WorldWideScience

Sample records for hydrogen heat pipe

  1. Experimental investigation on a pulsating heat pipe with hydrogen

    Science.gov (United States)

    Deng, H. R.; Liu, Y. M.; Ma, R. F.; Han, D. Y.; Gan, Z. H.; Pfotenhauer, J. M.

    2015-12-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb3Sn and NbTi, MgB2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB2, this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios.

  2. Thermodynamic analysis of alternate energy carriers, hydrogen and chemical heat pipes

    Science.gov (United States)

    Cox, K. E.; Carty, R. H.; Conger, W. L.; Soliman, M. A.; Funk, J. E.

    1976-01-01

    Hydrogen and chemical heat pipes were proposed as methods of transporting energy from a primary energy source (nuclear, solar) to the user. In the chemical heat pipe system, primary energy is transformed into the energy of a reversible chemical reaction; the chemical species are then transmitted or stored until the energy is required. Analysis of thermochemical hydrogen schemes and chemical heat pipe systems on a second law efficiency or available work basis show that hydrogen is superior especially if the end use of the chemical heat pipe is electrical power.

  3. Thermodynamic analysis of alternate energy carriers, hydrogen and chemical heat pipes

    Science.gov (United States)

    Cox, K. E.; Carty, R. H.; Conger, W. L.; Soliman, M. A.; Funk, J. E.

    1976-01-01

    Hydrogen and chemical heat pipes were proposed as methods of transporting energy from a primary energy source (nuclear, solar) to the user. In the chemical heat pipe system, primary energy is transformed into the energy of a reversible chemical reaction; the chemical species are then transmitted or stored until the energy is required. Analysis of thermochemical hydrogen schemes and chemical heat pipe systems on a second law efficiency or available work basis show that hydrogen is superior especially if the end use of the chemical heat pipe is electrical power.

  4. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  5. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  6. Forced flow heat transfer from a round wire in a vertically- mounted pipe to supercritical hydrogen

    Science.gov (United States)

    Horie, Y.; Shiotsu, M.; Shirai, Y.; Higa, D.; Shigeta, H.; Tatsumoto, H.; Naruo, Y.; Nonaka, S.; Kobayashi, H.; Inatani, Y.

    2015-12-01

    Forced flow heat transfer of hydrogen from a round wire in a vertically-mounted pipe was measured at pressure of 1.5 MPa and temperature of 21 K by applying electrical current to give an exponential heat input (Q=Q0exp(t/τ),τ=10 s) to the round wire. Two round wire heaters, which were made of Pt-Co alloy, with a diameter of 1.2 mm and lengths of 54.5 and 120 mm were set on the central axis of a flow channel made of FRP with inner diameter of 5.7 and 8.0 mm, respectively. Supercritical hydrogen flowed upward in the channel. Flow velocities were varied from 1 to 12.5 m/s. The heat transfer coefficients of supercritical hydrogen were compared with the conventional correlation presented by Shiotsu et al. It was confirmed that the heat transfer coefficients for a round wire were expressed well by the correlation using the hydraulic equivalent diameter.

  7. Design, fabrication and test of a hydrogen heat pipe. [extruding and grooving 6063-T6 aluminum tubes for cryogenic heat pipes

    Science.gov (United States)

    Alario, J.

    1979-01-01

    Re-entrant groove technology was extended to hydrogen heat pipes. Parametric analyses are presented which optimize the theoretical design while considering the limitations of state-of-the-art extrusion technology. The 6063-T6 aluminum extrusion is 14.6 mm OD with a wall thickness of 1.66 mm and contains 20 axial grooves which surround a central 9.3 mm diameter vapor core. Each axial groove is 0.775 mm diameter with a 0.33 mm opening. An excess vapor reservoir is provided at the evaporator to minimize the pressure containment hazard during ambient storage. Modifications to the basic re-entrant groove profile resulted in improved overall performance. While the maximum heat transport capacity decreased slightly to 103 w-m the static wicking height increased markedly to 4.5 cm. The heat pipe became operational between 20 and 30 K after a cooldown from 77 K without any difficulty. Steady state performance data taken over a 19 to 23 K temperature range indicated: (1) maximum heat transport capacity of 5.4 w-m; (2) static wicking height of 1.42 cm; and (3) overall heat pipe conductance of 1.7 watts/deg C.

  8. A very light and thin liquid hydrogen/deuterium heat pipe target for COSY experiments

    Science.gov (United States)

    Abdel-Bary, M.; Abdel-Samad, S.; Kilian, K.

    2005-07-01

    A liquid hydrogen/deuterium heat pipe (HP) target is used at the COSY external experiments TOF, GEM and MOMO. The target liquid is produced at a cooled condenser and guided through a central tube assisted by gravitation into the target cell. An aluminum condenser is used instead of copper, which requires less material, improves conductivities and provides shorter cooling down time. Residual condenser temperature fluctuations in the order of ≈0.4 K are reduced by using thermal resistances between the cooling machine and the condenser of the heat pipe combined with a controlled heating power. A new design with only a 7-mm-diameter HP has been developed. The diameter of the condenser part remains at 16 mm to provide enough condensation area. The small amount of material ensures short cooling down times. A cold gas deuterium HP target has been designed and developed which allows protons with energy ⩽1 MeV to be measured. A 7-mm-diameter HP is used to fill a cooling jacket around the D 2 gas cell with LH 2. The D 2 gas is stabilized at 200 mbar to allow for thin windows. Its density is increased by factor 15 compared to room temperature.

  9. Heat Pipe Planets

    Science.gov (United States)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  10. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  11. Forced convection heat transfer from a wire inserted into a vertically-mounted pipe to liquid hydrogen flowing upward

    Science.gov (United States)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    2014-12-01

    Forced convection heat transfer from a PtCo wire with a length of 120 mm and a diameter of 1.2 mm that was inserted into a vertically-mounted pipe with a diameter of 8.0 mm to liquid hydrogen flowing upward was measured with a quasi-steady increase of a heat generation rate for wide ranges of flow rate under saturated conditions. The pressures were varied from 0.4 MPa to 1.1 MPa. The non-boiling heat transfer characteristic agrees with that predicted by Dittus-Boelter correlation. The critical heat fluxes are higher for higher flow rates and lower pressures. Effect of Weber number on the CHF was clarified and a CHF correlation that can describe the experimental data is derived based on our correlation for a pipe.

  12. Heat Pipe Materials Compatibility

    Science.gov (United States)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  13. Introduction to Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  14. An electrohydrodynamic heat pipe

    Science.gov (United States)

    Jones, T. B.

    1972-01-01

    Dielectric liquid for transfer of heat provides liquid flow from the condenser section to the evaporator section in conventional heat pipes. Working fluid is guided or pumped by an array of wire electrodes connected to a high-voltage source.

  15. Transient Heat Transfer from a Wire Inserted into a Vertically Mounted Pipe to Forced Flow Liquid Hydrogen

    Science.gov (United States)

    Tatsumoto, Hideki; Shirai, Yasuyuki; Shiotsu, Masahiro; Naruo, Yoshihiro; Kobayashi, Hiroaki; Inatani, Yoshifumi

    The transient heat transfer from a Pt-Co wire heater inserted into a vertically mounted pipe, through which forced flow subcooled liquid hydrogen was passed, is measured by increasing the exponential heat input with various time periods at a pressure of 0.7 MPa and an inlet temperature of 21 K. The flow velocities range from 0.8 to 5.5 m/s. For shorter periods, the non-boiling heat transfer becomes higher than that given by the Dittus-Boelter equation due to the transient conductive heat transfer contribution. In addition, the transient critical heat flux (CHF) becomes higher than the steady-state CHF. The effect of the flow velocity and period on the transient CHF heat flux is also clarified.

  16. Transient heat transfer from a wire to a forced flow of subcooled liquid hydrogen passing through a vertically- mounted pipe

    Science.gov (United States)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.

    2015-12-01

    Transient heat transfers from Pt-Co wire heaters inserted into vertically-mounted pipes, through which forced flow subcooled liquid hydrogen was passed, were measured by increasing the exponential heat input with various time periods at a pressure of 0.7 MPa and inlet temperature of 21 K. The flow velocities ranged from 0.3 to 7 m/s. The Pt-Co wire heaters had a diameter of 1.2 mm and lengths of 60 mm, 120 mm and 200 mm and were inserted into the pipes with diameters of 5.7mm, 8.0 mm, and 5.0 mm, respectively, which were made of Fiber reinforced plastic due to thermal insulation. With increase in the heat flux to the onset of nucleate boiling, surface temperature increased along the curve predicted by the Dittus-Boelter correlation for longer period, where it can be almost regarded as steady-state. For shorter period, the heat transfer became higher than the Dittus-Boelter correlation. In nucleate boiling regime, the heat flux steeply increased to the transient CHF (critical heat flux) heat flux, which became higher for shorter period. Effect of flow velocity, period, and heated geometry on the transient CHF heat flux was clarified.

  17. An electrohydrodynamic heat pipe.

    Science.gov (United States)

    Jones, T. B.

    1972-01-01

    A heat pipe of new design, using an electrode structure to orient and guide the dielectric liquid phase flow, is proposed. Analysis indicates that the operation of the electrohydrodynamic heat pipe is in direct analogy to capillary devices, with the polarization force acting in place of capillarity. Advantages of these new heat pipes include greatly reduced liquid friction, electrohydrodynamically enhanced evaporation and condensation heat transfer, and a possible voltage-controlled on/off feature. Preliminary calculations indicate that relatively high performance devices are possible.

  18. Silicon Heat Pipe Array

    Science.gov (United States)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  19. Electrohydrodynamic heat pipes.

    Science.gov (United States)

    Jones, T. B.

    1973-01-01

    An electrohydrodynamic heat pipe of radical design is proposed which substitutes polarization electrohydrodynamic force effects for capillarity in collecting, guiding, and pumping a condensate liquid phase. The discussed device is restricted to the use of dielectric liquids as working fluids. Because of the relatively poor thermal transport properties of these liquids, capillary heat pipes using these liquids have not been high performance devices. The employment of the electrohydrodynamic concept should enhance this performance and help fill the performance gap that exists in the temperature range from 250 F to 750 F for 'conventional' capillary heat pipes.

  20. Heat Pipe Integrated Microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.

    1999-03-30

    The trend in commercial electronics packaging to deliver ever smaller component packaging has enabled the development of new highly integrated modules meeting the demands of the next generation nano satellites. At under ten kilograms, these nano satellites will require both a greater density electronics and a melding of satellite structure and function. Better techniques must be developed to remove the subsequent heat generated by the active components required to-meet future computing requirements. Integration of commercially available electronics must be achieved without the increased costs normally associated with current generation multi chip modules. In this paper we present a method of component integration that uses silicon heat pipe technology and advanced flexible laminate circuit board technology to achieve thermal control and satellite structure. The' electronics/heat pipe stack then becomes an integral component of the spacecraft structure. Thermal management on satellites has always been a problem. The shrinking size of electronics and voltage requirements and the accompanying reduction in power dissipation has helped the situation somewhat. Nevertheless, the demands for increased onboard processing power have resulted in an ever increasing power density within the satellite body. With the introduction of nano satellites, small satellites under ten kilograms and under 1000 cubic inches, the area available on which to place hot components for proper heat dissipation has dwindled dramatically. The resulting satellite has become nearly a solid mass of electronics with nowhere to dissipate heat to space. The silicon heat pipe is attached to an aluminum frame using a thermally conductive epoxy or solder preform. The frame serves three purposes. First, the aluminum frame provides a heat conduction path from the edge of the heat pipe to radiators on the surface of the satellite. Secondly, it serves as an attachment point for extended structures attached

  1. Heat pipe dynamic behavior

    Science.gov (United States)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  2. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  3. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  4. Heat-pipe planets

    Science.gov (United States)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2017-09-01

    Observations of the surfaces of all terrestrial bodies other than Earth reveal remarkable but unexplained similarities: endogenic resurfacing is dominated by plains-forming volcanism with few identifiable centers, magma compositions are highly magnesian (mafic to ultra-mafic), tectonic structures are dominantly contractional, and ancient topographic and gravity anomalies are preserved to the present. Here we show that cooling via volcanic heat pipes may explain these observations and provide a universal model of the way terrestrial bodies transition from a magma-ocean state into subsequent single-plate, stagnant-lid convection or plate tectonic phases. In the heat-pipe cooling mode, magma moves from a high melt-fraction asthenosphere through the lithosphere to erupt and cool at the surface via narrow channels. Despite high surface heat flow, the rapid volcanic resurfacing produces a thick, cold, and strong lithosphere which undergoes contractional strain forced by downward advection of the surface toward smaller radii. We hypothesize that heat-pipe cooling is the last significant endogenic resurfacing process experienced by most terrestrial bodies in the solar system, because subsequent stagnant-lid convection produces only weak tectonic deformation. Terrestrial exoplanets appreciably larger than Earth may remain in heat-pipe mode for much of the lifespan of a Sun-like star.

  5. Effect of heat treatments on the hydrogen embrittlement susceptibility of API X-65 grade line-pipe steel

    Indian Academy of Sciences (India)

    G Ananta Nagu; Amarnath; T K G Namboodhiri

    2003-06-01

    Delayed failure tests were carried out on hydrogen charged API X-65 grade line-pipe steel in as received (controlled rolled), normalized, and quenched and tempered conditions. The resistance to hydrogen embrittlement was found in the order of controlled rolled $\\gt$ quenched and tempered $\\gt$ normalized. The fracture mode in the hydrogen embrittled steel was ductile.

  6. Heat Pipe Systems

    Science.gov (United States)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  7. Multileg Heat-Pipe Evaporator

    Science.gov (United States)

    Alario, J. P.; Haslett, R. A.

    1986-01-01

    Parallel pipes provide high heat flow from small heat exchanger. Six parallel heat pipes extract heat from overlying heat exchanger, forming evaporator. Vapor channel in pipe contains wick that extends into screen tube in liquid channel. Rods in each channel hold wick and screen tube in place. Evaporator compact rather than extended and more compatible with existing heat-exchanger geometries. Prototype six-pipe evaporator only 0.3 m wide and 0.71 m long. With ammonia as working fluid, transports heat to finned condenser at rate of 1,200 W.

  8. Heat Pipe Blocks Return Flow

    Science.gov (United States)

    Eninger, J. E.

    1982-01-01

    Metal-foil reed valve in conventional slab-wick heat pipe limits heat flow to one direction only. With sink warmer than source, reed is forced closed and fluid returns to source side through annular transfer wick. When this occurs, wick slab on sink side of valve dries out and heat pipe ceases to conduct heat.

  9. Heat pipe thermosyphon heat performance calculation

    Science.gov (United States)

    Novomestský, Marcel; Kapjor, Andrej; Papučík, Štefan; Siažik, Ján

    2016-06-01

    In this article the heat performance of the heat pipe thermosiphon is achieved through numerical model. The heat performance is calculated from few simplified equations which depends on the working fluid and geometry. Also the thermal conductivity is good to mentioning, because is really interesting how big differences are between heat pipes and full solid surfaces.

  10. Temperature drops in heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Saatci, A.M.; Khalifa, A.M.A.; Akyurt, M.

    1986-01-01

    The role of entrainment in limiting heat pipe power handling capacity is discussed. The effect of entrainment on the measured temperature field in the integral heat pipe of a split system solar cooker is analyzed. An experimental set-up depicting a heat loop is presented, along with test results.

  11. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  12. Loop Heat Pipe Startup Behaviors

    Science.gov (United States)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  13. Nitrogen heat pipe for cryocooler thermal shunt

    Energy Technology Data Exchange (ETDEWEB)

    Prenger, F.C.; Hill, D.D.; Daney, D.E.; Daugherty, M.A. [Los Alamos National Lab., NM (United States); Green, G.F.; Roth, E.W. [Naval Surface Warfare Center, Annapolis, MD (United States)

    1995-09-01

    A nitrogen heat pipe was designed, built and tested for the purpose of providing a thermal shunt between the two stages of a Gifford-McMahan (GM) cryocooler during cooldown. The nitrogen heat pipe has an operating temperature range between 63 and 123 K. While the heat pipe is in the temperature range during the system cooldown, it acts as a thermal shunt between the first and second stage of the cryocooler. The heat pipe increases the heat transfer to the first stage of the cryocooler, thereby reducing the cooldown time of the system. When the heat pipe temperature drops below the triple point, the nitrogen working fluid freezes, effectively stopping the heat pipe operation. A small heat leak between cryocooler stages remains because of axial conduction along the heat pipe wall. As long as the heat pipe remains below 63 K, the heat pipe remains inactive. Heat pipe performance limits were measured and the optimum fluid charge was determined.

  14. Heat transfer, thermal control, and heat pipes

    Science.gov (United States)

    Olstad, W. B.

    1980-01-01

    This volume provides information on recent progress in spacecraft thermal control and the supporting disciplines of conduction, thermal radiation, and heat pipe theory and application. Four problem areas are considered: conduction heat transfer, radiation heat transfer, thermal control, and heat pipes. The topics covered include finite-element methodology for transient conduction/forced-convection thermal analysis; effects of surface finish on thermal contact resistance between different materials; mathematical models for wide-band nongray gas radiation in spherical and cylindrical geometries; thermal design, analysis and testing of the Shuttle remote manipulator arm; porous heat pipe; and transient behavior of liquid trap heat-pipe thermal diodes. Also discussed is the thermal design concept for a high-resolution UV spectrometer.

  15. A heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Rachev, L.A.; Kravtsov, A.A.

    1979-02-08

    A thermal pipe is described which contains a hermetically sealed body with a reticular filler. In order to increase the transmitted thermal power, the pipe is equipped with a high voltage source and with insulators, located between the wall of the body and the filler, where the latter is switched in to the high voltage source, preferably an adjustable one.

  16. Corrosion behavior in heat pipe

    Directory of Open Access Journals (Sweden)

    Anurak Rodbumrung

    2016-01-01

    Full Text Available The aim of this study was to perform life testing and determine the effect of working fluid on the corrosion of a heat pipe with a sintered wick. The heat pipe was made from a copper tube. The inner heat pipe was filled with 99.97% pure copper powder as a dendritic for the sintering process. The heat pipe had an outer diameter of 6 mm with a length of 200 mm, and distilled water and ethanol were the working fluids. The operating temperature at the evaporator was 125°C. The analysis consisted of using a scanning electron microscope, energy dispersive X-ray spectrometry and atomic absorption spectroscopy. The results of the scanning electron microscope and energy dispersive X-ray spectrometry analysis showed that the corrosion of the heat pipe was uniform. The result of the atomic absorption spectroscopy indicated that the concentration of the copper in the ethanol as the working fluid was greater than in the distilled water as the working fluid, and the highest concentration of copper particles in the ethanol was 22.7499 ppm or 0.0409 mg after testing for 3000 h. The concentration of copper was higher when the length of the life test increased due to corrosion of the heat pipe.

  17. Performance characteristic of thermosyphon heat pipe at radiant heat source

    Science.gov (United States)

    Hrabovský, Peter; Papučík, Štefan; Kaduchová, Katarína

    2016-06-01

    This article discusses about device, which is called heat pipe. This device is with heat source with radiant heat source. Heat pipe is device with high efficiency of heat transfer. The heat pipe, which is describe in this article is termosyphon heat pipe. The experiment with termosyphon heat pipe get a result. On the base of result, it will be in future to create mathematical model in Ansys. Thermosyphon heat pipe is made of copper and distilled water is working fluid. The significance of this experiment consists in getting of the heat transfer and performance characteristic. On the basis of measured and calculated data can be constructed the plots.

  18. A multifunctional heat pipe sandwich panel structure

    Energy Technology Data Exchange (ETDEWEB)

    Queheillalt, Douglas T.; Wadley, Haydn N.G. [University of Virginia, Department of Materials Science and Engineering, 140 Chemistry Way, P.O. Box 400745, Charlottesville, VA 22904 (United States); Carbajal, Gerardo [University of Turabo, School of Engineering, P.O. Box 3030, Gurabo 00778 (Puerto Rico); Peterson, G.P. [University of Colorado at Boulder, 914 Broadway, Boulder, CO 80309 (United States)

    2008-01-15

    A multifunctional sandwich panel combining efficient structural load support and thermal management characteristics has been designed and experimentally assessed. The concept is based upon a truncated, square honeycomb sandwich structure. In closed cell honeycomb structures, the transport of heat from one face to the other occurs by a combination of conduction through the webs and convection/radiation within the cells. Here, much more effective heat transport is achieved by multifunctionally utilizing the core as a heat pipe sandwich panel. Its interior consists of a 6061 aluminum truncated-square honeycomb core covered with a stochastic open-cell nickel foam wick. An electroless nickel plating barrier layer inhibited the chemical reaction between the deionized water working fluid and the aluminum structure, retarding the generation of non-condensable hydrogen gas. A thermodynamic model was used to guide the design of the heat pipe sandwich panel. We describe the results of a series of experiments that validate the operational principle of the multifunctional heat pipe sandwich panel and characterize its transient response to an intense localized heat source. The systems measured thermal response to a localized heat source agrees well with that predicted by a finite difference method model used to predict the thermal response. (author)

  19. Thermodynamic aspects of heat pipe operation

    Science.gov (United States)

    Richter, Robert; Gottschlich, Joseph

    1990-01-01

    An expanded heat pipe operating model is described which includes thermodynamic and heat transfer considerations to reconcile disparities between actual and theoretical heat pipe performances. The analysis shows that thermodynamic considerations can explain the observed heat pipe performance limitations. A full understanding of thermodynamic processes could lead to advanced concepts for thermal transport devices.

  20. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  1. Flat heat pipe design, construction, and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Voegler, G.; Boughey, B.; Cerza, M.; Lindler, K.W.

    1999-08-02

    This paper details the design, construction and partial analysis of a low temperature flat heat pipe in order to determine the feasibility of implementing flat heat pipes into thermophotovoltaic (TPV) energy conversion systems.

  2. Numerical study of heat pipe application in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Song Lin; Broadbent, John; McGlen, Ryan [Thermacore Europe, Ashington (United Kingdom)

    2005-01-01

    Heat pipes are two-phase heat transfer devices with extremely high effective thermal conductivity. They can be cylindrical or planar in structure. Heat pipes can be embedded in a metal cooling plate, which is attached to the heat source, and can also be assembled with a fin stack for fluid heat transfer. Due to the high heat transport capacity, heat exchangers with heat pipes have become much smaller than traditional heat exchangers in handling high heat fluxes. With the working fluid in a heat pipe, heat can be absorbed on the evaporator region and transported to the condenser region where the vapour condenses releasing the heat to the cooling media. Heat pipe technology has found increasing applications in enhancing the thermal performance of heat exchangers in microelectronics, energy and other industrial sectors. Utilisation of a heat pipe fin stack in the drying cycle of domestic appliances for heat recovery may lead to a significant energy saving in the domestic sector. However, the design of the heat pipe heat exchanger will meet a number of challenges. This paper presents a design method by using CFD simulation of the dehumidification process with heat pipe heat exchangers. The strategies of simulating the process with heat pipes are presented. The calculated results show that the method can be further used to optimise the design of the heat pipe fin stack. The study suggests that CFD modelling is able to predict thermal performance of the dehumidification solution with heat pipe heat exchangers. (Author)

  3. High heat flux loop heat pipes

    Science.gov (United States)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and against high gravitational heads. While recent LHPs have transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m2. This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m2. This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m2.K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser.

  4. Poisoning of Heat Pipes

    Science.gov (United States)

    Gillies, Donald; Lehoczky, Sandor; Palosz, Witold; Carpenter, Paul; Salvail, Pat

    2007-01-01

    Thermal management is critical to space exploration efforts. In particular, efficient transfer and control of heat flow is essential when operating high energy sources such as nuclear reactors. Thermal energy must be transferred to various energy conversion devices, and to radiators for safe and efficient rejection of excess thermal energy. Applications for space power demand exceptionally long periods of time with equipment that is accessible for limited maintenance only. Equally critical is the hostile and alien environment which includes high radiation from the reactor and from space (galactic) radiation. In space or lunar applications high vacuum is an issue, while in Martian operations the systems will encounter a CO2 atmosphere. The effect of contact at high temperature with local soil (regolith) in surface operations on the moon or other terrestrial bodies (Mars, asteroids) must be considered.

  5. Lightweight Heat Pipes Made from Magnesium

    Science.gov (United States)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  6. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  7. Intermediate Temperature Fluids for Heat Pipes and Loop Heat Pipes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop heat pipe and loop heat pipe (LHP) working fluids for what is known as the intermediate...

  8. Heat Pipe with Axial Wick

    Science.gov (United States)

    Ambrose, Jay H. (Inventor); Holmes, Rolland (Inventor)

    2016-01-01

    A heat pipe has an evaporator portion, a condenser portion, and at least one flexible portion that is sealingly coupled between the evaporator portion and the condenser portion. The flexible portion has a flexible tube and a flexible separator plate held in place within the flexible tube so as to divide the flexible tube into a gas-phase passage and a liquid-phase artery. The separator plate and flexible tube are configured such that the flexible portion is flexible in a plane that is perpendicular to the separator plate.

  9. Literature review and experimental investigation of heat pipes

    Science.gov (United States)

    Barsch, W. O.; Schoenhals, R. J.; Viskanta, R.; Winter, E. R. F.

    1971-01-01

    Tests on heat pipes determine operational limits, external boundary conditions, noncondensable gas effects, startup behavior, and geometric configurations. Experiment consists of design, construction, and testing of an apparatus for measuring wick properties, conventional heat pipes and coplanar heat pipes.

  10. Heat Pipe Technology: A bibliography with abstracts

    Science.gov (United States)

    1974-01-01

    This bibliography lists 149 references with abstracts and 47 patents dealing with applications of heat pipe technology. Topics covered include: heat exchangers for heat recovery; electrical and electronic equipment cooling; temperature control of spacecraft; cryosurgery; cryogenic, cooling; nuclear reactor heat transfer; solar collectors; laser mirror cooling; laser vapor cavitites; cooling of permafrost; snow melting; thermal diodes variable conductance; artery gas venting; and venting; and gravity assisted pipes.

  11. Heat pipes theory, design and applications

    CERN Document Server

    Reay, David; Kew, Peter

    2013-01-01

    Heat Pipes, 6th Edition, takes a highly practical approach to the design and selection of heat pipes, making it an essential guide for practicing engineers and an ideal text for postgraduate students. This new edition has been revised to include new information on the underlying theory of heat pipes and heat transfer, and features fully updated applications, new data sections, and updated chapters on design and electronics cooling. The book is a useful reference for those with experience and an accessible introduction for those approaching the topic for the first time. Contains all informat

  12. Equivalent thermal conductivity of heat pipes

    Institute of Scientific and Technical Information of China (English)

    Zesheng LU; Binghui MA

    2008-01-01

    In precision machining, the machining error from thermal distortion carries a high proportion of the total errors. If a precision machining tool can transfer heat fast, the thermal distortion will be reduced and the machining precision will be improved. A heat pipe working based on phase transitions of the inner working liquid transfers heat with high efficiency and is widely applied in spaceflight and chemical industries. In mechanics, applications of heat pipes are correspondingly less. When a heat pipe is applied to a hydrostatic motor-ized spindle, the thermal distortion cannot be solved dur-ing the heat transfer process because thermal conductivity or equivalent thermal conductivity should be provided first for special application in mechanics. An equivalent thermal conductivity model based on equivalent thermal resistances is established. Performance tests for a screen wick pipe, gravity pipe, and rotation heat pipe are done to validate the efficiency of the equivalent thermal conduc-tivity model. The proposed model provides a calculation method for the thermal distortion analysis of heat pipes applied in the motorized spindle.

  13. Multi-leg heat pipe evaporator

    Science.gov (United States)

    Alario, J. P.; Haslett, R. A. (Inventor)

    1986-01-01

    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  14. Jet pump assisted arterial heat pipe

    Science.gov (United States)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1978-01-01

    This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.

  15. Multi-leg heat pipe evaporator

    Science.gov (United States)

    Alario, J. P.; Haslett, R. A.

    1986-04-01

    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  16. Heat pipe radiator. [for spacecraft waste heat rejection

    Science.gov (United States)

    Swerdling, B.; Alario, J.

    1973-01-01

    A 15,000 watt spacecraft waste heat rejection system utilizing heat pipe radiator panels was investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500 watt radiator panel was designed, built and tested. The panel, which is a module of the 15,000 watt system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiating fin. The thermal load to the VCHP is supplied by a Freon-21 liquid loop via an integral heat exchanger. Descriptions of the results of the system studies and details of the radiator design are included along with the test results for both the heat pipe components and the assembled radiator panel. These results support the feasibility of using heat pipes in a spacecraft waste heat rejection system.

  17. Optimal design of the separate type heat pipe heat exchanger

    Institute of Scientific and Technical Information of China (English)

    YU Zi-tao; HU Ya-cai; CEN Ke-fa

    2005-01-01

    Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effectiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.

  18. Heat pipe testing program test plan

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W.B.

    1980-03-14

    A test plan is given which describes the tests to be conducted on several typical solar receiver heat pipes. The hardware to be used, test fixtures and rationale of the test program are discussed. The program objective is to perform life testing under simulated receiver conditions, and to conduct performance tests with selected heat pipes to further map their performance, particularly with regard to their transient behavior. Performance requirements are defined. Test fixtures designed for the program are described in detail, and their capabilities for simulating the receiver conditions and their limitations are discussed. The heat pipe design is given. (LEW)

  19. Arterial gas occlusions in operating heat pipes

    Science.gov (United States)

    Saaski, E. W.

    1975-01-01

    The effect of noncondensable gases on high performance arterial heat pipes has been investigated both analytically and experimentally. Models have been generated which characterize the dissolution of gases in condensate and the diffusional loss of dissolved gases from condensate in arterial flow. These processes, and others, have been used to postulate stability criteria for arterial heat pipes. Experimental observations of gas occlusions were made using a stainless steel heat pipe equipped with viewing ports, and the working fluids methanol and ammonia with the gas additives helium, argon, and xenon. Observations were related to gas transport models.

  20. Heat pipes made of roll bond panels

    Science.gov (United States)

    Moeller, M.; Heil, K.

    1983-06-01

    The use of large surfaced aluminum roll bond panels with an integral flow system as heat pipes is studied. With a suitable flow system e.g., parallel passages with a cross-connection, one single filling procedure is required for the operating medium. Adequate materials for the manufacture of heat pipes are Al 99,3; AlMn1, 5 and AlMn1, 5Sil,5. Peel, creep and burst tests as well as corrosion tests were made on specimens and structural elements of these materials. Results show that the use of such panels for heat pipe manufacturing is appropriate for limited maximum temperature applications. Prototypes of heat pipes and their characteristic features are described in view of their use as absorbers in solar collectors. Good heat exchange performances obtained.

  1. Research of Spined Heat-Exchanging Pipes

    Directory of Open Access Journals (Sweden)

    Akulov Kirill

    2016-01-01

    Full Text Available Work is devoted to a research of spined heat-exchanging pipes that are assumed to use in air-cooler exchangers (ACE. The proposed new geometry of finning allows intensifying heat exchange and improving the efficiency of air coolers. It is caused by the increased area of finned surface with a value of finning ratio (the ratio of the area of the smooth pipe to a finned one to 42.7, while in the commercially available ACE, the figure is 22. Besides, the geometrical arrangement of the pin fins turbulizes the airflow. It should be mentioned that an easier method of manufacturing of heat exchanging pipes is proposed to use, which will reduce their costs. The proposed heat exchange pipes are made by winding cut aluminum strip to the supporting pipe or stretching stamped blanks on it. To increase the efficiency of the heat exchange surface pin fins should be as thin and long as possible; however, their strength should be sufficient for deformation-free operation. Fins should be staggered to maximize the distance between them. Spined heat-exchange pipes are designed to operate in a commercially produced ACE and their service is carried out similarly to commercially produced transversely finned pipes.

  2. Titanium Heat Pipe Thermal Plane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermacore Inc. proposes an innovative titanium heat pipe thermal plane for passive thermal control of individual cells within a fuel cell stack. The proposed...

  3. Titanium Heat Pipe Thermal Plane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II program is to complete the development of the titanium heat pipe thermal plane and establish all necessary steps for production of this...

  4. Additive Manufacturing of Heat Pipe Wicks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Wick properties are often the limiting factor in a heat pipe design. Current technology uses conventional sintering of metal powders, screen wick, or grooves to...

  5. Visualization of working fluid flow in gravity assisted heat pipe

    OpenAIRE

    Nemec Patrik; Malcho Milan

    2015-01-01

    Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapor and vice versa help heat pipe to transport high heat flux. The article deal about construction and processes casing in heat pipe during operation. Experiment visualization of working fluid flow is performed with glass heat pipe filed with ethanol. The visualization of working fluid flow explains the phenomena as working fl...

  6. Novel Wick Structures for Improved Heat Pipe Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Heat pipes are commonly used for transporting heat over relatively long distances with very low temperature drop. One of the limitations of heat pipes is the...

  7. Application of Heat Pipes in Cold Region

    Science.gov (United States)

    Mochizuki, Masataka

    Recently, there has been put into practical use of heat pipes as space application, electronics cooling, and waste heat recovery. Especially, the low temperature heat pipe which can be used in below atmospheric temperature are also actively developed and applied in terrestrial field. These are based on utilization of natural energy in cold region. This paper is described about application of snow melting and deicing system on a road and roof, snow damage prevention system for electric pole branch wire, artificial permafrost storage system as a reverse utilization of cold atmosphere, and cryo-anchor applied in Alaska and northern Canada.

  8. Heat pipe reactors for space power applications

    Science.gov (United States)

    Koenig, D. R.; Ranken, W. A.; Salmi, E. W.

    1977-01-01

    A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kWe and operate in the temperature range 1200-1700 K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO2. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor. Virtues of the reactor designs are the avoidance of single-point failure mechanisms, the relatively high operating temperature, and the expected long lifetimes of the fuel element components.

  9. Gas lensing in a heated spinning pipe

    CSIR Research Space (South Africa)

    Mafusire, C

    2006-07-01

    Full Text Available Spinning Pipe C MAFUSIRE1,2, A FORBES2, G SNEDDEN3, C MAHLASE3, MM MICHAELIS4 & M MATHUTHU1 1University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe 2CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa 3CSIR Defence Peace Safety... this system. BEAM PROPAGATION THROUGH GAS LENSES The heated spinning pipe acts as a GRIN lens where the refractive index variation inside the pipe is given by The variable parameters of the gas lens in this work were the rotation...

  10. Cooling Acoustic Transcucer with Heat Pipes

    Science.gov (United States)

    2009-07-19

    pipes. [0013] Most transducer packages involve a stack of active ceramic. A Tonpilz transducer 10 in the prior art, as depicted in FIG. 1...identical or corresponding parts throughout the several views and wherein: [0023] FIG. 1 is a prior art depiction of a Tonpilz transducer design...Distribution is unlimited 20090916027 Attorney Docket No. 97001 COOLING ACOUSTIC TRANSDUCER WITH HEAT PIPES STATEMENT OF GOVERNMENT INTEREST [0001

  11. Experimental research on heat transfer of pulsating heat pipe

    Institute of Scientific and Technical Information of China (English)

    LI Jia; Yan Li

    2008-01-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper,and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  12. Prototype testing of heat pipes for spacecraft heat control systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' ev, L.L.; Gil, V.V.; Zharikov, N.A.; Zelenin, V.E.; Syvorotka, O.M.; Uvarov, E.I.

    1980-05-01

    Prototype testing of heat pipes for spacecraft heat control was done on board the Interkosmos-15 satellite launched on 19 June 1976. The purpose was to gather data for optimizing the design, namely the capillary structure and the selection of heat transfer agent, as well as to verify the soundness of manufacturing technologies and test procedures. Three heat pipes were tested, each 412 mm long with a 14 mm outside diameter. All had been made of an aluminum alloy. In two pipes the capillary structure consisted of 0.6 x 0.5 mm/sup 2/ rectangular channels running axially along the inside wall, in the third pipe a 1 mm thick tubular mesh of Kh18N10T steel wire running coaxially inside served as the capillary structure. The heat transfer agent was Freon-11 in one of the first two pipes and synthetic liquid ammonia in the other two pipes. The three pipes were mounted radially around a radiator as the hub, with the test conditions controllable by means of an electric heater coil along the evaporation zone of each pipe, resistance thermometers for the evaporation zone and for the condensation zone of each, and also an external cooling fan. The radial distribution of temperature drops along the pipes was measured and the thermal fluxes were calculated, these data being indicative of the performance under conditions of weightlessness over the 0 to 70/sup 0/C temperature range. The somewhat worse performance of the heat pipe with a tubular capillary mesh inside is attributable to formation of vapor bubbles which impede the mass transfer along such an artery.

  13. Visualization of working fluid flow in gravity assisted heat pipe

    Directory of Open Access Journals (Sweden)

    Nemec Patrik

    2015-01-01

    Full Text Available Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapor and vice versa help heat pipe to transport high heat flux. The article deal about construction and processes casing in heat pipe during operation. Experiment visualization of working fluid flow is performed with glass heat pipe filed with ethanol. The visualization of working fluid flow explains the phenomena as working fluid boiling, nucleation of bubbles, vapor flow, vapor condensation on the wall, vapor and condensate flow interaction, flow down condensate film thickness on the wall, occurred during the heat pipe operation.

  14. Visualization of working fluid flow in gravity assisted heat pipe

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2015-05-01

    Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapor and vice versa help heat pipe to transport high heat flux. The article deal about construction and processes casing in heat pipe during operation. Experiment visualization of working fluid flow is performed with glass heat pipe filed with ethanol. The visualization of working fluid flow explains the phenomena as working fluid boiling, nucleation of bubbles, vapor flow, vapor condensation on the wall, vapor and condensate flow interaction, flow down condensate film thickness on the wall, occurred during the heat pipe operation.

  15. Casing free district heating pipes; Mantelfria fjaerrvaermeroer

    Energy Technology Data Exchange (ETDEWEB)

    Saellberg, Sven-Erik; Nilsson, Stefan [Swedish National Testing and Research Inst., Goeteborg (Sweden)

    2005-07-01

    Previous studies have shown that polyurethane insulation (PUR foam) on district heating pipes acts as protection against water if it is of good quality, i.e. free from cracks, cavities and other defects. On the other hand water vapour easily diffuses through PUR foam. However this is not a problem as long as the steel pipe is warmer than the surface layer, since the high temperature will prevent the vapour from condensating. What will happen with the insulation of a casing free district heating pipe where the ground water level occasionally reaches above the pipe has not been studied in detail. The current project has studied to what extent moisture enters the PUR foam insulation of two approximately one meter long district heating pipes without casing which have been in the ground for four years. Occasionally, the ground-water has entirely covered the pipes. In addition, the foam has been studied with respect to damage from the surrounding backfill material. Test specimens were taken out of the casing free pipes and were analysed with respect to moisture content. Additional measurements were done with a moisture indicator, and the electric resistance between the steel pipes and the four surveillance wires in each pipe was measured. The results from the various measurement techniques were the compared. The results show that the PUR foam remains dry as long as the service pipe is hot if no defects, such as crack and cavities, are present. Close to the service pipe, the foam actually dries out over time. The moisture content of the middle layer remains more or less constant. Only the colder parts on the outside exhibit an increase in moisture content. It was also seen that defects may lead to water ingress with subsequent humidification of the foam. However, the damaged foam area is limited. This is not the case for a regular pipe with a vapour tight casing, where experience show that moisture tend to spread along the pipe. The pipes were buried in sand and no

  16. Experimental investigations on an axial grooved cryogenic heat pipe

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Muniappan

    2012-01-01

    Full Text Available This paper deals with development and studies of a trapezoidal axial grooved nitrogen heat pipe. A special liquid nitrogen cryostat has been designed and developed for evaluating the performance of heat pipe where the condenser portion is connected to the cold sink externally. Experiments have been performed on the heat pipe as well as on an equivalent diameter copper rod at different heat loads. The steady state performance of the heat pipe is compared with that of copper rod.

  17. Variable conductance heat pipe technology. [research project resulting in heat pipe experiment on OAO-3 satellite

    Science.gov (United States)

    Anderson, W. T.; Edwards, D. K.; Eninger, J. E.; Marcus, B. D.

    1974-01-01

    A research and development program in variable conductance heat pipe technology is reported. The project involved: (1) theoretical and/or experimental studies in hydrostatics, (2) hydrodynamics, (3) heat transfer into and out of the pipe, (4) fluid selection, and (5) materials compatibility. The development, fabrication, and test of the space hardware resulted in a successful flight of the heat pipe experiment on the OAO-3 satellite. A summary of the program is provided and a guide to the location of publications on the project is included.

  18. Development of Submersible Corrugated Pipe Sewage Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    BAI Li; SHI Yan; TAN Yu-fei

    2009-01-01

    Based on the characteristics of heat transfer for corrugated pipe,a method of calculating and de-sign on the submersible corrugated pipe sewage heat exchanger was put forward theoretically and experimental-ly.The actual movement parameters of air-conditioning system used in this heat exchanger were measured.The experimental result shows that the quantity of heat transfer of the corrugated pipe sewage heat exchanger can satisfy the building's load with the average coefficient of performance 4.55.At the same time.the quantity ot heat transfer of the corrugated pipe sewage heat exchanger was compared with that of the other nonmetallic sewage heat exchangers(i.e.,the plastic-Al pipe sewage heat exchanger and PP-R pipe sewage heat exchanger)experimentally.It is found out that the effect of heat transfer for submersible corrugated pipe sewage heat ex-changer is superior to those of the plastic-Al pipe and the PP-R pipe.The quantity of heat transfer per mile of corrugated pipe sewage heat exchanger is 5.2 times as much as that of the plastic-Al pipe,and it is 8.1 times as much as that of PP-R pipe.

  19. Utilization of heat pipes for transfer heat from the flue gas into the heat transfer medium

    Directory of Open Access Journals (Sweden)

    Lenhard Richard

    2014-03-01

    Full Text Available The contribution is listed possible application of heat pipes in systems for obtaining heat from flue gas of small heat sources. It is also stated in the contribution design an experimental device on which to study the impact of fill (the quantity, type of load at various temperature parameters (temperature heating and cooling thermal power transferred to the heat pipe. Is listed measurement methodology using heat pipes designed experimental facility, measurement results and analysis of the results obtained.

  20. Hydrophobic liquid/gas separator for heat pipes

    Science.gov (United States)

    Marcus, B. D.

    1972-01-01

    Perforated nonwetting plug of material such as polytetrafluoroethylene is mounted in gas reservoir feed tube, preferably at end which extends into heat pipe condenser section, to prevent liquid from entering gas reservoir of passively controlled heat pipe.

  1. Detection of Gas Slugs in Heat Pipes

    Science.gov (United States)

    Jones, J. A.

    1985-01-01

    Temperature sensing system detects presence of gas slugs in heat pipes. System designed for operation between zero and 70 degrees C and detects noncondensable pockets of gas that result from decomposition of ammonia cooling fluid. Slugs 1 in. (25mm) in length detected.

  2. Effect of orientation on heat transfer in pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Naumova A. M.

    2010-10-01

    Full Text Available The paper presents the results of experimental research of orientation effect on heat transfer characteristics of a pulsating heat pipe (PHP. It is shown that transport of either mass or heat depends on PHP orientation against it`s axis. As a consequence of comparing experimental data with other authors’ results it was concluded that PHP thermal resistance depends not only on orientation but on some other determinal factors such as device construction and thermophysical properties of heat carrier.

  3. Research of heat exchange rate of the pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Kravets V. Yu.

    2010-02-01

    Full Text Available Given article presents experimental research of heat transfer characteristics of the pulsating heat pipe (PHP which consists of seven coils with 1 mm inner diameter. Water was used as the heat carrier. PHP construction, measuring circuit and research technique are presented. It is shown that under PHP functioning there are two characteristic modes of operation, which can be distinguished by values of thermal resistance. PHP heat exchange features are disclosed.

  4. Hydrogen heat treatment of hydrogen absorbing materials

    Science.gov (United States)

    Park, Choong-Nyeon

    2000-12-01

    This study introduces the hydrogen heat treatment of hydrogen absorbing materials and its applicability for practical use. This treatment is somewhat different from normal heat treatment because of the interaction between metal atoms and hydrogen. Since hydrogen can be removed very fast by pumping it out the hydrogen-induced new lattice phase which can not be obtained without hydrogen can be preserved in a meta-stable state. A thermodynamic interpretation of the hydrogen heat treatment established previously was reformulated for graphical and analytical methods and applied to Pd-Pt-H and Pd-Ag-H alloy systems and a fair correlation between the calculation and experimental results was shown. The feasibility of applying the thermodynamic interpretation to intermetallic compounds-hydrogen systems was also discussed.

  5. Comparison of heat transfer efficiency between heat pipe and tube bundles heat exchanger

    Directory of Open Access Journals (Sweden)

    Wu Zhao-Chun

    2015-01-01

    Full Text Available A comparison of heat transfer efficiency between the heat pipe and tube bundles heat exchanger is made based on heat transfer principle and the analysis of thermal characteristics. This paper argues that although heat pipe has the feature of high axial thermal conductivity, to those cases where this special function of heat transfer is unnecessary, heat pipe exchanger is not a high efficient heat exchanger when it is just used as a conventional heat exchanger in the industrial fields. In turn, there are some deficiencies for heat pipe exchanger, such as complicated manufacturing process, critical requirements for manufacturing materials, etc. which leads to a higher cost in comparison to a tubular heat exchanger. Nonetheless, due to its diverse structural features and extraordinary properties, heat pipe exchanger still has wide applications on special occasions.

  6. Graded-porosity heat-pipe wicks

    Science.gov (United States)

    Eninger, J. E.

    1976-01-01

    To maximize the capacity of a nonarterial heat pipe, a wick is considered whose porosity is allowed to vary axially along its length. At every axial location the porosity is set no lower than required to maintain the wick in a nearly saturated state under the maximum heat-transport rate. The result is a wick whose permeability is everywhere as high as possible. The differential equation that governs the optimum porosity variation is solved numerically between a condenser-end boundary condition that just prevents a liquid slug or puddle in the vapor spaces and an evaporator-end boundary condition that just prevents circumferential groove dry-up. Experimental performance measurements for an ammonia heat pipe are presented.

