolomite appears to be replacing the inorganic aragonite/calcite and occurs within finely-laminated, organic-rich sediments. Isotopically the dolomite differs significantly from the primary carbonates with typically heavier δ18O and lighter δ13C values. Thus, in the case of bulk sediment isotope analysis the presence of higher amounts of diagenetic dolomite is distorting the isotopic pattern. Ostracod valves represent biogenic carbonates. However, apart from well-preserved, translucent carapaces we have found coated ones, reoccurring throughout the profile within specific facies types. The coating, comprising mainly of aragonite has a significantly heavier δ18O and δ13C signature compared to coeval inorganic carbonates, precipitated presumably in the surface water

  17. Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows.

    Science.gov (United States)

    Lopes, J C; de Matos, L F; Harper, M T; Giallongo, F; Oh, J; Gruen, D; Ono, S; Kindermann, M; Duval, S; Hristov, A N

    2016-07-01

    The objective of this crossover experiment was to investigate the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission, methane isotopic composition, and rumen fermentation and microbial profile in lactating dairy cows. The experiment involved 6 ruminally cannulated late-lactation Holstein cows assigned to 2 treatments: control and 3NOP (60 mg/kg of feed dry matter). Compared with the control, 3NOP decreased methane emission by 31% and increased hydrogen emission from undetectable to 1.33 g/d. Methane emissions per kilogram of dry matter intake and milk yield were also decreased 34% by 3NOP. Milk production and composition were not affected by 3NOP, except milk fat concentration was increased compared with the control. Concentrations of total VFA and propionate in ruminal fluid were not affected by treatment, but acetate concentration tended to be lower and acetate-to-propionate ratio was lower for 3NOP compared with the control. The 3NOP decreased the molar proportion of acetate and increase those of propionate, butyrate, valerate, and isovalerate. Deuterium-to-hydrogen ratios of methane and the abundance of (13)CH3D were similar between treatments. Compared with the control, minor (4‰) depletion in the (13)C/(12)C ratio was observed for 3NOP. Genus composition of methanogenic archaea (Methanobrevibacter, Methanosphaera, and Methanomicrobium) was not affected by 3NOP, but the proportion of methanogens in the total cell counts tended to be decreased by 3NOP. Prevotella spp., the predominant bacterial genus in ruminal contents in this experiment, was also not affected by 3NOP. Compared with the control, Ruminococcus and Clostridium spp. were decreased and Butyrivibrio spp. was increased by 3NOP. This experiment demonstrated that a substantial inhibition of enteric methane emission by 3NOP in dairy cows was accompanied with increased hydrogen emission and decreased acetate-to-propionate ratio; however, neither an effect on rumen

  18. Control of origin of sesame oil from various countries by stable isotope analysis and DNA based markers--a pilot study.

    Directory of Open Access Journals (Sweden)

    Micha Horacek

    Full Text Available The indication of origin of sesame seeds and sesame oil is one of the important factors influencing its price, as it is produced in many regions worldwide and certain provenances are especially sought after. We joined stable carbon and hydrogen isotope analysis with DNA based molecular marker analysis to study their combined potential for the discrimination of different origins of sesame seeds. For the stable carbon and hydrogen isotope data a positive correlation between both isotope parameters was observed, indicating a dominant combined influence of climate and water availability. This enabled discrimination between sesame samples from tropical and subtropical/moderate climatic provenances. Carbon isotope values also showed differences between oil from black and white sesame seeds from identical locations, indicating higher water use efficiency of plants producing black seeds. DNA based markers gave independent evidence for geographic variation as well as provided information on the genetic relatedness of the investigated samples. Depending on the differences in ambient environmental conditions and in the genotypic fingerprint, a combination of both analytical methods is a very powerful tool to assess the declared geographic origin. To our knowledge this is the first paper on food authenticity combining the stable isotope analysis of bio-elements with DNA based markers and their combined statistical analysis.

  19. Control of origin of sesame oil from various countries by stable isotope analysis and DNA based markers--a pilot study.

    Science.gov (United States)

    Horacek, Micha; Hansel-Hohl, Karin; Burg, Kornel; Soja, Gerhard; Okello-Anyanga, Walter; Fluch, Silvia

    2015-01-01

    The indication of origin of sesame seeds and sesame oil is one of the important factors influencing its price, as it is produced in many regions worldwide and certain provenances are especially sought after. We joined stable carbon and hydrogen isotope analysis with DNA based molecular marker analysis to study their combined potential for the discrimination of different origins of sesame seeds. For the stable carbon and hydrogen isotope data a positive correlation between both isotope parameters was observed, indicating a dominant combined influence of climate and water availability. This enabled discrimination between sesame samples from tropical and subtropical/moderate climatic provenances. Carbon isotope values also showed differences between oil from black and white sesame seeds from identical locations, indicating higher water use efficiency of plants producing black seeds. DNA based markers gave independent evidence for geographic variation as well as provided information on the genetic relatedness of the investigated samples. Depending on the differences in ambient environmental conditions and in the genotypic fingerprint, a combination of both analytical methods is a very powerful tool to assess the declared geographic origin. To our knowledge this is the first paper on food authenticity combining the stable isotope analysis of bio-elements with DNA based markers and their combined statistical analysis.

  20. Hydrogen embrittlement II. Analysis of hydrogen-enhanced decohesion across (111) planes in α -Fe

    Science.gov (United States)

    Katzarov, Ivaylo H.; Paxton, Anthony T.

    2017-08-01

    This is the second of two papers that present a theoretical analysis of the phenomenon of hydrogen embrittlement of α -Fe. We make contact between the thermodynamic-kinetic continuum and cohesive zone models and the quantum-mechanical magnetic tight-binding approximation to interatomic forces. We are able to solve a coupled set of equations using quantum mechanically obtained atomistic data to follow the decohesion process in time as traction is applied to a hydrogen charged crystal and decohesion occurs between two (111) crystal planes. This scheme will be readily extended from transgranular to intergranular failure, although the complexities of the trapping sites in the cohesive zone associated with a grain boundary will greatly complicate the calculation of the configurational energy. Hydrogen-enhanced decohesion postulated widely in the field has not yet been demonstrated experimentally, although our calculations find a reduction in the ideal cohesive strength as a result of dissolved hydrogen in α -Fe from 30 to 22 GPa. Because of the well-known steep and nonlinear relation between plastic and ideal elastic work of fracture, this represents a very significant reduction in toughness as a result of a hydrogen concentration of less than ten atomic parts per million.

  1. Electron-bifurcating transhydrogenase is central to hydrogen isotope fractionation during lipid biosynthesis in sulfate reducing bacteria

    Science.gov (United States)

    Leavitt, W.; Flynn, T. M.; Suess, M.; Bradley, A. S.

    2015-12-01

    A significant range in microbial lipid 2H/1H ratios is observed in modern marine sediments [Li et al. 2009. GCA]. The magnitude of hydrogen isotope fractionation between microbial lipids and growth water (2ɛlipid-H2O) is hypothesized to relate to the central carbon and energy metabolism [Zhang et al. 2009. PNAS]. These observations have raised the intriguing possibility for culture independent identification of the dominant metabolic pathways operating in environments critical to the geological record. One such metabolism we would like to track for its global significance in sedimentary carbon cycling is bacterial sulfate reduction [Jørgensen. 1982. Nature]. To-date, heterotrophic sulfate reducing bacteria (SRB) have been observed to produce lipids that are depleted in fatty acid H-isotope composition, relative to growth water (2ɛlipid-H2O ~ -125 to -175 ‰), with experiments on different substrates yielding little variability [Campbell et al. 2009. GCA; Osburn. 2013; Dawson et al. 2015. Geobiology]. In stark contrast, aerobic heterotrophs show a wide range in fractionations (2ɛlipid-H2O ~ +300 to -125‰) which seems to scale with the route cellular carbon metabolism [Zhang et al. 2009. PNAS; Heinzelmann et al. 2015. Front Microbio]. Recent work in aerobic methylotrophs [Bradley et al. 2014. AGU] implicates transhydrogenase (TH) activity as a critical control on 2ɛlipid-H2O. This work suggests a specific driving mechanism for this range in fractionation is the ratio of intracellular NADPH/NADH, and more fundamentally, the intracellular redox state. In SRB a key component of energy metabolism is the activity of electron-bifurcating TH [Price et al. 2014. Front Microbio], for which a recent transposon mutant library has generated a number of knockouts in the target gene [Kuehl et al. 2014. mBio] in the model organism Desulfovibrio alaskensis strain G20. In this study we compare growth rates, fatty acid concentrations and 2ɛlipid-H2O from wild type and TH

  2. Carbon and hydrogen isotopic compositions of algae and bacteria from hydrothermal environments, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Estep, M.L.E.

    1984-03-01

    Stromatolites forming today on a small scale in hydrothermal environments are chemical and biological analogues of much larger Precambrian formations. Carbon isotopic composition varied as a function of CO/sub 2/ concentration, pH, and species composition. Stratiform, layered stromatolites grew in silica-depositing springs at 55/sup 0/ to 70/sup 0/C; they consisted mainly of a unicellular alga, Synechococcus, and a filamentous, photosynthetic bacterium, Chloroflexus. These thermophiles become enriched in /sup 12/C as the concentration of carbon dioxide in the effluent waters increases. At a concentration of 40 ppm total inorganic C, and delta/sup 13/C of organic carbon was approx. -1.2%, whereas at 900 ppm total inorganic C, the delta/sup 13/C of similar species was approx. -2.5%. Conical stromatolites or conophytons (principally a filamentous, blue-green alga Phormidium and Chloroflexus) grew at 40/sup 0/-55/sup 0/C. In older, broader conophytons, Chloroflexus was the dominant organism. Their delta/sup 13/C values were approx. -1.8% in a variety of hot springs. In carbonate-depositing springs, i.e., carbon dioxide saturated, conophytons and stromatolites consisting of a variety of blue-green algae and photosynthetic bacteria had the most negative delta/sup 13/C values (to -3 %). These carbon isotope ratios are directly comparable to carbon isotope ratios of kerogen from Precambrian stromatolites. The presence and activity of methanogenic bacteria or heterotrophic, aerobic and anaerobic bacteria did not alter significantly the delta/sup 13/C of the original organic matter.

  3. The relationship between stable oxygen and hydrogen isotope ratios of water in astomatal plants

    Science.gov (United States)

    Cooper, Lee W.; DeNiro, Michael J.; Keeley, Jon E.; Taylor, H. P.; O'Neil, J. R.; Kaplan, I.R.

    1991-01-01

    Isotropic fractination of leaf water during transpiration is influenced by both equilibrium and kinetic factors. Previous workers have predicted that the influence of each factor varies depending upon the path of water loss,m whether centralized through stomata, or diffuse through the cuticle. We studied the relationship between the δD and δ18O values of lead and stem waters of laurel sumac, Rhus laurina (Nutt.) T. & G., and its parasite, dodder, Cuscuta subinclusa D. & H., growing in the field. Stomatal transpiration, associated with more stagnant boundary layers, predominates in R. laurina; cuticular transpiration, associated with more turbulent boundary layers, is most important in the largely astomatal C. subinclusa. We also studied the diurnal variation in the δD and δ18O values of lead waters of two astomatal plants, Chiloschista lunifera (Rchb. F.) J.J.S. and Stylites andicola Amstutz, and two stomatal plants, Tillandsia balbisiana Schult. and Lilaeopsis schaffneriana (Schlecht.) C. & R., growing with them under the same conditions in the laboratory. Slopes, m, for the relation δD = mδ18O + b were significantly higher for stem waters in C. subinclusa that for leaf waters in R. laurina (1.77), consistent with the difference in the boundary layers through which water was lost in the two species. The magnitude of diurnal heavy isotope enrichment of tissue water was smaller in C. subinclusa than in R. laurina, which is also consistent with predictions concerning evapotranspiration through difference types of boundary layers. The slopes, m, in plant waters in the laboratory experiments, conducted at high humidity, were not different than those observed during evaporation of water from pans, regardless of plant anatomy. The observation suggests that cuticular transpiration is important in influencing isotopic fractionation of water only at low humidity. Our results indicate that the isotopic composition of water vapor released by plants in arid regions may

  4. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area's water system and adjustments during a major drought.

    Science.gov (United States)

    Tipple, Brett J; Jameel, Yusuf; Chau, Thuan H; Mancuso, Christy J; Bowen, Gabriel J; Dufour, Alexis; Chesson, Lesley A; Ehleringer, James R

    2017-08-01

    Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. Water demands and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between urban centers, water transport and usage, and the impacts of climate change on water resources. To assess if stable hydrogen and oxygen isotope ratios could increase the understanding of these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters across the San Francisco Bay Area during seven collection campaigns spanning 21 months during 2013-2015. The San Francisco Bay Area was selected as it has well-characterized water management strategies and the 2012-2105 California Drought dramatically affected its water resources. Consistent with known water management strategies and previously collected isotope data, we found large spatiotemporal variations in the δ2H and δ18O values of tap waters within the Bay Area. This is indicative of complex water transport systems and varying municipality-scale management decisions. We observed δ2H and δ18O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of the isotope data collected in this study grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Various management responses to the drought, such as source

  5. Isotopic analysis for degradation diagnosis of calcite matrix in mortar.

    Science.gov (United States)

    Dotsika, E; Psomiadis, D; Poutoukis, D; Raco, B; Gamaletsos, P

    2009-12-01

    Mortar that was used in building as well as in conservation and restoration works of wall paintings have been analysed isotopically (delta(13)C and delta(18)O) in order to evaluate the setting environments and secondary processes, to distinguish the structural components used and to determine the exact causes that incurred the degradation phenomena. The material undergoes weathering and decay on a large proportion of its surface and in depth, due to the infiltration of water through the structural blocks. Mineralogical analysis indicated signs of sulphation and dissolution/recrystallisation processes taking place on the material, whereas stable isotopes provided information relative to the origin of the CO(2) and water during calcite formation and degradation processes. Isotopic change of the initial delta(13)C and delta(18)O in carbonate matrix was caused by alteration of the primary source of CO(2) and H(2)O in mortar over time, particularly by recrystallisation of calcite with porewater, evaporated or re-condensed water, and CO(2) from various sources of atmospheric and biogenic origin. Human influence (surface treatment) and biological growth (e.g. fungus) are major exogenic processes which may alter delta(18)O and delta(13)C in lime mortar.

  6. Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values?

    CSIR Research Space (South Africa)

    Waterhouse, JS

    2002-07-30

    Full Text Available Science Letters 201 (2002) 421^430 www.elsevier.com/locate/epsl environmental data, such as ice cores and lake sediments, owing to unambiguous dating of tree rings to precise years. Ring widths and X-ray ab- sorption measurements have been very success...-7-02 J.S. Waterhouse et al. / Earth and Planetary Science Letters 201 (2002) 421^430 tionship is given by Eq. 1: Nl ? Ns ??Oe ? Ok??13h??1? In this model it is assumed that an isotopic steady state has been reached in the leaf and that source water...

