WorldWideScience

Sample records for hydrogen generation rate

  1. WTP Waste Feed Qualification: Hydrogen Generation Rate Measurement Apparatus Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    The generation rate of hydrogen gas in the Hanford tank waste will be measured during the qualification of the staged tank waste for processing in the Hanford Tank Waste Treatment and Immobilization Plant. Based on a review of past practices in measurement of the hydrogen generation, an apparatus to perform this measurement has been designed and tested for use during waste feed qualification. The hydrogen generation rate measurement apparatus (HGRMA) described in this document utilized a 100 milliliter sample in a continuously-purged, continuously-stirred vessel, with measurement of hydrogen concentration in the vent gas. The vessel and lid had a combined 220 milliliters of headspace. The vent gas system included a small condenser to prevent excessive evaporative losses from the sample during the test, as well as a demister and filter to prevent particle migration from the sample to the gas chromatography system. The gas chromatograph was an on line automated instrument with a large-volume sample-injection system to allow measurement of very low hydrogen concentrations. This instrument automatically sampled the vent gas from the hydrogen generation rate measurement apparatus every five minutes and performed data regression in real time. The fabrication of the hydrogen generation rate measurement apparatus was in accordance with twenty three (23) design requirements documented in the conceptual design package, as well as seven (7) required developmental activities documented in the task plan associated with this work scope. The HGRMA was initially tested for proof of concept with physical simulants, and a remote demonstration of the system was performed in the Savannah River National Laboratory Shielded Cells Mockup Facility. Final verification testing was performed using non-radioactive simulants of the Hanford tank waste. Three different simulants were tested to bound the expected rheological properties expected during waste feed qualification testing. These

  2. Zircaloy-oxidation and hydrogen-generation rates in degraded-core accident situations

    International Nuclear Information System (INIS)

    Chung, H.M.; Thomas, G.R.

    1983-02-01

    Oxidation of Zircaloy cladding is the primary source of hydrogen generated during a degraded-core accident. In this paper, reported Zircaloy oxidation rates, either measured at 1500 to 1850 0 C or extrapolated from the low-temperature data obtained at 0 C, are critically reviewed with respect to their applicability to a degraded-core accident situation in which the high-temperature fuel cladding is likely to be exposed to and oxidized in mixtures of hydrogen and depleted steam, rather than in an unlimited flux of pure steam. New results of Zircaloy oxidation measurements in various mixtures of hydrogen and steam are reported for >1500 0 C. The results show significantly smaller oxidation and, hence, hydrogen-generation rates in the mixture, compared with those obtained in pure steam. It is also shown that a significant fraction of hydrogen, generated as a result of Zircaloy oxidation, is dissolved in the cladding material itself, which prevents that portion of hydrogen from reaching the containment building space. Implications of these findings are discussed in relation to a more realistic method of quantifying the hydrogen source term for a degraded-core accident analysis

  3. Empirical rate equation model and rate calculations of hydrogen generation for Hanford tank waste

    International Nuclear Information System (INIS)

    HU, T.A.

    1999-01-01

    Empirical rate equations are derived to estimate hydrogen generation based on chemical reactions, radiolysis of water and organic compounds, and corrosion processes. A comparison of the generation rates observed in the field with the rates calculated for twenty eight tanks shows agreement within a factor of two to three

  4. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  5. Investigation of thermolytic hydrogen generation rate of tank farm simulated and actual waste

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Howe, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-15

    To support resolution of Potential Inadequacies in the Safety Analysis for the Savannah River Site (SRS) Tank Farm, Savannah River National Laboratory conducted research to determine the thermolytic hydrogen generation rate (HGR) with simulated and actual waste. Gas chromatography methods were developed and used with air-purged flow systems to quantify hydrogen generation from heated simulated and actual waste at rates applicable to the Tank Farm Documented Safety Analysis (DSA). Initial simulant tests with a simple salt solution plus sodium glycolate demonstrated the behavior of the test apparatus by replicating known HGR kinetics. Additional simulant tests with the simple salt solution excluding organics apart from contaminants provided measurement of the detection and quantification limits for the apparatus with respect to hydrogen generation. Testing included a measurement of HGR on actual SRS tank waste from Tank 38. A final series of measurements examined HGR for a simulant with the most common SRS Tank Farm organics at temperatures up to 140 °C. The following conclusions result from this testing.

  6. A new type of hydrogen generator-HHEG (high-compressed hydrogen energy generator)

    International Nuclear Information System (INIS)

    Harada, H.; Tojima, K.; Takeda, M.; Nakazawa, T.

    2004-01-01

    'Full text:' We have developed a new type of hydrogen generator named HHEG (High-compressed Hydrogen Energy Generator). HHEG can produce 35 MPa high-compressed hydrogen for fuel cell vehicle without any mechanical compressor. HHEG is a kind of PEM(proton exchange membrane)electrolysis. It was well known that compressed hydrogen could be generated by water electrolysis. However, the conventional electrolysis could not generate 35 MPa or higher pressure that is required for fuel cell vehicle, because electrolysis cell stack is destroyed in such high pressure. In HHEG, the cell stack is put in high-pressure vessel and the pressure difference of oxygen and hydrogen that is generated by the cell stack is always kept at nearly zero by an automatic compensator invented by Mitsubishi Corporation. The cell stack of HHEG is not so special one, but it is not broken under such high pressure, because the automatic compensator always offsets the force acting on the cell stack. Hydrogen for fuel cell vehicle must be produce by no emission energy such as solar and atomic power. These energies are available as electricity. So, water electrolysis is the only way of producing hydrogen fuel. Hydrogen fuel is also 35 MPa high-compressed hydrogen and will become 70 MPa in near future. But conventional mechanical compressor is not useful for such high pressure hydrogen fuel, because of the short lifetime and high power consumption. Construction of hydrogen station network is indispensable in order to come into wide use of fuel cell vehicles. For such network contraction, an on-site type hydrogen generator is required. HHEG can satisfy above these requirements. So we can conclude that HHEG is the only way of realizing the hydrogen economy. (author)

  7. A self-regulating hydrogen generator for micro fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Moghaddam, Saeed; Pengwang, Eakkachai; Shannon, Mark A. [Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States); Masel, Richard I. [Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 213 Roger Adams Lab, 600 S. Mathews, Urbana, IL 61801 (United States)

    2008-10-15

    The ever-increasing power demands and miniaturization of portable electronics, micro-sensors and actuators, and emerging technologies such as cognitive arthropods have created a significant interest in development of micro fuel cells. One of the major challenges in development of hydrogen micro fuel cells is the fabrication and integration of auxiliary systems for generating, regulating, and delivering hydrogen gas to the membrane electrode assembly (MEA). In this paper, we report the development of a hydrogen gas generator with a micro-scale control system that does not consume any power. The hydrogen generator consists of a hydride reactor and a water reservoir, with a regulating valve separating them. The regulating valve consists of a port from the water reservoir and a movable membrane with via holes that permit water to flow from the reservoir to the hydride reactor. Water flows towards the hydride reactor, but stops within the membrane via holes due to capillary forces. Water vapor then diffuses from the via holes into the hydride reactor resulting in generation of hydrogen gas. When the rate of hydrogen consumed by the MEA is lower than the generation rate, gas pressure builds up inside the hydride reactor, deflecting the membrane, closing the water regulator valve, until the pressure drops, whereby the valve reopens. We have integrated the self-regulating micro hydrogen generator to a MEA and successfully conducted fuel cell tests under varying load conditions. (author)

  8. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  9. Hydrogen-based power generation from bioethanol steam reforming

    International Nuclear Information System (INIS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-01-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO 2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint

  10. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  11. Generation of hydrogen free radicals from water for fuels by electric field induction

    International Nuclear Information System (INIS)

    Nong, Guangzai; Chen, Yiyi; Li, Ming; Zhou, Zongwen

    2015-01-01

    Highlights: • Hydrogen free radicals are generated from water splitting. • Hydrogen fuel is generated from water by electric field induction. • Hydrocarbon fuel is generated from CO_2 and water by electric field induction. - Abstract: Water is the most abundant resource for generating hydrogen fuel. In addition to dissociating H"+ and "−OH ions, certain water molecules dissociate to radicals under an electric field are considered. Therefore, an electric field inducing reactor is constructed and operated to generate hydrogen free radicals in this paper. Hydrogen free radicals begin to be generated under a 1.0 V electric field, and increasing the voltage and temperature increases the number of hydrogen free radicals. The production rate of hydrogen free radicals is 0.245 mmol/(L h) at 5.0 V and room temperature. The generated hydrogen free radicals are converted to polymer fuel and hydrogen fuel at production rates of 0.0093 mmol/(L h) and 0.0038 mmol/(L h) respectively, under 5.0 V and 0.25 mA. The results provide a way to generate hydrogen free radicals, which might be used to generate hydrocarbon fuel in industrial manufacture.

  12. Hydrogen generation in SRAT with nitric acid and late washing flowsheets

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1992-01-01

    Melter feed preparation processes, incorporating a final wash of the precipitate slurry feed to Defense Waste Processing Facility (DWPF) and a partial substitution of the SRAT formic acid requirement with nitric acid, should not produce peak hydrogen generation rates during Cold Chemical Runs (CCR's) and radioactive operation greater than their current, respective hydrogen design bases of 0.024 lb/hr and 1.5 lb/hr. A single SRAT bench-scale process simulation for CCR-s produced a DWPF equivalent peak hydrogen generation rate of 0.004 lb/hr. During radioactive operation, the peak hydrogen generation rate will be dependent on the extent DWPF deviates from the nominal precipitate hydrolysis and melter feed preparation process operating parameters. Two actual radioactive sludges were treated according to the new flowsheets. The peak hydrogen evolution rates were equivalent to 0.038 and 0.20 lb/hr (DWPF scale) respectively. Compared to the formic acid -- HAN hydrolysis flowsheets, these peak rates were reduced by a factor of 2.5 and 3.4 for Tank 15 and Tank 11 sludges, respectively

  13. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  14. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  15. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  16. Storage, generation, and use of hydrogen

    Science.gov (United States)

    McClaine, Andrew W.; Rolfe, Jonathan L.; Larsen, Christopher A.; Konduri, Ravi K.

    2006-05-30

    A composition comprising a carrier liquid; a dispersant; and a chemical hydride. The composition can be used in a hydrogen generator to generate hydrogen for use, e.g., as a fuel. A regenerator recovers elemental metal from byproducts of the hydrogen generation process.

  17. Embedded system based on PWM control of hydrogen generator with SEPIC converter

    Science.gov (United States)

    Fall, Cheikh; Setiawan, Eko; Habibi, Muhammad Afnan; Hodaka, Ichijo

    2017-09-01

    The objective of this paper is to design and to produce a micro electrical plant system based on fuel cell for teaching material-embedded systems in technical vocational training center. Based on this, the student can experience generating hydrogen by fuel cells, controlling the rate of hydrogen generation by the duty ration of single-ended primary-inductor converter(SEPIC), drawing the curve rate of hydrogen to duty ratio, generating electrical power by using hydrogen, and calculating the fuel cell efficiency when it is used as electrical energy generator. This project is of great importance insofar as students will need to acquire several skills to be able to realize it such as continuous DC DC conversion and the scientific concept behind the converter, the regulation of systems with integral proportional controllers, the installation of photovoltaic cells, the use of high-tech sensors, microcontroller programming, object-oriented programming, mastery of the fuel cell syste

  18. Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Liu, Xinmin; Cao, Changqing; Guo, Qingjie [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-08-01

    Low cost transition metal catalysts with high performance are attractive for the development of on-board hydrogen generation systems by catalytic hydrolysis of sodium borohydride (NaBH{sub 4}) in fuel cell fields. In this study, hydrogen production from alkaline NaBH{sub 4} via hydrolysis process over carbon-supported cobalt catalysts was studied. The catalytic activity of the supported cobalt catalyst was found to be highly dependent on the calcination temperatures. The hydrogen generation rate increases with calcination temperatures in the range of 200-400 C, but a high calcination temperature above 500 C led to markedly decreased activity. X-ray diffraction patterns reveal that the catalysts experience phase transition from amorphous Co-B to crystalline cobalt hydroxide with increase in calcination temperatures. The reaction performance is also dependent on the concentration of NaBH{sub 4}, and the hydrogen generation rate increases for lower NaBH{sub 4} concentrations and decreases after reaching a maximum at 10 wt.% of NaBH{sub 4}. (author)

  19. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-01

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  20. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  1. Hydrogen generator characteristics for storage of renewably-generated energy

    International Nuclear Information System (INIS)

    Kotowicz, Janusz; Bartela, Łukasz; Węcel, Daniel; Dubiel, Klaudia

    2017-01-01

    The paper presents a methodology for determining the efficiency of a hydrogen generator taking the power requirements of its auxiliary systems into account. Authors present results of laboratory experiments conducted on a hydrogen generator containing a PEM water electrolyzer for a wide range of device loads. On the basis of measurements, the efficiency characteristics of electrolyzers were determined, including that of an entire hydrogen generator using a monitored power supply for its auxiliary devices. Based on the results of the experimental tests, the authors have proposed generalized characteristics of hydrogen generator efficiency. These characteristics were used for analyses of a Power-to-Gas system cooperating with a 40 MW wind farm with a known yearly power distribution. It was assumed that nightly-produced hydrogen is injected into the natural gas transmission system. An algorithm for determining the thermodynamic and economic characteristics of a Power-to-Gas installation is proposed. These characteristics were determined as a function of the degree of storage of the energy produced in a Renewable Energy Sources (RES) installation, defined as the ratio of the amount of electricity directed to storage to the annual amount of electricity generated in the RES installation. Depending on the degree of storage, several quantities were determined. - Highlights: • The efficiency characteristics of PEM electrolyzer are determined. • Generalized characteristics of hydrogen generator efficiency are proposed. • Method of choice of electrolyser nominal power for Power-to-Gas system was proposed. • Development of Power-to-Gas systems requires implementation of support mechanisms.

  2. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  3. Room temperature hydrogen generation from hydrolysis of ammonia-borane over an efficient NiAgPd/C catalyst

    KAUST Repository

    Hu, Lei

    2014-12-01

    NiAgPd nanoparticles are successfully synthesized by in-situ reduction of Ni, Ag and Pd salts on the surface of carbon. Their catalytic activity was examined in ammonia borane (NH3BH3) hydrolysis to generate hydrogen gas. This nanomaterial exhibits a higher catalytic activity than those of monometallic and bimetallic counterparts and a stoichiometric amount of hydrogen was produced at a high generation rate. Hydrogen production rates were investigated in different concentrations of NH3BH3 solutions, including in the borates saturated solution, showing little influence of the concentrations on the reaction rates. The hydrogen production rate can reach 3.6-3.8 mol H2 molcat -1 min-1 at room temperature (21 °C). The activation energy and TOF value are 38.36 kJ/mol and 93.8 mol H2 molcat -1 min-1, respectively, comparable to those of Pt based catalysts. This nanomaterial catalyst also exhibits excellent chemical stability, and no significant morphology change was observed from TEM after the reaction. Using this catalyst for continuously hydrogen generation, the hydrogen production rate can be kept after generating 6.2 L hydrogen with over 10,000 turnovers and a TOF value of 90.3 mol H2 molcat -1 min-1.

  4. Fuel cell using a hydrogen generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  5. Steam generators of Phenix: Measurement of the hydrogen concentration in sodium for detecting water leaks in the steam generator tubes

    International Nuclear Information System (INIS)

    Cambillard, E.; Lacroix, A.; Langlois, J.; Viala, J.

    1975-01-01

    The Phenix secondary circuits are provided with measurement systems of hydrogen concentration in sodium, that allow for the detection of possible water leaks in steam generators and the location of a faulty module. A measurement device consists of : a detector with nickel membranes of 0, 3 mm wall thickness, an ion pump with a 200 l/s flow rate, a quadrupole mass spectrometer and a calibrated hydrogen leak. The temperature correction is made automatically. The main tests carried out on the leak detection systems are reported. Since the first system operation (October 24, 1973), the measurements allowed us to obtain the hydrogen diffusion rates through the steam generator tube walls. (author)

  6. Development of Al2O3 carrier-Ru composite catalyst for hydrogen generation from alkaline NaBH4 hydrolysis

    International Nuclear Information System (INIS)

    Huang, Yao-Hui; Su, Chia-Chi; Wang, Shu-Ling; Lu, Ming-Chun

    2012-01-01

    A recyclable and reusable Ru/Al 2 O 3 catalyst is prepared for hydrogen generation from the hydrolysis process of alkaline sodium borohydride (NaBH 4 ) solution. The hydrogen generation rate by the hydrolysis and methanolysis of alkaline NaBH 4 was explored as a function of NaOH concentration. Meantime, the byproducts derived from the spent alkaline NaBH 4 solution were characterized by X-ray diffraction (XRD), scanning electro microscope/energy dispersive spectrometer (SEM/EDS) and NMR (Nuclear Magnetic Resonance). The effect of NaOH concentration on the hydrogen generation from the hydrolysis of NaBH 4 significantly depends on the type of catalysts. With increasing NaOH concentration, the hydrogen generation rates decrease when using ruthenium (Ru) composite as a catalyst. The hydrogen generation rate of the methanolysis of NaBH 4 is significantly inhibited in the presence of NaOH as compared with the hydrolysis of NaBH 4 . The durability test of the Ru/Al 2 O 3 catalyst shows that the hydrogen generation rate decreases with recycling and reuse. The XRD and NMR analysis results show that the borate hydrate (NaBO 2 H 2 O) was derived from the hydrolysis of 20 wt% and 30 wt% NaBH 4 . -- Highlights: ► A recyclable Ru/Al 2 O 3 catalyst was synthesized for hydrogen generation. ► Ru/Al 2 O 3 significantly promotes the hydrogen generation rate from alkaline NaBH 4 solution. ► The prepared Ru/Al 2 O 3 catalyst can easily collect from the spent alkaline NaBH 4 solution.

  7. Automotive dual-mode hydrogen generation system

    Science.gov (United States)

    Kelly, D. A.

    The automotive dual mode hydrogen generation system is advocated as a supplementary hydrogen fuel means along with the current metallic hydride hydrogen storage method for vehicles. This system consists of utilizing conventional electrolysis cells with the low voltage dc electrical power supplied by two electrical generating sources within the vehicle. Since the automobile engine exhaust manifold(s) are presently an untapped useful source of thermal energy, they can be employed as the heat source for a simple heat engine/generator arrangement. The second, and minor electrical generating means consists of multiple, miniature air disk generators which are mounted directly under the vehicle's hood and at other convenient locations within the engine compartment. The air disk generators are revolved at a speed which is proportionate to the vehicles forward speed and do not impose a drag on the vehicles motion.

  8. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per

  9. Enhanced hydrogen evolution rates at high pH with a colloidal cadmium sulphide–platinum hybrid system

    International Nuclear Information System (INIS)

    Schneider, Julian; Vaneski, Aleksandar; Susha, Andrei S.; Rogach, Andrey L.; Pesch, Georg R.; Yang Teoh, Wey

    2014-01-01

    We demonstrate enhanced hydrogen generation rates at high pH using colloidal cadmium sulphide nanorods decorated with Pt nanoparticles. We introduce a simplified procedure for the decoration and subsequent hydrogen generation, reducing both the number of working steps and the materials costs. Different Pt precursor concentrations were tested to reveal the optimal conditions for the efficient hydrogen evolution. A sharp increase in hydrogen evolution rates was measured at pH 13 and above, a condition at which the surface charge transfer was efficiently mediated by the formation of hydroxyl radicals and further consumption by the sacrificial triethanolamine hole scavenger

  10. Enhanced hydrogen evolution rates at high pH with a colloidal cadmium sulphide–platinum hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Julian; Vaneski, Aleksandar; Susha, Andrei S.; Rogach, Andrey L., E-mail: andrey.rogach@cityu.edu.hk [Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong); Pesch, Georg R.; Yang Teoh, Wey [Clean Energy and Nanotechnology (CLEAN) Laboratory, School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong)

    2014-12-01

    We demonstrate enhanced hydrogen generation rates at high pH using colloidal cadmium sulphide nanorods decorated with Pt nanoparticles. We introduce a simplified procedure for the decoration and subsequent hydrogen generation, reducing both the number of working steps and the materials costs. Different Pt precursor concentrations were tested to reveal the optimal conditions for the efficient hydrogen evolution. A sharp increase in hydrogen evolution rates was measured at pH 13 and above, a condition at which the surface charge transfer was efficiently mediated by the formation of hydroxyl radicals and further consumption by the sacrificial triethanolamine hole scavenger.

  11. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  12. Hydrogen Generation from Sugars via Aqueous-Phase Reforming

    International Nuclear Information System (INIS)

    Randy D Cortright

    2006-01-01

    Virent Energy Systems, Inc. is commercializing the Aqueous Phase Reforming (APR) process that allows the generation of hydrogen-rich gas streams from biomass-derived compounds such as glycerol, sugars, and sugar alcohols. The APR process is a unique method that generates hydrogen from aqueous solutions of these oxygenated compounds in a single step reactor process compared to the three or more reaction steps required for hydrogen generation via conventional processes that utilize non-renewable fossil fuels. The key breakthrough of the APR process is that the reforming of these aqueous solutions is done in the liquid phase. The patented APR process occurs at temperatures (150 C to 270 C) where the water-gas shift reaction is favorable, making it possible to generate hydrogen with low amounts of CO in a single chemical reactor. Furthermore, the APR process occurs at pressures (typically 15 to 50 bar) where the hydrogen-rich effluent can be effectively purified using either membrane technology or pressure swing adsorption technology. The utilization of biomass-based compounds allows the APR process to be a carbon neutral method to generate hydrogen. In the near term, the feed-stock of interest is waste glycerol that is being generated in large quantities as a byproduct in the production of bio-diesel. Virent has developed the APR system for on-demand generation of hydrogen-rich fuel gas from either glycerol or sorbitol (the sugar alcohol formed by hydrogenation of glucose) to fuel a stationary internal combustion engine driven generator (10 kW). Under a USDOE funded project, Virent is currently developing the APR process to generate high yields of hydrogen from corn-derived glucose. This project objective is to achieve the DOE 2010 cost target for distributed production from renewable liquid fuels of 3.60 dollars/gge (gasoline gallon equivalent) delivered. (authors)

  13. Dealloyed Ruthenium Film Catalysts for Hydrogen Generation from Chemical Hydrides

    Directory of Open Access Journals (Sweden)

    Ramis B. Serin

    2017-07-01

    Full Text Available Thin-film ruthenium (Ru and copper (Cu binary alloys have been prepared on a Teflon™ backing layer by cosputtering of the precious and nonprecious metals, respectively. Alloys were then selectively dealloyed by sulfuric acid as an etchant, and their hydrogen generation catalysts performances were evaluated. Sputtering time and power of Cu atoms have been varied in order to tailor the hydrogen generation performances. Similarly, dealloying time and the sulfuric acid concentration have also been altered to tune the morphologies of the resulted films. A maximum hydrogen generation rate of 35 mL min−1 was achieved when Cu sputtering power and time were 200 W and 60 min and while acid concentration and dealloying time were 18 M and 90 min, respectively. It has also been demonstrated that the Ru content in the alloy after dealloying gradually increased with the increasing the sputtering power of Cu. After 90 min dealloying, the Ru to Cu ratio increased to about 190 times that of bare alloy. This is the key issue for observing higher catalytic activity. Interestingly, we have also presented template-free nanoforest-like structure formation within the context of one-step alloying and dealloying used in this study. Last but not least, the long-time hydrogen generation performances of the catalysts system have also been evaluated along 3600 min. During the first 600 min, the catalytic activity was quite stable, while about 24% of the catalytic activity decayed after 3000 min, which still makes these systems available for the development of robust catalyst systems in the area of hydrogen generation.

  14. High-rate fermentative hydrogen production from beverage wastewater

    International Nuclear Information System (INIS)

    Sivagurunathan, Periyasamy; Sen, Biswarup; Lin, Chiu-Yue

    2015-01-01

    Highlights: • Hybrid immobilized-bacterial cells show stable operation over 175 days. • Low HRT of 1.5 h shows peak hydrogen production rate of 55 L/L-d. • Electricity generation is 9024 kW-d from 55 L/L-d hydrogen using beverage wastewater. • Granular sludge formed only at 2–3 h HRT with presence of Selenomonas sp. - Abstract: Hydrogen production from beverage industry wastewater (20 g/L hexose equivalent ) using an immobilized cell reactor with a continuous mode of operation was studied at various hydraulic retention times (HRT, 8–1.5 h). Maximum hydrogen production rate (HPR) of 55 L/L-d was obtained at HRT 1.5 h (an organic loading of 320 g/L-d hexose equivalent ). This HPR value is much higher than those of other industrial wastewaters employed in fermentative hydrogen production. The cell biomass concentration peaked at 3 h HRT with a volatile suspended solids (VSS) concentration of 6.31 g/L (with presence of self-flocculating Selenomonas sp.), but it dropped to 3.54 gVSS/L at 1.5 h HRT. With the shortening of HRT, lactate concentration increased but the concentration of the dominant metabolite butyrate did not vary significantly. The Clostridium species dynamics was not significantly affected, but total microbial community structure changed with respect to HRT variation as evident from PCR–DGGE analyses. Analysis of energy production rate suggests that beverage wastewater is a high energy yielding feedstock, and can replace 24% of electricity consumption in a model beverage industry

  15. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  16. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.

    Science.gov (United States)

    Wang, X; Shih, K; Li, X Y

    2010-01-01

    A microemulsion technique was employed to synthesize nano-sized photocatalysts with a core (CdS)/shell (ZnS) structure. The primary particles of the photocatalysts were around 10 nm, and the mean size of the catalyst clusters in water was about 100 nm. The band gaps of the catalysts ranged from 2.25 to 2.46 eV. The experiments of photocatalytic H(2) generation showed that the catalysts (CdS)(x)/(ZnS)(1-x) with x ranging from 0.1 to 1 were able to produce hydrogen from water photolysis under visible light. The catalyst with x=0.9 had the highest rate of hydrogen production. The catalyst loading density also influenced the photo-hydrogen production rate, and the best catalyst concentration in water was 1 g L(-1). The stability of the nano-catalysts in terms of size, morphology and activity was satisfactory during an extended test period for a specific hydrogen production rate of 2.38 mmol g(-1) L(-1) h(-1) and a quantum yield of 16.1% under visible light (165 W Xe lamp, lambda>420 nm). The results demonstrate that the (CdS)/(ZnS) core/shell nano-particles are a novel photo-catalyst for renewable hydrogen generation from water under visible light. This is attributable to the large band-gap ZnS shell that separates the electron/hole pairs generated by the CdS core and hence reduces their recombinations.

  17. Hanford Waste Vitrification Plant hydrogen generation

    International Nuclear Information System (INIS)

    King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K.

    1996-02-01

    The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H 2 . CO 2 , N 2 0, NO, and NH 3 . For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H 2 , CO, CO 2 , N 2 , N 2 O and NO

  18. Thermodynamic analysis of a solar-based multi-generation system with hydrogen production

    International Nuclear Information System (INIS)

    Ozturk, Murat; Dincer, Ibrahim

    2013-01-01

    Thermodynamic analysis of a renewable-based multi-generation energy production system which produces a number of outputs, such as power, heating, cooling, hot water, hydrogen and oxygen is conducted. This solar-based multi-generation system consists of four main sub-systems: Rankine cycle, organic Rankine cycle, absorption cooling and heating, and hydrogen production and utilization. Exergy destruction ratios and rates, power or heat transfer rates, energy and exergy efficiencies of the system components are carried out. Some parametric studies are performed in order to examine the effects of varying operating conditions (e.g., reference temperature, direct solar radiation and receiver temperature) on the exergy efficiencies of the sub-systems as well as the whole system. The solar-based multi-generation system which has an exergy efficiency of 57.35%, is obtained to be higher than using these sub-systems separately. The evaluation of the exergy efficiency and exergy destruction for the sub-systems and the overall system show that the parabolic dish collectors have the highest exergy destruction rate among constituent parts of the solar-based multi-generation system, due to high temperature difference between the working fluid and collector receivers. -- Highlights: ► Development of a new multi-generation system for solar-based hydrogen production. ► Investigation of exergy efficiencies and destructions in each process of the system. ► Evaluation of varying operating conditions on the exergy destruction and efficiency

  19. Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A.M.F.R.; Falcao, D.S. [Departamento de Eng. Quimica, Centro de Estudos de Fenomenos de Transporte, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Silva, R.A.; Rangel, C.M. [Instituto Nacional de Engenharia e Tecnologia e Inovacao, Paco do Lumiar 22, 1649-038 (Portugal)

    2006-08-15

    The catalytic hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution was studied using a non-noble; nickel-based powered catalyst exhibiting strong activity even after long time storage. This easy-to-prepare catalyst showed an enhanced activity after being recovered from previous use. The effects of temperature, NaBH{sub 4} concentration, NaOH concentration and pressure on the hydrogen generation rate were investigated. Particular importance has the effect of pressure, since the maximum reached pressure of hydrogen is always substantially lower than predictions (considering 100% conversion) due to solubility effects. The solubility of hydrogen is greatly enhanced by the rising pressure during reaction, leading to storage of hydrogen in the liquid phase. This effect can induce new ways of using this type of catalyst and reactor for the construction of hydrogen generators and even containers for portable and in situ applications. (author)

  20. Alkali free hydrolysis of sodium borohydride for hydrogen generation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.J.F.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Gales, L. [Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto and Instituto de Ciencias Biomedicas Abel Salazar, Largo Prof. Abel Salazar 2, 4099-003 Porto (Portugal); Fernandes, V.R.; Rangel, C.M. [Laboratorio Nacional de Energia e Geologia - LNEG, Fuel Cells and Hydrogen Unit Estrada do Paco do Lumiar 22, 1649-038 Lisboa (Portugal)

    2010-09-15

    The present study is related with the production of hydrogen gas (H{sub 2}), at elevated pressures and with high gravimetric storage density, to supply a PEM fuel cell on-demand. To achieve this goal, solid sodium borohydride (NaBH{sub 4}) was mixed with a proper amount of a powder reused nickel-ruthenium based catalyst (Ni-Ru based/NaBH{sub 4}: 0.2 and 0.4 g/g; {approx}150 times reused) inside the bottom of a batch reactor. Then, a stoichiometric amount of pure liquid water (H{sub 2}O/NaBH{sub 4}: 2-8 mol/mol) was added and the catalyzed NaBH{sub 4} hydrolysis evolved, in the absence of an alkali inhibitor. In this way, this research work is designated alkali free hydrolysis of NaBH{sub 4} for H{sub 2} generation. This type of hydrolysis is excellent from an environmental point of view because it does not involve strongly caustic solutions. Experiments were performed in three batch reactors with internal volumes 646, 369 and 229 cm{sup 3}, and having different bottom geometries (flat and conical shapes). The H{sub 2} generated was a function of the added water and completion was achieved with H{sub 2}O/NaBH{sub 4} = 8 mol/mol. The results show that hydrogen yields and rates increase remarkably increasing both system temperature and pressure. Reactor bottom shape influences deeply H{sub 2} generation: the conical bottom shape greatly enhances the rate and practically eliminates the reaction induction time. Our system of compressed hydrogen generation up to 1.26 MPa shows 6.3 wt% and 70 kg m{sup -3}, respectively, for gravimetric and volumetric hydrogen storage capacities (materials-only basis) and therefore is a viable hydrogen storage candidate for portable applications. (author)

  1. Impact of different metal turbidities on radiolytic hydrogen generation in nuclear power plants

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Belapurkar, A.D.; Venkateswaran, G.; Kishore, K.

    2005-01-01

    Radiolytic hydrogen generation on γ irradiation of turbid solutions containing metal turbidities such as titanium, nickel, iron, chromium, copper, indium, and aluminium was studied. It is suggested that the chemical reactivity of the metal in the turbid solution with e aq -/H/OH produced by radiolysis of water interferes with the recombination reactions which destroy H 2 and H 2 O 2 , thus leading to higher yield of hydrogen. The rate of generation of hydrogen and the G(H 2 ) value is related to the reactivity of the metal ion/hydroxylated species with the free radicals. (orig.)

  2. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  3. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    Science.gov (United States)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  4. Electroless Nickel-Based Catalyst for Diffusion Limited Hydrogen Generation through Hydrolysis of Borohydride

    Directory of Open Access Journals (Sweden)

    Shannon P. Anderson

    2013-07-01

    Full Text Available Catalysts based on electroless nickel and bi-metallic nickel-molybdenum nanoparticles were synthesized for the hydrolysis of sodium borohydride for hydrogen generation. The catalysts were synthesized by polymer-stabilized Pd nanoparticle-catalyzation and activation of Al2O3 substrate and electroless Ni or Ni-Mo plating of the substrate for selected time lengths. Catalytic activity of the synthesized catalysts was tested for the hydrolyzation of alkaline-stabilized NaBH4 solution for hydrogen generation. The effects of electroless plating time lengths, temperature and NaBH4 concentration on hydrogen generation rates were analyzed and discussed. Compositional analysis and surface morphology were carried out for nano-metallized Al2O3 using Scanning Electron Micrographs (SEM and Energy Dispersive X-Ray Microanalysis (EDAX. The as-plated polymer-stabilized electroless nickel catalyst plated for 10 min and unstirred in the hydrolysis reaction exhibited appreciable catalytic activity for hydrolysis of NaBH4. For a zero-order reaction assumption, activation energy of hydrogen generation using the catalyst was estimated at 104.6 kJ/mol. Suggestions are provided for further work needed prior to using the catalyst for portable hydrogen generation from aqueous alkaline-stabilized NaBH4 solution for fuel cells.

  5. Hydrogen isotope exchange reaction rates in tritium, hydrogen and deuterium mixed gases

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko

    1992-01-01

    Hydrogen isotope exchange reaction rates in H 2 +T 2 , D 2 +T 2 and H 2 +D 2 +T 2 mixed gases, as induced by tritium decay and beta radiation, were experimentally measured by laser Raman spectrometry. Initially a glass cell was filled with T 2 gas to a pressure of 30-40 kPa, and an equivalent partial pressure of H 2 and/or D 2 was added. The first-order hydrogen isotope exchange reaction rates were 5.54x10 -2 h -1 for H 2 +T 2 mixed gas and 4.76x10 -2 h -1 for D 2 +T 2 . The actual HT producing rate was nearly equivalent to the rate of DT, but the reverse reaction rate of HT was faster than that of DT. The exchange reaction rates between H, D and T showed the isotope effect, HD>HT>DT. The hydrogen isotope exchange reaction rates observed were about twenty times larger than ion formation rates by beta radiation. This result suggests that a free radical chain reaction in hydrogen isotopes is occurring. (orig.)

  6. Hydrogen Generation from Al-NiCl2/NaBH4 Mixture Affected by Lanthanum Metal

    Directory of Open Access Journals (Sweden)

    Wen Qiang Sun

    2012-01-01

    Full Text Available The effect of La on Al/NaBH4 hydrolysis was elaborated in the present paper. Hydrogen generation amount increases but hydrogen generation rate decreases with La content increasing. There is an optimized composition that Al-15 wt% La-5 wt% NiCl2/NaBH4 mixture (Al-15 wt% La-5 wt% NiCl2/NaBH4 weight ratio, 1 : 3 has 126 mL g−1 min−1 maximum hydrogen generation rate and 1764 mL g−1 hydrogen generation amount within 60 min. The efficiency is 88%. Combined with NiCl2, La has great effect on NaBH4 hydrolysis but has little effect on Al hydrolysis. Increasing La content is helpful to decrease the particle size of Al-La-NiCl2 in the milling process, which induces that the hydrolysis byproduct Ni2B is highly distributed into Al(OH3 and the catalytic reactivity of Ni2B/Al(OH3 is increased therefore. But hydrolysis byproduct La(OH3 deposits on Al surface and leads to some side effect. The Al-La-NiCl2/NaBH4 mixture has good stability in low temperature and its hydrolytic performance can be improved with increasing global temperature. Therefore, the mixture has good safety and can be applied as on board hydrogen generation material.

  7. Hydrogen generation from Al-NiCl2/NaBH4 mixture affected by lanthanum metal.

    Science.gov (United States)

    Sun, Wen Qiang; Fan, Mei-Qiang; Fei, Yong; Pan, Hua; Wang, Liang Liang; Yao, Jun

    2012-01-01

    The effect of La on Al/NaBH(4) hydrolysis was elaborated in the present paper. Hydrogen generation amount increases but hydrogen generation rate decreases with La content increasing. There is an optimized composition that Al-15 wt% La-5 wt% NiCl(2)/NaBH(4) mixture (Al-15 wt% La-5 wt% NiCl(2)/NaBH(4) weight ratio, 1 : 3) has 126 mL g(-1 )min(-1) maximum hydrogen generation rate and 1764 mL g(-1) hydrogen generation amount within 60 min. The efficiency is 88%. Combined with NiCl(2), La has great effect on NaBH(4) hydrolysis but has little effect on Al hydrolysis. Increasing La content is helpful to decrease the particle size of Al-La-NiCl(2) in the milling process, which induces that the hydrolysis byproduct Ni(2)B is highly distributed into Al(OH)(3) and the catalytic reactivity of Ni(2)B/Al(OH)(3) is increased therefore. But hydrolysis byproduct La(OH)(3) deposits on Al surface and leads to some side effect. The Al-La-NiCl(2)/NaBH(4) mixture has good stability in low temperature and its hydrolytic performance can be improved with increasing global temperature. Therefore, the mixture has good safety and can be applied as on board hydrogen generation material.

  8. Lessons learned from hydrogen generation and burning during the TMI-2 event

    International Nuclear Information System (INIS)

    Henrie, J.O.; Postma, A.K.

    1987-05-01

    This document summarizes what has been learned from generation of hydrogen in the reactor core and the hydrogen burn that occurred in the containment building of the Three Mile Island Unit No. 2 (TMI-2) nuclear power plant on March 28, 1979. During the TMI-2 loss-of-coolant accident (LOCA), a large quantity of hydrogen was generated by a zirconium-water reaction. The hydrogen burn that occurred 9 h and 50 min after the initiation of the TMI-2 accident went essentially unnoticed for the first few days. Even through the burn increased the containment gas temperature and pressure to 1200 0 F (650 0 C) and 29 lb/in 2 (200 kPa) gage, there was no serious threat to the containment building. The processes, rates, and quantities of hydrogen gas generated and removed during and following the LOCA are described in this report. In addition, the methods which were used to define the conditions that existed in the containment building before, during, and after the hydrogen burn are described. The results of data evaluations and engineering calculations are presented to show the pressure and temperature histories of the atmosphere in various containment segments during and after the burn. Material and equipment in reactor containment buildings can be protected from burn damage by the use of relatively simple enclosures or insulation

  9. Mixing of radiolytic hydrogen generated within a containment compartment following a LOCA

    International Nuclear Information System (INIS)

    Willcutt, G.J.E. Jr.; Gido, R.G.

    1978-07-01

    The objective of this work was to determine hydrogen concentration variations with position and time in a closed containment compartment with radiolytic hydrogen generation in the water on the compartment floor following a Loss-of-Coolant-Accident (LOCA). One application is to determine the potential difference between the compartment maximum hydrogen concentration and a hydrogen detector reading, due to the detector location. Three possible mechanisms for hydrogen transport in the compartment were investigated: (1) molecular diffusion, (2) possible bubble formation and motion, and (3) natural convection flows. A base case cubic compartment with 6.55-m (21.5-ft) height was analyzed. Parameter studies were used to determine the sensitivity of results to compartment size, hydrogen generation rates, diffusion coefficients, and the temperature difference between the floor and the ceiling and walls of the compartment. Diffusion modeling indicates that if no other mixing mechanism is present for the base case, the maximum hydrogen volume percent (vol percent) concentration difference between the compartment floor and ceiling will be 4.8 percent. It will be 24.5 days before the maximum concentration difference is less than 0.5 percent. Bubbles do not appear to be a potential source of hydrogen pocketing in a containment compartment. Compartment natural convection circulation rates for a 2.8 K (5 0 F) temperature difference between the floor and the ceiling and walls are estimated to be at least the equivalent of 1 compartment volume per hour and probably in the range of 4 to 9 compartment volumes per hour. Related natural convection studies indicate there will be turbulent mixing in the compartment for a 2.8 K (5 0 F) temperature difference between the floor and the ceiling and walls

  10. Photocatalytic hydrogen generation over Eosin Y-Sensitized TS-1 zeolite

    International Nuclear Information System (INIS)

    Zhang Xiaojie; Jin Zhiliang; Li Yuexiang; Li Shuben; Lu Gongxuan

    2008-01-01

    Eosin Y-sensitized TS-1 zeolite was studied for the photo-reduction of water into hydrogen driven by visible light (λ ≥ 420 nm). The optimal pH and weight ratio between Eosin Y and TS-1 zeolite is 7 and 1/8, respectively. In the presence of triethanolamine (TEA) as an electron donor, the highest rate of hydrogen generation and apparent quantum efficiency are 34 μmol h -1 and 9.4%, respectively, under visible light irradiation (λ ≥ 420 nm). Short-term stability test indicates that the catalyst is rather stable during 50 h photoreaction

  11. Photocatalytic hydrogen generation over Eosin Y-Sensitized TS-1 zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaojie [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Zhong Road 18, Lanzhou 730000 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100101 (China); Jin Zhiliang [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Zhong Road 18, Lanzhou 730000 (China); Li Yuexiang [Department of Chemistry, Nanchang University, Nanjing Road 245, Nanchang 330047 (China); Li Shuben [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Zhong Road 18, Lanzhou 730000 (China); Lu Gongxuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Zhong Road 18, Lanzhou 730000 (China)], E-mail: gxlu@lzb.ac.cn

    2008-05-30

    Eosin Y-sensitized TS-1 zeolite was studied for the photo-reduction of water into hydrogen driven by visible light ({lambda} {>=} 420 nm). The optimal pH and weight ratio between Eosin Y and TS-1 zeolite is 7 and 1/8, respectively. In the presence of triethanolamine (TEA) as an electron donor, the highest rate of hydrogen generation and apparent quantum efficiency are 34 {mu}mol h{sup -1} and 9.4%, respectively, under visible light irradiation ({lambda} {>=} 420 nm). Short-term stability test indicates that the catalyst is rather stable during 50 h photoreaction.