  7. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  8. Thermal Analysis of Heat Pipe Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Senthilkumar R

    2010-04-01

    Full Text Available The heat pipe is a novel heat transfer device to transfer large amount of heat through a small cross sectional area with very small temperature differences and it also posses high thermal conductance and low thermal impedance. In this paper, the heat pipe working parameters are analyzed using Taguchi methodology. The Taguchimethod is used to formulate the experimental work, analyze the effect of working parameters of the heat pipe and predict the optimal parameter of heat pipe such as heat input, inclination angle and flow rate. It is found that these parameters have a significant influence on heat pipe performance. The analysis of the Taguchi method reveals that, all the parameters mentioned above have equal contributions in the performance of heat pipe efficiency, thermal resistance and overall heat transfer coefficient. Experimental results are provided to validate the suitability of the proposed approach.

  9. Influence of structural design condensing part of NH3 heat pipe to heat transfer

    Directory of Open Access Journals (Sweden)

    Vantúch Martin

    2014-03-01

    Full Text Available The article describes influence design heat exchangers to efficiency condensation liquid ammonia in the gravitational heat pipe. Analyse adverse factors in the operation and flow of ammonia in heat pipe. Also describes heat transfer characteristics of heat pipe in low-potential geothermal heat transport simulations.

  10. Working fluid flow visualization in gravity heat pipe

    Directory of Open Access Journals (Sweden)

    Nemec Patrik

    2016-01-01

    Full Text Available Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. The article deal about gravity heat pipe construction and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm and filled with water. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.

  11. Working fluid flow visualization in gravity heat pipe

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2016-03-01

    Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. The article deal about gravity heat pipe construction and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) and filled with water. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.

  12. DRYING WITH SOLAR COLLECTOR BY HEAT PIPE

    Directory of Open Access Journals (Sweden)

    Hikmet DOĞAN

    1999-01-01

    Full Text Available In this research, heating pipe was used in the solar collector in order to take better advantage of the solar energy. The energy obtained from the sun was transferred to the drying air by means of heating pipes and this hot air was blown on the material to be dried. The water on the material to be dried vaporised with the effect of the hot air and drying took place. Because drying took place in the shade, distant from the direct radiation effects of the sun, some of the disadvantages seen in drying outside, under the sun were eliminated. Additionally, it was observed that it took less time to dry in this method than it takes to dry under the open sun.

  13. AWSWAH - the heat pipe solar water heater

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.

    1986-01-01

    An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

  14. Waste heat recovery using looped heat pipes for air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lamfon, N.J.; Akyurt, M.; Najjar, Y.S.H. (King Abdulaziz Univ., Jeddah (Saudi Arabia). Mechanical Engineering Dept.)

    1994-07-01

    A scheme is described for the recovery of waste heat from stacks of gas turbine engines and the utilization of recovered energy for the cooling of ambient air. Relationships are summarized for the modeling of components of the cooling system. Samples are presented from performance data that is predicted by the model. Effect of size and design of system components, as well as operational variables on system performance, are discussed. It is concluded that the single most significant variable in the design of the looped heat-pipe recovery and utilization system is the geometry of the exhaust pipe of the gas turbine engine. (author)

  15. Theoretical and experimental research on heat transfer performance of the semi-open heat pipe

    Institute of Scientific and Technical Information of China (English)

    Hua ZHU; Bo ZHUANG; Jin-jun TAN; Rong-hua HONG

    2008-01-01

    This paper focuses on the heat transfer performance of semi-open heat pipe which is a new type of heat pipe. After analyzing its condensation heat transfer mechanisms theoretically, several semi-open heat pipes in different length ratios and upper hole diameters are studied experimentally and compared with the same dimensions closed heat pipes. Experimental results show that the heat transfer performance of semi-open heat pipe becomes better by increasing heat transfer rate. At the first transitional point, the heat transfer performance of semi-open heat pipe approaches the level of the closed heat pipe. It is suitable to choose upper small hole about 1 mm in diameter and length ratio larger than 0.6 for the semi-open heat pipe.

  16. Experimental investigation of cryogenic oscillating heat pipes

    Science.gov (United States)

    Jiao, A.J.; Ma, H.B.; Critser, J.K.

    2010-01-01

    A novel cryogenic heat pipe, oscillating heat pipe (OHP), which consists of an 4 × 18.5 cm evaporator, a 6 × 18.5 cm condenser, and 10 cm length of adiabatic section, has been developed and experimental characterization conducted. Experimental results show that the maximum heat transport capability of the OHP reached 380W with average temperature difference of 49 °C between the evaporator and condenser when the cryogenic OHP was charged with liquid nitrogen at 48% (v/v) and operated in a horizontal direction. The thermal resistance decreased from 0.256 to 0.112 while the heat load increased from 22.5 to 321.8 W. When the OHP was operated at a steady state and an incremental heat load was added to it, the OHP operation changed from a steady state to an unsteady state until a new steady state was reached. This process can be divided into three regions: (I) unsteady state; (II) transient state; and (III) new steady state. In the steady state, the amplitude of temperature change in the evaporator is smaller than that of the condenser while the temperature response keeps the same frequency both in the evaporator and the condenser. The experimental results also showed that the amplitude of temperature difference between the evaporator and the condenser decreased when the heat load increased. PMID:20585410

  17. Computational model of miniature pulsating heat pipes.

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  18. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  19. Heat Transfer Characteristics of Slush Nitrogen in Turbulent Pipe Flows

    Science.gov (United States)

    Ohira, K.; Ishimoto, J.; Nozawa, M.; Kura, T.; Takahashi, N.

    2008-03-01

    Slush fluids, such as slush hydrogen and slush nitrogen, are two-phase (solid-liquid) single-component cryogenic fluids containing solid particles in a liquid, and consequently their density and refrigerant capacity are greater than for liquid state fluid alone. This paper reports on the experimental results of the forced convection heat transfer characteristics of slush nitrogen flowing in a pipe. Heat was supplied to slush nitrogen by a heater wound around the copper pipe wall. The local heat transfer coefficient was measured in conjunction with changes in the velocity and the solid fraction. The differences in heat transfer characteristics between two-phase slush and single phase liquid nitrogen were obtained, and the decrease in heat transfer to slush nitrogen caused by the previously observed pressure drop reduction was confirmed by this study. Furthermore, for the purpose of establishing the thermal design criteria for slush nitrogen in the case of pressure drop reduction, the heat transfer correlation between the experimental results and the Sieder-Tate Equation was obtained.

  20. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...

  1. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...

  2. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  3. Distribution of heat flux by working fluid in loop heat pipe

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2016-03-01

    The main topics of article are construction of loop heat pipe, thermal visualization of working fluid dynamics and research results interpretation. The work deals about heat flux transport by working fluid in loop heat pipe from evaporator to condenser evolution. The result of the work give us how the hydrodynamic and thermal processes which take place inside the loop of heat pipe affect on the overall heat transport by loop heat pipe at start-up and during operation.

  4. Distribution of heat flux by working fluid in loop heat pipe

    Directory of Open Access Journals (Sweden)

    Nemec Patrik

    2016-01-01

    Full Text Available The main topics of article are construction of loop heat pipe, thermal visualization of working fluid dynamics and research results interpretation. The work deals about heat flux transport by working fluid in loop heat pipe from evaporator to condenser evolution. The result of the work give us how the hydrodynamic and thermal processes which take place inside the loop of heat pipe affect on the overall heat transport by loop heat pipe at start-up and during operation.

  5. Entransy dissipation analysis and optimization of separated heat pipe system

    Institute of Scientific and Technical Information of China (English)

    QIAN XiaoDong; LI Zhen; MENG JiAn; LI ZhiXin

    2012-01-01

    Seperated heat pipe systems are widely used in the fields of waste heat recovery and air conditioning due to their high heat transfer capability,and optimization of heat transfer process plays an important role in high-efficiency energy utilization and energy conservation.In this paper,the entransy dissipation analysis is conducted for the separated heat pipe system,and the result indicates that minimum thermal resistance principle is applicable to the optimization of the separated heat pipe system.Whether in the applications of waste heat recovery or air conditioning,the smaller the entransy-dissipation-based thermal resistance of the separated heat pipe system is,the better the heat transfer performance will be.Based on the minimum thermal resistance principle,the optimal area allocation relationship between evaporator and condenser is deduced,which is numerically verified in the optimation design of separated heat pipe system.

  6. Thermophysical relationships for waste heat recovery using looped heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lamfon, N.J.; Akyurt, M.; Najjar, Y.S.H.; Al-Rabghi, O.M. (King Abdulaziz Univ., Jeddah (Saudi Arabia). Dept. of Mechanical Engineering)

    1994-09-01

    A scheme is described for the recovery of waste heat from stacks of gas turbine engines by means of heat-pipe loops. The recovered energy is supplied to an absorption chiller that cools the intake air of the gas turbine engine to enhance its performance. Mathematical expressions are introduced which accurately portray existing tabulated thermophysical properties data for those variables needed during the modelling of the system. (author)

  7. Development of heat pipes for solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.

    1984-01-01

    Numerous heat pipes were designed, manufactured, and filled on a specially developed filling rig. Each heat pipe was incorporated into a prototype solar water heater developed for this purpose, and was tested under actual insolation conditions. An extensive testing program lasting for more than a year revealed that the heat pipes perform satisfactorily as heat transfer elements in solar water heaters. A special heat pipe featuring a compact and effective condenser configuration was also tested. It was observed to likewise exhibit isothermal behavior and hence promised potential for large scale solar applications.

  8. Research and Development on Heat Pipes and Related Thermal Engineering Technologies in Japan

    OpenAIRE

    OSHIMA, Koichi

    1989-01-01

    Five advanced heat pipe systems utilizing phase changing heat transfer concept are introduced, which are; a separate type heat pipe heat exchanger, a heat pipe turbine, micro heat pipes, a thermocapillary loop system and mass-produced tubes with inner fin. Inside of these heat pipes, contrary to the conventional heat transfer tubes, evaporation and condensation processes are heavily influenced by the surface tension effect. This effect is also dominant in the heat pipes operating under micro-...

  9. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  10. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  11. Impact of working fluids on gravitational heat pipe performance

    Science.gov (United States)

    Jobb, Marián; Kosa, Ľuboš; Nosek, Radovan; Malcho, Milan

    2016-06-01

    Performance heat pipes depends on several parameters. This article deals with the performance of heat pipes, depending on the working fluid and operating temperature. There is described the essential function of the heat pipe manufacturing process. Stainless heat pipes were made of material AISI 304 and filled with a distilled water and solution of distilled water with silver nitrate, up to 20% of the heat pipe inner volume. Measurements were carried at an operating temperature of 40 °C to 90 °C. The performance was measured on the experimental device. Presented results show the progress of individual measurements and the effect of operating parameters and working fluid on the performance of heat pipes.

  12. Development of a jet pump-assisted arterial heat pipe

    Science.gov (United States)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1977-01-01

    The development of a jet pump assisted arterial heat pipe is described. The concept utilizes a built-in capillary driven jet pump to remove vapor and gas from the artery and to prime it. The continuous pumping action also prevents depriming during operation of the heat pipe. The concept is applicable to fixed conductance and gas loaded variable conductance heat pipes. A theoretical model for the jet pump assisted arterial heat pipe is presented. The model was used to design a prototype for laboratory demonstration. The 1.2 m long heat pipe was designed to transport 500 watts and to prime at an adverse elevation of up to 1.3 cm. The test results were in good agreement with the theoretical predictions. The heat pipe carried as much as 540 watts and was able to prime up to 1.9 cm. Introduction of a considerable amount of noncondensible gas had no adverse effect on the priming capability.

  13. Entropy generation analysis of cylindrical heat pipe using nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Ghanbarpour, Morteza, E-mail: morteza.ghanbarpour@energy.kth.se; Khodabandeh, Rahmatollah

    2015-06-20

    Highlights: • Entropy generation of heat pipe with nanofluid has been studied. • Nanofluid has significant effect on heat pipe performance. • Entropy generation in heat pipe decreases when nanofluids are used as working fluids. - Abstract: Thermal performance of cylindrical heat pipe with nanofluid is studied based on the laws of thermodynamics. The objective of the present work is to investigate nanofluids effect on different sources of entropy generation in heat pipe caused by heat transfer between hot and cold reservoirs and also frictional losses and pressure drop in the liquid and vapor flow along heat pipe. An analytical study was performed to formulate all sources of entropy generation and the predicted results are compared with experimental ones. Cylindrical miniature grooved heat pipes of 250 mm length and 6.35 mm outer diameter were fabricated and tested with distilled water and water based TiO{sub 2} and Al{sub 2}O{sub 3} nanofluids at different concentrations as working fluids. Analytical and experimental results revealed that the entropy generation in heat pipes decreases when nanofluids are used as working fluids instead of basefluid which results in improved thermal performance of the heat pipes with nanofluids.

  14. Environmental and Thermal Performance of District Heating Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Froeling, Morgan

    2002-06-01

    The introduction of district heating has reduced the environmental impact from local heat production in urban areas. However, in order to fit into a sustainable society, district heating must be continuously developed according to the increasing demands on activities in a society moving towards sustainability. Our technical improvements must result in environmental improvements. This thesis focuses on the environmental performance of the distribution system - the district heating pipes. The purpose of this research is to understand how the distribution system can be improved. The information presented in this thesis can be used to identify possibilities for improving the environmental performance of different life cycle phases of the distribution system as well as a baseline when evaluating new technical developments. The heat losses during use of the pipes are of large importance for the environmental impact of district heating pipes. Such heat losses can be modelled if the mass transfer parameters for gases in the polyurethane insulation and the polyethylene casing are known. The diffusion coefficients, the permeability coefficients and the solubility coefficients and their temperature dependence have been determined for cyclopentane, carbon dioxide, nitrogen, and oxygen. The same parameters have been studied for the blowing agent alternative HFC-365mfc at room temperature. The long-term thermal performance of district heating pipes has been modelled using effective permeabilities for the pipe construction. Environmental consequences of heat losses during the use phase of district heating pipes have been compared with the impacts from production of the pipes and from construction of the district heating network. The use of the district heating pipes is the most important of the studied life cycle phases. Thus, it is very important to minimise heat losses from the pipes. The heat losses will for some district heating pipes increase notably during use due to foam

  15. Design and evaluation of a heat pipe exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.H.; Zeigler, E.

    1982-06-01

    A promising approach to energy conservation is the use of heat pipes to recover heat now lost in effluent processing wastewater streams. At Radford Army Ammunition Plant a prototype water-to-water heat pipe heat exchanger (HPHX) was evaluated. Heat was extracted from wastewater and recovered heat then used to preheat incoming fresh water. The heat pipe is schematicized. Design objectives--access to wasterwater section, provision for periodic inspection--are specified. Based on these objectives the HPHX design is shown. A performance analysis is carried out by means of equations. Based on mobilization rates at Radford, a savings of significant amount will be realized.

  16. Heat pipes for spacecraft temperature control: Their usefulness and limitations

    Science.gov (United States)

    Ollendorf, S.; Stipandic, E.

    1972-01-01

    Heat pipes are used in spacecraft to equalize the temperature of structures and maintain temperature control of electronic components. Information is provided for a designer on: (1) a typical mounting technique, (2) choices available in wick geometries and fluids, (3) tests involved in flight-qualifying the design, and (4) heat pipe limitations. An evaluation of several heat pipe designs showed that the behavior of heat pipes at room temperature does not necessarily correlate with the classic equations used to predict their performance. They are sensitive to such parameters as temperature, fluid inventory, orientation, and noncondensable gases.

  17. Pressure Controlled Heat Pipe for Precise Temperature Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research project will develop Pressure Controlled Heat Pipes (PCHPs) for precise temperature control (milli-Kelvin level). Several...

  18. Pressure drop reduction and heat transfer deterioration of slush nitrogen in triangular and circular pipe flows

    Science.gov (United States)

    Ohira, Katsuhide; Kurose, Kizuku; Okuyama, Jun; Saito, Yutaro; Takahashi, Koichi

    2017-01-01

    Slush fluids such as slush hydrogen and slush nitrogen are characterized by superior properties as functional thermal fluids due to their density and heat of fusion. In addition to allowing efficient hydrogen transport and storage, slush hydrogen can serve as a refrigerant for high-temperature superconducting (HTS) equipment using MgB2, with the potential for synergistic effects. In this study, pressure drop reduction and heat transfer deterioration experiments were performed on slush nitrogen flowing in a horizontal triangular pipe with sides of 20 mm under the conditions of three different cross-sectional orientations. Experimental conditions consisted of flow velocity (0.3-4.2 m/s), solid fraction (0-25 wt.%), and heat flux (0, 10, and 20 kW/m2). Pressure drop reduction became apparent at flow velocities exceeding about 1.3-1.8 m/s, representing a maximum amount of reduction of 16-19% in comparison with liquid nitrogen, regardless of heating. Heat transfer deterioration was seen at flow velocities of over 1.2-1.8 m/s, for a maximum amount of deterioration of 13-16%. The authors of the current study compared the results for pressure drop reduction and heat transfer deterioration in triangular pipe with those obtained previously for circular and square pipes, clarifying differences in flow and heat transfer properties. Also, a correlation equation was obtained between the slush Reynolds number and the pipe friction factor, which is important in the estimation of pressure drop in unheated triangular pipe. Furthermore, a second correlation equation was derived between the modified slush Reynolds number and the pipe friction factor, enabling the integrated prediction of pressure drop in both unheated triangular and circular pipes.

  19. Numerical and Experimental Investigations of a Rotating Heat Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Todd A. [Univ. of New Mexico, Albuquerque, NM (United States)

    2007-05-01

    Rotating and revolving heat pipes have been used in a variety of applications including heat pipe heat exchangers, cooling of rotating electrical machines, and heat removal in high speed cutting operations. The use of heat pipes in rotating environments has prompted many analytical, numerical, and experimental investigations of the heat transfer characteristics of these devices. Past investigations, however, have been restricted to the study of straight heat pipes. In this work, a curved rotating heat pipe is studied numerically and experimentally. In certain types of rotating machines, heat generating components, which must be cooled during normal operation, are located at some radial distance from the axis of rotation. The bent heat pipe studied here is shown to have advantages when compared to the conventional straight heat pipes in these off-axis cooling scenarios. The heat pipe studied here is built so that both the condenser and evaporator sections are parallel to the axis of rotation. The condenser section is concentric with the axis of rotation while the evaporator section can be placed in contact with off-axis heat sources in the rotating machine. The geometry is achieved by incorporating an S-shaped curve between the on-axis rotating condenser section and the off-axis revolving evaporator section. Furthermore, the heat pipe uses an annular gap wick structure. Incorporating an annular gap wick structure into the heat pipe allows for operation in a non-rotating environment. A numerical model of this rotating heat pipe is developed. The analysis is based on a two-dimensional finite-difference model of the liquid flow coupled to a one-dimensional model of the vapor flow. Although the numerical model incorporates many significant aspects of the fluid flow, the flow in the actual heat pipe is expected to be threedimensional. The rotating heat pipe with the S-shaped curve is also studied experimentally to determine how well the numerical model captures the key

  20. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger.

    Science.gov (United States)

    Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari

    2014-01-01

    This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%-0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%-24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.

  1. Evaluating Program about Performance of Circular Sodium Heat Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jae Sik; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The superior heat transfer capability, structural simplicity, relatively inexpensive, insensitivity to the gravitational field, silence and reliability are some of its outstanding features. We study about heat transfer equation of heat pipe and program predicting performance which is considering geometrical shape of heat pipe by the related heat transfer equation of heat pipe. The operating temperature is 450 .deg. C - 950 .deg. C, working fluid is sodium, material for container is stainless steel, and type of wick is sintered metal. As a result of evaluating program about performance of circular sodium heat pipe based on MATLAB code, express correlation between radius and LHR, correlation between heat transfer length and LHR, correlation between wick and LHR, correlation between operating temperature and LHR. Generally radius values of heat pipe are proportional to LHR because of increase of mass flow which is main factor of heat flow. Heat transfer length values of heat pipe are inversely proportional to LHR and slightly inversely proportional to heat rate. Pore size is proportional to LHR. Although increase of pore size decrease capillary pressure, decrease more pressure drop in liquid phase. As a result, mass flow and heat rate are increase. But we have to do additional consideration about pore size and voidage in the aspect of safety and production technique.

  2. Comparisons of Heat Transfer Performance of a Closed-looped Oscillating Heat Pipe and Closed-looped Oscillating Heat Pipe with Check Valves Heat Exchangers

    Directory of Open Access Journals (Sweden)

    P. Meena

    2008-01-01

    Full Text Available This research was to study the comparisons of heat transfer performance of closed-looped oscillating heat pipe and closed-looped oscillating heat pipe with check valves heat exchangers with R134a, Ethanol and water were used as the working fluids. A set of heat pipe heat exchanger (CLOHP and CLOHP/CV were made of copper tubes in combination of following dimension: 2.03 mm inside diameter: 40 turns, with 20, 10 and 20 cm for evaporator, adiabatic and condenser sections lengths. The working fluid was filled in the tube at the filling ratio of 50%. The evaporator section was given heat by heater while the condenser section was cooled by air. The adiabatic section was properly insulated. In the test operation, it could be concluded as follows. It indicated that the heat transfer performance of closed-looped oscillating heat pipe with check valves heat exchanger better than closed-looped oscillating heat exchanger.

  3. Moderated heat pipe thermionic reactor (MOHTR) module development and test

    Science.gov (United States)

    Merrigan, Michael A.; Trujillo, Vincent L.

    1992-01-01

    The Moderated Heat Pipe Thermionic Reactor (MOHTR) thermionic space reactor design combines the low risk technology associated with the Thermionic Fuel Element (TFE) Verification Program with the high reliability heat transfer capability of liquid metal heat pipe technology. The resulting design concept, capable of implementation over the power range of 10 to 100 kWe, offers efficiency and reliability with reduced risk of single point failures. The union of TFE and heat pipe technology is achieved by imbedding TFEs and heat pipes in a beryllium matrix to which they are thermally coupled by brazing or by liquid metal (NaK or Na) bonding. The reactor employs an array of TFE modules, each comprising a TFE, a zirconium hydride (ZrH) cylinder for neutron moderation, and heat pipes for transport of heat from the collector surface of the TFE to the waste heat radiator. An advantage of the design is the low temperature drop from the collector surface to the radiating surface. This is a result of the elimination of electrical insulation from the heat transport path through electrical isolation of the modules. The module used in this study consisted of a beryllium core, and electrical cartridge heater simulating the TFE, and three heat pipes to dissipate the waste heat. The investigation was focused on the thermal performance of the assembly, including evaluation of the sodium and braze bonding options for minimizing the thermal resistance between the elements, the temperature distribution in the beryllium matrix, and the heat pipe performance. Continuing subjects of the investigation include performance of the heat pipes through start-up transients, during normal operation, and in a single heat pipe failure mode. Secondary objectives of the investigation include correlation of analytic models for the thermionic element and module including the effects of gap thermal conductances at the modules electrically insulated surfaces.

  4. An Advanced Loop Heat Pipe for Cryogenic Applications

    Science.gov (United States)

    Ku, Jentung; Hoang, Triem

    2016-01-01

    A loop heat pipe (LHP) is a very versatile heat transfer device which can transport a large heat load over a long distance with a small temperature difference. All LHPs currently servicing orbiting spacecraft are designed to operate in the room temperature range. Future space telescopes and space-based Earth resource imaging satellites require passive cryogenic heat transport devices that can thermally couple remote cryocoolers to sensor or instrument of interest while providing the capability of payload vibration/jitter isolation, implementation of redundant coolers, and coupling of multiple sensors to a common heat sink. All of these requirements can be satisfied by using a cryogenic LHP (CLHP). Although the development of CLHPs faces several technical challenges, NASA Goddard Space Flight Center has devoted extensive efforts in developing CLHP technology over the past decade and has made significant progress. In particular, the combination of the innovative ideas of using a secondary capillary pump to manage the parasitic heat gain and using a hot reservoir to reduce the system pressure under the ambient condition has led to the successful development of the CLHP. Several CLHPs charged with nitrogen and hydrogen were built and tested in thermal vacuum chambers. These CLHPs demonstrated reliable start-up and robust operation during power cycle and sink temperature cycle tests.

  5. An Advanced Loop Heat Pipe for Cryogenic Applications

    Science.gov (United States)

    Ku, Jentung; Hoang, Triem

    2017-01-01

    A loop heat pipe (LHP) is a very versatile heat transfer device that can transport a large heat load over a long distance with a small temperature difference. All LHPs currently servicing orbiting spacecraft are designed to operate in the room temperature range. Future space telescopes and space-based Earth resource imaging satellites require passive cryogenic heat transport devices that can thermally couple remote cryocoolers to sensor or instrument of interest while providing the capability of payload vibration jitter isolation, implementation of redundant coolers, and coupling of multiple sensors to a common heat sink. All of these requirements can be satisfied by using a cryogenic LHP (CLHP). Although the development of CLHPs faces several technical challenges, NASA Goddard Space Flight Center has devoted extensive efforts in developing CLHP technology over the past decade and has made significant progress. In particular, the combination of the innovative ideas of using a secondary capillary pump to manage the parasitic heat gain and using a hot reservoir to reduce the system pressure under the ambient condition has led to the successful development of the CLHP. Several CLHPs charged with nitrogen and hydrogen were built and tested in thermal vacuum chambers. These CLHPs demonstrated reliable start-up and robust operation during power cycle and sink temperature cycle tests.

  6. Moving-Temperature-Gradient Heat-Pipe Furnace Element

    Science.gov (United States)

    Gillies, Donald C.; Lehoczky, Sandor L.; Gernert, Nelson J.

    1993-01-01

    In improved apparatus, ampoule of material directionally solidified mounted in central hole of annular heat pipe, at suitable axial position between heated and cooled ends. Heated end held in fixed position in single-element furnace; other end left in ambient air or else actively cooled. Gradient of temperature made to move along heat pipe by changing pressure of noncondensable gas. In comparison with prior crystal-growing apparatuses, this one simpler, smaller, and more efficient.

  7. EXPERIMENTAL STUDY ON SEMI-OPEN HEAT PIPES AND ITS APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Semi-open heat pipes were studied experimentally in this work. A new kind of semi-open heat pipe with fluid swirl backflow was developed on the basis of the traditional semi-open heat pipe. Heat transfer characteristics during operation and start-up of closed heat pipe、traditional semi-open heat pipe and swirl flow semi-open heat pipe were investigated. The swirl orifice' s backflow effect on enhancing the working limitation was obtained. Heat exchangers or waste heat boilers made of swirl flow semi-open heat pipes and semi-open heat pipes have been successfully used in high or variable gas temperature engineering applications.

  8. Low Cost High Performance Generator Technology Program. Volume 5. Heat pipe topical, appendices

    Energy Technology Data Exchange (ETDEWEB)

    1975-07-01

    Work performed by Dynatherm Corporation for Teledyne Isotopes during a program entitled ''Heat Pipe Fabrication, Associated Technical Support and Reporting'' is reported. The program was initiated on November 29, 1972; the main objectives were accomplished with the delivery of the heat pipes for the HPG. Life testing of selected heat pipe specimens is continuing to and beyond the present date. The program consisted of the following tasks: Heat Pipe Development of Process Definition; Prototype Heat Pipes for Fin Segment Test; HPG Heat Pipe Fabrication and Testing; Controlled Heat Pipe Life Test; and Heat Pipe Film Coefficient Determination. (TFD)

  9. Analysis of frozen startup of high-temperature heat pipes and three-dimensional modeling of block-heated heat pipes

    Science.gov (United States)

    Faghri, Amir

    1991-11-01

    The use of high-temperature heat pipes has been proposed for cooling the leading edges and nose cones of re-entry vehicles, rail guns, and laser mirrors, as well as for the thermal management of future hypersonic vehicle structures. The startup behavior of high temperature heat pipes from the frozen state was investigated both numerically and experimentally for various heat loads and input locations. A high temperature sodium/stainless steel heat pipe with multiple heat sources and sinks was fabricated, processed, and tested. A numerical simulation of the transient heat pipe performance including the vapor region, wick structure, and the heat pipe wall is given. Furthermore, experimental and numerical analyses of several operating parameters of a low-temperature copper-water heat pipe under uniform circumferential heating and block heating has been performed. Finally, a numerical analysis of transient heat pipe performance including nonconventional heat pipes with nonuniform heat distributions is presented. Numerical calculations were then made for a leading edge heat pipe with localized high heat fluxes.

  10. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B{sub 4}C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B{sub 4}C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer

  11. Commercial high efficiency dehumidification systems using heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

  12. Heat pipes and solid sorption transformations fundamentals and practical applications

    CERN Document Server

    Vasiliev, LL

    2013-01-01

    Developing clean energy and utilizing waste energy has become increasingly vital. Research targeting the advancement of thermally powered adsorption cooling technologies has progressed in the past few decades, and the awareness of fuel cells and thermally activated (heat pipe heat exchangers) adsorption systems using natural refrigerants and/or alternatives to hydrofluorocarbon-based refrigerants is becoming ever more important. Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications concentrates on state-of-the-art adsorption research and technologies for releva

  13. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M.; Mullender, B.; Druart, J. [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W.; Beddows, A. [ESTEC-The (Netherlands)

    1996-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  14. Thermal analysis of heat pipe using self rewetting fluids

    Directory of Open Access Journals (Sweden)

    Senthilkumar Rathinasamy

    2011-01-01

    Full Text Available This paper discuses the use of self rewetting fluids in the heat pipe. In conventional heat pipes, the working fluid used has a negative surface-tension gradient with temperature. It is an unfavourable one and it decreases the heat transport between the evaporator section and the condenser section. Self rewetting fluids are dilute aqueous alcoholic solutions which have the number of carbon atoms more than four. Unlike other common liquids, self-rewetting fluids have the property that the surface tension increases with temperature up to a certain limit. The experiments are conducted to improve the heat-transport capability and thermal efficiency of capillary assisted heat pipes with the self rewetting fluids like aqueous solutions of n-Butanol and n-Pentanol and its performance is compared with that of pure water. The n-Butanol and n-Pentanol are added to the pure water at a concentration of 0.001moles/lit to prepare the self rewetting fluids. The heat pipes are made up of copper container with a two-layered stainless steel wick consisting of mesh wrapped screen. The experimental results show that the maximum heat transport of the heat pipe is enhanced and the thermal resistances are considerably decreased than the traditional heat pipes filled with water. The fluids used exhibit an anomalous increase in the surface tension with increasing temperature.

  15. A thermosyphon heat pipe cooler for high power LEDs cooling

    Science.gov (United States)

    Li, Ji; Tian, Wenkai; Lv, Lucang

    2016-08-01

    Light emitting diode (LED) cooling is facing the challenge of high heat flux more seriously with the increase of input power and diode density. The proposed unique thermosyphon heat pipe heat sink is particularly suitable for cooling of high power density LED chips and other electronics, which has a heat dissipation potential of up to 280 W within an area of 20 mm × 22 mm (>60 W/cm2) under natural air convection. Meanwhile, a thorough visualization investigation was carried out to explore the two phase flow characteristics in the proposed thermosyphon heat pipe. Implementing this novel thermosyphon heat pipe heat sink in the cooling of a commercial 100 W LED integrated chip, a very low apparent thermal resistance of 0.34 K/W was obtained under natural air convection with the aid of the enhanced boiling heat transfer at the evaporation side and the enhanced natural air convection at the condensation side.

  16. Application of aqueous nanofluids in a horizontal mesh heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    ZhenHua Liu [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); QunZhi Zhu [School of Energy Sources and Environment Engineering, Shanghai University of Electric Power, Shanghai 200090 (China)

    2011-01-15

    An experimental study was carried out to investigate the effects of aqueous CuO nanofluids on thermal performance of a horizontal mesh heat pipe working at steady sub-atmospheric pressures. The nanofluid was composed of deionized water and CuO nanoparticles with an average diameter of 50 nm. The experimental results show that adding CuO nanoparticles into deionized water can significantly enhance heat transfer coefficients of both evaporator and condenser, and the maximum heat flux of the heat pipe. There is an optimal mass concentration of nanoparticles corresponding to the maximum heat transfer enhancement. The operating pressure has an apparent impact on both the evaporating and condensing heat transfer enhancements. The heat transfer enhancement effects increase distinctly with the decrease of the pressure. The present investigation discovers that the thermal performance of a mesh heat pipe can be evidently strengthened by substituting CuO nanofluids for deionized water under sub-atmospheric pressures. (author)

  17. Application of aqueous nanofluids in a horizontal mesh heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhenhua, E-mail: liuzhenh@sjtu.edu.c [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Zhu Qunzhi [School of Energy Sources and Environment Engineering, Shanghai University of Electric Power, Shanghai 200090 (China)

    2011-01-15

    An experimental study was carried out to investigate the effects of aqueous CuO nanofluids on thermal performance of a horizontal mesh heat pipe working at steady sub-atmospheric pressures. The nanofluid was composed of deionized water and CuO nanoparticles with an average diameter of 50 nm. The experimental results show that adding CuO nanoparticles into deionized water can significantly enhance heat transfer coefficients of both evaporator and condenser, and the maximum heat flux of the heat pipe. There is an optimal mass concentration of nanoparticles corresponding to the maximum heat transfer enhancement. The operating pressure has an apparent impact on both the evaporating and condensing heat transfer enhancements. The heat transfer enhancement effects increase distinctly with the decrease of the pressure. The present investigation discovers that the thermal performance of a mesh heat pipe can be evidently strengthened by substituting CuO nanofluids for deionized water under sub-atmospheric pressures.

  18. Transient Behaviour of a Heat Pipe with Extracapillary Circulation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Heat pipe devices, for their typical working mode, are particularly suitable for zero gravity applications, and have also been considered for applications in space satellites with nuclear generators because of the absence of active systems for the coolant circulation. The present work reports the results of experimental tests carried out on a heat pipe facility designed to investigate the thermal-hydraulic performance of a water heat pipe. The device layout, configuration and geometry, simulate a heat pipe working mode utilizable in space applications under zero gravity conditions. The evaporating section, completely lined (covered) with wicks (sintered stainless steel), and nearly plane shaped, is housed in a cylindrical container. The obtained results show that the system can approach steady-state conditions, at a pressure of 4 bar and with a heat flux transferred of about 150 W/cm2, supporting an electric power step of about 1.8 Kw.

  19. Overview of Loop Heat Pipe Operation

    Science.gov (United States)

    Ku, Jentung

    1999-01-01

    Loop heat pipes (LHP's) are two-phase heat transfer devices that utilize the evaporation and condensation of a working fluid to transfer heat, and the capillary forces developed in the porous wicks to circulate the fluid. The LHP was first developed in the former Soviet Union in the early 1980s, about the same time that the capillary pumped loop (CPL) was developed in the United States. The LHP is known for its high pumping capability and robust operation mainly due to the use of fine-pored metal wicks and an integral evaporator/hydro-accumulator design. The LHP technology is rapidly gaining acceptance in aerospace community. It is the baseline design for thermal control of several spacecraft, including NASA's GLAS and Chemistry, ESA's ATLID, CNES' STENTOR, RKA's OBZOR, and several commercial satellites. Numerous LHP papers have been published since the mid-1980's. Most papers presented test results and discussions on certain specific aspects of the LHP operation. LHP's and CPL's show many similarities in their operating principles and performance characteristics. However, they also display significant differences in many aspects of their operation. Some of the LHP behaviors may seem strange or mysterious, even to experienced CPL practitioners. The main purpose of this paper is to present a systematic description of the operating principles and thermal-hydraulic behaviors of LHP'S. LHP operating principles will be given first, followed by a description of the thermal-hydraulics involved in LHP operation. Operating characteristics and important parameters affecting the LHP operation will then be described in detail. Peculiar behaviors of the LHP, including temperature hysteresis and temperature overshoot during start-up, will be explained. For simplicity, most discussions will focus upon LHP's with a single evaporator and a single condenser, but devices with multiple evaporators and condensers will also be discussed. Similarities and differences between LHP's and

  20. Energy and exergy evaluation of an integrated solar heat pipe wall system for space heating

    Indian Academy of Sciences (India)

    ROONAK DAGHIGH; ABDELLAH SHAFIEIAN

    2016-08-01

    In this paper, an integrated solar heat pipe wall space heating system, employing double glazed heat pipe evacuated tube solar collector and forced convective heat transfer condenser, is introduced. Thermal performance of the heat pipe solar collector is studied and a numerical model is developed to investigate thethermal efficiency of the system, the inlet and outlet air temperatures and heat pipe temperature. Furthermore, the system performance is evaluated based on exergy efficiency. In order to verify the precision of the developed model, the numerical results are compared with experimental data. Parametric sensitivity for design features and material associated with the heat pipe, collector cover and insulation is evaluated to provide a combination with higher thermal performance. Simulation results show that applying a solar collector with more than 30 heat pipes is not efficient. The rate of increasing in temperature of air becomes negligible after 30 heat pipes and the trend of the thermal efficiency is descending with increasing heat pipes. The results also indicate that at a cold winter day of January, the proposed system with a 20 heat pipe collector shows maximum energy and exergy efficiency of 56.8% and 7.2%, which can afford warm air up to 30°C. At the end, the capability of the proposed system tomeet the heating demand of a building is investigated. It is concluded that the best method to reach a higher thermal covered area is to apply parallel collectors

  1. Influence of the ambient temperature during heat pipe manufacturing on its function and heat transport ability

    Directory of Open Access Journals (Sweden)

    Čaja A.

    2014-03-01

    Full Text Available Heat pipe is heat transfer device working at a minimum temperature difference of evaporator and condenser. Operating temperature of the heat pipe determine by properties of the working substance and pressure achieved during production. The contribution is focused on the determining the effect of the initial surrounding temperature where the heat pipe is manufactured and on the obtaining performance characteristics produced heat pipes in dependence of manufacturing temperature. Generally hold, that the boiling point of the working liquid decrease with decreasing ambient pressure. Based on this can be suppose that producing of lower ambient temperature during heat pipe manufacturing, will create the lower pressure, the boiling point of the working fluid will lower too and the heat pipe should be better performance characteristics.

  2. Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid

    Science.gov (United States)

    Juhasz, Albert J.

    2010-01-01

    This elemental space radiator heat pipe is designed to operate in the 700 to 875 K temperature range. It consists of a C-C (carbon-carbon) shell made from poly-acrylonitride fibers that are woven in an angle interlock pattern and densified with pitch at high process temperature with integrally woven fins. The fins are 2.5 cm long and 1 mm thick, and provide an extended radiating surface at the colder condenser section of the heat pipe. The weave pattern features a continuous fiber bath from the inner tube surface to the outside edges of the fins to maximize the thermal conductance, and to thus minimize the temperature drop at the condenser end. The heat pipe and radiator element together are less than one-third the mass of conventional heat pipes of the same heat rejection surface area. To prevent the molten potassium working fluid from eroding the C C heat pipe wall, the shell is lined with a thin-walled, metallic tube liner (Nb-1 wt.% Zr), which is an integral part of a hermetic metal subassembly which is furnace-brazed to the inner surface of the C-C tube. The hermetic metal liner subassembly includes end caps and fill tubes fabricated from the same Nb-1Zr alloy. A combination of laser and electron beam methods is used to weld the end caps and fill tubes. A tungsten/inert gas weld seals the fill tubes after cleaning and charging the heat pipes with potassium. The external section of this liner, which was formed by a "Uniscan" rolling process, transitions to a larger wall thickness. This section, which protrudes beyond the C-C shell, constitutes the "evaporator" part of the heat pipe, while the section inside the shell constitutes the condenser of the heat pipe (see figure).

  3. Experimental study on silicon micro-heat pipe arrays

    Energy Technology Data Exchange (ETDEWEB)

    Launay, S.; Sartre, V.; Lallemand, M. [Institut National des Sciences Appliquees, Villeurbanne (France). Centre de Thermique

    2004-02-01

    In this study, micro-heat pipe arrays etched into silicon wafers have been investigated for electronic cooling purposes. Micro-heat pipes of triangular cross-section and with liquid arteries were fabricated by wet anisotropic etching with a KOH solution. The microchannels (230 {mu}m wide) are closed by molecular bonding of a plain wafer with the grooved one. A test bench was developed for the micro-heat pipe filling and the thermal characterisation. The temperature profile on the silicon surface is deduced from experimental measurements. The results show that with the artery micro-heat pipe array, filled with methanol, the effective thermal conductivity of the silicon wafer is significantly improved compared to massive silicon. (author)

  4. Titanium Loop Heat Pipes for Space Nuclear Radiators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...

  5. Variable Conductance Heat Pipes for Radioisotope Stirling Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall program objective is to develop a high temperature variable conductance heat pipe (VCHP) backup radiator, and integrate it into a Stirling radioisotope...

  6. Micro-Channel Embedded Pulsating Heat Pipes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the need for thermal control technology becomes more demanding Micro-Channel Embedded Pulsating Heat Pipes (ME-PHPs) represents a sophisticated and enabling...

  7. Analyzing the Heat Transfer Property of Heat Pipe Influenced by Integrated Cooling Apparatus

    Directory of Open Access Journals (Sweden)

    Chen-Ching Ting

    2014-01-01

    Full Text Available Heat pipe with discrete heat transfer property is often called thermal superconductor because it has extremely large thermal conductivity. This special heat transfer property is destroyed by integrating cooling apparatus and further reducing the cooling power of a heat pipe cooler. This paper experimentally studied the heat transfer property of heat pipe influenced by integrated cooling apparatus. To simplify the investigating process, a home-made square heat pipe with the dimensions of L×W×H=10×10×100 mm3 was built with two pieces of copper plates and two pieces of glass plates face to face, respectively. The two pieces of copper plates were constructed with inside walls of capillary structure and the two pieces of glasses were with antifog inside walls for observing the inner phenomenon. Moreover, isothermal circulating cooling water was applied outside the heat pipe instead of cooling fin. The results show that heat vapor in the heat pipe is condensed earlier and cannot reach the remote section of condenser. In other words, the heat transfer property of heat pipe is destroyed by integrating cooling water. This phenomenon causes the unfavorable cooling power of the heat pipe cooler.

  8. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    Science.gov (United States)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  9. Temperature Uniformity of Heated Mold Plate by Oscillating Heat Pipe

    Directory of Open Access Journals (Sweden)

    Kamonpet Patrapon

    2015-01-01

    Full Text Available Uniformity of the temperature in the mold plate is of paramount important since it will affect the dimensional stability of the part produced. To provide uniform temperature to the metal plate, many factors need to be considered such as choice of heating technology, uniformity of a heat source, a type of control, etc. This paper aims to study the temperature uniformity of metal plate using closed-loop oscillating heat pipe (CLOHP as a heat transfer device. The metal plates which were P-20 with the size of 306 x 130 mm2 were used. Metal plate was gouged to a depth of 3 mm for installing the CLOHP. Distances from the heating device to the metal plate surface were 5 and 10 mm. The surface temperatures of the metal plate were controlled at 80, 90, 100, 110, 120, and 130°C. Sixteen pointa of temperature were recorded. The results were then compared to those using the heat source as the cartridge heater arranged in the similar way with the same heating capacity. Once the system entered the steady state, it was found that the temperature distribution of metal plate using the CLOHP has a deviation in the range of ± 1.00°C and ± 0.94°C at the CLOHP depth of 5 mm. and 10 mm., respectively. While those of using cartridge heater deviated in the range of ± 1.35°C and ± 1.16°C. Compare to the recommended value from the ASTM Standard that the mold surface temperature need to be in the range of ± 2.0°C, the CLOHP shows the very promising results.

  10. The effect of external boundary conditions on condensation heat transfer in rotating heat pipes

    Science.gov (United States)

    Daniels, T. C.; Williams, R. J.

    1979-01-01

    Experimental evidence shows the importance of external boundary conditions on the overall performance of a rotating heat pipe condenser. Data are presented for the boundary conditions of constant heat flux and constant wall temperature for rotating heat pipes containing either pure vapor or a mixture of vapor and noncondensable gas as working fluid.

  11. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    Science.gov (United States)

    Morris, J. F. (Inventor)

    1985-01-01

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. If the receiver requires gratr thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparative low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  12. Influence of Different Parameters on Heat Pipe Performance

    Directory of Open Access Journals (Sweden)

    Sharmishtha Singh Hada

    2015-10-01

    Full Text Available In electrical and electronic industry due to miniaturization of electronic components heat density increases which, in turns increases the heat flux inside it. Scientist and many researchers are doing lot of work in this field for thermal management of devices. Heat pipe is a device that is used in electronic circuit (micro and power electronics, spacecraft & electrical components for cooling purpose. It is based on the principle of evaporation and condensation of working fluid. Heat pipe made up of three main parts are evaporator, adiabatic and condenser sections. In this working fluid vaporise at evaporator and transfers heat to condenser by adiabatic section where heat release to surrounding. Vapour flows possible from evaporator to condenser section due to vapour pressure difference exist between them. Use of heat pipe material, type of working fluid & its property, wick structure, orientation, filled ratio, operating condition, dimensions of pipe has a prominent effect on heat pipe performance. Variation of these parameters for minimum thermal resistance gives better performance.

  13. Heat transfer intensification by increasing vapor flow rate in flat heat pipes

    Science.gov (United States)

    Sprinceana, Silviu; Mihai, Ioan; Beniuga, Marius; Suciu, Cornel

    2015-02-01

    Flat heat pipes have various technical applications, one of the most important being the cooling of electronic components[9]. Their continuous development is due to the fact that these devices permit heat transfer without external energetic contribution. The practical exploitation of flat heat pipes however is limited by the fact that dissipated power can only reach a few hundred watts. The present paper aims to advance a new method for the intensification of convective heat transfer. A centrifugal mini impeller, driven by a turntable which incorporates four permanent magnets was designed. These magnets are put in motion by another rotor, which in its turn includes two permanent magnets and is driven by a mini electrical motor. Rotation of the centrifugal blades generates speed and pressure increase of the cooling agent brought to vapor state within the flat micro heat pipe. It's well known that the liquid suffers biphasic transformations during heat transfer inside the heat pipe. Over the hotspot (the heat source being the electronic component) generated at one end of the heat pipe, convective heat transfer occurs, leading to sudden vaporization of the liquid. Pressures generated by newly formed vapors push them towards the opposite end of the flat heat pipe, where a finned mini heat sink is usually placed. The mini-heat exchanger is air-cooled, thus creating a cold spot, where vapors condensate. The proposed method contributes to vapor flow intensification by increasing their transport speed and thus leading to more intense cooling of the heat pipe.