  7. Hydrogen Safety Sensor Performance and Use Gap Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burgess, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schmidt, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hartmann, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Hannah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weidner, Eveline [Joint Research Centre, Petten, the Netherlands; Cebolla, Rafael O. [Joint Research Centre, Petten, the Netherlands; Bonato, Christian [Joint Research Centre, Petten, the Netherlands; Moretto, Pietro [Joint Research Centre, Petten, the Netherlands

    2017-11-15

    Hydrogen sensors are recognized as an important technology for facilitating the safe implementation of hydrogen as an alternative fuel, and there are numerous reports of a sensor alarm successfully preventing a potentially serious event. However, gaps in sensor metrological specifications, as well as in their performance for some applications, exist.The U.S. Department of Energy (DOE) Fuel Cell Technology Office published a short list of critical gaps in the 2007 and 2012 multiyear project plans; more detailed gap analyses were independently performed by the JRC and NREL. There have been, however, some significant advances in sensor technologies since these assessments, including the commercial availability of hydrogen sensors with fast response times (t90 less than 1 s, which had been an elusive DOE target since 2007), improved robustness to chemical poisons, improved selectivity, and improved lifetime and stability. These improvements, however, have not been universal and typically pertain to select platforms or models. Moreover, as hydrogen markets grow and new applications are being explored, more demands will be imposed on sensor performance. The hydrogen sensor laboratories at NREL and JRC are currently updating the hydrogen safety sensor gap analysis through direct interaction with international stakeholders in the hydrogen community, especially end-users. NREL and the JRC are currently organizing a series of workshops (in Europe and the U.S.) with sensor developers, end-users, and other stakeholders in 2017 to identify technology gaps and to develop a path forward to address them. One workshop is scheduled for May 10 in Brussels, Belgium at the Headquarters of the Fuel Cell and Hydrogen Joint Undertaking. A second workshop is planned at the National Renewable Energy Laboratory in Golden, CO, USA. This presentation will review improvements in sensor technologies in the past 5 to 10 years, identify gaps in sensor performance and use requirements, and identify

  8. Accident sequences and causes analysis in a hydrogen production process

    Energy Technology Data Exchange (ETDEWEB)

    Jae, Moo Sung; Hwang, Seok Won; Kang, Kyong Min; Ryu, Jung Hyun; Kim, Min Soo; Cho, Nam Chul; Jeon, Ho Jun; Jung, Gun Hyo; Han, Kyu Min; Lee, Seng Woo [Hanyang Univ., Seoul (Korea, Republic of)

    2006-03-15

    Since hydrogen production facility using IS process requires high temperature of nuclear power plant, safety assessment should be performed to guarantee the safety of facility. First of all, accident cases of hydrogen production and utilization has been surveyed. Based on the results, risk factors which can be derived from hydrogen production facility were identified. Besides the correlation between risk factors are schematized using influence diagram. Also initiating events of hydrogen production facility were identified and accident scenario development and quantification were performed. PSA methodology was used for identification of initiating event and master logic diagram was used for selection method of initiating event. Event tree analysis was used for quantification of accident scenario. The sum of all the leakage frequencies is 1.22x10{sup -4} which is similar value (1.0x10{sup -4}) for core damage frequency that International Nuclear Safety Advisory Group of IAEA suggested as a criteria.

  9. Hydrogen isotope transport across tungsten surfaces exposed to a fusion relevant He ion fluence

    Science.gov (United States)

    Baldwin, M. J.; Doerner, R. P.

    2017-07-01

    Tungsten targets are exposed to controlled sequences of D2 and He, and He and D2 plasma in the Pisces-A linear plasma device, with a view to studying the outward and inward transport of D across a He implanted surface, using thermal desorption mass spectrometry. Differences in transport are interpreted from changes in peak desorption temperature and amplitude for D2 release, compared against that of control targets exposed to just D2 plasma. Desorption data are modeled with Tmap-7 to infer the nature by which He leads to the ‘reduced inventory’ effect for H isotope uptake. A dual segment (surface-30 nm, bulk) W Tmap-7 model is developed, that simulates both plasma exposure and thermal desorption. Good agreement between desorption data and model is found for D2 release from control targets provided that the implanted flux is reduced, similar to that reported by others. For He affected release, the H isotope transport properties of the surface segment are adjusted away from control target bulk values during the computation. Modeling that examines outward D transport through the He implanted layer suggests that a permeation barrier is active, but bubble induced porosity is insufficient to fully explain the barrier strength. Moderately increased diffusional migration energy in the model over the He affected region, however, gives a barrier strength consistent with experiment. The same model, applied to inward transport, predicts the reduced inventory effect, but a further reduction in the implanted D flux is necessary for precise agreement.

  10. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.

    1943-02-19

    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  11. Carbon, hydrogen, and oxygen isotope studies of the regional metamorphic complex at Naxos, Greece

    Science.gov (United States)

    Rye, R.O.; Schuiling, R.D.; Rye, D.M.; Jansen, J.B.H.

    1976-01-01

    At Naxos, Greece, a migmatite dome is surrounded by schists and marbles of decreasing metamorphic grade. Sillimanite, kyanite, biotite, chlorite, and glaucophane zones are recognized at successively greater distances from the migmatite dome. Quartz-muscovite and quartz-biotite oxygen isotope and mineralogie temperatures range from 350 to 700??C. The metamorphic complex can be divided into multiple schist-rich (including migmatites) and marblerich zones. The ??18O values of silicate minerals in migmatite and schist units and quartz segregations in the schist-rich zones decrease with increase in metamorphic grades. The calculated ??18OH2O values of the metamorphic fluids in the schist-rich zones decrease from about 15??? in the lower grades to an average of about 8.5??? in the migmatite. The ??D values of OH-minerals (muscovite, biotite, chlorite, and glaucophane) in the schist-rich zones also decrease with increase in grade. The calculated ??DH2O values for the metamorphic fluid decrease from -5??? in the glaucophane zone to an average of about -70??? in the migmatite. The ??D values of water in fluid inclusions in quartz segregations in the higher grade rocks are consistent with this trend. The??18O values of silicate minerals and quartz segregations in marble-rich zones are usually very large and were controlled by exchange with the adjacent marbles. The ??D values of the OH minerals in some marble-rich zones may reflect the value of water contained in the rocks prior to metamorphism. Detailed data on 20 marble units show systematic variations of ??18O values which depend upon metamorphic grade. Below the 540??C isograd very steep ??18O gradients at the margins and large ??18O values in the interior of the marbles indicate that oxygen isotope exchange with the adjacent schist units was usually limited to the margins of the marbles with more exchange occurring in the stratigraphic bottom than in the top margins. Above the 540??C isograd lower ??18O values occur in

  12. ANALYSIS OF AVAILABLE HYDROGEN DATA & ACCUMULATION OF HYDROGEN IN UNVENTED TRANSURANIC (TRU) DRUMS

    Energy Technology Data Exchange (ETDEWEB)

    DAYLEY, L

    2004-06-24

    This document provides a response to the second action required in the approval for the Justification for Continued Operations (JCO) Assay and Shipment of Transuranic (TRU) Waste Containers in 218-W-4C. The Waste Management Project continues to make progress toward shipping certified TRU waste to the Waste Isolation Pilot Plant (WIPP). As the existing inventory of TRU waste in the Central Waste Complex (CWC) storage buildings is shipped, and the uncovered inventory is removed from the trenches and prepared for shipment from the Hanford Site, the covered inventory of suspect TRU wastes must be retrieved and prepared for processing for shipment to WIPP. Accumulation of hydrogen in unvented TRU waste containers is a concern due to the possibility of explosive mixtures of hydrogen and oxygen. The frequency and consequence of these gas mixtures resulting in an explosion must be addressed. The purpose of this study is to recommend an approach and schedule for venting TRU waste containers in the low-level burial ground (LLBG) trenches in conjunction with TRU Retrieval Project activities. This study provides a detailed analysis of the expected probability of hydrogen gas accumulation in significant quantities in unvented drums. Hydrogen gas accumulation in TRU drums is presented and evaluated in the following three categories: Hydrogen concentrations less than 5 vol%; Hydrogen between 5-15 vol%; and Hydrogen concentrations above 15 vol%. This analysis is based on complex-wide experience with TRU waste drums, available experimental data, and evaluations of storage conditions. Data reviewed in this report includes experience from the Idaho National Environmental Engineering Laboratories (INEEL), Savannah River Site (SRS), Los Alamos National Laboratories (LANL), Oak Ridge National Laboratories, (ORNL), Rocky Flats sites, Matrix Depletion Program and the National Transportation and Packaging Program. Based on this analysis, as well as an assessment of the probability and

  13. Hydrogen isotopes of leaf lipids indicate gradual hydrologic transition at the end of the African Humid Period

    Science.gov (United States)

    Beckmann, Britta; Haese, Barbara; Werner, Martin; Schefuß, Enno

    2013-04-01

    The hydrologic evolution of the NW African monsoon system over the Holocene, in particular during abrupt climate changes like the end of the African Humid Period (AHP) is not yet fully understood. The dust record at ODP Site 658C (DeMenocal et al., 2000) for example suggests an abrupt end of the AHP with a sudden desertification in the mid-Holocene. Contrastingly, a gradual transition to drier conditions at the end of the AHP has been detected in pollen records from lake sedimentary archives from northern Chad (Kröpelin et al., 2008) and northeastern Nigeria (Salzmann et al., 2002). However, neither dust nor pollen data can serve as immediate proxy for aridity itself, but rather reflect responses to changes in the hydrological regime. To test the abruptness of the end of the AHP and unravel late Holocene hydrologic change, we combine compound-specific carbon and hydrogen isotope analyses (δ13C, δD) of plant lipids covering the past 14ka with simulations of water isotope composition in an Earth System Model. We extracted terrestrial biomarkers (long-chain n-alkanes) from the high resolution marine sedimentary core GeoB7920-2 taken in immediate proximity to ODP Site 658C off the Sahara-Sahel transition in NW Africa. Because plants use environmental water (in the Sahel mainly from precipitation) as hydrogen source, changes in the δD signature of the plant-derived biomarkers can be attributed to isotopic changes in rainfall and ultimately to changes in the hydrological cycle on the continent. The n-alkanes show typical terrestrial plant signatures; δ13C values indicate predominance (60-100%) of C4-type plants, i.e., warm-season grasses. δD values of the most abundant n-C31 alkane, vary between -140‰ and -165‰ VSMOW. Generally, the AHP is characterized by lower δD values, indicating more rainfall and humid conditions in NW Africa. Compound-specific plant-wax isotope data from GeoB 7920-2 suggest a gradual transition in continental hydrology at the end of the

  14. Isotope Effects as Probes for Enzyme Catalyzed Hydrogen-Transfer Reactions

    Directory of Open Access Journals (Sweden)

    Amnon Kohen

    2013-05-01

    Full Text Available Kinetic Isotope effects (KIEs have long served as a probe for the mechanisms of both enzymatic and solution reactions. Here, we discuss various models for the physical sources of KIEs, how experimentalists can use those models to interpret their data, and how the focus of traditional models has grown to a model that includes motion of the enzyme and quantum mechanical nuclear tunneling. We then present two case studies of enzymes, thymidylate synthase and alcohol dehydrogenase, and discuss how KIEs have shed light on the C-H bond cleavages those enzymes catalyze. We will show how the combination of both experimental and computational studies has changed our notion of how these enzymes exert their catalytic powers.

  15. Analysis of hydrogen as a Transportation Fuel FY17 Report

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Luzi, Francesco [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilcox Freeburg, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-30

    This report summarizes the results of literature reviews, surveys and analyses performed to evaluate the potential of hydrogen-fueled vehicles to be an economically viable transportation alternative. Five existing and important drivers of expanding hydrogen-fueled transportation adoption are multi-billion dollar sales reservations of Nikola Class 8 trucks, CALSTART viability analysis of hybrid-hydrogen drayage trucks in the shipyard cargo application, analysis showing economic advantages of Fuel Cell Electric Vehicles (FCEV)s over Battery Electric Vehicles (BEV)s beginning at 150-mile ranges, the announcement of a commercial 5kg electrolyzer, and commercial plans or vehicle availability by nine vehicle manufacturers of FCEV passenger vehicles. But hydrogen infrastructure availability needed to support broad adoption of hydrogen-fueled vehicles is limited to less than 50 publicly-available refueling stations, primarily in California. The demand side (consumer) economics associated with FCEV adoption showed strong economic sensitivity to the original vehicle’s fuel economy (mpg), distance traveled, and hydrogen (H2) generation costs. Seven use cases were used to evaluate the broad range of potential FCEV purchasers, including autonomous vehicle applications. Each consumer use case analysis resulted in a different hydrogen fuel cost that would be equivalent to the current fuel cost being paid by the consumer. The H2 generation costs (supply side) were sensitive to the volume of H2 supplied and H2 production costs needed to repay H2 supply facility capital costs and produce competitively-priced energy. H2FAST was used to more accurately incorporate capital, maintenance and production costs into a viable H2 supply cost to the consumer. When the H2 generation and consumer economics were combined, several applications with positive economics became clear. The availability of low-cost hydrogen pipeline connections, and therefore low-cost hydrogen, greatly benefits the

  16. Software development for the simulation and design of the cryogenic distillation cascade used for hydrogen isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Draghia, Mirela Mihaela, E-mail: mirela.draghia@istech-ro.com; Pasca, Gheorghe; Porcariu, Florina

    2016-11-01

    Highlights: • Software for designing and simulation of a cryogenic distillation cascade. • The simulation provides the distribution of all the molecular species involved along each cryogenic distillation column and also the temperature profile along the columns. • Useful information that are relevant for ITER Isotope Separation System. - Abstract: The hydrogen isotope separation system (ISS) based on cryogenic distillation is one of the key systems of the fuel cycle of a fusion reactor. Similar with ITER ISS in a Water Detritiation Facility for a CANDU reactor, one of the main systems is cryogenic distillation. The developments on the CANDU water detritiation systems have shown that a cascade of four cryogenic distillation columns is required in order to achieve the required decontamination factor of the heavy water and a tritium enrichment up to 99.9%. This paper aims to present the results of the design and simulation activities in support to the development of the Cernavoda Tritium Removal Facility (CTRF). Beside the main features of software developed “in house”, an introduction to the main relevant issues of a CANDU tritium removal facility for the ITER ISS is provided as well. Based on the input data (e.g. the flow rates, the composition of the gas supplied into the cryogenic distillation cascade, pressure drop along the column, liquid inventory) the simulation provides the distribution of all the molecular species involved along each cryogenic distillation column and also the temperature profile along the columns. The approach for the static and dynamic simulation of a cryogenic distillation process is based on theoretical plates model and the calculations are performed incrementally plate by plate.

  17. Applications of Isotope Ratio Mass Spectrometry in Sports Drug Testing Accounting for Isotope Fractionation in Analysis of Biological Samples.

    Science.gov (United States)

    Piper, Thomas; Thevis, Mario

    2017-01-01

    The misuse of anabolic-androgenic steroids (AAS) in sports aiming at enhancing athletic performance has been a challenging matter for doping control laboratories for decades. While the presence of a xenobiotic AAS or its metabolite(s) in human urine immediately represents an antidoping rule violation, the detection of the misuse of endogenous steroids such as testosterone necessitates comparably complex procedures. Concentration thresholds and diagnostic analyte ratios computed from urinary steroid concentrations of, e.g., testosterone and epitestosterone have aided identifying suspicious doping control samples in the past. These ratios can however also be affected by confounding factors and are therefore not sufficient to prove illicit steroid administrations. Here, carbon and, in rare cases, hydrogen isotope ratio mass spectrometry (IRMS) has become an indispensable tool. Importantly, the isotopic signatures of pharmaceutical steroid preparations commonly differ slightly but significantly from those found with endogenously produced steroids. By comparing the isotope ratios of endogenous reference compounds like pregnanediol to that of testosterone and its metabolites, the unambiguous identification of the urinary steroids' origin is accomplished. Due to the complex urinary matrix, several steps in sample preparation are inevitable as pure analyte peaks are a prerequisite for valid IRMS determinations. The sample cleanup encompasses steps such as solid phase or liquid-liquid extraction that are presumably not accompanied by isotopic fractionation processes, as well as more critical steps like enzymatic hydrolysis, high-performance liquid chromatography fractionation, and derivatization of analytes. In order to exclude any bias of the analytical results, each step of the analytical procedure is optimized and validated to exclude, or at least result in constant, isotopic fractionation. These efforts are explained in detail. © 2017 Elsevier Inc. All rights reserved.