  12. One Step Hydrogen Generation Through Sorption Enhanced Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Jeff [Gas Technology Inst., Des Plaines, IL (United States)

    2017-08-03

    One-step hydrogen generation, using Sorption Enhanced Reforming (SER) technology, is an innovative means of providing critical energy and environmental improvements to US manufacturing processes. The Gas Technology Institute (GTI) is developing a Compact Hydrogen Generator (CHG) process, based on SER technology, which successfully integrates previously independent process steps, achieves superior energy efficiency by lowering reaction temperatures, and provides pathways to doubling energy productivity with less environmental pollution. GTI’s prior CHG process development efforts have culminated in an operational pilot plant. During the initial pilot testing, GTI identified two operating risks- 1) catalyst coating with calcium aluminate compounds, 2) limited solids handling of the sorbent. Under this contract GTI evaluated alternative materials (one catalyst and two sorbents) to mitigate both risks. The alternate catalyst met performance targets and did not experience coating with calcium aluminate compounds of any kind. The alternate sorbent materials demonstrated viable operation, with one material enabling a three-fold increase in sorbent flow. The testing also demonstrated operation at 90% of its rated capacity. Lastly, a carbon dioxide co-production study was performed to assess the advantage of the solid phase separation of carbon dioxide- inherent in the CHG process. Approximately 70% lower capital cost is achievable compared to SMR-based hydrogen production with CO2 capture, as well as improved operating costs.

  13. Impacts of glycolate and formate radiolysis and thermolysis on hydrogen generation rate calculations for the Savannah River Site tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-14

    Savannah River Remediation (SRR) personnel requested that the Savannah River National Laboratory (SRNL) evaluate available data and determine its applicability to defining the impact of planned glycolate anion additions to Savannah River Site (SRS) High Level Waste (HLW) on Tank Farm flammability (primarily with regard to H2 production). Flammability evaluations of formate anion, which is already present in SRS waste, were also needed. This report describes the impacts of glycolate and formate radiolysis and thermolysis on Hydrogen Generation Rate (HGR) calculations for the SRS Tank Farm.

  14. CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    Energy Technology Data Exchange (ETDEWEB)

    M. S. Sohal; J. E. O' Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

    2008-03-01

    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to

  15. Graphene sheets/cobalt nanocomposites as low-cost/high-performance catalysts for hydrogen generation

    International Nuclear Information System (INIS)

    Zhang, Fei; Hou, Chengyi; Zhang, Qinghong; Wang, Hongzhi; Li, Yaogang

    2012-01-01

    The production of clean and renewable hydrogen through the hydrolysis of sodium borohydride has received much attention owing to increasing global energy demands. Graphene sheets/cobalt (GRs/Co) nanocomposites, which are highly efficient catalysts, have been prepared using a one-step solvothermal method in ethylene glycol. Co 2+ salts were converted to Co nanoparticles, which were simultaneously inserted into the graphene layers with the reduction of graphite oxide sheets to GRs. The as-synthesized samples were characterized by X-ray diffraction, Fourier transform infrared spectra, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy and vibrating sample magnetometer. The maximum saturation magnetization value reached 80.8 emu g −1 , meaning they are more suitable for magnet-controlled generation of H 2 than noble metal catalysts. The catalytic activity of the composite was investigated by the hydrolysis of sodium borohydride in aqueous solution both with and without a GRs support. It was found that the high electronic conductive GRs support increased the hydrogen generation rate (about two times) compared with pure cobalt. The improved hydrogen generation rate, low cost and uncomplicated recycling makes the GRs/Co nanocomposites promising candidates as catalysts for hydrogen generation. Highlights: ► Graphene sheets/cobalt nanocomposites were prepared by a one-step solvothermal method. ► The maximum saturation magnetization value of the composites reached 80.8 emu g −1 . ► The graphene support greatly increased the catalytic activity of cobalt. ► An easily removed, recycled and controlled functional filter was obtained.

  16. Hydrogen generation in SRAT with nitric acid and late washing flowsheets

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1992-01-01

    Recently, SRTC recommended two process changes: (1) a final wash of the tetraphenylborate precipitate feed slurry and (2) the use of nitric acid to neutralize the sludge in the SRAT. The first change produced an aqueous hydrolysis product (PHA) with higher formic acid/formate and copper concentration, and reduced the nitrate content in the PHA by an order of magnitude. The second change is to substitute part of formic acid added to the SRAT with nitric acid, and therefore may reduce the hydrogen generated in the SRAT as well as provide nitrate as an oxidant to balance the redox state of the melter feed. The purpose of this report is to determine the pertinent variables that could affect the hydrogen generation rate with these process changes

  17. Controllable pneumatic generator based on the catalytic decomposition of hydrogen peroxide

    International Nuclear Information System (INIS)

    Kim, Kyung-Rok; Kim, Kyung-Soo; Kim, Soohyun

    2014-01-01

    This paper presents a novel compact and controllable pneumatic generator that uses hydrogen peroxide decomposition. A fuel micro-injector using a piston-pump mechanism is devised and tested to control the chemical decomposition rate. By controlling the injection rate, the feedback controller maintains the pressure of the gas reservoir at a desired pressure level. Thermodynamic analysis and experiments are performed to demonstrate the feasibility of the proposed pneumatic generator. Using a prototype of the pneumatic generator, it takes 6 s to reach 3.5 bars with a reservoir volume of 200 ml at the room temperature, which is sufficiently rapid and effective to maintain the repetitive lifting of a 1 kg mass

  18. Controllable pneumatic generator based on the catalytic decomposition of hydrogen peroxide

    Science.gov (United States)

    Kim, Kyung-Rok; Kim, Kyung-Soo; Kim, Soohyun

    2014-07-01

    This paper presents a novel compact and controllable pneumatic generator that uses hydrogen peroxide decomposition. A fuel micro-injector using a piston-pump mechanism is devised and tested to control the chemical decomposition rate. By controlling the injection rate, the feedback controller maintains the pressure of the gas reservoir at a desired pressure level. Thermodynamic analysis and experiments are performed to demonstrate the feasibility of the proposed pneumatic generator. Using a prototype of the pneumatic generator, it takes 6 s to reach 3.5 bars with a reservoir volume of 200 ml at the room temperature, which is sufficiently rapid and effective to maintain the repetitive lifting of a 1 kg mass.

  19. Wind energy-hydrogen storage hybrid power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wenjei Yang; Orhan Aydin [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    2001-07-01

    In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyse the de-ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high-pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water-cooled burner to produce a very high-quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. (author)

  20. Prediction of the amount of hydrogen generated during a molten fuel-coolant interaction

    International Nuclear Information System (INIS)

    Matthern, G.E.; Neuman, J.E.; Madsen, W.W.; Close, J.A.

    1990-01-01

    The model in development predicts the production of hydrogen as a result of a molten fuel-coolant interaction in a water-cooled nuclear reactor. It has three interrelated modules: kinetics, heat transfer, and hydrodynamics. Second and third order rates are assumed for uranium and aluminum respectively, the chosen fuel and cladding. Heat is generated by chemical reaction and radioactive decay and dissipated through radiation and convection. Dispersion of the melt as it descends through a pool of water is modeled using the Weber number, which ratios the shear forces due to the relative velocities of the fluid and the metal to the surface tension of the metal. Hydrogen generation is sensitive to the initial melt temperature and to the assumptions made about the modes of heat transfer, but not the the impact velocity of the metal particle. The hydrogen generation per unit mass of uranium generally increases as the initial particle size decreases suggesting that the kinetics rather than the heat transfer controls the energy balance

  1. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m3 H2/m3·d, with a hydrogen yield of 3.4 mol H2/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes. © 2012 American Chemical Society.

  2. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  3. On-site SiH4 generator using hydrogen plasma generated in slit-type narrow gap

    Science.gov (United States)

    Takei, Norihisa; Shinoda, Fumiya; Kakiuchi, Hiroaki; Yasutake, Kiyoshi; Ohmi, Hiromasa

    2018-06-01

    We have been developing an on-site silane (SiH4) generator based on use of the chemical etching reaction between solid silicon (Si) and the high-density H atoms that are generated in high-pressure H2 plasma. In this study, we have developed a slit-type plasma source for high-efficiency SiH4 generation. High-density H2 plasma was generated in a narrow slit-type discharge gap using a 2.45 GHz microwave power supply. The plasma’s optical emission intensity distribution along the slit was measured and the resulting distribution was reflected by both the electric power distribution and the hydrogen gas flow. Because the Si etching rate strongly affects the SiH4 generation rate, the Si etching behavior was investigated with respect to variations in the experimental parameters. The weight etch rate increased monotonically with increasing input microwave power. However, the weight etch rate decreased with increasing H2 pressure and an increasing plasma gap. This reduction in the etch rate appears to be related to shrinkage of the plasma generation area because increased input power is required to maintain a constant plasma area with increasing H2 pressure and the increasing plasma gap. Additionally, the weight etch rate also increases with increasing H2 flow rate. The SiH4 generation rate of the slit-type plasma source was also evaluated using gas-phase Fourier transform infrared absorption spectroscopy and the material utilization efficiencies of both Si and the H2 gas for SiH4 gas formation were discussed. The main etch product was determined to be SiH4 and the developed plasma source achieved a SiH4 generation rate of 10 sccm (standard cubic centimeters per minute) at an input power of 900 W. In addition, the Si utilization efficiency exceeded 60%.

  4. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    Science.gov (United States)

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source

    International Nuclear Information System (INIS)

    Kim, Jincheol; Kim, Taegyu

    2015-01-01

    Highlights: • Compact fuel cell system was developed for a portable power generator. • Novel concept using an all-in-one reactor for hydrogen generation was proposed. • Catalytic reactor, hydrogen chamber and separator were combined in a volume. • The system can be used to drive fuel cell-powered unmanned autonomous systems. - Abstract: Compact fuel cell system was developed for a portable power generator. The power generator features a polymer electrolyte membrane fuel cell (PEMFC) using a chemical hydride as a hydrogen source. The hydrogen generator extracted hydrogen using a catalytic hydrolysis from a sodium borohydride alkaline solution. A novel concept using an all-in-one reactor was proposed in which a catalyst, hydrogen chamber and byproduct separator were combined in a volume. In addition, the reactor as well as a pump, cooling fans, valves and controller was integrated in a single module. A 100 W PEMFC stack was connected with the hydrogen generator and was evaluated at various load conditions. It was verified that the stable hydrogen supply was achieved and the developed system can be used to drive fuel cell-powered unmanned autonomous systems.

  6. The corrosion rate and the hydrogen absorption behavior of titanium under reducing condition-III. Research document

    International Nuclear Information System (INIS)

    Suzuki, H.; Taniguchi, N.; Kawakami, S.

    2005-03-01

    Titanium is one of the candidate materials for overpacks as a high corrosion resistance metal. At the initial stage of repository, oxidizing condition will be given around the overpack because oxygen will be brought from the ground. The oxygen will be consumed by the reaction with impurities in buffer material or corrosion of overpack, and reducing condition will be achieved around the overpack. With the changing of redox condition, the water reduction becomes to dominate the cathodic reaction accompanying hydrogen generation. Crevice corrosion and hydrogen embrittlement are main causes of the damage of long term integrity of titanium overpack. However, it is not known about the corrosion resistance and hydrogen absorption behavior of titanium under reduction condition. In this study, the completely sealed ampoule test and the immersion test of titanium in aqueous solution and bentonite was carried out. In order to obtain reliable data about the hydrogen generation rate and the ratio of hydrogen absorption in titanium. From the result of 3 years immersion tests, corrosion rate of titanium were estimated to be in the order of 10 -2 ∼10 -1 μm/y in the aqueous solution, and 10 -3 ∼10 -2 μm/y in bentonite. This value is almost the same as the last report. Almost all the hydrogen generated by corrosion was absorbed in titanium in the immersion tests in completely sealed ampoule. In the examination that changed each parameter, it was suggested that the amount of the hydrogen absorption become 2∼3 times in 1M HCO 3- and pH13. (author)

  7. Polyacrylonitrile Fibers Anchored Cobalt/Graphene Sheet Nanocomposite: A Low-Cost, High-Performance and Reusable Catalyst for Hydrogen Generation.

    Science.gov (United States)

    Zhang, Fei; Huang, Guoji; Hou, Chengyi; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-06-01

    Cobalt and its composites are known to be active and inexpensive catalysts in sodium borohydride (NaBH4) hydrolysis to generate clean and renewable hydrogen energy. A novel fiber catalyst, cobalt/graphene sheet nanocomposite anchored on polyacrylonitrile fibers (Co/GRs-PANFs), which can be easily recycled and used in any reactor with different shapes, were synthesized by anchoring cobalt/graphene (Co/GRs) on polyacrylonitrile fibers coated with graphene (GRs-PANFs) at low temperature. The unique structure design effectively prevents the inter-sheet restacking of Co/GRs and fully exploits the large surface area of novel hybrid material for generate hydrogen. And the extra electron transfer path supplied by GRs on the surface of GRs-PANFs can also enhance their catalysis performances. The catalytic activity of the catalyst was investigated by the hydrolysis of NaBH4 in aqueous solution with GRs-PANFs. GRs powders and Co powders were used as control groups. It was found that both GRs and fiber contributed to the hydrogen generation rate of Co/GRs-PANFs (3222 mL x min(-1) x g(-1)), which is much higher than that of cobalt powders (915 mL x min(-1) x g(-1)) and Co/GRs (995 mL x min(-1) x g(-1)). The improved hydrogen generation rate, low cost and uncomplicated recycling make the Co/GRs-PANFs promising candidate as catalysts for hydrogen generation.

  8. Hydrogen generation monitoring and mass gain analysis during the steam oxidation for Zircaloy using hydrogen and oxygen sensors

    International Nuclear Information System (INIS)

    Fukumoto, Michihisa; Hara, Motoi; Kaneko, Hiroyuki; Sakuraba, Takuya

    2015-01-01

    The oxidation behavior of Zircaloy-4 at high temperatures in a flowing Ar-H_2O (saturated at 323 K) mixed gas was investigated using hydrogen and oxygen sensors installed at a gas outlet, and the utility of the gas sensing methods by using both sensors was examined. The generated amount of hydrogen was determined from the hydrogen partial pressure continuously measured by the hydrogen sensor, and the resultant calculated oxygen amount that reacted with the specimen was in close agreement with the mass gain gravimetrically measured after the experiment. This result demonstrated that the hydrogen partial pressure measurement using a hydrogen sensor is an effective method for examining the steam oxidation of this metal as well as monitoring the hydrogen evolution. The advantage of this method is that the oxidation rate of the metal at any time as a differential quantity is able to be obtained, compared to the oxygen amount gravimetrically measured as an integral quantity. When the temperature was periodically changed in the range of 1173 K to 1523 K, highly accurate measurements could be carried out using this gas monitoring method, although reasonable measurements were not gravimetrically performed due to the fluctuating thermo-buoyancy during the experiment. A change of the oxidation rate was clearly detected at a monoclinic tetragonal transition temperature of ZrO_2. From the calculation of the water vapor partial pressure during the thermal equilibrium condition using the hydrogen and oxygen partial pressures, it became clear that a thermal equilibrium state is maintained when the isothermal condition is maintained, but is not when the temperature increases or decreases with time. Based on these results, it was demonstrated that the gas monitoring system using hydrogen and oxygen sensors is very useful for investigating the oxidation process of the Zircaloy in steam. (author)

  9. Hydrogen generation at ambient conditions: application in fuel cells.

    Science.gov (United States)

    Boddien, Albert; Loges, Björn; Junge, Henrik; Beller, Matthias

    2008-01-01

    The efficient generation of hydrogen from formic acid/amine adducts at ambient temperature is demonstrated. The highest catalytic activity (TOF up to 3630 h(-1) after 20 min) was observed in the presence of in situ generated ruthenium phosphine catalysts. Compared to the previously known methods to generate hydrogen from liquid feedstocks, the systems presented here can be operated at room temperature without the need for any high-temperature reforming processes, and the hydrogen produced can then be directly used in fuel cells. A variety of Ru precursors and phosphine ligands were investigated for the decomposition of formic acid/amine adducts. These catalytic systems are particularly interesting for the generation of H2 for new applications in portable electric devices.

  10. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst

    International Nuclear Information System (INIS)

    Ozkar, S.; Zahmakiran, M.

    2005-01-01

    Sodium borohydride is stable in aqueous alkaline solution, however, it hydrolyses in water to hydrogen gas in the presence of suitable catalyst. By this way hydrogen can be generated safely for the fuel cells. Generating H 2 catalytically from NaBH 4 solutions has many advantages: NaBH 4 solutions are nonflammable, reaction products are environmentally benign, rate of H 2 generation is easily controlled, the reaction product NaBO 2 can be recycled, H 2 can be generated even at low temperatures. All of the catalysts that has been used in hydrolysis of sodium borohydride are bulk metals and they act as heterogeneous catalysts. The limited surface area of the heterogeneous catalysts causes lower catalytic activity as the activity of catalyst is directly related to its surface area. Thus, the use of metal nanoparticles with large surface area provides potential route to increase the catalytic activity. Here, we report, for the first time, the use of ruthenium(0) nanoclusters as catalyst in the hydrolysis of sodium borohydride liberating hydrogen gas. The ruthenium nanoparticles are generated from the reduction of ruthenium(III) chloride by sodium borohydride in water and stabilized by specific ligand. The ruthenium(0) nanoclusters are found to be highly active catalyst for the hydrolysis of sodium borohydride

  11. Investment in hydrogen tri-generation for wastewater treatment plants under uncertainties

    Science.gov (United States)

    Gharieh, Kaveh; Jafari, Mohsen A.; Guo, Qizhong

    2015-11-01

    In this article, we present a compound real option model for investment in hydrogen tri-generation and onsite hydrogen dispensing systems for a wastewater treatment plant under price and market uncertainties. The ultimate objective is to determine optimal timing and investment thresholds to exercise initial and subsequent options such that the total savings are maximized. Initial option includes investment in a 1.4 (MW) Molten Carbonate Fuel Cell (MCFC) fed by mixture of waste biogas from anaerobic digestion and natural gas, along with auxiliary equipment. Produced hydrogen in MCFC via internal reforming, is recovered from the exhaust gas stream using Pressure Swing Adsorption (PSA) purification technology. Therefore the expansion option includes investment in hydrogen compression, storage and dispensing (CSD) systems which creates additional revenue by selling hydrogen onsite in retail price. This work extends current state of investment modeling within the context of hydrogen tri-generation by considering: (i) Modular investment plan for hydrogen tri-generation and dispensing systems, (ii) Multiple sources of uncertainties along with more realistic probability distributions, (iii) Optimal operation of hydrogen tri-generation is considered, which results in realistic saving estimation.

  12. Generation of core–shell nanoparticles Al@Ti by laser ablation in liquid for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9, Institutsky lane, 141700, Dolgoprudny, Moscow (Russian Federation); Barmina, E.V.; Simakin, A.V. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 119991 Moscow (Russian Federation); Kuzmin, P.G., E-mail: qzzzma@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 119991 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye highway, 115409 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Core–shell Al@Ti NPs are generated by laser ablation in isopropanol. • Isopropanol was saturated with molecular hydrogen. • The composite metallic Al-Ti target was used. • HR TEM characterization shows that Ti core is covered by epitaxial Al shell. • Al@Ti NPs are promising for hydrogen storage. - Abstract: Core–shell Al@Ti nanoparticles are generated by ablation of a composite Ti–Al target in liquid isopropanol saturated with molecular hydrogen using a Nd:YAG laser with pulse duration of 10 ps and repetition rate of 200 kHz. The target is made of two plates of corresponding metals stacked together and placed into a flowing cell reactor. Transmission Electron Microscopy analysis of generated NPs reveals their core–shell structure with Ti core and Al shell. Average size of NPs determined by means of measuring disk centrifuge is around 40 nm. Saturation of NPs by hydrogen is due to sharp dependence of its solubility in these metals on temperature. XRD studies of generated NPs show the peaks of both metallic Ti and Al with some amount of TiO{sub 2}. No peaks of Ti–Al alloys are observed.

  13. Steam generators of Phenix: Measurement of the hydrogen concentration in sodium for detecting water leaks in the steam generator tubes; Generateurs de vapeur de Phenix-mesure de la concentration d'hydrogene du sodium pour la surveillance de l'etancheite des tubes d'eau-vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Cambillard, E; Lacroix, A; Langlois, J; Viala, J

    1975-07-01

    The Phenix secondary circuits are provided with measurement systems of hydrogen concentration in sodium, that allow for the detection of possible water leaks in steam generators and the location of a faulty module. A measurement device consists of : a detector with nickel membranes of 0, 3 mm wall thickness, an ion pump with a 200 l/s flow rate, a quadrupole mass spectrometer and a calibrated hydrogen leak. The temperature correction is made automatically. The main tests carried out on the leak detection systems are reported. Since the first system operation (October 24, 1973), the measurements allowed us to obtain the hydrogen diffusion rates through the steam generator tube walls. (author)

  14. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  15. Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System

    KAUST Repository

    Hatzell, Marta C.

    2014-09-02

    Waste acid streams produced at industrial sites are often co-located with large sources of waste heat (e.g., industrial exhaust gases, cooling water, and heated equipment). Reverse electrodialysis (RED) systems can be used to generate electrical power and hydrogen gas using waste heat-derived solutions, but high electrode overpotentials limit system performance. We show here that an ammonium bicarbonate (AmB) RED system can achieve simultaneous waste acid neutralization and in situ hydrogen production, while capturing energy from excess waste heat. The rate of acid neutralization was dependent on stack flow rate and increased 50× (from 0.06 ± 0.04 to 3.0 ± 0.32 pH units min -1 m-2 membrane), as the flow rate increased 6× (from 100 to 600 mL min-1). Acid neutralization primarily took place due to ammonium electromigration (37 ± 4%) and proton diffusion (60 ± 5%). The use of a synthetic waste acid stream as a catholyte (pH ≈ 2) also increased hydrogen production rates by 65% (from 5.3 ± 0.5 to 8.7 ± 0.1 m3 H2 m-3 catholyte day -1) compared to an AmB electrolyte (pH ≈ 8.5). These findings highlight the potential use of dissimilar electrolytes (e.g., basic anolyte and acidic catholyte) for enhanced power and hydrogen production in RED stacks. © 2014 American Chemical Society.

  16. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  17. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  18. Generation of oxy-hydrogen gas and its effect on performance of spark ignition engine

    Science.gov (United States)

    Patil, N. N.; Chavan, C. B.; More, A. S.; Baskar, P.

    2017-11-01

    Considering the current scenario of petroleum fuels, it has been observed that, they will last for few years from now. On the other hand, the ever increasing cost of a gasoline fuels and their related adverse effects on environment caught the attention of researchers to find a supplementary source. For commercial fuels, supplementary source is not about replacing the entire fuel, instead enhancing efficiency by simply making use of it in lesser amount. From the recent research that has been carried out, focus on the use of Hydrogen rich gas as a supplementary source of fuel has increased. But the problem related to the storage of hydrogen gas confines the application of pure hydrogen in petrol engine. Using oxy-hydrogen gas (HHO) generator the difficulties of storing the hydrogen have overcome up to a certain limit. The present study highlights on performance evaluation of conventional petrol engine by using HHO gas as a supplementary fuel. HHO gas was generated from the electrolysis of water. KOH solution of 3 Molar concentration was used which act as a catalyst and accelerates the rate of generation of HHO gas. Quantity of gas to be supplied to the engine was controlled by varying amount of current. It was observed that, engine performance was improved on the introduction of HHO gas.

  19. CO2-based hydrogen storage - Hydrogen generation from formaldehyde/water

    Science.gov (United States)

    Trincado, Monica; Grützmacher, Hansjörg; Prechtl, Martin H. G.

    2018-04-01

    Formaldehyde (CH2O) is the simplest and most significant industrially produced aldehyde. The global demand is about 30 megatons annually. Industrially it is produced by oxidation of methanol under energy intensive conditions. More recently, new fields of application for the use of formaldehyde and its derivatives as, i.e. cross-linker for resins or disinfectant, have been suggested. Dialkoxymethane has been envisioned as a combustion fuel for conventional engines or aqueous formaldehyde and paraformaldehyde may act as a liquid organic hydrogen carrier molecule (LOHC) for hydrogen generation to be used for hydrogen fuel cells. For the realization of these processes, it requires less energy-intensive technologies for the synthesis of formaldehyde. This overview summarizes the recent developments in low-temperature reductive synthesis of formaldehyde and its derivatives and low-temperature formaldehyde reforming. These aspects are important for the future demands on modern societies' energy management, in the form of a methanol and hydrogen economy, and the required formaldehyde feedstock for the manufacture of many formaldehyde-based daily products.

  20. Effect of addition of water-soluble salts on the hydrogen generation of aluminum in reaction with hot water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2016-01-01

    Aluminum powder was ball milled for different durations of time with different weight percentages of water-soluble salts (NaCl and KCl). The hydrogen generation of each mixture in reaction with hot water was measured. A scanning electron microscope (SEM) as well as energy-dispersive spectroscopy (EDS) were used to investigate the morphology, surfaces and cross sections of the produced particles. The results show that the presence of salts in the microstructure of the aluminum considerably increases the hydrogen generation rate. At shorter milling times, the salt covers the aluminum particles and becomes embedded in layers within the aluminum matrix. At higher milling durations, salt and aluminum phases form composite particles. A higher percentage of the second phase significantly decreases the milling time needed for activation of the aluminum particles. Based on the EDS results from cross sections of the milled particles, a mechanism for improvement of the hydrogen generation rate in the presence of salts is suggested. - Highlights: • Milling and water soluble salts have a synergic effect on hydrogen generation. • Salt and aluminum form composite particles by milling. • Salt is dissolved in water leaving aluminum with much fresh surfaces for the reaction. • The chemical effect of salt on the reaction is negligible compared to its structural effect.

  1. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  2. HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.F.; Molter, T.M. [Proton Energy Systems, Inc., Rocky Hill, CT (United States)

    1997-12-31

    PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

  3. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Wang, Ke-Yao; Foster, Amy C

    2015-01-01

    We demonstrate optical parametric amplification operating at GHz-rates at telecommunications wavelengths using a hydrogenated amorphous silicon waveguide through the nonlinear optical process of four-wave mixing. We investigate how the parametric amplification scales with repetition rate. The ability to achieve amplification at GHz-repetition rates shows hydrogenated amorphous silicon’s potential for telecommunication applications and a GHz-rate optical parametric oscillator. (paper)

  4. Hydrogen, a bridge between mobility and distributed generation. Some consideration towards the hydrogen economy

    International Nuclear Information System (INIS)

    Valentino Romeri

    2006-01-01

    In this paper were analysed the most recent energy initiatives started by some national and international institution, with particular focus on hydrogen and fuel cell. It were also overviewed the national road-maps towards the hydrogen economy. In 2004, based on the most authoritative available data regarding future FCVs penetration it was observed that, if vehicle power-generation system fuel cell based becomes more sophisticated, the role of the vehicles within the power grid might change. Fuel Cell Vehicle (FVC) could become a new power-generation source, supplying electricity to home and to the grid. Also, it was defined the dimension of this new kind of power generation source in different areas and it was compared with the related power grid installed generation capacity and it was found that this new source could be a multiple of the foreseeable installed capacity in year 2030. In the present work it was revised the analysis with the most recent scenarios and it was found that the results do not change significantly. Unfortunately this kind of analysis is still not considered in the energy debate or in the road-maps towards the hydrogen economy. (author)

  5. Cold weather hydrogen generation system and method of operation

    Science.gov (United States)

    Dreier, Ken Wayne; Kowalski, Michael Thomas; Porter, Stephen Charles; Chow, Oscar Ken; Borland, Nicholas Paul; Goyette, Stephen Arthur

    2010-12-14

    A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

  6. Hydrogen generation during melter feed preparation of Tank 42 sludge and salt washed loaded CST in the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Daniel, W.E.

    1999-01-01

    The main objective of these scoping tests was to measure the rate of hydrogen generation in a series of experiments designed to duplicate the expected SRAT and SME processing conditions in laboratory scale vessels. This document details the testing performed to determine the maximum hydrogen generation expected with a coupled flowsheet of sludge, loaded CST [crystalline silicotitanate], and frit

  7. Enhanced hydrogen generation by hydrolysis of Mg doped with flower-like MoS2 for fuel cell applications

    Science.gov (United States)

    Huang, Minghong; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Shao, Huaiyu; Zhu, Min

    2017-10-01

    In this work, flower-like MoS2 spheres are synthesized via a hydrothermal method and the catalytic activity of the as-prepared and bulk MoS2 on hydrolysis of Mg is systematically investigated for the first time. The Mg-MoS2 composites are prepared by ball milling and the hydrogen generation performances of the composites are investigated in 3.5% NaCl solution. The experimental results suggest that the as-prepared MoS2 exhibits better catalytic effect on hydrolysis of Mg compared to bulk MoS2. In particular, Mg-10 wt% MoS2 (as-prepared) composite milled for 1 h shows the best hydrogen generation properties and releases 90.4% of theoretical hydrogen generation capacity within 1 min at room temperature. The excellent catalytic effect of as-prepared MoS2 may be attributed to the following aspects: three-dimensional flower-like MoS2 architectures improve its dispersibility on Mg particles; make the composite more reactive; hamper the generated Mg(OH)2 from adhering to the surface of Mg; and increase the galvanic corrosion of Mg. In addition, a hydrogen generator based on the hydrolysis reaction of Mg-0.2 wt% MoS2 composite is manufactured and it can supply a maximum hydrogen flow rate of 2.5 L/min. The findings here demonstrate the as-prepared flower-like MoS2 can be a promising catalyst for hydrogen generation from Mg.

  8. Hydrogen generation using the modular helium reactor

    International Nuclear Information System (INIS)

    Richards, M.; Shenoy, A.

    2004-01-01

    Process heat from a high-temperature nuclear reactor can be used to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850 deg.C to 950 deg.C can drive the sulfur-iodine (SI) thermochemical process to produce hydrogen with high efficiency. Electricity can also be used to split water, using conventional, low-temperature electrolysis. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyser to generate hydrogen. In this paper we investigate the coupling of the Modular Helium Reactor (MHR) to the SI process and HTE. These concepts are referred to as the H2-MHR. Optimization of the MHR core design to produce higher coolant outlet temperatures is also discussed. The use of fixed orifices to control the flow distribution is a promising design solution for increasing the coolant outlet temperature without increasing peak fuel temperatures significantly

  9. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind generation. Paper no. IGEC-1-094

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 cents US/kW.h). One approach is to operate interruptibly, allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies show that this could be cost-competitive using nuclear power generator producing electricity around 3 cents US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the electrolysis facility due to the variability of wind-generated electricity imposes a significant cost penalty. This paper reports on ongoing work on the economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered - a concept we call NuWind. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment to enable it to accommodate the higher rate of hydrogen generation is still substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability. The variability in wind fields between sites was accommodated by assigning average wind speeds that produced an average electricity generation from wind of between 32 and 42% of peak capacity, which is typical of the expectations for superior wind-generation sites. (author)

  10. Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting

    Science.gov (United States)

    Mohapatra, Susanta K.; Mahajan, Vishal K.; Misra, Mano

    2007-11-01

    A sonoelectrochemical anodization method is proposed to synthesize TiO2 nanotubular arrays on both sides of a titanium foil (TiO2/Ti/TiO2). Highly ordered TiO2 nanotubular arrays of 16 cm2 area with uniform surface distribution can be obtained using this anodization procedure. These double-sided TiO2/Ti/TiO2 materials are used as both photoanode (carbon-doped titania nanotubes) and cathode (Pt nanoparticles dispersed on TiO2 nanotubes; PtTiO2/Ti/PtTiO2) in a specially designed photoelectrochemical cell to generate hydrogen by water splitting at a rate of 38 ml h-1. The nanomaterials are characterized by FESEM, HRTEM, STEM, EDS, FFT, SAED and XPS techniques. The present approach can be used for large-scale hydrogen generation using renewable energy sources.

  11. The Potential for Low-Temperature Abiotic Hydrogen Generation and a Hydrogen-Driven Deep Biosphere

    Science.gov (United States)

    Huang, Shanshan; Thorseth, Ingunn H.

    2011-01-01

    Abstract The release and oxidation of ferrous iron during aqueous alteration of the mineral olivine is known to reduce aqueous solutions to such extent that molecular hydrogen, H2, forms. H2 is an efficient energy carrier and is considered basal to the deep subsurface biosphere. Knowledge of the potential for H2 generation is therefore vital to understanding the deep biosphere on Earth and on extraterrestrial bodies. Here, we provide a review of factors that may reduce the potential for H2 generation with a focus on systems in the core temperature region for thermophilic to hyperthermophilic microbial life. We show that aqueous sulfate may inhibit the formation of H2, whereas redox-sensitive compounds of carbon and nitrogen are unlikely to have significant effect at low temperatures. In addition, we suggest that the rate of H2 generation is proportional to the dissolution rate of olivine and, hence, limited by factors such as reactive surface areas and the access of water to fresh surfaces. We furthermore suggest that the availability of water and pore/fracture space are the most important factors that limit the generation of H2. Our study implies that, because of large heat flows, abundant olivine-bearing rocks, large thermodynamic gradients, and reduced atmospheres, young Earth and Mars probably offered abundant systems where microbial life could possibly have emerged. Key Words: Serpentinization—Olivine—Hydrogen—Deep biosphere—Water—Mars. Astrobiology 11, 711–724. PMID:21923409

  12. A method for generating hydrogen from water

    International Nuclear Information System (INIS)

    Godin, Paul; Mascarello, Jean; Millet, Jacques.

    1974-01-01

    Description is given of a method and an installation for generating hydrogen from water, through an endothermic cycle of several successive chemical reactions involving intermediate substances regenerated during said cycle, said reactions occuring at different temperatures. The reaction which takes place at the highest temperature is carried out electrochemically. This can be applied to power-generating units comprising a nuclear reactor [fr

  13. Electricity Cogenerator from Hydrogen and Biogas

    Science.gov (United States)

    Pinate, W.; Chinnasa, P.; Dangphonthong, D.

    2017-09-01

    This research studied about electricity cogenerator from Hydrogen and Biogas and the factors that cause that effecting Hydrogen from Aluminium which was a cylindrical feature. By using a catalyst was NaOH and CaO, it was reacted in distilled water with percentage of Aluminium: the catalyst (NaOH and CaO) and brought to mix with Biogas afterwards, that have been led to electricity from generator 1 kilowatt. The research outcomes were concentration of solutions that caused amount and percent of maximum Hydrogen was to at 10 % wt and 64.73 % which rate of flowing of constant gas 0.56 litter/minute as temperature 97 degree Celsius. After that led Hydrogen was mixed by Biogas next, conducted to electricity from generator and levelled the voltage of generator at 220 Volt. There after the measure of electricity current and found electricity charge would be constant at 3.1 Ampere. And rate of Biogas flowing and Hydrogen, the result was the generator used Biogas rate of flowing was highest 9 litter/minute and the lowest 7.5 litter/minute, which had rate of flowing around 8.2 litter/minute. Total Biogas was used around 493.2 litter or about 0.493 m3 and Hydrogen had rate of flowing was highest 2.5 litter/minute.

  14. Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization.

    Science.gov (United States)

    Wagner, Shawn

    2014-06-01

    To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.

  15. Molecular cobalt pentapyridine catalysts for generating hydrogen from water

    Science.gov (United States)

    Long, Jeffrey R; Chang, Christopher J; Sun, Yujie

    2013-11-05

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition including the moiety of the general formula. [(PY5Me.sub.2)CoL].sup.2+, where L can be H.sub.2O, OH.sup.-, a halide, alcohol, ether, amine, and the like. In embodiments of the invention, water, such as tap water or sea water can be subject to low electric potentials, with the result being, among other things, the generation of hydrogen.

  16. IEA Hydrogen Implementing Agreement's Second Generation R and D and the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Beck, N.; Garcia-Conde, A. G.; Riis, T. U.; Luzzi, A.; Valladares, M. R. de

    2005-07-01

    Since its creation by the International Energy Agency in the late 1970's, the IEA Hydrogen Implementing Agreement (HIA) has been at the forefront of collaborative international hydrogen research and development (R and D) (http://www.ieahia.org. ) The collective body of HIA hydrogen R and D will contribute to definition of the hydrogen economy. The five-year [2004-2009) mission of the IEA HIA is to advance the adoption of a Hydrogen Economy through strategic implementation of collaborative R and D and outreach programs that address key issues and barriers. The three goals for the Second Generation HIA are: Advancement of science and technology via pre-commercial collaborative RD and D programs; Assessment of market environment, including the non-energy sector; and Implementation of outreach program, aimed at community acceptance and support. The HIA launched its Second Generation of hydrogen R and D in the latter part of 2004. The HIA's anniversary report: In Pursuit of the Future: 25 Years of IEA Research towards the realization of Hydrogen Energy Systems (http://ieahia.org/pdfs/IEA_AnniversaryReport_HIA.pdf) chronicles its contributions to hydrogen R and D. As the hydrogen economy takes shape, the HIA is pleased to share highlights of its R and D history together with progress on planned activities and its six current annexes, listed below: Task 15 Photobiological Production of Hydrogen Task 16 Hydrogen from Carbon-Containing Materials Task 17 Solid and Liquid Storage Task 18 Integrated Systems Evaluation Task 19 Safety Task 20 Hydrogen from Waterphotolysis Planned successor annexes in storage and photobiological hydrogen production will also be discussed, along with a task on high temperature hydrogen production that is now in the definition phase. Over 250 experts from the sixteen member HIA countries and the European Union contribute to this portfolio of cutting edge hydrogen R and D and analysis activities. Several other countries are expected to

  17. Analysis of Hydrogen Generation and Accumulation in U-233 Tube Vaults

    International Nuclear Information System (INIS)

    Ally, M.R.; Willis, K.J.

    1999-01-01

    The purpose of the 233 U Safe Storage Program is to enhance the safe storage of 233 U-bearing materials. This report describes the work done at the Oak Ridge National Laboratory's Radiochemical Development Facility (RDF) to address questions related to possible hydrogen generation and accumulation in 233 U tube vaults. The objective of this effort was to verify assumptions in the mathematical model used to estimate the hydrogen content of the gaseous atmosphere that possibly could occur inside the tube vaults in Building 3019 and to evaluate proposed measures for mitigating any hydrogen concerns. A mathematical model was developed using conservative assumptions to evaluate possible hydrogen generation and accumulation in the tube vaults. The model concluded that an equilibrium concentration would be established below the lower flammability limit (LFL) of 4.1% hydrogen. The major assumptions used in the model that were validated are as follows: (1) The shield plug does not form a seal with the tube vault wall, thus allowing the hydrogen gas to diffuse past the shield plug to the upper section of the tube vault. (2) The tube vault end-cap leaks sufficiently to allow air to be drawn into the tube vault by the off-gas system, thereby purging hydrogen from the upper section of the tube vault. (3) Any hydrogen gas generated completely mixes with the other gases present in the lower section of the tube vault and does not stratify beneath the shield plug. (4) The diffusion coefficient determined from the literature for constant diffusion of hydrogen in air is valid. The coefficient is corrected for temperatures from 0 to 25 C. Another assumption used in the model, that hydrogen generated by radiolytic decomposition of hydrogen-bearing materials (e.g., moisture and plastic) leaks from the cans under steady-state condition, as opposed to a sudden release resulting from rupture of the can(s), was beyond the scope of this investigation. Several parameters from the original

  18. Enhanced Solar-to-Hydrogen Generation with Broadband Epsilon-Near-Zero Nanostructured Photocatalysts

    KAUST Repository

    Tian, Yi

    2017-05-08

    The direct conversion of solar energy into fuels or feedstock is an attractive approach to address increasing demand of renewable energy sources. Photocatalytic systems relying on the direct photoexcitation of metals have been explored to this end, a strategy that exploits the decay of plasmonic resonances into hot carriers. An efficient hot carrier generation and collection requires, ideally, their generation to be enclosed within few tens of nanometers at the metal interface, but it is challenging to achieve this across the broadband solar spectrum. Here the authors demonstrate a new photocatalyst for hydrogen evolution based on metal epsilon-near-zero metamaterials. The authors have designed these to achieve broadband strong light confinement at the metal interface across the entire solar spectrum. Using electron energy loss spectroscopy, the authors prove that hot carriers are generated in a broadband fashion within 10 nm in this system. The resulting photocatalyst achieves a hydrogen production rate of 9.5 µmol h-1  cm-2 that exceeds, by a factor of 3.2, that of the best previously reported plasmonic-based photocatalysts for the dissociation of H2 with 50 h stable operation.

  19. Portable Fuel Cell Battery Charger with Integrated Hydrogen Generator

    Energy Technology Data Exchange (ETDEWEB)

    Bossel, Ulf G. [CH-5452 Oberrohrdorf (Switzerland)

    1999-10-01

    A fully self-sufficient portable fuel cell battery charger has been designed, built, operated and is now prepared for commercialisation. The lightweight device is equipped with 24 circular polymer electrolyte cells of an innovative design. Each cell is a complete unit and can be tested prior to stacking. Hydrogen is admitted to the anode chamber from the centre of the cell. Air can reach the cathode by diffusion through a porous metal foam layer placed between cathode and separator plate. Soft seals surround the centre hole of the cells to separate hydrogen from air. Water vapour generated by the electrochemical conversion is released into the atmosphere via the porous metal foam on the cathode. All hydrogen fed to the dead-ended anode chamber is converted to electric power. The device is equipped with a chemical hydrogen generator. The fuel gas is formed by adding small amounts of water to a particular chemical compound which is contained in disposable cartridges. With one such cartridge enough hydrogen can be generated to operate CD-players, radios, recorders or portable computers for some hours, depending on the current drawn by the electronic device. The handy portable battery charger delivers about 10 W at 12 V DC. It is designed to be used in remote areas as autonomous power source for charging batteries used in radios, CD players, cellular telephones, radio transmitters, flash lights or model air planes. The power can also be used directly to provide light, sound or motion. Patents have been filed and partners are sought for commercialisation. (author) 4 figs.

  20. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal

  1. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-01-01

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate's beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ∼60 C, 80 C, and 95 C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal

  2. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    International Nuclear Information System (INIS)

    Ouyang, Y.J.; Yu, G.; Ou, A.L.; Hu, L.; Xu, W.J.

    2011-01-01

    Highlights: → Designed an amperometric hydrogen sensor with double electrolytes. → Explained the principle of determining hydrogen permeation rate. → Verified good stability, reproducibility and correctness of the developed sensor. → Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm -3 KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  3. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Department of Chemistry and Chemical Engineering, Huaihua College, Huaihua 418008 (China); Yu, G., E-mail: yuganghnu@163.co [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ou, A.L.; Hu, L.; Xu, W.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2011-06-15

    Highlights: {yields} Designed an amperometric hydrogen sensor with double electrolytes. {yields} Explained the principle of determining hydrogen permeation rate. {yields} Verified good stability, reproducibility and correctness of the developed sensor. {yields} Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm{sup -3} KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  4. In Situ Measurement of Local Hydrogen Production Rate by Bubble-Evolved Recording

    Directory of Open Access Journals (Sweden)

    Xiaowei Hu

    2013-01-01

    Full Text Available Hydrogen visibly bubbles during photocatalytic water splitting under illumination with above-bandgap radiation, which provides a direct measurement of local gas-evolving reaction rate. In this paper, optical microscopy of superfield depth was used for recording the hydrogen bubble growth on Cd0.5Zn0.5S photocatalyst in reaction liquid and illuminated with purple light. By analyzing change of hydrogen bubble size as a function of time, we understood that hydrogen bubble growth experienced two periods, which were inertia effect dominated period and diffusion effect dominated period, respectively. The tendency of hydrogen bubble growth was similar to that of the gas bubble in boiling, while the difference in bubble diameter and growth time magnitude was great. Meanwhile, we obtained the local hydrogen production rate on photocatalyst active site by measuring hydrogen bubble growth variation characteristics. This method makes it possible to confirm local actual hydrogen evolution rate quantitatively during photocatalytic water splitting.