  14. Length Effect on the Thermal Performance of a Heat Pipe for NPP Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Joseph; Lee, Jae Young [Handong Global University, Pohang (Korea, Republic of)

    2015-10-15

    After Fukushima accident, importance and necessity of passive safety for nuclear power plant have been emphasized. Due to its passive characteristic, heat pipe is seriously considered as an alternative device of the active safety system for removing decay heat from the reactor core. Among many possible applications of heat pipe in NPP, we considered the application to the control rod. In the situation of SBO(Station Black Out) due to BDBA(Beyond Design Basis Accident) in a PWR, control rods are dropped in to nuclear reactor core automatically. Thus, it is expected that applying heat pipe function to control rod can enhance reactor safety by removing decay heat of fuel assembly. Considering the height of the control rod, L/D of the heat pipe would be larger than 400 if the given diameter is assumed to be similar to the diameter of the control rod. Thus, it may not be the matter for small heat pipes, it is necessary to consider the effects of L/D for the large L/D heat pipes. There for, length effect on the thermal performance of heat pipe for decay heat removal was experimentally investigated in this study. Through this study, the L/D effect on the thermal performance of the large L/D heat pipe for nuclear reactor has been studied.

  15. Testing of Stirling engine solar reflux heat-pipe receivers

    Energy Technology Data Exchange (ETDEWEB)

    Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

    1993-07-01

    Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

  16. Analysis of heat transfer of loop heat pipe used to cool high power LED

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A novel loop heat pipe(LHP)cooling device for high power LED is developed.The thermal capabilities, including startup performance,temperature uniformity and thermal resistance of the loop heat pipe under different heat loads and incline angles have been investigated experimentally.The obtained results indicate that the thermal resistance of the heat pipe heat sink is in the range of 0.19―3.1 K/W,the temperature uniformity in the evaporator is controlled within 1.5℃,and the junction temperature of high power LED can be controlled steadily under 100℃for a heat load of 100 W.

  17. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    Science.gov (United States)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  18. Heat pipe central solar receiver. Volume I. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W. B.; Wolf, D. A.

    1979-04-01

    The objective of this project was the conceptual design of a Central Solar Receiver Gas Turbine Plant which utilizes a high temperature heat pipe receiver. Technical and economic feasibility of such a plant was to be determined and preliminary overall cost estimates obtained. The second objective was the development of the necessary heat pipe technology to meet the requirements of this receiver. A heat pipe receiver is ideally suited for heating gases to high temperatures. The heat pipes are essentially loss free thermal diffusers which accept a high solar flux and transform it to a lower flux which is compatible with heat transferred to gases. The high flux capability reduces receiver heating surface, thereby reducing receiver heat losses. An open recuperative air cycle with a turbine inlet temperature of 816/sup 0/C (1500/sup 0/F) was chosen as the baseline design. This results in peak metal temperatures of about 870/sup 0/C (1600/sup 0/F). The receiver consists of nine modular panels which form the semicircular backwall of a cavity. Gas enters the panels at the bottom and exits from the top. Each panel carries 637 liquid metal heat pipes which are mounted at right angle to the gas flow. The evaporators of the heat pipes protrude from the flux absorbing front surface of the panels, and the finned condensors traverse the gas stream. Capital cost estimates were made for a 10 MW(e) pilot plant. The total projected costs, in mid-1978 dollars, range from $1,947 to $2,002 per electrical kilowatt. On the same basis, the cost of a water/steam solar plant is approximately 50% higher.

  19. Heat pipe cooled reactors for multi-kilowatt space power supplies

    Energy Technology Data Exchange (ETDEWEB)

    Ranken, W.A.; Houts, M.G.

    1995-01-01

    Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFEs) to radiator heat pipes.

  20. Heat pipe cooled reactors for multi-kilowatt space power supplies

    Science.gov (United States)

    Ranken, W. A.; Houts, M. G.

    Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFE's) to radiator heat pipes.

  1. Transient behavior of heat pipe with thermal energy storage under pulse heat loads

    Science.gov (United States)

    Chang, Ming-, Jr.

    1991-02-01

    Future space missions will require thermal transport devices with the ability to handle transient pulse heat loads. A novel design of a high-temperature axially grooved heat pipe (HP) which incorporates thermal energy storage (TES) to migrate pulse heat loads was presented. A phase-change material (PCM) which is encapsulated in cylindrical containers was used for the thermal energy storage. The transient response of the HP/TES system under two different types of pulse heat loads was studied analytically. The first type is pulse heat loads applied at the heat pipe evaporator, the second type is reversed-pulse heat loads applied at the condenser. In this research, a new three-dimensional alternating-direction-implicit (ADI) method was developed to model the heat conduction through the heat pipe wall and wicks, including the liquid flow in grooves. A very important characteristic of this new ADI method is that it is consistent with physical considerations. Compared with the well-known Brian's and Douglas's ADI methods, this new ADI method had higher accuracy and requires less computer storage. In the numerical solution of heat transfer problems with phase change (Stefan-type problem), a modified Pham's method which includes features from enthalpy and heat capacity methods was used to simulate the melting and solidification processes of the PCG. The vapor flow was assumed quasi-steady and one-dimensional, and was coupled with the evaporation and condensation on the heat pipe inside wall surface and the surfaces of the PCM containers. The transient responses of three different HP/TES configurations were compared: (1) a heat pipe with a large empty cylinder installed in the vapor core, (2) a heat pipe with a large PCM cylinder, and (3) a heat pipe with six small PCM cylinders. From the numerical results, it was found that the PCM is very effective in mitigrating the adverse effect of pulse heat loads. The six small PCM cylinders are more efficient than the large PCM

  2. Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Matthew (DOE/NNSA Kansas City Plant (United States)); Weyant, J.; Garner, S. (Advanced Cooling Technologies, Inc. (Lancaster, PA (United States)); Occhionero, M. (CPS Technologies Corporation, Norton, MA (United States))

    2010-01-07

    Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plate’s effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.

  3. Intermittent duty solar refrigerator assisted by heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hindi, R.R.; Khalifa, A.M.A.; Akyurt, M.

    1988-01-01

    The design of a solar operated intermittent-duty aqua-ammonia type of absorption refrigerator is described. The generator is heated by an integral acetone heat pipe, the evaporator of which is in the form of a low-thermal-mass flat plate collector. The condenser is air cooled. The absorber is likewise cooled via a second R22 heat-pipe system by convection/radiation panels. Initial test results for the collector-generator loop are reported for a single-glazed collector. A discussion of overall performance is presented.

  4. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    Science.gov (United States)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  5. Advances in Integrated Heat Pipe Technology for Printed Circuit Boards

    NARCIS (Netherlands)

    Wits, Wessel W.; Riele, te Gert Jan

    2010-01-01

    Designing thermal control systems for electronic products has become very challenging due to the continuous miniaturization and increasing performance demands. Two-phase cooling solutions, such as heat pipes or vapor chambers, are increasingly used as they offer higher thermal coefficients for heat

  6. Heat pipes. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-04-01

    Theory, design, fabrication, testing, and operation of heat pipes are presented in these Federally sponsored research reports. Applications are described in the areas of heating and air conditioning, power generation, electronics cooling, spacecraft, nuclear reactors, cooling engines, and thermodynamics. This updated bibliography contains 70 abstracts, all of which are new entries to the previous edition.

  7. Capillary Pump Loop (CPL) heat pipe development status report

    Science.gov (United States)

    1982-01-01

    The capillary pump loop (CPL) was re-introduced as a potential candidate for the management of large heat loads. It is currently being evaluated for application in the thermal management of large space structures. Test efforts were conducted to establish the feasibility of the CPL heat pipe design.

  8. Hydrogen-related stress corrosion cracking in line pipe steel

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo

    1997-01-01

    A correlation between hydrogen concentration (C0) and the critical stress intensity factor for propagation of hydrogen-related cracks has been established by fracture mechanical testing of CT-specimens for the heat affected zone of an X-70 pipeline steel. This has been compared with field...

  9. Heat Pipe Heat Exchangers with Double Isolation Layers for Prevention of Interpath Leakage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT), supported by Hamilton Sundstrand, proposes to develop a heat pipe heat exchanger that is low mass and provides two levels...

  10. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    Science.gov (United States)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  11. Radiative heat transfer estimation in pipes with various wall emissivities

    Science.gov (United States)

    Robin, Langebach; Christoph, Haberstroh

    2017-02-01

    Radiative heat transfer is usually of substantial importance in cryogenics when systems are designed and thermal budgeting is carried out. However, the contribution of pipes is commonly assumed to be comparably low since the warm and cold ends as well as their cross section are fairly small. Nevertheless, for a first assessment of each pipe rough estimates are always appreciated. In order to estimate the radiative heat transfer with traditional “paper and pencil“ methods there is only one analytical case available in literature - the case of plane-parallel plates. This case can only be used to calculate the theoretical lower and the upper asymptotic values of the radiative heat transfer, since pipe wall radiation properties are not taken into account. For this paper we investigated the radiative heat transfer estimation in pipes with various wall emissivities with the help of numerical simulations. Out of a number of calculation series we could gain an empirical extension for the used approach of plane-parallel plates. The model equation can be used to carry out enhanced paper and pencil estimations for the radiative heat transfer through pipes without demanding numerical simulations.

  12. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  13. Heat pipe heat exchanger and its potential to energy recovery in the tropics

    Directory of Open Access Journals (Sweden)

    Yau Yat H.

    2015-01-01

    Full Text Available The heat recovery by the heat pipe heat exchangers was studied in the tropics. Heat pipe heat exchangers with two, four, six, and eight numbers of rows were examined for this purpose. The coil face velocity was set at 2 m/s and the temperature of return air was kept at 24°C in this study. The performance of the heat pipe heat exchangers was recorded during the one week of operation (168 hours to examine the performance data. Then, the collected data from the one week of operation were used to estimate the amount of energy recovered by the heat pipe heat exchangers annually. The effect of the inside design temperature and the coil face velocity on the energy recovery for a typical heat pipe heat exchanger was also investigated. In addition, heat pipe heat exchangers were simulated based on the effectiveness-NTU method, and their theoretical values for the thermal performance were compared with the experimental results.

  14. Analysis of the Technological Parameters of the Heat Exchanger in the Heating Pipe

    Directory of Open Access Journals (Sweden)

    Knyazev Vladimir

    2017-01-01

    Full Text Available The main purpose of this article is to analyze the selecting of technological parameters for the heat exchanger to improve the heat transfer and reduce the noise during operation in the heating pipe, which is used in the different systems of the planes and helicopters. In result of this study, the best technical parameters are found, considering different variations of deformation cutting heat exchanger pipes.

  15. AN INVESTIGATION OF THERMAL CHARACTERISTICS OF A SINTERED-WICK HEAT PIPE WITH DOUBLE HEAT SOURCES

    Directory of Open Access Journals (Sweden)

    Nattawut Tharawadee

    2013-01-01

    Full Text Available Heat pipes have been used extensively in the electronic industry for decades especially in laptop computers. For cost-effectiveness, a single heat pipe is designed to simultaneously transfer heat from both the Central Processing Unit (CPU and the Graphics Processing Unit (GPU inside the main board to the heat sink. This causes the efficiency of the heat pipe to change without any theoretical prediction. In this research, thermal performance of a sintered-wick heat pipe with double heat sources has been experimentally and numerically investigated by utilizing the Finite Element Method (FEM. The focus being the effect that the distance between the two heat sources and also the power input pattern (heat source#1 (HT1: heat source#2(HT2 has on temperature and thermal resistance of the heat pipe. The first heat source (HT1 was located at one end and the heat sink was located at another end of the heat pipe, while another heat source (HT2 was placed between HT1 and a heat sink. The ratios of heat input power were controlled at 10W:10W, 20W:10W and 30W:10W. Two copper blocks (15 mm×15 mm were used as heat sources for the evaporator section (Le1, Le2 to electrically supply heat to the bottom half of the heat pipe. A mathematical model using the Finite Element Method (FEM was established to calculate temperature and thermal resistance. The speed of the cooling fan was adjusted to maintain constant operating temperature at the adiabatic section throughout the tests. The operating temperature was controlled at 60 ± 3°C. It was noted that, when distance between the heat sources was increased from 0 mm to 75 mm, thermal resistance slightly decreased from 0.589-0.53°C/W respectively. Heat source 2, therefore, should be placed as close as possible to the condenser section. Both heat sources should have a distance between them of at least 12 mm, which minimizes heat accumulation. When the power input of HT1 was increased from 10 W to 30W (HT2 was

  16. Heat-balance Thermal Protection with Heat Pipes for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Rong Yisheng

    2016-01-01

    Full Text Available Heat-balance thermal protection is non-ablating thermal protection for leading edge of hypersonic vehicle. Heat will be quickly transferred from high aerodynamic heating area to low aerodynamic heating area, where the energy will be released by radiation. The temperature of high aerodynamic heating area could be reduced to protect the designed structure from being burned down. Heat-balance thermal protection is summarized. The research on heat-pipe for heat-balance thermal protection is introduced.

  17. Heat-balance Thermal Protection with Heat Pipes for Hypersonic Vehicle

    OpenAIRE

    Rong Yisheng; Wei Yuechuan; Duan Dongli; Zhan Renjun

    2016-01-01

    Heat-balance thermal protection is non-ablating thermal protection for leading edge of hypersonic vehicle. Heat will be quickly transferred from high aerodynamic heating area to low aerodynamic heating area, where the energy will be released by radiation. The temperature of high aerodynamic heating area could be reduced to protect the designed structure from being burned down. Heat-balance thermal protection is summarized. The research on heat-pipe for heat-balance thermal protection is intro...

  18. Heat transfer capability simulation of high-temperature heat pipe in supersonic vehicle leading edge applications

    Directory of Open Access Journals (Sweden)

    Donghuan Liu

    2016-04-01

    Full Text Available A numerical method is proposed to determine the heat transfer capability of the high-temperature heat pipe and the stagnation temperature with supersonic vehicle leading edge applications. The finite element method is employed here to perform the temperature field simulation. Without considering the heat transfer limitations of the heat pipe, such as capillary limit and sonic limit, both numerical and experimental results indicate that equivalent high thermal conductivity method is a reasonable way to simulate the heat transfer capability of the high-temperature heat pipe in preliminary design of a heat-pipe-cooled leading edge. Several important parameters’ effects on the thermal protection performance are also numerically investigated.

  19. Diffusive heat and mass transfer in oscillatory pipe flow

    Science.gov (United States)

    Brereton, G. J.; Jalil, S. M.

    2017-07-01

    The enhancement of axial heat and mass transfer by laminar flow oscillation in pipes with axial gradients in temperature and concentration has been studied analytically for the cases of insulated and conducting walls. The axial diffusivity can exceed its molecular counterpart by many orders of magnitude, with a quadratic scaling on the pressure-gradient amplitude and the Prandtl or Schmidt number, and is a bimodal function of oscillatory frequency: quasi-steady behavior at low frequencies and a power-law decay at high frequencies. When the pipe wall is conductive and of sufficient thickness, and the flow oscillation is quasi-steady, the axial diffusivity may be enhanced by a further factor of about ten as a result of increased radial diffusion, for liquid and gas flows in pipes with walls with a wide range of thermal conductivities. Criteria for the wall thickness required to achieve this additional enhancement and for the limits placed on the validity of these solutions by viscous dissipation are also deduced. When the heat transfer per unit flow work achieved by oscillatory pipe flow is contrasted with that of a conventional parallel-flow heat exchanger, it is found to be of comparable size and the ratio of the two is shown to be a function only of the pipe geometry, heat-exchanger mean velocity, and fluid viscosity.

  20. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    Science.gov (United States)

    Fleischman, G. L.; Tanzer, H. J.

    1985-08-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  1. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    Science.gov (United States)

    Camarda, C. J.; Basiulis, A.

    1983-01-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors.

  2. Capillary layer structure effect upon heat transfer in flat heat pipes

    Science.gov (United States)

    Sprinceana, Silviu; Mihai, Ioan; Beniuga, Marius; Suciu, Cornel

    2015-02-01

    The research presented in this paper aimed to determine the maximum heat transfer a heat pipe can achieve. To that purpose the structure of the capillary layer which can be deposited on the walls of the heat pipe was investigated. For the analysis of different materials that can produce capillarity, the present study takes into account the optimal thickness needed for this layer so that the accumulated fluid volume determines a maximum heat transfer. Two materials that could be used to create a capillary layer for the heat pipes, were investigated, one formed by sintered copper granules (the same material by which the heat pipe is formed) and a synthetic material (cellulose sponge) which has high absorbing proprieties. In order to experimentally measure and visualize the surface characteristics for the considered capillary layers, laser profilometry was employed.

  3. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    Science.gov (United States)

    Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.

    1993-01-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  4. A new method of laying of district heating pipes

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, C.; Persson, C.; Jarfelt, U. [Department of Building Technology, Chalmers University of Technology, Goeteborg (Sweden); Ramnaes, O. [Department of Chemical Environmental Science, Chalmers University of Technology, Goeteborg (Sweden)

    2004-07-01

    A new method of laying of district heating pipes is described with its advantages and disadvantages. The method has earlier been applied to installation of gas pipes and broadband, but has to our knowledge never been used in connection to district heating. The method aims at shortening the laying time and minimising the impact on the asphalt layer, thus reducing the laying costs. The idea is to cold install the pipes into a milled, narrow and shallow trench that is refilled with foam concrete. Environmental impacts caused by the new laying method are studied in comparison with the traditional laying method. Emissions of carbon dioxide, nitrogen oxides and sulphur dioxide to air from activities differing between the two laying methods during construction of DN40 twin pipe networks are considered as well as emissions related to distribution heat losses from the networks. There is no environmental objective against using the new method considering the studied emissions. Laying according to the new and the traditional method cause emissions of the same order of magnitude. Calculated temperature of the casing does not indicate any problem with accelerated thermal oxidation of the casing pipe due to laying in the thermally insulating foam concrete. (orig.)

  5. Heat transfer and flow in high-temperature alkali-metal heat pipes

    Science.gov (United States)

    Nosach, N. A.; Gontarev, Iu. K.; Prisniakov, V. F.; Iakovenko, A. G.; Kostornov, A. G.

    1982-06-01

    An experimental study of the dynamics of heat pipes with steel wool and metal fiber wicks, in particular of startup and transition from one operating mode to another, is presented. The dynamics effect of the initial heat flux in the evaporator when NaK is the working fluid is determined. The effect of interaction between the liquid and vapor phases on the heat and mass transfer from the vapor condensing on the pipe wall is analyzed.

  6. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    Science.gov (United States)

    Dussinger, Peter M.

    1993-01-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  7. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    Science.gov (United States)

    Dussinger, Peter M.

    1993-09-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  8. Heating and cooling potential of buried pipes in southern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Abadie, Marc O.; Santos, Gerson H. dos; Freire, Roberto Z.; Mendes, Nathan [Pontificia Universidade Catolica do Parana (PUC-PR), Curitiba, PR (Brazil). Lab. de Sistemas Termicos], e-mail: mabadie@univ-lr.fr, e-mail: gerson.santos@pucpr.br, e-mail: rozafre@terra.com.br; Mendes, Nathan [Pontifical Catholic University of Parana (PUCPR/CCET), Curitiba, PR (Brazil). Thermal Systems Laboratory - LST], e-mail: nathan.mendes@pucpr.br

    2006-07-01

    The present numerical study aims to evaluate the heating and cooling potential of buried pipes in three cities of South Brazil i.e. Curitiba, Florianopolis and Porto-Alegre. In a first part, ground temperatures at the buried pipe location (between 1 and 3 m depth) are calculated by both a simplified model and a three-dimensional volume-finite code (SOLUM). Then, a prototypical house and its buried pipe are modeled with a building energy simulation tool (TRNSYS) to evaluate the positive and negative effects of such system on thermal comfort and heating and cooling energy. Results show that this passive system is particularly efficient in Curitiba, can reduce energy consumption in Porto Alegre and is not well-adapted to Florianopolis. (author)

  9. The influence of longitudinal vibrations on the heat transfer performance of inclined heat pipes

    Directory of Open Access Journals (Sweden)

    Rong-Horng Chen

    2015-02-01

    Full Text Available This study focused on investigating the influence of longitudinal vibrations, the condensation section temperature, and the inclination angles on the heat transfer performance of grooved cylindrical copper heat pipes with lengths of 600 and 150 mm and an outer diameter of 8 mm. The inclination angles of the tested heat pipes were 0°, ±45°, and ±90°. Longitudinal vibrations with frequencies of 3, 4, 5, 6, and 9 Hz and amplitudes of 2.8, 5, 10, 15, 20, and 25 mm, which resulted in accelerations between 0.1 and 1.01 g, were experimentally tested. The condensation section temperatures were set at 20°C, 30°C, and 40°C. A heating jacket and a cooling sleeve were installed at the evaporation and condensation sections of the test cell to simulate a constant heat flux and a constant temperature boundary, respectively. The results showed that with the heat pipe placed with the condensation section on top and the evaporation section on bottom, a fairly low and constant thermal resistance (approximately 0.25 K/W for the 600-mm heat pipe and 0.75–1.2 K/W for the 150-mm heat pipe was obtained, both with and without heat pipe vibration and regardless of the condensation section temperature.

  10. Thermal control of electronic equipment by heat pipes; Controle thermique de composants electroniques par caloducs

    Energy Technology Data Exchange (ETDEWEB)

    Groll, M.; Schneider, M. [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme; Sartre, V.; Chaker Zaghdoudi, M.; Lallemand, M. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France). Centre de Thermique de Lyon, Upresa CNRS

    1998-05-01

    In the frame of the BRITE-EURAM european programme (KHIEPCOOL project), a literature survey on the main beat pipe and micro heat pipe technologies developed for thermal control of electronic equipment has been carried out. The conventional heat pipes are cylindrical, flat or bellow tubes, using wicks or axial grooves as capillary structures. In the field of micro heat pipes, the component interconnection substrate. The best performances were achieved with Plesch`s axially grooved flat miniature heat pipe, which is able to transfer a heat flux of about 60 W.cm{sup -2}. Theoretical models have shown that the performance of micro heat pipe arrays increase with increasing tube diameter, decreasing tube length and increasing heat pipe density. The heat pipe technologies are classified and compared according to their geometry and location in the system. A list of about 150 references, classified according to their subjects, is presented. (authors) 160 refs.

  11. Shallow burial of district heating pipes; Grund foerlaeggning av fjaerrvaermeledningar

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Stefan; Saellberg, Sven-Erik; Bergstroem, Gunnar [Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-07-28

    Previous studies have shown that the investment costs for district heating installations in suburban areas can be lowered with more rational construction work. This project has studied the possibilities of decreasing the laying depth for pipes in residential-area roads without risking damage on neither pipe nor road surface. An inventory of regulations from national and local authorities and district heating companies in Sweden was done. The larger cities have specific requirements regarding laying depth in road structures. In most places, however, the guidelines issued by the Swedish District Heating Association are followed. And in smaller cities, the question is handled directly by the municipal district heating company. In some places, e.g., Goeteborg, Joenkoeping and Luleaa, the local authorities and the district heating company have agreed on a smaller laying depth under certain circumstances. An analysis of the costs related to the excavation work, backfilling and asphalt laying showed that the costs can be reduced with about 30 % by decreasing the laying depth from 600 mm to 350 mm. A field trial was done with four twin pipes of dimension 2 x DN 32/160 laid 600 mm, 380 mm, 280 mm and 180 mm below the asphalt surface in a road with heavy traffic. Apart from the laying depth, the installation work was done in accordance with the guidelines from the Swedish District Heating Association. During traffic loading, measurements of internal deformations of the pipes, wheel-track depths in the asphalt surface and load-bearing capacity of the road structure were made. The deformation of the pipes is negligible at all laying depths. This is likely due to an arching action from the backfill which supports most of the forces from the traffic load. Significant wheel-tracks were measured, but they seem to correspond directly to settlements in the new soil. Hence, a shallower pipe trench leads to less prominent wheel-tracks. Shallow pipe burial yields slightly larger heat

  12. Thermal behavior investigation of silicon-Pyrex micro heat pipe

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2014-02-01

    Full Text Available High heat flux is the major reason for the malfunctioning or shortened life of high-power light-emitting diodes (LEDs or integrated circuit (IC components. Cooling technical devices have been widely studied in recent years. A heat pipe made of silicon wafer and Pyrex 7740 has been used in the experiments. Silicon-to-Pyrex bonding is used for the visualization of the flow behavior of the working liquid in heat transfer. A thermal behavior testing system for micro heat pipes (MHPs, including a vacuum chamber, heat flux sensors and thermocouples, was designed and established. The experiments revealed the characteristics of the MEMS heat pipe in LEDs heat transfer, and the maximum equivalent thermal conductivity of the MHPs was 10.6 times that of the silicon wafer. Furthermore, the structure of MHP can be optimized based on these experimental results. They can also be the experimental basis for theoretical study of two-phase flow on the micro scale.

  13. Thermal Performance of a Heat Pipe for Hybrid Control Rod in Advanced In-core Decay Heat Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    In this research, an innovative hybrid heat pipe system is designed for advanced in-core decay heat removal concept. Heat pipe is a device that transfer heat from pipe's hotter end to the colder end by phase change and convection of working fluid. The concept of the hybrid heat pipe system is that the control rod can have not only the original function of neutron absorber but also the function of the heat removal. If the function of heat pipe is applied to the control rods, the limited heat removal capacity can be extended because control rods are inserted to the reactor at initial state of accident using gravitational force. The neutron absorber-based heat pipe is designed to apply them to nuclear systems. However, thermosyphon and heat pipe are competitive as passive decay heat removal device in large scale. Thus, stainless steel 316L thermosyphon and heat pipe having sheath outer diameter of 3/4 inch (17.4 mm inner diameter), and the length of 1000 mm were tested. Effects on whether there is a wick structure on the heat pipe or not on the heat removal capacity were studied. To confirm the heat removal capacity of heat pipe, and heat transfer coefficient were measured for each specimen.

  14. Vapor-modulated heat pipe for improved temperature control

    Science.gov (United States)

    Edwards, D. K.; Eninger, J. E.; Ludeke, E. E.

    1978-01-01

    Dryout induced by vapor throttling makes control of equipment temperature less dependent on variations in sink environment. Mechanism controls flow of vapor in heat pipe by using valve in return path to build difference in pressure and also difference in saturation temperature of the vapor. In steady state, valve closes just enough to produce partial dryout that achieves required temperature drop.

  15. Construction of an Inexpensive Copper Heat-Pipe Oven

    Science.gov (United States)

    Grove, T. T.; Hockensmith, W. A.; Cheviron, N.; Grieser, W.; Dill, R.; Masters, M. F.

    2009-01-01

    We present a new, low-cost method of building an all copper heat-pipe oven that increases the practicality of this device in advanced undergraduate instructional labs. The construction parts are available at local hardware and plumbing supply stores, and the assembly techniques employed are simple and require no machining. (Contains 1 footnote, 3…

  16. Design of megawatt power level heat pipe reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mcclure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

  17. Kovar Micro Heat Pipe Substrates for Microelectronic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David A.; Burchett, Steven N.; Kravitz, Stanley H.; Robino, Charles V.; Schmidt, Carrie; Tigges, Chris P.

    1999-04-01

    We describe the development of a new technology for cooling microelectronics. This report documents the design, fabrication, and prototype testing of micro scale heat pipes embedded in a flat plate substrate or heat spreader. A thermal model tuned to the test results enables us to describe heat transfer in the prototype, as well as evaluate the use of this technology in other applications. The substrate walls are Kovar alloy, which has a coefficient of thermal expansion close to that of microelectronic die. The prototype designs integrating micro heat pipes with Kovar enhance thermal conductivity by more than a factor of two over that of Kovar alone, thus improving the cooling of micro-electronic die.

  18. Experimental investigation of micro heat pipe with extra fluid

    Science.gov (United States)

    Mihai, Ioan; Sprinceana, Siviu

    2016-12-01

    The thermal micro pipes which were aimed to the cooling of the electrical systems, were realized until the present day in different constructive ways. If the first thermal pipes had had at the base the thermo-siphon system [1], afterwards it had been developed the thermal micro pipes [2], thanks to their increased capacity of heat dissipation of the surfaces covered by big densities of the thermal flow. The article, presents in the first part, the physical characteristics of the elements which embody a thermal micro pipe and which generates an excess of liquid. For this it has been realized an experimental setup. Measurements were taken by aid of a laser profilometer of the coverage material in two cases. The first one considered the material without being soaked in the liquid, and for the second one, the measurements were taken when the material was supersaturated with liquid. Since the setup allows for temperature monitoring, determinations were effectuated in the vaporization, adiabatic and condensation areas. The temperature field was determined along a thermal micro pipe in the case of extra fluid. The experimental determinations allowed verifying if the method proposed by Mihai and Olariu [3], for cooling of the electronic components, through a semi active method with the share of extra fluid in the vaporization area of the thermal micro pipe, works. It was studied how the temperature modifies in the vaporization and condensation areas and by the contrast of the theoretical results obtained through the evaluation with the experimental ones.

  19. Split-system solar cooker with heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, A.M.A.; Taha, M.M.A.; Mannaa, A.; Akyurt, M.

    1986-01-01

    A split-system solar cooker is described which has its flat-plate collector outdoors and the cooking chamber inside the kitchen, with heat pipes transferring the energy between the two. Test results are discussed, and areas of possible improvement are indicated. The results of a series of tests conducted to ascertain the most suitable heat transfer arrangement in the cooking chamber are presented. Recommendations are made for further areas of improvement.

  20. An optical method for measuring the thickness of a falling condensate in gravity assisted heat pipe

    Directory of Open Access Journals (Sweden)

    Kasanický Martin

    2015-01-01

    Full Text Available A large number of variables is the main problem of designing systems which uses heat pipes, whether it is a traditional - gravity, or advanced - capillary, pulsating, advanced heat pipes. This article is a methodology for measuring the thickness of the falling condensate in gravitational heat pipes, with using the optical triangulation method, and the evaluation of risks associated with this method.

  1. An optical method for measuring the thickness of a falling condensate in gravity assisted heat pipe

    Science.gov (United States)

    Kasanický, Martin; Lenhard, Richard; Kaduchová, Katarína; Malcho, Milan

    2015-05-01

    A large number of variables is the main problem of designing systems which uses heat pipes, whether it is a traditional - gravity, or advanced - capillary, pulsating, advanced heat pipes. This article is a methodology for measuring the thickness of the falling condensate in gravitational heat pipes, with using the optical triangulation method, and the evaluation of risks associated with this method.

  2. Design and Fabrication of a Novel Hybrid-Structure Heat Pipe for a Concentrator Photovoltaic

    Directory of Open Access Journals (Sweden)

    Heiu-Jou Shaw

    2012-10-01

    Full Text Available This study presents a design method to fabricate a novel hybrid-structure flat plate heat pipe (NHSP heat pipe for a concentrator photovoltaic. The NHSP heat pipe is composed of a flattened copper pipe and a sintered wick structure, and a coronary-stent-like rhombic copper mesh supports the structure. The coronary-stent-like supporting structure enhances the mechanical strength and shortens the reflux path of the working fluid. Experiments demonstrate that the sintered capillary heat pipe reduces the thermal resistance by approximately 72%, compared to a traditional copper mesh-screen heat pipe. Furthermore, it can reduce thermal resistance by 65% after a supporting structure is added to the heat pipe. The results show that the NHSP heat pipe provided the best performance for the concentrator photovoltaic, which can increase photoelectric conversion efficiency by approximately 3.1%, compared to an aluminum substrate.

  3. Electrically heated pipe in pipe system for hydrate prevention on the Campos Basin

    Energy Technology Data Exchange (ETDEWEB)

    Euphemio, Mauro; Montesanti, Jose Ricardo; Braganca, Elton Jorge; Almeida, Murilo Mesquita de; Coelho, Eduardo; Maia, Alexandre Rodrigues; Peres, Marcelo Borges [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This paper will refer briefly to some key aspects considered for the design of an Electrically Heated Pipe-in-Pipe- EHPIP system integrated to an Electric Submersible Pump-ESP, to be located at 1800 m water depth in the Campos Basin. In this system, under normal operation the well will be producing through the ESP and in case of long well shut in and during well restart up, a percentage of the electrical power will be delivered to heat the PIP system. The electrical system will have a common sub sea power cable and an Electrical Switch Module, to switch power alternatively to the heating system or to the pump. The systems will not operate simultaneously. (author)

  4. Thermal design heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells

    CERN Document Server

    Lee, H S

    2010-01-01

    The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics. The proposed book may be used as a capstone design cours

  5. Assembly and testing of a composite heat pipe thermal intercept for HTS current leads

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, M.A.; Daney, D.E.; Prenger, F.C.; Hill, D.D.; Williams, P.M.; Boenig, H.J.

    1995-09-01

    We are building high temperature superconducting (HTS) current leads for a demonstration HTS-high gradient magnetic separation (HGMS) system cooled by a cryocooler. The current leads are entirely conductively cooled. A composite nitrogen heat pipe provides efficient thermal communication, and simultaneously electrical isolation, between the lead and an intermediate temperature heat sink. Data on the thermal and electrical performance of the heat pipe thermal intercept are presented. The electrical isolation of the heat pipe was measured as a function of applied voltage with and without a thermal load across the heat pipe. The results show the electrical isolation with evaporation, condensation and internal circulation taking place in the heat pipe.

  6. Assembly and testing of a composite heat pipe thermal intercept for HTS current leads

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, M.A.; Daney, D.E.; Prenger, F.C. [Los Alamos National Lab., NM (United States)] [and others

    1996-12-31

    The authors are building high temperature superconducting (HTS) current leads for a demonstration HTS high gradient magnetic separation (HGMS) system cooled by a cryocooler. The current leads are entirely conductively cooled. A composite nitrogen heat pipe provides efficient thermal communication, and simultaneously electrical isolation, between the lead and an intermediate temperature heat sink. Data on the thermal and electrical performance of the heat pipe thermal intercept are presented. The electrical isolation of the heat pipe was measured as a function of applied voltage with and without a thermal load across the heat pipe. The results show the electrical isolation with evaporation, condensation and internal circulation taking place in the heat pipe.

  7. A modeling approach for district heating systems with focus on transient heat transfer in pipe networks

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2015-01-01

    finite element method is applied to simulate transient temperature changes in pipe networks. The model is calculating time series data related to supply temperature to the DHN from heat production units, heat loads and return temperature related to each consumer to calculate dynamic temperature changes...... district heating networks [DHN] characteristics. This paper is presenting a new developed model, which reflects the thermo-dynamic behavior of DHN. It is designed for tree network topologies. The purpose of the model is to serve as a basis for applying a variety of scenarios towards lowering...... the temperature in DH systems. The main focus is on modeling transient heat transfer in pipe networks regarding the time delays between the heat supply unit and the consumers, the heat loss in the pipe networks and the consumers’ dynamic heat loads. A pseudo-dynamic approach is adopted and also the implicit...

  8. Experimental study on heat transfer performance of pulsating heat pipe with refrigerants

    Science.gov (United States)

    Wang, Xingyu; Jia, Li

    2016-10-01

    The effects of different refrigerants on heat transfer performance of pulsating heat pipe (PHP) are investigated experimentally. The working temperature of pulsating heat pipe is kept in the range of 20°C-50°C. The startup time of the pulsating heat pipe with refrigerants can be shorter than 4 min, when heating power is in the range of 10W?100W. The startup time decreases with heating power. Thermal resistances of PHP with filling ratio 20.55% were obviously larger than those with other filling ratios. Thermal resistance of the PHP with R134a is much smaller than that with R404A and R600a. It indicates that the heat transfer ability of R134a is better. In addition, a correlation to predict thermal resistance of PHP with refrigerants was suggested.

  9. Hybrid Heat Pipes for High Heat Flux Spacecraft Thermal Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Grooved aluminum/ammonia Constant Conductance Heat Pipes (CCHPs) are the standard for thermal control in zero-gravity. Unfortunately, they are limited in terms of...

  10. Steady-state heat losses in pipes for low-energy district heating

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2010-01-01

    of low-energy DH systems. Various design concepts are considered in this paper: flexible pre-insulated twin pipes with symmetrical or asymmetrical insulation, double pipes, triple pipes. These technologies are potentially energyefficient and cost-effective solutions for DH networks in low-heat density......The synergy between highly energy efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy saving policies and energy supply systems based on renewable energy (RE). Distribution heat losses represent a key factor in the design...... areas. We start with a review of theories and methods for steady-state heat loss calculation. Next, the article shows how detailed calculations with 2D-modeling of pipes can be carried out by means of computer software based on the finite element method (FEM). The model was validated by comparison...

  11. Thermal Characteristics of Grooved Heat pipe with Hybrid Nanofluids

    Directory of Open Access Journals (Sweden)

    W S Han

    2011-01-01

    Full Text Available In the present study, the specially designed grooved heat pipe charged with nanofluids was investigated in terms of various parameters such as heat transfer rate(50∼300W with 50 W interval, volume concentration(0.005%, 0.05%, 0.1%, and hybrid combinations, inclination(5°, 45°, 90°, cooling water temperature (1℃, 10℃, and 20℃, surface state, transient state and so on. Hybrid nanofluids with different volume concentration ratios with Ag-H2O and Al2O3-H2O were used as working fluids on a grooved heat pipe(GHP. Comparing with the pure water system, nanofluidic and hybrid nanofluidic system shows greater overall thermal resistance with increasing nano-particle concentration. Also hybrid nanofluids make the system deteriorate in terms of thermal resistance. The post nanofluid experimental data regarding GHP show that the heat transfer performance is similar to the results of nanofluid system. The thermal performance of a grooved heat pipe with nanofluids and hybrid nanofluids were varied with driving parameters but they led to worse system performance.

  12. FLATTENING EFFECT ON HEAT TRANSFER CHARACTERISTICS OF A SINTERED-WICK HEAT PIPE

    Directory of Open Access Journals (Sweden)

    Weeranut Intagun

    2013-01-01

    Full Text Available The effect of pipe flattening on heat transfer characteristics and the internal phenomena of a sintered-wick heat pipe has been investigated by using three-dimensional Finite Element Method. The calculation domains were focused at three important regions, i.e., vapor core, wick and wall. The Cartesian coordinates and the three-dimensional tetrahedral elements were applied in this model. The selected total elements were 638,400 to ensure the accuracy. The original diameter and total length of heat pipe were 6 mm and 200 mm, respectively. The composite wick made from sintered copper powder and grooved copper pipe was applied with water as working fluid. The vapor flow was assumed to be laminar and incompressible. The predicted results from the program were validated with the experimental results conducted with all similar controlled parameters. It was found that the predicted wall temperature and thermal resistance agreed well with the experimental data with the standard deviations of ±5.95 and ±32.85%, respectively. Furthermore, the overall thermal resistances of the tubular heat pipes (original diameter of 6 mm, which were flattened into the final thickness of 4.0 and 3.0 mm, decreased from 0.91 to 0.83°C/W due to an increase of the contacted surface for heat transfer surface. However, the overall thermal resistance of a flattened heat pipe with the final thickness of 2.5 mm increased to 0.88°C/W, resulting from drastic increase of pressure drop in narrower vapor core. The pivotal final thickness of flattened heat pipe, which is the minimum thickness of pipe to be flattened, has been analysed to be 2.75 mm (about 45% from original diameter.

  13. CFD Analysis of a Hybrid Heat Pipe for In-Core Passive Decay Heat Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong Yeong Shin; Kim, Kyung Mo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Station blackout (SBO) accident is the event that all AC power is totally lost from the failure of offsite and onsite power sources. Although electricity was provided from installed batteries for active system after shutdown, they were failed due to flooding after tsunami. The vulnerability of the current operating power plant's cooling ability during extended station blackout events is demonstrated and the importance of passive system becomes emphasized. Numerous researches about passive system have been studied for proper cooling residual heat after Fukushima nuclear power plant accident. Heat pipe is the effective passive heat transfer device that latent heat of vaporization is used to transport heat over long distance with even small temperature difference. Since liquid flows due to capillary force from wick structure and steam flows up due to buoyancy force, power is not necessary. Heat pipe is widely used in removal of local hot spot heat fluxes in CPU and thermal management in space crafts and satellites. Hybrid control rod, which consists of heat pipe with B{sub 4}C for wick structure material can be used for removing residual heat after. It can be applied to both for shutdown and cooling of decay heat in reactor. This concept is independent of external reactor situation like operator's mistake or malfunction of active cooling system. Heat pipe cooling system can be applied to Emergency Core Cooling System, In-Vessel Retention, containment and spent fuel cooling, contributing to decrease Core Damage Frequency.

  14. Heat-transfer data for hydrogen

    Science.gov (United States)

    Mc Carthy, J. R.; Miller, W. S.; Okuda, A. S.; Seader, J. D.

    1970-01-01

    Information is given regarding experimental heat-transfer data compiled for the turbulent flow of hydrogen within straight, electrically heated, round cross section tubes. Tube materials, test conditions, parameters studied, and generalized conclusions are presented.

  15. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    Science.gov (United States)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP turns on with a delta T of 30 C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator delta T was roughly 70 C, due to distillation of the NaK in the evaporator.

  16. Forced Convection Heat Transfer in Circular Pipes

    Science.gov (United States)

    Tosun, Ismail

    2007-01-01

    One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

  17. The use of heat pipes in thermal control system for electronics: current situation and prospects

    Directory of Open Access Journals (Sweden)

    Khairnasov S. M.

    2015-06-01

    Full Text Available Today, the widespread application of cooling systems based on heat pipes makes significant contribution to the solution of the thermal control of electronic equipment. The use of heat pipes as heat transfer devices and heat exchanging equipment allows creating an efficient new-generation heat sinks. Nowadays, heat pipes are widely used in the following areas: electronic equipment, special application computer equipment (from small computers to large data centres, high power electronics. The article provides an analysis of the current state and prospects of heat pipes application in thermal control systems for ground-based electronic equipment.

  18. The Helical Oscillating Heat Pipe: Flow Pattern Behaviour Study

    Directory of Open Access Journals (Sweden)

    Y. Sriudom

    2015-01-01

    Full Text Available This research aims to study the effect of evaporator temperature, pitch distance, and working fluid on the internal flow pattern and the heat transfer characteristics of the helical oscillating heat pipe. A Pyrex tube with an inner diameter of 2.4 mm was used to study the flow pattern in the evaporator section. The pitch distance varied at 1, 1.5, and 2 cm. Water and R-123 were used as working fluid with a filling ratio of 80% by total volume. In the evaporator section, the water temperature varied at 60, 75, and 90°C to supply heat to the heat pipe. In the condenser section, air with a temperature of 25°C was used as heat sink. From the results, it was found that 4 internal flow patterns, bubble flow, slug flow, annular flow, and stratified wavy flow, were observed in the evaporator section for both working fluids. The heat transfer rate decreased when the pitch distance was increased from 1 to 2 cm. The maximum heat flux was 2,132.6 and 1,773.4 W/m2 for the working fluid of R-123 and water, respectively. Both occurred at a pitch distance of 1 cm and an evaporator temperature of 90°C.

  19. Heat transport capability and compensation chamber influence in loop heat pipes performance

    Energy Technology Data Exchange (ETDEWEB)

    Riehl, Roger R. [National Institute for Space Research-Space Mechanics and Control Division-DMC/Satelite Av. dos Astronautas 1758, Sao Jose dos Campos, SP, 12227-010 (Brazil); Siqueira, Tulio C.P.A. [Universidade Federal de Ouro Preto-Departamento de Engenharia de Controle e Automacao Ouro Preto, MG, 35400-000 (Brazil)

    2006-08-15

    The development of the loop heat pipe technology for application in future space missions requires that certain aspects related to the operation of this device in regard to the heat transport, geometry and selected working fluid must be carefully considered. As efforts have been focused in the construction of loop heat pipes able to manage up to 80W of applied heat using an alternative working fluid, designing and testing these devices have shown important results. Two loop heat pipes have been built and tested, where they differ from each other on their compensation chamber geometry and use high grade acetone as working fluid, in substitution of the so-used ammonia. Life tests have shown reliable operation for both loop heat pipes with successful startups and continuous operation without temperature overshoot or evaporator dryout. The life tests results investigation have generated important data that has been applied on the design and construction of loop heat pipes toward their use in future space applications. (author)

  20. Design and Testing of Metal and Silicon Heat Spreaders with Embedded Micromachined Heat Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.A.; Robino, C.V.

    1999-02-22

    The authors have developed a new type of heat spreader based on the integration of heat pipes directly within a thin planar structure suitable for use as a heat spreader or as the base layer in a substrate. The process uses micromachining methods to produce micron scale patterns that act as a wick in these small scale heat pipes. By using silicon or a low expansion metal as the wall material of these spreaders, they achieve a good match to the thermal coefficient of expansion of the die. The match allows the use of a thin high performance die attachment even on large size die. The embedded heat pipes result in high effective thermal conductivity for the new spreader technology.

  1. NASA Lewis Steady-State Heat Pipe Code Architecture

    Science.gov (United States)

    Mi, Ye; Tower, Leonard K.

    2013-01-01

    NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given

  2. Forming method of axial micro grooves inside copper heat pipe

    Institute of Scientific and Technical Information of China (English)

    LI Yong; XIAO Hui; LIAN Bin; TANG Yong; ZENG Zhi-xin

    2008-01-01

    The high-speed oil-filled ball spinning and drawing process was put forward to manufacture the axially grooved heat pipe with highly efficient heat-transfer performance, and the forming mechanism of micro-grooves inside the pipe was investigated. The key factors influencing the configurations of micro-grooves were analyzed. When the spinning depth varies between 0.4 mm and 0.5 mm, drawing speed varies from 200 mm/min to 450 mm/min, rotary speed is beyond 6 000 r/min and working temperature is less than 50 ℃, the grooved tubes are formed with high quality and efficiency. The ball spinning process uses full oil-filling method to set up the steady dynamic oil-film that reduces the drawing force and improves the surface quality of grooved copper tube.

  3. CTS TEP thermal anomalies: Heat pipe system performance

    Science.gov (United States)

    Marcus, B. D.