  18. Hydrogen, Oxygen and Silicon Isotope Systematics of Groundwater-Magma Interaction in Icelandic Hydrothermal Systems

    Science.gov (United States)

    Kleine, B. I.; Stefansson, A.; Halldorsson, S. A.; Martin, W.; Barnes, J.; Jónasson, K.; Franzson, H.

    2016-12-01

    Magma often encounters groundwater (meteoric or seawater derived) when intruded into the crust. Magma-groundwater interactions result in the formation of hydrothermal fluids which can lead to contact metamorphism and elemental transport in the country rock. In fact, magma-hydrothermal fluid interaction (rather than magma-magmatic fluid interaction) may lead to classic contact metamorphic reactions. In order to explore the importance of hydrothermal fluid during contact metamorphism we use stable isotopes (δD, δ18O, δ30Si) from both active and extinct magma chambers and hydrothermal systems from across Iceland. Quartz grains from various hydrothermal systems, from crustal xenoliths from the Askja central volcano and from the Hafnarfjall pluton, as well as quartz grains associated with low-T zeolites were analysed for δ18O and δ30Si in-situ using SIMS. Whole rock material of these samples was analysed for δD values using a TCEA coupled to an IRMS. Our results indicate that low-T quartz (300°C). Combining the results from the analyses of δ18O and δD allows further division of samples into (i) seawater and/or rock dominated and (ii) meteoric water dominated hydrothermal systems. In order to isolate the effects of fluid-rock interaction, fluid source and formation temperature at the magma-groundwater contact, δD, δ18O and δ30Si values of rocks and fluids were modeled using the PHREEQC software. Comparison of analytical and model results shows that the isotopic compositions are influenced by multiple processes. In some cases, groundwater penetrates the contact zone and causes alteration at >400°C by groundwater-magma heat interaction. Other cases document "baked" contact zones without groundwater. Our analyses and modeling demonstrates that groundwater flow and permeability are crucial in setting the style of contact metamorphism around high T intrusions.

  19. Stable isotope dilution analysis of the fusarium mycotoxin zearalenone.

    Science.gov (United States)

    Cramer, Benedikt; Bretz, Michael; Humpf, Hans-Ulrich

    2007-10-17

    Zearalenone is a secondary metabolite produced by molds of the Fusarium genus. Beside its nonsteroidal molecular structure, zearalenone has estrogenic activity and can disrupt the function of the endogenous hormone 17beta-estradiol in animals and possibly in humans. It can frequently be found in all major cereal grains as well as in processed food. Because of the estrogenic properties of zearalenone and its metabolites, legal regulations are installed in the European Union setting maximum levels in cereals and cereal products. Routine analysis of zearalenone in various commodities is carried out by HPLC with fluorescence detection, but due to the development of multi-mycotoxin methods and the reduced sample cleanup, HPLC-MS/MS has become a fast and efficient alternative. However, to achieve a reliable quantitation with this technique suitable internal standards are required. This paper reports the synthesis of stable isotope labeled 3,5- d 2-zearalenone (ZON) as internal standard for stable isotope dilution analysis. Furthermore, a method for the analysis of zearalenone by HPLC-MS/MS using 3,5- d 2-zearalenone as IS has been developed. Fifteen cereal products from the German retail markets were analyzed, of which seven contained ZON in levels from 4.9 to 45.0 microg/kg.

  20. Hydrogen and oxygen isotope fractionation between brucite and aqueous NaCl solutions from 250 to 450°C

    Science.gov (United States)

    Saccocia, Peter J.; Seewald, Jeffrey S.; Shanks, Wayne C.

    1998-01-01

    Hydrogen and oxygen isotope fractionation factors between brucite and aqueous NaCl solutions (1000lnαbr-sw) have been calibrated by experiment from 250 to 450°C at 0.5 Kb. For D/H fractionation, 1000lnα br-sw values are as follows: −32 ± 6‰ (250°C, 3.2 wt% NaCl), −21 ± 2‰ (350°C, 10.0 wt% NaCl), and −22 ± 2‰ (450°C, 3.2 wt% NaCl), indicating that brucite is depleted in D relative to coexisting aqueous NaCl solutions. These results are in good agreement with previous D/H fractionation factors determined in the brucite-water system, indicating that any effects of dissolved salt on D/H fractionation are relatively small, particularly in solutions with near seawater salinity. The maximum salt effect (+4‰) was observed in 10.0 wt% NaCl solutions at 350°C, suggesting that the addition of dissolved NaCl increases the amount of deuterium fractionated into mineral structures. For 18O/16O fractionation, 1000lnαbr-sw values in 3.0 wt% NaCl solutions are −6.0 ± 1.3‰, −5.6 ± 0.7‰ and −4.1 ± 0.2‰, at 250, 350, and 450°C, respectively, and −5.8 ± 0.6‰ in 10.0 wt % NaCl at 350°C. These data indicate that brucite is depleted in 18O relative to coexisting aqueous NaCl solutions and that the degree of depletion decreases slightly with increasing temperature and is not strongly dependent on salinity. We calculated 18O/16O brucite-water fractionation factors from available calibrations of the salt-effect on 18O/16O fractionation between coexisting phases. The resulting values were fit to the following equation that is valid from 250 to 450°C 1000ln αbr-w = 9.54 × 106T−2 − 3.53 × 104T−1 + 26.58 where T is temperature in Kelvins. These new data have been used to improve the prediction of 18O/16O fractionation factors in the talc-water and serpentine-water systems by modifying existing empirical bond-water models. The results of this analysis indicate that the δ18O composition of talc-brucite and serpentine

  1. Analysis of experimental hydrogen engine data and hydrogen vehicle performance and emissions simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.

    1996-09-01

    This paper reports the engine and vehicle simulation and analysis done at Lawrence Livermore (LLNL) as a part of a joint optimized hydrogen engine development effort. Project participants are: Sandia National Laboratory, California (SNLC), responsible for experimental evaluation; Los Alamos National Laboratory (LANL), responsible for detailed fluid mechanics engine evaluations, and the University of Miami, responsible for engine friction reduction. Fuel cells are considered as the ideal power source for future vehicles, due to their high efficiency and low emissions. However, extensive use of fuel cells in light-duty vehicles is likely to be years away, due to their high manufacturing cost. Hydrogen-fueled, spark-ignited, homogeneous-charge engines offer a near-term alternative to fuel cells. Hydrogen in a spark-ignited engine can be burned at very low equivalence ratios, so that NO{sub x} emissions can be reduced to less than 10 ppm without catalyst. HC and CO emissions may result from oxidation of engine oil, but by proper design are negligible (a few ppm). Lean operation also results in increased indicated efficiency due to the thermodynamic properties of the gaseous mixture contained in the cylinder. The high effective octane number of hydrogen allows the use of a high compression ratio, further increasing engine efficiency.

  2. Minimal Influence of [NiFe] Hydrogenase on Hydrogen Isotope Fractionation in H2-Oxidizing Cupriavidus necator

    Directory of Open Access Journals (Sweden)

    Brian J. Campbell

    2017-10-01

    Full Text Available Fatty acids produced by H2-metabolizing bacteria are sometimes observed to be more D-depleted than those of photoautotrophic organisms, a trait that has been suggested as diagnostic for chemoautotrophic bacteria. The biochemical reasons for such a depletion are not known, but are often assumed to involve the strong D-depletion of H2. Here, we cultivated the bacterium Cupriavidus necator H16 (formerly Ralstonia eutropha H16 under aerobic, H2-consuming, chemoautotrophic conditions and measured the isotopic compositions of its fatty acids. In parallel with the wild type, two mutants of this strain, each lacking one of two key hydrogenase enzymes, were also grown and measured. In all three strains, fractionations between fatty acids and water ranged from -173‰ to -235‰, and averaged -217‰, -196‰, and -226‰, respectively, for the wild type, SH- mutant, and MBH- mutant. There was a modest increase in δD as a result of loss of the soluble hydrogenase enzyme. Fractionation curves for all three strains were constructed by growing parallel cultures in waters with δDwater values of approximately -25‰, 520‰, and 1100‰. These curves indicate that at least 90% of the hydrogen in fatty acids is derived from water, not H2. Published details of the biochemistry of the soluble and membrane-bound hydrogenases confirm that these enzymes transfer electrons rather than intact hydride (H- ions, providing no direct mechanism to connect the isotopic composition of H2 to that of lipids. Multiple lines of evidence thus agree that in this organism, and presumably others like it, environmental H2 plays little or no direct role in controlling lipid δD values. The observed fractionations must instead result from isotope effects in the reduction of NAD(PH by reductases with flavin prosthetic groups, which transfer two electrons and acquire H+ (or D+ from solution. Parallels to NADPH reduction in photosynthesis may explain why D/H fractionations in C. necator

  3. Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing.

    Science.gov (United States)

    Aeppli, Christoph; Holmstrand, Henry; Andersson, Per; Gustafsson, Orjan

    2010-01-01

    A method has been developed for the direct determination of the stable chlorine isotope composition (delta(37)Cl) of organochlorines that eliminates sample preparation, achieves precision comparable to earlier techniques while improving the sensitivity, and makes use of benchtop gas chromatography-quadrupole mass spectrometry instruments (GCqMS). The method is based on the use of multiple injections (n = 8-10) of the sample, bracketed by a molecularly identical isotopic standard with known delta(37)Cl, determined using off-line thermal ionization mass spectrometry (TIMS). Mass traces of two isotopologues differing by one chlorine isotope were used to calculate delta(37)Cl values. Optimization of mass spectrometry and peak integration parameters as well as method validation was achieved using tetrachloroethene (PCE), p,p'-dichlorodiphenyltrichloroethane (DDT), and pentachlorophenol (PCP), spanning a delta(37)Cl range of -5.5 to +3.2 per thousand vs SMOC. Injecting 1.6-1100 pmol resulted in standard deviations (1sigma) of 0.6-1.3 per thousand, and the delta(37)Cl results agreed with values independently measured with TIMS. The method was tested by determining the Rayleigh fractionation during evaporation of pure liquid PCE, resulting in a chlorine isotopic enrichment factor of epsilon(Cl) = -1.1 +/- 0.4 per thousand. Furthermore, position-specific delta(37)Cl analysis based on analysis of DDT mass fragments was evaluated. The GCqMS-delta(37)Cl method offers a simplified yet sensitive approach for compound-specific chlorine isotope analysis.

  4. Analysis of hypothetical geothermal hydrogen systems in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Penev, Mike [National Renewable Energy Lab. (NREL), Golden, CO (United States); Devlin, Peter [U.S. Department of Energy, Rockville, MD (United States)

    2010-07-01

    Analysis is presented for three theoretical geothermal energy systems on the Big Island of Hawaii. This preliminary study evaluates performance and economics for several strategies for enhancing integration of a geothermal renewable resource into the grid and for producing vehicle fuel by way of hydrogen production and storage. The analysis includes production of hydrogen and ammonia for use as fuels in light duty vehicles, and production of peak power using hydrogen produced off-peak, stored, and later use in a steam turbine to produce electricity during peak demand. Technological performance and costs are assessed for a near-term installation (next 2-3 years) and are compared on an apples-to-apples basis using consistent economic assumptions for two key metrics: (1) the ratio of geothermal energy product costs to comparable commodity prices, and (2) fuel costs per mile. (orig.)

  5. Analysis of electro-permeation of hydrogen in metallic alloys.

    Science.gov (United States)

    Raina, A; Deshpande, V S; Fleck, N A

    2017-07-28

    A reaction-diffusion type modelling framework is presented to analyse both electro-permeation (EP) and thermal desorption spectrometry (TDS) measurements of hydrogen in metallic alloys. It is assumed that the kinetics of hydrogen motion is governed by diffusion through the lattice, along with trapping/detrapping at specific sites such as dislocations, grain boundaries, etc. It is shown that the trapping and detrapping rates are typically much faster than the diffusion rate, and consequently a simplification of the governing equations suffices such that local equilibrium exists between lattice and trapped hydrogen. Using this local equilibrium assumption, we then present an asymptotic analysis of the governing kinetic equation for the EP test. This asymptotic analysis reveals that four regimes of behaviour exist, ranging from negligible trapping to the complete filling of deep traps. The analysis suggests that EP tests should be so-arranged that three regimes of behaviour are spanned, in order to extract the relevant material properties associated with hydrogen transport. The numerical solutions presented in this study support the asymptotic analysis. The hydrogen kinetics framework is also deployed to analyse both EP and TDS tests on the same martensitic steel. The EP measurements all lie in regime I and are thus insufficient to uniquely determine both the trap density and binding energy. Reasonable agreement is obtained between measurements and numerical predictions of TDS tests using parameters estimated from the EP tests. Further improvements in measurements are required to confirm the fidelity of this modelling approach.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  6. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.

    Science.gov (United States)

    Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten

    2016-06-01

    The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental

  7. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  8. U.S. Department of Energy Hydrogen Storage Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  9. Precision Measurement of the Energies and Line Shapes of Antiprotonic Lyman and Balmer Transitions From Hydrogen and Helium Isotopes

    CERN Multimedia

    2002-01-01

    % PS207 \\\\ \\\\ For the study of the antiproton-proton and antiproton-nuclear spin-spin and spin-orbital interaction at threshold a high resolution measurement is proposed of the line shapes and energy shifts of antiprotonic K$\\alpha$ and L$\\alpha$ transitions of hydrogen and helium isotopes. The intense LEAR beam, stopped in the cyclotron trap at low gas pressure, provides a unique~X-ray~source with sufficient brightness. Charge coupled devices with their excellent background rejection and energy resolution allow a precise determination of the strong shifts and widths of the 1s hyperfine states of protonium, in addition the detection of the $\\bar{p}$D K$\\alpha$ transition should be possible. A focussing crystal spectrometer with a resolution $\\Delta$E/E of about l0$ ^- ^{4} $, which is superior in the accuracy of the energy determination by two orders of magnitude as compared to the present detection methods, will be used to measure the energies of the L$\\alpha$ transitions. This permits a first direct measure...

  10. Quantification of the carbonaceous matter origin in submicron marine aerosol particles by dual carbon isotope analysis

    OpenAIRE

    D. Ceburnis; A. Garbaras; S. Szidat; M. Rinaldi; S. Fahrni; N. Perron; L. Wacker; S. Leinert; V. Remeikis; M. C. Facchini; A. S. H. Prevot; S. G. Jennings; C. D. O'Dowd

    2011-01-01

    Dual carbon isotope analysis has been performed for the first time demonstrating a potential in organic matter apportionment between three principal sources: marine, terrestrial (non-fossil) and fossil fuel due to unique isotopic signatures. The results presented here, utilising combinations of dual carbon isotope analysis, provides a conclusive evidence of a dominant biogenic organic fraction to organic aerosol over biologically active oceans. In particular, the NE Atlantic, which is...

  11. Can Stress-Induced Biochemical Differences drive Variation in the Hydrogen Isotope Composition of Leaf Wax n-Alkanes from Terrestrial Higher Plants?

    Science.gov (United States)

    Eley, Y.; Pedentchouk, N.; Dawson, L.