  5. ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING GROUTING OPERATIONS IN THE R AND P REACTOR VESSELS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2010-05-24

    operations in the R-reactor vessel is low for the Portland cement. Alternatively, if the grout fill rate is less than 0.5 inch/min and the grout is maintained at a temperature of 80 C, the risk is again low. Although these calculations are conservative, there are some measures that may be taken to further minimize the potential for hydrogen evolution. (1) Minimize the temperature of the grout as much as practical. Lower temperatures will mean lower hydrogen generation rates. For P-reactor, grout temperatures less than 100 C should provide an adequate safety margin for the pH 8 and pH 10.4 grout formulations. For R-reactor, grout temperatures less than 70 C or 80 C will provide an adequate safety margin for the Portland cement. The other grout formulations are also viable options for R-reactor. (2) Minimize the grout fill rate as much as practical. Lowering the fill rate takes advantage of passivation of the aluminum components and hence lower hydrogen generation rates. For P-reactor, fill rates that are less than 2 inches/min for the ceramicrete and the silica fume grouts will reduce the chance of significant hydrogen accumulation. For R-reactor, fill rates less than 1 inch/min will again minimize the risk of hydrogen accumulation. (3) Ventilate the building as much as practical (e.g., leave doors open) to further disperse hydrogen. The volumetric hydrogen generation rates in the P-reactor vessel, however, are low for the pH 8 and pH 10.4 grout, (i.e., less than 0.97 ft{sup 3}/min). If further walk-down inspections of the reactor vessels suggest an increase in the actual areal density of aluminum, the calculations should be re-visited.

  6. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  7. Hydrogen generator from light hydrocarbons for stationary applications

    International Nuclear Information System (INIS)

    Cipiti, F.; Recupero, Vincenzo; Pino, L.; Vita, A.; Lagana, M.

    2006-01-01

    The present article describes the activities carried out in the CNR institute, particularly the development, realization and testing of one unit of hydrogen generation to integrate with fuel-cells for residential applications [it

  8. Hydrogen generation from aluminium corrosion in reactor containment spray solutions

    International Nuclear Information System (INIS)

    Frid, W.; Karlberg, G.; Sundvall, S.B.

    1982-01-01

    The aluminium corrosion experiments in reactor containment spray solutions, under the conditions expected to prevail during LOCA in BWR and PWR, were performed in order to investigate relationships between temperature, pH and hydrogen production rates. In order to simulate the conditions in a BWR containment realistic ratios between aluminium surface and water volume and between aluminium surface and oxygen volume were used. Three different aluminium alloys were exposed to spray solutions: AA 1050, AA 5052 and AA 6082. The corrosion rates were measured for BWR solutions (deaerated and aerated) with pH 5 and 9 at 50, 100 and 150 0 C. The pressure was constantly 0.8 MPa. The hydrogen production rate was measured by means of gas chromatography. In deionized BWR water the corrosion rates did not exceed about 0.05 mm/year in all cases, i.e. were practically independent of temperature and pH. Hydrogen concentrations were less than 0.1 vol.% in cooled dry gas. Corrosion rates and hydrogen production in PWR alkaline solution measured at pH 9.7 and 150 0 C were very high. AA 5052 alloy was the best material

  9. Perspectives for generation companies and the emerging hydrogen economy

    International Nuclear Information System (INIS)

    Cowan, N.

    2004-01-01

    'Full text:' Canadian and global power generation supply is evolving towards inclusion of emerging types of technologies for electricity production. Although much of Canadian electricity supply will continue to be derived from traditional sources in the foreseeable future the band for capital cost competitiveness is narrowing between the once clear-cut technological winners and emerging generation technologies creating opportunity for new technologies to commercialize in the market. OPG has been active in the development and commercialization of stationary high temperature fuel cells for several years. The major activity has been a partnering initiative to engineer and implement Solid Oxide Fuel Cell (SOFC) demonstration installations. The relationship with SOFC developer Siemens-Westinghouse out of Pittsburgh has allowed OPG to maintain an ongoing involvement in the emerging fuel cell industry, while exploring the broader implications of this technology for the power industry business model. OPG is part of the 'Hydrogen Village Partnership'. The Hydrogen Village will demonstrate and deploy various hydrogen production, storage and delivery techniques as well as applications of hydrogen such as fuel cells for stationary, transportation (mobile) and portable applications. OPG maintains an active role in the demonstration of emerging technologies for a number of reasons: 1) advancing commercialization of emerging generation technologies, 2) 'hands-on' participation in the deployment of such technology in order to gather and apply market knowledge 3) Involvement in developing technology as a part of commitment to sustainable development. (author)

  10. PVP-stabilized Ru–Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane

    International Nuclear Information System (INIS)

    Rakap, Murat

    2015-01-01

    Herein, the utilization of poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles (3.4 ± 1.4 nm) as highly efficient catalysts in the hydrolysis of ammonia borane for hydrogen generation is reported. They are prepared by co-reduction of ruthenium and rhodium metal ions in ethanol/water mixture by an alcohol reduction method and characterized by transmission electron microscopy-energy dispersive X-ray spectroscopy, ultraviolet–visible spectroscopy, and X-ray photoelectron spectroscopy. They are durable and highly efficient catalysts for hydrogen generation from the hydrolysis of ammonia borane even at very low concentrations and temperature, providing average turnover frequency of 386 mol H 2 (mol cat) −1 min −1 and maximum hydrogen generation rate of 10,680 L H 2 min −1 (mol cat) −1 . Poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles also provide activation energy of 47.4 ± 2.1 kJ/mol for the hydrolysis of ammonia borane. - Highlights: • Ru-Rh@PVP NPs provide a TOF of 386 mol H 2 (mol cat) −1 min −1 for hydrolysis of AB. • Maximum HG rate is 9680 L H 2 min −1 (mol cat) −1 for the hydrolysis of AB. • Activation energy is 47.4 ± 2.1 kJ mol −1 for the hydrolysis of AB

  11. Comparative study of the hydrogen generation during short term station blackout (STSBO) in a BWR

    International Nuclear Information System (INIS)

    Polo-Labarrios, M.A.; Espinosa-Paredes, G.

    2015-01-01

    Highlights: • Comparative study of generation in a simulated STSBO severe accident. • MELCOR and SCDAP/RELAP5 codes were used to understanding the main phenomena. • Both codes present similar thermal-hydraulic behavior for pressure and boil off. • SCDAP/RELAP5 predicts 15.8% lower hydrogen production than MELCOR. - Abstract: The aim of this work is the comparative study of hydrogen generation and the associated parameters in a simulated severe accident of a short-term station blackout (STSBO) in a typical BWR-5 with Mark-II containment. MELCOR (v.1.8.6) and SCDAP/RELAP5 (Mod.3.4) codes were used to understand the main phenomena in the STSBO event through the results comparison obtained from simulations with these codes. Due that the simulation scope of SCDAP/RELAP5 is limited to failure of the vessel pressure boundary, the comparison was focused on in-vessel severe accident phenomena; with a special interest in the vessel pressure, boil of cooling, core temperature, and hydrogen generation. The results show that at the beginning of the scenario, both codes present similar thermal-hydraulic behavior for pressure and boil off of cooling, but during the relocation, the pressure and boil off, present differences in timing and order of magnitude. Both codes predict in similar time the beginning of melting material drop to the lower head. As far as the hydrogen production rate, SCDAP/RELAP5 predicts 15.8% lower production than MELCOR

  12. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  13. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  14. Surface- and interface-engineered heterostructures for solar hydrogen generation

    Science.gov (United States)

    Chen, Xiangyan; Li, Yanrui; Shen, Shaohua

    2018-04-01

    Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.

  15. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    Science.gov (United States)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  16. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data.

    Science.gov (United States)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. Graphical Abstract ᅟ.

  17. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    Science.gov (United States)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-03-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  18. Hydrogen generation and foaming during tests in the GFPS simulating DWPF operations with Tank 42 sludge and CST

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.C.

    1999-12-08

    This report summarizes the pilot-scale research requested by the salt disposition team to examine the effect of crystalline silicotitanate (CST) resin with adsorbed noble metals on the maximum hydrogen generation rate produced during the DWPF melter feed preparation processes.

  19. Hydrogen generation and foaming during tests in the GFPS simulating DWPF operations with Tank 42 sludge and CST

    International Nuclear Information System (INIS)

    Koopman, D.C.

    1999-01-01

    This report summarizes the pilot-scale research requested by the salt disposition team to examine the effect of crystalline silicotitanate (CST) resin with adsorbed noble metals on the maximum hydrogen generation rate produced during the DWPF melter feed preparation processes

  20. Hydrogen Generation, Combustibility and Mitigation in Nuclear Power Plant Systems

    International Nuclear Information System (INIS)

    Talha, K.A.; El-Sheikh, B.M.; Gad El-Mawla, A.S.

    2003-01-01

    The nuclear power plant is provided with features to insure safety. The engineered safety features (ESFs) are devoted to set operating conditions under accident conditions. If ESFs fail to apply in some accidents, this would lead to what called severe accidents, and core damage. In this case hydrogen will be generated from different sources particularly from metal-water reactions. Since the containment is the final barrier to protect the environment from the release of radioactive materials; its integrity should not be threatened. In recent years, hydrogen concentration represents a real problem if it exceeds the combustibility limits. This work is devoted to calculate the amount of hydrogen to be generated, indelicate its combustibility and how to inertize the containment using different gases to maintain its integrity and protect the environment from the release of radioactive materials

  1. Importance of temperature, pH, and boric acid concentration on rates of hydrogen production from galvanized steel corrosion

    International Nuclear Information System (INIS)

    Loyola, V.M.

    1982-01-01

    One of the known sources of hydrogen gas within a nuclear plant containment building during a LOCA is the high temperature corrosion of galvanized steel yielding hydrogen gas. The importance of this source of hydrogen will vary depending on the severity of the accident. In an accident which resulted in core degradation, for example, the major source of hydrogen would probably be the metal-water reaction of the zircaloy cladding, and the corrosion of galvanized steel would then become a relatively minor source of hydrogen. However, in an accident in which core degradation is avoided or limited to minor damage, the corrosion of galvanized steel, and presumably of other materials as well, would then become a major contributor to the buildup of hydrogen within containment. The purpose of this paper is to present the overall effects of temperature, pH, and boric acid concentration on the rate of hydrogen generation over a broad range of each parameter

  2. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2016-01-01

    Full Text Available We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  3. Micro poly(3-sulfopropyl methacrylate) hydrogel synthesis for in situ metal nanoparticle preparation and hydrogen generation from hydrolysis of NaBH4

    International Nuclear Information System (INIS)

    Turhan, Tugce; Güvenilir, Yuksel Avcıbası; Sahiner, Nurettin

    2013-01-01

    Polymeric hydrogels derived from SPM (3-sulfopropyl methacrylate) of micrometer size were used in the preparation of a composite-catalyst system for hydrogen generation from hydrolysis of NaBH 4 . In situ Co and Ni nanoparticles were prepared by chemical reduction of absorbed Co (II) and Ni (II) ions inside the hydrogel networks, and the whole composite was used as a catalyst system. The catalytic activity of the metal nanoparticles within the p(SPM) hydrogel matrix was better and faster using Co than with Ni. Additionally, other parameters that affect the hydrogen generation rate, such as temperature, metal reloading, the catalyst amounts as well as reusability, were also investigated. It was found that p(SPM)–Co micro hydrogels were even effective for hydrogen generation at 0 °C with a hydrogen generation rate of 966 (mL H 2 ) (min) −1 (g of Co) −1 . The activation energy, activation enthalpy, and activation entropy for the hydrolysis reaction of NaBH 4 with micro p(SPM)–Co catalyst system were calculated as 44.3 kJ/mol, 43.26 kJ/mol K, and −150.93 J/mol K, respectively. - Highlights: ► Microgel embedding metal catalyst for H 2 production. ► Advanced materials for green energy. ► Soft microgel reactors for H 2 production from NaBH 4 hydrolysis

  4. PVP-stabilized Ru–Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Rakap, Murat, E-mail: mrtrakap@gmail.com

    2015-11-15

    Herein, the utilization of poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles (3.4 ± 1.4 nm) as highly efficient catalysts in the hydrolysis of ammonia borane for hydrogen generation is reported. They are prepared by co-reduction of ruthenium and rhodium metal ions in ethanol/water mixture by an alcohol reduction method and characterized by transmission electron microscopy-energy dispersive X-ray spectroscopy, ultraviolet–visible spectroscopy, and X-ray photoelectron spectroscopy. They are durable and highly efficient catalysts for hydrogen generation from the hydrolysis of ammonia borane even at very low concentrations and temperature, providing average turnover frequency of 386 mol H{sub 2} (mol cat){sup −1} min{sup −1} and maximum hydrogen generation rate of 10,680 L H{sub 2} min{sup −1} (mol cat){sup −1}. Poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles also provide activation energy of 47.4 ± 2.1 kJ/mol for the hydrolysis of ammonia borane. - Highlights: • Ru-Rh@PVP NPs provide a TOF of 386 mol H{sub 2} (mol cat){sup −1} min{sup −1} for hydrolysis of AB. • Maximum HG rate is 9680 L H{sub 2} min{sup −1} (mol cat){sup −1} for the hydrolysis of AB. • Activation energy is 47.4 ± 2.1 kJ mol{sup −1} for the hydrolysis of AB.

  5. Evaluation of the pressure loads generated by hydrogen explosion in auxiliary nuclear building

    International Nuclear Information System (INIS)

    Ahmed Bentaib; Alexandre Bleyer; Pierre Pailhories; Jean-Pierre L'heriteau; Bernard Chaumont; Jerome Dupas; Jerome Riviere

    2005-01-01

    Full text of publication follows: In the framework of nuclear safety, a hydrogen leaks in the auxiliary nuclear building would raise a explosion hazard. A local ignition of the combustible mixture would give birth initially to a slow flame, rapidly accelerated by obstacles. This flame acceleration is responsible for high pressure loads that can damage the auxiliary building and destroy safety equipments in it. In this paper, we evaluate the pressure loads generated by an hydrogen explosion for both bounding and realistic explosion scenarios. The bounding scenarios use stoichiometric hydrogen-air mixtures and the realistic scenarios correspond to hydrogen leaks with mass flow rate varying between 1 g/s and 9 g/s. For every scenario, the impact of the ignition location and ignition time are investigated. The hydrogen dispersion and explosion are computed using the TONUS code. The dispersion model used is based on a finite element solver and the explosion is simulated by a structured finite volumes EULER equation solver and the combustion model CREBCOM which simulates the hydrogen/air turbulent flame propagation, taking into account 3D complex geometry and reactants concentration gradients. The pressure loads computed are then used to investigate the occurrence of a mechanical failure of the tanks located in the auxiliary nuclear building and containing radioactive fluids. The EUROPLEXUS code is used to perform 3D mechanical calculations because the loads are non uniform and of rather short deviation. (authors)

  6. Radcalc for windows benchmark study: A comparison of software results with Rocky Flats hydrogen gas generation data

    International Nuclear Information System (INIS)

    MCFADDEN, J.G.

    1999-01-01

    Radcalc for Windows Version 2.01 is a user-friendly software program developed by Waste Management Federal Services, Inc., Northwest Operations for the U.S. Department of Energy (McFadden et al. 1998). It is used for transportation and packaging applications in the shipment of radioactive waste materials. Among its applications are the classification of waste per the US. Department of Transportation regulations, the calculation of decay heat and daughter products, and the calculation of the radiolytic production of hydrogen gas. The Radcalc program has been extensively tested and validated (Green et al. 1995, McFadden et al. 1998) by comparison of each Radcalc algorithm to hand calculations. An opportunity to benchmark Radcalc hydrogen gas generation calculations to experimental data arose when the Rocky Flats Environmental Technology Site (RFETS) Residue Stabilization Program collected hydrogen gas generation data to determine compliance with requirements for shipment of waste in the TRUPACT-II (Schierloh 1998). The residue/waste drums tested at RFETS contain contaminated, solid, inorganic materials in polyethylene bags. The contamination is predominantly due to plutonium and americium isotopes. The information provided by Schierloh (1 998) of RFETS includes decay heat, hydrogen gas generation rates, calculated G eff values, and waste material type, making the experimental data ideal for benchmarking Radcalc. The following sections discuss the RFETS data and the Radcalc cases modeled with the data. Results are tabulated and also provided graphically

  7. Hydrogen generation from biogenic and fossil fuels by autothermal reforming

    Science.gov (United States)

    Rampe, Thomas; Heinzel, Angelika; Vogel, Bernhard

    Hydrogen generation for fuel cell systems by reforming technologies from various fuels is one of the main fields of investigation of the Fraunhofer ISE. Suitable fuels are, on the one hand, gaseous hydrocarbons like methane, propane but also, on the other hand, liquid hydrocarbons like gasoline and alcohols, e.g., ethanol as biogenic fuel. The goal is to develop compact systems for generation of hydrogen from fuel being suitable for small-scale membrane fuel cells. The most recent work is related to reforming according to the autothermal principle — fuel, air and steam is supplied to the reactor. Possible applications of such small-scale autothermal reformers are mobile systems and also miniature fuel cell as co-generation plant for decentralised electricity and heat generation. For small stand-alone systems without a connection to the natural gas grid liquid gas, a mixture of propane and butane is an appropriate fuel.

  8. Locating the rate-limiting step for the interaction of hydrogen with Mg(0001) using density-functional theory calculations and rate theory

    DEFF Research Database (Denmark)

    Vegge, Tejs

    2004-01-01

    The dissociation of molecular hydrogen on a Mgs0001d surface and the subsequent diffusion of atomic hydrogen into the magnesium substrate is investigated using Density Functional Theory (DFT) calculations and rate theory. The minimum energy path and corresponding transition states are located usi...... to be rate-limiting for the ab- and desorption of hydrogen, respectively. Zero-point energy contributions are found to be substantial for the diffusion of atomic hydrogen, but classical rates are still found to be within an order of magnitude at room temperature.......The dissociation of molecular hydrogen on a Mgs0001d surface and the subsequent diffusion of atomic hydrogen into the magnesium substrate is investigated using Density Functional Theory (DFT) calculations and rate theory. The minimum energy path and corresponding transition states are located using...

  9. Generating para-water from para-hydrogen: A Gedankenexperiment.

    Science.gov (United States)

    Ivanov, Konstantin L; Bodenhausen, Geoffrey

    2018-07-01

    A novel conceptual approach is described that is based on the transfer of hyperpolarization from para-hydrogen in view of generating a population imbalance between the two spin isomers of H 2 O. The approach is analogous to SABRE (Signal Amplification By Reversible Exchange) and makes use of the transfer of spin order from para-hydrogen to H 2 O in a hypothetical organometallic complex. The spin order transfer is expected to be most efficient at avoided level crossings. The highest achievable enrichment levels of para- and ortho-water are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Development of a low-cost oxy-hydrogen bio-fuel cell for generation of electricity using Nostoc as a source of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sangeeta Dawar; Behera, B.K. [Maharshi Dayanand University, Rohtak (India). Dept. of Biosciences; Prasanna Mohanty [Jawaharlal Nehru University, New Delhi (India). School of Life Sciences

    1998-10-10

    An oxy-hydrogen bio-fuel cell, based on a carbon-carbon electrode has been fabricated. The electrode pellets were prepared by taking carbon powder mixed with polyvinylalcohol as a binder. The anode was charged with Co-Al spinel mixed oxide at 700{sup o}C, 30% KOH acted as an electrolyte. For the cyanobacterial bioreactor, a potential heterocystous blue green alga of Nostoc spp. has been used for hydrogen production and electrical energy generation. Various nutrient enrichment techniques are employed to increase the hydrogen generation efficiency of the algae. One litre free cell algal reactor attached to the fuel cell, at the anode end for hydrogen gas input, generated about 300 mV of voltage and 100 mA of current. Our present findings on the development of a low cost fuel cell with high efficiency of current output may be helpful in commercializing this technology. (author)

  11. Sensitivity analyses on in-vessel hydrogen generation for KNGR

    International Nuclear Information System (INIS)

    Kim, See Darl; Park, S.Y.; Park, S.H.; Park, J.H.

    2001-03-01

    Sensitivity analyses for the in-vessel hydrogen generation, using the MELCOR program, are described in this report for the Korean Next Generation Reactor. The typical accident sequences of a station blackout and a large LOCA scenario are selected. A lower head failure model, a Zircaloy oxidation reaction model and a B 4 C reaction model are considered for the sensitivity parameters. As for the base case, 1273.15K for a failure temperature of the penetrations or the lower head, an Urbanic-Heidrich correlation for the Zircaloy oxidation reaction model and the B 4 C reaction model are used. Case 1 used 1650K as the failure temperature for the penetrations and Case 2 considered creep rupture instead of penetration failure. Case 3 used a MATPRO-EG and G correlation for the Zircaloy oxidation reaction model and Case 4 turned off the B 4 C reaction model. The results of the studies are summarized below : (1) When the penetration failure temperature is higher, or the creep rupture failure model is considered, the amount of hydrogen increases for two sequences. (2) When the MATPRO-EG and G correlation for a Zircaloy oxidation reaction is considered, the amount of hydrogen is less than the Urbanic-Heidrich correlation (Base case) for both scenarios. (3) When the B 4 C reaction model turns off, the amount of hydrogen decreases for two sequences

  12. Dominant rate process of silicon surface etching by hydrogen chloride gas

    International Nuclear Information System (INIS)

    Habuka, Hitoshi; Suzuki, Takahiro; Yamamoto, Sunao; Nakamura, Akio; Takeuchi, Takashi; Aihara, Masahiko

    2005-01-01

    Silicon surface etching and its dominant rate process are studied using hydrogen chloride gas in a wide concentration range of 1-100% in ambient hydrogen at atmospheric pressure in a temperature range of 1023-1423 K, linked with the numerical calculation accounting for the transport phenomena and the surface chemical reaction in the entire reactor. The etch rate, the gaseous products and the surface morphology are experimentally evaluated. The dominant rate equation accounting for the first-order successive reactions at silicon surface by hydrogen chloride gas is shown to be valid. The activation energy of the dominant surface process is evaluated to be 1.5 x 10 5 J mol - 1 . The silicon deposition by the gaseous by-product, trichlorosilane, is shown to have a negligible influence on the silicon etch rate

  13. Development of a high-efficiency hydrogen generator for fuel cells for distributed power generation

    Energy Technology Data Exchange (ETDEWEB)

    Duraiswamy, K.; Chellappa, Anand [Intelligent Energy, 2955 Redondo Ave., Long Beach, CA 90806 (United States); Smith, Gregory; Liu, Yi; Li, Mingheng [Department of Chemical and Materials Engineering, California State Polytechnic University, Pomona, CA 91768 (United States)

    2010-09-15

    A collaborative effort between Intelligent Energy and Cal Poly Pomona has developed an adsorption enhanced reformer (AER) for hydrogen generation for use in conjunction with fuel cells in small sizes. The AER operates at a lower temperature (about 500 C) and has a higher hydrogen yield and purity than those in the conventional steam reforming. It employs ceria supported rhodium as the catalyst and potassium-promoted hydrotalcites to remove carbon dioxide from the products. A novel pulsing feed concept is developed for the AER operation to allow a deeper conversion of the feedstock to hydrogen. Continuous production of near fuel-cell grade hydrogen is demonstrated in the AER with four packed beds running alternately. In the best case of methane reforming, the overall conversion to hydrogen is 92% while the carbon dioxide and carbon monoxide concentrations in the production stream are on the ppm level. The ratio of carbon dioxide in the regeneration exhaust to the one in the product stream is on the order of 10{sup 3}. (author)

  14. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2017-12-19

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  15. Calculation of hydrogen outgassing rate of LHD by recombination limited model

    International Nuclear Information System (INIS)

    Akaishi, K.; Nakasuga, M.

    2002-04-01

    To simulate hydrogen outgassing in the plasma vacuum vessel of LHD, the recombination limited model is presented, where the time evolution of hydrogen concentration in the wall of the plasma vacuum vessel is described by a one-dimensional diffusion equation. The hydrogen outgassing rates when the plasma vacuum vessel is pumped down at room temperature and baked at 100 degC are calculated as a function of pumping time. The calculation shows that the hydrogen outgassing rate of the plasma vacuum vessel can be reduced at least by one order of magnitude due to pumping and baking. This prediction is consistent with the recent result of outgassing reduction observed in the pumping-down and baking of the plasma vacuum vessel in LHD. (author)

  16. Hydrogen generation from formic acid catalyzed by a metal complex under amine-free and aqueous conditions

    KAUST Repository

    Huang, Kuo-Wei

    2018-01-04

    The present invention provides a class of catalyst compounds that can safely and effectively release hydrogen gas from a chemical substrate without producing either noxious byproducts or byproducts that will deactivate the catalyst. The present invention provides catalysts used to produce hydrogen that has a satisfactory and sufficient lifespan (measured by turnover number (TON)), that has stability in the presence of moisture, air, acid, or impurities, promote a rapid reaction rate, and remain stable under the reaction conditions required for an effective hydrogen production system. Described herein are compounds for use as catalysts, as well as methods for producing hydrogen from formic acid and/or a formate using the disclosed catalysts. The methods include contacting formic acid and/or a formate with a catalyst as described herein, as well as methods of producing formic acid and/or a formate using the disclosed catalyst and methods for generating electricity using the catalysts described herein.

  17. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen: Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.; Hayden, H.

    2005-05-01

    The International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen provides an opportunity to learn about current significant research on solar concentrators for generating electricity or hydrogen. The conference will emphasize in-depth technical discussions of recent achievements in technologies that convert concentrated solar radiation to electricity or hydrogen, with primary emphasis on photovoltaic (PV) technologies. Very high-efficiency solar cells--above 37%--were recently developed, and are now widely used for powering satellites. This development demands that we take a fresh look at the potential of solar concentrators for generating low-cost electricity or hydrogen. Solar electric concentrators could dramatically overtake other PV technologies in the electric utility marketplace because of the low capital cost of concentrator manufacturing facilities and the larger module size of concentrators. Concentrating solar energy also has advantages for th e solar generation of hydrogen. Around the world, researchers and engineers are developing solar concentrator technologies for entry into the electricity generation market and several have explored the use of concentrators for hydrogen production. The last conference on the subject of solar electric concentrators was held in November of 2003 and proved to be an important opportunity for researchers and developers to share new and crucial information that is helping to stimulate projects in their countries.

  18. Poly(N-vinyl-2-pyrrolidone)-stabilized palladium-platinum nanoparticles-catalyzed hydrolysis of ammonia borane for hydrogen generation

    Science.gov (United States)

    Rakap, Murat

    2015-02-01

    The catalytic use of highly efficient poly(N-vinyl-2-pyrrolidone)-stabilized palladium-platinum nanoparticles (4.2 ± 1.9 nm) in the hydrolysis of ammonia-borane is reported. The catalyst is prepared by co-reduction of two metal ions in ethanol/water mixture by an alcohol reduction method and characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and UV-Vis spectroscopy. They are recyclable and highly active for hydrogen generation from the hydrolysis of ammonia-borane even at very low concentrations and temperature, providing a record numbers of average turnover frequency value (125 mol H2/mol cat.min-1) and maximum hydrogen generation rate (3468 L H2 min-1 (mol cat)-1). They also provide activation energy of 51.7 ± 2 kJ/mol for the hydrolysis of ammonia borane.

  19. Sacrificial hydrogen generation from aqueous triethanolamine with Eosin Y-sensitized Pt/TiO2 photocatalyst in UV, visible and solar light irradiation.

    Science.gov (United States)

    Chowdhury, Pankaj; Gomaa, Hassan; Ray, Ajay K

    2015-02-01

    In this paper, we have studied Eosin Y-sensitized sacrificial hydrogen generation with triethanolamine as electron donor in UV, visible, and solar light irradiation. Aeroxide TiO2 was loaded with platinum metal via solar photo-deposition method to reduce the electron hole recombination process. Photocatalytic sacrificial hydrogen generation was influenced by several factors such as platinum loading (wt%) on TiO2, solution pH, Eosin Y to Pt/TiO2 mass ratio, triethanolamine concentration, and light (UV, visible and solar) intensities. Detailed reaction mechanisms in visible and solar light irradiation were established. Oxidation of triethanolamine and formaldehyde formation was correlated with hydrogen generation in both visible and solar lights. Hydrogen generation kinetics followed a Langmuir-type isotherm with reaction rate constant and adsorption constant of 6.77×10(-6) mol min(-1) and 14.45 M(-1), respectively. Sacrificial hydrogen generation and charge recombination processes were studied as a function of light intensities. Apparent quantum yields (QYs) were compared for UV, visible, and solar light at four different light intensities. Highest QYs were attained at lower light intensity because of trivial charge recombination. At 30 mW cm(-2) we achieved QYs of 10.82%, 12.23% and 11.33% in UV, visible and solar light respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind capacity and power prices

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? Future energy hopes and emissions reduction scenarios place significant reliance on renewables, actually meaning largely new wind power both onshore and offshore. The opportunity exists for a synergy between high capacity factor nuclear plants and wind power using hydrogen by both as a 'currency' for use in transportation and industrial processing. But this use of hydrogen needs to be introduced soon. To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 Cent US/kW.h). One approach is to operate interruptibly allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies have shown that this could be a cost-competitive approach with a nuclear power generator producing electricity around 3 Cent US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the hydrogen production (electrolysis) facility due to the variability of wind generated electricity imposes a serious cost penalty. This paper reports our latest results on the potential economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment enables it to accommodate the higher rate of hydrogen generation, while still being substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability in our NuWind model. The variability in wind fields between sites was accommodated by assuming an average wind speed that produced an average electricity

  1. Stand alone solution for generation and storage of hydrogen and electric energy

    International Nuclear Information System (INIS)

    Gany, Alon; Elitzur, Shani; Valery

    2015-01-01

    A novel method enabling safe, simple, and controllable production, storage, and use of hydrogen as well as compact electric energy storage and generation via hydrogen- oxygen fuel cells has been developed. The technology indicates, in our opinion, a significant milestone in the search for practical utilization of hydrogen as an alternative energy source. It consists of an original thermal-chemical treatment / activation of aluminum powders to react spontaneously with water to produce hydrogen at regular conditions according to the reaction Al+3H 2 O=Al (OH) 3 +3/2H 2 . Only about 1-2% of lithium, based activator is applied, and any type of water including tap water, sea water and waste water may be used, making the method attractive for variety of applications. 11% of hydrogen compared to the aluminum mass can be obtained, and our experiments reveal 90% reaction yield and more. The technology has a clear advantage over batteries, providing specific electric energy of over 2 kW h/kg Al, 5-10 times greater than that of commonly used lithium-ion batteries. Combined with a fuel cell it may be particularly beneficial for stand-alone electric power generators, where there is no access to the grid. Such applications include emergency generators (e.g., in hospitals), electricity backup systems, and power generation in remote communication posts. Automotive applications may be considered as well. The technology provides green electric energy and quiet operation as well as additional heat energy resulting mainly from the exothermic aluminum-water reaction. (full text)

  2. Start up system for hydrogen generator used with an internal combustion engine

    Science.gov (United States)

    Houseman, J.; Cerini, D. J. (Inventor)

    1977-01-01

    A hydrogen generator provides hydrogen rich product gases which are mixed with the fuel being supplied to an internal combustion engine for the purpose of enabling a very lean mixture of that fuel to be used, whereby nitrous oxides emitted by the engine are minimized. The hydrogen generator contains a catalyst which must be heated to a pre-determined temperature before it can react properly. To simplify the process of heating up the catalyst at start-up time, either some of the energy produced by the engine such as engine exhaust gas, or electrical energy produced by the engine, or the engine exhaust gas may be used to heat up air which is then used to heat the catalyst.

  3. Hydrogenotrophic denitrification in a packed bed reactor: effects of hydrogen-to-water flow rate ratio.

    Science.gov (United States)

    Lee, J W; Lee, K H; Park, K Y; Maeng, S K

    2010-06-01

    Hydrogen dissolution and hydrogenotrophic denitrification performance were investigated in a lab-scale packed bed reactor (PBR) by varying the hydrogen flow rate and hydraulic retention time (HRT). The denitrification performance was enhanced by increasing the hydrogen flow rate and HRT as a result of high dissolved hydrogen concentration (0.39mg/L) and utilization efficiencies (79%). In this study, the hydrogen-to-water flow rate ratio (Q(g)/Q(w)) was found to be a new operating factor representing the two parameters of hydrogen flow rate and HRT. Hydrogen dissolution and denitrification efficiency were nonlinearly and linearly correlated with the Q(g)/Q(w), respectively. Based on its excellent linear correlation with denitrification efficiency, Q(g)/Q(w) should be greater than 2.3 to meet the WHO's guideline of nitrate nitrogen for drinking water. This study demonstrates that Q(g)/Q(w) is a simple and robust factor to optimize hydrogen-sparged bioreactors for hydrogenotrophic denitrification. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Radiolytic and thermolytic bubble gas hydrogen composition

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-11

    This report describes the development of a mathematical model for the estimation of the hydrogen composition of gas bubbles trapped in radioactive waste. The model described herein uses a material balance approach to accurately incorporate the rates of hydrogen generation by a number of physical phenomena and scale the aforementioned rates in a manner that allows calculation of the final hydrogen composition.

  5. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  6. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    Science.gov (United States)

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  7. Gas generation from the irradiation of mortar

    International Nuclear Information System (INIS)

    Lewis, M.A.; Warren, D.W.

    1989-01-01

    A mortar formulation capable of immobilizing chloride salts with high levels of radioactivity is being developed. As part of the developmental effort, radiation effects are being investigated. The radiolytic generation of gas(es) from irradiated mortar formulations was determined for several formulations with variable salt loadings at several test temperatures. The irradiation of a mortar formulation consisting of cement, slag, fly ash, water and 0 to 10 wt % salt led to the generation of hydrogen. The rate of generation was approximately constant, steady state pressures were not attained and final pressures were comparatively high. Higher salt concentrations were correlated with higher hydrogen generation rates for experiments at ambient temperature while lower rates were observed at 120/degree/C. The irradiation of a mortar consisting of cement, fly ash, water and salt led to the radiolytic generation of both oxygen and hydrogen. The addition of 2 wt % FeS or CaS inhibited oxygen generation and changed the hydrogen production rate. 10 refs., 4 figs., 3 tabs

  8. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Utilization of hydrogen gas production for electricity generation in fuel cell by Enterobacter aerogenes ADH 43 with many kinds of carbon sources in batch stirred tank reactor. MA Rachman, LD Eniya, Y Liasari, MM Nasef, A Ahmad, H Saidi ...

  9. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes

    KAUST Repository

    Wu, Xiao-Yu

    2015-01-01

    © the Owner Societies. Hydrogen production from water thermolysis can be enhanced by the use of perovskite-type mixed ionic and electronic conducting (MIEC) membranes, through which oxygen permeation is driven by a chemical potential gradient. In this work, water thermolysis experiments were performed using 0.9 mm thick La0.9Ca0.1FeO3-δ (LCF-91) perovskite membranes at 990 °C in a lab-scale button-cell reactor. We examined the effects of the operating conditions such as the gas species concentrations and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis is facilitated by the LCF-91 membrane especially when a fuel is added to the sweep gas. Increasing the gas flow rate and water concentration on the feed side or the hydrogen concentration on the sweep side enhances the hydrogen production rate. In this work, hydrogen is used as the fuel by construction, so that a single-step surface reaction mechanism can be developed and water thermolysis rate parameters can be derived. Both surface reaction rate parameters for oxygen incorporation/dissociation and hydrogen-oxygen reactions are fitted at 990 °C. We compare the oxygen fluxes in water thermolysis and air separation experiments, and identify different limiting steps in the processes involving various oxygen sources and sweep gases for this 0.9 mm thick LCF-91 membrane. In the air feed-inert sweep case, the bulk diffusion and sweep side surface reaction are the two limiting steps. In the water feed-inert sweep case, surface reaction on the feed side dominates the oxygen permeation process. Yet in the water feed-fuel sweep case, surface reactions on both the feed and sweep sides are rate determining when hydrogen concentration in the sweep side is in the range of 1-5 vol%. Furthermore, long term studies show that the surface

  10. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  11. Photo-electrocatalytic hydrogen generation at dye-sensitised electrodes functionalised with a heterogeneous metal catalyst

    International Nuclear Information System (INIS)

    Hoogeveen, Dijon A.; Fournier, Maxime; Bonke, Shannon A.; Fang, Xi-Ya; Mozer, Attila J.; Mishra, Amaresh; Bäuerle, Peter; Simonov, Alexandr N.; Spiccia, Leone

    2016-01-01

    Dye-sensitised photocathodes promoting hydrogen evolution are usually coupled to a catalyst to improve the reaction rate. Herein, we report on the first successful integration of a heterogeneous metal particulate catalyst, viz., Pt aggregates electrodeposited from acidic solutions on the surface of a NiO-based photocathode sensitised with a p-type perylenemonoimid-sexithiophene-triphenylamine dye (PMI-6T-TPA). The platinised dye-NiO electrodes generate photocurrent density of ca −0.03 mA cm −2 (geom.) with 100% faradaic efficiency for the H 2 evolution at 0.059 V vs. reversible hydrogen electrode under 1 sun visible light irradiation (AM1.5G, 100 mW cm −2 , λ > 400 nm) for more than 10 hours in 0.1 M H 2 SO 4 (aq.). The Pt-free dye-NiO and dye-free Pt-modified NiO cathodes show no photo-electrocatalytic hydrogen evolution under these conditions. The performance of these Pt-modified PMI-6T-TPA-based photoelectrodes compares well to that of previously reported dye-sensitised photocathodes for H 2 evolution.

  12. Molecular metal-Oxo catalysts for generating hydrogen from water

    Science.gov (United States)

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  13. Root cause study on hydrogen generation and explosion through radiation-induced electrolysis in the Fukushima Daiichi accident

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Genn, E-mail: sajig@bd5.so-net.ne.jp

    2016-10-15

    Highlights: • Reviewed how LWRs have coped with “water radiolysis”, during normal operation to severe accidents. • Concluded “water radiolysis” is not likely a route course of the hydrogen explosions at Fukushima. • Performed modeling studies based on “radiation-induced electrolysis” on Unit 1–Unit 4. • Generation of several tens of thousands cubic meters hydrogen gas is predicted before the hydrogen explosions. • Upon SBO, early safe disposal of hydrogen from RPVs is indispensable in BWRs. - Abstract: Since the scientific cause for a series of hydrogen explosions during the Fukushima accident has not been established, the author investigated his basic theory named “radiation-induced electrolysis (RIE)” by applying the estimation of the amounts of H{sub 2} generation during the active phase of the Fukushima accident. The author's theory was originally developed by including Faraday's law of electrolysis into the basic time-dependent material balance equation of radiation-chemical species for his study on accelerated corrosion phenomena which is widely observed in aged plants. As such this theory applies to the early phase of the accident before the loss of water levels in the reactor cores, although the simulations were performed from the time of seismic reactor trip to the hydrogen explosions in this paper. Through this mechanism as much as 29,400 m{sup 3}-STP of hydrogen gas is estimated to be accumulated inside the PCV just prior to the hydrogen explosion which occurred one day after the reactor trip in 1F1. With this large volume of hydrogen gas the explosion was a viable possibility upon the “venting” operation. In view of this observation, hydrogen generation from the spent fuel pools was also investigated. For the investigation of the 1F4 SFP, the pool water temperature and flow velocity due to natural circulation were changed widely to identify conditions of large hydrogen generation. During the trial calculations

  14. Hydrogen sulfide generation in shipboard oily-water waste. Part 3. Ship factors

    Energy Technology Data Exchange (ETDEWEB)

    Hodgeman, D.K.; Fletcher, L.E.; Upsher, F.J.

    1995-04-01

    The chemical and microbiological composition of bilge-water in ships of the Royal Australian Navy has been investigated in relation to the formation of hydrogen sulfide by sulfate-reducing bacteria. Sulfate-reducing bacteria were found in most ships in populations up to 800,000 per mL. Sulfate in the wastes is provided by sea-water. Sea-water constitutes up to 60% (median 20%) of the wastes analysed. Evidence for generation of hydrogen sulfide in the ships was found directly as sulfide or indirectly as depressed sulfate concentrations. The low levels of sulfide found in bilge-water from machinery spaces suggested the ventilation systems were effectively removing the gas from the working area. The effect of storage of the wastes under conditions which simulated the oily- water holding tanks of ships were also investigated. Some wastes were found to produce large quantities of hydrogen sulfide on storage. The wastes that failed to produce hydrogen sulfide were investigated to identify any specific nutritional deficiencies. Some organic substances present in bilge-water, such as lactate or biodegradable cleaning agents, and phosphate strongly influenced the generation of hydrogen sulfide in stored oily-water wastes.

  15. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  16. Commercial Optimization of a 100 kg/day PEM based Hydrogen Generator For Energy and Industrial Applications

    International Nuclear Information System (INIS)

    Moulthrop, L.; Anderson, E.; Chow, O.; Friedland, R.; Maloney, T.; Schiller, M.

    2006-01-01

    Commercial hydrogen generators using PEM water electrolysis are well proven, serving industrial applications worldwide in over 50 countries. Now, market and environmental requirements are converging to demand larger on-site hydrogen generators. North American liquid H 2 shortages, increasing trucking costs, developing economies with no liquid infrastructure, utilities, and forklift fuel cell fueling applications are all working to increase market demand for commercial on-site H 2 generation. These commercial applications may be satisfied by a 100 kg H 2 /day module; this platform can be the pathway towards a 500 kg H 2 /day generator desired for small fore-court hydrogen vehicle fueling stations. This paper discusses the steps necessary and activities already underway to develop a 100 to 500 kg H 2 /day PEM hydrogen generator platform to meet commercial market cost targets and approach US DoE transportation fueling cost targets. (authors)

  17. Hydrogen Generation from Biomass-Derived Surgar Alcohols via the Aqueous-Phase Carbohydrate Reforming (ACR) Process

    Energy Technology Data Exchange (ETDEWEB)

    Randy Cortright

    2006-06-30

    This project involved the investigation and development of catalysts and reactor systems that will be cost-effective to generate hydrogen from potential sorbitol streams. The intention was to identify the required catalysts and reactors systems as well as the design, construction, and operation of a 300 grams per hour hydrogen system. Virent was able to accomplish this objective with a system that generates 2.2 kgs an hour of gas containing both hydrogen and alkanes that relied directly on the work performed under this grant. This system, funded in part by the local Madison utility, Madison, Gas & Electric (MGE), is described further in the report. The design and development of this system should provide the necessary scale-up information for the generation of hydrogen from corn-derived sorbitol.