    1977-01-01

    A part of the investigation is summarized of the thermal anomalies of the transmitter experiment package (TEP) on the Communications Technology Satellite (CTS) which were observed on four occasions in 1977. Specifically, the possible failure modes of the variable conductance heat pipe system (VCHPS) used for principal thermal control of the high-power traveling wave tube in the TEP are considered. Further, the investigation examines how those malfunctions may have given rise to the TEP thermal anomalies. Using CTS flight data information, ground test results, analysis conclusions, and other relevant information, the investigation concentrated on artery depriming as the most likely VCHPS failure mode. Included in the study as possible depriming mechanisms were freezing of the working fluid, Marangoni flow, and gas evolution within the arteries. The report concludes that while depriming of the heat pipe arteries is consistent with the bulk of the observed data, the factors which cause the arteries to deprime have yet to be identified.

  4. Titanium based flat heat pipes for computer chip cooling

    Science.gov (United States)

    Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

    2008-11-01

    We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

  5. Thermal response of a flat heat pipe sandwich structure to a localized heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Carbajal, G.; Peterson, G.P. [Rensselaer Polytechnic Institute, Troy, NY (United States). Department of Mechanical, Aerospace and Nuclear Engineering; Sobhan, C.B. [National Institute of Technology, Calicut (India). Center for Nanotechnology, Department of Mechanical Engineering; Queheillalt, D.T.; Wadley, H.N.G. [University of Virginia, Charlottesville, VA (United States). Material Science and Engineering Department

    2006-10-15

    The temperature distribution across a flat heat pipe sandwich structure, subjected to an intense localized thermal flux has been investigated both experimentally and computationally. The aluminum sandwich structure consisted of a pair of aluminum alloy face sheets, a truncated square honeycomb (cruciform) core, a nickel metal foam wick and distilled water as the working fluid. Heat was applied via a propane torch to the evaporator side of the flat heat pipe, while the condenser side was cooled via natural convective and radiative heat transfer. A novel method was developed to estimate experimentally, the heat flux distribution of the torch on the evaporator side. This heat flux distribution was modeled using a probability function and validated against the experimental data. Applying the estimated heat flux distribution as the surface boundary condition, a finite volume analysis was performed for the wall, wick and vapor core regions of the flat heat pipe to obtain the field variables in these domains. The results were found to agree well with the experimental data indicating the thermal spreading effect of the flat heat pipe. (author)

  6. Experimental results of acetone hydrogenation on a heat exchanger type reactor for solar chemical heat pump; Solar chemical heat pump ni okeru acetone suisoka hanno netsu kaishu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, T.; Doi, T.; Tanaka, T.; Ando, Y. [Electrotechnical Laboratory, Tsukuba (Japan); Miyahara, R.; Kamoshida, J. [Shibaura Institute of Technology, Tokyo (Japan)

    1996-10-27

    With the purpose of converting solar heat energy to industrial heat energy, an experiment of acetone hydrogenation was carried out using a heat exchanger type reactor that recovers heat generated by acetone hydrogenation, an exothermic reaction, and supplies it to an outside load. In the experiment, a pellet-like activated carbon-supported ruthenium catalyst was used for the acetone hydrogenation with hydrogen and acetone supplied to the catalyst layer at a space velocity of 400-1,200 or so. In the external pipe of the double-pipe type reactor, a heating medium oil was circulated in parallel with the flow of the reactant, with the heat of reaction recovered that was generated from the acetone hydrogenation. In this experiment, an 1wt%Ru/C catalyst and a 5wt%Ru/C catalyst were used so as to examine the effects of variation in the space velocity. As a result, from the viewpoint of recovering the heat of reaction, it was found desirable to increase the reaction speed by raising catalytic density and also to supply the reactant downstream inside the reaction pipe by increasing the space velocity. 1 ref., 6 figs., 1 tab.

  7. Thermal Performance and Operation Limit of Heat Pipe Containing Neutron Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Jeong, Yeong Shin; Kim, In Guk; Bang, In Choel [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    Recently, passive safety systems are under development to ensure the core cooling in accidents involving impossible depressurization such as station blackout (SBO). Hydraulic control rod drive mechanisms, passive auxiliary feedwater system (PAFS), Passive autocatalystic recombiner (PAR), and so on are types of passive safety systems to enhance the safety of nuclear power plants. Heat pipe is used in various engineering fields due to its advantages in terms of easy fabrication, high heat transfer rate, and passive heat transfer. Also, the various concepts associated with safety system and heat transfer using the heat pipe were developed in nuclear engineering field.. Thus, our group suggested the hybrid control rod which combines the functions of existing control rod and heat pipe. If there is significant temperature difference between active core and condenser, the hybrid control rod can shutdown the nuclear fission reaction and remove the decay heat from the core to ultimate heat sink. The unique characteristic of the hybrid control rod is the presence of neutron absorber inside the heat pipe. Many previous researchers studied the effect of parameters on the thermal performance of heat pipe. However, the effect of neutron absorber on the thermal performance of heat pipe has not been investigated. Thus, the annular heat pipe which contains B{sub 4}C pellet in the normal heat pipe was prepared and the thermal performance of the annular heat pipe was studied in this study. Hybrid control rod concept was developed as a passive safety system of nuclear power plant to ensure the safety of the reactor at accident condition. The hybrid control rod must contain the neutron absorber for the function as a control rod. So, the effect of neutron absorber on the thermal performance of heat pipe was experimentally investigated in this study. Temperature distributions at evaporator section of annular heat pipe were lower than normal heat pipe due to the larger volume occupied by

  8. Effect of Nanofluids on Heat Pipe Thermal Performance: A Review of the Recent Literature

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2013-09-01

    Full Text Available The addition of the nanoparticles to the base fluid is one of the significant issues to enhance the heat transfer of heat pipes. The purpose of this review is to summarize the research done on heat pipes using nanofluids as working fluids in recent years (2012 to 2013. The peer reviewed papers published in citation index journals have been selected for review in this paper. This review article provides additional information for the design of heat pipes with optimum conditions regarding the heat transfer characteristics of nanofluids in heat pipes. Moreover, this paper identifies several important issues that should be considered further in future works.

  9. Numerical simulation of transient operation of loop heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, T. [Carleton University, Department of Mechanical and Aerospace Engineering, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 (Canada)], E-mail: tkaya@mae.carleton.ca; Perez, R.; Gregori, C.; Torres, A. [IberEspacio, Tecnologia Aeroespacial, Magallanes, 1, 28015 Madrid (Spain)

    2008-06-15

    A numerical model is developed to simulate the transient performance characteristics of loop heat pipes (LHP). The model satisfactorily simulates the overall dynamic behavior of an LHP unit tested under ambient and vacuum environments. The startup phase is also reproduced using the experimentally obtained incipient wall superheat. The accurate heat leak predictions at low powers remain problematic and experimental correlation is necessary. The model can be used to analyze the dynamic behavior of an LHP based thermal control system exposed to transient thermal loads.

  10. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  11. Convective Heat Transfer Analysis in Fluid Flow with Turbulence Promoters with Heat Pipes

    Directory of Open Access Journals (Sweden)

    Theodor Mateescu

    2007-01-01

    Full Text Available The present paper proposes the analysis and the simulation of the convection heat transfer into the fluid flow with turbulence promoters utilizing heat pipes. The study is based on the necesity of the unconventional energy forms capitalization, increasing of the energy efficiency and leads to the energy consumtion decrease in concordance with the sustainable development concept.

  12. Experimental analysis of a flat heat pipe working against gravity

    Energy Technology Data Exchange (ETDEWEB)

    Esarte, J.; Domiguez, M. [Universidad Publica de Navarra (Spain). Dept. of Mechanical Engineering

    2003-09-01

    Thermoelectric refrigeration always presents a heat flux addressing problem (constriction resistance) and it is a subject that has extensively been studied and analysed [closed form equation for thermal constriction/spreading resistances with variable resistances boundary conditions, IEPS Conference, 1994]. In previous works [Issues of the heat dissipation coming from a big surface through a much smaller one, 20th International Conference on Thermoelectrics, Beijing-China, 2001], a device (flat heat pipe) capable of addressing the heat flux has been theoretically and experimentally developed to reduce the so called constriction resistance (the lower the constriction resistance the higher the thermoelectric module performance). This work presents the experimental results of the constriction resistance for different prototypes of flat heat pipe and investigates if they are in agreement with the theoretical predictions. It also shows the influence of certain parameters on the constriction resistance. The results have later been compared with those obtained for a flat plate in order to check whether or not the device improves the thermoelectric module performance. A brief description of the device operation is also given. (Author)

  13. Pulse Mitigation and Heat Transfer Enhancement Techniques. Volume 5. Transient Liquid Movement in Heat Pipe Wicks

    Science.gov (United States)

    1992-08-01

    pipe wall. This is not likely to be the case in the thin wicks used in most heat pipes unless severe dryout occurs. Eninger [7] studied the capillary...balance on a randomly oriented fibecr. The theoretical model required an empirical constant obtained from the experimental results. Eninger also 6...structure was utilized for this experimpnt. The two-component wick structure was utilized previously by Eninger [7], who was able to measure slight

  14. Simulation and experimental validation of a 400 m vertical CO2 heat pipe for geothermal application

    Science.gov (United States)

    Ebeling, Johann-Christoph; Kabelac, Stephan; Luckmann, Sebastian; Kruse, Horst

    2017-03-01

    Geothermal heat pipes are an effective heat source for heat pumps used for space heating. Because the area for the installation of borehole heat exchangers is limited in urban areas (one site per borehole), the maximum heat extractable from one borehole shall rise. In cooperation with the FKW Hannover, the Institute for Thermodynamics of the Leibniz University of Hannover is investigating the thermodynamic behavior of CO2 driven geothermal heat pipes of higher thermal power. Therefore two different types of geothermal heat pipes with a length of 400 m each have been installed. Furthermore a numerical simulation of the heat and mass transfer within the pipes is under development. The experimental setup and first results of the experiments are presented as well as the current status of the numerical simulation. A comparison of the two different types of heat pipes and a comparison of the experimental data with the numerical simulation is given.

  15. Mathematical Modelling and Parameter Optimization of Pulsating Heat Pipes

    CERN Document Server

    Yang, Xin-She; Luan, Tao; Koziel, Slawomir

    2014-01-01

    Proper heat transfer management is important to key electronic components in microelectronic applications. Pulsating heat pipes (PHP) can be an efficient solution to such heat transfer problems. However, mathematical modelling of a PHP system is still very challenging, due to the complexity and multiphysics nature of the system. In this work, we present a simplified, two-phase heat transfer model, and our analysis shows that it can make good predictions about startup characteristics. Furthermore, by considering parameter estimation as a nonlinear constrained optimization problem, we have used the firefly algorithm to find parameter estimates efficiently. We have also demonstrated that it is possible to obtain good estimates of key parameters using very limited experimental data.

  16. Performance investigation of heat pipe using aqueous solution of n-Pentanol with different inclinations

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, R.; Vaidyanathan, S.; Sivaraman, B. [Annamalai University, Tamil Nadu (India)

    2011-04-15

    The orientation of the heat pipe plays the significant role in its performance. In specific orientations, the performance of the heat pipe is directly related to the wick structure. In conventional heat pipe, the working fluid is used a negative surface-tension gradient with temperature. It is an unfavorable one and it decreases the heat transport between the evaporator section and the condenser section. An Aqueous solution of n-Pentanol having a positive surface tension gradient with temperature is suggested as a working medium for heat pipe to improve the performance of capillary limit and operating stability. The objective of this paper is to perform a comparative study of heat pipe performance using the aqueous solution of n-Pentanol with water at various inclinations. The results are presented to demonstrate the merits and suitability of the aqueous solution of n-Pentanol as a working fluid for heat pipe.

  17. 加氢装置高压换热器与管道整体水压试验的设计问题探讨%Discussion of Hydrostatic Test Performed for Integration of High Pressure Heat Exchanger and Piping in Hydrogenating Plant

    Institute of Scientific and Technical Information of China (English)

    李兴林

    2015-01-01

    管道试压主要目的是检查压力管道系统及连接部位的工程质量,保证管道系统的承压强度和严密性,也是决定管道能否安全运行的重要依据。根据某油品预加氢装置的高压换热器及其连接管道系统整体打压的要求,从设计的角度,通过对其设计参数的分析,要求主专业统筹考虑,协调好相关专业的设计要求条件,参照相关标准规范,选择合适的试验压力,满足设备与管道一起整体水压试验要求,满足施工单位编制试压包的依据需要,避免因试压设计方案考虑不周使工期延误、施工返工等,为以后的同类设计问题提供借鉴和参考。%The objective of pressure test for piping is to exam the quality of pressure piping system and its connection with other equipment so as to ensure the strength of piping system and its compactness. The result of pressure test is also the important basis for determining if the performance of piping system is safe. In this article, with the requirements in integral pressure test for high pressure heat exchanger and its connected piping in one pre-hydrogenation plant, from design point and based on the analysis of design parameters, it was demanded that main specialty should take the integration of all factors into account, coordinate the design requests from relevant specialties and refer correlative codes and standards, then proper test pressure should be selected, with which the requirement of integral hydrostatic test for equipment and piping can be reached, the requirements from the party of construction in compiling testing documents be met. In this way, the incidents of delay in finishing construction can be avoided. What presented herein can be referenced in the similar engineering later.

  18. Characterisation of a grooved heat pipe with an anodised surface

    Science.gov (United States)

    Solomon, A. Brusly; Ram Kumar, A. M.; Ramachandran, K.; Pillai, B. C.; Senthil Kumar, C.; Sharifpur, Mohsen; Meyer, Josua P.

    2017-03-01

    A grooved heat pipe (GHP) is an important device for managing heat in space applications such as satellites and space stations, as it works efficiently in the absence of gravity. Apart from the above application, axial GHPs are used in many applications, such as electronic cooling units for temperature control and permafrost cooling. Improving the performance of GHPs is essential for better cooling and thermal management. In the present study, the effect of anodization on the heat transfer characteristics of a GHP is studied with R600a as a working fluid. In addition, the effects of fill ratio, inclination angle and heat inputs on the heat transfer performance of a GHP are studied. Furthermore, the effect of heat flux on dimensional numbers, such as the Webber, Bond, Kutateladze and condensation numbers, are studied. The inclination angle, heat input and fill ratio of GHPs are varied in the range of 0°-90°, 25-250 W and 10-70 % respectively. It is found that the above parameters have a significant effect on the performance of a GHP. Due to the anodisation, the maximum enhancement in heat transfer coefficient at the evaporator is 39 % for a 90° inclination at a heat flux of 11 kW/m2. The reported performance enhancement of a GHP may be due to the large numbers of nucleation sites created by the anodisation process and enhancement in the capillary force due to the coating.

  19. Characterisation of a grooved heat pipe with an anodised surface

    Science.gov (United States)

    Solomon, A. Brusly; Ram Kumar, A. M.; Ramachandran, K.; Pillai, B. C.; Senthil Kumar, C.; Sharifpur, Mohsen; Meyer, Josua P.

    2016-06-01

    A grooved heat pipe (GHP) is an important device for managing heat in space applications such as satellites and space stations, as it works efficiently in the absence of gravity. Apart from the above application, axial GHPs are used in many applications, such as electronic cooling units for temperature control and permafrost cooling. Improving the performance of GHPs is essential for better cooling and thermal management. In the present study, the effect of anodization on the heat transfer characteristics of a GHP is studied with R600a as a working fluid. In addition, the effects of fill ratio, inclination angle and heat inputs on the heat transfer performance of a GHP are studied. Furthermore, the effect of heat flux on dimensional numbers, such as the Webber, Bond, Kutateladze and condensation numbers, are studied. The inclination angle, heat input and fill ratio of GHPs are varied in the range of 0°-90°, 25-250 W and 10-70 % respectively. It is found that the above parameters have a significant effect on the performance of a GHP. Due to the anodisation, the maximum enhancement in heat transfer coefficient at the evaporator is 39 % for a 90° inclination at a heat flux of 11 kW/m2. The reported performance enhancement of a GHP may be due to the large numbers of nucleation sites created by the anodisation process and enhancement in the capillary force due to the coating.

  20. Preliminary Test of a small heat pipe for hybrid control rod in-core passive decay heat removal system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Ban, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    This paper introduces 'Hybrid control rod' combining its original function and heat removal ability. The high temperature operation and high resistance of radiation should be considered to adopt the hybrid heat pipe at the in-core condition. Other design consideration is to make extra inlet parts because it has a high risk of inlet boundary failure. It means that the introduction of heat pipe system is difficult to present nuclear power plants. The other concepts are presented to out-core cooling design but it has low performance compared with in-core heat removal system. Hybrid heat pipe for in-core heat removal system suggests the solution of these problems. Ultimate objective of this research is to develop the passive emergency decay heat removal system using hybrid heat pipes targeting design bases accidents such as station black-out (SBO) and small break loss of coolant accident (SBLOCA). The purpose of this work is to confirm the performance and heat transfer behavior of hybrid heat pipe. The hybrid heat pipe has special condition for operation. Therefore, it is hard to analyze their behavior in core. Table I shows the characteristics of hybrid heat pipe and consideration for manufacturing the heat pipe.

  1. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  2. A Novel Pre-cooling System for a Cryogenic Pulsating Heat Pipe

    Science.gov (United States)

    Xu, Dong; Liu, Huiming; Gong, Linghui; Xu, Xiangdong; Li, Laifeng

    To reduce the influence of the pipe material on the measurement of effective thermal conductivity, the pipe of a cryogenic pulsating heat pipe is generally made of stainless steel. Because of the low thermal conductivity of stainless steel, the pre-cooling of the evaporator in cryogenic pulsating heat pipe using helium as working fluid at 4.2 K is a problem. We designed a mechanical-thermal switch between the cryocooler and the evaporator, which was on during the pre-cooling process and off during the test process. By using the pre-cooling system, the cool down time of the cryogenic pulsating heat pipe was reduced significantly.

  3. Hybrid Heat Pipes for High Heat Flux Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The thermal transport requirements for future spacecraft missions continue to increase, approaching several kilowatts. At the same time the heat acquisition areas...

  4. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran;

    2013-01-01

    advantage of renewable energy. The results showed that the energy consumption was 3% less in the 2-pipe chilled beam system in comparison with the conventional 4-pipe system when moving cooled and heated water through the building, transferring the energy to where it is needed. Using free cooling (taking...... consumption and hence energy savings in the 2-pipe chilled beam system in comparison with the 4-pipe system. The 2-pipe chilled beam system used high temperature cooling and low temperature heating with a water temperature of 20°C to 23°C, available for free most of the year. The system can thus take......Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings...

  5. Heat transfer and core neutronics considerations of the heat pipe cooled thermionic reactor

    Science.gov (United States)

    Determan, W. R.; Lewis, Brian

    1991-01-01

    The authors summarize the results of detailed neutronic and thermal-hydraulic evaluations of the heat pipe cooled thermionic (HPTI) reactor design, identify its key design attributes, and quantify its performance characteristics. The HPTI core uses modular, liquid-metal core heat transfer assemblies to replace the liquid-metal heat transport loop employed by in-core thermionic reactor designs of the past. The nuclear fuel, power conversion, heat transport, and heat rejection functions are all combined into a single modular unit. The reactor/converter assembly uses UN fuel pins to obtain a critical core configuration with in-core safety rods and reflector controls added to complete the subassembly. By thermally bonding the core heat transfer assemblies during the reactor core is coupled neutronically, thermally, and electrically into a modular assembly of individual power sources with cross-tied architecture. A forward-facing heat pipe radiator assembly extends from the reactor head in the shape of a frustum of a cone on the opposite side of the power system from the payload. Important virtues of the concept are the absence of any single-point failures and the ability of the core to effectively transfer the TFE waste heat load laterally to other in-core heat transfer assemblies in the event of multiple failures in either in-core and radiator heat pipes.

  6. Heat transfer and core neutronics considerations of the heat pipe cooled thermionic reactor

    Science.gov (United States)

    Determan, W. R.; Lewis, Brian

    The authors summarize the results of detailed neutronic and thermal-hydraulic evaluations of the heat pipe cooled thermionic (HPTI) reactor design, identify its key design attributes, and quantify its performance characteristics. The HPTI core uses modular, liquid-metal core heat transfer assemblies to replace the liquid-metal heat transport loop employed by in-core thermionic reactor designs of the past. The nuclear fuel, power conversion, heat transport, and heat rejection functions are all combined into a single modular unit. The reactor/converter assembly uses UN fuel pins to obtain a critical core configuration with in-core safety rods and reflector controls added to complete the subassembly. By thermally bonding the core heat transfer assemblies during the reactor core is coupled neutronically, thermally, and electrically into a modular assembly of individual power sources with cross-tied architecture. A forward-facing heat pipe radiator assembly extends from the reactor head in the shape of a frustum of a cone on the opposite side of the power system from the payload. Important virtues of the concept are the absence of any single-point failures and the ability of the core to effectively transfer the TFE waste heat load laterally to other in-core heat transfer assemblies in the event of multiple failures in either in-core and radiator heat pipes.

  7. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    Science.gov (United States)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP was designed for the Advanced Stirling Radioisotope Generator, with a 850 °C heater head temperature. The VCHP turns on with a ΔT of 30 °C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 °C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator ΔT was roughly 70 °C, due to distillation of the NaK in the evaporator.

  8. Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core

    Science.gov (United States)

    Martin, James J.; Reid, Robert S.

    2004-01-01

    A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100 kilowatt from the core to an energy conversion system at 700 C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested.

  9. Convective heat transfer for viscoelastic fluid in a curved pipe

    Energy Technology Data Exchange (ETDEWEB)

    Norouzi, M.; Kayhani, M.H. [Shahrood University of Technology, Mechanical Engineering Department, Shahrood (Iran); Nobari, M.R.H. [Amirkabir University of Technology, Mechanical Engineering Department, Tehran (Iran); Joneidi, A.A. [Eindhoven University of Technology, Mechanical-Polymer Technology Group, Eindhoven (Netherlands)

    2010-10-15

    In this paper, fully developed convective heat transfer of viscoelastic flow in a curved pipe under the constant heat flux at the wall is investigated analytically using a perturbation method. Here, the curvature ratio is used as the perturbation parameter and the Oldroyd-B model is applied as the constitutive equation. In the previous studies, the Dirichlet boundary condition for the temperature at the wall has been used to simplify the solution, but here exactly the non-homogenous Neumann boundary condition is considered to solve the problem. Based on this solution, the non-axisymmetric temperature distribution of Dean flow is obtained analytically and the effect of flow parameters on the flow field is investigated in detail. The current analytical results indicate that increasing the Weissenberg number, viscosity ratio, curvature ratio, and Prandtl number lead to the increase of the heat transfer in the Oldroyd-B fluid flow. (orig.)

  10. Improvement of heat pipe performance through integration of a coral biomaterial wick structure into the heat pipe of a CPU cooling system

    Science.gov (United States)

    Putra, Nandy; Septiadi, Wayan Nata

    2016-08-01

    The very high heat flux dissipated by a Central Processing Unit (CPU) can no longer be handled by a conventional, single-phased cooling system. Thermal management of a CPU is now moving towards two-phase systems to maintain CPUs below their maximum temperature. A heat pipe is one of the emerging cooling systems to address this issue because of its superior efficiency and energy input independence. The goal of this research is to improve the performance of a heat pipe by integrating a biomaterial as the wick structure. In this work, the heat pipe was made from copper pipe and the biomaterial wick structure was made from tabulate coral with a mean pore diameter of 52.95 μm. For comparison purposes, the wick structure was fabricated from sintered Cu-powder with a mean pore diameter of 58.57 µm. The working fluid for this experiment was water. The experiment was conducted using a processor as the heat source and a plate simulator to measure the heat flux. The utilization of coral as the wick structure can improve the performance of a heat pipe and can decrease the temperature of a simulator plate by as much as 38.6 % at the maximum heat load compared to a conventional copper heat sink. This method also decreased the temperature of the simulator plate by as much as 44.25 °C compared to a heat pipe composed of a sintered Cu-powder wick.

  11. Improvement of heat pipe performance through integration of a coral biomaterial wick structure into the heat pipe of a CPU cooling system

    Science.gov (United States)

    Putra, Nandy; Septiadi, Wayan Nata

    2017-04-01

    The very high heat flux dissipated by a Central Processing Unit (CPU) can no longer be handled by a conventional, single-phased cooling system. Thermal management of a CPU is now moving towards two-phase systems to maintain CPUs below their maximum temperature. A heat pipe is one of the emerging cooling systems to address this issue because of its superior efficiency and energy input independence. The goal of this research is to improve the performance of a heat pipe by integrating a biomaterial as the wick structure. In this work, the heat pipe was made from copper pipe and the biomaterial wick structure was made from tabulate coral with a mean pore diameter of 52.95 μm. For comparison purposes, the wick structure was fabricated from sintered Cu-powder with a mean pore diameter of 58.57 µm. The working fluid for this experiment was water. The experiment was conducted using a processor as the heat source and a plate simulator to measure the heat flux. The utilization of coral as the wick structure can improve the performance of a heat pipe and can decrease the temperature of a simulator plate by as much as 38.6 % at the maximum heat load compared to a conventional copper heat sink. This method also decreased the temperature of the simulator plate by as much as 44.25 °C compared to a heat pipe composed of a sintered Cu-powder wick.

  12. Variable Heat Rejection Loop Heat Pipe radiator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal control systems are sized for the maximum heat load in the warmest continuous environment. This design process results in a larger radiator surface area than...

  13. Experimental temperature distribution and heat load characteristics of rotating heat pipes

    Science.gov (United States)

    Daniels, T. C.; Williams, R. J.

    1978-01-01

    Experimental results show conclusively that the presence of a small quantity of a noncondensable gas (NCG) mixed with the working fluid has a considerable effect on the condensation process in a rotating heat pipe. The temperature distribution in the condenser shows the blanketing effect of the NCG and the ratio of the molecular weight of the working fluid to that of the NCG has a very definite effect on the shape of this distribution. Some of the effects are quite similar to the well-established data on stationary heat pipes.

  14. Characteristic features of the operation of high-temperature heat pipes with a noncondesable gas

    Science.gov (United States)

    Tolubinskiy, V. I.; Shevchuk, Ye. N.

    1987-01-01

    The principal concepts related to the nature of the processes occurring in high-temperature heat pipes with a noncondensable gas are examined, and guidelines for the development of such heat pipes are presented. The discussion is illustrated by experimental results obtained for a horizontal sodium heat pipe (diameter, 18/1 mm; length, 710 mm). In particular, attention is given to the starting dynamics and mechanisms, the shape of the vapor-gas front, and the vapor-gas front velocity.

  15. Curtailing noncondensables in steel heat pipes using a NaCr solution

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.; Al-Rabghi, O.M. [King Abdulaziz University, Jeddah (Saudi Arabia). Dept. of Mechanical Engineering

    1999-10-01

    Experiments were performed for investigation of the long term performance of mild-steel heat pipes. Working fluids were a NaCr solution in water, as well as water. The test period covered approximately 15,000 h. It is concluded that both types of heat pipes perform well; the performance of the heat pipe containing the NaCr solution, however, is superior. (author)

  16. Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance

    DEFF Research Database (Denmark)

    Sadeghinezhad, Emad; Mehrali, Mohammad; Rosen, Marc A.;

    2016-01-01

    An experimental investigation has been carried out to examine the thermal, performance of a sintered wick heat pipe using aqueous graphene nanoplatelets (GNP) nanofluids. The study focuses on changes in the effects of GNP concentration, heat pipe inclination angle and input heating power. The max...

  17. Analysis of Effect of Heat Pipe Parameters in Minimising the Entropy Generation Rate

    Directory of Open Access Journals (Sweden)

    Rakesh Hari

    2016-01-01

    Full Text Available Heat transfer and fluid flow in the heat pipe system result in thermodynamic irreversibility generating entropy. The minimum entropy generation principle can be used for optimum design of flat heat pipe. The objective of the present work is to minimise the total entropy generation rate as the objective function with different parameters of the flat heat pipe subjected to some constraints. These constraints constitute the limitations on the heat transport capacity of the heat pipe. This physical nonlinear programming problem with nonlinear constraints is solved using LINGO 15.0 software, which enables finding optimum values for the independent design variables for which entropy generation is minimum. The effect of heat load, length, and sink temperature on design variables and corresponding entropy generation is studied. The second law analysis using minimum entropy generation principle is found to be effective in designing performance enhanced heat pipe.

  18. Central heating pipes cause unwanted heating; CV-leidingen zorgen voor ongewenste opwarming

    Energy Technology Data Exchange (ETDEWEB)

    Wessels, R. [biq-stadsontwerp, Rotterdam (Netherlands); Nuijten, O. [ISSO, Rotterdam (Netherlands)

    2011-12-15

    Research has shown that the risk of hot spots in the drinking water pipes is very high. Hot spots are, for example, caused by central heating pipes that are too close to the water pipes. The water pipes may be 25 C for a long period, thus creating the risk of legionella growth. The various disciplines need to be careful in the design stage and building stage to prevent such situations from occurring. [Dutch] Onderzoek heeft uitgewezen dat het risico op 'hotspots' in de drinkwaterleidingen erg groot is. Hotspots worden bijvoorbeeld veroorzaakt door cv-leidingen die te dicht in de buurt van waterleidingen lopen. Die waterleidingen kunnen dan langdurig warmer zijn dan 25C en daardoor gevaar opleveren voor legionellagroei. Het vereist zorg van meerdere disciplines in de ontwerpfase en de bouwfase om deze situaties te vermijden.

  19. Thermal performance of different working fluids in a dual diameter circular heat pipe

    Directory of Open Access Journals (Sweden)

    S.M. Peyghambarzadeh

    2013-12-01

    Full Text Available In this paper, heat transfer performance of a 40 cm-length circular heat pipe with screen mesh wick is experimentally investigated. This heat pipe is made of copper with two diameters; larger in the evaporator and smaller in the adiabatic and condenser. Three different liquids including water, methanol, and ethanol are separately filled within the heat pipe. Low heat fluxes are applied (up to 2500 W/m2 in the evaporator and constant temperature water bath is used at three levels including 15, 25, and 35 °C in the condenser. Results demonstrate that higher heat transfer coefficients are obtained for water and ethanol in comparison with methanol. Furthermore, increasing heat flux increases the evaporator heat transfer coefficient. For the case of methanol, some degradation in heat transfer coefficient is occurred at high heat fluxes which can be due to the surface dryout effect. Increasing the inclination angle decreases the heat pipe thermal resistance.

  20. Porous Foam Based Wick Structures for Loop Heat Pipes

    Science.gov (United States)

    Silk, Eric A.

    2012-01-01

    As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.

  1. Experimental study of partially flattened axial grooved heat pipes

    Institute of Scientific and Technical Information of China (English)

    TAO HanZhong; ZHANG Hong; ZHUANG Jun; Jerry W. BOWMANS

    2008-01-01

    This article made experimental study on mini-axial grooved heat pipes (AGHP) with 11 flattening forms. It analyzed how the flattening form, flattening thickness and working temperature affect axial tem-perature distribution, thermal resistance, heat transfer limit and the phase-change heat transfer coeffi-cients in evaporator and condenser sections. The result indicates that all forms of AGHPs can maintain good isothermal performance under normal operating condition. The geometric shape of AGHP has obvious impact on heat transfer limit. With respect to an AGHP with 2 mm-thick evaporator section, when the thickness of its condenser section increases from 2 to 3 mm, its heat transfer limit increases by 81%; with respect to an AGHP with 3 mm-thick evaporator section, when the thickness of its con-denser section increases from 2 to 3 mm, its heat transfer limit increases by 134%; with respect to an AGHP with 4 mm-thick condenser section, when the thickness of its evaporator section increases from 2 to 3 mm, its heat transfer limit increases by 26%. When the thickness of the evaporator section in-creases by 1 mm, the heat transfer limit will increase by 9%-26%, while when the thickness of the condenser section increases by 1 mm, the heat transfer limit will increase by 20%-86%. The thickness of the condenser section has greater impact on heat transfer performance of an AGHP than the thick-ness of the evaporator section does. The study content of this article will help understand the heat transfer performance of AGHP, and electronic thermal design process.

  2. A New Wick Structure to Significantly Improve Heat Pipe Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Increasing thermal requirements for space-based thermal control systems are straining the capabilities of conventional heat pipes. Mainstream has experimentally...

  3. Excess liquid in heat-pipe vapor spaces

    Science.gov (United States)

    Eninger, J. E.; Edwards, D. K.

    1977-01-01

    A mathematical model is developed of excess liquid in heat pipes that is used to calculate the parameters governing the axial flow of liquid in fillets and puddles that form in vapor spaces. In an acceleration field, the hydrostatic pressure variation is taken into account, which results in noncircular meniscus shapes. The two specific vapor-space geometries considered are circular and the 'Dee-shape' that is formed by a slab wick in a circular tube. Also presented are theoretical and experimental results for the conditions under which liquid slugs form at the ends of the vapor spaces. These results also apply to the priming of arteries.

  4. Heat transfer during the boiling of liquids in heat pipe wicks

    Science.gov (United States)

    Gontarev, Yu. K.; Navruzov, Yu. V.; Prisnyakov, V. F.; Serebryanskiy, N.

    1987-01-01

    Data in the literature on heat transfer in the case of nucleate boiling of various liquids in the wicks of heat pipes are reviewed. It is shown that none of the known analytical relationships can be used to generalize, with sufficient accuracy, the experimental data found in the literature. It is further shown that the exponent of the specific heat flux in the heat transfer law changes as a function of the liquid and wick properties. A relationship is obtained which generalizes experimental data for heat transfer agents of moderate temperatures (water, acetone, ethanol, and R-11 and R-113 coolants) and ammonia.

  5. Thermal design of spiral heat exchangers and heat pipes through global best algorithm

    Science.gov (United States)

    Turgut, Oğuz Emrah; Çoban, Mustafa Turhan

    2017-03-01

    This study deals with global best algorithm based thermal design of spiral heat exchangers and heat pipes. Spiral heat exchangers are devices which are highly efficient in extremely dirty and fouling process duties. Spirals inherent in design maintain high heat transfer coefficients while avoiding hazardous effects of fouling and uneven fluid distribution in the channels. Heat pipes have wide usage in industry. Thanks to the two phase cycle which takes part in operation, they can transfer high amount of heat with a negligible temperature gradient. In this work, a new stochastic based optimization method global best algorithm is applied for multi objective optimization of spiral heat exchangers as well as single objective optimization for heat pipes. Global best algorithm is easy-to-implement, free of derivatives and it can be reliably applied to any optimization problem. Case studies taken from the literature approaches are solved by the proposed algorithm and results obtained from the literature approaches are compared with thosed acquired by GBA. Comparisons reveal that GBA attains better results than literature studies in terms of solution accuracy and efficiency.

  6. Casing of preinsulated district heating pipes. Functional Requirements. Scientific report

    Energy Technology Data Exchange (ETDEWEB)

    Bryder, K.L.; Feld, T.; Randloev, P.; Vestergaard, J.B.; Noergaard Pedersen, H.; Palle, S.; Amby, L.

    1996-10-01

    Requirements for the wall thickness of the casing pipes in Europe were formulated to clarify the laying conditions, representative for the European district heating areas. We achieved a broad estimate by defining four scenarios for the laying of district heating pipes. It is common to the four scenarios that that all bends, branches etc. are always laid in sand. The four scenarios are differentiated by soil types. The soil types include: Uniform sand, Well graded gravel, Sand with fines and Sand with crushed stone. In the following analysis it was possible to examine the influence from following parameters: Casing thickness; Diameter of steel pipe; Diameter of casing; Material properties (PUR and PE); Soil type. The results from the model showed that uniform sand is the absolute best soil type. Based on the results from and earlier project a laboratory method has been developed. The result was a test method based on the indentation of three mandrels with a diameter of {phi}30 mm with a taper with an angle of 45 deg. and with roundings on the apex of R5 mm, R10 mm and R15 mm, respectively. The mandrels simulate stones. The examinations among other things showed that even a 1.5 mm casing demands an indentation of 20 mm with a R5 mm mandrel before it is perforated. The demanded force is 1.6 kN, which is considerably higher than the theoretically highest force in an actual situation. On this background it is recommended that the minimum requirement for the wall thickness of the casings with diameters less than 200 mm should still follow the EN 253, whereas the minimum requirement for the larger casing pipes securely can be reduced. Based on the tests and an evaluation of the safety factors it is proposed that the wall thickness for the largest pipes can be reduced 50%. Thus the wall thickness of an 800 mm casing should be 6.6 mm with a linear reduction down to 3 mm for 180 mm casing. (EG)

  7. Choice of insulation standard for pipe networks in 4th generation district heating systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mohammadi, Soma

    2016-01-01

    and smart gas grids. Improving DH pipes by improving the insulation standard results in decreasing the heat and temperature losses from the pipe networks. When reducing heat losses from DH pipes, there is a trade-off between the increasing cost of pipe insulation and the associated savings in the heat......Reducing heat losses from the pipe networks in district heating (DH) systems is one of the main challenges when developing DH in the future. Fourth generation DH is a concept that defines the role of DH in future smart energy systems as an integrated part together with smart electricity grids...... by implementing different pipe insulation standards. In the second step, the specific grid losses found in the first step are analysed in an integrated energy systems model where all main energy sectors and their interrelations are included. The outcome of the study can provide decision support when planning...

  8. Thermal performance of evacuated tube heat pipe solar collector

    Science.gov (United States)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  9. A helium based pulsating heat pipe for superconducting magnets

    Science.gov (United States)

    Fonseca, Luis Diego; Miller, Franklin; Pfotenhauer, John

    2014-01-01

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets. In addition, the same approach can be used for exploring other low temperature applications. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, performance results in the form of heat transfer and temperature characteristics are provided as a function of average condenser temperature, PHP fill ratio, and evaporator heat load. Results are summarized in the form of a dimensionless correlation and compared to room temperature systems. Implications for superconducting magnet stability are highlighted.

  10. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    Science.gov (United States)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  11. Closed loop oscillating heat pipe as heating device for copper plate

    Science.gov (United States)

    Kamonpet, Patrapon; Sangpen, Waranphop

    2017-04-01

    In manufacturing parts by molding method, temperature uniformity of the mold holds a very crucial aspect for the quality of the parts. Studies have been carried out in searching for effective method in controlling the mold temperature. Using of heat pipe is one of the many effective ways to control the temperature of the molding area to the right uniform level. Recently, there has been the development of oscillating heat pipe and its application is very promising. The semi-empirical correlation for closed-loop oscillating heat pipe (CLOHP) with the STD of ±30% was used in design of CLOHP in this study. By placing CLOHP in the copper plate at some distance from the plate surface and allow CLOHP to heat the plate up to the set surface temperature, the temperature of the plate was recorded. It is found that CLOHP can be effectively used as a heat source to transfer heat to copper plate with excellent temperature distribution. The STDs of heat rate of all experiments are well in the range of ±30% of the correlation used.

  12. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  13. Heat management of a cooling system based on the heat pipe for LED lighting fixtures

    Directory of Open Access Journals (Sweden)

    Rassamakin A. B.

    2013-10-01

    Full Text Available The authors have investigated a LED lamp cooling system that operates on a heat pipe basis. The paper describes the experimental stand, methods and results of the tests carried out for the different positions of the lamp at energy consumption of 196 W. It is shown that the considered cooling system ensures proper temperature of LEDs.

  14. Three-dimensional transient mathematical model to predict the heat transfer rate of a heat pipe

    Directory of Open Access Journals (Sweden)

    S Boothaisong

    2015-02-01

    Full Text Available A three-dimensional model was developed to simulate the heat transfer rate on a heat pipe in a transient condition. This article presents the details of a calculation domain consisting of a wall, a wick, and a vapor core. The governing equation based on the shape of the pipe was numerically simulated using the finite element method. The developed three-dimensional model attempted to predict the transient temperature, the velocity, and the heat transfer rate profiles at any domain. The values obtained from the model calculation were then compared with the actual results from the experiments. The experiment showed that the time required to attain a steady state (where transient temperature is constant was reasonably consistent with the model. The working fluid r134a (tetrafluoroethane was the quickest to reach the steady state and transferred the greatest amount of heat.

  15. Optimal Number of Thermoelectric Couples in a Heat Pipe Assisted Thermoelectric Generator for Waste Heat Recovery

    Science.gov (United States)

    Liu, Tongjun; Wang, Tongcai; Luan, Weiling; Cao, Qimin

    2017-01-01

    Waste heat recovery through thermoelectric generators is a promising way to improve energy conversion efficiency. This paper proposes a type of heat pipe assisted thermoelectric generator (HP-TEG) system. The expandable evaporator and condenser surface of the heat pipe facilitates the intensive assembly of thermoelectric (TE) modules to compose a compact device. Compared with a conventional layer structure thermoelectric generator, this system is feasible for the installment of more TE couples, thus increasing power output. To investigate the performance of the HP-TEG and the optimal number of TE couples, a theoretical model was presented and verified by experiment results. Further theoretical analysis results showed the performance of the HP-TEG could be further improved by optimizing the parameters, including the inlet air temperature, the thermal resistance of the heating section, and thermal resistance of the cooling structure. Moreover, applying a proper number of TE couples is important to acquire the best power output performance.

  16. Investigation of a wire plate micro heat pipe array

    Energy Technology Data Exchange (ETDEWEB)

    Launay, Stephane; Sartre, Valerie; Lallemand, Monique [CETHIL, UMR CNRS 5008, INSA, 20, av. A. Einstein, 69621 Cedex, Villeurbanne (France); Mantelli, Marcia B.H.; Paiva, Kleber Vieira de [Mechanical Engineering Department, Federal University of Santa Catarina UFSC, P.O. Box 476, 88040-900, SC, Florianopolis (Brazil)

    2004-05-01

    In the present work, experimental and theoretical investigations have been conducted on a copper/water wire plate micro heat pipe (MHP). The experimental results show that its effective thermal conductivity is improved by a factor 1.3 as compared to the empty MHP array. A numerical model is used to predict the fluid distribution along the MHP axis, the temperature field and the maximum heat flux corresponding to the MHP capillary limit. The 1D, steady-state hydrodynamic model is based on the conservation equations for the liquid and vapour phases. The wall temperatures are calculated from the thermal resistance network of the wall and the liquid film. A good agreement between the theoretical and experimental data is achieved. The effect of various parameters - contact angle, fluid type, corner angle, fill charge - is theoretically investigated. (authors)

  17. Heat from the full pipe. Heat distribution in buildings; Hitze aus vollem Rohr. Waermeverteilung im Gebaeude

    Energy Technology Data Exchange (ETDEWEB)

    Dorsch, Lutz [Dorsch und Hoffmann GmbH, Erkrath (Germany). Inst. fuer Energieeffizienz

    2011-01-15

    Who does not know that? During the inspection of the building one enters the actually unheated cellar. One already begins with sweating. However, the old boiler is not guilty of the too high temperatures in the basement. Also the armatures and pipes delivering the heat distribution frequently dispense their energy to the environment, long before thermal heat and hot drinking warm water reach their ultimate target position.

  18. Experimental study on microcapsule fluid oscillating heat pipe

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this experiment,a four-turn oscillating heat pipe(OHP)is made of copper tube with an inner diameter of 1.3mm,and an outer diameter of 2.5mm.A series of experiments are performed to investigate the startup characteristics of OHP,and the effects of different working fluids(FS-39E microcapsule fluid,pure water,ethanol),different liquid filling rates(40%-80%)on the heat transport capability of OHP in vertical bottom heat mode.The results show that the startup of OHP is relative with liquid filling rate,thermal driving force and working fluid;and experiences different flow patterns with the increase of heat load.The best concentration of FS-39E microcapsule fluid is 1wt%.While FS-39E microcapsule fluid is used as the working fluid,compared with pure water and ethanol,the OHP has a broader working scope;when the liquid filling rate is relatively high,the OHP shows a better performance on the startup and heat transport capability.

  19. Experimental study on microcapsule fluid oscillating heat pipe

    Institute of Scientific and Technical Information of China (English)

    LIN ZiRong; WANG ShuangFeng; ZHANG WeiBao

    2009-01-01

    In this experiment, s four-turn oscillating heat pipe (OHP) is made of copper tube with an inner diameter of 1.3 mm, and an outer diameter of 2.5 mm. A series of experiments are performed to investigate the startup characteristics of OHP, and the effects of different working fluids (FS-39E microcapsule fluid, pure water, ethanol), different liquid filling rates (40%-80%) on the heat transport capability of OHP in vertical bottom heat mode. The results show that the startup of OHP is relative with liquid filling rate, thermal driving force and working fluid; and experiences different flow patterns with the increase of heat load. The best concentration of FS-39E microcapsule fluid is 1 wt%. While FS-39E microcapsule fluid is used as the working fluid, compared with pure water and ethanol, the OHP has a broader working scope; when the liquid filling rate is relatively high, the OHP shows a better performance on the startup and heat transport capability.

  20. Numerical Simulation of Different Models of Heat Pipe Heat Exchanger Using AcuSolve

    Directory of Open Access Journals (Sweden)

    Zainal Nurul Amira

    2017-01-01

    Full Text Available In this paper, a numerical simulation of heat pipe heat exchanger (HPHE is computed by using CFD solver program i.e. AcuSolve. Two idealized model of HPHE are created with different variant of entry’s dimension set to be case 1 and case 2. The geometry of HPHE is designed in SolidWorks and imported to AcuSolve to simulate the fluid flow numerically. The design of HPHE is the key to provide a heat exchanger system to work proficient as expected. Finally, the result is used to optimize and improving heat recovery systems of the increasing demand for energy efficiency in industry.

  1. Characteristics of Screen Mesh Wick Heat Pipe with Nanofluid as Passive Cooling System

    Directory of Open Access Journals (Sweden)

    W.N. Septiadi

    2013-04-01

    Full Text Available The heat pipe is one of the cooling media which is potential to be developed for the passive cooling system for nuclear reactors. To enhance the performance of the heat pipe, nanofluids have been used as the working fluid for the heat pipe. This paper studies the characteristics of nanofluids as the working fluid of heat pipe with screen mesh wick, which was the mixture of nano-sized particles (Al2O3 and TiO2 with water as the base fluid. The nanoparticles have average diameter of 20 nm, made with 1% to 5% volume fraction. The heat pipe thermal performance was tested using heater with different heat load. The experimental result shows the use of 5% Al2O3-water improve the thermal performance by reducing the temperature at evaporator side as much as 23.7% and the use of TiO2-water reduce the temperature at evaporator side as much as 20.2% compared to the use of water. The use of nanofluid also decreases the thermal resistance of heat pipe. As the use of nanofluid improves thermal performance of heat pipe, it has a potential for applications along with heat pipes at nuclear reactors

  2. High temperature superconducting current lead test facility with heat pipe intercepts

    Energy Technology Data Exchange (ETDEWEB)

    Blumenfeld, P.E.; Prenger, C.; Roth, E.W.; Stewart, J.A.