    2014-12-01

    Recent research has identified that interspecies variation in leaf wax n-alkane 2H/1H from plants growing at the same geographical location can exceed 100‰. These differences cannot easily be explained by mechanisms that influence the isotopic composition of leaf water. Biochemical processes are therefore likely to drive some of this variability. Currently, however, little is known about the relative importance of different biochemical processes in shaping n-alkane hydrogen isotope composition. To explore this issue, we combined n-alkane δ2H analysis with measurements of: (i) the percentage content of leaf C and N; and (ii) foliar δ15N, from seven plants growing at Stiffkey salt marsh, Norfolk, UK. These species differ biochemically in respect of the protective compounds they produce under salt or water stressed conditions, with monocots generally producing more carbohydrates, and dicots producing more nitrogenous compounds. We found that monocots had higher %C, while dicots had higher %N and 15N-enriched leaf tissue. We identified a systematic relationship between the nature of the dominant protective compound produced (carbohydrate vs. nitrogenous) and n-alkane 2H/1H: species with a greater proportion of carbohydrates have more negative δ2H values. These findings might imply that shifts in the relative contribution of H to pyruvate from NADPH (2H-depleted) and recycled carbohydrates (2H-enriched) can influence n-alkane δ2H. The 2H-depletion of monocot n-alkanes relative to dicots may therefore be due to a greater proportion of NADPH-derived H incorporated into pyruvate because of their enhanced demand for carbohydrates. The production of protective compounds in plant species is a common response to a range of abiotic stresses (e.g. high UV irradiation, drought, salinity, high/low temperature). Species-specific biochemical responses to stress could therefore influence n-alkane 2H/1H across a range of habitats. This study highlights the importance of detailed

  12. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    Science.gov (United States)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  13. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...

  14. Lithogeochemical, mineralogical analyses and oxygen-hydrogen isotopes of the Hercynian Koudiat Aïcha massive sulphide deposit, Morocco

    Science.gov (United States)

    Lotfi, F.; Belkabir, A.; Brunet, S.; Brown, A. C.; Marcoux, E.

    2010-03-01

    with chlorite located in and adjacent to sulphide mineralization, whereas lower temperatures correlate with distal chlorite in both the footwall and hanging wall rocks. Chemical trends in altered footwall rocks are shown by absolute mass gains for Fe 2O 3total, MnO and MgO, by absolute mass losses for CaO, K 2O and Na 2O, and by a moderate loss in SiO 2. Oxygen and hydrogen isotope compositions of Koudiat Aïcha lithofacies (6.2-12.4‰ for oxygen and -51‰ to -36‰ for hydrogen) have also been used to determine the temperature and origin of metalliferous fluids. The couple plagioclase-amphibole of gabbros provides equilibrium temperatures between 310 and 380 °C and suggests that the heat source for the ore-forming fluid system may have been igneous. On the other hand, oxygen and hydrogen isotope ratios cluster between normal values for sedimentary and magmatic rocks, suggesting a magmatic-metamorphic origin for the ore fluid.

  15. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    Science.gov (United States)

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  16. Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, C.K.; Hilton, B.C.

    1980-10-01

    The exchange kinetics of the slowest exchanging BPTI ..beta..-sheet protons are complex compared to model peptides; the activation energy, E/sub a/, and the pH dependence are temperature dependent. We have measured the exchange kinetics in the range pH 1 to 11, 33 to 71/sup 0/C, particularly the temperature dependence. The data are fit to a model in which exchange of each proton is determined by two discrete dynamical processes, one with E/sub a/ approx. 65 kcal/mol and less than first order dependence on catalyst ion, and one with E/sub a/ 20 to 30 kcal/mol and approaching first order in catalyst ion. The low activation energy process is the mechanism of interest in the native conformation of globular proteins and involves low energy, small amplitude fluctuations; the high activation energy process involves major unfolding. The model is simple, has a precedent in the hydrogen exchange literature, and explains quantitatively the complex feature of the exchange kinetics of single protons in BPTI.

  17. Linking hydrogen (δ2H) isotopes in feathers and precipitation: sources of variance and consequences for assignment to isoscapes

    National Research Council Canada - National Science Library

    Hobson, Keith A; Van Wilgenburg, Steven L; Wassenaar, Leonard I; Larson, Keith

    2012-01-01

    .... Naturally occurring stable isotopes of H (δ(2)H) in feathers provide an alternative intrinsic marker of animal origin due to the predictable spatial linkage to underlying hydrologically driven flow of H isotopes into foodwebs...

  18. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  19. Technical analysis of photovoltaic/wind systems with hydrogen storage

    OpenAIRE

    Bakić Vukman V.; Pezo Milada L.; Jovanović Marina P.; Turanjanin Valentina M.; Vučićević Biljana S.

    2012-01-01

    The technical analysis of a hybrid wind-photovoltaic energy system with hydrogen gas storage was studied. The market for the distributed power generation based on renewable energy is increasing, particularly for the standalone mini-grid applications. The main design components of PV/Wind hybrid system are the PV panels, the wind turbine and an alkaline electrolyzer with tank. The technical analysis is based on the transient system simulation program TRNSYS 16. The study is realized usin...

  20. Comprehensive Isotopic and Elemental Analysis of a Multi-Oxide Glass By Multicollector ICP-MS in Isotope Substitution Studies

    Energy Technology Data Exchange (ETDEWEB)

    v, Mitroshkov; JV, Ryan

    2016-04-07

    Multicollector ICP-MS was used to comprehensively analyze different types of isotopically-modified glass created in order to investigate the processes of glass corrosion in the water. The analytical methods were developed for the analyses of synthesized, isotopically-modified solid glass and the release of glass constituents upon contact with deionized water. To validate the methods, results from an acid digestion sample of the Analytical Reference Glass (ARG) showed good agreement when compared to data from multiple prior analyses on the same glass [Smith-1]. In this paper, we present the results of this comprehensive analysis from the acid digestion of six types of isotopically-modified glass and the release of glass constituents into water corrosion after one year of aqueous corrosion.

  1. Advantages of using fecal samples for stable isotope analysis in bats: evidence from a triple isotopic experiment.

    Science.gov (United States)

    Salvarina, Ioanna; Yohannes, Elizabeth; Siemers, Björn M; Koselj, Klemen

    2013-09-15

    Stable isotope analysis in ecological studies is usually conducted on biomaterials, e.g. muscle and blood, that require catching the animals. Feces are rarely used for stable isotope analysis, despite the possibility of non-invasive sampling and short-term responsiveness to dietary changes. This promising method is neglected due to a lack of calibration experiments and unknown diet-feces isotopic difference (Δ(diet-feces)). To fill this gap, we simulated trophic changes occurring in nature when animals switch feeding habitats, e.g. by moving from freshwater to terrestrial systems, from cultivated areas to forests or changing distance from marine environments. In a controlled experiment, the diet of two bat species (Myotis myotis, Rhinolophus ferrumequinum) was altered to an isotopically distinct one. We measured stable nitrogen, carbon and the rarely used sulfur isotope in feces, and calculated Δ(diet-feces) values. The feces acquired the new dietary signature within 2-3 h from food ingestion; thus, they are suited for detecting recent and rapid dietary changes. The Δ(diet-feces) (Δ) did not differ between species or diet (overall means ± standard deviation (sd)): Δ(15)N: 1.47 ± 1.51‰, Δ(13)C: -0.11 ± 0.80‰, Δ(34)S: 0.74 ± 1.10‰. Only Δ(15)N for M. myotis was significantly different from zero and only Δ(13) C differed among the days of the experiment. Fecal stable isotopes can be now further applied in mammalian ecology. This includes a range of applications, such as studying changes in trophic level, resource or habitat use, on a short time-scale. Such information is gaining importance for monitoring rapidly changing ecosystems under anthropogenic influence. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Improvement in the Plutonium Parameter Files of the FRAM Isotopic Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    D. T. Vo; T. E. Sampson

    2000-09-01

    The isotopic analysis code Fixed-energy Response-function Analysis with Multiple efficiency (FRAM) employs user-editable parameter sets to analyze a broad range of sample types. This report presents new parameter files, based upon a new set of plutonium branding ratios, which give more accurate isotope results than the current parameter files that use FRAM.

  3. ANALYSIS OF RICIN TOXIN PREPARATIONS FOR CARBOHYDRATE AND FATTY ACID ABUNDANCE AND ISOTOPE RATIO INFORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Wunschel, David S.; Kreuzer-Martin, Helen W.; Antolick, Kathryn C.; Colburn, Heather A.; Moran, James J.; Melville, Angela M.

    2009-12-01

    employing a quadrupole MS system for compound identification and an isotope ratio MS for measuring the stable isotope ratios of deuterium and hydrogen (D/H) in fatty acids. Finally, the method for analyzing the compound abundance data is included. This study indicates that removal of ricinoleic acid is a conserved consequence of each processing step we tested. Furthermore, the stable isotope D/H ratio of ricinoleic acid distinguished between two of the three castor seed sources. Concentrations of arabinose, xylose, mannose, glucosamine and myo-inositol differentiated between crude or acetone extracted samples and samples produced by protein precipitation. Taken together these data illustrate the ability to distinguish between processes used to purify a ricin sample as well as potentially the source seeds.

  4. What governs the oxygen and hydrogen isotopic composition of precipitation? - A case for varying proportions of isotopically-distinct, convective and stratiform rain fractions

    Science.gov (United States)

    Aggarwal, P. K.; araguas Araguas, L.; Belachew, D.; Schumacher, C.; Funk, A. B.; Longstaffe, F. J.; Terzer, S.

    2016-12-01

    Beginning with the pioneering work of Dansgaard in 1953, stable water isotope ratios have been observed to be different in precipitation from different clouds, such as convective showers and continuous frontal rain, hydrologically more or less organized systems, or those with or without `bright bands' in radar reflectivity. The variability in isotope ratios of precipitation has always been interpreted, however, using a Rayleigh distillation framework, with lower isotope ratios resulting from condensation at lower temperatures and/or greater air mass distillation, a lack of below-cloud evaporation or in-cloud re-cycling, etc. Rayleigh distillation based approaches do not account for the fact that tropical and midlatitude precipitation consists of varying proportions of two fundamental rain types - widespread but lower intensity, stratiform and spatially-limited but higher intensity, convective - which form under very different cloud dynamical and microphysical environments. Using rain type fraction and isotope data from a large set of monitoring stations, we will show that differences in cloud processes impart characteristic isotope signatures to the two rain types and that their changing proportions during storm events are primarily responsible for precipitation isotope variability. As a result, isotope ratios can be used to partition precipitation into convective or stratiform rain fractions, which is important for understanding cloud feedbacks and atmospheric circulation response to precipitation, as well as climate impacts on the water cycle. We will also discuss the changing character of tropical and midlatitude precipitation over the past several decades and its implications.

  5. The Candelaria silver deposit, Nevada — preliminary sulphur, oxygen and hydrogen isotope geochemistry

    Science.gov (United States)

    Thomson, B.; Fallick, A. E.; Boyce, A. J.; Rice, C.

    1994-09-01

    to + 13.9‰). Such enrichment probably occurred through isotopic exchange with the basement cherts during fluid ascent from a source pluton. Whole rock data for a propylitised porphyry ( δ 18O = + 14.2‰, δD = — 65‰) support a magmatic fluid source. However, δD results for fluid inclusions from several vein samples (mean = — 108 ± 14‰, 1 σ, n = 6) and for other dike and sediment whole rocks (mean = — 110 ± 13‰, 1 σ, n = 5) reveal the influence of meteoric waters. The timing of meteoric fluid incursion is unresolved, but possibilities include late-mineralisation groundwater flooding during cooling of the Early Jurassic progenitor porphyry system and/or meteoric fluid circulation driven by Late Cretaceous plutonism.

  6. Identifying migrations in marine fishes through stable-isotope analysis.

    Science.gov (United States)

    Trueman, C N; MacKenzie, K M; Palmer, M R

    2012-07-01

    The isotopic composition of many elements varies across both land and ocean surfaces in a predictable fashion. These stable-isotope ratios are transferred into animal tissues, potentially providing a powerful natural geospatial tag. To date, most studies using stable isotopes as geolocators in marine settings have focussed on mammals and seabirds conducting large ocean-basin scale migrations. An increasing understanding of isotopic variation in the marine environment, and improved sampling and analytical techniques, however, means that stable isotopes now hold genuine promise as a natural geolocation tag in marine fishes. Here, the theoretical background underpinning the use of stable isotopes of C, N and O in otolith, scale and muscle tissues as geolocation tools in the marine environment is reviewed, and examples of their applications are provided. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  7. Standardization and optimization of core sampling procedure for carbon isotope analysis in eucalyptus and variation in carbon isotope ratios across species and growth conditions

    CSIR Research Space (South Africa)

    Raju, M

    2011-11-01

    Full Text Available and optimization of core sampling procedure for carbon isotope analysis in eucalyptus and variation in carbon isotope ratios across species and growth conditions Mohan Raju, B#; Nuveshen Naidoo*; Sheshshaayee, M. S; Verryn, S. D*; Kamalkannan, R^; Bindumadhava... isotope analysis in Eucalyptus. Methods Expt 1: * Cores were taken from periphery to pith in 5 year old trees of Eucalyptus * Five half sib families of Eucalyptus grandis & E. urophylla were used ? Cores were further subdivided into 5 fragments...

  8. A new method for carbon isotopic analysis of protein

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D.E. (Lawrence Livermore National Lab., CA (USA))

    1991-02-01

    The reaction of ninhydrin with amino acids can be used in carbon isotopic studies of protein. The reaction can be applied to extract as carbon dioxide only peptide-bonded carbon in proteinaceous material, thus avoiding most, if not all, contaminants. Test radiocarbon dates on ancient bone indicate that the method provides reliable ages, and stable carbon isotopic data suggest that our understanding of isotopic dietary reconstruction needs detailed examination. The technique should also be useful in biochemical tracing experiments and in global carbon budget studies, and the underlying principle may be applicable to other isotopes and molecules. 28 refs., 1 fig., 1 tab.

  9. Hydrogen and Water: An Engineering, Economic and Environmental Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Simon, A J; Daily, W; White, R G

    2010-01-06

    The multi-year program plan for the Department of Energy's Hydrogen and Fuel Cells Technology Program (USDOE, 2007a) calls for the development of system models to determine economic, environmental and cross-cutting impacts of the transition to a hydrogen economy. One component of the hydrogen production and delivery chain is water; water's use and disposal can incur costs and environmental consequences for almost any industrial product. It has become increasingly clear that due to factors such as competing water demands and climate change, the potential for a water-constrained world is real. Thus, any future hydrogen economy will need to be constructed so that any associated water impacts are minimized. This, in turn, requires the analysis and comparison of specific hydrogen production schemes in terms of their water use. Broadly speaking, two types of water are used in hydrogen production: process water and cooling water. In the production plant, process water is used as a direct input for the conversion processes (e.g. steam for Steam Methane Reforming {l_brace}SMR{r_brace}, water for electrolysis). Cooling water, by distinction, is used indirectly to cool related fluids or equipment, and is an important factor in making plant processes efficient and reliable. Hydrogen production further relies on water used indirectly to generate other feedstocks required by a hydrogen plant. This second order indirect water is referred to here as 'embedded' water. For example, electricity production uses significant quantities of water; this 'thermoelectric cooling' contributes significantly to the total water footprint of the hydrogen production chain. A comprehensive systems analysis of the hydrogen economy includes the aggregate of the water intensities from every step in the production chain including direct, indirect, and embedded water. Process and cooling waters have distinct technical quality requirements. Process water, which is typically

  10. Effective atomic number of soft tissue, water and air for interaction of various hadrons, leptons and isotopes of hydrogen.