  18. Turning the wind into hydrogen: The long-run impact on electricity prices and generating capacity

    International Nuclear Information System (INIS)

    Green, Richard; Hu, Helen; Vasilakos, Nicholas

    2011-01-01

    Hydrogen production via electrolysis has been proposed as a way of absorbing the fluctuating electricity generated by wind power, potentially allowing the use of cheap electricity at times when it would otherwise be in surplus. We show that large-scale adoption of electrolysers would change the shape of the load-duration curve for electricity, affecting the optimal capacity mix. Nuclear power stations will replace gas-fired power stations, as they are able to run for longer periods of time. Changes in the electricity capacity mix will be much greater than changes to the pattern of prices. The long-run supply price of hydrogen will thus tend to be insensitive to the amount produced. - Research Highlights: → Hydrogen production from electrolysis may offset intermittent wind generation. → The generation capacity mix will change in response to changed demand patterns. → The long-run equilibrium supply curve for hydrogen will be quite flat. → The production cost will be very sensitive to fuel prices paid by generators.

  19. Gas generation from radiolytic attack of TRU-contaminated hydrogenous waste

    International Nuclear Information System (INIS)

    Zerwekh, A.

    1979-06-01

    In 1970, the Waste Management and Transportation Division of the Atomic Energy Commission ordered a segregation of transuranic (TRU)-contaminated solid wastes. Those below a contamination level of 10 nCi/g could still be buried; those above had to be stored retrievably for 20 y. The possibility that alpha-radiolysis of hydrogenous materials might produce toxic, corrosive, and flammable gases in retrievably stored waste prompted an investigation of gas identities and generation rates in the laboratory and field. Typical waste mixtures were synthesized and contaminated for laboratory experiments, and drums of actual TRU-contaminated waste were instrumented for field testing. Several levels of contamination were studied, as well as pressure, temperature, and moisture effects. G (gas) values were determined for various waste matrices, and degradation products were examined

  20. Cuboid Ni2 P as a Bifunctional Catalyst for Efficient Hydrogen Generation from Hydrolysis of Ammonia Borane and Electrocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Du, Yeshuang; Liu, Chao; Cheng, Gongzhen; Luo, Wei

    2017-11-16

    The design of high-performance catalysts for hydrogen generation is highly desirable for the upcoming hydrogen economy. Herein, we report the colloidal synthesis of nanocuboid Ni 2 P by the thermal decomposition of nickel chloride hexahydrate (NiCl 2 ⋅6 H 2 O) and trioctylphosphine. The obtained nanocuboid Ni 2 P was characterized by using powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy. For the first time, the as-synthesized nanocuboid Ni 2 P is used as a bifunctional catalyst for hydrogen generation from the hydrolysis of ammonia borane and electrocatalytic hydrogen evolution. Owing to the strong synergistic electronic effect between Ni and P, the as-synthesized Ni 2 P exhibits catalytic performance that is superior to its counterpart without P doping. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sensitivity to temperature of nuclear energy generation by hydrogen burning

    International Nuclear Information System (INIS)

    Mitalas, R.

    1981-01-01

    The sensitivity to temperature of nuclear energy generation by hydrogen burning is discussed. The complexity of the sensitivity is due to the different equilibration time-scales of the constituents of the p-p chain and CN cycle and the dependence of their abundances and time-scales on temperature. The time-scale of the temperature perturbation, compared to the equilibrium time-scale of a constituent, determines whether the constituent is in equilibrium and affects the sensitivity. The temperature sensitivity of the p-p chain for different values of hydrogen abundance, when different constituents come into equilibrium is presented, as well as its variation with 3 He abundance. The temperature sensitivity is drastically different from n 11 , the temperature sensitivity of the proton-proton reaction, unless the time-scale of temperature perturbation is long enough for 3 He to remain in equilibrium. Even in this case the sensitivity of the p-p chain differs significantly from n 11 , unless the temperature is so low that PP II and PP III chains can be neglected. The variation of the sensitivity of CN energy generation is small for different time-scales of temperature variation, because the temperature sensitivities of individual reactions are so similar. The combined sensitivity to temperature of energy generation by hydrogen burning is presented and shown to have a maximum of 16.4 at T 6 = 24.5. For T 6 > 25 the temperature sensitivity is given by the sensitivity of 14 N + p reaction. (author)

  2. Hydrogen Generation by Koh-Ethanol Plasma Electrolysis Using Double Compartement Reactor

    Science.gov (United States)

    Saksono, Nelson; Sasiang, Johannes; Dewi Rosalina, Chandra; Budikania, Trisutanti

    2018-03-01

    This study has successfully investigated the generation of hydrogen using double compartment reactor with plasma electrolysis process. Double compartment reactor is designed to achieve high discharged voltage, high concentration, and also reduce the energy consumption. The experimental results showed the use of double compartment reactor increased the productivity ratio 90 times higher compared to Faraday electrolysis process. The highest hydrogen production obtained is 26.50 mmol/min while the energy consumption can reach up 1.71 kJ/mmol H2 at 0.01 M KOH solution. It was shown that KOH concentration, addition of ethanol, cathode depth, and temperature have important effects on hydrogen production, energy consumption, and process efficiency.

  3. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  4. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed

  5. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    Science.gov (United States)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  6. Separation of rate processes for isotopic exchange between hydrogen and liquid water in packed columns 10

    International Nuclear Information System (INIS)

    Butler, J.P.; Hartog, J. den; Goodale, J.W.; Rolston, J.H.

    1977-01-01

    Wetproofed platinum catalysts in packed columns promote isotopic exchange between counter-current streams of hydrogen saturated with water vapour and liquid water. The net rate of deuterium transfer from isotopically enriched hydrogen has been measured and separated into two rate processes involving the transfer of deuterium from hydrogen to water vapour and from water vapour to liquid. These are compared with independent measurements of the two rate processes to test the two-step successive exchange model for trickle bed reactors. The separated transfer rates are independent of bed height and characterize the deuterium concentrations of each stream along the length of the bed. The dependences of the transfer rates upon hydrogen and liquid flow, hydrogen pressure, platinum loading and the effect of dilution of the hydrophobic catalyst with inert hydrophilic packing are reported. The results indicate a third process may be important in the transfer of deuterium between hydrogen and liquid water. (author)

  7. Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites

    Science.gov (United States)

    El-Bery, Haitham M.; Matsushita, Yoshihisa; Abdel-moneim, Ahmed

    2017-11-01

    A facile one-step synthesis approach of M/TiO2/RGO (M = Au or Pt) ternary composite by hydrothermal treatment for hydrogen generation via water-splitting was investigated. Photocurrent response measurements revealed that TiO2 (P25) nanoparticles anchored on the reduced graphene oxide (RGO) surface exhibited a p-n heterojunction interface by changing the photocurrent direction with the applied bias from reverse to forward potential. H2 evolution rate of TiO2/RGO (5 wt.%) composite was substantially enhanced by 12-fold in comparison to bare TiO2 under simulated solar light irradiation. Cyclic volatmmetry measurements manifested, that the optimized 0.3 wt.% of platinum metal loaded on TiO2/RGO composite was the most active catalytic reduction sites for hydrogen generation reaction with an initial hydrogen rate of 670 μmol h-1. This study sheds the light on the tunable semiconductor type of TiO2/RGO composite fabricated by solution mixing pathway and its merits to improve the photocatalytic activity.

  8. Air-stable hydrogen generation materials and enhanced hydrolysis performance of MgH2-LiNH2 composites

    Science.gov (United States)

    Ma, Miaolian; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Shao, Huaiyu; Zhu, Min

    2017-08-01

    Hydrolysis of materials in water can be a promising solution of onsite hydrogen generation for realization of hydrogen economy. In this work, it was the first time that the MgH2-LiNH2 composites were explored as air-stable hydrolysis system for hydrogen generation. The MgH2-LiNH2 composites with different composition ratios were synthesized by ball milling with various durations and the hydrogen generation performances of the composite samples were investigated and compared. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy techniques were adopted to elucidate the performance improvement mechanisms. The hydrolysis properties of MgH2 were found to be significantly enhanced by the introduction of LiNH2. The 4MgH2-LiNH2 composite ball milled for 5 h can generate 887.2 mL g-1 hydrogen in 1 min and 1016 mL g-1 in 50 min, one of the best results so far for Mg based hydrolysis materials. The LiOH·H2O and NH4OH phases of hydrolysis products from LiNH2 may prevent formation of Mg(OH)2 passivation layer on the surface and supply enough channels for hydrolysis of MgH2. The MgH2-LiNH2 composites appeared to be very stable in air and no obvious negative effect on kinetics and hydrogen generation yield was observed. These good performances demonstrate that the studied MgH2-LiNH2 composites can be a promising and practicable hydrogen generation system.

  9. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  10. Hydrogen generation behaviors of NaBH4-NH3BH3 composite by hydrolysis

    Science.gov (United States)

    Xu, Yanmin; Wu, Chaoling; Chen, Yungui; Huang, Zhifen; Luo, Linshan; Wu, Haiwen; Liu, Peipei

    2014-09-01

    In this work, NH3BH3 (AB) is used to induce hydrogen generation during NaBH4 (SB) hydrolysis in order to reduce the use of catalysts, simplify the preparation process, reduce the cost and improve desorption kinetics and hydrogen capacity as well. xNaBH4-yNH3BH3 composites are prepared by ball-milling in different proportions (from x:y = 1:1 to 8:1). The experimental results demonstrate that all composites can release more than 90% of hydrogen at 70 °C within 1 h, and their hydrogen yields can reach 9 wt% (taking reacted water into account). Among them, the composites in the proportion of 4:1 and 5:1, whose hydrogen yields reach no less than 10 wt%, show the best hydrogen generation properties. This is due to the impact of the following aspects: AB additive improves the dispersibility of SB particles, makes the composite more porous, hampers the generated metaborate from adhering to the surface of SB, and decreases the pH value of the composite during hydrolysis. The main solid byproduct of this hydrolysis system is NaBO2·2H2O. By hydrolytic kinetic simulation of the composites, the fitted activation energies of the complexes are between 37.2 and 45.6 kJ mol-1, which are comparable to the catalytic system with some precious metals and alloys.

  11. Ultra slow muon generation and thermionic emission of hydrogen isotopes from tungsten surface

    International Nuclear Information System (INIS)

    Miyake, Yasuhiro

    2000-01-01

    To generate ultra slow muon, we developed Lyman α light (Lα light) resonance ionization method using 1s-2p-unbound transition. By this method, the desorption process of hydrogen isotope and hydrogen atom generation were studied. In order to generate T atom, the laser resonance ionization of hydrogen nucleus was investigated. When wavelength of VUV light was fixed to 121.52 nm, 1s-2p resonance frequency of T, and VUV light agreed with 355 nm ionization laser in space and time, promising event was observed. The fact showed the resonance ionization method could isolate and detect T atom. By the same method, the experiment of H and D atom were carried out under the condition of the same wavelength of VUV light of 121.57 and 121.53 nm of Lα light, respectively, and the same results were obtained. On the Mu resonance ionization experiment, the light wavelength of VUV was 122.09 nm of Lα of muonium. The results showed the promising event was observed on the expected position of TOF and Mass. The resonance ionization method using Lα light of hydrogen isotope on tungsten film is a very useful method to separate Mu, H, D and T under the same experiment conditions without wavelength of VUV light. (S.Y.)

  12. Hydrogen generation from water using Mg nanopowder produced by arc plasma method

    Directory of Open Access Journals (Sweden)

    Masahiro Uda, Hideo Okuyama, Tohru S Suzuki and Yoshio Sakka

    2012-01-01

    Full Text Available We report that hydrogen gas can be easily produced from water at room temperature using a Mg nanopowder (30–1000 nm particles, average diameter 265 nm. The Mg nanopowder was produced by dc arc melting of a Mg ingot in a chamber with mixed-gas atmosphere (20% N2–80% Ar at 0.1 MPa using custom-built nanopowder production equipment. The Mg nanopowder was passivated with a gas mixture of 1% O2 in Ar for 12 h in the final step of the synthesis, after which the nanopowder could be safely handled in ambient air. The nanopowder vigorously reacted with water at room temperature, producing 110 ml of hydrogen gas per 1 g of powder in 600 s. This amount corresponds to 11% of the hydrogen that could be generated by the stoichiometric reaction between Mg and water. Mg(OH2 flakes formed on the surface of the Mg particles as a result of this reaction. They easily peeled off, and the generation of hydrogen continued until all the Mg was consumed.

  13. Study on the best utilization of solar energy. Experimental study of hydrogen generation by water electrolysis using solar battery; Taiyo energy no yuko riyo ni kansuru kenkyu. Taiyo denchi riyosui denki bunkai suiso hassei field test

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Y; Murai, K; Nakai, T [Himeji Institute of Technology, Hyogo (Japan)

    1997-11-25

    Shortcomings of solar energy are that it is subject to weather and is not available in the nighttime. The weak points may be effectively made up for when solar energy collected on a fine day is stored in the form of hydrogen energy for recovery as required. In this report, power generated by solar cells is used for the electrolysis of water for the generation of hydrogen. The amounts of the thus-generated hydrogen and hydrogen energy are determined and, on the basis of the measured amount of insolation, the solar energy availability rate (hydrogen conversion performance) is calculated. The amount of hydrogen generated in fiscal 1996 is also calculated for every month. The hydrogen generation level is quite low in the TiO2 wet type solar cell, approximately 0.2% at most. The current efficiency is fairly high in hydrogen generation using electrolysis, which is approximately 96-97%. The efficiency is higher when several units of electrolyte are connected in series until the solar cell optimum voltage is attained. A linear relationship is found between the daily summation of insolation and the amount of hydrogen generated. 1 ref., 7 figs., 2 tabs.

  14. Status and integration of the gas generation studies performed for the Hydrogen Safety Program

    International Nuclear Information System (INIS)

    Pederson, L.R.; Strachan, D.M.

    1993-02-01

    Waste in Tank 241-SY-101 on the Hanford Site generates and periodically releases hydrogen, nitrous oxide, and nitrogen gases. Studies have been conducted at several laboratories to determine the chemical mechanisms for the gas generation and release. Results from these studies are presented and integrated in an attempt to describe current understanding of the physical properties of the waste and the mechanisms of gas generation and retention. Existing tank data are consistent with the interpretation that gases are uniformly generated in the tank, released continuously from the convecting layer, and stored in the nonconvecting layer. Tank temperature measurements suggest that the waste consists of ''gobs'' of material that reach neutral buoyancy at different times. The activation energy of the rate limiting step of the gas generating process was calculated to be about 7 kJ/mol but measured in the laboratory at 80 to 100 kJ/mol. Based on observed temperature changes in the tank the activation energy is probably not higher than about 20 kJ/mol. Several simulated waste compositions have been devised for use in laboratory studies in the place of actual waste from Tank 241-SY-101. Data from these studies can be used to predict how the actual waste might behave when heated or diluted. Density evaluations do not confirm that heating waste at the bottom of the tank would induce circulation within the waste; however, heating may release gas bubbles by dissolving the solids to which the bubbles adhere. Gas generation studies on simulated wastes indicated that nitrous oxide and hydrogen yields are not particularly coupled. Solubility studies of nitrous oxide, the most soluble of the principal gaseous products, indicate it is unlikely that dissolved gases contribute substantially to the quantity of gas released during periodic events

  15. Analysis of an Improved Solar-Powered Hydrogen Generation System for Sustained Renewable Energy Production

    Science.gov (United States)

    2017-12-01

    hydrogen gas by electrolysis. In LT Aviles’ design , distilled water was collected from the ambient air using Peltier dehumidifiers, manufactured by...Figure 13 shows the shelfing along with the entire system. Figure 13. Reconfigured Hydrogen Production Facility Because the system was designed for...POWERED HYDROGEN GENERATION SYSTEM FOR SUSTAINED RENEWABLE ENERGY PRODUCTION by Sen Feng Yu December 2017 Thesis Advisor: Garth V. Hobson Co

  16. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    Science.gov (United States)

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  17. A calculation of the surface recombination rate constant for hydrogen isotopes on metals

    International Nuclear Information System (INIS)

    Baskes, M.J.

    1980-01-01

    The surface recombination rate constant for hydrogen isotopes on a metal has been calculated using a simple model whose parameters may be determined by direct experimental measurements. Using the experimental values for hydrogen diffusivity, solubility, and sticking coefficient at zero surface coverage a reasonable prediction of the surface recombination constant may be made. The calculated recombination constant is in excellent agreement with experiment for bcc iron. A heuristic argument is developed which, along with the rate constant calculation, shows that surface recombination is important in those metals in which hydrogen has an exothermic heat of solution. (orig.)

  18. Dye-Sensitized Photocatalytic Water Splitting and Sacrificial Hydrogen Generation: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Pankaj Chowdhury

    2017-05-01

    Full Text Available Today, global warming and green energy are important topics of discussion for every intellectual gathering all over the world. The only sustainable solution to these problems is the use of solar energy and storing it as hydrogen fuel. Photocatalytic and photo-electrochemical water splitting and sacrificial hydrogen generation show a promise for future energy generation from renewable water and sunlight. This article mainly reviews the current research progress on photocatalytic and photo-electrochemical systems focusing on dye-sensitized overall water splitting and sacrificial hydrogen generation. An overview of significant parameters including dyes, sacrificial agents, modified photocatalysts and co-catalysts are provided. Also, the significance of statistical analysis as an effective tool for a systematic investigation of the effects of different factors and their interactions are explained. Finally, different photocatalytic reactor configurations that are currently in use for water splitting application in laboratory and large scale are discussed.

  19. Hydrogen generation from deliquescence of ammonia borane using Ni-Co/r-GO catalyst

    Science.gov (United States)

    Chou, Chang-Chen; Chen, Bing-Hung

    2015-10-01

    Hydrogen generation from the catalyzed deliquescence/hydrolysis of ammonia borane (AB) using the Ni-Co catalyst supported on the graphene oxide (Ni-Co/r-GO catalyst) under the conditions of limited water supply was studied with the molar feed ratio of water to ammonia borane (denoted as H2O/AB) at 2.02, 3.97 and 5.93, respectively. The conversion efficiency of ammonia borane to hydrogen was estimated both from the cumulative volume of the hydrogen gas generated and the conversion of boron chemistry in the hydrolysates analyzed by the solid-state 11B NMR. The conversion efficiency of ammonia borane could reach nearly 100% under excess water dosage, that is, H2O/AB = 3.97 and 5.93. Notably, the hydrogen storage capacity could reach as high as 6.5 wt.% in the case with H2O/AB = 2.02. The hydrolysates of ammonia borane in the presence of Ni-Co/r-GO catalyst were mainly the mixture of boric acid and metaborate according to XRD, FT-IR and solid-state 11B NMR analyses.

  20. Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature

    International Nuclear Information System (INIS)

    Yang, Weijuan; Zhang, Tianyou; Liu, Jianzhong; Wang, Zhihua; Zhou, Junhu; Cen, Kefa

    2015-01-01

    In order to recover the released heat of Al–H_2O reaction and promote the reaction itself, the hydrogen production processes of aluminum with lithium addition in molten state are investigated. Experiments are conducted by both a thermogravimetric analyzer and a special experimental facility at high temperature. The results on both apparatuses show that the addition of Li can promote the reactivity of aluminum with water. Compared with pure aluminum, only 5% of Li content can achieve a great improvement: the H_2 yield increases from 8.7% to 53% and the average H_2 generation rate from 15 to 112 mL min"−"1 g"−"1. With the increase of Li content, H_2 yield is improved distinctly and the period with a high H_2 generation rate is prolonged. In the Al–20%Li case, the H_2 yield of 88% is obtained, and it appears a stable period in which the H_2 generation rate keeps high. When adding lithium, LiAlO_2 appears in the products and the products are made of columnar crystals. The pores with an average size of 17–33 nm in the LiAlO_2 products are manyfold bigger than the pores of alumina, which takes an important role in improving the reactivity of aluminum and water. - Highlights: • The Al–H_2O reaction with Li addition in molten state was researched. • Li addition can achieve a great promotion of H_2 yield and H_2 generation rate. • The Al–20%Li case achieved a H_2 yield of 88%. • With Li addition, LiAlO_2 was detected in the reaction products. • XRD and TEM-EDS results indicated the promoting mechanism of Li.

  1. Multi-Generation Concentrating Solar-Hydrogen Power System for Sustainable Rural Development

    Energy Technology Data Exchange (ETDEWEB)

    Krothapalli, A.; Greska, B.

    2007-07-01

    This paper describes an energy system that is designed to meet the demands of rural populations that currently have no access to grid-connected electricity. Besides electricity, it is well recognized that rural populations need at least a centralized refrigeration system for storage of medicines and other emergency supplies, as well as safe drinking water. Here we propose a district system that will employ a multi-generation concentrated solar power (CSP) system that will generate electricity and supply the heat needed for both absorption refrigeration and membrane distillation (MD) water purification. The electricity will be used to generate hydrogen through highly efficient water electrolysis and individual households can use the hydrogen for generating electricity, via affordable proton exchange membrane (PEM) fuel cells, and as a fuel for cooking. The multi-generation system is being developed such that its components will be easy to manufacture and maintain. As a result, these components will be less efficient than their typical counterparts but their low cost-to-efficiency ratio will allow for us to meet our installation cost goal of $1/Watt for the entire system. The objective of this paper is to introduce the system concept and discuss the system components that are currently under development. (auth)

  2. Understanding oscillatory phenomena in molecular hydrogen generation via sodium borohydride hydrolysis.

    Science.gov (United States)

    Budroni, M A; Biosa, E; Garroni, S; Mulas, G R C; Marchettini, N; Culeddu, N; Rustici, M

    2013-11-14

    The hydrolysis of borohydride salts represents one of the most promising processes for the generation of high purity molecular hydrogen under mild conditions. In this work we show that the sodium borohydride hydrolysis exhibits a fingerprinting periodic oscillatory transient in the hydrogen flow over a wide range of experimental conditions. We disproved the possibility that flow oscillations are driven by supersaturation phenomena of gaseous bubbles in the reactive mixture or by a nonlinear thermal feedback according to a thermokinetic model. Our experimental results indicate that the NaBH4 hydrolysis is a spontaneous inorganic oscillator, in which the hydrogen flow oscillations are coupled to an "oscillophor" in the reactive solution. The discovery of this original oscillator paves the way for a new class of chemical oscillators, with fundamental implications not only for testing the general theory on oscillations, but also with a view to chemical control of borohydride systems used as a source of hydrogen based green fuel.

  3. Operation of the cryotron relaxation generator in solid argon and hydrogen

    International Nuclear Information System (INIS)

    Rakhubvsky, V.A.

    2008-01-01

    The research results of the cryotron relaxation generator (CRG) operation in solid argon, normal hydrogen and parahydrogen have been given. The frequency transition times for CRG at different values of cooling the solid gas have been measured

  4. Large area imaging of hydrogenous materials using fast neutrons from a DD fusion generator

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J.T., E-mail: ted@adelphitech.com [Adelphi Technology Inc., 2003 East Bayshore Road, Redwood City, California 94063 (United States); Williams, D.L.; Gary, C.K.; Piestrup, M.A.; Faber, D.R.; Fuller, M.J.; Vainionpaa, J.H.; Apodaca, M. [Adelphi Technology Inc., 2003 East Bayshore Road, Redwood City, California 94063 (United States); Pantell, R.H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2012-05-21

    A small-laboratory fast-neutron generator and a large area detector were used to image hydrogen-bearing materials. The overall image resolution of 2.5 mm was determined by a knife-edge measurement. Contact images of objects were obtained in 5-50 min exposures by placing them close to a plastic scintillator at distances of 1.5 to 3.2 m from the neutron source. The generator produces 10{sup 9} n/s from the DD fusion reaction at a small target. The combination of the DD-fusion generator and electronic camera permits both small laboratory and field-portable imaging of hydrogen-rich materials embedded in high density materials.

  5. Hydrogen generation, distribution and combustion under severe LWR accident conditions: a state-of-technology report

    International Nuclear Information System (INIS)

    Postma, A.K.; Hilliard, R.K.

    1983-03-01

    This report reviews the current state of technology regarding hydrogen safety issues in light water reactor plants. Topics considered in this report include hydrogen generation, distribution in containment, and combustion characteristics. A companion report addresses hydrogen control. The objectives of the study were to identify the key safety issues related to hydrogen produced under severe accident conditions, to describe the state of technology for each issue, and to point out ongoing programs aimed at resolving the open issues

  6. Interfacial electrochemistry of colloidal ruthenium dioxide and catalysis of the photochemical generation of hydrogen from water

    NARCIS (Netherlands)

    Kleijn, J.M.

    1987-01-01

    The formation of hydrogen from water using solar energy is a very attractive research topic, because of the potential use of hydrogen as an alternative, clean fuel. It has been shown by many workers in the field that photochemical hydrogen generation can be achieved in an aqueous system,

  7. Safety operation of chromatography column system with discharging hydrogen radiolytically generated

    International Nuclear Information System (INIS)

    Watanabe, S; Sano, Y.; Nomura, K.; Koma, Y.; Okamoto, Y.

    2015-01-01

    The extraction chromatography technology is one of the promising methods for the partitioning of minor actinides (Am and Cm) from spent nuclear fuels. In the extraction chromatography system, the accumulation of hydrogen gas in the chromatography column is suspected to lead to fire or explosion. In order to prevent hazardous accidents, it is necessary to evaluate behaviors of gas radiolytically generated inside the column. In this study, behaviors of gas inside the extraction chromatography column were investigated through experiments and Computation Fluid Dynamics (CFD) simulation. N_2 gas once accumulated as bubbles in the packed bed was hardly discharged by the flow of mobile phase. However, the CFD simulation and X-ray imaging on γ-ray irradiated column revealed that during operation the hydrogen gas generated in the column was dissolved into the mobile phase without accumulation and then discharged. (authors)

  8. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  9. Recombination rates of hydrogen and oxygen over pure and impure plutonium oxides

    International Nuclear Information System (INIS)

    Morales, L.

    1999-01-01

    Long-term, safe storage of excess plutonium-bearing materials is required until stabilization and disposal methods are implemented or defined. The US Department of Energy (DOE) has established a plan to address the stabilization, packing, and storage of plutonium-bearing materials from around the complex. The DOE's standard method, DOE-STD-3013-96 and its proposed revision, for stabilizing pure and impure actinide materials is by calcination in air followed by sealing the material in welded stainless steel containers. The 3013 standard contains and equation that predicts the total pressure buildup in the can over the anticipated storage time of 50 yr. This equation was meant to model a worst-case scenario to ensure that pressures would not exceed the strength of the container at the end of 50 yr. As a result, concerns about pressure generation in the storage cans, both absolute values and rates, have been raised with regard to rupture and dispersal of nuclear materials. Similar issues have been raised about the transportation of these materials around the complex. The purpose of this work is to provide a stronger technical basis for the 3013 standard by measuring the recombination rates of hydrogen/oxygen mixtures in contact with pure and impure plutonium oxides. The goal of these experiments was to determine whether the rate of recombination is faster than the rate of water radiolysis under controlled conditions. This was accomplished by using a calibrated pressure-volume-temperature apparatus to measure the recombination rates in a fixed volume as the gas mixture was brought into contact with oxide powders whose temperatures ranged from 50 to 300 C. These conditions were selected in order to bracket the temperature conditions expected in a typical storage can. In addition, a 2% H 2 /air mixture encompasses scenarios in which the cans are sealed in air, and over time various amounts of hydrogen are formed

  10. Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation

    International Nuclear Information System (INIS)

    Ju, HyungKuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S.; Mulder, Roger J.

    2016-01-01

    Highlights: • Ethanol assisted water electrolysis reduces electric energy input by more than 50%. • Partial oxidation of ethanol leads to formation of undesired chemicals. • Degradation occurs due to formation of by-products and poisoning of catalyst. • Better catalyst has the potential to increase ethanol to H_2 conversion efficiency. • A plausible ethanol electro-oxidation mechanism has been proposed - Abstract: The global interest in hydrogen/fuel cell systems for distributed power generation and transport applications is rapidly increasing. Many automotive companies are now bringing their pre-commercial fuel cell vehicles in the market, which will need extensive hydrogen generation, distribution and storage infrastructure for fueling of these vehicles. Electrolytic water splitting coupled to renewable sources offers clean on-site hydrogen generation option. However, the process is energy intensive requiring electric energy >4.2 kWh for the electrolysis stack and >6 kWh for the complete system per m"3 of hydrogen produced. This paper investigates using ethanol as a renewable fuel to assist with water electrolysis process to substantially reduce the energy input. A zero-gap cell consisting of polymer electrolyte membrane electrolytic cells with Pt/C and PtSn/C as anode catalysts were employed. Current densities up to 200 mA cm"−"2 at 70 °C were achieved at less than 0.75 V corresponding to an energy consumption of about 1.62 kWh m"−"3 compared with >4.2 kWh m"−"3 required for conventional water electrolysis. Thus, this approach for hydrogen generation has the potential to substantially reduce the electric energy input to less than 40% with the remaining energy provided by ethanol. However, due to performance degradation over time, the energy consumption increased and partial oxidation of ethanol led to lower conversion efficiency. A plausible ethanol electro-oxidation mechanism has been proposed based on the Faradaic conversion of ethanol and

  11. Hydrogen generation by nuclear power for sustainable development in the 21-st century

    International Nuclear Information System (INIS)

    Bilegan, Iosif Constantin; Pall, Stefan

    2002-01-01

    Hydrogen is the main non-polluting fuel. It is produced by natural gas steam reforming, water electrolysis and thermonuclear processes. Currently, 4% of the hydrogen world production is obtained by water electrolysis. The use of nuclear power for hydrogen production avoids the generation of greenhouse gases and the dependence of primary external energy sources. The US is currently developing a modular reactor for hydrogen production and water desalination, STAR - H 2 (Secure Transportable Autonomous Reactor for Hydrogen production) with fast neutrons, lead cooling and passive safety systems operating at a temperature of 780 deg C. Also, a Russian reactor of the same type is operated at 540 deg C. China and India joint industrial countries like France, Japan, Russia and US in recognizing that any strategies aiming at a future with clean energy implies the nuclear energy

  12. Hydrogen generation from natural gas for the fuel cell systems of tomorrow

    Science.gov (United States)

    Dicks, Andrew L.

    In most cases hydrogen is the preferred fuel for use in the present generation of fuel cells being developed for commercial applications. Of all the potential sources of hydrogen, natural gas offers many advantages. It is widely available, clean, and can be converted to hydrogen relatively easily. When catalytic steam reforming is used to generate hydrogen from natural gas, it is essential that sulfur compounds in the natural gas are removed upstream of the reformer and various types of desulfurisation processes are available. In addition, the quality of fuel required for each type of fuel cell varies according to the anode material used, and the cell temperature. Low temperature cells will not tolerate high concentrations of carbon monoxide, whereas the molten fuel cell (MCFC) and solid oxide fuel cell (SOFC) anodes contain nickel on which it is possible to electrochemically oxidise carbon monoxide directly. The ability to internally reform fuel gas is a feature of the MCFC and SOFC. Internal reforming can give benefits in terms of increased electrical efficiency owing to the reduction in the required cell cooling and therefore parasitic system losses. Direct electrocatalysis of hydrocarbon oxidation has been the elusive goal of fuel cell developers over many years and recent laboratory results are encouraging. This paper reviews the principal methods of converting natural gas into hydrogen, namely catalytic steam reforming, autothermic reforming, pyrolysis and partial oxidation; it reviews currently available purification techniques and discusses some recent advances in internal reforming and the direct use of natural gas in fuel cells.

  13. Late Wash/Nitric Acid flowsheet hydrogen generation bases for simulation of a deflagration/detonation in the DWPF CPC

    International Nuclear Information System (INIS)

    Ritter, J.A.

    1993-01-01

    Hydrogen generation data obtained from IDMS runs PX4 and PX5 will be used to determine a bases for a deflagration/detonation simulation in the DWPF CPC. This simulation is necessary due to the new chemistry associated with the Late Wash/ Nitric Acid flowsheet and process modifications associated with the presence of H 2 in the offgas. The simulation will be performed by Professor Van Brunt from the University of South Carolina. The scenario which leads up to the deflagration/detonation simulation will be chosen such that the following conditions apply. The SRAT is filled to its maximum operating level with 9,600 gal of sludge, which corresponds to the minimum vapor space above the sludge. The SRAT is at the boiling point, producing H 2 at a very low rate (about 10 % of the peak) and 15 scfm of air inleakage is entering the SRAT. Then, the H 2 generation rate will be allowed to increase exponentially (catalyst activation) until it readies the peak H 2 generation rate of the IDMS run, after which the H 2 generation rate will be allowed to decay exponentially (catalyst deactivation) until the total amount of H2 produced is between 85 and 100% of that produced during the IDMS run

  14. Scaled Testing of Hydrogen Gas Getters for Transuranic Waste

    International Nuclear Information System (INIS)

    Kaszuba, J.; Mroz, E.; Haga, M.; Hollis, W. K.; Peterson, E.; Stone, M.; Orme, C.; Luther, T.; Benson, M.

    2006-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage and shipment containers. Hydrogen forms a flammable mixture with air over a wide range of concentrations (5% to 75%), and very low energy is needed to ignite hydrogen-air mixtures. For these reasons, the concentration of hydrogen in waste shipment containers (Transuranic Package Transporter-II or TRUPACT-II containers) needs to remain below the lower explosion limit of hydrogen in air (5 vol%). Accident scenarios and the resulting safety analysis require that this limit not be exceeded. The use of 'hydrogen getters' is being investigated as a way to prevent the build up of hydrogen in TRUPACT-II containers. Preferred getters are solid materials that scavenge hydrogen from the gas phase and chemically and irreversibly bind it into the solid state. In this study, two getter systems are evaluated: a) 1,4-bis (phenylethynyl)benzene or DEB, characterized by the presence of carbon-carbon triple bonds; and b) a proprietary polymer hydrogen getter, VEI or TruGetter, characterized by carbon-carbon double bonds. Carbon in both getter types may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. With oxygen present, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB and VEI performed satisfactorily in lab scale tests using small test volumes (ml-scale), high hydrogen generation rates, and short time spans of hours to days. The purpose of this study is to evaluate whether DEB and VEI perform satisfactorily in actual drum-scale tests with realistic hydrogen generation rates and time frames. The two getter systems were evaluated in test vessels comprised of a Gas Generation Test Program-style bell-jar and a drum equipped with a composite drum filter. The vessels were scaled to replicate the ratio between void space in the

  15. A clean measurement of the hydrogen retardation of the rate of solid phase epitaxy in silicon

    International Nuclear Information System (INIS)

    Liu, A.C.Y.; McCallum, J.C.

    1999-01-01

    The rate retarding effects of the impurity hydrogen on solid phase epitaxy (SPE) in silicon have yet to be completely understood. Existing measurements of this behaviour do not coincide exactly, however, several features have attained prominence. Firstly, a linear decrease in the SPE rate is detected up until a certain concentration of hydrogen. Subsequent to this point the rate remains almost constant at around half the intrinsic rate. It is conjectured that the hydrogen bonds to and passivates the defects whose agency enables the incorporation of atoms from the amorphous phase to the crystalline. This rate reduction increases until the defect population is saturated. At this point the reduction in rate ceases. Secondly, a dependence on temperature has not been consolidated, in contrast with the trends observed with the doping species. Here a method is proposed for producing a controlled concentration of hydrogen for the advancing amorphous/crystalline interface to encounter during epitaxy. A bubble layer is formed in crystalline silicon approximately 0.6μm beneath the surface through the implantation of hydrogen at 65 keV with fluences of 4 x 10 16 /cm 2 and 3 x 10 16 /cm 2 and annealing for 1 hour at 850 deg C in dry argon. The anneal doesn't out gas all the introduced hydrogen, leaving a remnant gas pressure in the bubbles. The hydrogen implants at the two fluences should yield two samples with different amounts of hydrogen trapped in the bubbles. A buried amorphous layer is created to encompass the bubble layer containing this residual contaminant through silicon self implantation at appropriate energies and fluences. The progress of the front interface of the buried amorphous layer is monitored by time resolved reflectivity (TRR) as SPE is effected at various temperatures

  16. Stabilization of Wind Energy Conversion System with Hydrogen Generator by Using EDLC Energy Storage System

    Science.gov (United States)

    Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa

    The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.

  17. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane.

    Science.gov (United States)

    Akbayrak, Serdar; Tonbul, Yalçın; Özkar, Saim

    2016-07-05

    Ruthenium(0) nanoparticles supported on ceria (Ru(0)/CeO2) were in situ generated from the reduction of ruthenium(iii) ions impregnated on ceria during the hydrolysis of ammonia borane. Ru(0)/CeO2 was isolated from the reaction solution by centrifugation and characterized by ICP-OES, BET, XRD, TEM, SEM-EDS and XPS techniques. All the results reveal that ruthenium(0) nanoparticles were successfully supported on ceria and the resulting Ru(0)/CeO2 is a highly active, reusable and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia borane with a turnover frequency value of 361 min(-1). The reusability tests reveal that Ru(0)/CeO2 is still active in the subsequent runs of hydrolysis of ammonia borane preserving 60% of the initial catalytic activity even after the fifth run. Ru(0)/CeO2 provides a superior catalytic lifetime (TTO = 135 100) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 ± 0.1 °C before deactivation. The work reported here includes the formation kinetics of ruthenium(0) nanoparticles. The rate constants for the slow nucleation and autocatalytic surface growth of ruthenium(0) nanoparticles were obtained using hydrogen evolution as a reporter reaction. An evaluation of rate constants at various temperatures enabled the estimation of activation energies for both the reactions, Ea = 60 ± 7 kJ mol(-1) for the nucleation and Ea = 47 ± 2 kJ mol(-1) for the autocatalytic surface growth of ruthenium(0) nanoparticles, as well as the activation energy of Ea = 51 ± 2 kJ mol(-1) for the catalytic hydrolysis of ammonia borane.

  18. Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Albanil Sanchez, Loyda; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. CP 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad, UPCH, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    High purity hydrogen was generated from the chemical reaction of aluminum and sodium hydroxide. The aluminum used in this study was obtained from empty soft drink cans and treated with concentrated sulfuric acid to remove the paint and plastic film. One gram of aluminum was reacted with a solution of 2moldm{sup -3} of sodium hydroxide to produce hydrogen. The hydrogen produced from aluminum cans and oxygen obtained from a proton exchange membrane electrolyzer or air, was fed to a proton exchange membrane (PEM) fuel cell to produce electricity. Yields of 44 mmol of hydrogen contained in a volume of 1.760dm{sup 3} were produced from one gram of aluminum in a time period of 20 min. (author)

  19. Noble-metal-free NiO@Ni-ZnO/reduced graphene oxide/CdS heterostructure for efficient photocatalytic hydrogen generation

    Science.gov (United States)

    Chen, Fayun; Zhang, Laijun; Wang, Xuewen; Zhang, Rongbin

    2017-11-01

    Noble-metal-free semiconductor materials are widely used for photocatalytic hydrogen generation because of their low cost. ZnO-based heterostructures with synergistic effects exhibit an effective photocatalytic activity. In this work, NiO@Ni-ZnO/reduced graphene oxide (rGO)/CdS heterostructures are synthesized by a multi-step method. rGO nanosheets and CdS nanoparticles were introduced into the heterostructures via a redox reaction and light-assisted growth, respectively. A novel Ni-induced electrochemical growth method was developed to prepare ZnO rods from Zn powder. NiO@Ni-ZnO/rGO/CdS heterostructures with a wide visible-light absorption range exhibited highly photocatalytic hydrogen generation rates under UV-vis and visible light irradiation. The enhanced photocatalytic activity is attributed to the Ni nanoparticles that act as cocatalysts for capturing photoexcited electrons and the improved synergistic effect between ZnO and CdS due to the rGO nanosheets acting as photoexcited carrier transport channels.

  20. Hydrogen behavior in light-water reactors

    International Nuclear Information System (INIS)

    Berman, M.; Cummings, J.C.

    1984-01-01

    The Three Mile Island accident resulted in the generation of an estimated 150 to 600 kg of hydrogen, some of which burned inside the containment building, causing a transient pressure rise of roughly 200 kPa (2 atm). With this accident as the immediate impetus and the improved safety of reactors as the long-term goal, the nuclear industry and the Nuclear Regulatory Commission initiated research programs to study hydrogen behavior and control during accidents at nuclear plants. Several fundamental questions and issues arise when the hydrogen problem for light-water-reactor plants is examined. These relate to four aspects of the problem: hydrogen production; hydrogen transport, release, and mixing; hydrogen combustion; and prevention or mitigation of hydrogen combustion. Although much has been accomplished, some unknowns and uncertainties still remain, for example, the rate of hydrogen production during a degraded-core or molten-core accident, the rate of hydrogen mixing, the effect of geometrical structures and scale on combustion, flame speeds, combustion completeness, and mitigation-scheme effectiveness. This article discusses the nature and extent of the hydrogen problem, the progress that has been made, and the important unresolved questions

  1. Renewable carbohydrates are a potential high-density hydrogen carrier

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.-H. Percival [Biological Systems Engineering Department, 210-A Seitz Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Institute for Critical Technology and Applied Sciences (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); DOE BioEnergy Science Center (BESC), Oak Ridge, TN 37831 (United States)

    2010-10-15

    The possibility of using renewable biomass carbohydrates as a potential high-density hydrogen carrier is discussed here. Gravimetric density of polysaccharides is 14.8 H{sub 2} mass% where water can be recycled from PEM fuel cells or 8.33% H{sub 2} mass% without water recycling; volumetric densities of polysaccharides are >100 kg of H{sup 2}/m{sup 3}. Renewable carbohydrates (e.g., cellulosic materials and starch) are less expensive based on GJ than are other hydrogen carriers, such as hydrocarbons, biodiesel, methanol, ethanol, and ammonia. Biotransformation of carbohydrates to hydrogen by cell-free synthetic (enzymatic) pathway biotransformation (SyPaB) has numerous advantages, such as high product yield (12 H{sub 2}/glucose unit), 100% selectivity, high energy conversion efficiency (122%, based on combustion energy), high-purity hydrogen generated, mild reaction conditions, low-cost of bioreactor, few safety concerns, and nearly no toxicity hazards. Although SyPaB may suffer from current low reaction rates, numerous approaches for accelerating hydrogen production rates are proposed and discussed. Potential applications of carbohydrate-based hydrogen/electricity generation would include hydrogen bioreactors, home-size electricity generators, sugar batteries for portable electronics, sugar-powered passenger vehicles, and so on. Developments in thermostable enzymes as standardized building blocks for cell-free SyPaB projects, use of stable and low-cost biomimetic NAD cofactors, and accelerating reaction rates are among the top research and development priorities. International collaborations are urgently needed to solve the above obstacles within a short time. (author)

  2. Workshop on Hydrogen Storage and Generation for Medium-Power and -Energy Applications

    National Research Council Canada - National Science Library

    Matthews, Michael

    1998-01-01

    This report summarizes the Workshop on Hydrogen Storage and Generation Technologies for Medium-Power and -Energy Applications which was held on April 8-10, 1997 at the Radisson Hotel Orlando Airport in Orlando, Florida...