    1998-12-31

    A high temperature superconducting (HTS) current lead test facility using heat pipe thermal intercepts is under development at the Superconducting Technology Center at Los Alamos National Laboratory. The facility can be configured for tests at currents up to 1,000 A. Mechanical cryocoolers provide refrigeration to the leads. Electrical isolation is maintained by intercepting thermal energy from the leads through cryogenic heat pipes. HST lead warm end temperature is variable from 65 K to over 90 K by controlling heat pipe evaporator temperature. Cold end temperature is variable up to 30 K. Performance predictions in terms of heat pipe evaporator temperature as a function of lead current are presented for the initial facility configuration, which supports testing up to 200 A. Measurements are to include temperature and voltage gradient in the conventional and HTS lead sections, temperature and heat transfer rate in the heat pipes. as well as optimum and off-optimum performance of the conventional lead sections.

  3. IMPROVING THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL DRUM TYPEPACKAGES BY USING HEAT PIPES

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, N

    2007-03-06

    This paper presents a feasibility study to improve thermal loading of existing radioactive material packages by using heat pipes. The concept could be used to channel heat in certain directions and dissipate to the environment. The concept is applied to a drum type package because the drum type packages are stored and transported in an upright position. This orientation is suitable for heat pipe operation that could facilitate the heat pipe implementation in the existing well proven package designs or in new designs where thermal loading is high. In this position, heat pipes utilize gravity very effectively to enhance heat flow in the upward direction Heat pipes have extremely high effective thermal conductivity that is several magnitudes higher than the most heat conducting metals. In addition, heat pipes are highly unidirectional so that the effective conductivity for heat transfer in the reverse direction is greatly reduced. The concept is applied to the 9977 package that is currently going through the DOE certification review. The paper presents computer simulations using typical off-the-shelf heat pipe available configurations and performance data for the 9977 package. A path forward is outlined for implementing the concepts for further study and prototype testing.

  4. Design of Refractory Metal Heat Pipe Life Test Environment Chamber, Cooling System, and Radio Frequency Heating System

    Science.gov (United States)

    Martin, J. J.; Bragg-Sitton, S. M.; Reid, R. S.; Stewart, E. T.; Davis, J. D.

    2011-01-01

    A series of 16 Mo-44.5%Re alloy/sodium heat pipes will be experimentally tested to examine heat pipe aging. To support this evaluation, an environmental test chamber and a number of auxiliary subsystems are required. These subsystems include radio frequency (RF) power supplies/inductive coils, recirculation water coolant loops, and chamber gas conditioning. The heat pipes will be grouped, based on like power and gas mixture requirements, into three clusters of five units each, configured in a pentagonal arrangement. The highest powered heat pipe will be tested separately. Test chamber atmospheric purity is targeted at test hardware, providing warning indicators followed by automatic shutdown should potentially damaging conditions develop. During hardware construction, a number of checkout tests.many making use of stainless steel prototype heat pipes that are already fabricated.will be required to verify operation.

  5. External Corrosion of Pipes in District Heating Systems; Utvaendig korrosion paa fjaerrvaermeroer

    Energy Technology Data Exchange (ETDEWEB)

    Sund, Goeran [Det Norske Veritas, Stockholm (Sweden)

    2002-07-01

    Corrosion damages of pipes in district heating systems can occur both external and internal. The aim with this work has been to clarify external corrosion damages of pipes, and try to correlate the damages to the corrosivity of different soils and waters. For the analysis the Swedish District Heating Association's district heating system statistics has been used. The district heating system statistics shows that the cost for corrosion damages is high, and pipes older than 20 years have increased risk for corrosion. The knowledge about corrosion concerning steel poles and water pipes in soils can not be applied to external corrosion of steel pipes in district heating systems. The corrosion rate of steel poles in soils is low. The corrosion of steel pipes in district heating systems can locally give high rates, up to 0,5 mm/year. The mechanism for this type of corrosion is different compared to the corrosion mechanism of poles in soils. The temperature is higher and aggressive water, with road-salt and chloride content, falls in drops on the steel pipe, and impurities evaporate on the steel surface. These factors increase the corrosion rate. If the material thickness is 5 mm, fracture can occur in the pipe within ten years. The number of copper pipe corrosion damage is limited. The most determining corrosion factors of copper pipes are pH-value and impurities as chloride and sulphate in the water. Stainless steel pipes of type 304 can not be used in soils due to the risk of local corrosion. Higher alloyed stainless steels, with molybdenum and higher chromium content should be used. It is concluded that failures can occur due to external corrosion of steel pipes. This failure is expensive and can lead to human damage. One way to eliminate failures of steel pipes is to carry out risk analysis.

  6. Computer program grade for design and analysis of graded-porosity heat-pipe wicks

    Science.gov (United States)

    Eninger, J. E.

    1974-01-01

    A computer program for numerical solution of differential equations that describe heat pipes with graded-porosity fibrous wicks is discussed. A mathematical problem is provided with a summary of the input and output steps used to solve it. The program is also applied to the analysis of a typical heat pipe.

  7. Numerical simulation of the effects of nanofluid on a heat pipe thermal performance

    DEFF Research Database (Denmark)

    Gavtash, Barzin; Hussain, Khalid; Layeghi, Mohammad;

    2014-01-01

    This research aims at modeling and simulating the effects of nanofluids on cylindrical heat pipes thermal performance using the ANSYS-FLUENT CFD commercial software. The heat pipe outer wall temperature distribution, thermal resistance, liquid pressure and axial velocity in presence of suspended ...

  8. 46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section 61.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... piping for heating and cooking. (a) Leak tests as described in paragraph (b) of this section shall...

  9. ANALYSIS OF THE PERFORMANCE OF THE BURIED PIPE GRID OF A HEAT PUMP,

    Science.gov (United States)

    An analysis is presented of experimental records obtained from a buried pipe grid of a heat pump , operated over a full heating season. The purpose of the analysis is to compare actual pipe performance with theory over a long period of time, thereby judging the applicability of the theory for practical use and to indicate the suitability of simplified design methods. (Author)

  10. VALIDATION OF SIMULATION MODELS FOR DIFFERENTLY DESIGNED HEAT-PIPE EVACUATED TUBULAR COLLECTORS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Dragsted, Janne; Furbo, Simon

    2007-01-01

    Differently designed heat-pipe evacuated tubular collectors have been investigated theoretically and experimentally. The theoretical work has included development of two TRNSYS [1] simulation models for heat-pipe evacuated tubular collectors utilizing solar radiation from all directions. One model...

  11. A Novel Heat Pipe Plate for Passive Thermal Control of Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project aims to develop a lightweight, highly thermally and electrically conductive heat pipe plate for passive removal of the heat from the individual...

  12. Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Loop Heat Pipe (LHP) is a high performance heat transport device using capillary forces to circulate the working fluid in a closed loop. Conventional LHPs usually...

  13. Thermal performance of a flat polymer heat pipe heat spreader under high acceleration

    Science.gov (United States)

    Oshman, Christopher; Li, Qian; Liew, Li-Anne; Yang, Ronggui; Lee, Y. C.; Bright, Victor M.; Sharar, Darin J.; Jankowski, Nicholas R.; Morgan, Brian C.

    2012-04-01

    This paper presents the fabrication and application of a micro-scale hybrid wicking structure in a flat polymer-based heat pipe heat spreader, which improves the heat transfer performance under high adverse acceleration. The hybrid wicking structure which enhances evaporation and condensation heat transfer under adverse acceleration consists of 100 µm high, 200 µm wide square electroplated copper micro-pillars with 31 µm wide grooves for liquid flow and a woven copper mesh with 51 µm diameter wires and 76 µm spacing. The interior vapor chamber of the heat pipe heat spreader was 30×30×1.0 mm3. The casing of the heat spreader is a 100 µm thick liquid crystal polymer which contains a two-dimensional array of copper-filled vias to reduce the overall thermal resistance. The device performance was assessed under 0-10 g acceleration with 20, 30 and 40 W power input on an evaporator area of 8×8 mm2. The effective thermal conductivity of the device was determined to range from 1653 W (m K)-1 at 0 g to 541 W (m K)-1 at 10 g using finite element analysis in conjunction with a copper reference sample. In all cases, the effective thermal conductivity remained higher than that of the copper reference sample. This work illustrates the possibility of fabricating flexible, polymer-based heat pipe heat spreaders compatible with standardized printed circuit board technologies that are capable of efficiently extracting heat at relatively high dynamic acceleration levels.

  14. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    Science.gov (United States)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  15. Experimental Investigation of Thermal Performance of Miniature Heat Pipe Using SiO2-Water Nanofluids.

    Science.gov (United States)

    Niu, Yan-Fang; Zhao, Wei-Lin; Gong, Yu-Ying

    2015-04-01

    The four miniature heat pipes filled with DI water and SiO2-water nanofluids containing different volume concentrations (0.2%, 0.6% and 1.0%) are experimentally measured on the condition of air and water cooling. The wall temperature and the thermal resistance are investigated for three inclination angles. At the same of inlet heat water temperature in the heat system, it is observed that the total wall temperatures on the evaporator section are almost retaining constant by air cooling and the wall temperatures at the front end of the evaporator section are slightly reduced by water cooling. However, the wall temperatures at the condenser section using SiO2-water nanofluids are all higher than that for DI water on the two cooling conditions. As compared with the heat pipe using DI water, the decreasing of the thermal resistance in heat pipe using nanofluids is about 43.10%-74.46% by air cooling and 51.43%-72.22% by water cooling. These indicate that the utilization of SiO2-water nanofluids as working fluids enhances the performance of the miniature heat pipe. When the four miniature heat pipes are cut to examine at the end of the experiment, a thin coating on the surface of the screen mesh of the heat pipe using SiO2-water nanofluids is found. This may be one reason for reinforcing the heat transfer performance of the miniature heat pipe.

  16. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    Directory of Open Access Journals (Sweden)

    Smitka Martin

    2014-03-01

    Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.

  17. BOILING OF WATER AND ORGANIC LIQUIDS ON LOW-TEMPERATURE POROUS SURFACES OF HEAT PIPES

    OpenAIRE

    Шаповал, Андрій Андрійович; Панов, Євген Миколайович; Сауліна, Юлія Валеріївна; Романчук, Борис Васильович; Трубійчук, Р. П.

    2015-01-01

    The experimental study results of the influence of porous metal fiber structures on the intensity of two-phase heat transfer of water and acetone boiling on porous surfaces in conditions of free movement and capillary transport of liquids are presented in the article. The experiments were realized using specially designed experimental installation simulated the operating conditions of heat pipes and thermosyphons. Such conditions are typical for two-phase heat transfer devices – heat pipes an...

  18. On the performance of air conditioner with heat pipe for cooling air in the condenser

    Energy Technology Data Exchange (ETDEWEB)

    Naphon, Paisarn, E-mail: paisarnn@swu.ac.t [Thermo-Fluids and Heat Transfer Enhancement Laboratory (TFHT), Department of Mechanical Engineering, Faculty of Engineering, Srinakharinwirot University, 63 Rangsit-Nakhornnayok Rd., Ongkharak, Nakhorn-Nayok 26120 (Thailand)

    2010-11-15

    Improvement of the air conditioning system performance by using the heat pipe for cooling air before entering the condenser is presented. In the experiment, the heat pipe is fabricated from the straight copper tube with the diameter and length of 10, 600 mm, respectively. The arrangements of the heat pipe sets are arranged in the staggered layout with the tube rows of 1, 2, 3. R134a refrigerant is used as working fluid in the heat pipe set for this present study. By comparing with a conventional air conditioning system, the air conditioning system with three rows of heat pipe gives the highest COP and EER with increasing of 6.4%, 17.5%, respectively. On the global warming and environment problems, the results of this study are expected to lead to guidelines that will allow the improved performance of the air conditioning systems which reduce its energy consumption.

  19. Heat transfer at the sintered layer-polysynthetic material interface inside heat micro pipes

    Science.gov (United States)

    Sprinceana, Siviu; Mihai, Ioan

    2016-12-01

    If micro heat pipe heat transfers, the inside working fluid goes through a biphasic state. The flow of the liquid and the vapor thereof by the capillary beds of frittered copper and the layer of capillary polysynthetic material and migration of vapors liquid from the end, takes the heat flow towards the end where a transfer of heat may occur only if there is a difference in temperature between the end of a flat micro heat pipe that gives the acquirer heat and heat flux. The porosity of the material is total pore of the total material volume. In the analysis of heat and mass transfer through porous media, both convective and conductive transfer forms can not be separated, because of the surfaces in contact between the two capillar layers. It had been studied the dependence of the rate of flow of liquid through the frittered porous media, and Reynolds polysynthetic. It tracks changes in the Reynolds number based on the interior capillary porosity. They traced in Mathcad [1] the graphs for changing the Reynolds number of capillary pressure by capillary porosity.

  20. Heat-transfer analysis of double-pipe heat exchangers for indirect-cycle SCW NPP

    Science.gov (United States)

    Thind, Harwinder

    SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. SuperCritical Water (SCW) Nuclear Power Plants (NPPs) are expected to have much higher operating parameters compared to current NPPs, i.e., pressure of about 25 MPa and outlet temperature up to 625 °C. This study presents the heat transfer analysis of an intermediate Heat exchanger (HX) design for indirect-cycle concepts of Pressure-Tube (PT) and Pressure-Vessel (PV) SCWRs. Thermodynamic configurations with an intermediate HX gives a possibility to have a single-reheat option for PT and PV SCWRs without introducing steam-reheat channels into a reactor. Similar to the current CANDU and Pressurized Water Reactor (PWR) NPPs, steam generators separate the primary loop from the secondary loop. In this way, the primary loop can be completely enclosed in a reactor containment building. This study analyzes the heat transfer from a SCW primary (reactor) loop to a SCW and Super-Heated Steam (SHS) secondary (turbine) loop using a double-pipe intermediate HX. The numerical model is developed with MATLAB and NIST REFPROP software. Water from the primary loop flows through the inner pipe, and water from the secondary loop flows through the annulus in the counter direction of the double-pipe HX. The analysis on the double-pipe HX shows temperature and profiles of thermophysical properties along the heated length of the HX. It was found that the pseudocritical region has a significant effect on the temperature profiles and heat-transfer area of the HX. An analysis shows the effect of variation in pressure, temperature, mass flow rate, and pipe size on the pseudocritical region and the heat-transfer area of the HX. The results from the numerical model can be used to optimize the heat-transfer area of the HX. The higher pressure difference on the hot side and higher temperature difference between the hot and cold sides reduces the pseudocritical-region length, thus

  1. Parametric analysis of loop heat pipe operation: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Launay, Stephane; Sartre, Valerie; Bonjour, Jocelyn [Centre de Thermique UMR 5008 CNRS-INSA-Universite Lyon 1, Institut National des Sciences Appliquees, Bat. Sadi Carnot, 9 rue de la Physique, 69 621 Villeurbanne cedex (France)

    2007-07-15

    Loop heat pipes (LHPs) are heat transfer devices whose operating principle is based on the evaporation/condensation of a working fluid, and which use the capillary pumping forces to ensure the fluid circulation. Their major advantages as compared to heat pipes are an ability to operate against gravity and a greater maximum heat transport capability. In this paper, a literature review is carried out in order to investigate how various parameters affect the LHP operational characteristics. This review is based on the most recent published experimental and theoretical studies. After a reminder of the LHP operating principle and thermodynamic cycle, their operating limits are described. The LHP thermal resistance and maximum heat transfer capability are affected by the choice of the working fluid, the fill charge ratio, the porous wick geometry and thermal properties, the sink and ambient temperature levels, the design of the evaporator and compensation chamber, the elevation and tilt, the presence of non-condensable gases, the pressure drops of the fluid along the loop. The overall objective for this paper is to point the state-of-the-art for the related technology for future design and applications, where the constraints related to the LHPs are detailed and discussed. (author) [French] Les boucles diphasiques a pompage capillaire sont des systemes dont le principe de fonctionnement est base sur l'evaporation/condensation d'un fluide et qui utilisent les forces de capillarite pour faire circuler le fluide dans la boucle. En comparaison des caloducs, les principaux avantages des boucles diphasiques a pompage capillaire sont une aptitude a vaincre les forces de gravite, lorsque le systeme est en position defavorable, et une puissance maximale transferable superieure. La presente etude bibliographique, basee sur les travaux experimentaux et theoriques les plus recents, a pour but est de comprendre comment differents parametres influencent le comportement de la

  2. An experimental study on an oscillating loop heat pipe consisting of three interconnected columns

    Science.gov (United States)

    Özdemir, Mustafa

    2007-04-01

    This paper presents some experimental results of an extensive research on a novel oscillating heat pipe. The heat pipe is formed of three interconnected columns as different from the pulsating heat pipe designs. The dimensions of the heat pipe considered in this study are large enough to neglect the effect of capillary forces. Thus, the self-oscillation of the system is driven by the gravitational force and the phase lag between the evaporation and condensation processes. The overall heat transfer coefficient is found to be approximately constant irrespective of heat load for the experimental cases considered. The results are also compared with the previously published data by other investigators for water as the working fluid and for the same heat input range. The experimental data for the time variation of the liquid column heights and the vapor pressure are correlated algebraically, convenient for practical uses.

  3. Theoretical investigation on thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger

    Science.gov (United States)

    Xiao, Lan; Wu, Shuang-Ying; Zhang, Qiao-Ling; Li, You-Rong

    2012-07-01

    Based on the heat transfer characteristics of absorber plate and the heat transfer effectiveness-number of heat transfer unit method of heat exchanger, a new theoretical method of analyzing the thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger has been put forward and validated by comparisons with the experimental and numerical results in pre-existing literature. The proposed theoretical method can be used to analyze and discuss the influence of relevant parameters on the thermal performance of heat pipe flat plate solar collector.

  4. Transient Response to Rapid Cooling of a Stainless Steel Sodium Heat Pipe

    Science.gov (United States)

    Mireles, Omar R.; Houts, Michael G.

    2011-01-01

    Compact fission power systems are under consideration for use in long duration space exploration missions. Power demands on the order of 500 W, to 5 kW, will be required for up to 15 years of continuous service. One such small reactor design consists of a fast spectrum reactor cooled with an array of in-core alkali metal heat pipes coupled to thermoelectric or Stirling power conversion systems. Heat pipes advantageous attributes include a simplistic design, lack of moving parts, and well understood behavior. Concerns over reactor transients induced by heat pipe instability as a function of extreme thermal transients require experimental investigations. One particular concern is rapid cooling of the heat pipe condenser that would propagate to cool the evaporator. Rapid cooling of the reactor core beyond acceptable design limits could possibly induce unintended reactor control issues. This paper discusses a series of experimental demonstrations where a heat pipe operating at near prototypic conditions experienced rapid cooling of the condenser. The condenser section of a stainless steel sodium heat pipe was enclosed within a heat exchanger. The heat pipe - heat exchanger assembly was housed within a vacuum chamber held at a pressure of 50 Torr of helium. The heat pipe was brought to steady state operating conditions using graphite resistance heaters then cooled by a high flow of gaseous nitrogen through the heat exchanger. Subsequent thermal transient behavior was characterized by performing an energy balance using temperature, pressure and flow rate data obtained throughout the tests. Results indicate the degree of temperature change that results from a rapid cooling scenario will not significantly influence thermal stability of an operating heat pipe, even under extreme condenser cooling conditions.

  5. Electromagnetic induction by ferrofluid in an oscillating heat pipe

    Science.gov (United States)

    Monroe, J. G.; Vasquez, E. S.; Aspin, Z. S.; Walters, K. B.; Berg, M. J.; Thompson, S. M.

    2015-06-01

    Thermal-to-electrical energy conversion was demonstrated using an oscillating heat pipe (OHP) filled with ferrofluid and equipped with an annular-type solenoid. The OHP was subjected to a 100 °C axial temperature difference allowing the ferrofluid to passively oscillate through the solenoid, thus accomplishing electromagnetic induction. The measured solenoid voltage consisted of aperiodic pulses with dominant frequencies between 2 and 5 Hz and peak-to-peak amplitudes approaching 1 mV. Despite exposure to the thermal and phase change cycling within the OHP, nanoparticle morphologies and magnetic properties of the ferrofluid remained intact. This energy harvesting method allows for combined thermal management and in-situ power generation.

  6. Vapor-modulated heat pipe report. Flight data analysis and further development of variable-conductance heat pipes. [design analysis and performance tests

    Science.gov (United States)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1975-01-01

    The design and testing of a heat pipe for spacecraft application is presented. The application in mind calls for heat loads up to 20 watts, a set-point temperature of 294K, and a sink that varies from -220K to nearly as high as the set-point. The overall heat pipe length is 137 cm. Two basically different mechanisms of achieving variable conductance in the pipe by vapor-flow throttling were studied. In one, the thermal resistance between the heat source and sink is due to a saturation-temperature drop corresponding to the vapor-pressure drop developed across the valve. In the other, the pressure difference across the valve induces capillary groove and wick dry out in an evaporation region, and thus results in an increased thermal resistance. This mechanism was selected for fabrication and testing. The pipe is a stainless-steel/methanol two-heat-pipe system. Results are presented and discussed. Engineering drawings and specifications of the pipe are shown.

  7. Miniature Loop Heat Pipe (MLHP) Thermal Management System

    Science.gov (United States)

    Ku, Jentung

    2004-01-01

    The MLHP Thermal Management System consists of a loop heat pipe (LHP) with multiple evaporators and condensers, thermal electrical coolers, and deployable radiators coated with variable emittance coatings (VECs). All components are miniaturized. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, versatility, and reliability of the system, including flexible locations of instruments and radiators, a single interface temperature for multiple instruments, cooling the on instruments and warming the off instruments simultaneously, improving. start-up success, maintaining a constant LHP operating temperature over a wide range of instrument powers, effecting automatic thermal switching and thermal diode actions, and reducing supplemental heater powers. It can fully achieve low mass, low power and compactness necessary for future small spacecraft. Potential applications of the MLHP thermal technology for future missions include: 1) Magnetospheric Constellation; 2) Solar Sentinels; 3) Mars Science Laboratory; 4) Mars Scouts; 5) Mars Telecom Orbiter; 6) Space Interferometry Mission; 7) Laser Interferometer Space Antenna; 8) Jupiter Icy Moon Orbiter; 9) Terrestrial Planet Finder; 10) Single Aperture Far-Infrared Observatory, and 11) Exploration Missions. The MLHP Thermal Management System combines the operating features of a variable conductance heat pipe, a thermal switch, a thermal diode, and a state-of-the-art LHP into a single integrated thermal system. It offers many advantages over conventional thermal control techniques, and can be a technology enabler for future space missions. Successful flight validation will bring the benefits of MLHP technology to the small satellite arena and will have cross-cutting applications to both Space Science and Earth Science Enterprises.

  8. Heat transfer augmentation in double pipe heat exchanger using mechanical turbulators

    Science.gov (United States)

    Kamboj, Kushal; Singh, Gurjeet; Sharma, Rohit; Panchal, Dilbagh; Hira, Jaspreet

    2017-02-01

    The work presented here focuses on heat transfer augmentation by means of divergent-convergent spring turbulator (the enhancement device). Aim of the present work is to find such an optimum pitch at which the augmentation in heat transfer is maximum and the amount of power consumption is minimum, so that an economic design can be created with maximum thermal efficiency. So, the concept of pitch variation is introduced, which is defined as the horizontal distance between two consecutive turbulators. It describes that, the lesser is the pitch the more number of turbulators that can be inserted in inner pipe of double pipe heat exchanger, hence more will be the friction factor. This physics increases convective ability of the heat transfer process from the surface of inner pipe. There is a certain limit to which a pitch can be decreased, lesser the pitch the more the pressure drop and friction factor and hence the more will be the pumping power requirement to maintain a desired mass flow rate of hot water. Analysis of thermal factors such as Nusselts number, friction factor, with different pitches of divergent convergent spring turbulators of circular cross-section 15, 10, and 5 cm at Reynolds's number ranging between 9000 < Re < 40,000 is done graphically.

  9. Temperature Oscillation in a Loop Heat Pipe with Gravity Assist

    Science.gov (United States)

    Ku, Jentung; Garrison, Matt; Patel, Deepak; Ottenstein, Laura; Robinson, Frank

    2014-01-01

    ATLAS Laser Thermal Control System (LTCS) thermal vacuum testing where the condenser-radiator was placed in a vertical position, it was found that the loop heat pipe (LHP) reservoir required much more control heater power than the analytical model had predicted. The required control heater power was also higher than the liquid subcooling entering the reservoir using the measured temperatures and the calculated mass flow rate based on steady state LHP operation. This presentation describes the investigation of the LHP behaviors under a gravity assist mode with a very cold radiator sink temperature and a large thermal mass attached to the evaporator. It is concluded that gravity caused the cold liquid to drop from the condenser-radiator to the reservoir, resulting in a rapid decrease of the reservoir temperature. When the reservoir temperature was increasing, a reverse flow occurred in the liquid line, carrying warm liquid to the condenser-radiator. Both events consumed the reservoir control heater power. The fall and rise of the reservoir temperature also caused the net heat input to the evaporator to vary due to the release and storage of the sensible heat of the thermal mass. The combination of these effects led to a persistent reservoir temperature oscillation and a repeated influx of cold liquid from the condenser. This was the root cause of the extraordinary high control heater power requirement in the LTCS TV test. Without gravity assist, such a persistent temperature oscillation will not be present.

  10. Numerical Heat Transfer Prediction for Laminar Flow in a Circular Pipe with a 90° Bend

    Science.gov (United States)

    Patro, Pandaba; Rout, Ani; Barik, Ashok

    2017-05-01

    Laminar air flow in a 90° bend has been studied numerically to investigate convective heat transfer, which is of practical relevance to electronic systems and refrigeration piping layout. CFD simulations are performed for Reynolds number in the range 200 to 1000 at different bend radius ratios (5, 10 and 20). The heat transfer characteristics are found to be enhanced in the curved pipe compared to a straight pipe, which are subjected to the same flow rate. The curvature and buoyancy effectively increase heat transfer in viscous laminar flows. The correlation between the flow structure and the heat transfer is found to be strong.

  11. Heat transport in the Hadean mantle: From heat pipes to plates

    Science.gov (United States)

    Kankanamge, Duminda G. J.; Moore, William B.

    2016-04-01

    Plate tectonics is a unique feature of Earth, and it plays a dominant role in transporting Earth's internally generated heat. It also governs the nature, shape, and the motion of the surface of Earth. The initiation of plate tectonics on Earth has been difficult to establish observationally, and modeling of the plate breaking process has not consistently accounted for the nature of the preplate tectonic Earth. We have performed numerical simulations of heat transport in the preplate tectonic Earth to understand the transition to plate tectonic behavior. This period of time is dominated by volcanic heat transport called the heat pipe mode of planetary cooling. These simulations of Earth's mantle include heat transport by melting and melt segregation (volcanism), Newtonian temperature-dependent viscosity, and internal heating. We show that when heat pipes are active, the lithosphere thickens and lithospheric isotherms are kept flat by the solidus. Both of these effects act to suppress plate tectonics. As volcanism wanes, conduction begins to control lithospheric thickness, and large slopes arise at the base of the lithosphere. This produces large lithospheric stress and focuses it on the thinner regions of the lithosphere resulting in plate breaking events.

  12. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B{sub 4}C) to have the ability of reactivity control. It has annular vapor space and

  13. Phase change driving mechanism and modeling for heat pipe with porous wick

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; LIU ZhiChun; YANG Kun; TU ZhengKai

    2009-01-01

    According to heat pipe theory,capillary force is the only driving force for the circle of working fluid in heat pipe with porous wick.By developing a simulating circuit of liquid and vapor flow in heat pipe with porous wick,this paper presents a new driving mechanism which is from phase change of fluid.Furthermore,by analyzing transport process of working fluid between evaporation and condensation in terfaces,a mathematical model is developed to describe this driving mechanism.Besides,calculating examples are given for heat pipe with water as working fluid to predict its driving force and flow resis tance.By applying the model presented in the paper,thermal design and calculation for heat pipe with porous wick,especially for miniature heat pipe,can be made correctly,and phase change driving me chanism of working fluid can be explained,which thereby leads to a better understanding of heat transfer limitation of heat pipe with porous wick.

  14. INVESTIGATION INTO THE SPRINGBACK OF PIPE BENDING USING INDUCTION HEATING

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Stresses and deformation states of pipe bending are investigated under loading or unloading with various pipe materials, size, bending radius and deformation temperature. A theorem of springback of large diameter pipe bending is presented. The experiments are carried out with pipe materials of 20, 10CrMo910 and 12Cr1MoV steel. Results of computations are in good agreement with experiments.

  15. Numerical and experimental analysis of heat pipes with application in concentrated solar power systems

    Science.gov (United States)

    Mahdavi, Mahboobe

    Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material

  16. Using of Multiwall Carbon Nanotube Based Nanofluid in the Heat Pipe to Get Better Thermal Performance

    Directory of Open Access Journals (Sweden)

    Y. Bakhshan

    2014-09-01

    Full Text Available Thermal performance of a cylindrical heat pipe is investigated numerically. Three different types of water based nanofluids, namely, Al2O3 + Water, Diamond + Water, and Multi-Wall Carbon Nano tube (MWCNT + Water, have been used. The influence of using the simple nanofluids and MWCNT nanofluid on the heat pipe characteristics such as liquid velocity, pressure profile, temperature profile, thermal resistance, and heat transfer coefficient of heat pipe has been studied. A new correlation developed by Bakhshan and Saljooghi (2014 for viscosity of nanofluids has been implemented. The results show, a good agreement with the available analytical and experimental data. Also the results show, that the MWCNT based nanofluid has lower thermal resistance, higher heat transfer coefficient, and lower temperature difference between evaporator and condenser sections, so it has good thermal specifications as a working fluid for use in heat pipes. The prepared code has capability for parametric studies also.

  17. Design considerations for a thermophotovoltaic energy converter using heat pipe radiators

    Energy Technology Data Exchange (ETDEWEB)

    Ashcroft, J.; DePoy, D. [Lockheed Martin Corp., Schenectady, NY (United States)

    1997-06-01

    The purpose of this paper is to discuss concepts for using high temperature heat pipes to transport energy from a heat source to a thermophotovoltaic (TPV) converter. Within the converter, the condenser portion of each heat pipe acts as a photon radiator, providing a radiant flux to adjacent TPV cells, which in turn create electricity. Using heat pipes in this way could help to increase the power output and the power density of TPV systems. TPV systems with radiator temperatures in the range of 1,500 K are expected to produce as much as 3.6 W/cm{sup 3} of heat exchanger volume at an efficiency of 20% or greater. Four different arrangements of heat pipe-TPV energy converters are considered. Performance and sizing calculations for each of the concepts are presented. Finally, concerns with this concept and issues which remain to be considered are discussed.

  18. Experimental study on rack cooling system based on a pulsating heat pipe

    Science.gov (United States)

    Lu, Qianyi; Jia, Li

    2016-02-01

    A rack cooling system based on a large scale flat plate pulsating heat pipe is proposed. The heat generated from IT equipment in a closed rack is transferred by the rear door pulsating heat pipe to the chilled air passage and is avoided to release into the room. The influence of the start-up performance of the heat pipe, the load of the rack and the load dissipation to the temperature and the velocity distribution in the rack are discussed. It is found that the temperature would be lower and the temperature distribution would be more uniform in the rack when the pulsating heat pipe is in operation. Also, the effect of rack electricity load on temperature distribution is analyzed. It is indicated that higher velocity of chilled air will improve heat transfer of the rack.

  19. Numerical study of the conjugate heat transfer in a horizontal pipe heated by Joulean effect

    Directory of Open Access Journals (Sweden)

    Touahri Sofiane

    2012-01-01

    Full Text Available The three dimensional mixed convection heat transfer in a electrically heated horizontal pipe conjugated to a thermal conduction through the entire solid thickness is investigated by taking into account the thermal dependence of the physical properties of the fluid and the outer heat losses. The model equations of continuity, momentum and energy are numerically solved by the finite volume method. The pipe thickness, the Prandtl and the Reynolds numbers are fixed while the Grashof number is varied from 104to107. The results obtained show that the dynamic and thermal fields for mixed convection are qualitatively and quantitatively different from those of forced convection, and the local Nusselt number at the interface solid-fluid is not uniform: it has considerable axial and azimuthally variations. The effect of physical variables of the fluid depending on temperature is significant, which justifies its inclusion. The heat transfer is quantified by the local and average Nusselt numbers. We found that the average Nusselt number of solid-fluid interface of the duct increases with the increase of Grashof number. We have equally found out that the heat transfer is improved thanks to the consideration of the thermo dependence of the physical properties. We have tried modelling the average Nusselt number as a function of Richardson number. With the parameters used, the heat transfer is quantified by the correlation: NuA=12.0753 Ri0.156

  20. Particle shape effect on heat transfer performance in an oscillating heat pipe

    Directory of Open Access Journals (Sweden)

    Chen Hsiu-hung

    2011-01-01

    Full Text Available Abstract The effect of alumina nanoparticles on the heat transfer performance of an oscillating heat pipe (OHP was investigated experimentally. A binary mixture of ethylene glycol (EG and deionized water (50/50 by volume was used as the base fluid for the OHP. Four types of nanoparticles with shapes of platelet, blade, cylinder, and brick were studied, respectively. Experimental results show that the alumina nanoparticles added in the OHP significantly affect the heat transfer performance and it depends on the particle shape and volume fraction. When the OHP was charged with EG and cylinder-like alumina nanoparticles, the OHP can achieve the best heat transfer performance among four types of particles investigated herein. In addition, even though previous research found that these alumina nanofluids were not beneficial in laminar or turbulent flow mode, they can enhance the heat transfer performance of an OHP.

  1. Transient modeling of the thermohydraulic behavior of high temperature heat pipes for space reactor applications

    Science.gov (United States)

    Hall, Michael L.; Doster, Joseph M.

    1986-01-01

    Many proposed space reactor designs employ heat pipes as a means of conveying heat. Previous researchers have been concerned with steady state operation, but the transient operation is of interest in space reactor applications due to the necessity of remote startup and shutdown. A model is being developed to study the dynamic behavior of high temperature heat pipes during startup, shutdown and normal operation under space environments. Model development and preliminary results for a hypothetical design of the system are presented.

  2. Method for optimal design of pipes for low-energy district heating, with focus on heat losses

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2011-01-01

    The synergy between highly energy-efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy-saving policies and energy supply systems based on renewable energy (RE). Network transmission and distribution heat loss is one of the key...... factors in the optimal design of low-energy DH systems. Various pipe configurations are considered in this paper: flexible pre-insulated twin pipes with symmetrical or asymmetrical insulation, double pipes, and triple pipes. These technologies represent potential energy-efficient and cost...... showed the influence of the soil temperature throughout the year. Finally, the article describes proposals for the optimal design of pipes for low-energy applications and presents methods for decreasing heat losses....

  3. Experimental study on the performance limitation of micro heat pipes of non circular cross-sections

    Directory of Open Access Journals (Sweden)

    Mahmood Lutful Sakib

    2008-01-01

    Full Text Available An experimental study of three different cross-sections (circular, semicircular and rectangular of micro heat pipes having same hydraulic diameter (D= 3mm is carried out at three different inclination angles (0°, 45°, 90° using water as the working fluid. Evaporator section of the pipe is heated by an electric heater and the condenser section is cooled by water circulation in an annular space between the condenser section and the water jacket. Temperatures at different locations of the pipe are measured using five calibrated K type thermocouples. Heat supply is varied using a voltage regulator which is measured by a precision ammeter and a voltmeter. It is found that thermal performance tends to deteriorate as the micro heat pipe is flattened. Thus among all cross-sections of the pipes circular cross-section exhibits the best thermal performance followed by semicircular and rectangular cross-sections. Moreover maximum heat transfer capability of the pipes also decreases with decreasing of its inclination angle. A correlation is developed using all the gathered data of the present study to predict the heat transfer coefficient of micro heat pipes of different cross-sections placed at different inclination angles.

  4. Experimental and Exergy Analysis of A Double Pipe Heat Exchanger for Parallel Flow Arrangement

    Directory of Open Access Journals (Sweden)

    Parth P. Parekh

    2014-07-01

    Full Text Available This paper presents For Experimental and Exergy Analysis of a Double Pipe Heat Exchanger for Parallel- flow Arrangement. The Double pipe heat exchanger is one of the Different types of heat exchangers. double-pipe exchanger because one fluid flows inside a pipe and the other fluid flows between that pipe and another pipe that surrounds the first.In a parallel flow, both the hot and cold fluids enter the Heatexchanger at same end andmove in same direction. The present work is taken up to carry experimental work and the exergy analysis based on second law analysis of a Double-Pipe Heat Exchanger. In experimental set up hot water and cold water will be used working fluids. The inlet Hot water will be varied from 40 0C and 50 0C and cold water temperature will be varied from between 15 and 20 0C. It has been planned to find effects of the inlet condition of both working fluid flowing through the heat exchanger on the heat transfer characteristics, entropy generation, and Exergy loss. The Mathematical modelling of heat exchanger will based on the conservation equation of mass, energy and based on second law of thermodynamics to find entropy generation and exergy losses.

  5. The impacts of cooling construction on the ability distract the heat of condensation part of the heat pipe

    Directory of Open Access Journals (Sweden)

    Gavlas S.

    2013-04-01

    Full Text Available Heat pipes as cooling devices have a high potential. Their power to affect a variety of factors – the vapour pressure, the amount of media work etc. Itis therefore necessary to verify the calculated parameters also practically. To determine the performance of transmitted heat pipe is the best calorimetric method. When it is out of the flow and the temperature difference the cooling part of the heat pipe determines its transmitted power. The contribution is focused on comparison of two types of coolers. The first type is looped capillary cooler for the condenser section. The small diameter capillary is secured high coolant turbulence and hence heat dissipation. The second type is non-contact cooling, where cooling fluid washes direct heat pipe wall.

  6. Sintered Nickel Powder Wicks for Flat Vertical Heat Pipes

    Directory of Open Access Journals (Sweden)

    Geir Hansen

    2015-03-01

    Full Text Available The fabrication and performance of wicks for flat heat pipe applications produced by sintering a filamentary nickel powder has been investigated. Tape casting was used as an intermediate step in the wick production process. Thermogravimetric analysis was used to study the burn-off of the organic binder used and to study the oxidation and reduction processes of the nickel. The wicks produced were flat, rectangular and intended for liquid transport in the upwards vertical direction. Rate-of-rise experiments using heptane were used to test the flow characteristics of the wicks. The wick porosities were measured using isopropanol. The heat transfer limitation constituted by the vapour static pressure and the capillary pressure was discussed. The influence on wick performance by using pore former in the manufacturing was studied. When Pcap/Psat > 1, the use of a pore former to increase the wick permeability will always improve the wick performance. When Pcap/Psat < 1, it was shown that if the effective pore radius and the permeability increase with an equal percentage the overall influence on the wick capacity is negative. A criterion for a successful pore former introduction is proposed and the concept of a pore former evaluation plot is presented.

  7. Hydrogen/Oxygen Propellant Densifier Thermoacoustic Stirling Heat Engine

    Science.gov (United States)

    Nguyen, C. T.; Yeckley, A. J.; Schieb, D. J.; Haberbusch, M. S.

    2004-06-01

    A unique, patent pending, thermoacoustic propellant densifier for the simultaneous densification of hydrogen and oxygen propellants for aerospace vehicles is introduced. The densifier uses a high-pressure amplitude, low-frequency Thermoacoustic Stirling Heat Engine (TASHE) coupled with a uniquely designed half-wave-length resonator to drive a pulse tube cryocooler using a Gas Helium (GHe) working fluid. The extremely reliable TASHE has no moving parts, is water cooled, and is electrically powered. The helium-filled TASHE is designed to ASME piping codes, which enables the safe inspection of the system while in operation. The resonator is designed to eliminate higher-order harmonics with minimal acoustic losses. A system description will be presented, and experimental data on both the TASHE and the resonator will be compared with analytical results.

  8. HEAT TRANSFER COEFFICIENT AND FRICTION FACTOR CHARACTERISTICS OF A GRAVITY ASSISTED BAFFLED SHELL AND HEAT-PIPE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    P. Raveendiran

    2015-06-01

    Full Text Available The heat transfer coefficients and friction factors of a baffled shell and heat pipe heat exchanger with various inclination angles were determined experimentally; using methanol as working fluid and water as heat transport fluid were reported. Heat pipe heat exchanger reported in this investigation have inclination angles varied between 15o and 60o for different mass flow rates and temperature at the shell side of the heat exchanger. All the required parameters like outlet temperature of both hot and cold side of heat exchanger and mass flow rate of fluids were measured using an appropriate instrument. Different tests were performed from which condenser side heat transfer coefficient and friction factor were calculated. In all operating conditions it has been found that the heat transfer coefficient increases by increasing the mass flow rate and angle of inclination. The reduction in friction factor occurs when the Reynolds number is increased. The overall optimum experimental effectiveness of GABSHPHE has found to be 42% in all operating conditioning at ψ = 45o.

  9. Waste Heat Recovery by Heat Pipe Air-Preheater to Energy Thrift from the Furnace in a Hot Forging Process

    Directory of Open Access Journals (Sweden)

    Lerchai Yodrak

    2010-01-01

    Full Text Available Problem statement: Currently, the heat pipe air-preheater has become importance equipment for energy recovery from industrial waste heat because of its low investment cost and high thermal conductivity. Approach: This purpose of the study was to design, construct and test the waste heat recovery by heat pipe air-preheater from the furnace in a hot brass forging process. The mathematical model was developed to predict heat transfer rate and applied to compute the heat pipe air-preheater in a hot brass forging process. The heat pipe air-preheater was designed, constructed and tested under medium temperature operating conditions with inlet hot gas ranging between 370-420°C using water as the working fluid with 50% filling by volume of evaporator length. Results: The experiment findings indicated that when the hot gas temperature increased, the heat transfer rate also increased. If the internal diameter increased, the heat transfer rate increased and when the tube arrangement changed from inline to staggered arrangement, the heat transfer rate increased. Conclusion/Recommendations: The heat pipe air-preheater can reduced the quantity of using gas in the furnace and achieve energy thrift effectively.

  10. Electricity eliminates rust from district heat pipes. The new deoxidation method works on radiators

    Energy Technology Data Exchange (ETDEWEB)

    Sonninen, R.; Leisio, C.

    1996-11-01

    Oxygen dissolving in district heating water through district heat pipes and pipe joints made of plastic corrodes many small and medium-size district heating systems, resulting in heat cuts in the buildings connected to these systems. IN some cases, corrosion products have even circulated back to district heating power plants, thus hampering heat generation in the worst of cases. People residing in blocks of flats where some radiator components are made of plastic also face a similar problem, though on a smaller scale. A small and efficient electrochemical deoxidation cell has now been invented to eliminate this nuisance, which occurs particularly in cold winter weather. (orig.)

  11. Electricity eliminates rust from district heat pipes. The new deoxidation method works on radiators

    Energy Technology Data Exchange (ETDEWEB)

    Sonninen, R.; Leisio, C.

    1996-11-01

    Oxygen dissolving in district heating water through district heat pipes and pipe joints made of plastic corrodes many small and medium-size district heating systems, resulting in heat cuts in the buildings connected to these systems. IN some cases, corrosion products have even circulated back to district heating power plants, thus hampering heat generation in the worst of cases. People residing in blocks of flats where some radiator components are made of plastic also face a similar problem, though on a smaller scale. A small and efficient electrochemical deoxidation cell has now been invented to eliminate this nuisance, which occurs particularly in cold winter weather. (orig.)

  12. Application of heat pipe technology in permanent mold casting of nonferrous alloys

    Science.gov (United States)

    Elalem, Kaled

    The issue of mold cooling is one, which presents a foundry with a dilemma. On the one hand; the use of air for cooling is safe and practical, however, it is not very effective and high cost. On the other hand, water-cooling can be very effective but it raises serious concerns about safety, especially with a metal such as magnesium. An alternative option that is being developed at McGill University uses heat pipe technology to carry out the cooling. The experimental program consisted of designing a permanent mold to produce AZ91E magnesium alloy and A356 aluminum alloy castings with shrinkage defects. Heat pipes were then used to reduce these defects. The heat pipes used in this work are novel and are patent pending. They are referred to as McGill Heat Pipes. Computer modeling was used extensively in designing the mold and the heat pipes. Final designs for the mold and the heat pipes were chosen based on the modeling results. Laboratory tests of the heat pipe were performed before conducting the actual experimental plan. The laboratory testing results verified the excellent performance of the heat pipes as anticipated by the model. An industrial mold made of H13 tool steel was constructed to cast nonferrous alloys. The heat pipes were installed and initial testing and actual industrial trials were conducted. This is the first time where a McGill heat pipe was used in an industrial permanent mold casting process for nonferrous alloys. The effects of cooling using heat pipes on AZ91E and A356 were evaluated using computer modeling and experimental trials. Microstructural analyses were conducted to measure the secondary dendrite arm spacing, SDAS, and the grain size to evaluate the cooling effects on the castings. The modeling and the experimental results agreed quite well. The metallurgical differences between AZ91E and A356 were investigated using modeling and experimental results. Selected results from modeling, laboratory and industrial trials are presented. The

  13. Phenomena associated with bench and thermal-vacuum testing of super conductors - Heat pipes.

    Science.gov (United States)

    Marshburn, J. P.

    1973-01-01

    Test failures of heat pipes occur when the functional performance is unable to match the expected design limits or when the power applied to the heat pipe (in the form of heat) is distributed unevenly through the system, yielding a large thermal gradient. When a thermal gradient larger than expected is measured, it normally occurs in the evaporator or condenser sections of the pipe. Common causes include evaporator overheating, condenser dropout, noncondensable gas formation, surge and partial recovery of evaporator temperatures, masking of thermal profiles, and simple malfunctions due to leaks and mechanical failures or flaws. Examples of each of these phenomena are described along with corresponding failure analyses and corrective measures.