    Science.gov (United States)

    Kurudirek, Murat

    2017-12-01

    Characterization of soft tissue, water and air in terms of effective atomic number (Zeff) with respect to the interactions of hadrons, leptons and isotopes of hydrogen. Mass collision stopping powers (MCSPs) were calculated first using Bethe formula. Then, these values were used to estimate Zeff using linear-logarithmic interpolation. A scale equation was also used to calculate MCSP. Variation in Zeff, over the 0.5-50 MeV energy range considered, is minimum for muon and pion (π meson) interactions (relative difference [RD] ≤ 7%), while maximum variation has been noticed in Zefffor heavy charged particles, i.e. alpha particle (RD ≤ 26%). The highest values of Zeff were obtained for muon particle, the lightest particle while the minimum values of Zeff were obtained for alpha particle interaction. Except for very low kinetic energies, water equivalence of soft tissue is very satisfactory (RD ≤ 3%). The Zeff of water relative to air was found to be almost constant at high energies. The present results should be valid for especially high energies where the Bethe formula can be applied. This applies to relatively higher energies (>2 MeV) for heavier particles such as alpha particles and applies to relatively lower energies (>0.5 MeV) for lighter particles such as protons. In view of the importance of water equivalence in particle therapy, new data on Zeff in soft tissue, water and air for fundamental particle interaction should be important. Results revealed that soft tissue could be considered as water equivalent for interaction of various fundamental particles.

  11. Stable hydrogen isotopic compositions in plants and animals can provide ecosystem-hydrology connections: Santeelah Creek watershed

    Science.gov (United States)

    Fogel, M. L.; Newsome, S.; Graves, G.

    2013-12-01

    Connecting a watershed to its ecosystem can be accomplished with stable isotope tracers of hydrogen and oxygen at the natural abundance level. We have concentrated our study on a watershed with a significant altitudinal gradient in North Carolina. The Santeelah Creek watershed extends from 700 to 1600 m and is host to a robust population of black-throated blue warblers (Setophaga caerulescens; BTBW), which feed almost exclusively on caterpillars and small insects during their breeding and molting periods in June and July. The forests in this watershed are composed of a rich flora, including Betula, Rhododendron, Acer, Quercus, along with shrubs, ferns, and mosses. The δD of plants and insects along with creek and spring water samples provided us with background information that we extrapolated to the landscape scale. In addition, we have 13 years of δD data of feathers collected from over 500 specimens of BTBW that were collected from specific territories throughout the watershed. Variations in δD of plants within the watershed was not correlated with altitude, however, specific plant species (e.g. Betula vs. ferns) provide a direct link to the within watershed hydrology, because the δD values of plants are dependent not only on the δD of source water, but also growth temperature and the amount of evaporative transpiration. The δD values of BTBW feathers also do not vary with altitude, but vary annually and correlate with the amount of growing season and annual precipitation from the previous year when feathers were grown. While the δD of avian feathers has become a proven technique for tracing the natal origins of birds, our dataset allows us to delve further into the connections between water-primary producers-consumers-predators that will provide insight into how these analyses are truly linked to the hydrology of their environment.

  12. Carbon and hydrogen isotope composition of plant biomarkers as proxies for precipitation changes across Heinrich Events in the subtropics

    Science.gov (United States)

    Arnold, T. E.; Freeman, K.; Brenner, M.; Diefendorf, A. F.

    2014-12-01

    Lake Tulane is a relatively deep (~23 m) solution lake in south-central Florida. Its depth and location on a structural high, the Lake Wales Ridge, enabled continuous lacustrine sediment accumulation over the past >60,000 years. Pollen in the lake sediments indicate repeated major shifts in the vegetation community, with six peaks in Pinus (pine) abundance that coincide with the most intense cold phases of Dansgaard-Oeschger cycles and the Heinrich events that terminate them. Alternating with Pinus peaks are zones with high relative percentages of Quercus (oak), Ambrosia (ragweed), Lyonia (staggerbush) and Ceratiola (rosemary) pollen, genera that today occupy the most xeric sites on the Florida landscape. This suggests the pollen record indicates the Pinus phases, and therefore Heinrich Events, were wetter than the intervening Quercus phases. To test the connection between Heinrich Events and precipitation in Florida, we analyzed the carbon (δ13C) and hydrogen (δD) isotope signatures of plant biomarkers extracted from the Lake Tulane sediment core as proxies of paleohydrology. The δ13C of plant biomarkers, such as n-alkanes and terpenoids, are determined, in part, by changes in water-use efficiency (WUE = Assimilation/Transpiration) in plant communities, which changes in response to shifts in mean annual precipitation. Plant δ13C values can, therefore, provide a rough indication of precipitation changes when other factors, such as plant community, are relatively stable throughout time. Paleohydrology is also recorded in the δD of plant leaf waxes, which are strongly controlled by precipitation δD. In this region, precipitation δD is negatively correlated with rainfall amount (i.e. the "amount" effect) and positively correlated with aridity. Thus, the δ13C and δD signatures of molecular plant biomarkers provide relative indicators of precipitation change, and when combined, provide a test of our hypothesis that vegetation changes in this region are driven

  13. Multivariate Stable Isotope Analysis to Determine Linkages between Benzocaine Seizures

    Science.gov (United States)

    Kemp, H. F.; Meier-Augenstein, W.; Collins, M.; Salouros, H.; Cunningham, A.; Harrison, M.

    2012-04-01

    In July 2010, a woman was jailed for nine years in the UK after the prosecution successfully argued that attempting to import a cutting agent was proof of involvement in a conspiracy to supply Cocaine. That landmark ruling provided law enforcement agencies with much greater scope to tackle those involved in this aspect of the drug trade, specifically targeting those importing the likes of benzocaine or lidocaine. Huge quantities of these compounds are imported into the UK and between May and August 2010, four shipments of Benzocaine amounting to more then 4 tons had been seized as part of Operation Kitley, a joint initiative between the UK Border Agency and the Serious Organised Crime Agency (SOCA). By diluting cocaine, traffickers can make it go a lot further for very little cost, leading to huge profits. In recent years, dealers have moved away from inert substances, like sugar and baby milk powder, in favour of active pharmaceutical ingredients (APIs), including anaesthetics like Benzocaine and Lidocaine. Both these mimic the numbing effect of cocaine, and resemble it closely in colour, texture and some chemical behaviours, making it easier to conceal the fact that the drug has been diluted. API cutting agents have helped traffickers to maintain steady supplies in the face of successful interdiction and even expand the market in the UK, particularly to young people aged from their mid teens to early twenties. From importation to street-level, the purity of the drug can be reduced up to a factor of 80 and street level cocaine can have a cocaine content as low as 1%. In view of the increasing use of Benzocaine as cutting agent for Cocaine, a study was carried out to investigate if 2H, 13C, 15N and 18O stable isotope signatures could be used in conjunction with multivariate chemometric data analysis to determine potential linkage between benzocaine exhibits seized from different locations or individuals to assist with investigation and prosecution of drug

  14. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T.R.H.; Whitlow, H.J. [Lund Univ. (Sweden); Bubb, I.F.; Short, R.; Johnston, P.N. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1996-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  15. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ``milked`` from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The cost of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country.

  16. Compound-Specific Sulfur Isotope Analysis of Petroleum Gases.

    Science.gov (United States)

    Said-Ahmad, Ward; Wong, Kenneth; Mcnall, Monaca; Shawar, Lubna; Jacksier, Tracey; Turich, Courtney; Stankiewicz, Artur; Amrani, Alon

    2017-03-07

    We describe a simple, sensitive, and robust method for sulfur isotope ratio (34S/32S) analysis of ppm-level organic sulfur compounds (OSCs) in the presence of percent-level H2S. The method uses a gas chromatograph (GC) coupled with a multicollector inductively coupled plasma mass spectrometer (MC-ICPMS). The GC, equipped with a gas inlet and a valve that transfers the H2S to a thermal conductivity detector (TCD), enables a precise heart cut and prevents the saturation of the MC-ICPMS. The sensitivity and accuracy of the method are better than 0.3‰ for OSCs at a concentration of 25 pmol or 1.4 ppm, and better than 0.5‰ for concentrations ≥0.7 ppm of OSCs. An order of magnitude increase in sensitivity, with no effect on accuracy, can be achieved if the loop volume (0.5 mL) is changed to 5 mL. High concentrations of methane (95% v/v) and/or H2S (20% v/v) had no effect (within 0.5‰) on the precision and accuracy of the gas sample containing 2 ppm of OSCs after heart cut. The applicability and robustness of this method are demonstrated on a gas sample (10% v/v H2S) that was produced by pyrolysis of sulfur-rich kerogen. The results show good precision and reveal sulfur isotope variability between individual OSCs that may represent key processes during formation and degradation of OSCs.

  17. Nitrogen isotopes in the recent solar wind from the analysis of genesis targets: evidence for large scale isotope heterogeneity in the nascent solar system

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Roger C [Los Alamos National Laboratory; Marty, Bernard [INSU-CNRS; Zimmermann, Laurent [INSU-CNRS; Burnard, Peter G [INSU-CNRS; Burnett, Donald L [CALTECH; Heber, Veronika S [ETH ZURICH; Wieler, Rainer [ETH ZURICH; Bochsler, Peter [UNIV OV BERN

    2009-01-01

    Nitrogen, the fifth most abundant element in the universe, displays the largest stable isotope variations in the solar system reservoirs after hydrogen. Yet the value of isotopic composition of solar nitrogen, presumably the best proxy of the protosolar nebula composition, is not known. Nitrogen isotopes trapped in Genesis spacecraft target material indicate a 40 % depletion of {sup 15}N in solar wind N relative to inner planets and meteorites, and define a composition for the present-day Sun undistinguishable from that of Jupiter's atmosphere. These results indicate that the isotopic composition of of nitrogen in the outer convective zone of the Sun (OCZ) has not changed through time, and is representative of the protosolar nebula. Large {sup 15}N enrichments during e.g., irradiation, or contributions from {sup 15}N-rich presolar components, are required to account for planetary values.

  18. Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.

    Science.gov (United States)

    Hill, Devon W.; And Others

    1988-01-01

    Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

  19. Oxygen and hydrogen isotope study of high-pressure metagabbros and metabasalts (Cyclades, Greece): implications for the subduction of oceanic crust

    Science.gov (United States)

    Putlitz, Benita; Matthews, Alan; Valley, John W.

    Oxygen and hydrogen stable isotope ratios of eclogite-facies metagabbros and metabasalts from the Cycladic archipelago (Greece) document the scale and timing of fluid-rock interaction in subducted oceanic crust. Close similarities are found between the isotopic compositions of the high-pressure rocks and their ocean-floor equivalents. High-pressure minerals in metagabbros have low δ18O values: garnet 2.6 to 5.9‰, glaucophane 4.3 to 7.1‰ omphacite 3.5 to 6.2‰. Precursor actinolite that was formed during the hydrothermal alteration of the oceanic crust by seawater analyses at 3.7 to 6.3‰. These compositions are in the range of the δ18O values of unaltered igneous oceanic crust and high-temperature hydrothermally altered oceanic crust. In contrast, high-pressure metabasalts are characterised by 18O-enriched isotopic compositions (garnet 9.2 to 11.5‰, glaucophane 10.6 to 12.5‰, omphacite 10.2 to 12.8‰), which are consistent with the precursor basalts having undergone low-temperature alteration by seawater. D/H ratios of glaucophane and actinolite are also consistent with alteration by seawater. Remarkably constant oxygen isotope fractionations, compatible with isotopic equilibrium, are observed among high-pressure minerals, with Δglaucophane-garnet= 1.37+/-0.24‰ and Δomphacite-garnet=0.72+/-0.24‰. For the estimated metamorphic temperature of 500°C, these fractionations yield coefficients in the equation Δ=A*106/T2 (in Kelvin) of Aglaucophane-garnet= 0.87+/-0.15 and Aomphacite-garnet=0.72+/-0.24. A fractionation of Δglaucophane-actinolite=0.94+/-0.21‰ is measured in metagabbros, and indicates that isotopic equilibrium was established during the metamorphic reaction in which glaucophane formed at the expense of actinolite. The preservation of the isotopic compositions of gabbroic and basaltic oceanic crust and the equilibrium fractionations among minerals shows that high-pressure metamorphism occurred at low water/rock ratios. The isotopic

  20. Seasonal variability of oxygen and hydrogen isotopes in a wetland system of the Yunnan-Guizhou Plateau, southwest China: a quantitative assessment of groundwater inflow fluxes

    Science.gov (United States)

    Cao, Xingxing; Wu, Pan; Zhou, Shaoqi; Han, Zhiwei; Tu, Han; Zhang, Shui

    2018-02-01

    The Caohai Wetland serves as an important ecosystem on the Yunnan-Guizhou Plateau and as a nationally important nature reserve for migratory birds in China. In this study, surface water, groundwater and wetland water were collected for the measurement of environmental isotopes to reveal the seasonal variability of oxygen and hydrogen isotopes (δ18O, δD), sources of water, and groundwater inflow fluxes. Results showed that surface water and groundwater are of meteoric origin. The isotopes in samples of wetland water were well mixed vertically in seasons of both high-flow (September) and low-flow (April); however, marked seasonal and spatial variations were observed. During the high-flow season, the isotopic composition in surface wetland water varied from -97.13 to -41.73‰ for δD and from -13.17 to -4.70‰ for δ18O. The composition of stable isotopes in the eastern region of this wetland was lower than in the western region. These may have been influenced by uneven evaporation caused by the distribution of aquatic vegetation. During the low-flow season, δD and δ18O in the more open water with dead aquatic vegetation ranged from -37.11 to -11.77‰, and from -4.25 to -0.08‰, respectively. This may result from high evaporation rates in this season with the lowest atmospheric humidity. Groundwater fluxes were calculated by mass transfer and isotope mass balance approaches, suggesting that the water sources of the Caohai Wetland were mainly from groundwater in the high-flow season, while the groundwater has a smaller contribution to wetland water during the low-flow season.

  1. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotopic Ratios for Amino Acids in CM and CR Chondrites and their use in Evaluating Potential Formation Pathways

    Science.gov (United States)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.

  2. Ar isotope analysis for K-Ar dating using two modified-VG5400 mass spectrometers. 1. Isotope dilution method

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Keisuke; Ogata, Atsumi; Miura, Y.N.; Yamaguchi, Kenji [Okayama Univ., Misasa, Tottori (Japan). Inst. for Study of the Earth`s Interior

    1996-02-01

    Two noble gas mass spectrometry systems (MS-I and MS-II) have been installed in 1989, one of which was designed in our laboratory for Ar isotope analysis to measure K-Ar age by isotope dilution method using {sup 38}Ar-spike. The whole system was modified and improved to obtain high quality Ar data. The improved system composed of an Ar extraction and purification line and a Modified-VG5400 mass spectrometer enables us to determine precise Ar isotope composition easily and speedily irrespective to operator`s skillfulness. Formulas calculating radiogenic {sup 40}Ar abundance, which takes account of correction for Ar isotopes of both spike and blank, are presented. For samples with young K-Ar age, formulas to estimate the radiogenic {sup 40}Ar abundance based on {sup 40}Ar/{sup 36}Ar ratio are also proposed. Replicate analyses on many K-Ar standard samples show that the system can be applicable to samples with ages ranging 0.01 to 1500 Ma without any systematic analytical errors. (author).