  3. Experiments relating to hydrogen generated by corrosion processes associated with repositories for intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    Schenk, R.

    1983-12-01

    Organic components in an intermediate level waste repository decompose under both aerobic and anaerobic conditions to produce carbon dioxide, which may lead to acid corrosion of metallic containers and hence to hydrogen production. The possibility of hydrogen production within the repository must be considered in determining the long term safety. Thermodynamic calculations show that only pure water is required to produce hydrogen with iron in a repository. The hydrogen evolution rate is thus the important parameter. However, the available kinetic data is insufficient and needs to be supplemented experimentally. Carbon steel specimens were immersed in water over which several gas mixtures containing nitrogen, oxygen and carbon dioxide were passed; the amount of hydrogen picked up by the gas stream was measured. 1.4 - 28 ml hydrogen per square meter per hour was evolved when the gas mixture contained 1 and 20 volume per cent carbon dioxide respectively. Hydrogen was also detected in natural CO 2 -free water when oxygen concentration cells are present. No hydrogen could be detected at pH 8.5 and above. The experiments were all carried out at 25 degrees C and atmospheric pressure and restricted to the carbonate system. Natural waters contain a mixture of salts; this may increase or reduce the hydrogen evolution rate. Higher temperatures and pressures, in particular a higher partial pressure of carbon dioxide, will probably lead to an increase in the hydrogen evolution rate. (author)

  4. An experimental investigation of the rate of hydrogen absorption in zirconium-2.5 wt percent niobium from steam/hydrogen mixtures at elevated temperatures

    International Nuclear Information System (INIS)

    Langman, V.J.

    1984-08-01

    The test specifications for an experimental program to study the rate of hydrogen absorption in zirconium-2.5 weight percent niobium pressure tube material from steam/hydrogen mixtures at elevated temperatures are discussed

  5. Water electrolysis with a conducting carbon cloth: subthreshold hydrogen generation and superthreshold carbon quantum dot formation.

    Science.gov (United States)

    Biswal, Mandakini; Deshpande, Aparna; Kelkar, Sarika; Ogale, Satishchandra

    2014-03-01

    A conducting carbon cloth, which has an interesting turbostratic microstructure and functional groups that are distinctly different from other ordered forms of carbon, such as graphite, graphene, and carbon nanotubes, was synthesized by a simple one-step pyrolysis of cellulose fabric. This turbostratic disorder and surface chemical functionalities had interesting consequences for water splitting and hydrogen generation when such a cloth was used as an electrode in the alkaline electrolysis process. Importantly, this work also gives a new twist to carbon-assisted electrolysis. During electrolysis, the active sites in the carbon cloth allow slow oxidation of its surface to transform the surface groups from COH to COOH and so forth at a voltage as low as 0.2 V in a two-electrode system, along with platinum as the cathode, instead of 1.23 V (plus overpotential), which is required for platinum, steel, or even graphite anodes. The quantity of subthreshold hydrogen evolved was 24 mL cm(-2)  h(-1) at 1 V. Interestingly, at a superthreshold potential (>1.23 V+overpotential), another remarkable phenomenon was found. At such voltages, along with the high rate and quantity of hydrogen evolution, rapid exfoliation of the tiny nanoscale (5-7 nm) units of carbon quantum dots (CQDs) are found in copious amounts due to an enhanced oxidation rate. These CQDs show bright-blue fluorescence under UV light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrogen generation from the hydrolysis of sodium borohydride using chemically modified multiwalled carbon nanotubes with pyridinium based ionic liquid and decorated with highly dispersed Mn nanoparticles

    Science.gov (United States)

    Chinnappan, Amutha; Puguan, John Marc C.; Chung, Wook-Jin; Kim, Hern

    2015-10-01

    Multiwalled carbon nanotubes (MWCNTs)/Ionic liquid (IL)/Mn nanohybrids are synthesized and their catalytic activity is examined for hydrogen generation from the hydrolysis of sodium borohydride (NaBH4). Transmission electron microscopy reveals that Mn nanoparticles well-distributed on the MWCNTs surface. Energy dispersive x-ray spectrometer and x-ray photoelectron spectroscopy confirms the presence of Mn and Ni atom in the nanohybrids. The nanohybrids exhibit excellent catalytic lifetime and gives the total turnover number of 18496 mol H2/mol catalyst in the hydrolysis of NaBH4, which can be attributed to the presence of Mn atom and IL containing nickel halide anion. It is worthy of note that a very small amount of catalyst is used for this hydrolysis reaction. The activation energy is found to be 40.8 kJ/mol by MWCNTs/IL/Mn nanohybrids from the kinetic study of the hydrogen generation from the hydrolysis of NaBH4. The improved hydrogen generation rate, lower activation energy, and less expensive make the nanohybrids promising candidate as catalyst for the hydrogen generation from NaBH4 solution. The nanohybrids are easy to prepare, store and yet catalytically active. The recycling process is very simple and further purification is not tedious.

  7. Study on the PWSCC Crack Growth Rate for Steam Generator Tubing

    International Nuclear Information System (INIS)

    Kang, Shin Hoo; Hwang, Il Soon; Lim, Jun; Lee, Seung Gi; Ryu, Kyung Ha

    2008-03-01

    Using in-situ Raman spectroscopy and crack growth rate lest system in simulated PWR primary water environment, the relationship between the oxide film chemistry and the PWSCC growth rate has been studied. We used I/2T compact tension specimen and disk specimen made of Alloy 182 and Alloy 600 for crack growth rate test and in-situ Raman spectroscopy measurement. Test was made in a refreshed autoclave with 30 cc STP / kg of dissolved hydrogen concentration. Conductivity, pH, dissolved hydrogen and oxygen concentration were continuously monitored at the outlet. The crack growth rate was measured by using switching DCPD technique under cyclinc triangular loading and at the same time oxide phase was determined by using in-situ Raman spectra at the elevation of the temperature. Additionally Raman spectroscopy was achieved for oxide phase transition of Alloy 600 according to the temperature and dissolved hydrogen concentration, 2 and 30cc STP / kg

  8. Photo-driven autonomous hydrogen generation system based on hierarchically shelled ZnO nanostructures

    International Nuclear Information System (INIS)

    Kim, Heejin; Yong, Kijung

    2013-01-01

    A quantum dot semiconductor sensitized hierarchically shelled one-dimensional ZnO nanostructure has been applied as a quasi-artificial leaf for hydrogen generation. The optimized ZnO nanostructure consists of one dimensional nanowire as a core and two-dimensional nanosheet on the nanowire surface. Furthermore, the quantum dot semiconductors deposited on the ZnO nanostructures provide visible light harvesting properties. To realize the artificial leaf, we applied the ZnO based nanostructure as a photoelectrode with non-wired Z-scheme system. The demonstrated un-assisted photoelectrochemical system showed the hydrogen generation properties under 1 sun condition irradiation. In addition, the quantum dot modified photoelectrode showed 2 mA/cm 2 current density at the un-assisted condition

  9. Hydrolytic hydrogen generation using milled aluminum in water activated by Li, In, and Zn additives

    Energy Technology Data Exchange (ETDEWEB)

    Fan, M.Q.; Liu, S.; Wang, C.; Chen, D.; Shu, K.Y. [Department of Materials Science and Engineering, China Jiliang University, Hangzhou (China)

    2012-08-15

    A method for obtaining hydrogen through the hydrolytic reaction of highly activated aluminum (Al) alloy is investigated. The optimized Al-3 wt.% Li-4 wt.% In-7 wt.% Zn alloy significantly improves the maximum hydrogen generation rate and amount (137 mL g{sup -1} min{sup -1} and 1,243 mL g{sup -1}, respectively). An efficiency of 100% was reached within 1 h at 298 K. The synergistic catalytic effects of Li, In, and Zn, which stimulated Al hydrolysis through the formation of micro galvanic cells of In-Li and Al-In-Zn alloys in water, were observed. The reactions were analyzed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and hydrolytic experiments. The In-Li alloy functions as an initial active center and produces LiOH in water, which further stimulates and changes the hydrolytic process of the Al-In-Zn alloy. The effects of alloy composition, milling time, and hydrolytic temperature were considered and discussed. The results indicate that the hydrolytic reaction of Al-Li-In-Zn alloy in water might be feasible for the production of inexpensive, pure, and safe hydrogen for micro fuel cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  11. An appealing photo-powered multi-functional energy system for the poly-generation of hydrogen and electricity

    Science.gov (United States)

    Tang, Tiantian; Li, Kan; Shen, Zhemin; Sun, Tonghua; Wang, Yalin; Jia, Jinping

    2015-10-01

    This paper focuses on a photo-powered poly-generation system (PPS) that is powered by the photocatalytic oxidation of organic substrate to produce hydrogen energy and electrical energy synchronously. This particular device runs entirely on light energy and chemical energy of substrate without external voltage. The performance measurements and optimization experiments are all investigated by using the low concentration of pure ethanol (EtOH) solution. Compared with the conventional submerged reactor for the photogeneration of hydrogen, the hydrogen and the electric current obtained in the constructed PPS are all relatively stable in experimental period and the numerical values detected are many times higher than that of the former by using various simulated ethanol waste liquid. When using Chinese rice wine as substrate at the same ethanol content level (i.e., 0.1 mol L-1), the production of hydrogen is close to that of the pure ethanol solution in the constructed PPS, but no hydrogen is detected in the conventional submerged reactor. These results demonstrate that the constructed PPS could effectively utilize light energy and perform good capability in poly-generation of hydrogen and electricity.

  12. Extreme hydrogen plasma densities achieved in a linear plasma generator

    NARCIS (Netherlands)

    Rooij, van G.J.; Veremiyenko, V.P.; Goedheer, W.J.; Groot, de B.; Kleyn, A.W.; Smeets, P.H.M.; Versloot, T.W.; Whyte, D.G.; Engeln, R.A.H.; Schram, D.C.; Lopes Cardozo, N.J.

    2007-01-01

    A magnetized hydrogen plasma beam was generated with a cascaded arc, expanding in a vacuum vessel at an axial magnetic field of up to 1.6 T. Its characteristics were measured at a distance of 4 cm from the nozzle: up to a 2 cm beam diameter, 7.5×1020 m-3 electron density, ~2 eV electron and ion

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  14. Reforming water to generate hydrogen using mechanical alloy

    International Nuclear Information System (INIS)

    Pena F, D. L.

    2016-01-01

    The objective of this research was to generate a hydrogen production system by means of mechanical milling, in which 0.1 g of magnesium were weighed using a volume of 300 μL for each water solvent (H_2O) and methanol (CH_3OH) in a container to start mechanical milling for 2, 4 and 6 h. Once the mechanical milling was finished, the hydrogen that was produced every two hours was measured to determine the appropriate milling time in the production, also in each period of time samples of the powders produced during the milling of Mg were taken, in this process we used characterization techniques such as: X-ray diffraction at an angle of 2θi 5 and 2θf 90 degrees and scanning electron microscopy, taking micrographs of 100, 500, 1000 and 5000 magnifications. According to the mechanical milling results hydrogen was obtained when using water, as well as with methanol. In the techniques of X-ray diffraction characterization different results were obtained before and after the milling, since by the diffractogram s is possible to observe how the magnesium to be put in the mechanical milling along with the water and methanol was diminishing to be transformed into hydroxide and magnesium oxide, as well as in the micrographs taken with scanning electron microscopy the change in the magnesium morphology to hydroxide and magnesium oxide is observed. (Author)

  15. Noble metal catalyzed hydrogen generation from formic acid in nitrite-containing simulated nuclear waste media

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.; Wiemers, K.D.

    1994-08-01

    Simulants for the Hanford Waste Vitrification Plant (HWVP) feed containing the major non-radioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO 3 2- , NO 3 -, and NO 2 - were used as media to evaluate the stability of formic acid towards hydrogen evolution by the reaction HCO 2 H → H 2 + CO 2 catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Small scale experiments using 40-50 mL of feed simulant in closed glass reactors (250-550 mL total volume) at 80-100 degree C were used to study the effect of nitrite and nitrate ion on the catalytic activities of the noble metals for formic acid decomposition. Reactions were monitored using gas chromatography to analyze the CO 2 , H 2 , NO, and N 2 O in the gas phase as a function of time. Rhodium, which was introduced as soluble RhCl 3 ·3H 2 O, was found to be the most active catalyst for hydrogen generation from formic acid above ∼80 degree C in the presence of nitrite ion in accord with earlier observations. The inherent homogeneous nature of the nitrite-promoted Rh-catalyzed formic acid decomposition is suggested by the approximate pseudo first-order dependence of the hydrogen production rate on Rh concentration. Titration of the typical feed simulants containing carbonate and nitrite with formic acid in the presence of rhodium at the reaction temperature (∼90 degree C) indicates that the nitrite-promoted Rh-catalyzed decomposition of formic acid occurs only after formic acid has reacted with all of the carbonate and nitrite present to form CO 2 and NO/N 2 O, respectively. The catalytic activities of Ru and Pd towards hydrogen generation from formic acid are quite different than those of Rh in that they are inhibited rather than promoted by the presence of nitrite ion

  16. Hydrocarbon reforming catalysts and new reactor designs for compact hydrogen generators

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A.; Schwab, E.; Urtel, H. [BASF SE, Ludwigshafen (Germany); Farrauto, R. [BASF Catalysts LLC, Iselin, NJ (United States)

    2010-12-30

    A hydrogen based future energy scenario will use fuel cells for the conversion of chemically stored energy into electricity. Depending upon the type of fuel cell, different specifications will apply for the feedstock which is converted in the cell, ranging from very clean hydrogen for PEM-FC's to desulfurized methane for SOFC and MCFC technology. For the foreseeable future, hydrogen will be supplied by conventional reforming, however operated in compact and dynamic reformer designs. This requires that known catalyst formulations are offered in specific geometries, giving flexibility for novel reactor design options. These specific geometries can be special tablet shapes as well as monolith structures. Finally, also nonhydrocarbon feedstock might be used in special applications, e.g. bio-based methanol and ethanol. BASF offers catalysts for the full process chain starting from feedstock desulfurization via reforming, high temperature shift, low temperature shift to CO fine polishing either via selective oxidation or selective methanation. Depending upon the customer's design, most stages can be served either with precious metal based monolith solutions or base metal tablet solutions. For the former, we have taken the automobile catalyst monolith support and extended its application to the fuel cell hydrogen generation. Washcoats of precious metal supported catalysts can for example be deposited on ceramic monoliths and/or metal heat exchangers for efficient generation of hydrogen. Major advantages are high through puts due to more efficient heat transfer for catalysts on metal heat exchangers, lower pressure drop with greater catalyst mechanical and thermal stability compared to particulate catalysts. Base metal tablet catalysts on the other hand can have intrinsic cost advantages, larger fractions of the reactor can be filled with active mass, and if produced in unconventional shape, again novel reactor designs are made possible. Finally, if it comes to

  17. Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Wen; Chen, Chuh-Yung; Huang, Yao-Hui [Department of Chemical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China)

    2009-03-15

    A method of preparing a polymer-supported catalyst for hydrogen generation is introduced in this article. This polymer-supported catalyst is the structure of ruthenium (Ru) nanoparticle immobilized on a monodisperse polystyrene (PSt) microsphere. The diameter of the Ru nanoparticle is around 16 nm, and the diameter of the PSt microsphere is 2.65 um. This preparation method is accomplished by two unique techniques: one is sodium lauryl sulfate/sodium formaldehyde sulfoxylate (SLS/SFS) interface-initiated system, the other is 2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (GMA-IDA) chelating monomer. By taking advantage of these two techniques, Ru{sup 3+} ion will be chelated and then reduced to Ru{sup (0)} nanoparticle over PSt surface predominantly. The hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution catalyzed by this Ru-immobilized polymer-supported catalyst is also examined in this article. It reveals that the hydrogen generation rate is 215.9 ml/min g-cat. in a diluted solution containing 1 wt.% NaBH{sub 4} and 1 wt.% NaOH, and this Ru-immobilized polymer-supported catalyst could be recycled during the reaction. (author)

  18. Availability of steam generator against thermal disturbance of hydrogen production system coupled to HTGR

    International Nuclear Information System (INIS)

    Shibata, Taiju; Nishihara, Tetsuo; Hada, Kazuhiko; Shiozawa, Shusaku

    1996-01-01

    One of the safety issues to couple a hydrogen production system to an HTGR is how the reactor coolability can be maintained against anticipated abnormal reduction of heat removal (thermal disturbance) of the hydrogen production system. Since such a thermal disturbance is thought to frequently occur, it is desired against the thermal disturbance to keep reactor coolability by means other than reactor scram. Also, it is thought that the development of a passive cooling system for such a thermal disturbance will be necessary from a public acceptance point of view in a future HTGR-hydrogen production system. We propose a SG as the passive cooling system which can keep the reactor coolability during a thermal disturbance of a hydrogen production system. This paper describes the proposed steam generator (SG) for the HTGR-hydrogen production system and a result of transient thermal-hydraulic analysis of the total system, showing availability of the SG against a thermal disturbance of the hydrogen production system in case of the HTTR-steam reforming hydrogen production system. (author)

  19. Calculation of nuclear-spin-relaxation rate for spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Ahn, R.M.C.; Eijnde, J.P.H.W.V.; Verhaar, B.J.

    1983-01-01

    Approximations introduced in previous calculations of spin relaxation for spin-polarized atomic hydrogen are investigated by carrying out a more exact coupled-channel calculation. With the exception of the high-temperature approximation, the approximations turn out to be justified up to the 10 -3 level of accuracy. It is shown that at the lowest temperatures for which experimental data are available, the high-temperature limit underestimates relaxation rates by a factor of up to 2. For a comparison with experimental data it is also of interest to pay attention to the expression for the atomic hydrogen relaxation rates in terms of transition amplitudes for two-particle collisions. Discrepancies by a factor of 2 among previous derivations of relaxation rates are pointed out. To shed light on these discrepancies we present two alternative derivations in which special attention is paid to identical-particle aspects. Comparing with experiment, we find our theoretical volume relaxation rate to be in better agreement with measured values than that obtained by other groups. The theoretical surface relaxation rate, however, still shows a discrepancy with experiment by a factor of order 50

  20. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube

    International Nuclear Information System (INIS)

    Arthur, Ernest Evans; Li, Fang; Momade, Francis W.Y.; Kim, Hern

    2014-01-01

    Hydrogen was generated from ammonia borane complex by hydrolysis using cobalt nanocluster catalyst supported on polydopamine functionalized MWCNTs (multi-walled carbon nanotubes). The impregnation-chemical reduction method was used for the preparation of the supported catalyst. The nanocluster catalyst support was formed by in-situ oxidative polymerization of dopamine on the MWCNTs in alkaline solution at room temperature. The structural and physical–chemical properties of the nanocluster catalyst were characterized by FT-IR (Fourier transform infrared spectroscopy), EDX (energy-dispersive X-ray spectroscopy), SEM (scanning electron microscope), XRD (X-ray diffraction) and TEM (transmission electron microscopy). The nanocluster catalyst showed good catalytic activity for the hydrogen generation from aqueous ammonia borane complex. A reusability test to determine the practical usage of the catalyst was also investigated. The result revealed that the catalyst maintained an appreciable catalytic performance and stability in terms of its reusability after three cycle of reuse for the hydrolysis reaction. Also, the activation energy for the hydrolysis of ammonia borane complex was estimated to be 50.41 kJmol −1 , which is lower than the values of some of the reported catalyst. The catalyst can be considered as a promising candidate in developing highly efficient portable hydrogen generation systems such as PEMFC (proton exchange membrane fuel cells). - Highlights: • Co/Pdop-o-MWCNT (Pdop functionalized MWCNT supported cobalt nanocluster) catalyst was synthesized for hydrogen generation. • It is an active catalyst for hydrogen generation via hydrolysis of ammonia borane. • It showed good stability in terms of reusability for the hydrogen generation

  1. Photocatalyst based on titanium or iron semiconductors for the generation of hydrogen from water upon solar irradiation

    OpenAIRE

    Serra, Marco

    2016-01-01

    The objective of present thesis is to prepare and evaluate photocatalyst for hydrogen generation from water methanol mixture using solar light. This general objective has been accomplished by applying different methodology in material preparation as well as exploring the photocatalytic activity of novel semiconductors. In this way after a general introduction to the feed showing the relevance of solar fuels and in particular hydrogen generation, the...

  2. Hydrogen venting characteristics of commercial carbon-composite filters and applications to TRU waste

    International Nuclear Information System (INIS)

    Callis, E.L.; Marshall, R.S.; Cappis, J.H.

    1997-04-01

    The generation of hydrogen (by radiolysis) and of other potentially flammable gases in radioactive wastes which are in contact with hydrogenous materials is a source of concern, both from transportation and on-site storage considerations. Because very little experimental data on the generation and accumulation of hydrogen was available in actual waste materials, work was initiated to experimentally determine factors affecting the concentration of hydrogen in the waste containers, such as the hydrogen generation rate, (G-values) and the rate of loss of hydrogen through packaging and commercial filter-vents, including a new design suitable for plastic bags. This report deals only with the venting aspect of the problem. Hydrogen venting characteristics of two types of commercial carbon-composite filter-vents, and two types of PVC bag closures (heat-sealed and twist-and-tape) were measured. Techniques and equipment were developed to permit measurement of the hydrogen concentration in various layers of actual transuranic (TRU) waste packages, both with and without filter-vents. A test barrel was assembled containing known configuration and amounts of TRU wastes. Measurements of the hydrogen in the headspace verified a hydrogen release model developed by Benchmark Environmental Corporation. These data were used to calculate revised wattage Emits for TRU waste packages incorporating the new bag filter-vent

  3. Co3O4 nanowires as efficient catalyst precursor for hydrogen generation from sodium borohydride hydrolysis

    Science.gov (United States)

    Wei, Lei; Cao, Xurong; Ma, Maixia; Lu, Yanhong; Wang, Dongsheng; Zhang, Suling; Wang, Qian

    Hydrogen generation from the catalytic hydrolysis of sodium borohydride has many advantages, and therefore, significant research has been undertaken on the development of highly efficient catalysts for this purpose. In our present work, Co3O4 nanowires were successfully synthesized as catalyst precursor by employing SBA-15 as a hard template. For material characterization, high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and N2 adsorption isotherms were employed, respectively. To measure the catalyst activity, typical water-displacement method was carried out. Using a reaction solution comprising 10wt.% NaBH4 and 2wt.% NaOH, the hydrogen generation rate (HGR) was observed to be as high as 7.74L min-1 g-1 at 25∘C in the presence of Co3O4 nanowires, which is significantly higher than that of CoB nanoparticles and commercial Co3O4 powder. Apparent activation energy was calculated to be 50.9kJ mol-1. After recycling the Co3O4 nanowires six times, HGR was decreased to be 72.6% of the initial level.

  4. A hydrogen refill for cellular phone

    Science.gov (United States)

    Prosini, Pier Paolo; Gislon, Paola

    A device has been designed to generate hydrogen for a fuel cell powered cellular phone. The device is based on the chemical reaction between NaBH 4 and hydrochloric/water solution to satisfy the hydrogen request at room temperature and pressure. The operation mechanism and controlling method is based on the Kipp's gas generating apparatus. A prototype has been built and tested to evaluate the optimum salt/acid and acid/solution ratios and check the hydrogen mass flow rates upon operation and the pressure variation in stand-by condition. The system works delivering hydrogen flows ranging between 0 and 10 ml min -1. In a typical test the hydrogen flow was set to 5 ml min -1 to match a 1 W power fuel cell. The working pressure was slightly higher than the atmospheric one. The hydrogen capacity was as high as 2.5% (w/w). By converting this amount of hydrogen in electricity by a fuel cell working at 0.8 V it is possible to achieve a system energy density of about 720 Wh kg -1, four times larger than commercial high energy density lithium-ion batteries.

  5. Failure rate of piping in hydrogen sulphide systems

    International Nuclear Information System (INIS)

    Hare, M.G.

    1993-08-01

    The objective of this study is to provide information about piping failures in hydrogen sulphide service that could be used to establish failures rates for piping in 'sour service'. Information obtained from the open literature, various petrochemical industries and the Bruce Heavy Water Plant (BHWP) was used to quantify the failure analysis data. On the basis of this background information, conclusions from the study and recommendations for measures that could reduce the frequency of failures for piping systems at heavy water plants are presented. In general, BHWP staff should continue carrying out their present integrity and leak detection programmes. The failure rate used in the safety studies for the BHWP appears to be based on the rupture statistics for pipelines carrying sweet natural gas. The failure rate should be based on the rupture rate for sour gas lines, adjusted for the unique conditions at Bruce

  6. Hydrogen Generation From Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steven Cohen; Stephen Porter; Oscar Chow; David Henderson

    2009-03-06

    Small-scale (100-500 kg H2/day) electrolysis is an important step in increasing the use of hydrogen as fuel. Until there is a large population of hydrogen fueled vehicles, the smaller production systems will be the most cost-effective. Performing conceptual designs and analyses in this size range enables identification of issues and/or opportunities for improvement in approach on the path to 1500 kg H2/day and larger systems. The objectives of this program are to establish the possible pathways to cost effective larger Proton Exchange Membrane (PEM) water electrolysis systems and to identify areas where future research and development efforts have the opportunity for the greatest impact in terms of capital cost reduction and efficiency improvements. System design and analysis was conducted to determine the overall electrolysis system component architecture and develop a life cycle cost estimate. A design trade study identified subsystem components and configurations based on the trade-offs between system efficiency, cost and lifetime. Laboratory testing of components was conducted to optimize performance and decrease cost, and this data was used as input to modeling of system performance and cost. PEM electrolysis has historically been burdened by high capital costs and lower efficiency than required for large-scale hydrogen production. This was known going into the program and solutions to these issues were the focus of the work. The program provided insights to significant cost reduction and efficiency improvement opportunities for PEM electrolysis. The work performed revealed many improvement ideas that when utilized together can make significant progress towards the technical and cost targets of the DOE program. The cell stack capital cost requires reduction to approximately 25% of today’s technology. The pathway to achieve this is through part count reduction, use of thinner membranes, and catalyst loading reduction. Large-scale power supplies are available

  7. Ultrahigh figure-of-merit for hydrogen generation from sodium borohydride using ternary metal catalysts

    Science.gov (United States)

    Hu, Lunghao; Ceccato, R.; Raj, R.

    We report further increase in the figure-of-merit (FOM) for hydrogen generation from NaBH 4 than reported in an earlier paper [1], where a sub-nanometer layer of metal catalysts are deposited on carbon nanotube paper (CNT paper) that has been functionalized with polymer-derived silicon carbonitride (SiCN) ceramic film. Ternary, Ru-Pd-Pt, instead of the binary Pd-Pt catalyst used earlier, together with a thinner CNT paper is shown to increase the figure-of-merit by up to a factor of six, putting is above any other known catalyst for hydrogen generation from NaBH 4. The catalysts are prepared by first impregnating the functionalized CNT-paper with solutions of the metal salts, followed by reduction in a sodium borohydride solution. The reaction mechanism and the catalyst efficiency are described in terms of an electric charge transfer, whereby the negative charge on the BH 4 - ion is exchanged with hydrogen via the electronically conducting SiCN/CNT substrate [1].

  8. Nitrogen-Doped Graphene for Photocatalytic Hydrogen Generation.

    Science.gov (United States)

    Chang, Dong Wook; Baek, Jong-Beom

    2016-04-20

    Photocatalytic hydrogen (H2 ) generation in a water splitting process has recently attracted tremendous interest because it allows the direct conversion of clean and unlimited solar energy into the ideal energy resource of H2 . For efficient photocatalytic H2 generation, the role of the photocatalyst is critical. With increasing demand for more efficient, sustainable, and cost-effective photocatalysts, various types of semiconductor photocatalysts have been intensively developed. In particular, on the basis of its superior catalytic and tunable electronic properties, nitrogen-doped graphene is a potential candidate for a high-performance photocatalyst. Nitrogen-doped graphene also offers additional advantages originating from its unique two-dimensional sp(2) -hybridized carbon network including a large specific surface area and exceptional charge transport properties. It has been reported that nitrogen-doped graphene can play diverse but positive functions including photo-induced charge acceptor/meditator, light absorber from UV to visible light, n-type semiconductor, and giant molecular photocatalyst. Herein, we summarize the recent progress and general aspects of nitrogen-doped graphene as a photocatalyst for photocatalytic H2 generation. In addition, challenges and future perspectives in this field are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Optimum injection dose rate of hydrogen sulfide scavenger for treatment of petroleum crude oil

    Directory of Open Access Journals (Sweden)

    T.M. Elshiekh

    2016-03-01

    Full Text Available Hydrogen sulfide H2S scavengers are chemicals that favorably react with hydrogen sulfide gas to eliminate it and produce environmental friendly products. These products depend on the type and composition of the scavenger and the conditions at which the reaction takes place. The scavenger should be widely available and economical for industry acceptance by having a low unit cost. The optimum values of H2S scavenger injection dose rate of scavenging hydrogen sulfide from the multiphase fluid produced at different wells conditions in one of the Petroleum Companies in Egypt were studied. The optimum values of H2S scavenger injection dose rate depend on pipe diameter, pipe length, gas molar mass velocity, inlet H2S concentration and pressure. The optimization results are obtained for different values of these parameters using the software program Lingo. In general, the optimum values of H2S scavenger injection dose rate of the scavenging of hydrogen sulfide are increased by increasing of the pipe diameter and increasing the inlet H2S concentration, and decreased by increasing the pipe length, gas molar mass velocity and pressure.

  10. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krier, James M. [Univ. of California, Berkeley, CA (United States)

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  11. Hydrogen generator, via catalytic partial oxidation of methane for fuel cells

    Science.gov (United States)

    Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano

    It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.

  12. Gas-Phase Reaction Pathways and Rate Coefficients for the Dichlorosilane-Hydrogen and Trichlorosilane-Hydrogen Systems

    Science.gov (United States)

    Dateo, Christopher E.; Walch, Stephen P.

    2002-01-01

    As part of NASA Ames Research Center's Integrated Process Team on Device/Process Modeling and Nanotechnology our goal is to create/contribute to a gas-phase chemical database for use in modeling microelectronics devices. In particular, we use ab initio methods to determine chemical reaction pathways and to evaluate reaction rate coefficients. Our initial studies concern reactions involved in the dichlorosilane-hydrogen (SiCl2H2--H2) and trichlorosilane-hydrogen (SiCl2H-H2) systems. Reactant, saddle point (transition state), and product geometries and their vibrational harmonic frequencies are determined using the complete-active-space self-consistent-field (CASSCF) electronic structure method with the correlation consistent polarized valence double-zeta basis set (cc-pVDZ). Reaction pathways are constructed by following the imaginary frequency mode of the saddle point to both the reactant and product. Accurate energetics are determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations (CCSD(T)) extrapolated to the complete basis set limit. Using the data from the electronic structure calculations, reaction rate coefficients are obtained using conventional and variational transition state and RRKM theories.

  13. Micromotor-based energy generation.

    Science.gov (United States)

    Singh, Virendra V; Soto, Fernando; Kaufmann, Kevin; Wang, Joseph

    2015-06-01

    A micromotor-based strategy for energy generation, utilizing the conversion of liquid-phase hydrogen to usable hydrogen gas (H2), is described. The new motion-based H2-generation concept relies on the movement of Pt-black/Ti Janus microparticle motors in a solution of sodium borohydride (NaBH4) fuel. This is the first report of using NaBH4 for powering micromotors. The autonomous motion of these catalytic micromotors, as well as their bubble generation, leads to enhanced mixing and transport of NaBH4 towards the Pt-black catalytic surface (compared to static microparticles or films), and hence to a substantially faster rate of H2 production. The practical utility of these micromotors is illustrated by powering a hydrogen-oxygen fuel cell car by an on-board motion-based hydrogen and oxygen generation. The new micromotor approach paves the way for the development of efficient on-site energy generation for powering external devices or meeting growing demands on the energy grid. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Origin of excess heat generated during loading Pd-impregnated alumina powder with deuterium and hydrogen

    International Nuclear Information System (INIS)

    Dmitriyeva, O.; Cantwell, R.; McConnell, M.; Moddel, G.

    2012-01-01

    Highlights: ► We studied heat produced by hydrogen and deuterium in Pd-impregnated alumina powder. ► Samples were fabricated using light and heavy water isotopes and varied the gas used for loading. ► Incorporation of hydrogen and deuterium influenced the amount of heat released or consumed. ► Pd nanoparticles appear to catalyze hydrogen/deuterium (H/D) exchange chemical reactions. ► Anomalous heating can be accounted for by chemical rather than nuclear reactions. - Abstract: We studied heat production in Pd-impregnated alumina powder in the presence of hydrogen and deuterium gases, investigating claims of anomalous heat generated as a result of nuclear fusion, usually referred to as a low energy nuclear reaction (LENR). By selecting the water isotope used to fabricate the material and then varying the gas used for loading, we were able to influence the amount of heat released or consumed. We suggest that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. This hypothesis is supported by heat measurements, residual gas analysis (RGA) data, and calculations of energy available from H/D exchange reactions. Based on the results we conclude that the origin of the anomalous heat generated during deuterium loading of Pd-enriched alumina powder is chemical rather than nuclear.

  15. Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems

    Directory of Open Access Journals (Sweden)

    Mubbashir Ali

    2018-05-01

    Full Text Available From an environment perspective, the increased penetration of wind and solar generation in power systems is remarkable. However, as the intermittent renewable generation briskly grows, electrical grids are experiencing significant discrepancies between supply and demand as a result of limited system flexibility. This paper investigates the optimal sizing and control of the hydrogen energy storage system for increased utilization of renewable generation. Using a Finnish case study, a mathematical model is presented to investigate the optimal storage capacity in a renewable power system. In addition, the impact of demand response for domestic storage space heating in terms of the optimal sizing of energy storage is discussed. Finally, sensitivity analyses are conducted to observe the impact of a small share of controllable baseload production as well as the oversizing of renewable generation in terms of required hydrogen storage size.

  16. Surface generation of negative hydrogen ion beams

    International Nuclear Information System (INIS)

    Bommel, P.J.M. van.

    1984-01-01

    This thesis describes investigations on negative hydrogen ion sources at the ampere level. Formation of H - ions occurs when positive hydrogen ions capture two electrons at metal surfaces. The negative ionization probability of hydrogen at metal surfaces increases strongly with decreasing work function of the surface. The converters used in this study are covered with cesium. Usually there are 'surface plasma sources' in which the hydrogen source plasma interacts with a converter. In this thesis the author concentrates upon investigating a new concept that has converters outside the plasma. In this approach a positive hydrogen ion beam is extracted from the plasma and is subsequently reflected from a low work function converter surface. (Auth.)

  17. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems

    KAUST Repository

    Hatzell, Marta C.; Ivanov, Ivan; D. Cusick, Roland; Zhu, Xiuping; Logan, Bruce E.

    2014-01-01

    Currently, there is an enormous amount of energy available from salinity gradients, which could be used for clean hydrogen production. Through the use of a favorable oxygen reduction reaction (ORR) cathode, the projected electrical energy generated by a single pass ammonium bicarbonate reverse electrodialysis (RED) system approached 78 W h m-3. However, if RED is operated with the less favorable (higher overpotential) hydrogen evolution electrode and hydrogen gas is harvested, the energy recovered increases by as much ∼1.5× to 118 W h m-3. Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 W h m-3 or ∼1/3 of that produced through direct hydrogen generation.

  18. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems.

    Science.gov (United States)

    Hatzell, Marta C; Ivanov, Ivan; Cusick, Roland D; Zhu, Xiuping; Logan, Bruce E

    2014-01-28

    Currently, there is an enormous amount of energy available from salinity gradients, which could be used for clean hydrogen production. Through the use of a favorable oxygen reduction reaction (ORR) cathode, the projected electrical energy generated by a single pass ammonium bicarbonate reverse electrodialysis (RED) system approached 78 W h m(-3). However, if RED is operated with the less favorable (higher overpotential) hydrogen evolution electrode and hydrogen gas is harvested, the energy recovered increases by as much ~1.5× to 118 W h m(-3). Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 W h m(-3) or ~1/3 of that produced through direct hydrogen generation.

  19. Studies on the permeation of hydrogen through steam generator tubes at high temperatures using an electrochemical method

    International Nuclear Information System (INIS)

    Giraudeau, F.; Yang, L.; Steward, F.R.; DeBouvier, O.

    1998-01-01

    The permeation of hydrogen through steam generator tubes at high temperatures (∼ 300 degrees C) has been studied using an electrochemical technique. With this technique, hydrogen is generated on one side of the tube and monitored on the other side. The time for the hydrogen to reach the other side is used to determine the diffusion coefficient of hydrogen in the tube. Boundary conditions at the entry and exit sides have been investigated separately. Preliminary studies were performed on Stainless Steel 316 and Nickel Alloy 800 to better understand the influence of the solution chemistry on the electrochemical evolution of hydrogen. The surface phenomena effect and the trapping effect are discussed to account for differences observed in the permeation response. The hydrogen permeation through oxides at the exit side has been studied. Two nickel alloys (Alloy 800 and Alloy 600), materials widely used for steam generator tubes, have been investigated. The tubes were prefilmed using two different treatments. The oxides were formed in dry air at high temperatures (300 degrees C to 600 degrees C), or in humid gas at 300 degrees C. The diffusion coefficients at 300 degrees C in Stainless Steel 316 and Alloy 800 were determined to be of the order of 10 -6 - 10 -7 cm 2 /s for the bare metal. This is in agreement with results obtained by gas phase permeation techniques in the literature. (author)

  20. Micro hydrogen for portable power : generating opportunities for hydrogen and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A new fuel cell technology for portable applications was reviewed. Success for the fuel cell industry will be achieved primarily by supplanting lithium-ion batteries, and fuel cells for portable applications have clear advantages to batteries in addition to their known environmental benefits. Micro hydrogen {sup TM} is the integrated combination of hydrogen fuel cell, hydrogen storage and delivery, fluidic interconnects and power conditioning electronics required for creating high energy density portable power sources. The small size, low heat production, environmental sustainability and refueling flexibility of the systems provides enormous economic opportunities for the use of micro hydrogen in cell phone technology, personal digital assistants and other electronic gadgets. Details of a trial to test and evaluate micro hydrogen fuel cell powered bike lights were presented. Further programs are planned for external demonstrations of high-beam search and rescue lighting, flashlights for security personnel and portable hydrogen power sources that will be used by multiple organizations throughout British Columbia. It was concluded that fuel cell technology must match the lithium-ion battery's performance by providing fast recharge, high energy density, and adaptability. Issues concerning refueling and portable and disposable cartridges for micro hydrogen systems were also discussed. 8 figs.

  1. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  2. Simulation for estimation of hydrogen sulfide scavenger injection dose rate for treatment of crude oil

    Directory of Open Access Journals (Sweden)

    T.M. Elshiekh

    2015-12-01

    Full Text Available The presence of hydrogen sulfide in the hydrocarbon fluids is a well known problem in many oil and gas fields. Hydrogen sulfide is an undesirable contaminant which presents many environmental and safety hazards. It is corrosive, malodorous, and toxic. Accordingly, a need has been long left in the industry to develop a process which can successfully remove hydrogen sulfide from the hydrocarbons or at least reduce its level during the production, storage or processing to a level that satisfies safety and product specification requirements. The common method used to remove or reduce the concentration of hydrogen sulfide in the hydrocarbon production fluids is to inject the hydrogen sulfide scavenger into the hydrocarbon stream. One of the chemicals produced by the Egyptian Petroleum Research Institute (EPRI is EPRI H2S scavenger. It is used in some of the Egyptian petroleum producing companies. The injection dose rate of H2S scavenger is usually determined by experimental lab tests and field trials. In this work, this injection dose rate is mathematically estimated by modeling and simulation of an oil producing field belonging to Petrobel Company in Egypt which uses EPRI H2S scavenger. Comparison between the calculated and practical values of injection dose rate emphasizes the real ability of the proposed equation.

  3. High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules

    DEFF Research Database (Denmark)

    O-Thong, Sompong; Prasertsan, P.; Karakashev, Dimitar Borisov

    2008-01-01

    as carrier to immobilize T. thermosaccharolyticum strain PSU-2 in UASB reactor operated at a hydraulic retention time (HRT) ranging from 0.75 to 24h and corresponding sucrose loading rate from 58.5 to 2.4 mmol sucrose l(-1)h(-1). In comparison with hydrogen production rate of 12.1 mmol H(2)l(-1)h(-1......) obtained by carrier-free reactor upflow anaerobic (UA) system, a greatly improved hydrogen production rate up to 152 mmol H(2)l(-1)h(-1) was demonstrated by the granular cells in UASB system. The biofilm of T. thermosaccharolyticum strain PSU-2 developed on treated methanogenic granules in UASB reactor...... substantially enhanced biomass retention (3 times), and production of hydrogen (12 times) compared to carrier-free reactor. It appears to be the most preferred process for highly efficient dark fermentative hydrogen production from sugar containing wastewater under thermophilic conditions. (C) 2008...