  14. Experiments on heat pipes submitted to strong accelerations; Experimentation de caloducs soumis a de fortes accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Labuthe, A. [Dassault Aviation, 92 - Saint Cloud (France)

    1996-12-31

    In order to evaluate the possibility to use heat pipes as efficient heat transfer devices in aircrafts, a study of their behaviour during strong accelerations is necessary. This study has been jointly carried out by the Laboratory of Thermal Studies of Poitiers (France) and Dassault Aviation company. It is based on a series of tests performed with an experimental apparatus that uses the centrifugal effect to simulate the acceleration fields submitted to the heat pipe. Un-priming - priming cycles have been performed under different power and acceleration levels and at various functioning temperatures in order to explore the behaviour of heat pipes: rate of un-priming and re-priming, functioning in blocked mode etc.. This preliminary study demonstrates the rapid re-priming of the tested heat pipes when submitted to favourable acceleration situations and the possibility to use them under thermosyphon conditions despite the brief unfavourable acceleration periods encountered. (J.S.)

  15. Flight data analysis and further development of variable-conductance heat pipes. [for aircraft control

    Science.gov (United States)

    Enginer, J. E.; Luedke, E. E.; Wanous, D. J.

    1976-01-01

    Continuing efforts in large gains in heat-pipe performance are reported. It was found that gas-controlled variable-conductance heat pipes can perform reliably for long periods in space and effectively provide temperature stabilization for spacecraft electronics. A solution was formulated that allows the control gas to vent through arterial heat-pipe walls, thus eliminating the problem of arterial failure under load, due to trace impurities of noncondensable gas trapped in an arterial bubble during priming. This solution functions well in zero gravity. Another solution was found that allows priming at a much lower fluid charge. A heat pipe with high capacity, with close temperature control of the heat source and independent of large variations in sink temperature was fabricated.

  16. Theoretical and bibliographic synthesis on micro-heat pipes; Synthese theorique et bibliographique sur les microcaloducs

    Energy Technology Data Exchange (ETDEWEB)

    Sartre, V.; Lallemand, M. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1996-12-31

    The technology, dimensioning and performances of heat pipes are well known since several years. Micro-heat pipes occurred more recently with the miniaturization of systems to be cooled and the increase of surface heat fluxes to be dissipated. Publications concerning this topic are not much older than the 90`s. Using these papers, a bibliographic synthesis on micro-heat pipe performances, functioning and dimensioning is presented. Experimental studies demonstrate the efficiency of such systems but also their high sensitivity with respect to the capillary limit which leads to a progressive drying of the evaporator and a reduction of its thermal conductance. Theoretical studies are based on the same equations than heat pipes. More or less complex models have been proposed in the literature and a relatively simple model is presented in this paper. These studies have permitted to show the great influence of some parameters on micro-heat pipes functioning like: the pipe geometry, the fluid-wall contact angle, the level of pipes filling, and the bonding zone of the liquid film on the wall. (J.S.) 15 refs.

  17. Investigation of Freeze and Thaw Cycles of a Gas-Charged Heat Pipe

    Science.gov (United States)

    Ku, Jentung; Ottenstein, Laura; Krimchansky, Alexander

    2012-01-01

    The traditional constant conductance heat pipes (CCHPs) currently used on most spacecraft run the risk of bursting the pipe when the working fluid is frozen and later thawed. One method to avoid pipe bursting is to use a gas-charged heat pipe (GCHP) that can sustain repeated freeze/thaw cycles. The construction of the GCHP is similar to that of the traditional CCHP except that a small amount of non-condensable gas (NCG) is introduced and a small length is added to the CCHP condenser to serve as the NCG reservoir. During the normal operation, the NCG is mostly confined to the reservoir, and the GCHP functions as a passive variable conductance heat pipe (VCHP). When the liquid begins to freeze in the condenser section, the NCG will expand to fill the central core of the heat pipe, and ice will be formed only in the grooves located on the inner surface of the heat pipe in a controlled fashion. The ice will not bridge the diameter of the heat pipe, thus avoiding the risk of pipe bursting during freeze/thaw cycles. A GCHP using ammonia as the working fluid was fabricated and then tested inside a thermal vacuum chamber. The GCHP demonstrated a heat transport capability of more than 200W at 298K as designed. Twenty-seven freeze/thaw cycles were conducted under various conditions where the evaporator temperature ranged from 163K to 253K and the condenser/reservoir temperatures ranged from 123K to 173K. In all tests, the GCHP restarted without any problem with heat loads between 10W and 100W. No performance degradation was noticed after 27 freeze/thaw cycles. The ability of the GCHP to sustain repeated freeze/thaw cycles was thus successfully demonstrated.

  18. Development of four-point bending fatigue test method using continuously hydrogen-charging pipe specimen

    Science.gov (United States)

    Yoshimoto, T.; Matsuo, T.

    2017-05-01

    To evaluate hydrogen embrittlement, the following two types of testing method are available: (i) testing in high-pressure hydrogen gas environment and (ii) testing in ambient air using hydrogen precharged specimen. Testing in high-pressure hydrogen gas environment is technically difficult and expensive because high-pressure gas equipments, such as high-pressure vessel and pipe, have to be installed in the laboratory. On the other hand, in the case of precharging method, outgassing of hydrogen from the specimen occurs during the test. Therefore, hydrogen embrittlement can hardly be evaluated properly, especially, in long-term testing such as high cycle fatigue test at low frequency. In this study, to effectively evaluate the hydrogen embrittlement in fatigue, an experimental method, which was the four-point bending fatigue test system with a mechanism of internal circulation of hydrogen-charging solution in a pipe specimen, was developed. By using this method, the fatigue crack growth properties in the presence of hydrogen were investigated at frequencies of 0.05 Hz and 1 Hz.

  19. Pressure Profiles in a Loop Heat Pipe under Gravity Influence

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  20. Performance improvement of wire-bonded mesh screen flat heat pipe using water-based nanofluid

    Science.gov (United States)

    Wang, Ping-Yang; Chen, Yan-Jun; Liu, Zhen-Hua

    2016-12-01

    An experimental study was conducted to investigate the thermal performances of a new type of wire-bonded mesh screen flat heat pipe using water and nanofluid as working fluid to find better structure and the working fluid based on the present flat heat pipes. The influences of the kind of working fluid, mass concentration of nanofluid and operating pressure on the thermal performance of the heat pipe were investigated under the three steady operating pressures. It is found from the results that the thermal performance of wire-bonded mesh screen heat pipe are superior to that of wire-bonded flat heat pipe either using water or using nanofluid as working fluid; the thermal resistance of the former reduces distinctly and the maximum power increases obviously. Moreover, using nanofluid can significantly enhance the thermal performance of this heat pipe; enhanced ratios of the both heat transfer coefficient and maximum heat flux gradually increase with increasing the nanoparticle mass concentration in the nanofluid at the same operating pressure, peaking at the 1.0 wt%. Then, they will gradually reduce with further increase of mass concentration of nanofluid.

  1. Modeling of waste heat recovery by looped water-in-steel heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.; Lamfon, N.J.; Najjar, Y.S.H.; Habeebullah, M.H.; Alp, T.Y. [King Abdulaziz Univ., Jeddah (Saudi Arabia). College of Engineering

    1995-08-01

    Modeling and simulation of a water-in-steel heat pipe heat recovery system is undertaken in this paper. The heat recovery system consists of a looped two-phase thermosyphon that receives heat from the stack of a gas turbine engine and delivers it to the generator of an NH{sub 3}-H{sub 2}O absorption chiller. Variations in the operating temperature as well as evaporator geometry are investigated, and the consequences on system effectiveness are studied. It is concluded that the model for the water-in-steel looped thermosyphon overcomes drawbacks of the water-in-copper thermosyphon, and that the steel system is simpler in design, lower in cost, and more competent in performance. (author)

  2. An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid

    Science.gov (United States)

    Ghanbarpour, M.; Khodabandeh, R.; Vafai, K.

    2016-07-01

    In this study, effect of Al2O3 nanofluid on thermal performance of cylindrical heat pipe is investigated. An analytical model is employed to study the thermal performance of the heat pipe utilizing nanofluid and the predicted results are compared with the experimental results. A substantial change in the heat pipe thermal resistance, effective thermal conductivity and entropy generation of the heat pipe is observed when using Al2O3 nanofluid as a working fluid. It is found that entropy generation in the heat pipe system decreases when using a nanofluid due to the lower thermal resistance of the heat pipe which results in an improved thermal performance. It is shown that the proposed model is in reasonably good agreement with the experimental results and can be used as a fast technique to explore various features of thermal characteristics of the nanofluid based heat pipe.

  3. The Natural Convection Heat Transfer inside Vertical Pipe: Characteristic of Pipe Flow according to the Boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung Min; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The Passive Cooling System (PCS) driven by natural forces drew research attention since Fukushima nuclear power plant accident. This study investigated the natural convection heat transfer inside of vertical pipe with emphasis on the phenomena regarding the boundary layer interaction. Numerical calculations were carried out using FLUENT 6.3. Experiments were performed for the parts of the cases to explore the accuracy of calculation. Based on the analogy, heat transfer experiment is replaced by mass transfer experiment using sulfuric acid copper sulfate (CuSO{sub 4}. H{sub 2}SO{sub 4}) electroplating system. The natural convection heat transfer inside a vertical pipe is studied experimentally and numerically. Experiments were carried out using sulfuric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) based on the analogy concept between heat and mass transfer system. Numerical analysis was carried out using FLUENT 6.3. It is concluded that the boundary layer interaction along the flow passage influences the heat transfer, which is affected by the length, diameter, and Prandtl number. For the large diameter and high Prandtl number cases, where the thermal boundary layers do not interfered along the pipe, the heat transfer agreed with vertical flat plate for laminar and turbulent natural convection correlation within 8%. When the flow becomes steady state, the forced convective flow appears in the bottom of the vertical pipe and natural convection flow appears near the exit. It is different behavior from the flow on the parallel vertical flat plates. Nevertheless, the heat transfer was not different greatly compared with those of vertical plate.

  4. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    Science.gov (United States)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  5. Effect of Localized Heating on Three-Dimensional Flat-Plate Oscillating Heat Pipe

    Directory of Open Access Journals (Sweden)

    S. M. Thompson

    2010-01-01

    Full Text Available An experimental investigation was conducted, both thermally and visually, on a three-dimensional flat-plate oscillating heat pipe (3D FP-OHP to characterize its performance under localized heat fluxes while operating in the bottom heating mode and charged with acetone at a filling ratio of 0.73. The cooling area was held constant and three heating areas of 20.16 cm2, 11.29 cm2, and 1.00 cm2 were investigated, respectively. It was found that as the heating area was reduced and higher heat fluxes were imposed, the thermal resistance increased and the amplitude of thermal oscillations in the evaporator increased and became more chaotic. Using neutron radiography, it was observed that fluid oscillations did not occur in outer channels located away from the region of local heating. Although the thermal resistance increased during localized heating, a maximum heat flux of 180 W/cm2 was achieved with the average evaporator temperature not exceeding 90∘C.

  6. Testing of advanced ceramic fabric heat pipe for a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.; Webb, B.J.; Bates, J.M.

    1991-09-01

    The development and application of Stirling engines for space power production requires concomitant development of an advanced heat rejection system. We are currently involved in the design, development, and testing of advanced ceramic fabric (ACF) water heat pipes for optimal heat rejection from the Stirling cycle without the use of hazardous working fluids such as mercury. Our testing to-date has been with a 200-{mu}m thick titanium heat pipe utilizing Nextel {trademark} fabric as both the outer structural component and as a wick. This heat pipe has been successfully started up from a frozen condition against a negative 4 degree tilt (i.e., fluid return to evaporator was against gravity), with 75 W heat input, in ambient air. In a horizontal orientation, up to 100 W heat input was tolerated without experiencing dryout. 7 refs., 5 figs., 2 tabs.

  7. Resolving Ultrafast Heating of Dense Cryogenic Hydrogen

    Science.gov (United States)

    Zastrau, U.; Sperling, P.; Harmand, M.; Becker, A.; Bornath, T.; Bredow, R.; Dziarzhytski, S.; Fennel, T.; Fletcher, L. B.; Förster, E.; Göde, S.; Gregori, G.; Hilbert, V.; Hochhaus, D.; Holst, B.; Laarmann, T.; Lee, H. J.; Ma, T.; Mithen, J. P.; Mitzner, R.; Murphy, C. D.; Nakatsutsumi, M.; Neumayer, P.; Przystawik, A.; Roling, S.; Schulz, M.; Siemer, B.; Skruszewicz, S.; Tiggesbäumker, J.; Toleikis, S.; Tschentscher, T.; White, T.; Wöstmann, M.; Zacharias, H.; Döppner, T.; Glenzer, S. H.; Redmer, R.

    2014-03-01

    We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300 fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ˜0.9 ps. The rise time agrees with radiation hydrodynamics simulations based on a conductivity model for partially ionized plasma that is validated by two-temperature density-functional theory.

  8. Thermal energy storage and heat transfer support program. Task-5 heat pipe life test study. Facilities upgrading and maintenance

    Science.gov (United States)

    Ponnappan, R.

    1991-03-01

    This report describes the recommissioning, upgrading, and maintaining of thirty low and five high temperature heat pipe life test rigs. This is an ongoing research effort, originally put together by NASA LeRC, continued by the Air Force. The 92 cm long 1.27 cm dia. spacecraft-type heat pipes have completed nearly 74,000 hours of life tests. They exhibit varying Delta Ts across the length and symptoms of gas accumulation. Life test status and temperature profile for each pipe are presented. The sodium and potassium pipes have undergone relatively less hours of testing (34,000 hours) only. These five pipes are exhibiting normal status. All the life tests will continue till failure and there will be updates of this report.

  9. The Heat-Pipe Hypothesis for Early Crustal Development of Terrestrial Planets

    Science.gov (United States)

    Webb, A. G.; Moore, W. B.; Simon, J. I.

    2014-12-01

    Crusts of the terrestrial planets other than Earth are dominated by mafic / ultramafic volcanics, with some contractional tectonics and minor extension. This description may also fit the early Earth. Therefore, a single process may have controlled early crustal development. Here we explore the hypothesis that heat-pipe cooling mode dominates early phases of terrestrial planet evolution. Volcanism is the hallmark of heat-pipe cooling: hot magma moves through the lithosphere in narrow channels, then is deposited and cools at the surface. A heat-pipe planet develops a thick, cold, downward-advecting lithosphere dominated by mafic/ultra-mafic flows. Contractional deformation occurs throughout the lithosphere as the surface is buried and forced toward smaller radii. Geologies of the Solar system's terrestrial planets are consistent with early heat-pipe cooling. Mercury's surface evolution is dominated by low-viscosity volcanism until ~4.1-4.0 Ga, with little activity other than global contraction since. Similar, younger features at Venus are commonly interpreted in terms of catastrophic resurfacing events with ~0.5 billion-year periodicity, but early support of high topography suggests a transition from heat-pipe to rigid-lid tectonics. Thick heat-pipe lithosphere may preserve the crustal dichotomy between Mars' northern and southern hemispheres, and explain the range in trace element abundances and isotopic compositions of Martian meteorites. At the Moon, global serial volcanism can explain refinement of ferroan anorthite rich rocks and coeval production of the "Mg-suite" rocks. The Moon's shape is out of hydrostatic equilibrium; it may represent a fossil preserved by thick early lithosphere. Active development of Jupiter's moon Io, which is warmed by tidal heating, is widely interpreted in terms of heat-pipe cooling. Given its potential ubiquity in the Solar system, heat-pipe cooling may be a universal process experienced by all terrestrial bodies of sufficient size.

  10. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    Directory of Open Access Journals (Sweden)

    Patrik Nemec

    2014-01-01

    Full Text Available Loop heat pipes (LHPs are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements’ influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT have been made.

  11. Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating

    Science.gov (United States)

    Ku, Jentung; Garrison, Matt; Patel, Deepak; Robinson, Frank; Ottenstein, Laura

    2015-01-01

    The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.

  12. Heat pipe central solar receiver. Semiannual progress report, September 1, 1976--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W. B.; Wolf, D. A.

    1977-09-01

    It is proposed to develop a solar-to-gas heat exchanger for a Central Solar Receiver Power Plant. The concept employs heat pipes to transfer the concentrated solar flux to the gaseous working medium of a Brayton cycle conversion system. During early phases of the program, an open air cycle with recuperator and a turbine inlet temperature of 800/sup 0/C was selected as the optimum design. The predicted cycle efficiency is 33 percent and the overall solar-to-electric efficiency is 20 percent. Three potential receiver configurations were also identified during the initial phases of the program. Optimum heat pipe diameter is approximately 5 cm for all three receiver configurations, and typical lengths are 2 to 3 meters. The required number of heat pipes for a 10 MWe receiver ranges from 2000 to 8000. Heat transport requirements per pipe vary from 4 to 18 Kw. Several wick structures were developed and evaluated in subscale heat pipe tests using sodium as the working fluid. One full scale heat pipe (5 cm diameter by 183 cm long) was developed and tested with sodium as the working fluid.

  13. Heat Pipe Solar Receiver for Oxygen Production of Lunar Regolith Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research project by Advanced Cooling Technologies, Inc. (ACT) will develop an advanced high temperature heat pipe solar receiver that...

  14. Loop Heat Pipe with Thermal Control Valve for Passive Variable Thermal Link Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Loop heat pipes (LHPs) can provide variable thermal conductance needed to maintain electronics and batteries on Lunar/Martian rovers/landers within desired...

  15. Loop heat pipe for thermal conditions supplying systems for elements of radio electronic equipment

    Directory of Open Access Journals (Sweden)

    Khayrnasov S. М.

    2010-06-01

    Full Text Available The loop heat pipe design presented in the article provides the transmission of thermal flow up to 105 W when working in temperature range of 20—90°C and on any space orientation.

  16. VALIDATION OF SIMULATION MODELS FOR DIFFERENTLY DESIGNED HEAT-PIPE EVACUATED TUBULAR COLLECTORS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Dragsted, Janne; Furbo, Simon

    2007-01-01

    Differently designed heat-pipe evacuated tubular collectors have been investigated theoretically and experimentally. The theoretical work has included development of two TRNSYS [1] simulation models for heat-pipe evacuated tubular collectors utilizing solar radiation from all directions. One model...... coating on both sides. The input to the models is thus not a simple collector efficiency expression but the actual collector geometry. In this study, the TRNSYS models are validated with measurements for four differently designed heat-pipe evacuated tubular collectors. The collectors are produced...... cases, a good degree of similarity between measured and calculated results is found. With these validated models detailed parameter analyses and collector design optimization are now possible. Key words: Evacuated tubular collector, Heat pipe, Thermal performance, TRNSYS simulation....

  17. Titanium-Water Heat Pipe Radiator for Spacecraft Fission Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program will develop titanium/water heat pipes suitable for Spacecraft Fission Power. NASA is examining small fission power reactors for future space...

  18. Assessment of existing and prospective piping technology for district-heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Oliker, I.

    1979-09-01

    Data on design features and operational experience of 40 hot water and steam district-heating networks with an overall heat capacity of 18,000 MWt have been collected, systematized, and analyzed. Piping networks located in Canada, Denmark, Finland, France, Italy, Japan, Netherlands, Sweden, USA, USSR, and West Germany have been analyzed and the data assembled. The data bank and analysis of the operational experience design features of hot water and steam district-heating networks are provided in Sections 2 and 3. In Section 4 the piping installation design is optimized in order to reduce costs wherever possible, without jeopardizing overall system efficiency, reliability or service life, and employing a mixture of typical US and European district-heating practices. The status of prospective non-metallic piping materials is presented in Section 5. The following materials have been investigated: fiberglass reinforced plastic, cross-linked polyethylene, polybutylene, prestressed concrete, polymer concrete, and asbestos-cement piping. (MCW)

  19. An experimental study of heat and momentum transfer in pipe flow of viscoelastic fluids

    Science.gov (United States)

    Ng, K. S.

    Heat transfer and pressure drop results are presented for pipe flow of aqueous solutions of polyacrylamide and polyethylene oxide in weight concentration of a few thousand parts per million. Experiments were conducted in two experimental set-ups. The first set-up consisted of two different diameter tubes. The turbulent flow hydrodynamic entry length was found to be 110 pipe diameters. Laminar friction factor data were in good agreement with correlations for purely viscous non-Newtonian fluids. The second set-up consisted of three different diameter tubes with heat transfer length-to-diameter ratio of 282, 489, and 648. The turbulent flow thermal entry length was found to be about 400 pipe diameters. The asymptotic dimensionless heat transfer coefficients were observed to be independent of pipe diameter, polymer molecular weight, and polymer concentration, suggesting the existence of a maximum heat transfer reduction asymptote.

  20. Investigation of arterial gas occlusions. [effect of noncondensable gases on high performance heat pipes

    Science.gov (United States)

    Saaski, E. W.

    1974-01-01

    The effect of noncondensable gases on high-performance arterial heat pipes was investigated both analytically and experimentally. Models have been generated which characterize the dissolution of gases in condensate, and the diffusional loss of dissolved gases from condensate in arterial flow. These processes, and others, were used to postulate stability criteria for arterial heat pipes under isothermal and non-isothermal condensate flow conditions. A rigorous second-order gas-loaded heat pipe model, incorporating axial conduction and one-dimensional vapor transport, was produced and used for thermal and gas studies. A Freon-22 (CHCIF2) heat pipe was used with helium and xenon to validate modeling. With helium, experimental data compared well with theory. Unusual gas-control effects with xenon were attributed to high solubility.

  1. Modeling of transient heat pipe operation. Semiannual status report, 19 August 1986-18 February 1987

    Energy Technology Data Exchange (ETDEWEB)

    Colwell, G.T.

    1987-07-01

    The use of heat pipes is being considered as a means of reducing the peak temperature and large thermal gradients at the leading edges of reentry vehicles and hypersonic aircraft and in nuclear reactors. In the basic cooling concept, the heat pipe covers the leading edge, a portion of the lower wing surface, and a portion of the upper wing surface. Aerodynamic heat is mainly absorbed at the leading edge and transported through the heat pipe to the upper and lower wing surface, where it is rejected by thermal radiation and convection. Basic governing equations are written to determine the startup, transient, and steady state performance of a haet pipe which has initially frozen alkali-metal as the working fluid.

  2. Diffusion-controlled startup of a gas-loaded liquid-metal heat pipe

    Science.gov (United States)

    Ponnappan, R.; Boehman, L. I.; Mahefkey, E. T.

    1990-07-01

    Liquid-metal heat pipes have exhibited difficulties starting up from a frozen-state. Inert gas loading is a possible solution to the frozen-state startup problem. The present study deals with the diffusion-controlled startup analysis and testing of an argon-loaded, 2-m-long, stainless steel-sodium heat pipe of the double-walled type with artery channel and long adiabatic section. A two-dimensional, quasi-steady state, binary vapor-gas diffusion model determined the energy transport rate of vapor at the diffusion front. The analytical solution to the diffusion problem provided the vapor flux, which in turn was used in the one-dimensional transient thermal model of the heat pipe to predict the time rate-of-change of temperature and position of the hot front. The experimental test results successfully demonstrated the startup of a gas-loaded sodium heat pipe and validated the diffusion model of the startup.

  3. Refractory Metal Heat Pipe Life Test - Test Plan and Standard Operating Procedures

    Science.gov (United States)

    Martin, J. J.; Reid, R. S.

    2010-01-01

    Refractory metal heat pipes developed during this project shall be subjected to various operating conditions to evaluate life-limiting corrosion factors. To accomplish this objective, various parameters shall be investigated, including the effect of temperature and mass fluence on long-term corrosion rate. The test series will begin with a performance test of one module to evaluate its performance and to establish the temperature and power settings for the remaining modules. The performance test will be followed by round-the-clock testing of 16 heat pipes. All heat pipes shall be nondestructively inspected at 6-month intervals. At longer intervals, specific modules will be destructively evaluated. Both the nondestructive and destructive evaluations shall be coordinated with Los Alamos National Laboratory. During the processing, setup, and testing of the heat pipes, standard operating procedures shall be developed. Initial procedures are listed here and, as hardware is developed, will be updated, incorporating findings and lessons learned.

  4. Optimisation of Double Pipe Helical Tube Heat Exchanger and its Comparison with Straight Double Tube Heat Exchanger

    Science.gov (United States)

    Kareem, Rashid

    2017-10-01

    Optimization of double pipe helical coil heat exchanger with various optimizing parameters and its comparison with double pipe straight tube are the prime objectives of this paper. Numerical studies were performed with the aid of a commercial computational fluid dynamics package ANSYS FLUENT 14. In this paper the double pipe helical coil is analysed under turbulent flow conditions for optimum heat exchanger properties. The parameters used for optimization are cross-sectional shape and taper angles. Optimization analysis is being carried out for finding best cross sectional shape of heat exchanger coils by using rectangular, square, triangular and circular cross-sections. The tapered double pipe helical coil is then analysed for best heat transfer and pressure drop characteristics by varying the angle of taper. Finally, an optimum coil on the basis of all the analysis is selected. This optimized double pipe helical coil is compared with double pipe straight tube of equivalent cross-sectional area and length as that of unwounded length of double pipe helical coil.

  5. Numerical investigation on the axial interaction between buried district heating pipes and soil

    Energy Technology Data Exchange (ETDEWEB)

    Weidlich, Ingo; Achmus, Martin

    2008-09-15

    Pipe-soil interaction has to be taken into account in the design of district heating (DH) pipes. The investigation presented here focuses on the effect of the reduction of axial friction forces due to cyclic axial displacements and the corresponding stress redistribution. Calculations with a three-dimensional finite element model were carried out in which a standard situation of a buried DH pipe was studied. A significant reduction of friction with cyclic axial displacements was obtained, although no temperature loading and thus no radial expansion of the pipe was considered. The reason for the friction force decrease is a densification of the soil beneath the pipe, which leads to a decrease of the normal stress acting between pipe and soil.

  6. Pulse mitigation and heat transfer enhancement techniques. Volume 4: Transient behavior of heat pipe with thermal energy storage under pulse heat loads

    Science.gov (United States)

    Chow, L. C.; Chang, M. J.

    1992-08-01

    A novel design of a high-temperature axially grooved heat pipe (HP), which utilizes thermal energy storage (TES) to mitigate pulse heat loads, was presented. Phase-change material (PCM) encapsulated in cylindrical containers was used for thermal energy storage. The transient responses of the HP/TES system under two types of pulse heat loads were studied numerically. The first type is pulse heat loads applied at the heat pipe evaporator; the second type is reversed-pulse heat loads applied at the condenser. The transient response of three different HP/TES configurations were compared: (1) a heat pipe with a large empty cylinder installed in the vapor core, (2) a heat pipe with a large PCM cylinder, and (3) a heat pipe with six small PCM cylinders. It was found that the PCM is very effective in mitigating the adverse effect of pulse heat loads. The six small PCM cylinders are more efficient than the large PCM cylinder in relaxing the heat pipe temperature increase under pulse heat loads.

  7. Flight data analysis and further development of variable-conductance heat pipes

    Science.gov (United States)

    Eninger, J. E.; Edwards, D. K.; Luedke, E. E.

    1976-01-01

    The work focuses on the mathematical modeling of three critical mechanisms of heat-pipe operation: (1) the effect that excess liquid has on heat-pipe performance; (2) the calculation of the dryout limit of circumferential grooves; (3) an efficient mathematical model for the calculation of the viscous-inertial interaction in the vapor flow. These mathematical models are incorporated in the computer program GRADE II, which is described.

  8. Thermal Vacuum Test of GLAS Propylene Loop Heat Pipe Development Model

    Science.gov (United States)

    Baker, Charles; Butler, Dan; Ku, Jentung; Kaya, Tarik; Nikitkin, Michael

    2000-01-01

    This paper presents viewgraphs on Thermal Vacuum Tests of the GLAS (Geoscience Laser Altimeter System) Propylene Loop Heat Pipe Development Model. The topics include: 1) Flight LHP System (Laser); 2) Test Design and Objectives; 3) DM (Development Model) LHP (Loop Heat Pipe) Test Design; 4) Starter Heater and Coupling Blocks; 5) CC Control Heaters and PRT; 6) Heater Plates (Shown in Reflux Mode); 7) Startup Tests; 8) CC Control Heater Power Tests for CC Temperature Control; and 9) Control Temperature Stability.

  9. Variable conductance heat pipe technology for precise temperature control of the NASA/DDLT transmitter

    Science.gov (United States)

    Vanevenhoven, D. E.; Antoniak, D.

    1989-01-01

    The application of variable conductance heat pipe technology for achieving precise temperature control to + or - 0.1 C for a space-based laser diode transmitter is described. Heat pipe theory of operation and test data are presented along with a discussion of its applicability for NASA's Direct Detection Laser Transceiver (DDLT) program. This design for the DDLT transmitter features a reduction in space radiator size and up to 42 percent reduction in prime power requirements.

  10. Experimental investigation on the thermal performance and optimization of heat sink with U-shape heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Tian Shen [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia); Hung, Yew Mun [School of Engineering, Monash University, 46150 Bandar Sunway (Malaysia)

    2010-11-15

    Experimental investigation is carried out to study the thermal performance of a heat sink with finned U-shape heat pipes which is a contemporary central processing unit (CPU) cooler compatible for a wide range of high-frequency microprocessors. The optimum range of operating heat load based on thermal resistance analysis of the heat sink is characterized. The convection heat transfer coefficient between the fins and the ambient air is estimated by using Bessel's modified equation in conjunction with the results obtained through the experimental investigation. The thermal optimization of the heat sink involves the determination of the optimized L-ratio (ratio of the evaporator section length to the condenser section length) of the U-shape heat pipe, by evaluating the minima of the thermal resistance function, in which case the empirical convection heat transfer coefficient is applied in the calculation. In conjunction with this, the optimal L-ratio of a U-shape heat pipe is found to be dependent on other geometrical parameters such as the heat pipe diameter and the fin spacing, which are of practical engineering importance in the optimum design of the heat sink. (author)

  11. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    Science.gov (United States)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a "segmented" thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed "segmented" model shows more precise than the "non-segmented" model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the "segmented" model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  12. Theoretical analysis of heat pipe thermal performance according to nanofluid properties

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seung Min [The 6th Research and Development Institute, Agency for Defense Development, Daejeon (Korea, Republic of)

    2015-07-15

    In this study, we theoretically investigate the thermal performances of heat pipes that have different nano-fluid properties. Two different types of nano-particles have been used: Al{sub 2}O{sub 3} and CuO. The thermal performances of the heat pipes are observed for varying nano-particle aggregations and volume fractions. Both the viscosity and the conductivity increase as the volume fraction and the aggregation increase, respectively. Increasing the volume fraction helps increase the capillary limit in the well-dispersed condition. Whereas, the capillary limit is decreased under the aggregate condition, when the volume fraction increases. The dependence of the heat pipe thermal resistance on the volume fraction, aggregation, and conductivity of the nano-particles is analyzed. The maximum thermal transfer of the heat pipe is highly dependent on the volume fraction because of the high permeability of the heat pipe. For the proposed heat pipe, the optimum volume fraction of the nano-particle can be seen through 3D graphics.

  13. Coaxial heat pipe for cooling of a laser’s reflector

    Directory of Open Access Journals (Sweden)

    Gershuni A. N.

    2014-06-01

    Full Text Available The paper presents the development and research results for a coaxial heat pipe designed for cooling of a reflector of a solid-state laser. A coaxial cylindrical heat pipe, designed to cool the laser reflector, provides that the temperature of the heat-removing surface does not exceed 120°C at any orientation in the gravitational field, if the heat is removed by forced convection of air with the temperature of 60°C in a pulsed mode of heat flow supply of 300 W. Thermal resistance of the developed heat pipe is 0,03 K/W, the specific thermal resistance — 1,1•10–3 m2•K/W. The developed cooling system based on the evaporation-condensation principle, allows ensuring temperature uniformity of the cooling surface at low thermal resistance.

  14. Investigations on bending condition for welded carbon steel pipe by high frequency induction heating

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Toshimi; Matsumoto, Teruo; Tamai, Yasumasa

    1987-08-01

    The induction heating bent pipes of carbon steel welded pipes are used for the piping in nuclear power plants, in place of elbows. This application is useful to suppress the radiation exposure at in-service inspection. The quality of the bent pipes are controlled on the technical standards of welding for electrical equipments. However, the influence of the bending condition has not been yet sufficiently understood on the mechanical properties of the bent pipes. The purpose of this investigation is to establish the appropriate bending condition for the carbon steel weld pipe which corresponds to the carbon steel pipe STPT 42 in JIS G 3456, in relation to the transformation of the structures of the base metal and the weld metal during bending. The results are summarized as follows: (1) The maximum heating temperature should be set in the range from 900 deg C to 1000 deg C, in order to assure the high Charpy impact properties. (2) The maximum heating temperature which is lower than 900 deg C causes the imperfect transformation of the base metal and the weld metal, then is likely to spoil the Charpy impact properties. (3) Higher heating rate causes the increase of A/sub c1/ point, remarkably for the base metal which has higher carbon content than weld metal. (4) Higher cooling rate causes hardening of the base metal and weld metal, however, the transformation temperature does not change remarkably, except for the Ar/sub 1/ point of base metal.

  15. Research on thermal characteristics of heat pipes for led lightning devices

    Directory of Open Access Journals (Sweden)

    Lozovoi M. A.

    2014-12-01

    Full Text Available New energy-saving technologies for lighting is a promising trend in lighting technology. To this end, during the recent decade, have been actively developed and implemented lighting units based on LED modules. Reliability of such devices is largely dependent on the ensuring of cooling of the LEDs. Heat pipes are being used with ever increasing frequency for increasing an efficiency of cooling of powerful LEDs within a lightening device. Results of experimental modeling of thermal characteristics of two aluminum heat pipes with grooved capillary structure and ammonia used as a heat transfer agent, designed for application as a heat transfer elements in designs of powerful LED lightening device with forced air cooling are presented in this paper. It is shown that for the heat flux range of 50 to 100 W and for incident flow speed in the range of 0.8 to 2.1 m/s the temperature in the heating zone of the heat pipe falls into the range of 31.0 to 52.5 °C. In this case the temperature difference along the heat pipe is between 0.9…1.7 °C, when a minimal value of the fed heat flux is 50 W, and 1.7…3.1°C, when a maximum value of the heat flux is 100 W. The value of heat transfer resistance of the heat pipes was in the range of 0.012 to 0.044 °C/W. The key factors influencing the thermal characteristics of the heat pipes are: the value of the fed heat flux, the speed of cooling air flux, heat pipe inclination angle with respect to the horizon. By using five such heat pipes within the powerful LED lightning device it is possible to achieve an elimination of the total heat flux from LED modules up to 500 W. At an efficiency factor of LEDs of about 75% this is equivalent to intake power 665 W. Taking into account that luminous efficiency of modern LEDs is about 10 times as high as those of incandescent lamps, proposed lightning device will produce a luminous flux which is equivalent to the luminous flux of a lightening device with incandescent lamps

  16. Influence of dimension parameters of the gravity heat pipe on the thermal performance

    Science.gov (United States)

    Kosa, Ľuboš; Nemec, Patrik; Jobb, Marián; Malcho, Milan

    2016-06-01

    Currently the problem with the increasing number of electronic devices is a problem with the outlet Joule heating. Joule heating, also known as ohmic heating and resistive heating, is the process by which the passage of an electric current through a conductor releases heat. Perfect dustproof cooling of electronic components ensures longer life of the equipment. One of more alternatives of heat transfer without the using of mechanical equipment is the use of the heat pipe. Heat pipes are easy to manufacture and maintenance of low input investment cost. The advantage of using the heat pipe is its use in hermetic closed electronic device which is separated exchange of air between the device and the environment. This experiment deals with the influence of changes in the working tube diameter and changing the working fluid on performance parameters. Changing the working fluid and the tube diameter changes the thermal performance of the heat pipe. The result of this paper is finding the optimal diameter with ideal working substance for the greatest heat transfer for 1cm2 sectional area tube.

  17. Resonance Ionization Spectroscopy of Cesium Atoms in a Cesium Heat Pipe

    Science.gov (United States)

    Ardis, Robert G.; Gardner, Bernard W.; Smith, R. Seth

    1997-11-01

    A Cesium Heat Pipe has been constructed to produce a cesium metal vapor for use in laser spectroscopy. The heat pipe consists of a 24 inch stainless steel pipe with 2 inch diameter calcium fluoride windows on each end. Electric heaters are used to control the cesium vapor pressure. An argon buffer gas is used to maintain high transmittance through the end windows. Sensors are used to monitor both temperature and pressure. A Nd:YAG-pumped dye laser system is used to probe the cesium atoms via resonance ionization spectroscopy. Details of the construction of the heat pipe and the experimental setup will be presented. The results of the resonance ionization spectroscopy will be discussed. This experimental setup can be utilized with undergraduates in courses such as Optics, Laser Physics, and Senior Laboratory/Research.

  18. Innovative two-pipe active chilled beam system for simultaneous heating and cooling of office buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Afshari, Alireza; Bergsøe, Niels Christian;

    2014-01-01

    energy between zones with one hydronic circuit, operating with a water temperature between 20°C and 23°C. To calculate the energy performance of the system, simulation-based research was developed. The two-pipe system was modelled by using EnergyPlus, a whole building energy simulation program. Hourly......The aim of this paper was to investigate the energy savings potential of an innovative two-pipe system in an active chilled beam application for heating and cooling of office buildings. The characteristic of the system is its ability to provide simultaneous heating and cooling by transferring...... heating, cooling and ventilation loads were calculated by the program and an annual energy consumption evaluation of the system was made. Simulation results showed that the innovative two-pipe active chilled beam system used approximately 5% less energy than a conventional four-pipe system....

  19. The TX-model - a quantitative heat loss analysis of district heating pipes by means of IR surface temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zinki, Heimo [ZW Energiteknik, Nykoeping (Sweden)

    1996-11-01

    The aim of this study was to investigate the possibility of analysing the temperature profile at the ground surface above buried district heating pipes in such a way that would enable the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of advanced IR-thermography. For this purpose, the principle of the TX - model has been developed, based on the fact that the heat losses from pipes buried in the ground have a temperature signature on the ground surface. Qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques primarily make use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss per unit length. The basic idea is that the integral of the temperature profile perpendicular to the pipe, called TX, is a function of the heat loss, but is also affected by other parameters such as burial depth, heat diffusivity, wind, precipitation and so on. In order to analyse the parameters influencing the TX- factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is by and large unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at different sites in Denmark, Finland, Sweden and USA through a co-operative research program organised and partially financed by the IEA District Heating Programme, Task III, and

  20. Research Progress of MEMS Micro Heat Pipes%MEMS微型热管研究进展

    Institute of Scientific and Technical Information of China (English)

    屈健; 王谦; 吴慧英

    2012-01-01

    MEMS微型热管作为一种新型的热管技术,在微电子、光电池、红外探测头和激光二极管等的热控制方面具有很大的应用前景.首先,介绍了MEMS微型热管的特点和基本工作原理,简单回顾了其发展历程.然后,从MEMS微型热管的加工制作方法、通道尺寸和总体结构特点出发,指出了其优势所在.在此基础上,综述了近年来微型槽道热管、微型毛细泵回路、微型回路热管和微型振荡热管等不同类型MEMS微型热管的研究进展.最后,总结了MEMS微型热管的发展趋势和实际应用所面临的挑战,指出降低制作成本、优化工质充注封装工艺、改进测试手段和加强运行机理研究是今后工作的重点.%The MEMS micro heat pipe, as a novel heat pipe technology, is considered as one of the most promising choices for thermal control applications in microelectronics, photovoltaic cells, infrared detectors, laser diodes, etc. The basic principle and characteristics of MEMS micro heat pipes are firstly introduced, and the development history of which is reviewed briefly. Then, the fabrication method, channel size, and overall structure feature are compared with those of a traditional heat pipe, which account for the advantages of a MEMS micro heat pipe. Based on the discussion above, the progress of the micro grooved heat pipe, micro capillary pumped loop, micro loop heat pipe, micro pulsating heat pipe and other different types of the MEMS micro heat pipes are thoroughly reviewed. Finally, the development tendency and challenges impacting on real applications of MEMS micro heat pipes are prospected, and it is pointed out that the fabrication cost reduction, working fluid filling and packaging optimization, testing method improvement, as well as operational mechanism investigation are identified as major issues for the future research.

  1. Influence of Heat Input, Working Fluid and Evacuation Level on the Performance of Pulsating Heat Pipe

    Directory of Open Access Journals (Sweden)

    K. Rama Narasimha

    2012-01-01

    Full Text Available An experimental study on pulsating heat pipe (PHP is presented in this work. A closed loop PHP with a single U turn is fabricated and tested. The transient and steady state experiments are conducted and operating temperatures are measured. The experiments are carried out for different working fluids, heat input and for different evacuation levels. The derived parameters include thermal resistance and heat transfer coefficient of PHP. The results of these experiments show an intermittent motion of the working fluid at lower heat input. The temperature difference between evaporator and condenser at steady state is found lower for acetone compared to water, ethanol and methanol. Lower value of thermal resistance and higher value of heat transfer coefficient are observed in case of acetone compared to water, ethanol and methanol. Lower values of temperature difference between evaporator and condenser and thermal resistance and higher value of heat transfer coefficient are observed at atmospheric conditions of operation of PHP compared to evacuation conditions. The Power Spectral Density Analysis is also carried out on the results of these experiments using FFT technique to analyse the pulsating motion of the fluid in a PHP. In the Power Spectral Density analysis, the frequency distribution of temperature variation in PHP was observed over a wider range, signifying the periodic motion in the fluid flow of the liquid slug and vapour plug. This characteristic frequency corresponded to the characteristic time for a couple of adjacent vapour plug and liquid slug passing through a specific local wall surface in a PHP.

  2. Performance Study of Solar Heat Pipe with Different Working Fluids and Fill Ratios

    Science.gov (United States)

    Harikrishnan, S. S.; Kotebavi, Vinod

    2016-09-01

    This paper elaborates on the testing of solar heat pipes using different working fluids, fill ratios and tilt angles. Methanol, Acetone and water are used as working fluids, with fill ratios 25%, 50%, 75% and 100%. Experiments were carried out at 600 and 350 inclinations. Heat pipe condenser section is placed inside a water basin containing 200ml of water. The evaporator section is exposed to sunlight where the working fluid gets heated and it becomes vapour and moves towards the condenser section. In the condenser section the heat is given to the water in the basin and the vapour becomes liquid and comes back to the evaporator section due to gravitational force. Two modes of experiments are carried out: 1) using a parabolic collector and 2) using heat pipe with evacuated tubes. On comparative study, optimum fill ratio is been found to be 25% in every case and acetone exhibited slightly more efficiency than methanol and water. As far as the heat pipe orientation is concerned, 600 inclination of the heat pipe showed better performance than 350

  3. High performance felt-metal-wick heat pipe for solar receivers

    Science.gov (United States)

    Andraka, Charles E.; Moss, Timothy A.; Baturkin, Volodymyr; Zaripov, Vladlen; Nishchyk, Oleksandr

    2016-05-01

    Sodium heat pipes have been identified as a potentially effective heat transport approach for CSP systems that require near-isothermal input to power cycles or storage, such as dish Stirling and highly recuperated reheat-cycle supercritical CO2 turbines. Heat pipes offer high heat flux capabilities, leading to small receivers, as well as low exergetic losses through isothermal coupling with the engine. Sandia developed a felt metal wick approach in the 1990's, and demonstrated very high performance1. However, multiple durability issues arose, primarily the structural collapse of the wick at temperature over short time periods. NTUU developed several methods of improving robustness of the wick2, but the resulting wick had limited performance capabilities. For application to CSP systems, the wick structures must retain high heat pipe performance with robustness for long term operation. In this paper we present our findings in developing an optimal balance between performance and ruggedness, including operation of a laboratory-scale heat pipe for over 5500 hours so far. Application of heat pipes to dish-Stirling systems has been shown to increase performance as much as 20%3, and application to supercritical CO2 systems has been proposed.

  4. An analytical and experimental investigation of rotating, non-capillary heat pipes

    Science.gov (United States)

    Marto, P. J.

    1972-01-01

    An approximate theoretical model is derived for laminar film condensation on the inside of a rotating, truncated cone, and is used to predict the heat transfer performance of rotating, non-capillary heat pipes for a wide variety of parametric conditions. Experimental results are presented for water, ethyl alcohol, and freon-113 in a stainless steel heat pipe rotating to speeds of 2800 rpm. Results show that these devices can be used effectively to transfer large quantities of heat in rotating systems. Predicted results agree to within + or - 20 percent of the experimental data. Dropwise condensation, instead of film condensation, improves heat pipe performance while the presence of non-condensible gases impairs performance.

  5. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    Science.gov (United States)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  6. Thermal performance of heat pipe with different micro-groove structures

    Institute of Scientific and Technical Information of China (English)

    白鹏飞; 汤勇; 唐彪; 陆龙生

    2008-01-01

    Four kinds of micro heat pipe of trapezoidal groove wick structure with different numbers of grooves or aspect ratios were studied and compared about thermal transfer performances in order to optimize the manufacture of micro heat pipe with groove wick structure. The results show that these micro heat pipes have excellent performance in heat transfer; the equivalent thermal conductivity coefficient is two orders of magnitude compared with that of copper; the number and aspect ratio of grooves have a prominent effect on the performance of such thermal transfer. The optimum number of grooves is lower than 60 and the best aspect ratio is near to 1.5. The temperature and thermal transport rate are almost directly proportional relationship, but this relationship will be broken up suddenly when the critical heat flux is reached.

  7. Energy and exergy efficiency of heat pipe evacuated tube solar collectors

    Directory of Open Access Journals (Sweden)

    Jafarkazemi Farzad

    2016-01-01

    Full Text Available In this paper, a heat pipe evacuated tube solar collector has been investigated both theoretically and experimentally. A detailed theoretical method for energy and exergy analysis of the collector is provided. The method is also evaluated by experiments. The results showed a good agreement between the experiment and theory. Using the theoretical model, the effect of different parameters on the collector’s energy and exergy efficiency has been investigated. It is concluded that inlet water temperature, inlet water mass flow rate, the transmittance of tubes and absorptance of the absorber surface have a direct effect on the energy and exergy efficiency of the heat pipe evacuated tube solar collector. Increasing water inlet temperature in heat pipe evacuated solar collectors leads to a decrease in heat transfer rate between the heat pipe’s condenser and water.