  3. Mobility and diet in Neolithic, Bronze Age and Iron Age Germany : evidence from multiple isotope analysis

    NARCIS (Netherlands)

    Oelze, Viktoria Martha

    2012-01-01

    Prehistoric human diet can be reconstructed by the analysis of carbon (C), nitrogen (N) and sulphur (S) stable isotopes in bone, whereas ancient mobility and provenance can be studied using the isotopes of strontium (Sr) and oxygen (O) in tooth enamel, and of sulphur in bone. Although thirty years

  4. Assessing Friction Stress on a Liquid Lubricant by Stable Isotope Analysis

    Science.gov (United States)

    2014-07-17

    1999;12:228-9. [11] Bhushan B. Principles and Applications of Tribology. New York, NY: John Wiley & Sons; 1999. [12] Fry B. Stable Isotope Ecology ... Coffin RB. Compound-Specific Isotope Analysis Coupled With Multivariate Statistics to Source-Apportion Hydrocarbon Mixtures. Environ Sci Technol

  5. Stable isotope ratio analysis for authentication of red yeast rice.

    Science.gov (United States)

    Perini, Matteo; Carbone, Gianfranco; Camin, Federica

    2017-11-01

    Red yeast rice (RYR) is a dietary supplement obtained from rice fermented with the mould Monascus purpureus. It contains Monacolin K which is a hypocholesterolemic statin used to prevent cardiovascular diseases. The homologous prescription biosynthetic statin, lovastatin, is not chemically distinguishable from monacolin K. In this work we investigated whether δ(13)C and δ(2)H can distinguish monacolin K from lovastatin and can detect the presence of lovastatin in RYR. 18 samples of red yeast rice powder and 18 samples of lovastatin were collected. Monacolin K was isolated from RYR using preparative HPLC and together with lovastatin, was subjected to analysis of δ(13)C and δ(2)H using Isotope Ratio Mass Spectrometry. Thanks to the different photosynthetic cycles of the matrices used for their synthesis, monacolin K and lovastatin have different δ(13)C values (-29.6‰ ± 0.6 and -16.7‰ ± 2.6 respectively). δ(2)H is significantly (p < 0.001) lower in monacolin K but the ranges of values partially overlap with those of lovastatin. By defining a δ(13)C threshold value of -28.3‰ for monacolin K, addition of lovastatin from a minimum of 10% can be identified. δ(13)C analysis can be therefore proposed as a suitable tool for detecting the authenticity of RYR on the market. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hydrogen isotope ratios of terrestrial leaf wax n-alkanes from the Tibetan Plateau: Controls on apparent enrichment factors, effect of vapor sources and implication for altimetry

    Science.gov (United States)

    Zhang, Xiaolong; Xu, Baiqing; Günther, Franziska; Mügler, Ines; Lange, Markus; Zhao, Huabiao; Li, Jiule; Gleixner, Gerd

    2017-08-01

    Empirical evidence suggested that the altitudinal dependence of hydrogen isotope ratios of leaf wax n-alkanes (δDwax) can be used to estimate paleoaltitudinal changes. However, the application of δDwax-based paleoaltimetry remains difficult, as the impacts of evaporative, transpirative and biosynthetic processes on hydrogen isotope fractionations in changing environments and the influence of likely changing water vapor sources are not well explored. For this study, we sampled stream waters, soils and plant leaves along two transects spanning large gradients of altitude, precipitation amount, vapor source, temperature and vegetation type on the Tibetan Plateau (TP). δD values of stream water (as an approximation for δDp), soil water (δDsw) and plant leaf water (δDlw) as well as leaf wax n-alkanes were measured in order to quantify isotopic fractionations in the formation of leaf waxes. Most interestingly, we found a strong negative correlation between the evapotranspirative enrichment of leaf water against precipitation (εlw-p), which combines the effects of soil evaporation and leaf transpiration, and the biosynthetic hydrogen isotope fractionation (εwax-lw), which describes isotopic enrichment between leaf wax and leaf water. The relationship yields a steady apparent isotopic enrichment factor (εwax-p) between leaf wax and precipitation, which is independent from climatic parameters and has an average value of -107 ± 26‰ for grasses (monocotyledons) and -77 ± 22‰ for trees (dicotyledons). Since the terrestrial n-alkanes, especially n-C27 and n-C29, in sediments are derived from trees and grasses, the likely change of the vegetation type in the uplift of mountains can change the isotopic estimates by about ±30‰, which corresponds to an altitudinal change of ∼1600 m. We, therefore, suggest that hydrogen isotope ratio of sedimentary n-C31 alkane, which is mainly derived from grasses might be better proxies to reconstruct paleoaltitudes. Our large

  7. Hydrogen Trailer Storage Facility (Building 878). Consequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Banda, Z.; Wood, C.L.

    1994-12-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This consequence analysis documents the impact that a hydrogen accident could have to employees, the general public, and nearby facilities. The computer model ARCHIE was utilized to determine discharge rates, toxic vapor dispersion analyses, flammable vapor cloud hazards, explosion hazards, and flame jets for the Hydrogen Trailer Storage Facility located at Building 878. To determine over pressurization effects, hand calculations derived from the Department of the Air Force Manual, ``Structures to Resist the Effects of Accidental Explosions,`` were utilized. The greatest distances at which a postulated facility event will produce the Lower Flammability and the Lower Detonation Levels are 1,721 feet and 882 feet, respectively. The greatest distance at which 10.0 psi overpressure (i.e., total building destruction) is reached is 153 feet.

  8. Estimation of Hydrogen-Exchange Protection Factors from MD Simulation Based on Amide Hydrogen Bonding Analysis

    Science.gov (United States)

    Park, In-Hee; Venable, John D.; Steckler, Caitlin; Cellitti, Susan E.; Lesley, Scott A.; Spraggon, Glen; Brock, Ansgar

    2015-01-01

    Hydrogen exchange (HX) studies have provided critical insight into our understanding of protein folding, structure and dynamics. More recently, Hydrogen Exchange Mass Spectrometry (HX-MS) has become a widely applicable tool for HX studies. The interpretation of the wealth of data generated by HX-MS experiments as well as other HX methods would greatly benefit from the availability of exchange predictions derived from structures or models for comparison with experiment. Most reported computational HX modeling studies have employed solvent-accessible-surface-area based metrics in attempts to interpret HX data on the basis of structures or models. In this study, a computational HX-MS prediction method based on classification of the amide hydrogen bonding modes mimicking the local unfolding model is demonstrated. Analysis of the NH bonding configurations from Molecular Dynamics (MD) simulation snapshots is used to determine partitioning over bonded and non-bonded NH states and is directly mapped into a protection factor (PF) using a logistics growth function. Predicted PFs are then used for calculating deuteration values of peptides and compared with experimental data. Hydrogen exchange MS data for Fatty acid synthase thioesterase (FAS-TE) collected for a range of pHs and temperatures was used for detailed evaluation of the approach. High correlation between prediction and experiment for observable fragment peptides is observed in the FAS-TE and additional benchmarking systems that included various apo/holo proteins for which literature data were available. In addition, it is shown that HX modeling can improve experimental resolution through decomposition of in-exchange curves into rate classes, which correlate with prediction from MD. Successful rate class decompositions provide further evidence that the presented approach captures the underlying physical processes correctly at the single residue level. This assessment is further strengthened in a comparison of

  9. An analysis of hydrogen production from ammonia hydride hydrogen generators for use in military fuel cell environments

    Science.gov (United States)

    Sifer, Nicholas; Gardner, Kristopher

    In an effort to simultaneously improve upon existing power storage and generation devices while supplying America's war fighters with state-of-the-art equipment, the US military has focused on fuel cell technology for several military applications. These applications include soldier and sensor power (0-100 W) and auxiliary power units (500-3000 W). Over the past few years, the fuel cell industry has realized remarkable decreases in the size and weight of proton exchange membrane (PEM) fuel cell systems. However, a safe and affordable means of storing and generating hydrogen does not yet exist to justify their transition into the field. In order to assess the hydrogen storage capacity and hydrogen generation rates of ammonia (NH 3) based systems, the US Army Communications-Electronics Research, Development, and Engineering Center (CERDEC), tested several ammonia hydride hydrogen generator systems built by Hydrogen Components Inc. (HCI). Experimental results and analysis illustrate that while there are developments necessary at the sub-system level, the hydrogen generators are ideal energy storage devices for low power (5 W) operations over wide temperature ranges. The results show that the hydrogen generators are capable of operating autonomously for over 50+ h of operation (at a 5 W load) and producing hydrogen delivery system energy densities of 480 Wh/kg.

  10. Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

    2012-06-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  11. Insights from Hydrogen Refueling Station Manufacturing Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mayyas, Ahmad

    2015-12-18

    In work for the Clean Energy Manufacturing Analysis Center (CEMAC), NREL is currently collaborating with Great Lakes Wind Network in conducting a comprehensive hydrogen refueling stations manufacturing competitiveness and supply chain analyses. In this project, CEMAC will be looking at several metrics that will facilitate understanding of the interactions between and within the HRS supply chain, such metrics include innovation potential, intellectual properties, learning curves, related industries and clustering, existing supply chains, ease of doing business, and regulations and safety. This presentation to Fuel Cell Seminar and Energy Exposition 2015 highlights initial findings from CEMAC's analysis.

  12. Referencing strategies and techniques in stable isotope ratio analysis.

    Science.gov (United States)

    Werner, R A; Brand, W A

    2001-01-01

    Stable isotope ratios are reported in the literature in terms of a deviation from an international standard (delta-values). The referencing procedures, however, differ from instrument to instrument and are not consistent between measurement facilities. This paper reviews an attempt to unify the strategy for referencing isotopic measurements. In particular, emphasis is given to the importance of identical treatment of sample and reference material ('IT principle'), which should guide all isotope ratio determinations and evaluations. The implementation of the principle in our laboratory, the monitoring of our measurement quality, the status of the international scales and reference materials and necessary correction procedures are discussed. Copyright 2001 John Wiley & Sons, Ltd.

  13. Fracture Analysis of Rubber Sealing Material for High Pressure Hydrogen Vessel

    National Research Council Canada - National Science Library

    YAMABE, Junichiro; FUJIWARA, Hirotada; NISHIMURA, Shin

    2011-01-01

    In order to clarify the influence of high pressure hydrogen gas on mechanical damage in a rubber O-ring, the fracture analysis of the O-ring used for a sealing material of a pressure hydrogen vessel was conducted...

  14. H/D isotopic and temperature effects in the polarized IR spectra of hydrogen-bond cyclic trimers in the crystal lattices of acetone oxime and 3,5-dimethylpyrazole.

    Science.gov (United States)

    Flakus, Henryk T; Hachuła, Barbara; Garbacz, Aleksandra

    2012-11-29

    Polarized IR spectra of hydrogen-bonded acetone oxime and 3,5-dimethylpyrazole crystals were measured at 293 and 77 K in the ν(X-H) and ν(X-D) band frequency ranges. These crystals contain molecular trimers in their lattices. The individual crystal spectral properties remain in a close relation with the electronic structure of the two different molecular systems. We show that a vibronic coupling mechanism involving the hydrogen-bond protons and the electrons on the π-electronic systems in the molecules determines the way in which the vibrational exciton coupling between the hydrogen bonds in the trimers occurs. A strong coupling in 3,5-dimethylpyrazole trimers prefers a "tail-to-head"-type Davydov coupling widespread via the π-electrons. A weak through-space exciton coupling in acetone oxime trimers involves three adjacent hydrogen bonds in each cycle. The relative contribution of each exciton coupling mechanism in the trimer spectra generation is temperature and the molecular electronic structure-dependent. This explains the observed difference in the temperature-induced evolution of the compared spectra. The mechanism of the H/D isotopic "self-organization" processes in the crystal hydrogen bonds was also analyzed. The two types of the hydrogen-bond trimers exhibit the same way, in which the H/D isotopic recognition mechanism occurs. In acetone oxime and 3,5-dimethylpyrazole trimers, identical hydrogen isotope atoms exist in these entire hydrogen-bond systems.

  15. Predicting origins of passerines migrating through Canadian migration monitoring stations using stable-hydrogen isotope analyses of feathers: a new tool for bird conservation

    Directory of Open Access Journals (Sweden)

    Keith A. Hobson

    2015-06-01

    Full Text Available The Canadian Migration Monitoring Network (CMMN consists of standardized observation and migration count stations located largely along Canada's southern border. A major purpose of CMMN is to detect population trends of migratory passerines that breed primarily in the boreal forest and are otherwise poorly monitored by the North American Breeding Bird Survey (BBS. A primary limitation of this approach to monitoring is that it is currently not clear which geographic regions of the boreal forest are represented by the trends generated for each bird species at each station or group of stations. Such information on "catchment areas" for CMMN will greatly enhance their value in contributing to understanding causes of population trends, as well as facilitating joint trend analysis for stations with similar catchments. It is now well established that naturally occurring concentrations of deuterium in feathers grown in North America can provide information on their approximate geographic origins, especially latitude. We used stable hydrogen isotope analyses of feathers (δ²Hf from 15 species intercepted at 22 CMMN stations to assign approximate origins to populations moving through stations or groups of stations. We further constrained the potential catchment areas using prior information on potential longitudinal origins based upon bird migration trajectories predicted from band recovery data and known breeding distributions. We detected several cases of differences in catchment area of species passing through sites, and between seasons within species. We discuss the importance of our findings, and future directions for using this approach to assist conservation of migratory birds at continental scales.

  16. Analysis of hydrogenated zirconium alloys irradiated with gamma - rays

    Directory of Open Access Journals (Sweden)

    Askhatov Askar

    2017-01-01

    Full Text Available The paper represents the investigations concerning the geometrical size effect of hydrogenated zirconium alloys (Zr-1Ni-H during gamma-ray irradiation on the amount of energy absorbed. The results have shown that the less the cross-sectional dimensions of the sample or product is, the less energy is absorbed. The paper provides theoretical calculations. The zirconium sample with a cross-section of 2.8х2.8 cm absorbs 30-35% of the energy of the incident gamma-ray flow. The increase in the cross-section of a product up to 28 cm leads to the increase in the absorbed energy by more than 2 times. At the same time, the thickness of the product is constant. This effect is explained by the multiple scattering of gamma-rays. It leads to the nonuniform distribution of defects which can accumulate hydrogen and should be considered when developing the analysis methods. These edge effects are confirmed by the measurement of the thermal electromotive force for the samples of zirconium alloys before hydrogenation and gamma-ray irradiation, and after irradiation.

  17. Integrated analysis of hydrogen passenger vehicle transportation pathways

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1998-08-01

    Hydrogen-powered fuel cell vehicles will reduce local air pollution, greenhouse gas emissions and oil imports. Other alternative vehicles such as gasoline- or methanol-powered fuel cell vehicles, natural gas vehicles and various hybrid electric vehicles with internal combustion engines may also provide significant environmental and national security advantages. This report summarizes a two-year project to compare the direct hydrogen fuel cell vehicle with other alternatives in terms of estimated cost and estimated societal benefits, all relative to a conventional gasoline-powered internal combustion engine vehicle. The cost estimates used in this study involve ground-up, detailed analysis of the major components of a fuel cell vehicle system, assuming mass production in automotive quantities. The authors have also estimated the cost of both gasoline and methanol onboard fuel processors, as well as the cost of stationary hydrogen fueling system components including steam methane reformers, electrolyzers, compressors and stationary storage systems. Sixteen different vehicle types are compared with respect to mass production cost, local air pollution and greenhouse gas emissions.