  4. Effect of the hydrogen flow rate on the structural and optical properties of hydrogenated amorphous silicon thin films prepared by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ben Amor, Sana; Dimassi, Wissem; Ali Tebai, Mohamed; Ezzaouia, Hatem [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia)

    2012-10-15

    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited from pure silane (SiH{sub 4}) and hydrogen (H{sub 2}) gas mixture by plasma enhanced chemical vapor deposition (PECVD) method at low temperature (400 C) using high rf power (60 W). The structural and optical properties of these films are systematically investigated as a function of the flow rate of hydrogen (F{sub H2}).The surface morphology is analyzed by atomic force microscopy (AFM). The characterization of these films with low angle X-ray diffraction revealed that the crystallite size in the films tends to decrease with increase in (F{sub H2}). The Fourier transform infrared (FTIR) spectroscopic analysis showed that at low values of (F{sub H2}),the hydrogen bonding in Si:H films shifts from di-hydrogen (Si-H{sub 2}) and (Si-H{sub 2})n complexes to the mono-hydrogen (Si-H) bonding configuration. Finally, for these optimized conditions, the deposition rate decreases with increasing (F{sub H2}). (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. The rate-limiting process of hydrogen transport in Mo

    Energy Technology Data Exchange (ETDEWEB)

    Ohkoshi, Keishiro; Chikazawa, Yoshitaka; Bandourko, V; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Hydrogen isotope transport characteristics of Mo, whose refractory properties are considered to be suitable as plasma facing material, was investigated by applying 3 keV D{sub 2}{sup +} beam to the membrane specimen. The Arrhenius plot of deuterium permeation probability showed linear increase against the reciprocal temperature and its apparent activation energy was determined as 41.5 kJ/mol. The simultaneous irradiation of 3 keV Ar{sup +} onto backside surface of specimen had little effect on the deuterium permeation rate. According to these results, the rate-limiting process of deuterium transport in Mo was determined. (author)

  6. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  7. Origin of excess heat generated during loading Pd-impregnated alumina powder with deuterium and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriyeva, O., E-mail: olga.dmitriyeva@colorado.edu [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 (United States); Coolescence LLC, 2450 Central Ave Ste F, Boulder, CO 80301 (United States); Cantwell, R.; McConnell, M. [Coolescence LLC, 2450 Central Ave Ste F, Boulder, CO 80301 (United States); Moddel, G. [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 (United States)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer We studied heat produced by hydrogen and deuterium in Pd-impregnated alumina powder. Black-Right-Pointing-Pointer Samples were fabricated using light and heavy water isotopes and varied the gas used for loading. Black-Right-Pointing-Pointer Incorporation of hydrogen and deuterium influenced the amount of heat released or consumed. Black-Right-Pointing-Pointer Pd nanoparticles appear to catalyze hydrogen/deuterium (H/D) exchange chemical reactions. Black-Right-Pointing-Pointer Anomalous heating can be accounted for by chemical rather than nuclear reactions. - Abstract: We studied heat production in Pd-impregnated alumina powder in the presence of hydrogen and deuterium gases, investigating claims of anomalous heat generated as a result of nuclear fusion, usually referred to as a low energy nuclear reaction (LENR). By selecting the water isotope used to fabricate the material and then varying the gas used for loading, we were able to influence the amount of heat released or consumed. We suggest that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. This hypothesis is supported by heat measurements, residual gas analysis (RGA) data, and calculations of energy available from H/D exchange reactions. Based on the results we conclude that the origin of the anomalous heat generated during deuterium loading of Pd-enriched alumina powder is chemical rather than nuclear.

  8. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    Energy Technology Data Exchange (ETDEWEB)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  9. On severe accident hydrogen behaviour in Loviisa

    International Nuclear Information System (INIS)

    Okkonen, T.

    1996-02-01

    This study is related to the hydrogen management strategy of the Loviisa ice-condenser containments. A synthetic survey is conducted of the various parts of the subject by using compact 'back-of-the-envelope' analysis methods. The analysed cases are consistent with the principal hydrogen management approaches proposed by the utility Imatran Voima Oy (IVO). The study begins by introduction of the Loviisa plant features and various severe accident types. Hydrogen generation characteristics are analysed mainly for the core degradation phase, but the hydrogen sources from molten fuel-coolant interactions and reflooding of a degraded core are discussed, as well. The hydrogen generation and release rates are compared with the overall gas convection and mixing conditions in order to estimate hydrogen concentrations in the containment. The natural convection currents are examined also from the scaling point of view, concerning the scaled-down VICTORIA tests of IVO. Finally, the potential for large deflagration loadings or local detonations is examined for the Loviisa containments. The study is concluded by preliminary subjective judgments about the most critical factors of the Loviisa hydrogen problematics and about any issues that may require additional confirmative research. (orig.) (47 refs., 4 figs., 24 tabs.)

  10. On severe accident hydrogen behaviour in Loviisa

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T. [OTO-Consulting Ay, Helsinki (Finland)

    1996-02-01

    This study is related to the hydrogen management strategy of the Loviisa ice-condenser containments. A synthetic survey is conducted of the various parts of the subject by using compact `back-of-the-envelope` analysis methods. The analysed cases are consistent with the principal hydrogen management approaches proposed by the utility Imatran Voima Oy (IVO). The study begins by introduction of the Loviisa plant features and various severe accident types. Hydrogen generation characteristics are analysed mainly for the core degradation phase, but the hydrogen sources from molten fuel-coolant interactions and reflooding of a degraded core are discussed, as well. The hydrogen generation and release rates are compared with the overall gas convection and mixing conditions in order to estimate hydrogen concentrations in the containment. The natural convection currents are examined also from the scaling point of view, concerning the scaled-down VICTORIA tests of IVO. Finally, the potential for large deflagration loadings or local detonations is examined for the Loviisa containments. The study is concluded by preliminary subjective judgments about the most critical factors of the Loviisa hydrogen problematics and about any issues that may require additional confirmative research. (orig.) (47 refs., 4 figs., 24 tabs.).

  11. Fast Breaking Detergents: Their Role in the Generation of Hydrogen Sulfide in Oily-Water Wastes

    Science.gov (United States)

    1993-09-01

    acid (Dwyer & Tiedje, 1983) and Desulfowibrio desulfitricans to produce ethanol and acetic acid (Dwyer & Tiedje, 1986). Under anaerobic conditions, the...glycol, glycolic acid, hydrogen, carbon dioxide and a number of intermediates. The acetic acid and ethylene glycol are utilised by some species of SRB...are consequently being introduced. Hydrogen sulfide generation by anaerobic sulfate-reducing bacteria (SRB) is a concern for the RAN because it can

  12. Elevated corrosion rates and hydrogen sulfide in homes with ‘Chinese Drywall’

    International Nuclear Information System (INIS)

    Allen, Joseph G.; MacIntosh, David L.; Saltzman, Lori E.; Baker, Brian J.; Matheson, Joanna M.; Recht, Joel R.; Minegishi, Taeko; Fragala, Matt A.; Myatt, Theodore A.; Spengler, John D.; Stewart, James H.; McCarthy, John F.

    2012-01-01

    In December 2008, the U.S. Consumer Product Safety Commission (CPSC) began receiving reports about odors, corrosion, and health concerns related to drywall originating from China. In response, a detailed environmental health and engineering evaluation was conducted of 41 complaint and 10 non-complaint homes in the Southeast U.S. Each home investigation included characterization of: 1) drywall composition; 2) indoor and outdoor air quality; 3) temperature, moisture, and building ventilation; and 4) copper and silver corrosion rates. Complaint homes had significantly higher hydrogen sulfide concentrations (mean 0.82 vs. 3 , p 2 S: 476 vs. 2 S: 1472 vs. 389 Å/30 d, p < 0.01). The abundance of carbonate and strontium in drywall was also elevated in complaint homes, and appears to be useful objective marker of problematic drywall in homes that meet other screening criteria (e.g., constructed or renovated in 2006–2007, reports of malodor and accelerated corrosion). This research provides empirical evidence of the direct association between homes constructed with ‘Chinese Drywall’ in 2006–2007 and elevated corrosion rates and hydrogen sulfide concentrations in indoor air. - Highlights: ► Environmental measurements in homes with and without “Chinese Drywall” ► Homes with “Chinese Drywall” had higher hydrogen sulfide concentrations ► Homes with “Chinese Drywall” had elevated corrosion rates ► Study provides empirical evidence of reported associations

  13. Leak detection in steam generators with hydrogen monitors using diffusion membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hissink, M

    1975-07-01

    Large water leaks in steam-generators give rise to violent chemical reactions which can only be controlled by a pressure relief system. Smaller leaks do not pose direct safety hazards but wastage of pipes surrounding the leak should be prevented. Leak detection is best carried out by monitors recording the hydrogen in sodium content. For large leaks the specification of these monitors causes no problems, contrary to those for the timely detection of small leaks. Essential parameters are sensitivity and speed of response, specificity is less important. But apart from the instrument specification, a number of factors, related to the construction and operation of the steam-generator, determine the performance of the leak detection system. A discussion of these factors is given, with a view to the design of the SNR-300. Although tile results of many theoretical studies and experimental work are available, there seems to be room for further investigations on the growths of minor leaks. Also lacking a sufficient experience concerning the level and fluctuations of the hydrogen background in the sodium. A description is given of the hydrogen monitor developed at TNO, which is based on a combination of a nickel membrane and an ion getter pump. The parameters of this instrument have been evaluated in a test rig. Operational experience with the monitor is available from the 50 MW Test Facility at Hengelo. Especially for further studies the need for a calibrated instrument has become apparent. Test are going on with a modified design of a monitor meeting this requirement. (author)

  14. Transport of high fluxes of hydrogen plasma in a linear plasma generator

    NARCIS (Netherlands)

    Vijvers, W.A.J.; Al, R.S.; Lopes Cardozo, N.J.; Goedheer, W.J.; Groot, de B.; Kleyn, A.W.; Meiden, van der H.J.; Peppel, van de R.J.E.; Schram, D.C.; Shumack, A.E.; Westerhout, J.; Rooij, van G.J.; Schmidt, J.; Simek, M.; Pekarek, S.; Prukner, V.

    2007-01-01

    A study was made to quantify the losses during the convective hydrogen plasma transport in the linear plasma generator Pilot-PSI due to volume recombination. A transport efficiency of 35% was achieved at neutral background pressures below ~7 Pa in a magnetic field of 1.2 T. This efficiency decreased

  15. High Growth Rate Deposition of Hydrogenated Amorphous Silicon-Germanium Films and Devices Using ECR-PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Hydrogenated amorphous silicon germanium films (a-SiGe:H) and devices have been extensively studied because of the tunable band gap for matching the solar spectrum and mature the fabrication techniques. a-SiGe:H thin film solar cells have great potential for commercial manufacture because of very low cost and adaptability to large-scale manufacturing. Although it has been demonstrated that a-SiGe:H thin films and devices with good quality can be produced successfully, some issues regarding growth chemistry have remained yet unexplored, such as the hydrogen and inert-gas dilution, bombardment effect, and chemical annealing, to name a few. The alloying of the SiGe introduces above an order-of-magnitude higher defect density, which degrades the performance of the a-SiGe:H thin film solar cells. This degradation becomes worse when high growth-rate deposition is required. Preferential attachment of hydrogen to silicon, clustering of Ge and Si, and columnar structure and buried dihydride radicals make the film intolerably bad. The work presented here uses the Electron-Cyclotron-Resonance Plasma-Enhanced Chemical Vapor Deposition (ECR-PECVD) technique to fabricate a-SiGe:H films and devices with high growth rates. Helium gas, together with a small amount of H2, was used as the plasma species. Thickness, optical band gap, conductivity, Urbach energy, mobility-lifetime product, I-V curve, and quantum efficiency were characterized during the process of pursuing good materials. The microstructure of the a-(Si,Ge):H material was probed by Fourier-Transform Infrared spectroscopy. They found that the advantages of using helium as the main plasma species are: (1) high growth rate--the energetic helium ions break the reactive gas more efficiently than hydrogen ions; (2) homogeneous growth--heavy helium ions impinging on the surface promote the surface mobility of the reactive radicals, so that heteroepitaxy growth as clustering of Ge and Si, columnar structure are

  16. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Oscar [Millennium Cell Inc., Eatontown, NJ (United States)

    2017-02-22

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  17. Hydrogen fuel. Uses

    International Nuclear Information System (INIS)

    Darkrim-Lamari, F.; Malbrunot, P.

    2006-01-01

    Hydrogen is a very energetic fuel which can be used in combustion to generate heat and mechanical energy or which can be used to generate electricity and heat through an electrochemical reaction with oxygen. This article deals with the energy conversion, the availability and safety problems linked with the use of hydrogen, and with the socio-economical consequences of a generalized use of hydrogen: 1 - hydrogen energy conversion: hydrogen engines, aerospace applications, fuel cells (principle, different types, domains of application); 2 - hydrogen energy availability: transport and storage (gas pipelines, liquid hydrogen, adsorbed and absorbed hydrogen in solid materials), service stations; 3 - hazards and safety: flammability, explosibility, storage and transport safety, standards and regulations; 4 - hydrogen economy; 5 - conclusion. (J.S.)

  18. Hydrogen production during processing of radioactive sludge containing noble metals

    International Nuclear Information System (INIS)

    Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

    1992-01-01

    Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 x10 -7 g H 2 /hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 x10 -4 g H 2 /hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges

  19. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Vazquez, Gustavo; Cota-Navarro, Ciria Berenice; Razo-Flores, Elias [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico); Rosales-Colunga, Luis Manuel; de Leon-Rodriguez, Antonio [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico)

    2009-05-15

    Due to the renewed interest in finding sustainable fuels or energy carriers, biohydrogen (Bio-H{sub 2}) from biomass is a promising alternative. Fermentative Bio-H{sub 2} production was studied in a continuous stirred tank reactor (CSTR) operated during 65.6 d with cheese whey (CW) as substrate. Three hydraulic retention times (HRTs) were tested (10, 6 and 4 h) and the highest volumetric hydrogen production rate (VHPR) was attained with HRT of 6 h. Therefore, four organic loading rates (OLRs) at a fixed HRT of 6 h were tested thereafter, being: 92.4, 115.5, 138.6 and 184.4 g lactose/L/d. The highest VHPR (46.61 mmol H{sub 2}/L/h) and hydrogen molar yield (HMY) of 2.8 mol H{sub 2}/mol lactose were found at an OLR of 138.6 g lactose/L/d; a sharp fall in VHPR occurred at an OLR of 184.4 g lactose/L/d. Butyric, propionic and acetic acids were the main soluble metabolites found, with butyric-to-acetic ratios ranging from 1.0 to 2.4. Bacterial community was identified by partial sequence analysis of the 16S rRNA and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that at HRT of 10 h and 6 h were dominated by the Clostridium genus. The VHPR attained in this study is the highest reported value for a CSTR system using CW as substrate with anaerobic sludge as inoculum and represents a 33-fold increase compared to a previous study. Thus, it was demonstrated that continuous fermentative Bio-H{sub 2} production from CW can be significantly enhanced by an appropriate selection of parameters such as HRT and OLR. Enhancements in VHPR are significant because it is a critical parameter to determine the full-scale practical application of fermentation technologies that will be used for sustainable and clean energy generation. (author)

  20. NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A. thaliana.

    Science.gov (United States)

    Xu, Shenyuan; Ni, Shuisong; Kennedy, Michael A

    2017-05-23

    At2g44920 from Arabidopsis thaliana is a pentapeptide-repeat protein (PRP) composed of 25 repeats capped by N- and C-terminal α-helices. PRP structures are dominated by four-sided right-handed β-helices typically consisting of mixtures of type II and type IV β-turns. PRPs adopt repeated five-residue (Rfr) folds with an Rfr consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Unlike other PRPs, At2g44920 consists exclusively of type II β-turns. At2g44920 is predicted to be located in the thylakoid lumen although its biochemical function remains unknown. Given its unusual structure, we investigated the biophysical properties of At2g44920 as a representative of the β-helix family to determine if it had exceptional global stability, backbone dynamics, or amide hydrogen exchange rates. Circular dichroism measurements yielded a melting point of 62.8°C, indicating unexceptional global thermal stability. Nuclear spin relaxation measurements indicated that the Rfr-fold core was rigid with order parameters ranging from 0.7 to 0.9. At2g44920 exhibited a striking range of amide hydrogen exchange rates spanning 10 orders of magnitude, with lifetimes ranging from minutes to several months. A weak correlation was found among hydrogen exchange rates, hydrogen bonding energies, and amino acid solvent-accessible areas. Analysis of contributions from fast (approximately picosecond to nanosecond) backbone dynamics to amide hydrogen exchange rates revealed that the average order parameter of amides undergoing fast exchange was significantly smaller compared to those undergoing slow exchange. Importantly, the activation energies for amide hydrogen exchange were found to be generally higher for the slowest exchanging amides in the central Rfr coil and decreased toward the terminal coils. This could be explained by assuming that the concerted motions of two preceding or following coils required for hydrogen bond disruption and amide hydrogen exchange have a higher activation energy

  1. Development of a kinetic model of hydrogen absorption and desorption in magnesium and analysis of the rate-determining step

    Science.gov (United States)

    Kitagawa, Yuta; Tanabe, Katsuaki

    2018-05-01

    Mg is promising as a new light-weight and low-cost hydrogen-storage material. We construct a numerical model to represent the hydrogen dynamics on Mg, comprising dissociative adsorption, desorption, bulk diffusion, and chemical reaction. Our calculation shows a good agreement with experimental data for hydrogen absorption and desorption on Mg. Our model clarifies the evolution of the rate-determining processes as absorption and desorption proceed. Furthermore, we investigate the optimal condition and materials design for efficient hydrogen storage in Mg. By properly understanding the rate-determining processes using our model, one can determine the design principle for high-performance hydrogen-storage systems.

  2. CdS/TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation

    Science.gov (United States)

    Krishna Karuturi, Siva; Yew, Rowena; Reddy Narangari, Parvathala; Wong-Leung, Jennifer; Li, Li; Vora, Kaushal; Tan, Hark Hoe; Jagadish, Chennupati

    2018-03-01

    Cadmium sulfide (CdS) is a unique semiconducting material for solar hydrogen generation applications with a tunable, narrow bandgap that straddles water redox potentials. However, its potential towards efficient solar hydrogen generation has not yet been realized due to low photon-to-current conversions, high charge carrier recombination and the lack of controlled preparation methods. In this work, we demonstrate a highly efficient CdS/TiO2 heterostructured photoelectrode using atomic layer deposition and solution ion transfer reactions. Enabled by the well-controlled deposition of CdS nanocrystals on TiO2 inverse opal (TiIO) nanostructures using the proposed method, a saturation photocurrent density of 9.1 mA cm-2 is realized which is the highest ever reported for CdS-based photoelectrodes. We further demonstrate that the passivation of a CdS surface with an ultrathin amorphous layer (˜1.5 nm) of TiO2 improves the charge collection efficiency at low applied potentials paving the way for unassisted solar hydrogen generation.

  3. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water

    Science.gov (United States)

    Cortright, R. D.; Davda, R. R.; Dumesic, J. A.

    2002-08-01

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose-which makes up the major energy reserves in plants and animals-to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  4. The design of a low-cost device for the production of hydrogen

    Directory of Open Access Journals (Sweden)

    Amal NASSAR

    2014-11-01

    Full Text Available The objective of this project is to design a generator for hydrogen gas. In this generator no need to storage the output gas, by controlling in the gas flow rate (according to usage needs so, we did not need to hydrogen storage. The prototype is developed and tested and the idea can implement practically to save time and money.

  5. Rate coefficients for low-energy electron dissociative attachment to molecular hydrogen

    International Nuclear Information System (INIS)

    Horacek, J.; Houfek, K.; Cizek, M.; Murakami, I.; Kato, T.

    2003-02-01

    Calculation of rate constants for dissociative electron attachment to molecular hydrogen is reported. The calculation is based on an improved nonlocal resonance model of Cizek, Horacek and Domcke which takes fully into account the nonlocality of the resonance dynamics and uses potentials with correct asymptotic forms. The rate constants are calculated for all quantum numbers v and J of the target molecules and for electron temperature in the range 0-30000 K. (author)

  6. Population inversion in recombining hydrogen plasma

    International Nuclear Information System (INIS)

    Furukane, Utaro; Yokota, Toshiaki; Oda, Toshiatsu.

    1978-11-01

    The collisional-radiative model is applied to a recombining hydrogen plasma in order to investigate the plasma condition in which the population inversion between the energy levels of hydrogen can be generated. The population inversion is expected in a plasma where the three body recombination has a large contribution to the recombining processes and the effective recombination rate is beyond a certain value for a given electron density and temperature. Calculated results are presented in figures and tables. (author)

  7. Use of a high repetition rate neutron generator for in vivo body composition measurements via neutron inelastic scattering

    International Nuclear Information System (INIS)

    Kehayias, J.J.; Ellis, K.J.; Cohn, S.H.; Weinlein, J.H.

    1986-01-01

    A small D-T neutron generator with a high pulse rate is used for the in vivo measurement of body carbon, oxygen and hydrogen. The core of the neutron generator is a 13 cm-long Zetatron tube pulsed at a rate of 10 kHz delivering 10 3 to 10 4 neutrons per pulse. A target-current feedback system regulates the source of the accelerator to assure constant neutron output. Carbon is measured by detecting the 4.44 MeV γ-rays from inelastic scattering. The short half-life of the 4.44 MeV state of carbon requires detection of the γ-rays during the 10 μs neutron pulse. Generators with low pulsing rate were found inappropriate for carbon measurements because of their low duty-cycle (high neutron output during the pulse). In vivo measurements were performed with normal volunteers using a scanning bed facility for a dose less than 25 mrem. This technique offers medical as well as general bulk analysis applications. 8 refs., 5 figs

  8. Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen Generation

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Craig A.

    2014-11-26

    Under program auspices we have investigated material chemistries suitable for the solar generation of hydrogen by water photoelectrolysis. We have built upon, and extended, our knowledge base on the synthesis and application of TiO2 nanotube arrays, a material architecture that appears ideal for water photoelectrolysis. To date we have optimized, refined, and greatly extended synthesis techniques suitable for achieving highly ordered TiO2 nanotube arrays of given length, wall thickness, pore diameter, and tube-to-tube spacing for use in water photoelectrolysis. We have built upon this knowledge based to achieve visible light responsive, photocorrosion stable n-type and p-type ternary oxide nanotube arrays for use in photoelectrochemical diodes.

  9. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E-C Co., Seongnam (Korea, Republic of)

    2014-10-15

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  10. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    International Nuclear Information System (INIS)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Gun Hong

    2014-01-01

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  11. Influence of hydrogen on crack growth rate of alloy 690 CW in PWR conditions

    International Nuclear Information System (INIS)

    Garcia Redondo, M.S.; Perosanz, F.J.; Lapena, J.; Gomez-Briceno, D.

    2015-01-01

    The influence of hydrogen concentration is well established for Alloy 600 and other nickel base alloys as Alloy 182/ 82 weld metals and X-750. It is accepted that for these materials maximum crack growth rate peaks close to Ni/NiO phase boundary. The influence of the hydrogen on the CGR of Alloy 690 is not well established. Available results for Alloy 690 are scarce and not conclusive. Results obtained by CIEMAT, in conditions representative of the PWR operating plants, indicated an apparent crack growth rate increase by a 3 factor when the hydrogen concentration increased from 35 to 81 cm -3 of H 2 /kg H 2 O. In order to gain some insight into the influence of the hydrogen, a new test has been performed with 20 cm -3 H 2 /kg H 2 O at 360 Celsius degrees, concentration close to Ni/NiO phase boundary. The material used was extruded control rod drive mechanism (CRDM) tubes with homogeneous microstructure. Rolling and tensile straining was applied to the CRDM material to obtain 20% of cold work in order to simulate the strain condition expected in the Heat Affected Zone (HAZ). (authors)

  12. Bio-hydrogen production based on catalytic reforming of volatiles generated by cellulose pyrolysis: An integrated process for ZnO reduction and zinc nanostructures fabrication

    International Nuclear Information System (INIS)

    Maciel, Adriana Veloso; Job, Aldo Eloizo; Nova Mussel, Wagner da; Brito, Walter de; Duarte Pasa, Vanya Marcia

    2011-01-01

    The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor-solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H 2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N 2 atmosphere, at temperatures up to 900 o C, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.

  13. Photocatalysis in Generation of Hydrogen from Water

    KAUST Repository

    Takanabe, Kazuhiro

    2015-04-18

    Solar energy can be converted by utilizing the thermal or photoelectric effects of photons. Concentrated solar power systems utilize thermal energy from the sun by either making steam and then generating power or shifting the chemical equilibrium of a reaction (e.g., water splitting or CO2 reduction) that occurs at extremely high temperatures. The photocatalytic system contains powder photocatalysts. Each photocatalyst particle should collect sufficient photons from the solar flux to cause the required multielectron reactions to occur. The band gap and band edge positions of semiconductors are the most critical parameters for assessing the suitability of photocatalysts for overall water splitting. The most important requirement when selecting photocatalyst materials is the band positions relative to hydrogen and oxygen evolution potentials. For most photocatalysts, surface modification by cocatalysts was found to be essential to achieve overall water splitting.

  14. Assessment study of devices from the generation of electricity from stored hydrogen

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Barghusen, J.J.; Link, L.E.

    1975-12-01

    A study was performed to evaluate alternative methods for the generation of electricity from stored hydrogen. The generation systems considered were low-temperature and high-temperature fuel cells, gas turbines and steam turbines. These systems were evaluated in terms of present-day technology and future (1995) technology. Of primary interest were the costs and efficiencies of the devices, the versatility of the devices toward various types of gaseous feeds, and the likelihood of commercial development. On the basis of these evaluations, recommendations were made describing the areas of technology which should be developed

  15. Porous layered double hydroxides synthesized using oxygen generated by decomposition of hydrogen peroxide

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; de Ruiter, M.P.; Wijnands, Tom; ten Elshof, Johan E.

    2017-01-01

    Porous magnesium-aluminium layered double hydroxides (LDH) were prepared through intercalation and decomposition of hydrogen peroxide (H2O2). This process generates oxygen gas nano-bubbles that pierce holes in the layered structure of the material by local pressure build-up. The decomposition of the

  16. ARGAZ: a new device for experimental study of the coupling between hydrogen production and hydrogen transfer through saturated Callovian-Oxfordian argillite

    International Nuclear Information System (INIS)

    Imbert, C.; Bataillon, C.; Touze, G.; Vigier, P.; Talandier, J.

    2010-01-01

    Document available in extended abstract form only. A specific experimental device has been designed to produce hydrogen at the metal-argillite interface by electrochemistry. The target is for one hand to reproduce the production of hydrogen occurring when a metal is corroded by the water contained in the porosity of the mud-stone. On the other hand, the transfer of the hydrogen through the mud-stone can be studied. The specific features of the experiment are the following: - Hydrogen is generated inside a cell by electrochemistry, at the interface between the argillite and a metallic surface; no gas injection is required; - Electrochemistry gives the possibility to control the hydrogen production rate; - Hydrogen generation implies water consumption: the water comes from the porosity of the bulk argillite, near the interface; - That one-dimensional experiment has been built around a cylindrical sample of bulk and undamaged argillite coming from the Callovian-Oxfordian formation. Inside the device a cylindrical sample of argillite is placed above a nickel plate. Around the argillite, a ring of compacted bentonite ensures a mechanical confinement. When saturated, the bentonite will apply a swelling pressure close to the total pressure encountered by the sample in the geological formation. The hydrogen is generated at the interface nickel-argillite. The nickel plate is one of the two electrodes required for electrochemistry. At the top face of bentonite, iron electrode is used to close the electrical circuit. The hydrogen produced at the bottom face of the mud-stone is expected to go across the argillite towards the top face. A porous plate connected with a sampling bottle allows the capture of hydrogen. The argillite sample has a diameter of 50 mm, and a height of 50 mm. It is obtained by over-coring a core sample, and by a careful machining leading to a perfect geometry and surface quality. The production rate of hydrogen can be calculated from the current intensity

  17. The local authority rating of independent generators

    International Nuclear Information System (INIS)

    Chapman, G.C.

    1991-01-01

    A brief history of the rating is given covering the public utilities. Formula rating of the nationalised electricity supply industry is described with independent generators' rates, the effect of privatisation and the longer term outlook considered. The need to convince the UK government that power generating machinery should no more be rated than any manufacturing or process machinery, and that all power producers should be treated the same is noted. (Author)

  18. Novel Methods of Hydrogen Leak Detection

    International Nuclear Information System (INIS)

    Pushpinder S Puri

    2006-01-01

    With the advent of the fuel cell technology and a drive for clean fuel, hydrogen gas is emerging as a leading candidate for the fuel of choice. For hydrogen to become a consumer fuel for automotive and domestic power generation, safety is paramount. It is, therefore, desired to have a method and system for hydrogen leak detection using odorant which can incorporate a uniform concentration of odorant in the hydrogen gas, when odorants are mixed in the hydrogen storage or delivery means. It is also desired to develop methods where the odorant is not added to the bulk hydrogen, keeping it free of the odorization additives. When odorants are not added to the hydrogen gas in the storage or delivery means, methods must be developed to incorporate odorant in the leaking gas so that leaks can be detected by small. Further, when odorants are not added to the stored hydrogen, it may also be desirable to observe leaks by sight by discoloration of the surface of the storage or transportation vessels. A series of novel solutions are proposed which address the issues raised above. These solutions are divided into three categories as follows: 1. Methods incorporating an odorant in the path of hydrogen leak as opposed to adding it to the hydrogen gas. 2. Methods where odorants are generated in-situ by chemical reaction with the leaking hydrogen 3. Methods of dispensing and storing odorants in high pressure hydrogen gas which release odorants to the gas at a uniform and predetermined rates. Use of one or more of the methods described here in conjunction with appropriate engineering solutions will assure the ultimate safety of hydrogen use as a commercial fuel. (authors)

  19. RADIOLYTIC HYDROGEN GENERATION INSAVANNAH RIVER SITE (SRS) HIGH LEVEL WASTETANKS COMPARISON OF SRS AND HANFORDMODELING PREDICTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C; Ned Bibler, N

    2009-04-15

    In the high level waste tanks at the Savannah River Site (SRS), hydrogen is produced continuously by interaction of the radiation in the tank with water in the waste. Consequently, the vapor spaces of the tanks are purged to prevent the accumulation of H{sub 2} and possible formation of a flammable mixture in a tank. Personnel at SRS have developed an empirical model to predict the rate of H{sub 2} formation in a tank. The basis of this model is the prediction of the G value for H{sub 2} production. This G value is the number of H{sub 2} molecules produced per 100 eV of radiolytic energy absorbed by the waste. Based on experimental studies it was found that the G value for H{sub 2} production from beta radiation and from gamma radiation were essentially equal. The G value for H{sub 2} production from alpha radiation was somewhat higher. Thus, the model has two equations, one for beta/gamma radiation and one for alpha radiation. Experimental studies have also indicated that both G values are decreased by the presence of nitrate and nitrite ions in the waste. These are the main scavengers for the precursors of H{sub 2} in the waste; thus the equations that were developed predict G values for hydrogen production as a function of the concentrations of these two ions in waste. Knowing the beta/gamma and alpha heat loads in the waste allows one to predict the total generation rate for hydrogen in a tank. With this prediction a ventilation rate can be established for each tank to ensure that a flammable mixture is not formed in the vapor space in a tank. Recently personnel at Hanford have developed a slightly different model for predicting hydrogen G values. Their model includes the same precursor for H{sub 2} as the SRS model but also includes an additional precursor not in the SRS model. Including the second precursor for H{sub 2} leads to different empirical equations for predicting the G values for H{sub 2} as a function of the nitrate and nitrite concentrations in

  20. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  1. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data through Quarter 4 of 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peters, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-31

    This publication includes 86 composite data products (CDPs) produced for next generation hydrogen stations, with data through the fourth quarter of 2016. These CDPs include data from retail stations only.

  2. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data through Quarter 2 of 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Christopher D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peters, Michael C. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-05

    This publication includes 92 composite data products (CDPs) produced for next generation hydrogen stations, with data through the second quarter of 2017. These CDPs include data from retail stations only.

  3. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Spark Discharge Generated Nanoparticles for Hydrogen Storage Applications

    NARCIS (Netherlands)

    Vons, V.A.

    2010-01-01

    One of the largest obstacles to the large scale application of hydrogen powered fuel cell vehicles is the absence of hydrogen storage methods suitable for application on-board of these vehicles. Metal hydrides are materials in which hydrogen is reversibly absorbed by one or more metals or

  5. Converting Chemical Energy to Electricity through a Three-Jaw Mini-Generator Driven by the Decomposition of Hydrogen Peroxide.

    Science.gov (United States)

    Xiao, Meng; Wang, Lei; Ji, Fanqin; Shi, Feng

    2016-05-11

    Energy conversion from a mechanical form to electricity is one of the most important research advancements to come from the horizontal locomotion of small objects. Until now, the Marangoni effect has been the only propulsion method to produce the horizontal locomotion to induce an electromotive force, which is limited to a short duration because of the specific property of surfactants. To solve this issue, in this article we utilized the decomposition of hydrogen peroxide to provide the propulsion for a sustainable energy conversion from a mechanical form to electricity. We fabricated a mini-generator consisting of three parts: a superhydrophobic rotator with three jaws, three motors to produce a jet of oxygen bubbles to propel the rotation of the rotator, and three magnets integrated into the upper surface of the rotator to produce the magnet flux. Once the mini-generator was placed on the solution surface, the motor catalyzed the decomposition of hydrogen peroxide. This generated a large amount of oxygen bubbles that caused the generator and integrated magnets to rotate at the air/water interface. Thus, the magnets passed under the coil area and induced a change in the magnet flux, thus generating electromotive forces. We also investigated experimental factors, that is, the concentration of hydrogen peroxide and the turns of the solenoid coil, and found that the mini-generator gave the highest output in a hydrogen peroxide solution with a concentration of 10 wt % and under a coil with 9000 turns. Through combining the stable superhydrophobicity and catalyst, we realized electricity generation for a long duration, which could last for 26 000 s after adding H2O2 only once. We believe this work provides a simple process for the development of horizontal motion and provides a new path for energy reutilization.

  6. Ratio of tritiated water and hydrogen generated in mercury through a nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, K. [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Naka-gun, Ibaraki 319-1195 (Japan)], E-mail: manabe.kentaro@jaea.go.jp; Yokoyama, S. [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Naka-gun, Ibaraki 319-1195 (Japan)

    2008-02-15

    Tritium generated in a mercury target is a source of potential exposure of personnel at high-energy accelerator facilities. Knowledge of the chemical form of tritium is necessary to estimate the internal doses. We studied the tritium generation upon thermal neutron irradiation of a mercury target modified into liquid lithium amalgam to examine the ratio of tritiated water ([{sup 3}H]H{sub 2}O) and tritiated hydrogen ([{sup 3}H]H{sub 2}). The ratio between [{sup 3}H]H{sub 2}O and [{sup 3}H]H{sub 2} generated in lithium amalgam was 4:6 under these experimental conditions.

  7. Generation of an electromotive force by hydrogen-to-water oxidation with Pt-coated oxidized titanium foils

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, Klaus; El Achhab, Mhamed [Department of Materials Science, Institute for Experimental Condensed Matter Physics, Heinrich-Heine University, 40225 Duesseldorf, Universitaetsstrasse 1 (Germany)

    2011-12-15

    We show that chemically induced current densities up to 20 mA cm{sup -2} and an electromotive force (EMF) up to 465 mV are generated during the hydrogen-to-water-oxidation over Pt/TiO{sub 2}/Ti devices. We prepare the samples by plasma electrolytic oxidation (PEO) of titanium foils and deposition of Pt contact paste. This process yields porous structures and, depending on the anodization voltage, Schottky diode-type current-voltage curves of various ideality parameters. Our experiments demonstrate that Pt coated anodized titanium can also be utilized as hydrogen sensor; the system offers a number of advantages such as a wide temperature range of operation from -40 to 80 C, quick response and decay times of signals, and good electrical stability. Idealized sketch of the Pt coated anodized Ti foil and application as hydrogen sensor and electric generator. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules

    Energy Technology Data Exchange (ETDEWEB)

    O-Thong, Sompong [Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800, Kgs Lyngby (Denmark); Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand); Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90120 (Thailand); Karakashev, Dimitar; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800, Kgs Lyngby (Denmark)

    2008-11-15

    Biohydrogen production from Thermoanaerobacterium thermosaccharolyticum strain PSU-2 was examined in upflow anaerobic sludge blanket (UASB) reactor and carrier-free upflow anaerobic reactor (UA), both fed with sucrose and operating at 60 C. Heat-pretreated methanogenic granules were used as carrier to immobilize T. thermosaccharolyticum strain PSU-2 in UASB reactor operated at a hydraulic retention time (HRT) ranging from 0.75 to 24 h and corresponding sucrose loading rate from 58.5 to 2.4 mmol sucrose l{sup -1} h{sup -1}. In comparison with hydrogen production rate of 12.1 mmol H{sub 2} l{sup -1} h{sup -1} obtained by carrier-free reactor upflow anaerobic (UA) system, a greatly improved hydrogen production rate up to 152 mmol H{sub 2} l{sup -1} h{sup -1} was demonstrated by the granular cells in UASB system. The biofilm of T. thermosaccharolyticum strain PSU-2 developed on treated methanogenic granules in UASB reactor substantially enhanced biomass retention (3 times), and production of hydrogen (12 times) compared to carrier-free reactor. It appears to be the most preferred process for highly efficient dark fermentative hydrogen production from sugar containing wastewater under thermophilic conditions. (author)

  9. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  10. Fundamental study on hydrogen storage with hydrogen absorbing alloys. Operating characteristics of storage tank; Suiso kyuzo gokin wo mochiita suiso chozo ni kansuru kiso kenkyu. Chozo yoki no dosa tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, S.; Sekiguchi, N.; Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    Hydrogen absorption by a hydrogen storage (MH storage) is investigated for static characteristics, with a constant current applied to the hydrogen generator, and dynamic characteristics, with a fluctuating current applied to the same simulating actual insolation. In the experiment, alloy temperature (MH temperature) in the storage and a current for the generator are preset, and then automatic measurement is allowed to proceed at 10-second intervals of the differential pressure, hydrogen temperature in the piping, absolute pressure, MH temperature, room temperature, and water tank temperature. It is found as the result of the experiment that absorption performance is improved when the MH storage is cooled; that the mean absorption rate which is 1 without cooling increases to 1.62 at 7degC; that the mean absorption rate changes in proportion to the applied current (introduced hydrogen flow rate); that the rate which is 1 at 32A decreases to 0.53 that at 16A; that the absorption rate is dependent more on the current applied to the storage than the temperature of the heat exchanging medium; and that, even in the presence of fluctuation halfway in the applied current, the total absorption will be equal to a case of constant current application if the total amount of applied current is equal. 2 refs., 7 figs., 5 tabs.

  11. Next-generation TCAP hydrogen isotope separation process

    International Nuclear Information System (INIS)

    Heung, L. K.; Sessions, H. T.; Poore, A. S.; Jacobs, W. D.; Williams, C. S.

    2008-01-01

    A thermal cycling absorption process (TCAP) for hydrogen isotope separation has been in operation at Savannah River Site since 1994. The process uses a hot/cold nitrogen system to cycle the temperature of the separation column. The hot/cold nitrogen system requires the use of large compressors, heat exchanges, valves and piping that is bulky and maintenance intensive. A new compact thermal cycling (CTC) design has recently been developed. This new design uses liquid nitrogen tubes and electric heaters to heat and cool the column directly so that the bulky hot/cold nitrogen system can be eliminated. This CTC design is simple and is easy to implement, and will be the next generation TCAP system at SRS. A twelve-meter column has been fabricated and installed in the laboratory to demonstrate its performance. The design of the system and its test results to date is discussed. (authors)

  12. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application

    Directory of Open Access Journals (Sweden)

    Rajendra S. Gaikwad

    2011-01-01

    Full Text Available Cobalt ferrite, CoFe2O4, nanocrystalline films were deposited using electrostatic spray method and explored in sustainable hydrogen production application. Reflection planes in X-ray diffraction pattern confirm CoFe2O4 phase. The surface scanning microscopy photoimages reveal an agglomeration of closely-packed CoFe2O4 nanoflakes. Concentrated solar-panel, a two-step water splitting process, measurement technique was preferred for measuring the hydrogen generation rate. For about 5 hr sustainable, 440 mL/hr, hydrogen production activity was achieved, confirming the efficient use of cobalt ferrite nanocrystallites film in hydrogen production application.

  13. Diagnostics of Argon Injected Hydrogen Peroxide Added High Frequency Underwater Capillary Discharge

    Directory of Open Access Journals (Sweden)

    Muhammad Waqar Ahmed

    2016-05-01

    Full Text Available The effects of hydrogen peroxide addition and Argon injection on electrical and spectral characteristics of underwater capillary discharge were investigated. The flowing water discharge was created in a quartz tube (Φ = 4mm outer; Φ = 2mm inner; thickness 1mm by applying high frequency (25 kHz alternating current voltage (0-15kV across the tungsten electrodes (Φ=0.5mm, in pin-pin electrode configuration, separated by a gap distance of 10 mm. The results of no hydrogen peroxide addition and no Argon gas injection were compared with addition of hydrogen peroxide and Argon injection for different values. The emission spectrum was taken to present the increase in concentration of •OH radicals with and without hydrogen peroxide addition under different argon injection rates. The results demonstrated that addition of hydrogen peroxide do not remarkably affected the conductivity of water, but its addition increased the yield rate of •OH radicals generated by plasma discharge. The addition of Argon generated bubbles and gas channels reduced the high power consumption required for inducing flowing water long gap discharge. The results showed large concentration of •OH radicals due to hydrogen peroxide addition, less required input power for generating flowing water discharge by using high frequency input voltage and due to Argon injection.

  14. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    International Nuclear Information System (INIS)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27 C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully ''gettered'' by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  15. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  16. Thermal mathematical modeling of a multicell common pressure vessel nickel-hydrogen battery

    Science.gov (United States)

    Kim, Junbom; Nguyen, T. V.; White, R. E.

    1992-01-01

    A two-dimensional and time-dependent thermal model of a multicell common pressure vessel (CPV) nickel-hydrogen battery was developed. A finite element solver called PDE/Protran was used to solve this model. The model was used to investigate the effects of various design parameters on the temperature profile within the cell. The results were used to help find a design that will yield an acceptable temperature gradient inside a multicell CPV nickel-hydrogen battery. Steady-state and unsteady-state cases with a constant heat generation rate and a time-dependent heat generation rate were solved.

  17. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    Science.gov (United States)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  18. Selected specific rates of reactions of transients from water in aqueous solution. II. Hydrogen atom

    International Nuclear Information System (INIS)

    Anbar, M.; Farhataziz; Ross, A.B.

    1975-05-01

    Rates of reactions of hydrogen atoms (from radiolysis of water and other sources) with organic and inorganic molecules, ions, and transients in aqueous solution were tabulated. Directly measured rates obtained by kinetic spectroscopy or conductimetric methods, and relative rates determined by competition kinetics are included. (U.S.)

  19. Minimum Entropy Generation Theorem Investigation and Optimization of Metal Hydride Alloy Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2014-05-01

    Full Text Available The main purpose of this paper is to carry out numerical simulation of the hydrogen storage on exothermic reaction of metal hydride LaNi5 alloy container. In addition to accelerating the reaction speed of the internal metal hydride by internal control tube water-cooled mode, analyze via the application of second law of thermodynamics the principle of entropy generation. Use COMSOL Mutilphysics 4.3 a to engage in finite element method value simulation on two-dimensional axisymmetric model. Also on the premise that the internal control tube parameters the radius ri, the flow rate U meet the metal hydride saturation time, observe the reaction process of two parameters on the tank, entropy distribution and the results of the accumulated entropy. And try to find the internal tube parameter values of the minimum entropy, whose purpose is to be able to identify the reaction process and the reaction results of internal tank’s optimum energy conservation.