  8. Characteristics on the heat storage and recovery by the underground spiral heat exchange pipe; Chichu maisetsu spiral kan ni yoru chikunetsu shunetsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Imai, I. [Kure National College of Technology, Hiroshima (Japan); Taga, M. [Kinki University, Osaka (Japan)

    1996-10-27

    The consistency between the experimental value of a soil temperature and the calculation value of a soil temperature given by a non-steady heat conduction equation was confirmed. The experimental value is obtained by laying a spiral heat exchange pipe in the heat-insulated soil box and circulating hot water forcibly in the pipe. The temperature conductivity in soil significantly influences the heat transfer in soil. The storage performance is improved when the temperature conductivity increases because of the contained moisture. As the difference between the initial soil temperature and circulating water temperature becomes greater, the heat storage and recovery values increase. A thermal core heat transfer is done in the spiral pipe. Therefore, the diameter of the pipe little influences the heat storage performance, and the pitch influences largely. About 50 hours after heat is stored, the storage performance is almost the same as for a straight pipe that uses the spiral diameter as a pipe diameter. To obtain the same heat storage value, the spiral pipe is made of fewer materials than the straight pipe and low in price. The spiral pipe is more advantageous than the straight pipe in the necessary motive power and supply heat of a pump. 1 ref., 11 figs., 1 tab.

  9. A fatigue initiation parameter for gas pipe steel submitted to hydrogen absorption

    Energy Technology Data Exchange (ETDEWEB)

    Capelle, J.; Gilgert, J.; Pluvinage, G. [LaBPS - Ecole Nationale d' Ingenieurs de Metz et Universite Paul Verlaine Metz, Ile du Saulcy, 57045 Metz (France)

    2010-01-15

    Fatigue initiation resistance has been determined on API 5L X52 gas pipe steel. Tests have been performed on Roman Tile (RT) specimen and fatigue initiation was detected by acoustic emission. A comparison between specimens electrolytically charged with hydrogen and specimens without hydrogen absorption were made and it has been noted that fatigue initiation time is reduced of about 3 times when hydrogen embrittlement occurs. It has been proposed to use the concept of Notch Stress Intensity Factor as parameter to describe the fatigue initiation process. Due to the fact that hydrogen is localised in area with high hydrostatic pressure, definitions of local effective stress and distance have been modified when hydrogen is absorbed. This modification can be explained by existence of a ductile-brittle transition with hydrogen concentration. The fatigue initiation resistance curve allows that to determine a threshold for large number of cycles of fatigue non initiation. This parameter introduced in a Failure Assessment Diagram (FAD) provides supplementary information about defect nocivity in gas pipes: a non-critical defect can be detected as dormant or not dormant defect i.e., as non propagating defect. (author)

  10. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures

    Science.gov (United States)

    Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue

    2017-06-01

    Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.

  11. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures

    Science.gov (United States)

    Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue

    2016-12-01

    Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.

  12. Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with triangular fins

    Directory of Open Access Journals (Sweden)

    Vinous M. Hameed, Bashar Muslem Essa

    2016-01-01

    Full Text Available Experimental investigation of heat transfer and friction factor characteristics in a double pipe heat exchanger with triangular fins was studied. The working fluids were air, flowing in the annular pipe, and water through the inner circular tube. The test section is consisting of two parts. The first part is an insulated tube which has been manufactured from Perspex material of (54mm inner diameter, (2000mm length and (3mm thickness. The second part is an internal copper tube without or with triangular copper fins. The smooth copper tube has (2250mm long and (20mm, 22mm inner and outer diameter respectively. The triangular fins were made of the copper with thickness of 0.3mm and 10mm height. They were installed on the straight copper tube section in three different cases (32, 27, and 22 mm distance between each two successive fins and (15mm pitch between each two of fins. Air at various mass flow rates (0.001875 to 0.003133 kg/sec flows through annuli and water at Reynold's numbers ranging from (10376.9 to 23348.03 flows through the inner tube. The inlet cold air and hot water temperatures are 30oC and 70oC, respectively. The experimental results showed an increase in convective heat transfer coefficient by decreasing in distance between two fins and by increasing Reynold's number. This is due to increase in surface area. It was found that (Space=22mm gives good heat transfer enhancement.

  13. Thermoelectric Exhaust Heat Recovery with Heat Pipe-Based Thermal Control

    Science.gov (United States)

    Brito, F. P.; Martins, Jorge; Hançer, Esra; Antunes, Nuno; Gonçalves, L. M.

    2015-06-01

    Heat pipe (HP)-based heat exchangers can be used for very low resistance heat transfer between a hot and a cold source. Their operating temperature depends solely on the boiling point of their working fluid, so it is possible to control the heat transfer temperature if the pressure of the HP can be adjusted. This is the case of the variable conductance HPs (VCHP). This solution makes VCHPs ideal for the passive control of thermoelectric generator (TEG) temperature levels. The present work assesses, both theoretically and experimentally, the merit of the aforementioned approach. A thermal and electrical model of a TEG with VCHP assist is proposed. Experimental results obtained with a proof of concept prototype attached to a small single-cylinder engine are presented and used to validate the model. It was found that the HP heat exchanger indeed enables the TEG to operate at a constant, optimal temperature in a passive and safe way, and with a minimal overall thermal resistance, under part load, it effectively reduces the active module area without deprecating the temperature level of the active modules.

  14. HEAT TRANSFER ENHANCEMENT AND PRESSURE DROP OF GROOVED ANNULUS OF DOUBLE PIPE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Putu Wijaya Sunu

    2017-05-01

    Full Text Available This investigation was performed to experimentally investigate the enhancement of heat transfer and the friction of an annulus in a double pipe heat exchanger system with rectangular grooves in the turbulent flow regime. The shell is made of acrylic and its diameter is 28 mm. The tube is made of aluminium and its diameter is 20 mm. Grooves were incised in the annulus room with a circumferential pattern, with a groove space of 2 mm, a distance between the grooves of 8mm and a groove height of 0.3 mm. The experiments consist of temperature and pressure measurement and a flow visualization. Throughout the investigation, the cold fluid flowed in the annulus room. The Reynold number of cold fluid varied from about 31981 to 43601 in a counter flow condition. The volume flow rate of hot fluid remains constant with Reynold number about 30904. Result showed the effect of grooves, which are applied in the annulus room. The grooves induce the pressure drop, the pressure drop in the grooved annulus was greater by about 15.88% to 16.72% than the one in the smooth annulus. The total heat transfer enhancement is of 1.09–1.11. Moreover, the use of grooves in the annulus of the heat exchanger not only increase the heat transfer process, but also increase the pressure drop, which is related to the friction factor.

  15. Comparative study on heat pipe performance using aqueous solutions of alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, R.; Vaidyanathan, S.; Sivaraman, B. [Annamalai University, Department of Mechanical Engineering, Annamalai Nagar, Tamil Nadu (India)

    2012-12-15

    This paper deals with the performance characterization of heat pipes using an aqueous solution of long chain alcohols like n-Butanol, n-Pentanol, n-Hexanol and n-Heptanol as working mediums. These solutions are called as self-rewetting fluids, since these fluid mixtures possess a non-linear dependence of the surface tension with temperature. A cylindrical heat pipe made up of copper with two layers of wrapped screen is used as a wick material and partially filled with the self-rewetting fluid water mixture and tested for its heat transport capability like thermal efficiency and thermal resistance at different inclinations and input power levels. A number of tests have been performed with heat pipes, filled with various aqueous solutions of alcohols with a concentration of 2 ml/l in de-ionized water (DI water) on volume basis. The results obtained for heat pipes using self rewetting fluids show improved performances, when compared to DI water heat pipes. (orig.)

  16. Comparative study on heat pipe performance using aqueous solutions of alcohols

    Science.gov (United States)

    Senthilkumar, R.; Vaidyanathan, S.; Sivaraman, B.

    2012-12-01

    This paper deals with the performance characterization of heat pipes using an aqueous solution of long chain alcohols like n-Butanol, n-Pentanol, n-Hexanol and n-Heptanol as working mediums. These solutions are called as self-rewetting fluids, since these fluid mixtures possess a non-linear dependence of the surface tension with temperature. A cylindrical heat pipe made up of copper with two layers of wrapped screen is used as a wick material and partially filled with the self-rewetting fluid water mixture and tested for its heat transport capability like thermal efficiency and thermal resistance at different inclinations and input power levels. A number of tests have been performed with heat pipes, filled with various aqueous solutions of alcohols with a concentration of 2 ml/l in de-ionized water (DI water) on volume basis. The results obtained for heat pipes using self rewetting fluids show improved performances, when compared to DI water heat pipes.

  17. Thermal-structural analysis of the platelet heat-pipe-cooled leading edge of hypersonic vehicle

    Science.gov (United States)

    Hongpeng, Liu; Weiqiang, Liu

    2016-10-01

    One of the main challenges for the hypersonic vehicle is its thermal protection, more specifically, the cooling of its leading edge. To investigate the feasibility of a platelet heat-pipe-cooled leading edge structure, thermal/stress distributions for steady-state flight conditions are calculated numerically. Studies are carried on for IN718/Na, C-103/Na and T-111/Li compatible material combinations of heat pipe under nominal operations and a central heat pipe failure cases, and the influence of wall thickness on the design robustness is also investigated. And the heat transfer limits (the sonic limit, the capillary limit and the boiling limit) are also computed to check the operation of platelet heat pipes. The results indicate that, with a 15 mm leading edge radius and a wall thickness of 0.5 mm, C-103/Na and T-111/Li combinations of heat pipe is capable of withstanding both nominal and failure conditions for Mach 8 and Mach 10 flight respectively.

  18. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe

    DEFF Research Database (Denmark)

    Mehrali, Mohammad; Sadeghinezhad, Emad; Azizian, Reza

    2016-01-01

    Thermal performance of a grooved heat pipe using aqueous nitrogen-doped graphene (NDG) nanofluids was analysed. This study in particular focused on the effect of varying NDG nanosheets concentrations, heat pipe inclination angles and input heating powers. The results indicated that the inclination...

  19. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    Science.gov (United States)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  20. Using a heat pipe (TPTC for dissipating energy generated by an electronic circuit

    Directory of Open Access Journals (Sweden)

    Rodrigo Correa

    2010-07-01

    Full Text Available This paper presents an experimental investigation aimed at estimating the thermal efficiency of a heat pipe compared to the most common elements for removing heat from a circuit (i.e., an electric fan and a fin - extended surface. The input voltage frequency for a standard power circuit was changed for the experiments, whilst all the other parameters were kept constant. An experimental statistical design was used as an analytical tool. Unexpectedly, the heat pipe showed the lowest thermal efficiency for all the experiments, although it had the advantage of being a passive element having low volume and no mobile parts.

  1. Vapor Flow Patterns During a Start-Up Transient in Heat Pipes

    Science.gov (United States)

    Issacci, F.; Ghoniem, N, M.; Catton, I.

    1996-01-01

    The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.

  2. Analysis Of The Extrusion Process Of A Square Tube Multi-Channel Heat Pipe

    Directory of Open Access Journals (Sweden)

    Kim K.S.

    2015-06-01

    Full Text Available Heat pipes have been recently in use for cooling purposes in various fields, including electronic circuit boards and vehicle parts that generate large amounts of heat. In order to minimize the loss of heat transferred, there is a need to maximize the contact area of the working fluid. This study produced a square tube multi-channel heat pipe to replace the existing circular pipe type to maximize the internal surface area thereof. This expands the surface, allowing the working fluid to come into contact with a wider area and enhancing thermal radiation performance. A mold for the production for such a product was designed, and finite element simulation was performed to determine whether production is possible.

  3. ANL/HTP: a computer code for the simulation of heat pipe operation

    Energy Technology Data Exchange (ETDEWEB)

    McLennan, G.A.

    1983-11-01

    ANL/HTP is a computer code for the simulation of heat pipe operation, to predict heat pipe performance and temperature distributions during steady state operation. Source and sink temperatures and heat transfer coefficients can be set as input boundary conditions, and varied for parametric studies. Five code options are included to calculate performance for fixed operating conditions, or to vary any one of the four boundary conditions to determine the heat pipe limited performance. The performance limits included are viscous, sonic, entrainment capillary, and boiling, using the best available theories to model these effects. The code has built-in models for a number of wick configurations - open grooves, screen-covered grooves, screen-wrap, and arteries, with provision for expansion. The current version of the code includes the thermophysical properties of sodium as the working fluid in an expandable subroutine. The code-calculated performance agrees quite well with measured experiment data.

  4. Heat pipe and surface mass transfer cooling of hypersonic vehicle structures

    Science.gov (United States)

    Colwell, Gene T.; Modlin, James M.

    1992-01-01

    The problem of determining the feasibility of cooling hypersonic vehicle leading-edge structures exposed to severe aerodynamic surface heating using heat pipe and mass transfer cooling techniques is addressed. A description is presented of a numerical finite-difference-based hypersonic leading-edge cooling model incorporating poststartup liquid metal heat pipe cooling with surface transpiration and film cooling to predict the transient structural temperature distributions and maximum surface temperatures of hypersonic vehicle leading edge. An application of this model to the transient cooling of a typical aerospace plane wing leading-edge section. The results of this application indicated that liquid metal heat pipe cooling alone is insufficient to maintain surface temperatures below an assumed maximum level of 1800 K for about one-third of a typical aerospace plane ascent trajectory through the earth's atmosphere.

  5. Study of the collector/heat pipe cooled externally configured thermionic diode

    Science.gov (United States)

    1973-01-01

    A collector/heat pipe cooled, externally configured (heated) thermionic diode module was designed for use in a laboratory test to demonstrate the applicability of this concept as the fuel element/converter module of an in-core thermionic electric power source. During the course of the program, this module evolved from a simple experimental mock-up into an advanced unit which was more reactor prototypical. Detailed analysis of all diode components led to their engineering design, fabrication, and assembly, with the exception of the collector/heat pipe. While several designs of high power annular wicked heat pipes were fabricated and tested, each exhibited unexpected performance difficulties. It was concluded that the basic cause of these problems was the formation of crud which interfered with the liquid flow in the annular passage of the evaporator region.

  6. Design, fabrication and test of liquid metal heat-pipe sandwich panels

    Science.gov (United States)

    Basiulis, A.; Camarda, C. J.

    1983-01-01

    Integral heat-pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich panel construction, were fabricated and tested. The designs utilize two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and potassium or sodium as the working fluid. Panels were tested by radiant heating, and the results indicate successful heat pipe operation at temperatures of approximately 922K (1200F). These panels, in addition to solving potential thermal stress problems in an Airframe-Integrated Scramjet Engine, have potential applications as cold plates for electronic component cooling, as radiators for space platforms, and as low distortion, large area structures.

  7. Simulation studies of the behaviour of a heat pipe-assisted solar absorption refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hindi, R.R.; Khalifa, A.M.A.; Akyurt, M.

    1988-01-01

    Simulation work on an intermittent-duty, heat pipe-assisted, solar-operated aqua-ammonia absorption refrigerator is reported. The low-thermal mass collector is the integral evaporator of an acetone-copper heat pipe which delivers the collected energy isothermally to a distant generator. The shell-and-tube type generator receives the energy by vapour condensation. The condenser is air cooled. A separate R-22/steel heat-pipe system serves to cool the absorber tanks via a radiation/convection panel. Heat and mass balances are outlined on several units. The resulting equations are solved for day and night operation. It is concluded that both the initial solution (absorbent) concentration and the absorber temperature must be kept low for adequate ice production.

  8. The heat-pipe resembling action of boiling bubbles in endovenous laser ablation

    NARCIS (Netherlands)

    C.W.M. van der Geld (Cees); R.R. van den Bos (Renate); P.W.M. van Ruijven (Peter); T.E.C. Nijsten (Tamar); H.A.M. Neumann (Martino); M.J.C. van Gemert (Martin)

    2010-01-01

    textabstractEndovenous laser ablation (EVLA) produces boiling bubbles emerging from pores within the hot fiber tip and traveling over a distal length of about 20 mm before condensing. This evaporation-condensation mechanism makes the vein act like a heat pipe, where very efficient heat transport mai

  9. The heat-pipe resembling action of boiling bubbles in endovenous laser ablation

    NARCIS (Netherlands)

    van der Geld, C.W.M.; van den Bos, R.R.; van Ruijven, P.W.M.; Nijsten, T.; Neumann, H.A.M.; van Gemert, M.J.C.

    2010-01-01

    Endovenous laser ablation (EVLA) produces boiling bubbles emerging from pores within the hot fiber tip and traveling over a distal length of about 20 mm before condensing. This evaporation-condensation mechanism makes the vein act like a heat pipe, where very efficient heat transport maintains a con

  10. The heat-pipe resembling action of boiling bubbles in endovenous laser ablation

    NARCIS (Netherlands)

    van der Geld, C.W.M.; van den Bos, R.R.; van Ruijven, P.W.M.; Nijsten, T.; Neumann, H.A.M.; van Gemert, M.J.C.

    2010-01-01

    Endovenous laser ablation (EVLA) produces boiling bubbles emerging from pores within the hot fiber tip and traveling over a distal length of about 20 mm before condensing. This evaporation-condensation mechanism makes the vein act like a heat pipe, where very efficient heat transport maintains a con

  11. Mini-channel evaporator/heat pipe assembly for a chip cooling vapor compression refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Guilherme B.; Barbosa, Jader R. Jr.; Prata, Alvaro T. [Polo - Research Laboratories for Emerging Technologies in Cooling and Thermophysics, Department of Mechanical Engineering, Campus Universitario, Trindade, Federal University of Santa Catarina, Florianopolis, SC 88040900 (Brazil)

    2010-11-15

    We investigate a novel evaporator design for a small-scale refrigeration system whose function is to assist the existing heat pipe technology currently used in chip cooling of portable computers. A heat transfer model for the evaporator/heat pipe assembly was devised specifically for sizing the evaporator in order to keep the chip surface temperature below a certain value. A prototype was tested with R-600a at saturation temperatures of 45 and 55 C, mass flow rates between 0.5 and 1.5 kg h{sup -1} and heat transfer rates between 30 and 60 W. The experimental results demonstrated that the average refrigerant-side heat transfer coefficient is more sensitive to a change in the refrigerant mass flux than to changes in the saturation temperature and heat transfer rate. The agreement between the calculated heat transfer coefficient and the data was within {+-}10% for the conditions evaluated. (author)

  12. Experimental and Simulation Studies on Cold Welding Sealing Process of Heat Pipes

    Science.gov (United States)

    Li, Yong; Chen, Shengle; Huang, Jinlong; Yan, Yuying; Zeng, Zhixin

    2017-03-01

    Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bonding mechanism of the cold welding sealing process (CWSP) is investigated and compared with the experimental results obtained from the bonding interface analysis. An orthogonal experiment is conducted to observe the effects of various parameters, including the sealing gap, sealing length, sealing diameter, and sealing velocity on bonding strength. A method with the utilization of saturated vapor pressure inside a copper tube is proposed to evaluate bonding strength. A corresponding finite element model is developed to investigate the effects of sealing gap and sealing velocity on plastic deformation during the cold welding process. Effects of various parameters on the bonding strength are determined and it is found that the sealing gap is the most critical factor and that the sealing velocity contributes the least effect. The best parameter combination (A 1 B 3 C 1 D 3, with a 0.5 mm sealing gap, 6 mm sealing length, 3.8 mm sealing diameter, and 50 mm/s sealing velocity) is derived within the experimental parameters. Plastic deformation results derived from the finite element model are consistent with those from the experiment. The instruction for the CWSP of heat pipes and the design of sealing dies of heat pipes are provided.

  13. Heat sink welding of austenitic stainless steel pipes to control distortion and residual stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H.; Albert, S.K.; Bhaduri, A.K. [Materials Technology Div., Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2007-07-01

    Construction of India's Prototype Fast Breeder Reactor (PFBR) involves extensive welding of austenitic stainless steels pipes of different dimensions. Due to high thermal expansion coefficient and poor thermal conductivity of this class of steels, welding can result in significant distortion of these pipes. Attempts to arrest this distortion can lead to high levels of residual stresses in the welded parts. Heat sink welding is one of the techniques often employed to minimize distortion and residual stress in austenitic stainless steel pipe welding. This technique has also been employed to repair welding of the piping of the Boiling Water Reactors (BWRs) subjected to radiation induced intergranular stress corrosion cracking (IGSCC). In the present study, a comparison of the distortion in two pipe welds, one made with heat sink welding and another a normal welds. Pipes of dimensions 350{phi} x 250(L) x 8(t) mm was fabricated from 316LN plates of dimensions 1100 x 250 x 8 mm by bending and long seam (L-seam) welding by SMAW process. Two fit ups with a root gap of 2 mm, land height of 1mm and a groove angle of 70 were prepared using these pipes for circumferential seam (C-seam) welding. Dimensions at predetermined points in the fit up were made before and after welding to check the variation in radius, circumference and and ovality of the pipes. Root pass for both the pipe fit up were carried out using conventional GTAW process with 1.6 mm AWS ER 16-8-2 as consumables. Welding of one of the pipe fit ups were completed using conventions GTAW process while the other was completed using heat sink welding. For second and subsequent layers of welding using this process, water was sprayed at the root side of the joint while welding was in progress. Flow rate of the water was {proportional_to}6 1/minute. Welding parameters employed were same as those used for the other pipe weld. Results of the dimensional measurements showed that there is no circumferential shrinkage in

  14. Temporal deterioration in thermal performance of screen mesh wick straight heat pipe using surfactant free aqueous nanofluids

    Science.gov (United States)

    Bhullar, Bhupinder Singh; Gangacharyulu, D.; Das, Sarit K.

    2017-01-01

    The study investigates the temporal performance of heat pipe using surfactant free Al2O3/De-ionised water nanofluids. The nanofluids prone to agglomeration and sedimentation with time are expected to influence the performance of heat pipe. Specially fabricated heat pipe is made to accommodate vapor velocity fluctuation through the vapor core and the end cap brazing effects. The heat pipe filled up to 40 % of the evaporator volume is tested at increasing volume concentration (0.005, 0.05, 0.5, 1 vol%) of Al2O3/De-ionised water nanofluid. The thermal performance of heat pipe is tested at three watt loads of heat input (12, 32, 72 W) and after successive durations (0, 3, 6, 9 months) from the date of manufacturing with non operational time span. The results are compared after successive time intervals and with deionised water as working fluid. Despite higher thermal performance of heat pipe observed using nanofluids as working fluids, consistency and reliability in heat pipe operating characteristics has been observed at high watt load heat input of 72 W as compared to low watt heat of 12 W. The thermal performance improvement of heat pipe using the nanofluid resulted due to nano-coating of Al2O3 nanoparticles on the mesh, resulting in localized high vapor pressure caused by the subsequent intermittent accelerated flow, reduction of contact angle and enhancement in boiling limit.

  15. Numerical Investigation of Heat Transfer Enhancement in a Rectangular Heated Pipe for Turbulent Nanofluid

    Directory of Open Access Journals (Sweden)

    Hooman Yarmand

    2014-01-01

    Full Text Available Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM. The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.

  16. Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid.

    Science.gov (United States)

    Yarmand, Hooman; Gharehkhani, Samira; Kazi, Salim Newaz; Sadeghinezhad, Emad; Safaei, Mohammad Reza

    2014-01-01

    Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.

  17. Modeling and simulation of combined gas turbine engine and heat pipe system for waste heat recovery and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lamfon, N.J. [Saudi Aramco Jeddah Refinery, Jeddah (Saudi Arabia); Najjar, Y.S.H.; Akyurt, M. [King Abdulaziz Univ., Mechanical Engineering Dept., Jeddah (Saudi Arabia)

    1998-12-01

    The results of a modeling and simulation study are presented for a combined system consisting of a gas turbine engine, a heat pipe recovery system and an inlet-air cooling system. The presentation covers performance data related to the gas turbine engine with precooled air intake as coupled to the water-in-copper heat pipe recovery system. This is done by matching the two mathematical models. The net power output is improved by 11% when the gas turbine engine is supplied with cold air produced by the heat-pipe recovery and utilization system. It is further concluded from the results produced by the combined mathematical model that the thermal efficiency of the gas turbine engine rises to 6% at 75% part load. It is to be anticipated that this rising trend in increases of thermal efficiency of the gas turbine engine would continue for operations at other (lower) part load conditions. (author)

  18. Assessment of damages in the district heating pipe cartel

    DEFF Research Database (Denmark)

    Møllgaard, Peter

    2006-01-01

    The pre-insulated pipe cartel was established 1990 in Denmark, was extended to Italy and Germany during 1991 and re-organised in 1994 to cover the entire common market. Cartel members engaged in market sharing, price setting, bid rigging, coordinated predation and delaying of innovation. The Euro...

  19. Experimental Analysis of the Effects of Inclination Angle and Working Fluid Amount on the Performance of a Heat Pipe

    Science.gov (United States)

    Mahdavi, Mahboobe; Tiari, Saeed; Qiu, Songgang

    2016-11-01

    Heat pipes are two-phase heat transfer devices, which operate based on evaporation and condensation of a working fluid inside a sealed container. In the current work, an experimental study was conducted to investigate the performance of a copper-water heat pipe. The performance was evaluated by calculating the corresponding thermal resistance as the ratio of temperature difference between evaporator and condenser to heat input. The effects of inclination angle and the amount of working fluid were studied on the equivalent thermal resistance. The results showed that if the heat pipe is under-filled with the working fluid, energy transferring capacity of the heat pipe decreases dramatically. However, overfilling heat pipe causes over flood and degrades heat pipe performance. The minimum thermal resistances were obtained for the case that 30% of the heat pipe volume was filled with working fluid. It was also found that in gravity-assisted orientations, the inclination angle does not have significant effect on the performance of the heat pipe. However, for gravity-opposed orientations, as the inclination angle increases, the temperature difference between the evaporator and condensation increases and higher thermal resistances are obtained. Authors appreciate the financial support by a research Grant from Temple University.

  20. CTS-type variable conductance heat pipes for SEP FM/PPU

    Science.gov (United States)

    Antoniuk, D.; Luedke, E. E.

    1978-01-01

    The development effort for, and the fabrication and testing of, six CTS-type variable conductance heat pipes is described. The heat pipes are constructed of stainless steel, use methanol as a working fluid, and a nitrogen/helium mixture as the control gas. The wicking structure consists of interior wall grooves, a metal-felt diametral slab wick, and two wire-mesh arteries. The heat pipes are used to cool two Functional Model/Power Processing Units in a Solar Electric Propulsion prototype BIMOD thruster subsystem assembly. The Power Processing Units convert the electric power from a spacecraft solar array system to the voltages required to operate the electric thrusters which are part of the BIMOD assembly.

  1. THEORETICAL STUDY OF HEAT TRANSFER ENHANCEMENT IN PIPE WITH POROUS BODY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A theoretical investigation of the fluid flow and heat transferin a pipe with porous body of high porosity twis ted by metal wire was carried out. A theoretical model of a circular pipe with porous matrix attached at the channel wall and extended inward the centerline was set up. Through ana lyzing the flow in the porous matrix by the Brinkman-extend ed-Darcy equation and through including the effect of disper sion by adding the dispersion coefficient into the energy equa tion, the theoretical solutions of velocity distribution and temperature fields were obtained. Finally the effect of the properties of the porous matrix on the flow and heat transfer in the porous body was studied, which indicates that dispersion can really enhance the heat transfer in pipe.

  2. Numerical investigation of flow and heat transfer performances of horizontal spiral-coil pipes

    Institute of Scientific and Technical Information of China (English)

    季家东; 葛培琪; 毕文波

    2016-01-01

    The flow and heat transfer performances of horizontal spiral-coil pipes of circular and elliptical cross-sections are studied. The numerical results are compared with the experimental data, to verify the numerical method. The effects of the inlet water mass flow rate, the structural parameters, the helical pitch and the radius ratio on the heat transfer performances are investigated. Perfor- mances of the secondary fluid flow with different radius ratios are also investigated. Numerical results demonstrate that the heat transfer coefficient and the Nusselt number increase with the increase of the water mass flow rate or the helical pitch. The maximum heat transfer coefficient and the maximum Nusselt number are obtained when the radius ratio isequal to 1.00. In addition, the fluid particle moves spirally along the pipe and the velocity changes periodically. The particle flow intensity and the spiral movement frequency decrease significantly with the increase of the radius ratio. Besides, the secondary flow profile in the horizontal spiral-coil pipe contains two oppositely rotating eddies, and the eddy intensity decreases significantly along the pipe owing to the change of curvature. The decreasing tendency of the eddy intensity along the pipe increases with the increase of the radius ratio.

  3. Thermal protection mechanism of heat pipe in leading edge under hypersonic conditions

    OpenAIRE

    Peng Wengen; He Yurong; Wang Xinzhi; Zhu Jiaqi; Han Jiecai

    2015-01-01

    Sharp local structure, like the leading edge of hypersonic aircraft, confronts a severe aerodynamic heating environment at a Mach number greater than 5. To eliminate the danger of a material failure, a semi-active thermal protection system is proposed by integrating a metallic heat pipe into the structure of the leading edge. An analytical heat-balance model is established from traditional aerodynamic theories, and then thermal and mechanical characteristics of the structure are studied at Ma...

  4. Optimal design of district heating and cooling pipe network of seawater-source heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang-li; Duanmu, Lin; Shu, Hai-wen [School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024 (China)

    2010-01-15

    The district heating and cooling (DHC) system of a seawater-source heat pump is large system engineering. The investments and the operational cost of DHC pipe network are higher than a tradition system. Traditional design methods only satisfy the needs of the technology but dissatisfy the needs of the economy, which not only waste a mass of money but also bring problems to the operation, the maintenance and the management. So we build a least-annualized-cost global optimal mathematic model that comprises all constrict conditions. Furthermore, this model considers the variety of heating load and cooling load, the operational adjustment in different periods of the year. Genetic algorithm (GA) is used to obtain the optimal combinations of discrete diameters. Some operators of GA are selected to reduce the calculation time and obtain good calculation accuracy. This optimal method is used to the design of the DHC network of Xinghai Bay commercial district which is a real engineering. The design optimization can avoid the matter of the hydraulic unbalance of the system, enhance the running efficiency and greatly reduce the annualized-cost comparing with the traditional design method. (author)

  5. Experimental performance of a waste heat recovery and utilization system with a looped water-in-steel heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Habeebullah, M.H.; Akyurt, M.; Najjar, Y.S.H.; El-Kalay, A.K. [King Abdulaziz Univ., Jeddah (Saudi Arabia). College of Engineering

    1998-07-01

    An experimental facility is described for the recovery, by means of heat-pipes, of waste-heat from exhaust gases, and the utilization of the recovered energy to cool ambient air. To this end, heat of combustion gases, generated in a stainless-steel combustion chamber, is recovered from the stack by means of a heat-pipe system. The recovered heat is utilized to run a modified commercial aqua-ammonia absorption chiller. Chilled water from the chiller is supplied to a fan-coil type cooling tunnel to cool the intake air of a (conceptual) gas turbine engine to boost its performance. It is concluded from test results that the experimental facility performs well, and that it behaves as predicted by modeling and simulation studies. The system is able to extract between 70 and 93% of the technically recoverable energy from exhaust gases, and utilizes the extracted energy to cool air. (Author)

  6. Using heat pipe to make isotherm condition in catalytic converters of sulfuric acid plants

    Science.gov (United States)

    Yousefi, M.; Pahlavanzadeh, H.; Sadrameli, S. M.

    2017-08-01

    In this study, for the first time, it is tried to construct a pilot reactor, for surveying the possibility of creating isothermal condition in the catalytic convertors where SO2 is converted to SO3 in the sulfuric acid plants by heat pipe. The thermodynamic and thermo-kinetic conditions were considered the same as the sulfuric acid plants converters. Also, influence of SO2 gas flow rate on isothermal condition, has been studied. A thermo-siphon type heat pipe contains the sulfur + 5% iodine as working fluid, was used for disposing the heat of reaction from catalytic bed. Our results show that due to very high energy-efficiency, isothermal and passive heat transfer mechanism of heat pipe, it is possible to reach more than 95% conversion in one isothermal catalytic bed. As the results, heat pipe can be used as a certain piece of equipment to create isothermal condition in catalytic convertors of sulphuric acid plants. With this work a major evaluation in design of sulphuric acid plants can be taken place.

  7. Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment

    Directory of Open Access Journals (Sweden)

    John Kaiser Calautit

    2015-12-01

    Full Text Available The data presented in this article were the basis for the study reported in the research articles entitled ‘Climate responsive behaviour heat pipe technology for enhanced passive airside cooling’ by Chaudhry and Hughes [10] which presents the passive airside cooling capability of heat pipes in response to gradually varying external temperatures and related to the research article “CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices” by Calautit and Hughes [1] which compares the ventilation performance of a standard roof mounted wind catcher and wind catcher incorporating the heat pipe technology. Here, we detail the wind tunnel test set-up and inflow conditions and the methodologies for the transient heat pipe experiment and analysis of the integration of heat pipes within the control domain of a wind catcher design.

  8. Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment.

    Science.gov (United States)

    Calautit, John Kaiser; Chaudhry, Hassam Nasarullah; Hughes, Ben Richard

    2015-12-01

    The data presented in this article were the basis for the study reported in the research articles entitled 'Climate responsive behaviour heat pipe technology for enhanced passive airside cooling' by Chaudhry and Hughes [10] which presents the passive airside cooling capability of heat pipes in response to gradually varying external temperatures and related to the research article "CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices" by Calautit and Hughes [1] which compares the ventilation performance of a standard roof mounted wind catcher and wind catcher incorporating the heat pipe technology. Here, we detail the wind tunnel test set-up and inflow conditions and the methodologies for the transient heat pipe experiment and analysis of the integration of heat pipes within the control domain of a wind catcher design.

  9. Optimal insulation of pipes and tanks for solar heating systems. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G F; Lior, N

    1979-02-01

    A compact and time effective insulation design procedure for solar heating system piping and water-filled thermal storage tanks was developed. Recognizing the particular sensitivity of solar systems to cost, the economic aspect of the problem is treated by a comprehensive present-value life-cycle cost analysis. In the development of the method, a numerical sensitivity analysis was performed to determine the relative effects of all relevant independent variables (within their pertinent ranges) on piping and tank heat transfer coefficient values.

  10. Effects of boosting the supply temperature on pipe dimensions of low-energy district heating networks

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2015-01-01

    This paper presents a method for the dimensioning of the low-energy District Heating (DH) piping networks operating with a control philosophy of supplying heat in low-temperature such as 55 °C in supply and 25°C in return regularly while the supply temperature levels are being boosted in cold...... winter periods. The performance of the existing radiators that were formerly sized with over-dimensions was analyzed, its results being used as input data for the performance evaluation of the piping network of the low-energy DH system operating with the control philosophy in question. The optimization...

  11. 热管余热锅炉在钢管退火炉余热回收中的应用%Application of Heat Pipe Waste Heat Boiler to Recovery of Waste Heat of Steel Pipe Annealing Furnace

    Institute of Scientific and Technical Information of China (English)

    李永; 宿新天; 张子禹; 刘亮; 郭少春

    2013-01-01

    钢管退火炉排出的烟气带有可观的热量,如不加以回收利用,将造成能源的浪费。如果以钢管退火炉的烟气余热在热管余热锅炉中产生蒸汽加以利用,可使钢管退火炉的热效率提高到70%以上。热管余热锅炉是一种值得推广应用的节能装置。%The fuel gas of steel pipe annealing furnace bears a considerable heat , which, if not recovered and utilized , will cause waste energy .If the steam is produced by using the waste heat of flue gas of steel pipe annealing furnace in a heat pipe waste heat boiler and is utilized , the heat efficiency of steel pipe annealing furnace can be increased to 70%and above .The heat pipe waste heat boiler is an energy saving device worth extensive applying .

  12. Increasing of the energetic efficiency and the incentives to the use of natural gas with heat pipe; Aumento da eficiencia energetica e fomento ao uso do gas natural com tubo termossifao (heat pipe)

    Energy Technology Data Exchange (ETDEWEB)

    Landa, Henrique Gerken de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Pesquisa, Desenvolvimento e Engenharia de Gas e Energia]. E-mail: landa@cenpes.petrobras.com.br; Mantelli, Marcia Barbosa Henriques; Silva, Alexandre Kupka [Santa Catarina Univ., Florianopolis, SC (Brazil)

    2002-07-01

    The heat pipes are devices that allow the transportation of large heat quantities with high thermal efficiency, by using the effect of a work fluid vaporization and condensation inside a sealed tube, resulting in a heat average conduction with 100 to 1000 times higher than a massive copper tube with the same diameter. This paper discusses the increasing of the thermal efficiency and the incentives to the using of natural gas with heat pipe.

  13. Heat Pipe Powered Stirling Conversion for the Demonstration Using Flattop Fission (DUFF) Test

    Science.gov (United States)

    Gibson, Marc A.; Briggs, Maxwell H.; Sanzi, James L.; Brace, Michael H.

    2013-01-01

    Design concepts for small Fission Power Systems (FPS) have shown that heat pipe cooled reactors provide a passive, redundant, and lower mass option to transfer heat from the fuel to the power conversion system, as opposed to pumped loop designs typically associated with larger FPS. Although many systems have been conceptually designed and a few making it to electrically heated testing, none have been coupled to a real nuclear reactor. A demonstration test named DUFF Demonstration Using Flattop Fission, was planned by the Los Alamos National Lab (LANL) to use an existing criticality experiment named Flattop to provide the nuclear heat source. A team from the NASA Glenn Research Center designed, built, and tested a heat pipe and power conversion system to couple to Flattop with the end goal of making electrical power. This paper will focus on the design and testing performed in preparation for the DUFF test.

  14. Study on Snow-Melting System around Steel Top of Underground Fire Cistern using Heat Pipe

    Science.gov (United States)

    Nagai, Niro; Nakano, Norimasa; Takeuchi, Masanori; Maekawa, Yoshitaka; Maegawa, Yoshikazu

    This research aims to develop snow melting system around steel top of underground fire cistern by using heat pipe, for realizing quick finding of the steel top under heavy snow fall. Water in a fire cistern installed underground is heated by underground heat source, 10 ~15 °C. The iron top is put on snow melting panel made of reinforced concrete. Heat is transported from water to the snow melting panel by heat pipes, which melts snow on it. The experimental results obtained for two years show that this system can melt the snow around the steel top in winter season preferably. The numerical simulation using only weather data was found to predict temperature variations of the whole system with good agreements to the experimental data. Therefore, this simulation software can be used for designing this snow-melting system.

  15. Design, development and test of a capillary pump loop heat pipe

    Science.gov (United States)

    Kroliczek, E. J.; Ku, J.; Ollendorf, S.

    1984-01-01

    The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.

  16. Heat pipes and two-phase loops with capillary pumping; Caloducs et boucles diphasiques a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on heat pipes and two-phase capillary pumping loops was organized by the French society of thermal engineers. The 11 papers presented during this workshop deal with the study of thermal performances of heat pipes and on their applications in power electronics (cooling of components), and their use in satellites, aircrafts and trains. (J.S.)

  17. Integrated heat pipe concept for Li/SOCl2 cells cooling

    Science.gov (United States)

    Suleiman, A.; Alexandre, A.; Firmin, J. L.

    1991-12-01

    A new thermal control system based on heat pipe to support the development of a primary lithium/thionyl chloride (Li/SOCl2) battery designed for future space applications is shown. Performances of the used heat pipe are considered and range performances of a traditional cell cooling concept based on the use of an aluminum pipe put around the cell and fixed to a coldplate is shown. A mock up was carried out and compared to thermal model of the whole system using ESACAP software. This model includes about 120 nodes to present the cell and the aluminum pipe. These results are compared to those of the proposed new cooling concept based on a grooved nickel/F11 heat pipe integrated in the cell. In this case, a mock up was performed and a corresponding nodal model was built. The experimental and modeling results show that the new concept decreases thermal gradient and weight and increases the available current discharge rate compared with the traditional cooling concept.

  18. Temperature Approach Optimization in the Double Pipe Heat Exchanger with Groove

    Directory of Open Access Journals (Sweden)

    Sunu Putu Wijaya

    2016-01-01

    Full Text Available Heat transfer in double pipe heat exchanger with circumference-rectangular grooves has been investigated experimentally. The volume flowrate of cold and hot water were varied to determine its influence on the approach temperature of the outlet terminals. In this experimental design, the grooves were incised in annular room that is placed on the outside surface of the inner pipe. The shell diameter is 38.1 mm and tube diameter 19.4 mm with 1 m length, which is made of aluminum. The flow pattern of the two fluids in the heat exchanger is a parallel flow. The working fluid is water with volume flow rate of 27.1, 23.8 and 19.8 l/minute. The temperature of water on the inlet terminals are 50±1°C for hot stream and 30±1°C for cold stream. Temperature measurements conducted on each terminal of the inlet and outlet heat exchanger. The results showed that the grooves induced the approach temperature. The change of the approach temperature from the grooves compared to that of without grooves decreased by 37.9%. This phenomenon indicates an increase in heat transfer process and performance of the heat exchanger. Groove improves the heat surface area of the inner pipe, increasing the momentum transfer and in the other hand, reducing the weight of heat exchangers itself.

  19. Study on improving efficiency in hydrogen utilizing regional heat supply system; Suiso riyo chinetsu kyokyu system no koritsu kaizen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sueyoshi, S.; Ishitani, H.; Matsuhashi, T. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1997-01-30

    With an objective to improve efficiency in a hydrogen energy distribution system, discussions were given on combining heat energy supply from hydrogen with factory waste heat recovery by using hydrogen absorbing alloys. This system carries out simultaneously heat supply as a result of burning hydrogen directly and heat supply obtained by converting hydrogen pressure by using hydrogen absorbing alloys. This system could allow existing gas piping facilities to be utilized. However, since quantity of hydrogen that can be transported as pressure is smaller than quantity of heat of hydrogen itself, absorption and emission are repeated a number of times in order to utilize the heat source to a possible maximum extent. Thus, a large quantity of waste heat can be utilized when this method is used. A hydrogen manufacturing system by means of LNG reformation may be combined with this heat transportation system. When waste heat that is received is handled as having zero input in the same sense as natural energy, and heat supply from a hydrogen absorbing alloy is repeated for 50 times, the overall energy balance has resulted in a considerably good value at 0.95. 5 refs., 9 figs., 5 tabs.

  20. Methodology for Life Testing of Refractory Metal/Sodium Heat Pipes

    Science.gov (United States)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    The focus of this work was to establish an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. To accomplish this goal acceleration is required to compress 10 years of operational life into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Specific test series have been identi3ed, based on American Society for Testing and Materials (ASTM) specifications, to investigate long term corrosion rates. The refractory metal selected for demonstration purposes is a Molybdenum-44.5%Rhenium alloy formed by powder metallurgy. The heat pipe makes use of an annular crescent wick design formed by hot isostatic pressing of Molybdenum-Rhenium wire mesh. The heat pipes are filled using vacuum distillation and purity sampling is considered. Testing of these units is round-the-clock with 6-month destructive and non-destructive inspection intervals to identify the onset and level of corrosion. Non-contact techniques are employed for providing power to the evaporator (radio frequency induction heating at I to 5 kW per unit) and calorimetry at the condenser (static gas gap coupled water cooled calorimeter). The planned operating temperature range would extend from 1123 to 1323 K. Accomplishments prior to project cancellation included successful demonstration of the heat pipe wick fabrication technique, establishment of all engineering designs, baselined operational test requirements and procurement/assembly of supporting test hardware systems.

  1. Effect of swirl flow on heat transfer characteristics in a circular pipe

    Science.gov (United States)

    Siddique, Hossain; Hoque, Md. Shafkat Bin; Ali, Mohammad

    2016-07-01

    Swirl flow is of great stature in heat transfer enhancement and in numerous engineering applications. In the present numerical study, the swirl flow of water in a circular pipe is considered. Here the Reynolds Number is kept within 2000. The pipe contains stationary blades to produce the swirl flow. The blades are considered heat resistant. The three-dimensional Navier-Stokes equations for incompressible Newtonian fluid flow are used. The code is corroborated by comparing the simulation results with the established Hagen-Poiseuille law. The comparison is quite satisfactory and thus the code is used for present investigation. In this study, the heat transfer performance of the swirl flow is evaluated. Two cases are considered on the outer surface of the pipe: (i) Constant heat flux and (ii) Constant temperature. This investigation reveals that the swirl flow increases the mean outlet temperature in both cases. The effects of the vane angle, pipe length and diameter on heat transfer characteristics are also evaluated.

  2. Heat transfer within a flat micro heat pipe with extra liquid

    Science.gov (United States)

    Sprinceana, Silviu; Mihai, Ioan

    2016-12-01

    In the real functioning of flat micro heat pipe (FMHP), there can appear cases when the temperature from the vaporization zone can exceed a critical value caused by a sudden increase of the thermal flow. The heat transfer which is completed conductively through the copper wall of a FMHP vaporizer causes the vaporization of the work fluid. On the condenser, the condensation of the fluid vapors and the transfer of the condenser to the vaporizer can no longer be achieved. The solution proposed for enhancing heat transfer in the event of blockage phenomenon FMHP, it is the injection of a certain amount of working fluid in the vaporization zone. By this process the working fluid injected into the evaporator passes suddenly in the vapor, producing a cooling zone. The new product additional mass of vapor will leave the vaporization zone and will condense in condensation zone, thereby supplementing the amount of condensation. Thus resumes normal operating cycle of FMHP. For the experimental measurements made for the transfer of heat through the FMHP working fluid demineralized water, they were made two micro-capillary tubes of sintered copper layer. The first was filled with 1ml of demineralized water was dropped under vacuum until the internal pressure has reached a level of 1•104Pa. The second FMHP was filled with the same amount of working fluid was used and the same capillary inner layer over which was laid a polysynthetic material that will accrue an additional amount of fluid. In this case, the internal pressure was reduced to 1•104Pa.