  18. Isotope dilution analysis for urinary fentanyl and its main metabolite, norfentanyl, in patients by isotopic fractionation using capillary gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Sera, Shoji; Goromaru, Tsuyoshi [Fukuyama Univ., Hiroshima (Japan). Faculty of Pharmacy and Pharmaceutical Sciences; Sameshima, Teruko; Kawasaki, Koichi; Oda, Toshiyuki

    1998-07-01

    Isotope dilution analysis was applied to determine urinary excretion of fentanyl (FT) and its main metabolite, norfentanyl (Nor-FT), by isotopic fractionation using a capillary gas chromatograph equipped with a surface ionization detector (SID). Urinary FT was determined quantitatively in the range of 0.4-40 ng/ml using deuterium labeled FT (FT-{sup 2}H{sub 19}), as an internal standard. We also performed isotope dilution analysis of Nor-FT in urine. N-Alkylation was necessary to sensitively detect Nor-FT with SID. Methyl derivative was selected from 3 kinds of N-alkyl derivatives to increase sensitivity and peak resolution, and to prevent interference with urinary compound. Nor-FT concentration was quantitatively determined in the range of 10-400 ng/ml using deuterium labeled Nor-FT (Nor-FT-{sup 2}H{sub 10}). No endogenous compounds or concomitant drugs interfered with the detection of FT and Nor-FT in the urine of patients. The present method will be useful for pharmacokinetic studies and the evaluation of drug interactions in FT metabolism. (author)

  19. Final Report: Hydrogen Production Pathways Cost Analysis (2013 – 2016)

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel Allan [Strategic Analysis Inc., Arlington, VA (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-30

    This report summarizes work conducted under a three year Department of Energy (DOE) funded project to Strategic Analysis, Inc. (SA) to analyze multiple hydrogen (H2) production technologies and project their corresponding levelized production cost of H2. The analysis was conducted using the H2A Hydrogen Analysis Tool developed by the DOE and National Renewable Energy Laboratory (NREL). The project was led by SA but conducted in close collaboration with the NREL and Argonne National Laboratory (ANL). In-depth techno-economic analysis (TEA) of five different H2 production methods was conducted. These TEAs developed projections for capital costs, fuel/feedstock usage, energy usage, indirect capital costs, land usage, labor requirements, and other parameters, for each H2 production pathway, and use the resulting cost and system parameters as inputs into the H2A discounted cash flow model to project the production cost of H2 ($/kgH2). Five technologies were analyzed as part of the project and are summarized in this report: Proton Exchange Membrane technology (PEM), High temperature solid oxide electrolysis cell technology (SOEC), Dark fermentation of biomass for H2 production, H2 production via Monolithic Piston-Type Reactors with rapid swing reforming and regeneration reactions, and Reformer-Electrolyzer-Purifier (REP) technology developed by Fuel Cell Energy, Inc. (FCE).

  20. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Schmitt, J.; Seth, B.; Bock, M; van der Veen, C.; Möller, L.; Sapart, C.J.|info:eu-repo/dai/nl/31400596X; Prokopiou, M.|info:eu-repo/dai/nl/330866117; Sowers, T.; Röckmann, T.|info:eu-repo/dai/nl/304838233; Fischer, H

    2013-01-01

    Stable carbon isotope analysis of methane ( 13C of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC) isotope ratio mass spectrometry (IRMS) coupled to a

  1. PC/FRAM plutonium isotopic analysis of CdTe gamma-ray spectra

    CERN Document Server

    Vo, D T

    2002-01-01

    This paper reports the results of isotopics measurements of plutonium with the new CdTe gamma-ray spectrometer. These are the first wide-range plutonium gamma-ray isotopics analysis results obtained with other than germanium spectrometers. The CdTe spectrometer measured small plutonium reference samples in reasonable count times, covering the range from low to high burnup. The complete experimental hardware included the new, commercial, portable CdTe detector and two commercial portable multichannel analyzers. Version 4 of FRAM is the software that performed the isotopics analysis.

  2. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  3. Coordinated Micro-sampling with Clean-Chemistry for Isotopic Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will establish ultra-clean chemical purification and isotopic analysis of chromium and manganese in sub-milligram-sized astromaterial samples. ...

  4. Compact isotope analysis system for in-situ biosignature investigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a sensor for in-situ stable isotope analysis from a lander/rover on future planetary missions. The system will enable the collection of...

  5. Energy Technology Analysis Prospects for Hydrogen and Fuel Cells

    CERN Document Server

    2005-01-01

    Energy security, economic prosperity and environmental protection are prominent challenges for all countries. The use of hydrogen as an energy carrier and fuel cells as motive devices in transportation and energy distribution systems are possible solutions. This book provides the reader with an authoritative and objective analysis of policy responses and hurdles and business opportunities. Information regarding the latest RD&D, policy initiatives and private sector plans are assessed from the perspective of the rapidly changing global energy system in the next half century. This book prov

  6. Isolation and stable nitrogen isotope analysis of ammonium ions in ammonium nitrate prills using sodium tetraphenylborate.

    Science.gov (United States)

    Howa, John D; Lott, Michael J; Ehleringer, James R

    2014-07-15

    Because of the threat of bombings using improvised explosives containing ammonium nitrate (AN), law enforcement and intelligence communities have been interested in stable isotope techniques for tracking and discriminating AN sources. Separate analysis of the AN component ions ammonium and nitrate would add discriminatory power to these techniques. Ammonium ions in dissolved AN solution were isolated from samples by precipitation using sodium tetraphenylborate solution. We tested the isolation of ammonium from nitrates using solutions of ammonium and nitrate salts with different (15)N/(14)N isotope ratios. Ammonium tetraphenylborate and AN were separately analyzed for their (15)N/(14)N isotope ratios using EA-ConFlo-IRMS, and the (15)N/(14)N isotope ratios of the nitrate ions were calculated using mass balance. Ammonium and nitrate nitrogen isotope ratios were plotted as two separate variables. Isolation of ammonium precipitate from solutions containing dissolved nitrates did not influence the nitrogen isotope ratios of test ammonium salts. A survey set of 42 AN samples showed that the ammonium and nitrate (15)N/(14)N isotope ratios were not significantly correlated, and the paired mean differences were not statistically significant. Both ammonium and nitrate were depleted in (15)N relative to their theoretical atmospheric sources. Isolation of the ammonium ion from AN adds another dimension for the discrimination of forensic AN samples. This technique using sodium tetraphenylborate is robust and does not require specialized equipment. Our observations indicated that ammonium nitrogen and nitrate nitrogen have independent sources of isotopic variation. Copyright © 2014 John Wiley & Sons, Ltd.

  7. An Isotope Study of Hydrogenation of poly-Si/SiOx Passivated Contacts for Si Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel; Nemeth, William; van de Loo, Bas, W.H.; Macco, Bart; Kessels, Wilhelmus, M.M.; Stradins, Paul; Young, David, L.

    2017-06-26

    For many years, the record Si solar cell efficiency stood at 25.0%. Only recently have several companies and institutes managed to produce more efficient cells, using passivated contacts of made doped poly-Si or a-Si:H and a passivating intrinsic interlayer in all cases. Common to these designs is the need to passivate the layer stack with hydrogen. In this contribution, we perform a systematic study of passivated contact passivation by hydrogen, using poly-Si/SiOx passivated contacts on n-Cz-Si, and ALD Al2O3 followed by a forming gas anneal (FGA) as the hydrogen source. We study p-type and n-type passivated contacts with implied Voc exceeding 690 and 720 mV, respectively, and perform either the ALD step or the FGA with deuterium instead of hydrogen in order to separate the two processes via SIMS. By examining the deuterium concentration at the SiOx in both types of samples, we demonstrate that the FGA supplies negligible hydrogen species to the SiOx, regardless of whether the FGA is hydrogenated or deuterated. Instead, it supplies the thermal energy needed for hydrogen species in the Al2O3 to diffuse there. Furthermore, the concentration of hydrogen species at the SiOx can saturate while implied Voc continues to increase, showing that the energy from the FGA is also required for hydrogen species already at the SiOx to find recombination-active defects to passivate.

  8. Forensic utility of isotope ratio analysis of the explosive urea nitrate and its precursors.

    Science.gov (United States)

    Aranda, Roman; Stern, Libby A; Dietz, Marianne E; McCormick, Meghan C; Barrow, Jason A; Mothershead, Robert F

    2011-03-20

    Urea nitrate (UN) is an improvised explosive made from readily available materials. The carbon and nitrogen isotope composition of UN and its component ions, urea and nitrate, could aid in a forensic investigation. A method was developed to separate UN into its component ions for δ(15)N measurements by dissolving the sample with KOH, drying the sample, followed by removal of the urea by dissolution into 100% methanol. UN was synthesized to assess for preservation of the carbon and nitrogen isotope compositions of reactants (urea and nitric acid) and product UN. Based on nitrogen isotope mass balance, all UN samples contained varying amounts of excess nitric acid, making the ionic separation an essential step in the nitrogen isotope analysis. During UN synthesis experiments, isotopic composition of the reactants is preserved in the product UN, but the urea in the product UN is slightly enriched in (15)N (urea. Published isotopic compositions of UN reactants, urea and nitric acid, have large ranges (urea δ(15)N = -10.8 to +3.3‰; urea δ(13)C = -18.2 to -50.6‰; and nitric acid δ(15)N = -1.8 to +4.0‰). The preservation of isotopic composition of reactants in UN, along with a significant variability in isotopic composition of reactants, indicates that isotope ratio analysis may be used to test if urea or nitric acid collected during an investigation is a possible reactant for a specific UN sample. The carbon and nitrogen isotope ratios differ significantly between two field-collected UN samples, as well as the lab-synthesized UN samples. These observed variations suggest that this approach is useful for discriminating between materials which are otherwise chemically identical. Published by Elsevier Ireland Ltd.

  9. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    Science.gov (United States)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  10. High Resolution Gamma Ray Analysis of Medical Isotopes

    Science.gov (United States)

    Chillery, Thomas

    2015-10-01

    Compton-suppressed high-purity Germanium detectors at the University of Massachusetts Lowell have been used to study medical radioisotopes produced at Brookhaven Linac Isotope Producer (BLIP), in particular isotopes such as Pt-191 used for cancer therapy in patients. The ability to precisely analyze the concentrations of such radio-isotopes is essential for both production facilities such as Brookhaven and consumer hospitals across the U.S. Without accurate knowledge of the quantities and strengths of these isotopes, it is possible for doctors to administer incorrect dosages to patients, thus leading to undesired results. Samples have been produced at Brookhaven and shipped to UML, and the advanced electronics and data acquisition capabilities at UML have been used to extract peak areas in the gamma decay spectra. Levels of Pt isotopes in diluted samples have been quantified, and reaction cross-sections deduced from the irradiation parameters. These provide both cross checks with published work, as well as a rigorous quantitative framework with high quality state-of-the-art detection apparatus in use in the experimental nuclear physics community.

  11. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  12. Chlorine Isotopes: As a Possible Tracer of Fluid/Bio-Activities on Mars and a Progress Report on Chlorine Isotope Analysis by TIMs

    Science.gov (United States)

    Nakamura, N.; Nyquist, L.E.; Reese, Y.; Shih, C-Y.; Numata, M.; Fujitani, T.; Okano, O.

    2009-01-01

    Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars.

  13. Determining the Spatial Influence of Imported and Local Water Sources to Municipal Tap Water Systems in the Southwestern United States Using Stable Isotopes of Oxygen and Hydrogen

    Science.gov (United States)

    Stalker, J. C.; Kennedy, C. D.; Bowen, G. J.

    2010-12-01

    In arid and semi-arid parts of the southwestern USA, imported waters derived from large canal systems like the Colorado River Aqueduct, Los Angeles Aqueduct, and the California Aqueduct service a significant component of the regional water needs. These waters are sourced primarily from high altitude snowmelt runoff and have relatively low annually averaged stable isotope ratios of hydrogen and oxygen (δD, δ18O) (-99 to -127‰, -10 to -13‰,) when compared to water derived from local rainfall and surface river sources (-35 to -42 ‰, -5 to -7‰) in southern California, western Arizona, and southern Nevada. The distinct isotope signatures of these two waters can be used to differentiate the two sources in tap water from municipal systems. In this study, samples of tap water, aqueduct water, and surface water were collected throughout the Southwest to produce a series of maps of the spatial influence of imported water in municipal tap water. This data was then be used to develop mixing models to determine the relative importance of imported water regionally, and track the prominence of the movement of these imported waters after initial use and addition to a system. The use of isotopes to trace this anthropogenically introduced water is of interest to water management, resolving water rights issues and disputes, as well as environmental applications in ecological studies. Additionally these tracing methods may be applied worldwide in areas where the movement and dynamics of hydrologic systems are either unclear or unknown.

  14. Mineralogic and sulfur isotopic effects accompanying oxidation of pyrite in millimolar solutions of hydrogen peroxide at temperatures from 4 to 150 °C

    Science.gov (United States)

    Lefticariu, Liliana; Pratt, Lisa M.; Ripley, Edward M.

    2006-10-01

    Oxidation of pyrite by hydrogen peroxide (H 2O 2) at millimolar levels has been studied from 4 to 150 °C in order to evaluate isotopic effects potentially associated with radiolytic oxidation of pyrite. Gaseous, aqueous, and solid phases were collected and measured following sealed-tube experiments that lasted from 1 to 14 days. The dominant gaseous product was molecular oxygen. No volatile sulfur species were recovered from any experiment. Sulfate was the only aqueous sulfur species detected in solution, with sulfite and thiosulfate below the detection limits. X-ray diffraction patterns and images from scanning electron microscopy reveal solid residues composed primarily of hydrated ferric iron sulfates and sporadic ferric-ferrous iron sulfates. Hematite was detected only in solid residue produced during high temperature experiments. Elemental sulfur and/or polysulfides are inferred to be form on reacting pyrite surface based on extraction with organic solvents. Pyrite oxidation by H 2O 2 increases in rate with increasing H 2O 2concentration, pyrite surface area, and temperature. Rates measured in sealed-tube experiments at 25°C, for H 2O 2 concentration of 2 × 10 -3 M are 8.8 × 10 -9 M/m 2/sec, which are higher than previous estimates. A combination of reactive oxygen species from H 2O 2 decomposition products and reactive iron species from pyrite dissolution is inferred to aggressively oxidize the receding pyrite surface. Competing oxidants with temperature-dependent oxidation efficiencies results in multiple reaction mechanisms for different temperatures and surface conditions. Sulfur isotope values of remaining pyrite were unchanged during the experiments, but showed distinct enrichment of 34S in produced sulfate and depletion in elemental sulfur. The Δsulfate-pyrite and Δelemental sulfur-pyrite was +0.5 to +1.5‰ and was -0.2 to -1‰, respectively. Isotope data from high-temperature experiments indicate an additional 34S-depleted sulfur fraction, with

  15. Overview of the US-Japan collaborative investigation on hydrogen isotope retention in neutron-irradiated and ion-damaged tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Shimada; Y. Hatano; Y. Oya; T. Oda; M. Hara; G. Cao; M. Kobayashi; M. Sokolov; H. Watanabe; B. Tyburska; Y. Ueda; P. Calderoni

    2011-09-01

    Plasma-facing components (PFCs) will be exposed to 14 MeV neutrons from deuterium-tritium (D-T) fusion reactions, and tungsten, a candidate PFC for the divertor in ITER, is expected to receive a neutron dose of 0.7 displacement per atom (dpa) by the end of operation in ITER. The effect of neutron-irradiation damage has been mainly simulated using high-energy ion bombardment. While this prior database of results is quite valuable for understanding the behavior of hydrogen isotopes in PFCs, it does not encompass the full range of effects that must be considered in a practical fusion environment due to short penetration depth, damage gradient, high damage rate, and high PKA energy spectrum of the ion bombardment. In addition, neutrons change the elemental composition via transmutations, and create a high radiation environment inside PFCs, which influence the behavior of hydrogen isotope in PFCs, suggesting the utilization of fission reactors is necessary for neutron irradiation. Therefore, the effort to correlate among high-energy ions, fission neutrons, and fusion neutrons is crucial for accurately estimating tritium retention under a neutron-irradiation environment. Under the framework of the US-Japan TITAN program, tungsten samples (99.99 at. % purity from A.L.M.T. Co.) were irradiated by neutron in the High Flux Isotope Reactor (HFIR), ORNL, at 50 and 300C to 0.025, 0.3, and 1.2 dpa, and the investigation of deuterium retention in neutron-irradiation was performed in the INL Tritium Plasma Experiment (TPE), the unique high-flux linear plasma facility that can handle tritium, beryllium and activated materials. This paper reports the recent results from the comparison of ion-damaged tungsten via various ion species (2.8 MeV Fe2+, 20 MeV W2+, and 700 keV H-) with that from neutron-irradiated tungsten to identify the similarities and differences among them.