  20. Law proposal aiming at imposing the domestic consumption tax to the natural gas used for hydrogen generation for petroleum refining purposes

    International Nuclear Information System (INIS)

    2009-04-01

    In France, natural gas benefits from tax exemptions in several situations and in particular when used as raw material for hydrogen generation, which in turn, is used for crude oil refining and fuels generation. However, crude oil is cheaper when it is heavier but more hydrogen, and thus more natural gas, is needed to refine it and more CO 2 is released in the atmosphere. Therefore, refining cheap crude oil increases the refining margins of oil companies but their environmental impact as well. The aim of this law proposal is to impose the domestic consumption tax to natural gas when used in oil refining processes in order to finance the development of the renewable hydrogen industry through the creation of a High Council of Hydrogen Industry. This High Council would be in charge of promoting the development of renewable hydrogen production facilities and distribution circuits, of hydrogen-fueled vehicles, and of fuel cells. (J.S.)

  1. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  2. Development of a cryogenic hydrogen microjet for high-intensity, high-repetition rate experiments

    Science.gov (United States)

    Kim, J. B.; Göde, S.; Glenzer, S. H.

    2016-11-01

    The advent of high-intensity, high-repetition-rate lasers has led to the need for replenishing targets of interest for high energy density sciences. We describe the design and characterization of a cryogenic microjet source, which can deliver a continuous stream of liquid hydrogen with a diameter of a few microns. The jet has been imaged at 1 μm resolution by shadowgraphy with a short pulse laser. The pointing stability has been measured at well below a mrad, for a stable free-standing filament of solid-density hydrogen.

  3. The Norwegian hydrogen guide 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Hydrogen technologies are maturing at rapid speed, something we experience in Norway and around the globe every day as demonstration projects for vehicles and infrastructure expand at a rate unthinkable of only a few years ago. An example of this evolution happened in Norway in 2009 when two hydrogen filling stations were opened on May the 11th, making it possible to arrange the highly successful Viking Rally from Oslo to Stavanger with more than 40 competing teams. The Viking Rally demonstrated for the public that battery and hydrogen-electric vehicles are technologies that exist today and provide a real alternative for zero emission mobility in the future. The driving range of the generation of vehicles put into demonstration today is more than 450 km on a full hydrogen tank, comparable to conventional vehicles. As the car industry develops the next generation of vehicles for serial production within the next 4-5 years, we will see vehicles that are more robust, more reliable and cost effective. Also on the hydrogen production and distribution side progress is being made, and since renewable hydrogen from biomass and electrolysis is capable of making mobility basically emission free, hydrogen can be a key component in combating climate change and reducing local emissions. The research Council of Norway has for many years supported the development of hydrogen and fuel cell technologies, and The Research Council firmly believes that hydrogen and fuel cell technologies play a crucial role in the energy system of the future. Hydrogen is a flexible transportation fuel, and offers possibilities for storing and balancing intermittent electricity in the energy system. Norwegian companies, research organisations and universities have during the last decade developed strong capabilities in hydrogen and fuel cell technologies, capabilities it is important to further develop so that Norwegian actors can supply high class hydrogen and fuel cell technologies to global markets

  4. Hydrogen trapping energy levels and hydrogen diffusion at high and low strain rates (~10{sup 5} s{sup −1} and 10{sup −7} s{sup −1}) in lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, R., E-mail: barrav@post.bgu.ac.il; Eliezer, D.

    2016-09-30

    Duplex stainless steels (DSS) alloys are high strength steels combined with ductility and excellent resistance to stress corrosion cracking, which makes them attractive for the pressure vessels or underwater pipelines industries. Hydrogen embrittlement (HE) is caused by the action of hydrogen in combination with residual or applied stress and can lead to the mechanical degradation of a material. Dynamic and quasi-static experiments were conducted at room temperature and strain rates of 10{sup 5} s{sup −1} and 10{sup −7} s{sup −1} on gas-phase hydrogen charged DSS. Hydrogen trapping in the various defects and its effect on the mechanical properties are discussed in details. A linear model of Lee and Lee was applied to calculate the trap activation energies. It was found that lower strain rates (~10{sup −7} s{sup −1}) will create less deep hydrogen trapping energies values; ~40% lower than in non-loaded sample. In addition, higher dynamic pressure will create higher trapping energy sites for hydrogen. Based on our experimental studies we developed an analytical model for hydrogen trapping. We have found that the strain rate has a direct influence on both hydrogen diffusion and hydrogen potential trapping sites. During deformation processes created at low strain rates (~10{sup −7} s{sup −1}) hydrogen has enough time to migrate with dislocations from deeper potential trapping sites to lower potential trapping sites.

  5. Impacts of seasonality on hydrogen production using natural gas pressure letdown stations. Paper no. IGEC-1-083

    International Nuclear Information System (INIS)

    Maddaloni, J.; Rowe, A.; Bailey, R.; McDonald, D.

    2005-01-01

    One of the difficulties associated with the development of a hydrogen economy is the creation of a supply infrastructure. A means for distributed hydrogen generation through a process using the exergy in high pressure natural gas streams has been proposed. The system recovers energy via expansion of natural gas through a turbo-expander at existing pressure reduction systems. Generated electric power is then used to drive an electrolyzer and create hydrogen. A model of the process is used to determine production rates for electricity and hydrogen given flow data for a number of pressure letdown sites in BC. Like many traditional renewable energy sources, most letdown stations have strong annual variations in flow conditions. Annual variations in stream flow rate, inlet pressure and inlet temperature can greatly affect hydrogen production rates. In the model, component efficiencies are scaled for operation at part-load, or away from optimum design conditions. Results indicate a significant reduction in predicted hydrogen production rates as compared to installed component name-plate capacity. Operating the system with a 'grid-tie' can increase the capacity factor, but economic viability will depend on local electricity and natural gas prices. (author)

  6. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  7. Very High Efficiency Reactor (VHER) Concepts for Electrical Power Generation and Hydrogen Production

    International Nuclear Information System (INIS)

    PARMA JR, EDWARD J.; PICKARD, PAUL S.; SUO-ANTTILA, AHTI JORMA

    2003-01-01

    The goal of the Very High Efficiency Reactor study was to develop and analyze concepts for the next generation of nuclear power reactors. The next generation power reactor should be cost effective compared to current power generation plant, passively safe, and proliferation-resistant. High-temperature reactor systems allow higher electrical generating efficiencies and high-temperature process heat applications, such as thermo-chemical hydrogen production. The study focused on three concepts; one using molten salt coolant with a prismatic fuel-element geometry, the other two using high-pressure helium coolant with a prismatic fuel-element geometry and a fuel-pebble element design. Peak operating temperatures, passive-safety, decay heat removal, criticality, burnup, reactivity coefficients, and material issues were analyzed to determine the technical feasibility of each concept

  8. Synthesis and Characterization of K-Ta Mixed Oxides for Hydrogen Generation in Photocatalysis

    Directory of Open Access Journals (Sweden)

    Beata Zielińska

    2012-01-01

    Full Text Available K-Ta mixed oxides photocatalysts have been prepared by impregnation followed by calcination. The influence of the reaction temperature (450°C–900°C on the phase formation, crystal morphology, and photocatalytic activity in hydrogen generation of the produced materials was investigated. The detailed analysis has revealed that all products exhibit high crystallinity and irregular structure. Moreover, two different crystal structures of potassium tantalates such as KTaO3 and K2Ta4O11 were obtained. It was also found that the sample composed of KTaO3 and traces of unreacted Ta2O5 (annealed at 600°C exhibits the highest activity in the reaction of photocatalytic hydrogen generation. The crystallographic phases, optical and vibronic properties were examined by X-ray diffraction (XRD and diffuse reflectance (DR UV-vis and resonance Raman spectroscopic methods, respectively. Morphology and chemical composition of the produced samples were studied using a high-resolution transmission electron microscope (HR-TEM and an energy dispersive X-ray spectrometer (EDX as its mode.

  9. 40 CFR Appendix III to Part 266 - Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride III Appendix III to Part 266 Protection of Environment... to Part 266—Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride Terrain...

  10. Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments.

    Science.gov (United States)

    Hosseinkhani, Baharak; Hennebel, Tom; Boon, Nico

    2014-09-25

    Fermentative production of bio-hydrogen (bio-H2) from organic residues has emerged as a promising alternative for providing the required electron source for hydrogen driven remediation strategies. Unlike the widely used production of H2 by bacteria in fresh water systems, few reports are available regarding the generation of biogenic H2 and optimisation processes in marine systems. The present research aims to optimise the capability of an indigenous marine bacterium for the production of bio-H2 in marine environments and subsequently develop this process for hydrogen driven remediation strategies. Fermentative conversion of organics in marine media to H2 using a marine isolate, Pseudoalteromonas sp. BH11, was determined. A Taguchi design of experimental methodology was employed to evaluate the optimal nutritional composition in batch tests to improve bio-H2 yields. Further optimisation experiments showed that alginate-immobilised bacterial cells were able to produce bio-H2 at the same rate as suspended cells over a period of several weeks. Finally, bio-H2 was used as electron donor to successfully dehalogenate trichloroethylene (TCE) using biogenic palladium nanoparticles as a catalyst. Fermentative production of bio-H2 can be a promising technique for concomitant generation of an electron source for hydrogen driven remediation strategies and treatment of organic residue in marine ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Novel Methods of Hydrogen Leak Detection

    International Nuclear Information System (INIS)

    Pushpinder S Puri

    2006-01-01

    For hydrogen to become a consumer fuel for automotive and domestic power generation, safety is paramount. Today's hydrogen systems are built with inherent safety measures and multiple levels of protection. However, human senses, in particular, the sense of smell, is considered the ultimate safeguards against leaks. Since hydrogen is an odorless gas, use of odorants to detect leaks, as is done in case of natural gas, is obvious solution. The odorants required for hydrogen used in fuel cells have a unique requirement which must be met. This is because almost all of the commercial odorants used in gas leak detection contain sulfur which acts as poison for the catalysts used in hydrogen based fuel cells, most specifically for the PEM (polymer electrolyte membrane or proton exchange membrane) fuel cells. A possible solution to this problem is to use non-sulfur containing odorants. Chemical compounds based on mixtures of acrylic acid and nitrogen compounds have been adopted to achieve a sulfur-free odorization of a gas. It is, therefore, desired to have a method and system for hydrogen leak detection using odorant which can incorporate a uniform concentration of odorant in the hydrogen gas, when odorants are mixed in the hydrogen storage or delivery means. It is also desired to develop methods where the odorant is not added to the bulk hydrogen, keeping it free of the odorization additives. A series of novel solutions are proposed which address the issues raised above. These solutions are divided into three categories as follows: 1. Methods incorporating an odorant in the path of hydrogen leak as opposed to adding it to the hydrogen gas. 2. Methods where odorants are generated in-situ by chemical reaction with the leaking hydrogen 3. Methods of dispensing and storing odorants in high pressure hydrogen gas which release odorants to the gas at a uniform and predetermined rates. Use of one or more of the methods described here in conjunction with appropriate engineering

  12. Nano-design of quantum dot-based photocatalysts for hydrogen generation using advanced surface molecular chemistry

    KAUST Repository

    Yu, Weili; Noureldine, Dalal; Isimjan, Tayirjan T.; Lin, Bin; Del Gobbo, Silvano; Abulikemu, Mutalifu; Hedhili, Mohamed N.; Anjum, Dalaver H.; Takanabe, Kazuhiro

    2015-01-01

    Efficient photocatalytic hydrogen generation in a suspension system requires a sophisticated nano-device that combines a photon absorber with effective redox catalysts. This study demonstrates an innovative molecular linking strategy for fabricating photocatalytic materials that allow effective charge separation of excited carriers, followed by efficient hydrogen evolution. The method for the sequential replacement of ligands with appropriate molecules developed in this study tethers both quantum dots (QDs), as photosensitizers, and metal nanoparticles, as hydrogen evolution catalysts, to TiO2 surfaces in a controlled manner at the nano-level. Combining hydrophobic and hydrophilic interactions on the surface, CdSe-ZnS core-shell QDs and an Au-Pt alloy were attached to TiO2 without overlapping during the synthesis. The resultant nano-photocatalysts achieved substantially high-performance visible-light-driven photocatalysis for hydrogen evolution. All syntheses were conducted at room temperature and in ambient air, providing a promising route for fabricating visible-light-responsive photocatalysts.

  13. Low-level hydrogen peroxide generation by unbleached cotton nonwovens: implications for wound healing applications

    Science.gov (United States)

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H2O2) generation during cotton fiber development. The compon...

  14. Elevated corrosion rates and hydrogen sulfide in homes with 'Chinese Drywall'

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Joseph G.; MacIntosh, David L. [Environmental Health and Engineering, Inc., 117 Fourth Avenue, Needham, MA (United States); Harvard School of Public Health, 677 Huntington Avenue, Boston, MA (United States); Saltzman, Lori E. [U.S. Consumer Product Safety Commission, Bethesda, MD (United States); Baker, Brian J. [Environmental Health and Engineering, Inc., 117 Fourth Avenue, Needham, MA (United States); Matheson, Joanna M.; Recht, Joel R. [U.S. Consumer Product Safety Commission, Bethesda, MD (United States); Minegishi, Taeko; Fragala, Matt A.; Myatt, Theodore A. [Environmental Health and Engineering, Inc., 117 Fourth Avenue, Needham, MA (United States); Spengler, John D.; Stewart, James H. [Environmental Health and Engineering, Inc., 117 Fourth Avenue, Needham, MA (United States); Harvard School of Public Health, 677 Huntington Avenue, Boston, MA (United States); McCarthy, John F., E-mail: jmcccarthy@eheinc.com [Environmental Health and Engineering, Inc., 117 Fourth Avenue, Needham, MA (United States)

    2012-06-01

    In December 2008, the U.S. Consumer Product Safety Commission (CPSC) began receiving reports about odors, corrosion, and health concerns related to drywall originating from China. In response, a detailed environmental health and engineering evaluation was conducted of 41 complaint and 10 non-complaint homes in the Southeast U.S. Each home investigation included characterization of: 1) drywall composition; 2) indoor and outdoor air quality; 3) temperature, moisture, and building ventilation; and 4) copper and silver corrosion rates. Complaint homes had significantly higher hydrogen sulfide concentrations (mean 0.82 vs. < LOD {mu}g/m{sup 3}, p < 0.05), and significantly greater rates of copper sulfide and silver sulfide corrosion compared to non-complaint homes (Cu{sub 2}S: 476 vs. < 32 A/30 d, p < 0.01; Ag{sub 2}S: 1472 vs. 389 A/30 d, p < 0.01). The abundance of carbonate and strontium in drywall was also elevated in complaint homes, and appears to be useful objective marker of problematic drywall in homes that meet other screening criteria (e.g., constructed or renovated in 2006-2007, reports of malodor and accelerated corrosion). This research provides empirical evidence of the direct association between homes constructed with 'Chinese Drywall' in 2006-2007 and elevated corrosion rates and hydrogen sulfide concentrations in indoor air. - Highlights: Black-Right-Pointing-Pointer Environmental measurements in homes with and without 'Chinese Drywall' Black-Right-Pointing-Pointer Homes with 'Chinese Drywall' had higher hydrogen sulfide concentrations Black-Right-Pointing-Pointer Homes with 'Chinese Drywall' had elevated corrosion rates Black-Right-Pointing-Pointer Study provides empirical evidence of reported associations.

  15. Hydrothermal Synthesis of Co-Ru Alloy Particle Catalysts for Hydrogen Generation from Sodium Borohydride

    Directory of Open Access Journals (Sweden)

    Marija Kurtinaitienė

    2013-01-01

    Full Text Available We report the synthesis of μm and sub-μm-sized Co, Ru, and Co-Ru alloy species by hydrothermal approach in the aqueous alkaline solutions (pH ≥ 13 containing CoCl2 and/or RuCl3, sodium citrate, and hydrazine hydrate and a study of their catalytic properties for hydrogen generation by hydrolysis of sodium borohydride solution. This way provides a simple platform for fabrication of the ball-shaped Co-Ru alloy catalysts containing up to 12 wt% Ru. Note that bimetallic Co-Ru alloy bowls containing even 7 at.% Ru have demonstrated catalytic properties that are comparable with the ones of pure Ru particles fabricated by the same method. This result is of great importance in view of the preparation of cost-efficient catalysts for hydrogen generation from borohydrides. The morphology and composition of fabricated catalyst particles have been characterized using scanning electron microscopy, energy dispersive X-ray diffraction, and inductively coupled plasma optical emission spectrometry.

  16. Influence of the evaporation rate and the evaporation mode on the hydrogen sorption kinetics of air-exposed magnesium films

    International Nuclear Information System (INIS)

    Leon, A.; Knystautas, E.J.; Huot, J.; Schulz, R.

    2006-01-01

    It has been shown that the hydrogen sorption properties of air-exposed magnesium films are influenced by the deposition parameters such as the evaporation rate or the evaporation mode used during their preparation. As the evaporation rate increases, the structure of the film tends to be highly oriented along the [002] direction and the kinetics of hydrogen absorption and desorption are faster. Moreover, the hydrogen sorption kinetics of magnesium films prepared with an electron beam source under a high vacuum are faster by almost a factor of two compared to those prepared using resistive heating under low vacuum. These two parameters reduce drastically the activation and the incubation period during hydrogen absorption and desorption, respectively

  17. Hydrogen evolution at the negative electrode of the all-vanadium redox flow batteries

    Science.gov (United States)

    Sun, Che-Nan; Delnick, Frank M.; Baggetto, Loïc; Veith, Gabriel M.; Zawodzinski, Thomas A.

    2014-02-01

    This work demonstrates a quantitative method to determine the hydrogen evolution rate occurring at the negative carbon electrode of the all vanadium redox flow battery (VRFB). Two carbon papers examined by buoyancy measurements yield distinct hydrogen formation rates (0.170 and 0.005 μmol min-1 g-1). The carbon papers have been characterized using electron microscopy, nitrogen gas adsorption, capacitance measurement by electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). We find that the specific electrochemical surface area (ECSA) of the carbon material has a strong influence on the hydrogen generation rate. This is discussed in light of the use of high surface area material to obtain high reaction rates in the VRFB.

  18. Investigation of hydrogen generation in a three reactor chemical looping reforming process

    International Nuclear Information System (INIS)

    Khan, Mohammed N.; Shamim, Tariq

    2016-01-01

    Highlights: • Three-reactor based chemical looping reforming system for hydrogen production. • Investigation of operating parameters using a system-level model. • Optimum operating conditions for hydrogen production are identified. • Different operating parameters affect the reactor temperatures differently. - Abstract: Chemical looping reforming (CLR) is a relatively new method to produce hydrogen (H_2) and is also used as an energy conversion method for solid, liquid or gaseous fuels. There are various advantages of this method such as inherent carbon dioxide (CO_2) capture, minimal NOx emissions and the H_2 production. In this process, there is no direct contact between the fuel and oxidizer. This method utilizes oxygen from an oxygen carrier which may be a transition metal. The idea is to split the combustion process into three separate sub-processes by employing three separate reactors: air reactor where the oxygen carrier is oxidized by air, fuel reactor where natural gas is oxidized to produce a stream of CO_2 and H_2O and steam reactor where the steam is reduced to produce H_2. In this study, a thermodynamic model with iron oxides as oxygen carrier has been developed using Aspen Plus by employing conservation of mass and energy for all the components of the CLR system. The developed model was employed to investigate the effect of various operating parameters such as mass flow rates of air, fuel, steam and oxygen carrier and fraction of inert material on H_2 and CO_2 production and key reactor temperatures. The results show that the H_2 production increases with the increase in air, fuel and steam flow rates up to a certain limit and stays constant for higher flow rates. The CO_2 production follows a similar trend. Similarly, the H_2 production also increases with the increase in oxide flow rate and fraction of inert material up to a particular value, but then decrease for higher oxide flow rates and inert fractions. Reactor temperatures were also

  19. Methanation of hydrogen and carbon dioxide

    International Nuclear Information System (INIS)

    Burkhardt, Marko; Busch, Günter

    2013-01-01

    Highlights: • The biologic methanation of exclusively gases like hydrogen and carbon dioxide is feasible. • Electrical energy can be stored in the established gas grid by conversion to methane. • The quality of produced biogas is very high (c CH4 = 98 vol%). • The conversion rate is depending on H 2 -flow rate. - Abstract: A new method for the methanation of hydrogen and carbon dioxide is presented. In a novel anaerobic trickle-bed reactor, biochemical catalyzed methanation at mesophilic temperatures and ambient pressure can be realized. The conversion of gaseous substrates by immobilized hydrogenotrophic methanogens is a unique feature of this reactor type. The already patented reactor produces biogas which has a very high quality (c CH4 = 97.9 vol%). Therefore, the storage of biogas in the existing natural gas grid is possible without extensive purification. The specific methane production was measured with P = 1.17 Nm CH4 3 /(m R 3 d). It is conceivable to realize the process at sites that generate solar or wind energy and sites subject to the conditions for hydrogen electrolysis (or other methods of hydrogen production). The combination with conventional biogas plants under hydrogen addition to methane enrichment is possible as well. The process enables the coupling of various renewable energy sources

  20. Measurement of intensity-dependent rates of above-threshold ionization (ATI) of atomic hydrogen at 248 nm

    International Nuclear Information System (INIS)

    Nichols, T.D.

    1991-04-01

    Measured rates of multiphoton ionization (MPI) from the ground state of atomic hydrogen by a linearly polarized, subpicosecond KrF laser pulse at 248 nm wavelength are compared to predictions of lowest-order perturbation theory, Floquet theory, and Keldysh-Faisal-Reiss (KFR) theory with and without Coulomb correction for peak irradiance of 3 x 10 12 W/cm 2 to 2 x 10 14 W/cm 2 . The Coulomb-corrected Keldysh model falls closest to the measured rates, the others being much higher or much lower. At 5 x 10 13 W/cm 2 , the number of ATI electrons decreased by a factor of approximately 40 with each additional photon absorbed. ATI of the molecular hydrogen background and of atoms from photodissociation of the molecules were also observed. The experiment employed a crossed-beam technique at ultrahigh vacuum with an rf-discharge atomic hydrogen source and a magnetic-bottle type electron time-of-flight spectrometer to count the electrons in the different ATI channels separately. The apparatus was calibrated to allow comparison of absolute as well as relative ionization rates to the theoretical predictions. This calibration involved measuring the distribution of irradiance in a focal volume that moved randomly and changed its size from time to time. A data collection system under computer control divided the time-of-flight spectra into bins according to the energy of each laser pulse. This is the first measurement of absolute rates of ATI in atomic hydrogen, and the first measurement of absolute test of MPI in atomic hydrogen without a large factor to account for multiple modes in the laser field. As such, the results of this work are important to the development of ATI theories, which presently differ by orders of magnitude in their prediction of the ionization rates. They are also important to recent calculations of temperatures in laser-heated plasmas, many of which incorporate KFR theory

  1. Tube tightness survey during Phenix steam generator operation

    International Nuclear Information System (INIS)

    Cambillard, E.

    1976-01-01

    Phenix steam generators are once-through vessels with single-wall heat-exchange tubes. This design means that any leakage of water into the sodium must be detected as quickly as possible so that the installation can be shut down before extensive damage occurs. The detection of water leaks in Phenix steam generators is based on measurement of the concentration in the sodium, of hydrogen produced by the sodium-water reaction. Since the various modules--evaporators, superheaters, and reheaters--have no free sodium surfaces, detection of hydrogen in argon is not used in Phenix steam generators. The measurement systems employ a probe made of nickel tubes 0.3 mm thick. Hydrogen in the sodium diffuses into a chamber kept under vacuum by an ion pump. The hydrogen pressure in the chamber is measured by a quadrupole mass spectrometer. The nine measurement systems (three per steam generator) are calibrated by injecting hydrogen into the sodium of the secondary circuits. The data-processing computer calculates the hydrogen concentration in the sodium from the spectrometer signals and the probe temperatures, which are not regulated in Phenix; it generates instructions that enable the operator to act if a leak appears. So far, no leaks have been detected. These systems also make it possible to determine rates of hydrogen diffusion caused by corrosion of the steel walls on the water side

  2. A Simple, Low-cost, and Robust System to Measure the Volume of Hydrogen Evolved by Chemical Reactions with Aqueous Solutions.

    Science.gov (United States)

    Brack, Paul; Dann, Sandie; Wijayantha, K G Upul; Adcock, Paul; Foster, Simon

    2016-08-17

    There is a growing research interest in the development of portable systems which can deliver hydrogen on-demand to proton exchange membrane (PEM) hydrogen fuel cells. Researchers seeking to develop such systems require a method of measuring the generated hydrogen. Herein, we describe a simple, low-cost, and robust method to measure the hydrogen generated from the reaction of solids with aqueous solutions. The reactions are conducted in a conventional one-necked round-bottomed flask placed in a temperature controlled water bath. The hydrogen generated from the reaction in the flask is channeled through tubing into a water-filled inverted measuring cylinder. The water displaced from the measuring cylinder by the incoming gas is diverted into a beaker on a balance. The balance is connected to a computer, and the change in the mass reading of the balance over time is recorded using data collection and spreadsheet software programs. The data can then be approximately corrected for water vapor using the method described herein, and parameters such as the total hydrogen yield, the hydrogen generation rate, and the induction period can also be deduced. The size of the measuring cylinder and the resolution of the balance can be changed to adapt the setup to different hydrogen volumes and flow rates.

  3. An assessment of post-LOCA radiolytic generation of hydrogen in reactor containment of Indian PHWRs

    International Nuclear Information System (INIS)

    Bose, H.; Shah, G.C.; Dutta, S.

    2002-01-01

    Full text: An event-wise assessment has been carried out for the 220 MWe Indian PHWRs of standardized design, to estimate the post-LOCA release of radiolytic hydrogen inside reactor containment, in absence of steam-zirconium reaction. The assessment is based on (i) the dissolved hydrogen concentration build-up in water corresponding to the decaying gamma dose profile and (ii) the rate of concentration dependent mass-transfer of hydrogen from water to gas-space. It is observed that the total radiolytic hydrogen released is about three times less than that obtained by the conventional method of calculation which assumes the radiolytic yield of hydrogen to be equal to the primary yield G(H 2 ) = 0.44 molecules per 100 eV. It is also seen that a major part (∼90 %) of the total release is due to the spillage of fission product irradiated suppression pool water flowing through the core, followed by moderator and suppression pool surface releases respectively

  4. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    International Nuclear Information System (INIS)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-01-01

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study

  5. The use of additives for reducing hydrogen yield in mortar containing slag and chloride salts

    International Nuclear Information System (INIS)

    Lewis, M.A.; Warren, D.W.

    1989-01-01

    Cementitious waste forms are being considered for immobilizing nuclear waste before disposal. In earlier work, it was found that irradiation of a mortar formulation consisting of slag, portland cement, fly ash, water, and up to 10 wt% KCl endash LiCl salt resulted in the generation of hydrogen. Yields were relatively high and the rates of generation were constant for the irradiation period investigated. The addition of small amounts of oxygen-rich electron scavengers to the mortar was investigated as a means for reducing hydrogen yields. The addition of NaNO 3 reduced the hydrogen yield; changed the radiolytic products from hydrogen to a mixture of hydrogen, nitrogen, and N 2 O; and reduced the pressurization rate after exposure to 400 Mrads. The addition of NaIO 4 and KMnO 4 reduced hydrogen yields slightly while the addition of Ag 2 O increased the yield. Moreover, the addition of FeS to a non-slag mortar changed the radiolysis mechanism but the addition of FeO did not. The results of these experiments provided an insight into the nature of the radiolytic reactions occurring in the mortar formulations and indicated that the radiolytic generation of gases might be controlled with the proper choice of additive. 14 refs., 3 figs., 2 tabs

  6. The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures

    International Nuclear Information System (INIS)

    Kumar, R.K.; Tamm, H.

    1984-01-01

    The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures has been studied in a 2.3-m diameter sphere over a hydrogen concentration range of 4 to 42% (by volume). Two fans were used to produce the turbulence, which was measured at various lacations by hot-wire anemometry. For low hydrogen concentrations (< 7%), turbulence increases the rate and extent of combustion; for large turbulence intensities the extent of combustion approaches 100%, and combustion times are reduced by factors of 8 to 10 from those observed under quiescent conditions. At high hydrogen concentrations, the effect of turbulence on combustion time is less pronounced than at low hydrogen concentrations. Flame-generated turbulence has a significant effect on the combustion rate. (orig.)

  7. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    Science.gov (United States)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  8. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  9. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  10. Preliminary analysis of hydrogen risk caused by dust in ITER

    International Nuclear Information System (INIS)

    Cheng Kun; Tong Lili; Cao Xuewu

    2012-01-01

    A lot of dust will be generated during ITER operation,and hydrogen will be produced by the interaction of hot dust with water in the case of coolant ingress accident. The accumulated hydrogen will bring risk of combustion and explosion,which will damage the device. CFD method has been used to analyze the produced hydrogen in 'wet bypass' scenario, and come to the results that hydrogen will burn and explode at the beginning of the accident, different hydrogen risk will be brought by different coolant leakage, and hydrogen risk will be inert if the leakage is massive.Injecting CO 2 to inert the vacuum vessel has also been discussed, the risk of hydrogen will be suppressed by injecting CO 2 with a large rate at the beginning of accident. (authors)

  11. Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-Maxwellian electron energy distributions

    International Nuclear Information System (INIS)

    Huh, Sung-Ryul; Kim, Nam-Kyun; Jung, Bong-Ki; Chung, Kyoung-Jae; Hwang, Yong-Seok; Kim, Gon-Ho

    2015-01-01

    A global model was developed to investigate the densities of negative ions and the other species in a low-pressure inductively coupled hydrogen plasma with a bi-Maxwellian electron energy distribution. Compared to a Maxwellian plasma, bi-Maxwellian plasmas have higher populations of low-energy electrons and highly vibrationally excited hydrogen molecules that are generated efficiently by high-energy electrons. This leads to a higher reaction rate of the dissociative electron attachment responsible for negative ion production. The model indicated that the bi-Maxwellian electron energy distribution at low pressures is favorable for the creation of negative ions. In addition, the electron temperature, electron density, and negative ion density calculated using the model were compared with the experimental data. In the low-pressure regime, the model results of the bi-Maxwellian electron energy distributions agreed well quantitatively with the experimental measurements, unlike those of the assumed Maxwellian electron energy distributions that had discrepancies

  12. System optimization of solar hydrogen energy system based on hydrogen production cost. 2; Suiso seizo cost wo hyoka shihyo to shita taiyo suiso energy system no saiteki sekkei. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ota, D; Yamagami, Y; Tani, T [Science University of Tokyo, Tokyo (Japan)

    1996-10-27

    In this paper, to evaluate the hydrogen production cost per unit volume, system optimization of solar hydrogen energy system is discussed. Based on the simulation of the I-V characteristics of amorphous Si (a-Si) photovoltaic array, the working point between the array and hydrogen generator was determined. The cost ratio of each design point was calculated. The optimum design points were 500 W/m{sup 2} for the single crystal Si system, and 600 W/m{sup 2} for the a-Si system. When the rating capacity of design point was constant, almost constant cost ratio was obtained independent of the type of photovoltaic cells. It was found that the photovoltaic cells can be fabricated in about 15% lower cost at maximum. It was also found that the optimum design point sifts to the lower insolation site due to reduction of the photovoltaic cell cost. Since the annual hydrogen generation quantity does not depend on the type of photovoltaic cells under the constant rating capacity of design point, hydrogen can be produced in lower cost by using photovoltaic cell of lower cost. 5 refs., 10 figs., 5 tabs.

  13. Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system

    International Nuclear Information System (INIS)

    Oh, Taek Hyun; Gang, Byeong Gyu; Kim, Hyuntak; Kwon, Sejin

    2015-01-01

    The response characteristics of electroless-deposited Co–P/Ni foam catalysts for sodium borohydride hydrolysis were investigated. The effect of nickel foam geometry on the properties of the catalysts was evaluated. As the PPI (pores per inch) of the nickel foam increased, the hydrogen generation rate per gram of the deposited catalyst increased due to an increase in surface area. The response characteristics of various catalysts were compared under real operating conditions. When a thin nickel foam with high PPI was used, the response characteristics of the catalyst improved due to an increase in the amount of the deposited catalyst and surface area. Finally, a 200 W PEMFC (proton exchange membrane fuel cell) system using electroless-deposited Co–P/Ni foam (110 PPI) catalyst was investigated. The response time to reach a hydrogen generation rate sufficient for a 200 W PEMFC was 71 s, and the energy density of a 200 W fuel cell system for producing 600 Wh was 252.1 Wh/kg. A fuel cell system using Co–P/Ni foam catalysts can be widely used as a power source for mobile applications due to fast response characteristics and high energy density. - Highlights: • Response characteristics of Co–P/Ni foam catalysts are investigated. • Catalytic activity is improved with increase in PPI (pores per inch) of Ni foam. • Co–P/Ni foam (110 PPI) catalyst has improved response characteristics. • The energy density of a 200 W PEMFC system for producing 600 Wh is 252.1 Wh/kg. • Co–P/Ni foam (110 PPI) catalyst is suitable for fuel cell system.

  14. Facile synthesis of polypyrrole functionalized nickel foam with catalytic activity comparable to Pt for the poly-generation of hydrogen and electricity

    Science.gov (United States)

    Tang, Tiantian; Li, Kan; Shen, Zhemin; Sun, Tonghua; Wang, Yalin; Jia, Jinping

    2016-01-01

    Polypyrrole functionalized nickel foam is facilely prepared through the potentiostatic electrodeposition. The PPy-functionalized Ni foam functions as a hydrogen-evolution cathode in a rotating disk photocatalytic fuel cell, in which hydrogen energy and electric power are generated by consuming organic wastes. The PPy-functionalized Ni foam cathode exhibits stable catalytic activities after thirteen continuous runs. Compared with net or plate structure, the Ni foam with a unique three-dimensional reticulate structure is conducive to the electrodeposition of PPy. Compared with Pt-group electrode, PPy-coated Ni foam shows a satisfactory catalytic performance for the H2 evolution. The combination of PPy and Ni forms a synergistic effect for the rapid trapping and removal of proton from solution and the catalytic reduction of proton to hydrogen. The PPy-functionalized Ni foam could be applied in photocatalytic and photoelectrochemical generation of H2. In all, we report a low cost, high efficient and earth abundant PPy-functionalized Ni foam with a satisfactory catalytic activities comparable to Pt for the practical application of poly-generation of hydrogen and electricity.

  15. Complete genome sequence of Enterobacter sp. IIT-BT 08: A potential microbial strain for high rate hydrogen production.

    Science.gov (United States)

    Khanna, Namita; Ghosh, Ananta Kumar; Huntemann, Marcel; Deshpande, Shweta; Han, James; Chen, Amy; Kyrpides, Nikos; Mavrommatis, Kostas; Szeto, Ernest; Markowitz, Victor; Ivanova, Natalia; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Nolan, Matt; Woyke, Tanja; Teshima, Hazuki; Chertkov, Olga; Daligault, Hajnalka; Davenport, Karen; Gu, Wei; Munk, Christine; Zhang, Xiaojing; Bruce, David; Detter, Chris; Xu, Yan; Quintana, Beverly; Reitenga, Krista; Kunde, Yulia; Green, Lance; Erkkila, Tracy; Han, Cliff; Brambilla, Evelyne-Marie; Lang, Elke; Klenk, Hans-Peter; Goodwin, Lynne; Chain, Patrick; Das, Debabrata

    2013-12-20

    Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production by strain development, complete genome sequence analysis was carried out. Sequence analysis revealed that the genome was linear, 4.67 Mbp long and had a GC content of 56.01%. The genome properties encode 4,393 protein-coding and 179 RNA genes. Additionally, a putative pathway of hydrogen production was suggested based on the presence of formate hydrogen lyase complex and other related genes identified in the genome. Thus, in the present study we describe the specific properties of the organism and the generation, annotation and analysis of its genome sequence as well as discuss the putative pathway of hydrogen production by this organism.

  16. A New Optimization Strategy to Improve Design of Hydrogen Network Based Formulation of Hydrogen Consumers

    Directory of Open Access Journals (Sweden)

    M. R. S. Birjandi

    2018-03-01

    Full Text Available This paper describes a shortcut model for formulating hydrogen consumers in hydrogen network based on inlet/outlet flow rate and inlet/outlet hydrogen purity. The formulation procedure is obtained using nonlinear regression of industrial data and represents the relationship between the flow rate and purity of outlet and inlet streams. The proposed model can estimate outlet flow rate and purity of hydrogen by changing inlet flow rate and purity of hydrogen. The shortcut model is used to achieve optimal operation of consumers and it optimizes hydrogen network design.

  17. Hydriding and dehydriding rates and hydrogen-storage capacity of ...

    Indian Academy of Sciences (India)

    means of nuclear, wind, solar, tidal or geothermal energy. When hydrogen is converted into energy, water is the only exhaust product. It is thus extremely environmental friendly as an energy carrier. Although hydrogen has obvious benefits, an immediate incorporation of hydrogen into the world economy has a number of ...

  18. System approach on solar hydrogen generation and the gas utilization; Taiyo energy ni yoru suiso no seisei oyobi sono riyo system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I; Hirooka, N; Deguchi, Y; Narita, D [Meiji University, Tokyo (Japan)

    1997-11-25

    An apparatus is developed to establish a system which allows utilization of hydrogen safely and easily, and its applicability to a hydrogen system for domestic purposes is tested. The system converts solar energy by the photovoltaic cell unit into power, which is used to generate hydrogen by electrolysis of water at the hydrogen generator, stores hydrogen in a metal hydride , and sends stored hydrogen to the burner and fuel cell units. It is found that a hydrogen occluding alloy of LaNi4.8Al0.2 stores hydrogen to approximately 80% when cooled to 20 to 25degC, and releases it to 10% when heated to 40degC. The fuel cell uses a solid polymer as the electrolyte. The hydrogen gas burner is a catalytic combustion burner with a Pt catalyst carried by expanded Ni-Al alloy. The optimum distance between the burner and object to be heated is 22mm. High safety and fabrication simplicity are confirmed for use for domestic purposes. The system characteristics will be further investigated. 4 refs., 8 figs.

  19. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  20. Moment generating function approach to pricing interest rate and foreign exchange rate claims

    NARCIS (Netherlands)

    Dijkstra, T.K.; Yao, Y.

    2002-01-01

    This paper uses moment generating functions to provide a general framework to model international term structures and to price interest rate and foreign exchange rate claims. When moment generating functions of state variables have a closed-form formula, closed-form formulas for bond prices are

  1. Second generation biofuels, an accelerator of the transition toward an economy driven by energy drawn from hydrogen

    International Nuclear Information System (INIS)

    Delabroy, O.

    2013-01-01

    The growth of the bio economy, especially in transportation, involves developing a bio-fuel industry. First generation bio-fuels were produced from plant sugars like starch or from plant oils. Second generation bio fuels use as raw materials the whole plant and especially agricultural and forestry wastes which extend the resource considerably and limit the competition between food use and fuel use. Second generation bio-fuels can be made with not only biological methods but also biomass-to-liquid processes borrowed from thermochemistry. Players in this field, including 'Air Liquide' company, are drawing up a technical and economic road-map for competitiveness in this emerging branch of industry. Since the thermochemical approach for gasifying a biomass also yields large quantities of hydrogen, the industrialization of this branch and concomitant production of bio-hydrogen at competitive prices provide leverage for accelerating the transition toward using H 2 for transportation

  2. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen

    International Nuclear Information System (INIS)

    Muhammad, Yaseen; Lu Yingzhou; Shen Chong; Li Chunxi

    2011-01-01

    Catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) was carried out in a temperature range of 320-400 o C using in situ generated hydrogen coupled with the effect of selected organic additives for the first time. Four kinds of alumina based catalysts i.e. Co-Mo/Al 2 O 3 , Ni-Mo/Al 2 O 3 , Ru-Co-Mo/Al 2 O 3 and Ru-Ni-Mo/Al 2 O 3 were used for the desulfurization process, which were prepared following incipient impregnation method with fixed metal loadings (wt.%) of Co, Ni, Mo and Ru. The surface area, average pore diameter and pore volume distribution of the fresh and used catalysts were measured by N 2 adsorption using BET method. Catalytic activity was investigated in a batch autoclave reactor in the complete absence of external hydrogen gas. Addition and mutual reaction of specific quantities of water and ethanol provided the necessary in situ hydrogen for the desulfurization reaction. Organic additives like diethylene glycol (DEG), phenol, naphthalene, anthracene, o-xylene, tetralin, decalin and pyridine did impinge the HDS activity of the catalysts in different ways. Liquid samples from reaction products were quantitatively analyzed by HPLC technique while qualitative analyses were made using GC-MS. Both of these techniques showed that Ni-based catalysts were more active than Co-based ones at all conditions. Moreover, incorporation of Ru to both Co and Ni-based catalysts greatly promoted desulfurization activity of these catalysts. DBT conversion of up to 84% was achieved with Ru-Ni-Mo/Al 2 O 3 catalyst at 380 o C temperature for 11 h. Catalyst systems followed the HDS activity order as: Ru-Ni-Mo/Al 2 O 3 > Ni-Mo/Al 2 O 3 > Ru-Co-Mo/Al 2 O 3 > Co-Mo/Al 2 O 3 at all conditions. Cost effectiveness, mild operating conditions and reasonably high catalytic activity using in situ generated hydrogen mechanism proved our process to be useful for HDS of DBT.

  3. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  4. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  5. Generation IV nuclear energy systems and hydrogen economy. New progress in the energy field in the 21st century

    International Nuclear Information System (INIS)

    Zang Mingchang

    2004-01-01

    The concept of hydrogen economy was initiated by the United States and other developed countries in the turn of the century to mitigate anxiety of national security due to growing dependence on foreign sources of energy and impacts on air quality and the potential effects of greenhouse gas emissions. Hydrogen economy integrates the primary energy used to produce hydrogen as a future energy carrier, hydrogen technologies including production, delivery and storage, and various fuel cells for transportation and stationary applications. A new hydrogen-based energy system would created as an important solution in the 21st century, flexible, affordable, safe, domestically produced, used in all sectors of the economy and in all regions of the country, if all the R and D plans and the demonstration come to be successful in 20-30 years. Among options of primary energy. Generation IV nuclear energy under development is particularly well suited to hydrogen production, offering the competitive position of large-scale hydrogen production with near-zero emissions. (author)

  6. Hydrogen generation comparison between lead-calcium and lead-antimony batteries in nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Hongjun; Qi Suoni; Shen Yan; Li Jia

    2014-01-01

    Battery type selection is performed with the help of technical information supplied by vendors, and according to relevant criteria. Analysis and comparison of the hydrogen generation differences between two different lead-acid battery types are carried out through calculation. The analysis result may provide suggestions for battery type selection in nuclear power plant. (authors)

  7. Fusion rates for hydrogen isotopic molecules of relevance for ''cold fusion''

    International Nuclear Information System (INIS)

    Szalewicz, K.; Morgan, J.D. III; Monkhorst, H.J.