  3. A Designer Fluid For Aluminum Phase Change Devices. Performance Enhancement in Copper Heat Pipes Performance Enhancement in Copper Heat Pipes. Volume 3

    Science.gov (United States)

    2016-11-17

    34 Renewable and Sustainable Energy Reviews , 20, pp. 397-410, 2013. [42] Liu, Z.-H., Li, Y.-Y., and Bao, R., "Thermal performance of inclined grooved...enhancement— research gap to engineering application," Progress in Nuclear Energy , 66, pp. 13-24, 2013. [39] Ahn, H. S., and Kim, M. H., "A review on...Heat Pipes," Proc. ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and

  4. Thermal-economic multiobjective optimization of heat pipe heat exchanger for energy recovery in HVAC applications using genetic algorithm

    Directory of Open Access Journals (Sweden)

    Sanaye Sepehr

    2014-01-01

    Full Text Available Cost and effectiveness are two important factors of heat pipe heat exchanger (HPHE design. The total cost includes the investment cost for buying equipment (heat exchanger surface area and operating cost for energy expenditures (related to fan power. The HPHE was thermally modeled using e-NTU method to estimate the overall heat transfer coefficient for the bank of finned tubes as well as estimating pressure drop. Fast and elitist non-dominated sorting genetic algorithm (NSGA-II with continuous and discrete variables was applied to obtain the maximum effectiveness and the minimum total cost as two objective functions. Pipe diameter, pipe length, numbers of pipes per row, number of rows, fin pitch and fin length ratio were considered as six design parameters. The results of optimal designs were a set of multiple optimum solutions, called ‘Pareto optimal solutions’. The comparison of the optimum values of total cost and effectiveness, variation of optimum values of design parameters as well as estimating the payback period were also reported for various inlet fresh air volume flow rates.

  5. HeatTransfer Coefficients and Pressure Drops of The Finned Tube Heat Exchangers with Small Diameter Pipes

    Science.gov (United States)

    Tanaka, Hiroyoshi; Aoyama, Shigeo; Koma, Hachirou; Adachi, Masaaki

    In order to enhance the heat transfer coefficient of the fin used in the finned tube heat exchanger, newly designed fin surfaces, especially, with small diameter (≅4mm) pipes are developed. The experiments are made by the transient testing technique, and used the plastic fins scaling up 4 times of the actual metal fin size. The data of the heat transfer coefficient and the pressure drop are transformed to the actual metal fin data. The fin with the anomalous staggered pipe arrangement and the bridge-like cutting-out with inclined leg portion from stream line is found to have very high overall heat transfer coefficient which is about 1.8-fold increase in comparison with the conventional Louvered fin. In this paper the reason why such enhancement is caused is clarified by mean of the calculation based on the rectangular duct flow. The calculated values are coincident with the data of the experiment well.

  6. Heat-Pipe Development for Advanced Energy Transport Concepts Final Report Covering the Period January 1999 through September 2001

    Energy Technology Data Exchange (ETDEWEB)

    R.S.Reid; J.F.Sena; A.L.Martinez

    2002-10-01

    This report summarizes work in the Heat-pipe Technology Development for the Advanced Energy Transport Concepts program for the period January 1999 through September 2001. A gas-loaded molybdenum-sodium heat pipe was built to demonstrate the active pressure-control principle applied to a refractory metal heat pipe. Other work during the period included the development of processing procedures for and fabrication and testing of three types of sodium heat pipes using Haynes 230, MA 754, and MA 956 wall materials to assess the compatibility of these materials with sodium. Also during this period, tests were executed to measure the response of a sodium heat pipe to the penetration of water.

  7. Cooling Performance Evaluation of the Hybrid Heat Pipe for Spent Nuclear Fuel Dry Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yeong Shin; Bang, In Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To evaluate the concept of the cooling device, 2-step CFD analysis was conducted for the cooling performance of hybrid heat pipe, which consists of single fuel assembly model and full scope dry cask model. As a passive cooling device of the metal cask for dry storage of spent nuclear fuel, hybrid heat pipe was applied to DPC developed in Korea. Hybrid heat pipe is the heat pipe containing neutron absorber can be used as a passive cooling in nuclear application with both decay heat removal and control the reactivity. In this study, 2-step CFD analysis was performed to find to evaluate the heat pipe-based passive cooling system for the application to the dry cask. Only spent fuel pool cannot satisfy the demands for high burnup fuel and large amount of spent fuel. Therefore, it is necessary to prepare supplement of the storage facilities. As one of the candidate of another type of storage, dry storage method have been preferred due to its good expansibility of storage capacity and easy long-term management. Dry storage uses the gas or air as coolant with passive cooling and neutron shielding materials was used instead of water in wet storage system. It is relatively safe and emits little radioactive waste for the storage. As short term actions for the limited storage capacity of spent fuel pool, it is considered to use dry interim/long term storage method to increase the capacity of spent nuclear fuel storage facilities. For 10-year cooled down spent fuel in the pool storage, fuel rod temperature inside metal cask is expected over 250 .deg. C in simulation. Although it satisfied the criteria that cladding temperature of the spent fuel should keep under 400 .deg. C during storage period, high temperature inside cask can accelerate the thermal degradation of the structural materials consisting metal cask and fuel assembly as well as limitation of the storage capacity of metal cask. In this paper, heat pipe-based cooling device for the dry storage cask was suggested for

  8. Reflux heat-pipe solar receivers for dish-electric systems

    Science.gov (United States)

    Andraka, Charles E.; Diver, Richard B.

    1988-04-01

    The feasibility of competitive, modular bulk electric power from the sun may be greatly enhanced by the use of a reflux heat pipe receiver to combine a heat engine with a paraboloidal dish concentrator. This combination represents a potential improvement over previous successful demonstrations of dish-electric technology in terms of enhanced performance, lower cost, longer life, and greater flexibility in engine design. In the reflux (i.e., gravity assisted) heat pipe receiver, concentrated solar radiation causes liquid metal (sodium, potassium, or NaK) to evaporate. The vapor flows to the engine interface heat exchanger, where it condenses and releases the latent heat. The condensate is returned to the receiver absorber by gravity (refluxing), and distributed over the surface by gravity and/or capillary forces in a wick lining the receiver. It is essentially an adaptation of heat pipe technology to the peculiar requirements of concentrated solar flux, and provides many advantages over conventional heated tub receiver technology. This overview paper describes the current status and future plans for the U.S. Solar Thermal Program reflux receiver development program at Sandia National Laboratories. Current work includes conventional mesh wick receivers, sintered metal wicks, and pool boiler receivers. The relative design merits and concerns of the different approaches and technology development test plans are discussed.

  9. Hypersonic aerospace vehicle leading edge cooling using heat pipe, transpiration and film cooling techniques

    Science.gov (United States)

    Modlin, James Michael

    An investigation was conducted to study the feasibility of cooling hypersonic vehicle leading edge structures exposed to severe aerodynamic surface heat fluxes using a combination of liquid metal heat pipes and surface mass transfer cooling techniques. A generalized, transient, finite difference based hypersonic leading edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading edge section. The hypersonic leading edge cooling model was developed using an existing, experimentally verified heat pipe model. Two applications of the hypersonic leading edge cooling model were examined. An assumed aerospace plane-type wing leading edge section exposed to a severe laminar, hypersonic aerodynamic surface heat flux was studied. A second application of the hypersonic leading edge cooling model was conducted on an assumed one-quarter inch nose diameter SCRAMJET engine inlet leading edge section exposed to both a transient laminar, hypersonic aerodynamic surface heat flux and a type 4 shock interference surface heat flux. The investigation led to the conclusion that cooling leading edge structures exposed to severe hypersonic flight environments using a combination of liquid metal heat pipe, surface transpiration, and film cooling methods appeared feasible.

  10. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    Science.gov (United States)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  11. Experimental and theoretical analysis on the effect of inclination on metal powder sintered heat pipe radiator with natural convection cooling

    Science.gov (United States)

    Cong, Li; Qifei, Jian; Wu, Shifeng

    2017-02-01

    An experimental study and theoretical analysis of heat transfer performance of a sintered heat pipe radiator that implemented in a 50 L domestic semiconductor refrigerator have been conducted to examine the effect of inclination angle, combined with a minimum entropy generation analysis. The experiment results suggest that inclination angle has influences on both the evaporator and condenser section, and the performance of the heat pipe radiator is more sensitive to the inclination change in negative inclined than in positive inclined position. When the heat pipe radiator is in negative inclination angle position, large amplitude of variation on the thermal resistance of this heat pipe radiator is observed. As the thermal load is below 58.89 W, the influence of inclination angle on the overall thermal resistance is not that apparent as compared to the other three thermal loads. Thermal resistance of heat pipe radiator decreases by 82.86 % in inclination of 60° at the set of 138.46 W, compared to horizontal position. Based on the analysis results in this paper, in order to achieve a better heat transfer performance of the heat pipe radiator, it is recommended that the heat pipe radiator be mounted in positive inclination angle positions (30°-90°), where the condenser is above the evaporator.

  12. Experimental and theoretical analysis on the effect of inclination on metal powder sintered heat pipe radiator with natural convection cooling

    Science.gov (United States)

    Cong, Li; Qifei, Jian; Wu, Shifeng

    2016-06-01

    An experimental study and theoretical analysis of heat transfer performance of a sintered heat pipe radiator that implemented in a 50 L domestic semiconductor refrigerator have been conducted to examine the effect of inclination angle, combined with a minimum entropy generation analysis. The experiment results suggest that inclination angle has influences on both the evaporator and condenser section, and the performance of the heat pipe radiator is more sensitive to the inclination change in negative inclined than in positive inclined position. When the heat pipe radiator is in negative inclination angle position, large amplitude of variation on the thermal resistance of this heat pipe radiator is observed. As the thermal load is below 58.89 W, the influence of inclination angle on the overall thermal resistance is not that apparent as compared to the other three thermal loads. Thermal resistance of heat pipe radiator decreases by 82.86 % in inclination of 60° at the set of 138.46 W, compared to horizontal position. Based on the analysis results in this paper, in order to achieve a better heat transfer performance of the heat pipe radiator, it is recommended that the heat pipe radiator be mounted in positive inclination angle positions (30°-90°), where the condenser is above the evaporator.

  13. Evaluation of conjugate, radial heat transfer in an internally insulated composite pipe

    NARCIS (Netherlands)

    Reurings, C.; Koussios, S.; Bergsma, O.K.; Vergote, K.

    2015-01-01

    In order to compete with steel, a fibre-reinforced composite exhaust wall with a general-purpose resin system requires an effective but lightweight insulation layer. However a lack of experimental methods for heat transfer from turbulent gas flow to pipe walls lined with a porous insulation layer wa

  14. Evaluation of conjugate, radial heat transfer in an internally insulated composite pipe

    NARCIS (Netherlands)

    Reurings, C.; Koussios, S.; Bergsma, O.K.; Vergote, K.

    2015-01-01

    In order to compete with steel, a fibre-reinforced composite exhaust wall with a general-purpose resin system requires an effective but lightweight insulation layer. However a lack of experimental methods for heat transfer from turbulent gas flow to pipe walls lined with a porous insulation layer

  15. Thermal control of power supplies with electronic packaging techniques. [using low cost heat pipes

    Science.gov (United States)

    1977-01-01

    The integration of low-cost commercial heat pipes in the design of a NASA candidate standard modular power supply with a 350 watt output resulted in a 44% weight reduction. Part temperatures were also appreciably reduced, increasing the environmental capability of the unit. A complete 350- watt modular power converter was built and tested to evaluate thermal performance of the redesigned supply.

  16. Thermal management through in-board heat pipes manufactured using printed circuit board multilayer technology

    NARCIS (Netherlands)

    Wits, Wessel Willems; Legtenberg, R.; Legtenberg, Rob; Mannak, Jan; van Zalk, Bas; Aripin, A.

    2006-01-01

    A novel, integrated approach in thermal management of electronic products, based on two-phase cooling, is presented. A flat miniature heat pipe, integrated inside the laminated structure of a printed circuit board (PCB) has been developed, based on mainstream PCB fabrication processes. Hot spots on

  17. The heat-pipe resembling action of boiling bubbles in endovenous laser ablation.

    Science.gov (United States)

    van der Geld, Cees W M; van den Bos, Renate R; van Ruijven, Peter W M; Nijsten, Tamar; Neumann, H A Martino; van Gemert, Martin J C

    2010-11-01

    Endovenous laser ablation (EVLA) produces boiling bubbles emerging from pores within the hot fiber tip and traveling over a distal length of about 20 mm before condensing. This evaporation-condensation mechanism makes the vein act like a heat pipe, where very efficient heat transport maintains a constant temperature, the saturation temperature of 100 degrees C, over the volume where these non-condensing bubbles exist. During EVLA the above-mentioned observations indicate that a venous cylindrical volume with a length of about 20 mm is kept at 100 degrees C. Pullback velocities of a few mm/s then cause at least the upper part of the treated vein wall to remain close to 100 degrees C for a time sufficient to cause irreversible injury. In conclusion, we propose that the mechanism of action of boiling bubbles during EVLA is an efficient heat-pipe resembling way of heating of the vein wall.

  18. High performance heat pipes. Final technical report, June 1, 1978--June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, G.Y.

    1979-06-30

    The report describes a program to develop and demonstrate in the 600 to 1600 C temperature range the heat transfer potential of heat pipes using a novel, high performance wick structure. The tunnel wick as conceived at Thermacore makes use of the high capillary pressure provided by the sinterng of finely divided metal powders. Low resistance liquid flow passages, or tunnels, are formed within the sintered powder. Theoretical analysis predicts higher performance for these structures than any demonstrated in the world to date.

  19. Electrowetting-based microfluidic operations on rapid-manufactured devices for heat pipe applications

    Science.gov (United States)

    Hale, Renee S.; Bahadur, Vaibhav

    2017-07-01

    The heat transport capacity of traditional heat pipes is limited by the capillary pressure generated in the internal wick that pumps condensate to the evaporator. Recently, the authors conceptualized a novel heat pipe architecture, wherein wick-based pumping is replaced by electrowetting (EW)-based pumping of microliter droplets in the adiabatic section. An electrowetting heat pipe (EHP) can overcome the capillary limit to heat transport capacity and enable compact, planar, gravity-insensitive, and ultralow power consumption heat pipes that transport kiloWatt heat loads over extended distances. This work develops a novel technique for rapid, scalable fabrication of EW-based devices and studies critical microfluidic operations underlying the EHP, with the objective of predicting the key performance parameters of the EHP. Devices are fabricated on a printed circuit board (PCB) substrate with mechanically-milled electrodes, and a removable polyimide dielectric film. The first set of experiments uncovers the maximum channel gap (1 mm) for reliable EW-based pumping; this parameter determines the heat transport capacity of the EHP, which scales linearly with the channel gap. The second set of experiments uncovers the maximum channel gap (375 microns) at which EW voltages can successfully split droplets. This is an important consideration which ensures EHP operability in the event of unintentional droplet merging. The third set of experiments demonstrate and study EW-induced droplet generation from an open-to-air reservoir, which mimics the interface between the condenser and adiabatic sections of the EHP. The experimental findings predict that planar, water-based EHPs with a (10 cm by 4 mm) cross section can transport 1.6 kW over extended distances (>1 m), with a thermal resistance of 0.01 K W-1.

  20. Investigation of Counter-Flow in a Heat Pipe-Thermoelectric Generator (HPTEG)

    Science.gov (United States)

    Remeli, Muhammad Fairuz; Singh, Baljit; Affandi, Nor Dalila Nor; Ding, Lai Chet; Date, Abhijit; Akbarzadeh, Aliakbar

    2016-12-01

    This study explores a method of generating electricity while recovering waste heat through the integration of heat pipes and thermoelectric generators (i.e. HPTEG system). The simultaneous waste heat recovery and power generation processes are achieved without the use of any moving parts. The HPTEG system consists of bismuth telluride thermoelectric generators (TEG), which are sandwiched between two finned pipes to achieve a temperature gradient across the TEG for electricity generation. A counter-flow heat exchanger was built using two separate air ducts. The air ducts were thermally coupled using the HPTEG modules. The evaporator section of the heat pipe absorbed the waste heat in a hot air duct. The heat was then transferred across the TEG surfaces. The condenser section of the HPTEG collected the excess heat from the TEG cold side before releasing it to the cold air duct. A 2-kW electrical heater was installed in the hot air duct to simulate the exhaust gas. An air blower was installed at the inlet of each duct to direct the flow of air into the ducts. A theoretical model was developed for predicting the performance of the HPTEG system using the effectiveness-number of transfer units method. The developed model was able to predict the thermal and electrical output of the HPTEG, along with the rate of heat transfer. The results showed that by increasing the cold air velocity, the effectiveness of the heat exchanger was able to be increased from approximately 52% to 58%. As a consequence of the improved heat transfer, maximum power output of 4.3 W was obtained.

  1. Design and Operation of a Cryogenic Nitrogen Pulsating Heat Pipe

    Science.gov (United States)

    Diego Fonseca, Luis; Miller, Franklin; Pfotenhauer, John

    2015-12-01

    We report the design, experimental setup and successful test results using an innovative passive cooling system called a “Pulsating Heat Pipe” (PHP) operating at temperatures ranging from 77 K to 80 K and using nitrogen as the working fluid. PHPs, which transfer heat by two phase flow mechanisms through a closed loop tubing have the advantage that no electrical pumps are needed to drive the fluid flow. In addition, PHPs have an advantage over copper straps and thermal conductors since they are lighter in weight, exhibit lower temperature gradients and have higher heat transfer rates. PHPs consist of an evaporator section, thermally anchored to a solid, where heat is received at the saturation temperature where the liquid portion of the two-phase flow evaporates, and a condenser where heat is rejected at the saturation temperature where the vapor is condensed. The condenser section in our experiment has been thermally interfaced to a CT cryocooler from SunPower that has a cooling capacity of 10 W at 77 K. Alternating regions of liquid slugs and small vapor plugs fill the capillary tubing, with the vapor regions contracting in the condenser section and expanding in the evaporator section due to an electric heater that will generate heat loads up to 10 W. This volumetric expansion and contraction provides the oscillatory flow of the fluid throughout the capillary tubing thereby transferring heat from one end to the other. The thermal performance and temperature characteristics of the PHP will be correlated as a function of average condenser temperature, PHP fill liquid ratio, and evaporator heat load. The experimental data show that the heat transfer between the evaporator and condenser sections can produce an effective thermal conductivity up to 35000 W/m-K at a 3.5 W heat load.

  2. Effect of copper nanofluid in aqueous solution of long chain alcohols in the performance of heat pipes

    Science.gov (United States)

    Senthil Kumar, R.; Vaidyanathan, S.; Sivaraman, B.

    2015-02-01

    Heat pipes are widely used for the thermal control of electronic devices due to their capability of heat transport at high rate over considerable distance with small temperature drop. This study investigates the experimental performance of the heat pipe using the combination of copper nanofluids and the different types of aqueous solution of long chain alcohols. An experimental system is set up to measure the temperature distribution of heat pipes along the surface to determine the thermal efficiency and the thermal resistance of different working fluids computed. The working fluids used in this analysis illustrate certain improvement in the metrics over the conventional working fluids, pertaining to the heat transport limitations. The experimental results display higher efficiency and lower thermal resistance of the heat pipe when compared with the conventional working fluids like water.

  3. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Harvey, Karen [ORNL; Ferrada, Juan J [ORNL

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  4. Comparison between oxide-reduced and water-atomized copper powders used in making sintered wicks of heat pipe

    Institute of Scientific and Technical Information of China (English)

    Liu-Ho Chiu; Chang-Hui Wu; Pee-Yew Lee

    2007-01-01

    Oxide-reduced copper powder can be produced efficiently at low cost. The volume shrinkage, porosity, maximum pore size, permeability and thermal conductivity of wicks sintered from two oxide-reduced (OR) powders were compared with one from water-atomized (WA) powder. The green specimens were sintered at temperatures from 800 to 1000 ℃ in a tube furnace under a reduction stream of 10% hydrogen and 90% argon.The results show that the property variations of OR - 100 and WA wicks due to porosity changes have a similar tendency and range. Nine hundred degree celsius is a recommended sintering temperature for producing ideal wicks for use in heat pipes. A smaller maximum pore size can be obtained by increasing the green density.

  5. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    based on the mass and energy balance of the hydrogen, liquid, and the wall of the compression chamber at each time step and positional node with various compression ratios, to calculate the temperature distribution of the system. The amount of heat extracted from hydrogen, directly at the interface......A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...

  6. Low Cost Variable Conductance Heat Pipe for Balloon Payload Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While continuously increasing in complexity, the payloads of terrestrial high altitude balloons need a thermal management system to reject their waste heat and to...

  7. Influence of void ratio on phase change of thermal energy storage for heat pipe receiver

    Directory of Open Access Journals (Sweden)

    Xiaohong Gui

    2015-01-01

    Full Text Available In this paper, influence of void ratio on phase change of thermal storage unit for heat pipe receiver under microgravity is numerically simulated. Accordingly, mathematical model is set up. A solidification-melting model upon the enthalpy-porosity method is specially provided to deal with phase changes. The liquid fraction distribution of thermal storage unit of heat pipe receiver is shown. The fluctuation of melting ratio in PCM canister is indicated. Numerical results are compared with experimental ones in Japan. The results show that void cavity prevents the process of phase change greatly. PCM melts slowly during sunlight periods and freezes slowly during eclipse periods as void ratio increases. The utility ratio of PCM during both sunlight periods and eclipse periods decreases obviously with the improvement of void ratio. The thermal resistance of void cavity is much higher than that of PCM canister wall. Void cavity prevents the heat transfer between PCM zone and canister wall.

  8. A Temperature-Profile Method for Estimating Flow Processes in Geologic Heat Pipes

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Birkholzer

    2005-01-21

    Above-boiling temperature conditions, as encountered, for example, in geothermal reservoirs and in geologic repositories for the storage of heat-producing nuclear wastes, may give rise to strongly altered liquid and gas flow processes in porous subsurface environments. The magnitude of such flow perturbation is extremely hard to measure in the field. We therefore propose a simple temperature-profile method that uses high-resolution temperature data for deriving such information. The energy that is transmitted with the vapor and water flow creates a nearly isothermal zone maintained at about the boiling temperature, referred to as a heat pipe. Characteristic features of measured temperature profiles, such as the differences in the gradients inside and outside of the heat pipe regions, are used to derive the approximate magnitude of the liquid and gas fluxes in the subsurface, for both steady-state and transient conditions.

  9. Analytical study of the liquid phase transient behavior of a high temperature heat pipe

    Science.gov (United States)

    Roche, Gregory Lawrence

    1988-09-01

    The transient operation of the liquid phase of a high temperature heat pipe is studied. The study was conducted in support of advanced heat pipe applications that require reliable transport of high temperature drops and significant distances under a broad spectrum of operating conditions. The heat pipe configuration studied consists of a sealed cylindrical enclosure containing a capillary wick structure and sodium working fluid. The wick is an annular flow channel configuration formed between the enclosure interior wall and a concentric cylindrical tube of fine pore screen. The study approach is analytical through the solution of the governing equations. The energy equation is solved over the pipe wall and liquid region using the finite difference Peaceman-Rachford alternating direction implicit numerical method. The continuity and momentum equations are solved over the liquid region by the integral method. The energy equation and liquid dynamics equation are tightly coupled due to the phase change process at the liquid-vapor interface. A kinetic theory model is used to define the phase change process in terms of the temperature jump between the liquid-vapor surface and the bulk vapor. Extensive auxiliary relations, including sodium properties as functions of temperature, are used to close the analytical system. The solution procedure is implemented in a FORTRAN algorithm with some optimization features to take advantage of the IBM System/370 Model 3090 vectorization facility. The code was intended for coupling to a vapor phase algorithm so that the entire heat pipe problem could be solved. As a test of code capabilities, the vapor phase was approximated in a simple manner.

  10. A Dual-driven Intelligent Combination Control of Heat Pipe Space Cooling System

    Institute of Scientific and Technical Information of China (English)

    LI Yunze; LI Mingmin; LEE Kok Meng

    2012-01-01

    Effective thermal control systems are essential for reliable operation of spacecraft.A dual-driven intelligent combination control strategy is proposed to improve the temperate control and heat flux tracking effects.Both temperature regulation and heat flux tracking errors are employed to generate the final control action; their contributions are adaptively adjusted by a fuzzy fusing policy of control actions.To evaluate the control effects,describe a four-nodal mathematical model for analyzing the dynamic characteristics of the controlled heat pipe space cooling system (HP-SCS) consisting of an aluminum-ammonia heat pipe and a variable-emittance micro-electromechanical-system (MEMS) radiator.This dynamical model calculates the mass flow-rate and condensing pressure of the heat pipe working fluid directly from the systemic nodal temperatures,therefore,it is more suitable for control engineering applications.The closed-loop transient performances of four different control schemes have been numerically investigated.The results conclude that the proposed intelligent combination control scheme not only improves the thermal control effects but also benefits the safe operation of HP-SCS.

  11. Simulation and optimization of a pulsating heat pipe using artificial neural network and genetic algorithm

    Science.gov (United States)

    Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad

    2016-01-01

    In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.

  12. Simulation and optimization of a pulsating heat pipe using artificial neural network and genetic algorithm

    Science.gov (United States)

    Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad

    2016-11-01

    In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.

  13. Thermodynamic Peculiar Features of Steam Flow in Heat Pipe-Line

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2008-01-01

    Full Text Available The paper contains results of the investigations pertaining to thermodynamic steam characteristics of the operating pipe-line, analysis of steam flow regimes, influence of heat losses on temperature fall along the length. The eh-diagram presents changes in e and e values which are caused by decrease of mean temperatures with the given pressure value at pipe-line inlet and outlet. The paper shows that steam enthalpy at the pipeline outlet depends on inlet enthalpy, ambient temperature and entropy difference.The constructed nomograph makes it possible to forecast steam temperature fall in the pipe-line with the purpose to ensure more efficient usage of its thermodynamic potential.

  14. Possibilities of using carbon dioxide as fillers for heat pipe to obtain low-potential geothermal energy

    Directory of Open Access Journals (Sweden)

    Malcho M.

    2013-04-01

    Full Text Available The use of low-potential heat is now possible especially in systems using heat pumps. There is a presumption that the trend will continue. Therefore, there is a need to find ways to be systems with a heat pump efficiencies. The usage of heat pipes seems to be an appropriate alternative to the establishedtechnology of obtaining heat through in-debt probes. This article describes a series of experiments on simulator for obtaining low-potential geothermal energy, in order to find the optimal amount of carbon dioxide per meter length of the heat pipe. For orientation and understanding of the conclusions of theexperiment, the article has also a detailed description of the device which simulates the transport of heat through geothermal heat pipes.

  15. Heat Analysis of Liquid piston Compressor for Hydrogen Applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2014-01-01

    of hydrogen temperature from adiabatic case is very small, due to large wall resistance and small contact area at the interface. Moreover, the results illustrates that the increasing of the total heat transfer coefficient at the interface and the wall will play a key role in reducing the hydrogen temperature......A new hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model...... and through the walls, is investigated and compared with the adiabatic case. The amount of heat transfer towards the wall is assessed according to widely used heat transfer models available in the literature.The results show very low sensitivity of the model to different heat transfer correlations. Deviation...

  16. Theoretical Design of Thermosyphon for Process Heat Transfer from NGNP to Hydrogen Plant

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Mike Patterson; Fred Gunnerson

    2008-09-01

    The Next Generation Nuclear Plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ~ 1300K) and industrial scale power transport (=50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization / condensing process. The condensate is further returned to the hot source by gravity, i.e. without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) or vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  17. Experimental measurement, calculation and thermal visualization condenser temperature of cooling device with a heat pipe technology

    Directory of Open Access Journals (Sweden)

    Nemec Patrik

    2017-01-01

    Full Text Available This work deal with evaluation of condenser temperature by experimental measurement, calculation and thermal visualization of cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. One from many things influenced the heat flux amount transferred from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. The work contain description, working principle and construction of cooling device. Experimental part describe the measuring method and mathematical calculation to condenser temperature evaluation of cooling device depending on the loaded heat of electronic components in range from 250 to 750 W. The mathematical calculation is based on physical phenomena of boiling, condensation and natural convection heat transfer. The results of experimental measurement and mathematical calculation are verified by thermal imagining of device condenser by IR camera.

  18. Physical concept and calculation of boiling point in a pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Naumova A. N.

    2014-06-01

    Full Text Available LED development is accompanied by the need to ensure a constructive solution for the thermal conditions problem. For this purpose one can use pulsating heat pipes (PHP, that operate more efficiently after the start of heat carrier boiling. This article describes the physical representation and formula that allows determining the boiling point, which is a lower bound of the PHP effective operating range. It is shown that the main factors influencing the required heat flow are driving capillary pressure and velocity of the vapor bubble. The formula was obtained for the closed PHP made of the copper with water as a heat carrier. Information about this heat flux can be used for further design of cooling systems for heat-sensitive elements, such as LED for promising lighting devices.

  19. Investigation on the effect of cooling of the tool using heat pipe during hard turning with minimal fluid application

    Directory of Open Access Journals (Sweden)

    R. Robinson Gnanadurai

    2016-09-01

    Full Text Available Hard turning with minimal fluid application is a recently developed technique to alleviate the problem associated with cutting fluid. During this process, very small quantity of cutting fluid is applied as a narrow high velocity pulsing jet at the cutting zone. As the quantity of cutting fluid is very small, some auxiliary cooling of tool using heat pipe was attempted in the present work to enhance heat dissipation and thus improving cutting performance. Heat pipe was installed in vertical position in contact with the tool for extracting more heat from the tool. The influence of heat pipe cooling of tool on the cutting performance was analyzed by Taguchi's design of experiments. It was observed that the use of heat pipe in minimal fluid application reduced cutting temperature and tool wear to a maximum of 22% and 15%, respectively, in comparison with conventional hard turning with minimal fluid application without the aid of heat pipe. It appears that heat pipe can be successively employed as a mean of cooling the tool during hard turning with minimal fluid application.

  20. Thermocapillary Phenomena and Performance Limitations of a Wickless Heat Pipe in Microgravity

    Science.gov (United States)

    Kundan, Akshay; Plawsky, Joel L.; Wayner, Peter C.; Chao, David F.; Sicker, Ronald J.; Motil, Brian J.; Lorik, Tibor; Chestney, Louis; Eustace, John; Zoldak, John

    2015-04-01

    A counterintuitive, thermocapillary-induced limit to heat- pipe performance was observed that is not predicted by current thermal-fluid models. Heat pipes operate under a number of physical constraints including the capillary, boiling, sonic, and entrainment limits that fundamentally affect their performance. Temperature gradients near the heated end may be high enough to generate significant Marangoni forces that oppose the return flow of liquid from the cold end. These forces are believed to exacerbate dry out conditions and force the capillary limit to be reached prematurely. Using a combination of image and thermal data from experiments conducted on the International Space Station with a transparent heat pipe, we show that in the presence of significant Marangoni forces, dry out is not the initial mechanism limiting performance, but that the physical cause is exactly the opposite behavior: flooding of the hot end with liquid. The observed effect is a consequence of the competition between capillary and Marangoni-induced forces. The temperature signature of flooding is virtually identical to dry out, making diagnosis difficult without direct visual observation of the vapor-liquid interface.

  1. Thermal distillation system utilizing biomass energy burned in stove by means of heat pipe

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2016-09-01

    Full Text Available A thermal distillation system utilizing a part of the thermal energy of biomass burned in a stove during cooking is proposed. The thermal energy is transported from the stove to the distiller by means of a heat pipe. The distiller is a vertical multiple-effect diffusion distiller, in which a number of parallel partitions in contact with saline-soaked wicks are set vertically with narrow gaps of air. A pilot experimental apparatus was constructed and tested with a single-effect and multiple-effect distillers to investigate primarily whether a heat pipe can transport thermal energy adequately from the stove to the distiller. It was found that the temperatures of the heated plate and the first partition of the distiller reached to about 100 °C and 90 °C, respectively, at steady state, showing that the heat pipe works sufficiently. The distilled water obtained was about 0.75 and 1.35 kg during the first 2 h of burning from a single-effect and multiple-effect distillers, respectively.

  2. Micro-Textured Black Silicon Wick for Silicon Heat Pipe Array

    Science.gov (United States)

    Yee, Karl Y.; Sunada, Eric T.; Ganapathi, Gani B.; Manohara, Harish; Homyk, Andrew; Prina, Mauro

    2013-01-01

    Planar, semiconductor heat arrays have been previously proposed and developed; however, this design makes use of a novel, microscale black silicon wick structure that provides increased capillary pumping pressure of the internal working fluid, resulting in increased effective thermal conductivity of the device, and also enables operation of the device in any orientation with respect to the gravity vector. In a heat pipe, the efficiency of thermal transfer from the case to the working fluid is directly proportional to the surface area of the wick in contact with the fluid. Also, the primary failure mechanism for heat pipes operating within the temperature range of interest is inadequate capillary pressure for the return of fluid from the condenser to the wick. This is also what makes the operation of heat pipes orientation-sensitive. Thus, the two primary requirements for a good wick design are a large surface area and high capillary pressure. Surface area can be maximized through nanomachined surface roughening. Capillary pressure is largely driven by the working fluid and wick structure. The proposed nanostructure wick has characteristic dimensions on the order of tens of microns, which promotes menisci of very small radii. This results in the possibility of enormous pumping potential due to the inverse proportionality with radius. Wetting, which also enhances capillary pumping, can be maximized through growth of an oxide layer or material deposition (e.g. TiO2) to create a superhydrophilic surface.

  3. Heat pipe radiation cooling (HPRC) for high-speed aircraft propulsion. Phase 2 (feasibility) final report

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. [Los Alamos National Lab., NM (United States); Silverstein, C.C. [CCS Associates, Bethel Park, PA (United States)

    1994-03-25

    The National Aeronautics and Space Administration (NASA), Los Alamos National Laboratory (Los Alamos), and CCS Associates are conducting the Heat Pipe Radiation Cooling (HPRC) for High-Speed Aircraft Propulsion program to determine the advantages and demonstrate the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This innovative approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from adjacent external surfaces. HPRC is viewed as an alternative (or complementary) cooling technique to the use of pumped cryogenic or endothermic fuels to provide regenerative fuel or air cooling of the hot surfaces. The HPRC program has been conducted through two phases, an applications phase and a feasibility phase. The applications program (Phase 1) included concept and assessment analyses using hypersonic engine data obtained from US engine company contacts. The applications phase culminated with planning for experimental verification of the HPRC concept to be pursued in a feasibility program. The feasibility program (Phase 2), recently completed and summarized in this report, involved both analytical and experimental studies.

  4. The Case for a Heat-Pipe Phase of Planet Evolution on the Moon

    Science.gov (United States)

    Simon, J. I.; Moore, W. B.; Webb, A. A. G.

    2015-01-01

    The prevalence of anorthosite in the lunar highlands is generally attributed to the flotation of less dense plagioclase in the late stages of the solidification of the lunar magma ocean. It is not clear, however, that these models are capable of producing the extremely high plagioclase contents (near 100%) observed in both Apollo samples and remote sensing data, since a mostly solid lithosphere forms (at 60-70% solidification) before plagioclase feldspar reaches saturation (at approximately 80% solidification). Formation as a floating cumulate is made even more problematic by the near uniformity of the alkali composition of the plagioclase, even as the mafic phases record significant variations in Mg/(Mg+Fe) ratios. These problems can be resolved for the Moon if the plagioclase-rich crust is produced and refined through a widespread episode of heat-pipe magmatism rather than a process dominated by density-driven plagioclase flotation. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io's present activity. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an early episode of heat-pipe cooling. As the Moon likely represents the most wellpreserved example of early planetary thermal evolution in our solar system, studies of the lunar surface and of lunar materials provide useful data to test the idea of a universal model of the way terrestrial bodies transition from a magma ocean state into subsequent single-plate, rigid-lid convection or plate tectonic phases.

  5. Two-Phase Flow Modeling in a Single Closed Loop Pulsating Heat Pipes

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-hai; Sameer Khandekar; Sanka V. V. S. N. S. Manyam; Manfred Groll

    2007-01-01

    Mathematical modeling of pulsating heat pipes through 'first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far render them unsuitable for engineering design. In this paper, a more realistic modeling scheme is presented which provides considerable try for thought toward the next progressive step. At high enough heat flux level, closed loop pulsating heat pipes experience a bulk internal unidirectional fluid circulation. Under such a condition, conventional two-phaseflow modeling in capillary tubes may be applied. This has been attempted for single-loop PHPs. A homogeneous model and a separated two-fluid flow model based on simultaneous conservation of mass, momentum and energy, have been developed for an equivalent 'open flow' system. The model allows prediction of two-phase flow parameters in each subsection of the device thereby providing important insights into its operation. The concept of 'void fraction constraint'in pulsating heat pipe operation is introduced and its relevance to future modeling attempts is outlined.

  6. Transport phenomena in capillary-porous structures and heat pipes

    CERN Document Server

    Smirnov, Henry

    2009-01-01

    With emphasis on the processes involved, this text explores the experimental efforts in two-phase thermal control technology research and development. This work evaluates and compares different theoretical approaches, experimental results, and models, such as semi-empirical models for critical boiling heat fluxes.

  7. Performance Evaluation of the Concept of Hybrid Heat Pipe as Passive In-core Cooling Systems for Advanced Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yeong Shin; Kim, Kyung Mo; Kim, In Guk; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    As an arising issue for inherent safety of nuclear power plant, the concept of hybrid heat pipe as passive in-core cooling systems was introduced. Hybrid heat pipe has unique features that it is inserted in core directly to remove decay heat from nuclear fuel without any changes of structures of existing facilities of nuclear power plant, substituting conventional control rod. Hybrid heat pipe consists of metal cladding, working fluid, wick structure, and neutron absorber. Same with working principle of the heat pipe, heat is transported by phase change of working fluid inside metal cask. Figure 1 shows the systematic design of the hybrid heat pipe cooling system. In this study, the concept of a hybrid heat pipe was introduced as a Passive IN-core Cooling Systems (PINCs) and demonstrated for internal design features of heat pipe containing neutron absorber. Using a commercial CFD code, single hybrid heat pipe model was analyzed to evaluate thermal performance in designated operating condition. Also, 1-dimensional reactor transient analysis was done by calculating temperature change of the coolant inside reactor pressure vessel using MATLAB. As a passive decay heat removal device, hybrid heat pipe was suggested with a concept of combination of heat pipe and control rod. Hybrid heat pipe has distinct feature that it can be a unique solution to cool the reactor when depressurization process is impossible so that refueling water cannot be injected into RPV by conventional ECCS. It contains neutron absorber material inside heat pipe, so it can stop the reactor and at the same time, remove decay heat in core. For evaluating the concept of hybrid heat pipe, its thermal performance was analyzed using CFD and one-dimensional transient analysis. From single hybrid heat pipe simulation, the hybrid heat pipe can transport heat from the core inside to outside about 18.20 kW, and total thermal resistance of hybrid heat pipe is 0.015 .deg. C/W. Due to unique features of long heat

  8. Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes

    Directory of Open Access Journals (Sweden)

    Marco Nesarajah

    2017-06-01

    Full Text Available With the increasing interest in energy efficiency and resource protection, waste heat recovery processes have gained importance. Thereby, one possibility is the conversion of the heat energy into electrical energy by thermoelectric generators. Here, a thermoelectric energy harvesting system is developed to convert the waste heat from exhaust pipes, which are very often used to transport the heat, e.g., in automobiles, in industrial facilities or in heating systems. That is why a mockup of a heating is built-up, and the developed energy harvesting system is attached. To build-up this system, a model-based development process is used. The setup of the developed energy harvesting system is very flexible to test different variants and an optimized system can be found in order to increase the energy yield for concrete application examples. A corresponding simulation model is also presented, based on previously developed libraries in Modelica®/Dymola®. In the end, it can be shown—with measurement and simulation results—that a thermoelectric energy harvesting system on the exhaust pipe of a heating system delivers extra energy and thus delivers a contribution for a more efficient usage of the inserted primary energy carrier.

  9. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  10. Study of Thermal Conductivity of Hydrogen-argon Mixture at Different Temperatures for Thermal Insulation Pipes in Petroleum Industry

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cheng-long; XU Yong-xiang; SHENG Hong-zhi

    2014-01-01

    In this paper, through the study of thermal conductivity of hydrogen- argon mixture at different temperatures for thermal insulation pipes in petroleum industry, a good method for determining the thermal conductivity of other gas mixture at different temperatures has been provided.

  11. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    Energy Technology Data Exchange (ETDEWEB)

    Jang, J.H.; Faghri, A. [Wright State Univ., Dayton, OH (United States); Chang, W.S.; Mahefkey, E.T. [Wright Research and Development Center, Wright-Patterson, OH (United States)

    1989-08-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  12. FLOW AND HEAT TRANSFER OF OLDROYD-B FLUIDS IN A ROTATING CURVED PIPE

    Institute of Scientific and Technical Information of China (English)

    SHEN Xin-rong; ZHANG Ming-kan; MA Jian-feng; ZHANG Ben-zhao

    2008-01-01

    The flow and convected heat transfer of the Oldroyd-B fluids in a rotating curved pipe with circular cross-section were investigated by employing a perturbation method. A perturbation solution up to the second order was obtained for a small curvature ratio, κ. The variations of axial velocity distribution and secondary flow structure with F, Re and We were discussed in detail in order to investigate the combined effects of the three parameters on flow structure. The combined effects of the Coriolis force, inertia force and elastic force on the temperature distribution were also analyzed, which are greater than the adding independent effects of the three forces. The variations of the flow rate and Nusselt number with the rotation, inertia and elasticity were examined as well. The results show the characteristics of the heat and mass transfer of the Oldroyd-B fluids in a rotating curved pipe.

  13. Analytical and Numerical Solutions of Vapor Flow in a Flat Plate Heat Pipe

    Directory of Open Access Journals (Sweden)

    Mohsen GOODARZI

    2012-03-01

    Full Text Available In this paper, the optimal homotopy analysis method (OHAM and differential transform method (DTM were applied to solve the problem of 2D vapor flow in flat plate heat pipes. The governing partial differential equations for this problem were reduced to a non-linear ordinary differential equation, and then non-dimensional velocity profiles and axial pressure distributions along the entire length of the heat pipe were obtained using homotopy analysis, differential transform, and numerical fourth-order Runge-Kutta methods. The reliability of the two analytical methods was examined by comparing the analytical results with numerical ones. A brief discussion about the advantages of the two applied analytical methods relative to each other is presented. Furthermore, the effects of the Reynolds number and the ratio of condenser to evaporator lengths on the flow variables were discussed.Graphical abstract

  14. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    Science.gov (United States)

    Jang, J. H.; Faghri, A.; Chang, W. S.; Mahefkey, E. T.

    1990-01-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  15. Design of Heat Pipe Type Adsorption Ice Maker for Fishing Boats

    Institute of Scientific and Technical Information of China (English)

    王丽伟; 王如竹; 夏再忠; 吴静怡

    2005-01-01

    A heat pipe type adsorption ice maker with two adsorbers for fishing boats is designed by using ammonia as refrigerant and compound of activated carbon-GaG12 as adsorbent. This type of heat pipe adsorber can solve the problem of incompatibility between ammonia, copper, seawater and steel. The working process of the ice maker with 8.7kg adsorbent per bed is simulated. The results show that the optimal semi-cycle time is about 9min at the evaporating temperature of -15℃, where the corresponding cooling power, specific cooling power per kilogram adsorbent SCP and coefficient of refrigerant performance COP are respectively 3.6 kW, 217 W·kg-1 and 0.404.

  16. Fabrication and development of several heat pipe honeycomb sandwich panel concepts

    Science.gov (United States)

    Tanzer, H. J.

    1982-06-01

    The feasibility of fabricating and processing liquid metal heat pipes in a low mass honeycomb sandwich panel configuration for application on the NASA Langley airframe-integrated Scramjet engine was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts was evaluated within constraints dictated by existing manufacturing technology and equipment. The chosen design consists of an all-stainless steel structure, sintered screen facesheets, and two types of core-ribbon; a diffusion bonded wire mesh and a foil-screen composite. Cleaning, fluid charging, processing, and process port sealing techniques were established. The liquid metals potassium, sodium and cesium were used as working fluids. Eleven honeycomb panels 15.24 cm X 15.24 cm X 2.94 cm were delivered to NASA Langley for extensive performance testing and evaluation; nine panels were processed as heat pipes, and two panels were left unprocessed.

  17. Fabrication and development of several heat pipe honeycomb sandwich panel concepts. [airframe integrated scramjet engine

    Science.gov (United States)

    Tanzer, H. J.

    1982-01-01

    The feasibility of fabricating and processing liquid metal heat pipes in a low mass honeycomb sandwich panel configuration for application on the NASA Langley airframe-integrated Scramjet engine was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts was evaluated within constraints dictated by existing manufacturing technology and equipment. The chosen design consists of an all-stainless steel structure, sintered screen facesheets, and two types of core-ribbon; a diffusion bonded wire mesh and a foil-screen composite. Cleaning, fluid charging, processing, and process port sealing techniques were established. The liquid metals potassium, sodium and cesium were used as working fluids. Eleven honeycomb panels 15.24 cm X 15.24 cm X 2.94 cm were delivered to NASA Langley for extensive performance testing and evaluation; nine panels were processed as heat pipes, and two panels were left unprocessed.

  18. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface......A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...

  19. Heat pipes et two-phase loops for spacecraft applications. ESA programmes

    Energy Technology Data Exchange (ETDEWEB)

    Supper, W. [European Space Agency / ESTEC. Thermal control and life support division (France)

    1996-12-31

    This document is a series of transparencies presenting the current and future applications of heat pipes in spacecraft and the activities in the field of capillary pumped two-phase loops: thermal tests, high-efficiency low pressure drop condensers, theoretical understanding of evaporator function, optimization of liquid and vapor flows, trade-off between low and high conductivity wicks, development of high capillary capacity wicks etc.. (J.S.)

  20. Investigation of the influence of capillary effect on operation of the loop heat pipe

    Directory of Open Access Journals (Sweden)

    Mikielewicz Dariusz

    2014-09-01

    Full Text Available In the paper presented are studies on the investigation of the capillary forces effect induced in the porous structure of a loop heat pipe using water and ethanol ad test fluids. The potential application of such effect is for example in the evaporator of the domestic micro-CHP unit, where the reduction of pumping power could be obtained. Preliminary analysis of the results indicates water as having the best potential for developing the capillary effect.