  16. Pyrolysis compound specific isotopic analysis (δ13C and δD Py-CSIA) of soil organic matter size fractions under four vegetation covers.

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Almendros, Gonzalo; De la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    A chemical characterization of soil organic matter (SOM) under different ground cover from a Mediterranean climate (Doñana National Park, Andalusia, Spain) is approached using bulk δ15N, δ13C, δ18O and δD isotopic analysis (C/TC-IRMS) and δ13C and δD pyrolysis compound specific isotopic analysis (Py-CSIA: Py-GC-C/TC-IRMS). Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: biological reworking with a higher microbiological activity fixing the lighter isotope in the soil fine organic fractions. It is known that lipid hydrogen is deuterium depleted relative to bulk organic hydrogen (Smith and Epstein, 1970). In line with this, in our study the lipid derived compounds had the largest deuterium depleted signature with a difference between bulk and lipid δD values was c. -35‰. This fractionation was highest in Pine (PP) and Rockrose (HH). The combination of traditional techniques for the study of SOM i.e. Py-GC/MS and IRMS, with new hyphenated analytical pyrolysis techniques i.e. Py-CSIA opens new possibilities and windows of information in SOM research. Our findings points to the occurrence of more or less complex processes that affects SOM chemical characteristics; whereas the coarse fraction resembles the chemical structure of the above vegetation, this SOM "memory" is less defined in the fine fractions, probably due to biologically mediated chemical conversions, additions and selective preservation of refractory chemical structures. SOM bulk IRMS and Py-CSIA are also informative about relevant plant physiological processes, OM sources and OM evolution status. Acknowledgments: N.T Jiménez-Morillo is funded by a FPI research grant (BES-2013-062573). Dr. J.M. de la Rosa is the recipient

  17. Application of dual carbon-bromine isotope analysis for investigating abiotic transformations of tribromoneopentyl alcohol (TBNPA).

    Science.gov (United States)

    Kozell, Anna; Yecheskel, Yinon; Balaban, Noa; Dror, Ishai; Halicz, Ludwik; Ronen, Zeev; Gelman, Faina

    2015-04-07

    Many of polybrominated organic compounds, used as flame retardant additives, belong to the group of persistent organic pollutants. Compound-specific isotope analysis is one of the potential analytical tools for investigating their fate in the environment. However, the isotope effects associated with transformations of brominated organic compounds are still poorly explored. In the present study, we investigated carbon and bromine isotope fractionation during degradation of tribromoneopentyl alcohol (TBNPA), one of the widely used flame retardant additives, in three different chemical processes: transformation in aqueous alkaline solution (pH 8); reductive dehalogenation by zero-valent iron nanoparticles (nZVI) in anoxic conditions; oxidative degradation by H2O2 in the presence of CuO nanoparticles (nCuO). Two-dimensional carbon-bromine isotope plots (δ(13)C/Δ(81)Br) for each reaction gave different process-dependent isotope slopes (Λ(C/Br)): 25.2 ± 2.5 for alkaline hydrolysis (pH 8); 3.8 ± 0.5 for debromination in the presence of nZVI in anoxic conditions; ∞ in the case of catalytic oxidation by H2O2 with nCuO. The obtained isotope effects for both elements were generally in agreement with the values expected for the suggested reaction mechanisms. The results of the present study support further applications of dual carbon-bromine isotope analysis as a tool for identification of reaction pathway during transformations of brominated organic compounds in the environment.

  18. ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite

    Directory of Open Access Journals (Sweden)

    Borchers Christoph H

    2010-01-01

    Full Text Available Abstract Background Successful application of crosslinking combined with mass spectrometry for studying proteins and protein complexes requires specifically-designed crosslinking reagents, experimental techniques, and data analysis software. Using isotopically-coded ("heavy and light" versions of the crosslinker and cleavable crosslinking reagents is analytically advantageous for mass spectrometric applications and provides a "handle" that can be used to distinguish crosslinked peptides of different types, and to increase the confidence of the identification of the crosslinks. Results Here, we describe a program suite designed for the analysis of mass spectrometric data obtained with isotopically-coded cleavable crosslinkers. The suite contains three programs called: DX, DXDX, and DXMSMS. DX searches the mass spectra for the presence of ion signal doublets resulting from the light and heavy isotopic forms of the isotopically-coded crosslinking reagent used. DXDX searches for possible mass matches between cleaved and uncleaved isotopically-coded crosslinks based on the established chemistry of the cleavage reaction for a given crosslinking reagent. DXMSMS assigns the crosslinks to the known protein sequences, based on the isotopically-coded and un-coded MS/MS fragmentation data of uncleaved and cleaved peptide crosslinks. Conclusion The combination of these three programs, which are tailored to the analytical features of the specific isotopically-coded cleavable crosslinking reagents used, represents a powerful software tool for automated high-accuracy peptide crosslink identification. See: http://www.creativemolecules.com/CM_Software.htm

  19. Isotopic analysis of individual refractory metal nuggets using atom probe tomography

    Science.gov (United States)

    Daly, L.; Bland, P.; Schaefer, B. F.; Saxey, D. W.; Reddy, S.; Fougerouse, D.; William, R. D. A.; Forman, L. V.; Trimby, P.; La Fontaine, A.; Yang, L.; Cairney, J.; Ringer, S.

    2016-12-01

    Sub-micrometre metallic alloys of the highly siderophile elements, known as refractory metal nuggets (RMNs), can be found in primitive carbonaceous chondrites. There has been some suggestion that these grains may have a pre-solar origin, however their <1 µm size has meant that isotopic analysis of individual grains has not previously been possible. Atom probe microscopy has sufficient spatial resolution to quantify the isotopic compositions, across the entire mass range, of small sample volumes (<0.02 µm3) with high sensitivity and precision. We present analyses of four individual RMNs from the same refractory inclusion within the ALH 77307 meteorite. The results indicate that these RMNs have significant isotopic deviations from solar relative isotope abundances and therefore preserve a pre-solar isotopic signature. All RMNs exhibit large p-process enrichments in 98Ru and depletions in s-process 186Os. Two RMNs have a similar isotopic signature, suggesting formation in the same stellar environment. This similarity between two RMNs indicates that there may be a significant contribution of material to our solar system from a single source. The other two RMNs are isotopically dissimilar. Finally, three of the RMNs plot on a 187Re -187Os isochron from which we can derive a galactic age of 12.5 Ga ±1.8. To the best of our knowledge this is the first direct determination of the age of the Milky Way through physical analysis of non-solar material.

  20. Hydrogen analysis depth calibration by CORTEO Monte-Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moser, M., E-mail: marcus.moser@unibw.de [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Fakultät für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Reichart, P.; Bergmaier, A.; Greubel, C. [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Fakultät für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Schiettekatte, F. [Université de Montréal, Département de Physique, Montréal, QC H3C 3J7 (Canada); Dollinger, G., E-mail: guenther.dollinger@unibw.de [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Fakultät für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany)

    2016-03-15

    Hydrogen imaging with sub-μm lateral resolution and sub-ppm sensitivity has become possible with coincident proton–proton (pp) scattering analysis (Reichart et al., 2004). Depth information is evaluated from the energy sum signal with respect to energy loss of both protons on their path through the sample. In first order, there is no angular dependence due to elastic scattering. In second order, a path length effect due to different energy loss on the paths of the protons causes an angular dependence of the energy sum. Therefore, the energy sum signal has to be de-convoluted depending on the matrix composition, i.e. mainly the atomic number Z, in order to get a depth calibrated hydrogen profile. Although the path effect can be calculated analytically in first order, multiple scattering effects lead to significant deviations in the depth profile. Hence, in our new approach, we use the CORTEO Monte-Carlo code (Schiettekatte, 2008) in order to calculate the depth of a coincidence event depending on the scattering angle. The code takes individual detector geometry into account. In this paper we show, that the code correctly reproduces measured pp-scattering energy spectra with roughness effects considered. With more than 100 μm thick Mylar-sandwich targets (Si, Fe, Ge) we demonstrate the deconvolution of the energy spectra on our current multistrip detector at the microprobe SNAKE at the Munich tandem accelerator lab. As a result, hydrogen profiles can be evaluated with an accuracy in depth of about 1% of the sample thickness.

  1. Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous United States

    Science.gov (United States)

    Bowen, Gabriel J.; Kennedy, Casey D.; Liu, Zhongfang; Stalker, Jeremy

    2011-12-01

    The stable H and O isotope composition of river and stream water records information on runoff sources and land-atmosphere water fluxes within the catchment and is a potentially powerful tool for network-based monitoring of ecohydrological systems. Process-based hydrological models, however, have thus far shown limited power to replicate observed large-scale variation in U.S. surface water isotope ratios. Here we develop a geographic information system-based model to predict long-term annual average surface water isotope ratios across the contiguous United States. We use elevation-explicit, gridded precipitation isotope maps as model input and data from a U.S. Geological Survey monitoring program for validation. We find that models incorporating monthly variation in precipitation-evapotranspiration (P-E) amounts account for the majority (>89%) of isotopic variation and have reduced regional bias relative to models that do not consider intra-annual P-E effects on catchment water balance. Residuals from the water balance model exhibit strong spatial patterning and correlations that suggest model residuals isolate additional hydrological signal. We use interpolated model residuals to generate optimized prediction maps for U.S. surface water δ2H and δ18O values. We show that the modeled surface water values represent a relatively accurate and unbiased proxy for drinking water isotope ratios across the United States, making these data products useful in ecological and criminal forensics applications that require estimates of the local environmental water isotope variation across large geographic regions.

  2. Solvent and H/D isotope effects on the proton transfer pathways in heteroconjugated hydrogen-bonded phenol-carboxylic acid anions observed by combined UV-vis and NMR spectroscopy.

    Science.gov (United States)

    Koeppe, Benjamin; Guo, Jing; Tolstoy, Peter M; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-05-22

    Heteroconjugated hydrogen-bonded anions A···H···X(-) of phenols (AH) and carboxylic/inorganic acids (HX) dissolved in CD2Cl2 and CDF3/CDF2Cl have been studied by combined low-temperature UV-vis and (1)H/(13)C NMR spectroscopy (UVNMR). The systems constitute small molecular models of hydrogen-bonded cofactors in proteins such as the photoactive yellow protein (PYP). Thus, the phenols studied include the PYP cofactor 4-hydroxycinnamic acid methyl thioester, and the more acidic 4-nitrophenol and 2-chloro-4-nitrophenol which mimic electronically excited cofactor states. It is shown that the (13)C chemical shifts of the phenolic residues of A···H···X(-), referenced to the corresponding values of A···H···A(-), constitute excellent probes for the average proton positions. These shifts correlate with those of the H-bonded protons, as well as with the H/D isotope effects on the (13)C chemical shifts. A combined analysis of UV-vis and NMR data was employed to elucidate the proton transfer pathways in a qualitative way. Dual absorption bands of the phenolic moiety indicate a double-well situation for the shortest OHO hydrogen bonds studied. Surprisingly, when the solvent polarity is low the carboxylates are protonated whereas the proton shifts toward the phenolic oxygens when the polarity is increased. This finding indicates that because of stronger ion-dipole interactions small anions are stabilized at high solvent polarity and large anions exhibiting delocalized charges at low solvent polarities. It also explains the large acidity difference of phenols and carboxylic acids in water, and the observation that this difference is strongly reduced in the interior of proteins when both partners form mutual hydrogen bonds.

  3. Technique for high-precision analysis of triple oxygen isotope ratios in carbon dioxide.

    Science.gov (United States)

    Hofmann, Magdalena E G; Pack, Andreas

    2010-06-01

    Since the discovery of mass-independent isotope effects in stratospheric and tropospheric gases, the analysis of triple oxygen isotope abundance in carbon dioxide gained in importance. However, precise triple oxygen isotope determination in carbon dioxide is a challenging task due to mass-interference of (17)O and (13)C variations. Here, we present a novel analytical technique that allows us to determine slight deviations of CO(2) from the terrestrial fractionation line [TFL]. Our approach is based on isotopic equilibration between CO(2) gas and CeO(2) powder at 685 degrees C and subsequent mass spectrometric analysis of ceria powder by infrared-laser fluorination. We found that beta(CO2-CeO2), the exponent in the relation alpha(17/16) = (alpha(18/16))(beta), amounts to 0.5240 +/- 0.0011 at 685 degrees C. The oxygen isotope anomaly of CO(2) (Delta(17)O) can be determined for a single analysis of CeO(2) with a precision of +/-0.05 per thousand (1sigma). Our CO(2)-CeO(2) equilibration procedure is performed with an excess of CO(2) so that one analysis of Delta(17)O on CO(2) requires at least 3.5 mmol of CO(2) gas. Our new technique allows accurate and precise determination of Delta(17)O in CO(2) and opens up a new field for investigating triple oxygen isotope abundance in various types of natural CO(2).

  4. VHTR-based Nuclear Hydrogen Plant Analysis for Hydrogen Production with SI, HyS, and HTSE Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, analyses of material and heat balances on the SI, HyS, and HTSE processes coupled to a Very High Temperature gas-cooled Reactor (VHTR) were performed. The hydrogen production efficiency including the thermal to electric energy ratio demanded from each process is found and the normalized evaluation results obtained from three processes are compared to each other. The currently technological issues to maintain the long term continuous operation of each process will be discussed at the conference site. VHTR-based nuclear hydrogen plant analysis for hydrogen production with SI, HyS, and HTSE facilities has been carried out to determine the thermal efficiency. It is evident that the thermal to electrical energy ratio demanded from each hydrogen production process is an important parameter to select the adequate process for hydrogen production. To improve the hydrogen production efficiency in the SI process coupled to the VHTR without electrical power generation, the demand of electrical energy in the SI process should be minimized by eliminating an electrodialysis step to break through the azeotrope of the HI/I{sub 2}/H{sub 2}O ternary aqueous solution.

  5. 2015 Accomplishments-Tritium aging studies on stainless steel. Effects of hydrogen isotopes, crack orientation, and specimen geometry on fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-01

    This study reports on the effects of hydrogen isotopes, crack orientation, and specimen geometry on the fracture toughness of stainless steels. Fracture toughness variability was investigated for Type 21-6-9 stainless steel using the 7K0004 forging. Fracture toughness specimens were cut from the forging in two different geometric configurations: arc shape and disc shape. The fracture toughness properties were measured at ambient temperature before and after exposure to hydrogen gas and compared to prior studies. There are three main conclusions that can be drawn from the results. First, the fracture toughness properties of actual reservoir forgings and contemporary heats of steel are much higher than those measured in earlier studies that used heats of steel from the 1980s and 1990s and forward extruded forgings which were designed to simulate reservoir microstructures. This is true for as-forged heats as well as forged heats exposed to hydrogen gas. Secondly, the study confirms the well-known observation that cracks oriented parallel to the forging grain flow will propagate easier than those oriented perpendicular to the grain flow. However, what was not known, but is shown here, is that this effect is more pronounced, particularly after hydrogen exposures, when the forging is given a larger upset. In brick forgings, which have a relatively low amount of upset, the fracture toughness variation with specimen orientation is less than 5%; whereas, in cup forgings, the fracture toughness is about 20% lower than that forging to show how specimen geometry affects fracture toughness values. The American Society for Testing Materials (ASTM) specifies minimum specimen section sizes for valid fracture toughness values. However, sub-size specimens have long been used to study tritium effects because of the physical limitation of diffusing hydrogen isotopes into stainless steel at mild temperatures so as to not disturb the underlying forged microstructure. This study shows

  6. Comparison of gas chromatography/