    1989-01-01

    In response to the recent announcements of evidence for room-temperature fusion in the electrolysis of D 2 O, we have analyzed how the fusion rate depends on the reduced mass of the fusing nuclei, the effective mass of a ''heavy'' electron, and the degree of vibrational excitation. Our results have been obtained both by accurately solving the Schroedinger equation for the hydrogen molecule and by using the WKB approximation. We find that in light of the reported d-d fusion rate, the excess heat in the experiment by Fleischmann, Pons, and Hawkins [J. Electroanal. Chem. 261, 301 (1989)] is difficult to explain in terms of conventional nuclear processes

  8. Anaerobic digestion for methane generation and ammonia reforming for hydrogen production: A thermodynamic energy balance of a model system to demonstrate net energy feasibility

    International Nuclear Information System (INIS)

    Babson, David M.; Bellman, Karen; Prakash, Shaurya; Fennell, Donna E.

    2013-01-01

    During anaerobic digestion, organic matter is converted to carbon dioxide and methane, and organic nitrogen is converted to ammonia. Generally, ammonia is recycled as a fertilizer or removed via nitrification–denitrification in treatment systems; alternatively it could be recovered and catalytically converted to hydrogen, thus supplying additional fuel. To provide a basis for further investigation, a theoretical energy balance for a model system that incorporates anaerobic digestion, ammonia separation and recovery, and conversion of the ammonia to hydrogen is reported. The model Anaerobic Digestion-Bioammonia to Hydrogen (ADBH) system energy demands including heating, pumping, mixing, and ammonia reforming were subtracted from the total energy output from methane and hydrogen to create an overall energy balance. The energy balance was examined for the ADBH system operating with a fixed feedstock loading rate with C:N ratios (gC/gN) ranging from 136 to 3 which imposed corresponding total ammonia nitrogen (TAN) concentrations of 20–10,000 mg/L. Normalizing total energy potential to the methane potential alone indicated that at a C:N ratio of 17, the energy output was greater for the ADBH system than from anaerobic digestion generating only methane. Decreasing the C:N ratio increased the methane content of the biogas comprising primarily methane to >80% and increased the ammonia stripping energy demand. The system required 23–34% of the total energy generated as parasitic losses with no energy integration, but when internally produced heat and pressure differentials were recovered, parasitic losses were reduced to between 8 and 17%. -- Highlights: •Modeled an integrated Anaerobic Digestion-Bioammonia to Hydrogen (ADBH) system. •Demonstrated positive net energy produced over a range of conditions by ADBH. •Demonstrated significant advantages of dual fuel recovery for energy gain by >20%. •Suggested system design considerations for energy recovery with

  9. Integration of direct carbon and hydrogen fuel cells for highly efficient power generation from hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Choi, Pyoungho; Smith, Franklyn; Bokerman, Gary [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922-5703 (United States)

    2010-02-15

    In view of impending depletion of hydrocarbon fuel resources and their negative environmental impact, it is imperative to significantly increase the energy conversion efficiency of hydrocarbon-based power generation systems. The combination of a hydrocarbon decomposition reactor with a direct carbon and hydrogen fuel cells (FC) as a means for a significant increase in chemical-to-electrical energy conversion efficiency is discussed in this paper. The data on development and operation of a thermocatalytic hydrocarbon decomposition reactor and its coupling with a proton exchange membrane FC are presented. The analysis of the integrated power generating system including a hydrocarbon decomposition reactor, direct carbon and hydrogen FC using natural gas and propane as fuels is conducted. It was estimated that overall chemical-to-electrical energy conversion efficiency of the integrated system varied in the range of 49.4-82.5%, depending on the type of fuel and FC used, and CO{sub 2} emission per kW{sub el}h produced is less than half of that from conventional power generation sources. (author)

  10. Hydrogen the fuel for 21st century

    International Nuclear Information System (INIS)

    Jain, I.P.

    2009-01-01

    Non-Conventional Energy Sources, such as solar and hydrogen energy will remain available for infinite period. One of the reasons of great worry for all of us is reducing sources of conventional energies. The rate of fossil fuel consumption is higher than the rate of the fossil fuel production by the nature. The results will be the scarcity of automobile fuel in the world which will create lot of problems in transport sector. The other aspect is pollution added by these sources in our environment which increases with more use of these sources, resulting in the poor quality of life on this planet. There is constant search of alternate fuel to solve energy shortage which can provide us energy without pollution. Hence most frequently discussed source is hydrogen which when burnt in air produces a clean form of energy. In the last one decade hydrogen has attracted worldwide interest as a secondary energy carrier. This has generated comprehensive investigations on the technology involved and how to solve the problems of production, storage and transportation of hydrogen. The interest in hydrogen as energy of the future is due to it being a clean energy, most abundant element in the universe, the lightest fuel, richest in energy per unit mass and unlike electricity, it can be easily stored. Hydrogen gas is now considered to be the most promising fuel of the future. In future it will be used in various applications, e.g. it can generate Electricity, useful in cooking food, fuel for automobiles, hydrogen powered industries, Jet Planes, Hydrogen Village and for all our domestic energy requirements. Hydrogen as a fuel has already found applications in experimental cars and all the major car companies are in competition to build a commercial car and most probably they may market hydrogen fuel automobiles in near future but at a higher cost compared to gasoline cars but it is expected that with time the cost of hydrogen run cars will decrease with time. Long lasting, light and

  11. Burning rates of hydrogen-air mixtures in containment buildings and the consequent pressure transients

    International Nuclear Information System (INIS)

    Tennankore, K.N.; Kumar, R.K.; Razzaghi, M.

    1987-01-01

    One-dimensional flame models are often used to predict the pressure transients caused by hydrogen combustion in containments during postulated severe accidents. In the absence of data, these models account for prevailing flame acceleration mechanisms, such as initial turbulence, venting and obstacle-induced turbulence, by using arbitrarily large burning velocities that are much higher than laminar burning velocities. Using an intermediate-scale test facility at the Whiteshell Nuclear Research Establishment we have obtained necessary data on the effects of flame acceleration mechanisms, to estimate the safety margin in the buring velocities used in the models. So far, data have been analyzed, with a one-dimensional model, to determine effective burning velocities and burning-rate enhancement factors. The results of the analyses indicate that the effect of initial turbulence on the burning rate can be bounded only if the effect of flame-generated turbulence is included. The effect of venting can be accounted for by using two burning velocities, one for the pre-vent duration and a second increased value during the vented-combustion stage. The enhancement factors due to these two mechanisms, for the different conditions analyzed, varied up to 5.4, and the effective burning velocities varied up to 8.4 m/s

  12. Hydrogen and acoustic detection in steam generators of Super Phenix power plant

    International Nuclear Information System (INIS)

    Kong, N.; Le Bris, A.; Berthier, P.

    1986-05-01

    During the isothermal tests of Super-Phenix, two types of measurements were made on the steam generators with regard to the detection of water leaks into the sodium: - the first measurements enabled us to determine the characteristics (sensitivity, response time) of the hydrogen detectors that are already operational for the filling with water and the power operation of the steam generators. They also provided the basis for developing a prototype system for detecting very small water leaks (microleak phase). The other measurements concern the qualification tests of acoustic detectors which have been fitted for the first time to a major industrial installation. The results obtained are very satisfactory but final validation of the acoustic method will only occur after the full-power tests [fr

  13. Hydrogen storage for mixed wind-nuclear power plants in the context of a hydrogen economy

    International Nuclear Information System (INIS)

    Taljan, Gregor; Fowler, Michael; Canizares, Claudio; Verbic, Gregor

    2008-01-01

    A novel methodology for the economic evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new aspects such as residual heat and oxygen utilization is applied in this work. This analysis is completed in the context of a hydrogen economy and competitive electricity markets. The simulation of the operation of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity, the selling of excess hydrogen and oxygen, and the selling of heat are optimized to maximize profit to the energy producer. The simulation is performed in two phases: in a pre-dispatch phase, the system model is optimized to obtain optimal hydrogen charge levels for the given operational horizons. In the second phase, a real-time dispatch is carried out on an hourly basis to optimize the operation of the system as to maximize profits, following the hydrogen storage levels of the pre-dispatch phase. Based on the operation planning and dispatch results, an economic evaluation is performed to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return and net present values for a realistic scenario. The results of the present studies demonstrate the feasibility of a hydrogen storage and production system with oxygen and heat utilization for existent nuclear and wind power generation facilities. (author)

  14. Mitigation of hydrogen hazards in water cooled power reactors

    International Nuclear Information System (INIS)

    2001-02-01

    Past considerations of hydrogen generated in containment buildings have tended to focus attention on design basis accidents (DBAs) where the extent of the in-core metal-water reaction is limited at low values by the operation of the emergency core cooling systems (ECCS). The radiolysis of water in the core and in the containment sump, together with the possible corrosion of metals and paints in the containment, are all relatively slow processes. Therefore, in DBAs the time scale involved for the generation of hydrogen allows sufficient time for initiation of measures to control the amount of hydrogen in the containment atmosphere and to prevent any burning. Provisions have been made in most plants to keep the local hydrogen concentration below its flammability limit (4% of volume) by means of mixing devices and thermal recombiners. Severe accidents, involving large scale core degradation and possibly even core concrete interactions, raise the possibility of hydrogen release rates greatly exceeding the capacity of conventional DBA hydrogen control measures. The accident at Three Mile Island illustrated the potential of unmitigated hydrogen accumulation to escalate the potential consequences of a severe accident. In a severe accident scenario, local high hydrogen concentrations can be reached in a short time, leading to flammable gas mixtures in containment. Another possibility is that local high steam concentrations will initially create an inert atmosphere and prevent burning for a limited time. While such temporary inerting provides additional time for mixing (dilution) of the hydrogen with containment air, depending on the quantity of hydrogen released, it prevents early intervention by deliberate ignition and sets up conditions for more severe combustion hazards after steam condensation eventually occurs, e.g., by spray initiation or the long term cooling down of the containment atmosphere. As the foregoing example indicates, analysis of the hydrogen threat in

  15. Measurements of μ capture rates in liquid hydrogen by the lifetime method

    International Nuclear Information System (INIS)

    Martino, Jacques.

    1982-04-01

    The μ capture reaction is a weak interaction. It can be observed as a result of the formation of muonic atoms for which the overlopping of the wave functions of the muon and nucleus is a maximum in the 1s state. The production of this (μp) bound state leads to a capture rate in relatively favorable competition with the disintegration rate. The capture rate for a pulsed muon beam (from the Saclay linear accelerator) was measured in liquid hydrogen by the lifetime method. The method and experimental equipment used for the lifetime measurements are described together with the different sources of systematic error and the results obtained. The interpretation of these results is discussed [fr

  16. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Directory of Open Access Journals (Sweden)

    Ming Qin

    Full Text Available FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10−7–5.748 × 10−7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa m. The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface. Keywords: FV520B, Wedge opening loading specimen, Stress corrosion cracking, Hydrogen sulfide

  17. Study on the combustion behavior of radiolytically generated hydrogen explosion in small scale annular vessels at the reprocessing plant

    International Nuclear Information System (INIS)

    Kudo, Tatsuya; Tamauchi, Yoshikazu; Arai, Nobuyuki; Dai, Wenbin; Sakaihara, Motohiro; Kanehira, Osamu

    2017-01-01

    Hydrogen is generated by radiolysis of water, etc. in process vessels in reprocessing plant. Usually, the hydrogen is scavenged by compressed air into vessels to prevent hydrogen explosion. When an earthquake beyond design based occurs, for example, the compressed air may stop and the hydrogen starts accumulating in the vessels, and under this condition, an ignition source might set off hydrogen explosion. Therefore, the explosion derived by the radiolytically generated hydrogen is designated as one of severe accidents on Rokkasho Reprocessing Plant in new regulatory requirements. It is important to understand the combustion behavior of hydrogen explosion inside a vessel for consideration of safety measures against the severe accident, because the influences of detonation are not considered in the design basis of vessels. Especially, the investigations about the combustion behavior which considered influence of interior obstacles inside the vessel are not performed yet. In order to investigate the combustion behavior comprehensively, explosion experiment, combustion analysis and structural analysis are carried out using the representative vessels (small scale annular vessel, small scale plate vessel, large scale annular vessel and large scale cylindrical vessel) selected from Rokkasho Reprocessing Plant. In this paper, the results of experiments and analysis of small scale annular vessel (as one of representative vessel, imitated a pulsed column in the reprocessing plant) are reported. As imitated vessels, three vessels are manufactured with different interior obstacle arrangements as follows, A) cylindrical obstacles are faithfully reproduced and are arranged based on the actual vessel, B) cylindrical obstacles are arranged more densely than the actual vessel, and C) there are no obstacles inside the vessel. Experiments of hydrogen explosion are performed under condition of stoichiometric hydrogen-air ratio (premixed hydrogen-air is used). As a result of

  18. Modeling of Syngas Reactions and Hydrogen Generation Over Sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Klier; Jeffery A. Spirko; Michael L. Neiman

    2002-09-17

    The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. In this first year of study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The geometries and strengths of the adsorption sites are described and the methods used in the study are described. An exposed MO{sup IV} species modeled as a bent MoS{sub 2} molecule is capable of homopolar dissociative chemisorption of H{sub 2} into a dihydride S{sub 2}MoH{sub 2}. Among the periodic edge structures of hexagonal MoS{sub 2}, the (1{bar 2}11) edge is most stable but still capable of dissociating H{sub 2}, while the basal plane (0001) is not. A challenging task of theoretically accounting for weak bonding of MoS{sub 2} sheets across the Van der Waals gap has been addressed, resulting in a weak attraction of 0.028 eV/MoS{sub 2} unit, compared to the experimental value of 0.013 eV/MoS{sub 2} unit.

  19. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  20. The Italian hydrogen programme

    International Nuclear Information System (INIS)

    Raffaele Vellone

    2001-01-01

    Hydrogen could become an important option in the new millennium. It provides the potential for a sustainable energy system as it can be used to meet most energy needs without harming the environment. In fact, hydrogen has the potential for contributing to the reduction of climate-changing emissions and other air pollutants as it exhibits clean combustion with no carbon or sulphur oxide emissions and very low nitrogen oxide emissions. Furthermore, it is capable of direct conversion to electricity in systems such as fuel cells without generating pollution. However, widespread use of hydrogen is not feasible today because of economic and technological barriers. In Italy, there is an ongoing national programme to facilitate the introduction of hydrogen as an energy carrier. This programme aims to promote, in an organic frame, a series of actions regarding the whole hydrogen cycle. It foresees the development of technologies in the areas of production, storage, transport and utilisation. Research addresses the development of technologies for separation and sequestration of CO 2 , The programme is shared by public organisations (research institutions and universities) and national industry (oil companies, electric and gas utilities and research institutions). Hydrogen can be used as a fuel, with significant advantages, both for electric energy generation/ co-generation (thermo-dynamic cycles and fuel cells) and transportation (internal combustion engine and fuel cells). One focus of research will be the development of fuel cell technologies. Fuel cells possess all necessary characteristics to be a key technology in a future economy based on hydrogen. During the initial phase of the project, hydrogen will be derived from fossil sources (natural gas), and in the second phase it will be generated from renewable electricity or nuclear energy. The presentation will provide a review of the hydrogen programme and highlight future goals. (author)

  1. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    Science.gov (United States)

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  2. A Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Induced Pseudoscalar Coupling gp

    International Nuclear Information System (INIS)

    Banks, Thomas Ira

    2007-01-01

    This dissertation describes a measurement of the rate of nuclear muon capture by the proton, performed by the MuCap Collaboration using a new technique based on a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas at room temperature and 1 MPa pressure. The hydrogen target's low gas density of 1 percent compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate was obtained from the difference between the mu- disappearance rate in hydrogen--as determined from data collected in the experiment's first physics run in fall2004--and the world average for the mu+ decay rate. After combining the results of my analysis with the results from another independent analysis of the 2004 data, the muon capture rate from the hyperfine singlet ground state of the mu-p atom is found to be Λ S = 725.0 ± 17.4 1/s, from which the induced pseudoscalar coupling of the nucleon, gP(q2 = -0.88m2mu)= 7.3 ± 1.1, is extracted. This result for gP is consistent with theoretical predictions that are based on the approximate chiral symmetry of QCD

  3. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  4. Hydrogen energy stations: along the roadside to the hydrogen economy

    International Nuclear Information System (INIS)

    Clark, W.W.; Rifkin, J.; O'Connor, T.; Swisher, J.; Lipman, T.; Rambach, G.

    2005-01-01

    Hydrogen has become more than an international topic of discussion within government and among industry. With the public announcements from the European Union and American governments and an Executive Order from the Governor of California, hydrogen has become a ''paradigm change'' targeted toward changing decades of economic and societal behaviours. The public demand for clean and green energy as well as being ''independent'' or not located in political or societal conflict areas, has become paramount. The key issues are the commitment of governments through public policies along with corporations. Above all, secondly, the advancement of hydrogen is regional as it depends upon infrastructure and fuel resources. Hence, the hydrogen economy, to which the hydrogen highway is the main component, will be regional and creative. New jobs, businesses and opportunities are already emerging. And finally, the costs for the hydrogen economy are critical. The debate as to hydrogen being 5 years away from being commercial and available in the marketplace versus needing more research and development contradicts the historical development and deployment of any new technology be it bio-science, flat panel displays, computers or mobile phones. The market drivers are government regulations and standards soon thereafter matched by market forces and mass production. Hydrogen is no different. What this paper does is describes is how the hydrogen highway is the backbone to the hydrogen economy by becoming, with the next five years, both regional and commercial through supplying stationary power to communities. Soon thereafter, within five to ten years, these same hydrogen stations will be serving hundreds and then thousands of hydrogen fuel powered vehicles. Hydrogen is the fuel for distributed energy generation and hence positively impacts the future of public and private power generators. The paradigm has already changed. (author)

  5. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  6. Thermal post-deposition treatment effects on nanocrystalline hydrogenated silicon prepared by PECVD under different hydrogen flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Amor, Sana Ben, E-mail: sana.benamor1@gmail.com [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia); University of Applied Medical Sciences of Hafr El Baten (Saudi Arabia); Meddeb, Hosny; Daik, Ridha; Othman, Afef Ben; Slama, Sonia Ben; Dimassi, Wissem; Ezzaouia, Hatem [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-01-01

    Graphical abstract: At high annealing temperatures, many atoms do not suffer the attraction of surface species due to the thermal agitation and consequently few atoms are adsorbed. As the temperature is lowered the adsorption is more efficient to the point that is no more atoms in the gas phase. Indeed at relatively low temperatures, the atoms have too little energy to escape from the surface or even to vibrate against it. They lost their degree of freedom in the direction perpendicular to the surface. But this does not prevent the atoms to diffuse along the surface. As a result, the layer's thickness decrease with increasing the annealing temperature. - Highlights: The results extracted from this work are: • The post-deposition thermal treatment improves the crystallinity the film at moderate temperature (500 °C). • The higher annealing temperature can lead to decrease the silicon–hydrogen bonds and increase the Si–Si bonds. • Moderate annealing temperature (700 °C) seems to be crucial for obtaining high minority carrier life times. • Hydrogen effusion phenomenon start occurring at 500–550 °C and get worsen at 900 °C. - Abstract: In this paper, hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited on mono-crystalline silicon substrate by plasma enhanced chemical vapor deposition (PECVD) under different hydrogen flow rates followed by a thermal treatment in an infrared furnace at different temperature ranging from 300 to 900 °C. The investigated structural, morphological and optoelectronic properties of samples were found to be strongly dependent on the annealing temperature. Raman spectroscopy revealed that nc-Si:H films contain crystalline, amorphous and mixed structures as well. We find that post-deposition thermal treatment may lead to a tendency for structural improvement and a decrease of the disorder in the film network at moderate temperature under 500 °C. As for annealing at higher temperature up to 900

  7. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  8. Nickel-hydrogen battery self-discharge mechanism and methods for its inhibition

    Science.gov (United States)

    Visintin, Arnaldo; Anani, Anaba; Srinivasan, Supramaniam; Appleby, A. J.; Lim, Hong S.

    1992-01-01

    A review of our studies on the elucidation of the self-discharge mechanism of the Ni/H2 battery and methods to inhibit this phenomena is presented. The results show that (1) the rate of heat generation from nickel hydroxide powders and from electrodes increases with increase of hydrogen pressure, simultaneously, the open-circuit potential of the nickel hydroxide electrode is shifted in a negative direction more rapidly, indicating the transformation of NiOOH to Ni(OH)2; (2) heat generation rates measured in the microcalorimeter are considerably faster for electrolyte starved electrodes than for electrolyte-flooded electrodes; (3) there is a good correlation between the extent of self-discharge, as determined by heat generation in microcalorimetric measurement and capacity change; and (4) the self-discharge in Ni/H2 battery occurs via direct reduction of the active material by pressurized hydrogen. The addition of cadmium to the electrode reduces the self-discharge.

  9. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Yaseen; Shen, Chong; Li, Chunxi [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Lu, Yingzhou [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-02-15

    Catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) was carried out in a temperature range of 320-400 C using in situ generated hydrogen coupled with the effect of selected organic additives for the first time. Four kinds of alumina based catalysts i.e. Co-Mo/Al{sub 2}O{sub 3}, Ni-Mo/Al{sub 2}O{sub 3}, Ru-Co-Mo/Al{sub 2}O{sub 3} and Ru-Ni-Mo/Al{sub 2}O{sub 3} were used for the desulfurization process, which were prepared following incipient impregnation method with fixed metal loadings (wt.%) of Co, Ni, Mo and Ru. The surface area, average pore diameter and pore volume distribution of the fresh and used catalysts were measured by N{sub 2} adsorption using BET method. Catalytic activity was investigated in a batch autoclave reactor in the complete absence of external hydrogen gas. Addition and mutual reaction of specific quantities of water and ethanol provided the necessary in situ hydrogen for the desulfurization reaction. Organic additives like diethylene glycol (DEG), phenol, naphthalene, anthracene, o-xylene, tetralin, decalin and pyridine did impinge the HDS activity of the catalysts in different ways. Liquid samples from reaction products were quantitatively analyzed by HPLC technique while qualitative analyses were made using GC-MS. Both of these techniques showed that Ni-based catalysts were more active than Co-based ones at all conditions. Moreover, incorporation of Ru to both Co and Ni-based catalysts greatly promoted desulfurization activity of these catalysts. DBT conversion of up to 84% was achieved with Ru-Ni-Mo/Al{sub 2}O{sub 3} catalyst at 380 C temperature for 11 h. Catalyst systems followed the HDS activity order as: Ru-Ni-Mo/Al{sub 2}O{sub 3}> Ni-Mo/Al{sub 2}O{sub 3}> Ru-Co-Mo/Al{sub 2}O{sub 3}> Co-Mo/Al{sub 2}O{sub 3} at all conditions. Cost effectiveness, mild operating conditions and reasonably high catalytic activity using in situ generated hydrogen mechanism proved our process to be useful for HDS of DBT. (author)

  10. Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell

    KAUST Repository

    Call, D. F.

    2009-10-09

    A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries of pure and mixed cultures in microbial electrolysis cells (MECs). At an applied voltage of 0.7 V, both G. sulfurreducens and the mixed culture generated similar current densities (ca. 160 A/m3), resulting in hydrogen production rates of ca. 1.9 m3 H2/m 3/day, whereas G. metallireducens exhibited lower current densities and production rates of 110 ± 7 A/m3 and 1.3 ± 0.1 m3 H2/m3/day, respectively. Before methane was detected in the mixed-culture MEC, the mixed consortium achieved the highest overall energy recovery (relative to both electricity and substrate energy inputs) of 82% ± 8% compared to G. sulfurreducens (77% ± 2%) and G. metallireducens (78% ± 5%), due to the higher coulombic efficiency of the mixed consortium. At an applied voltage of 0.4 V, methane production increased in the mixed-culture MEC and, as a result, the hydrogen recovery decreased and the overall energy recovery dropped to 38% ± 16% compared to 80% ± 5% for G. sulfurreducens and 76% ± 0% for G. metallireducens. Internal hydrogen recycling was confirmed since the mixed culture generated a stable current density of 31 ± 0 A/m3 when fed hydrogen gas, whereas G. sulfurreducens exhibited a steady decrease in current production. Community analysis suggested that G. sulfurreducens was predominant in the mixed-culture MEC (72% of clones) despite its relative absence in the mixed-culture inoculum obtained from a microbial fuel cell reactor (2% of clones). These results demonstrate that Geobacter species are capable of obtaining similar hydrogen production rates and energy recoveries as mixed cultures in an MEC and that high coulombic efficiencies in mixed culture MECs can be attributed in part to the recycling of hydrogen into current. Copyright

  11. Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell▿

    Science.gov (United States)

    Call, Douglas F.; Wagner, Rachel C.; Logan, Bruce E.

    2009-01-01

    A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries of pure and mixed cultures in microbial electrolysis cells (MECs). At an applied voltage of 0.7 V, both G. sulfurreducens and the mixed culture generated similar current densities (ca. 160 A/m3), resulting in hydrogen production rates of ca. 1.9 m3 H2/m3/day, whereas G. metallireducens exhibited lower current densities and production rates of 110 ± 7 A/m3 and 1.3 ± 0.1 m3 H2/m3/day, respectively. Before methane was detected in the mixed-culture MEC, the mixed consortium achieved the highest overall energy recovery (relative to both electricity and substrate energy inputs) of 82% ± 8% compared to G. sulfurreducens (77% ± 2%) and G. metallireducens (78% ± 5%), due to the higher coulombic efficiency of the mixed consortium. At an applied voltage of 0.4 V, methane production increased in the mixed-culture MEC and, as a result, the hydrogen recovery decreased and the overall energy recovery dropped to 38% ± 16% compared to 80% ± 5% for G. sulfurreducens and 76% ± 0% for G. metallireducens. Internal hydrogen recycling was confirmed since the mixed culture generated a stable current density of 31 ± 0 A/m3 when fed hydrogen gas, whereas G. sulfurreducens exhibited a steady decrease in current production. Community analysis suggested that G. sulfurreducens was predominant in the mixed-culture MEC (72% of clones) despite its relative absence in the mixed-culture inoculum obtained from a microbial fuel cell reactor (2% of clones). These results demonstrate that Geobacter species are capable of obtaining similar hydrogen production rates and energy recoveries as mixed cultures in an MEC and that high coulombic efficiencies in mixed culture MECs can be attributed in part to the recycling of hydrogen into current. PMID:19820150

  12. Theoretical and computational study of the energy dependence of the muon transfer rate from hydrogen to higher-Z gases

    Energy Technology Data Exchange (ETDEWEB)

    Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko chaussée 72, Sofia 1784 (Bulgaria); Adamczak, Andrzej [Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow (Poland); Stoilov, Mihail [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko chaussée 72, Sofia 1784 (Bulgaria); Vacchi, Andrea [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Via A. Valerio 2, 34127 Trieste (Italy)

    2015-01-23

    The recent PSI Lamb shift experiment and the controversy about proton size revived the interest in measuring the hyperfine splitting in muonic hydrogen as an alternative possibility for comparing ordinary and muonic hydrogen spectroscopy data on proton electromagnetic structure. This measurement critically depends on the energy dependence of the muon transfer rate to heavier gases in the epithermal range. The available data provide only qualitative information, and the theoretical predictions have not been verified. We propose a new method by measurements of the transfer rate in thermalized target at different temperatures, estimate its accuracy and investigate the optimal experimental conditions. - Highlights: • Method for measuring the energy dependence of muon transfer rate to higher-Z gases. • Thermalization and depolarization of muonic hydrogen studied by Monte Carlo method. • Optimal experimental conditions determined by Monte Carlo simulations. • Mathematical model and for estimating the uncertainty of the experimental results.

  13. A comparison of hydrogen-fueled fuel cells and combustion engines for electric utility applications

    International Nuclear Information System (INIS)

    Schoenung, S.M.

    2000-01-01

    Hydrogen-fueled systems have been proposed for a number of stationary electric generation applications including remote power generation, load management, distribution system peak shaving, and reliability or power quality enhancement. Hydrogen fueling permits clean, low pollution operation. This is particularly true for systems that use hydrogen produced from electrolysis, rather than the reforming of hydrocarbon fuels. Both fuel cells and combustion engines are suitable technologies for using hydrogen in many electric utility applications. This paper presents results from several studies performed for the U.S. Department of Energy Hydrogen Program. A comparison between the two technologies shows that, whereas fuel cells are somewhat more energy efficient, combustion engine technology is less expensive. In this paper, a comparison of the two technologies is presented, with an emphasis on distributed power and power quality applications. The special case of a combined distributed generation I hydrogen refueling station is also addressed. The comparison is made on the basis of system costs and benefits, but also includes a comparison of technology status: power ratings and response time. A discussion of pollutant emissions and pollutant control strategies is included. The results show those electric utility applications for which each technology is best suited. (author)

  14. Spectroscopic studies of hydrogen collisions

    International Nuclear Information System (INIS)

    Kielkopf, J.

    1991-01-01

    Low energy collisions involving neutral excited states of hydrogen are being studied with vacuum ultraviolet spectroscopy. Atomic hydrogen is generated by focusing an energetic pulse of ArF, KrF, or YAG laser light into a cell of molecular hydrogen, where a plasma is created near the focal point. The H 2 molecules in and near this region are dissociated, and the cooling atomic hydrogen gas is examined with laser and dispersive optical spectroscopy. In related experiments, we are also investigating neutral H + O and H + metal - atom collisions in these laser-generated plasmas

  15. Production of hydrogen via methane reforming using atmospheric pressure microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, Mariusz; Dors, Miroslaw [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland); Mizeraczyk, Jerzy [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland); Department of Marine Electronics, Gdynia Maritime University, Morska 83, 81-225 Gdynia (Poland)

    2008-06-15

    In this paper, results of hydrogen production via methane reforming in the atmospheric pressure microwave plasma are presented. A waveguide-based nozzleless cylinder-type microwave plasma source (MPS) was used to convert methane into hydrogen. Important advantages of the presented waveguide-based nozzleless cylinder-type MPS are: stable operation in various gases (including air) at high flow rates, no need for a cooling system, and impedance matching. The plasma generation was stabilized by an additional swirled nitrogen flow (50 or 100 l min{sup -1}). The methane flow rate was up to 175 l min{sup -1}. The absorbed microwave power could be changed from 3000 to 5000 W. The hydrogen production rate and the corresponding energy efficiency in the presented methane reforming by the waveguide-based nozzleless cylinder-type MPS were up to 255 g[H{sub 2}] h{sup -1} and 85 g[H{sub 2}] kWh{sup -1}, respectively. These parameters are better than those typical of the conventional methods of hydrogen production (steam reforming of methane and water electrolysis). (author)

  16. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  17. Liquid hydrogen production via hydrogen sulfide methane reformation

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  18. EXPERIMENTAL STUDY OF THE PRODUCTION OF SOLAR HYDROGEN IN ALGERIA

    Directory of Open Access Journals (Sweden)

    W. Bendaikha

    2015-08-01

    Full Text Available Hydrogen is a sustainable fuel option and one of the potential solutions for the current energy and environmental problems. In this study hydrogen is produced using a hydrogen generator with a Proton Exchange Membrane (PEM electrolyser. An experimental study is done in the Center of Development of the Renewable Energy, Algiers, Algeria.The experimental device contains essentially a photovoltaic module, a PEM electrolyser, a gasometer and the devices of measures of characteristics of the PEM electrolyser as well as two pyranometers for the horizontal and diffuse global radiance registration. This system in pilots scale is permitted on the one hand, to measured and analyzed the characteristics: of the PEM electrolyser for two different pressures of working (Patm and P=3 bar, on the other hand, to study the volume of hydrogen produces in the time with different sources of electrical power (generator, photovoltaic module, fluorescent lamp, the efficiency for every case is calculated and compared. We present in this paper the variation of the solar hydrogen flow rate produced according to the global radiance and according to the time for a typical day’s of August.

  19. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell

    KAUST Repository

    Nam, Joo-Youn

    2011-11-01

    High rates of hydrogen gas production were achieved in a two chamber microbial electrolysis cell (MEC) without a catholyte phosphate buffer by using a saline catholyte solution and a cathode constructed around a stainless steel mesh current collector. Using the non-buffered salt solution (68 mM NaCl) produced the highest current density of 131 ± 12 A/m3, hydrogen yield of 3.2 ± 0.3 mol H2/mol acetate, and gas production rate of 1.6 ± 0.2 m3 H2/m 3·d, compared to MECs with catholytes externally sparged with CO2 or containing a phosphate buffer. The salinity of the catholyte achieved a high solution conductivity, and therefore the electrode spacing did not appreciably affect performance. The coulombic efficiency with the cathode placed near the membrane separating the chambers was 83 ± 4%, similar to that obtained with the cathode placed more distant from the membrane (84 ± 4%). Using a carbon cloth cathode instead of the stainless steel mesh cathode did not significantly affect performance, with all reactor configurations producing similar performance in terms of total gas volume, COD removal, rcat and overall energy recovery. These results show MEC performance can be improved by using a saline catholyte without pH control. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  20. Effect of microwave double absorption on hydrogen generation from methanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Hsin; Lin, Bo-Jhih [Department of Greenergy, National University of Tainan, Tainan 700 (China)

    2010-03-15

    Hydrogen generation from steam reforming of methanol (SRM) with a CuO/ZnO/Al{sub 2}O{sub 3} catalyst was investigated in the study; particular emphasis was placed on the reactions of SRM exposed to an environment with microwave irradiation. By virtue of the double absorption of microwaves by both the reagents and the catalyst, the experiments suggested that the SRM could be heated and triggered rapidly within a short time, and the methanol conversion from SRM with microwave heating was high compared to that with conventional heating. The obtained results also indicated that, when the reaction temperature was as high as 250 C, thermodynamic equilibrium governed the SRM, whereas the reaction was kinetically controlled for the temperature lower than 250 C. Contrary to Le Chatelier's principle, it was noted that an increase in S/C ratio decreased methanol conversion. This can be explained by the fact that water absorbs microwave irradiation stronger than methanol. The performance of the SRM was evaluated based on the carbon conservation method and the nitrogen tracer method. It was found that the latter was also capable of providing an accurate prediction on methanol conversion, even though the flow rate of the product gas was not measured. (author)

  1. Modelling of hydrogen assisted cracking of nickel-base Alloy X-750 in water

    International Nuclear Information System (INIS)

    Oka, T.; Ballinger, R.G.; Hwang, I.S.

    1992-01-01

    A closed-form, semi-empirical, electrochemical model has been developed to rationalize the intergranular corrosion fatigue behavior of alloy X-750 in aqueous electrolytes. The model is based on the assumption that, in the electrolytes investigated and for the microstructures studied, that hydrogen assisted crack growth is the dominant mechanism. Further, it is assumed that the rate of hydrogen reduction is a controlling factor in the magnitude of the environmental component of crack growth. Electrolyte conductivity, dissolution and passivation kinetics of precipitates, grain boundary coverage of precipitates are identified as important environmental and microstructural variables governing the hydrogen reduction rate at the crack tip. The model is compared with experimental data for fatigue crack growth where hydrogen is supplied by external charging and with data where galvanically-generated local hydrogen is responsible for enhanced crack growth. It is shown that predicted results characterize the observed effects of frequency, microstructure, electrolyte conductivity, and stress intensity factor. The agreement between the hydrogen reduction model and measured crack growth rate is believed to support the proposed galvanic corrosion mechanism for the intergranular cracking of alloy X-750 in low temperature water

  2. Renewable electricity generation in India—A learning rate analysis

    International Nuclear Information System (INIS)

    Partridge, Ian

    2013-01-01

    The cost of electricity generation using renewable technologies is widely assumed to be higher than the cost for conventional generation technologies, but likely to fall with growing experience of the technologies concerned. This paper tests the second part of that statement using learning rate analysis, based on large samples of wind and small hydro projects in India, and projects likely changes in these costs through 2020. It is the first study of learning rates for renewable generation technologies in India, and only the second in any developing country—it provides valuable input to the development of Indian energy policy and will be relevant to policy makers in other developing countries. The paper considers some potential problems with learning rate analysis raised by Nordhaus (2009. The Perils of the Learning Model for Modeling Endogenous Technological Change. National Bureau of Economic Research Working Paper Series No. 14638). By taking account of these issues, it is possible both to improve the models used for making cost projections and to examine the potential impact of remaining forecasting problems. - Highlights: • The first learning rate analysis of wind generation costs in India. • Only the second learning rate analysis for wind in any developing country. • Reviews missing variable and related issues in learning rate analysis. • Finds a 17.7% learning rate for wind generation costs in India. • Finds no significant learning effect for small hydro

  3. Radiolytic gas generation in plutonium contaminated waste materials

    International Nuclear Information System (INIS)

    Kazanjian, A.R.

    1976-01-01

    Many plutonium contaminated waste materials decompose into gaseous products because of exposure to alpha radiation. The gases generated (usually hydrogen) over long-storage periods may create hazardous conditions. To determine the extent of such hazards, knowing the gas generation yields is necessary. These yields were measured by contacting some common Rocky Flats Plant waste materials with plutonium and monitoring the enclosed atmospheres for extensive periods of time. The materials were Plexiglas, polyvinyl chloride, glove-box gloves, machining oil, carbon tetrachloride, chlorothene VG solvent, Kimwipes (dry and wet), polyethylene, Dowex-1 resin, and surgeon's gloves. Both 239 Pu oxide and 238 Pu oxide were used as radiation sources. The gas analyses were made by mass spectrometry and the results obtained were the total gas generation, the hydrogen generation, the oxygen consumption rate, and the gas composition over the entire storage period. Hydrogen was the major gas produced in most of the materials. The total gas yields varied from 0.71 to 16 cm 3 (standard temperature pressure) per day per curie of plutonium. The oxygen consumption rates varied from 0.0088 to 0.070 millimoles per day per gram of plutonium oxide-239 and from 0.0014 to 0.0051 millimoles per day per milligram 238 Pu

  4. Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN3-Pincer Ligand

    KAUST Repository

    Pan, Yupeng

    2016-04-22

    An unsymmetrically protonated PN3-pincer complex in which ruthenium is coordinated by one nitrogen and two phosphorus atoms was employed for the selective generation of hydrogen from formic acid. Mechanistic studies suggest that the imine arm participates in the formic acid activation/deprotonation step. A long life time of 150 h with a turnover number over 1 million was achieved. Grabbing hold: A PN3-pincer complex was employed for the selective hydrogen generation from formic acid. Mechanistic studies suggest the imine arm participates in the formic acid activation/deprotonation step. A long life time of 150 h with a turnover number over 1 million was achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Abraham; Zhang, Jin Z. [Department of Chemistry and Biochemistry, University of California, Santa Cruz 1156 High St. Santa Cruz, CA 95064 (United States); Smith, Wilson A.; Zhao, Yiping [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602 (United States); Kuykendall, Tevye R. [Department of Chemistry, University of California, Berkeley Berkeley, CA 94720 (United States)

    2009-06-23

    Photoelectrochemical cells based on traditional and nanostructured ZnO thin films are investigated for hydrogen generation from water splitting. The ZnO thin films are fabricated using three different deposition geometries: normal pulsed laser deposition, pulsed laser oblique-angle deposition, and electron-beam glancing-angle deposition. The nanostructured films are characterized by scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and photoelectrochemical techniques. Normal pulsed laser deposition produces dense thin films with ca. 200 nm grain sizes, while oblique-angle deposition produces nanoplatelets with a fishscale morphology and individual features measuring ca. 900 by 450 nm on average. In contrast, glancing-angle deposition generates a highly porous, interconnected network of spherical nanoparticles of 15-40 nm diameter. Mott-Schottky plots show the flat band potential of pulsed laser deposition, oblique-angle deposition, and glancing-angle deposition samples to be -0.29, -0.28 and +0.20 V, respectively. Generation of photocurrent is observed at anodic potentials and no limiting photocurrents were observed with applied potentials up to 1.3 V for all photoelectrochemical cells. The effective photon-to-hydrogen efficiency is found to be 0.1%, 0.2% and 0.6% for pulsed laser deposition, oblique-angle deposition and glancing-angle deposition samples, respectively. The photoelectrochemical properties of the three types of films are understood to be a function of porosity, crystal defect concentration, charge transport properties and space charge layer characteristics. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11

    Energy Technology Data Exchange (ETDEWEB)

    Nath, K.; Kumar, A.; Das, D. [Indian Inst. of Technology, Kharagpur (India). Dept. of Biotechnology, Fermentation Technology Laboratory

    2006-06-15

    This study addressed the issue of using biological systems for hydrogen production as an environmentally sound alternative to conventional thermochemical and electrochemical processes. In particular, it examined the potential for anaerobic fermentation for biological hydrogen production and the possibility of coupling gaseous energy generation with simultaneous treatment of biodegradable waste materials. The study focused on hydrogen production by anaerobic fermentation using Enterobacter cloacae DM11, a Gram-negative, motile facultative anaerobe. Although hydrogen production by these bacteria depends on many environmental parameters, there is very little information on the effects of these factors in the hydrogen production potential of this organism. For that reason, this study examined the effect of initial medium pH, reaction temperature, initial glucose concentration, and iron (Fe2+) concentration on the fermentative production of hydrogen. Fermentative hydrogen production was carried out by Enterobacter cloacae DM11, using glucose as the substrate. Batch cultivations were performed in a 500 ml custom-designed vertical tubular bioreactor. The maximum molar yield of hydrogen was 3.31 mol (mol glucose){sub 1}. The rate and cumulative volume of hydrogen production decreased at higher initial glucose concentration. The pH of 6.5 at a temperature of 37 degrees C was most suitable for maximum rate of production of hydrogen in batch fermentation. The addition of Fe2+ on hydrogen production had a marginal enhancing effect on total hydrogen production. A simple model developed from the modified Gompertz equation was used to fit the cumulative hydrogen production curve and to estimate the hydrogen production potential, maximum production rate, and lag time. It was concluded that these study results could be used in the development of a high rate continuous hydrogen production process. 30 refs., 4 tabs., 3 figs.

  7. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  8. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    International Nuclear Information System (INIS)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-01-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10 -4 torr at temperatures between 250 and 700 degrees C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R ∼ 10 and 100 at 700 and 250 degrees C, respectively). However at <267 degrees C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy

  9. Estimation of restaurant solid waste generation rates

    International Nuclear Information System (INIS)

    Heck, H.H.; Major, I.

    2002-01-01

    Most solid waste utilities try to create a billing schedule that is proportional to solid waste generation rates. This research was trying to determine if the current billing rate structure was appropriate or if a different rate structure should be implemented. A multiple regression model with forward stepwise addition was developed which accurately predicts weekly solid waste generation rates for restaurants. The model was based on a study of daily solid waste generation at twenty-one different businesses. The weight and volume of solid waste generated was measure daily for two weeks during the winter and two weeks during the summer. Researchers followed the collection truck and measured the volume and weight of the container contents. Data was collected on the following independent variables describing each establishment; weight of waste per collection, volume per collection, container utilization factor, building area, contract haulers bill, yearly property tax, yearly solid waste tax, average number of collections per week, type of restaurant, modal number of collections per week, storage container size, waste density, number of employees, number of hours open per week, and weekly collection capacity (collections per week times storage container size). Independent variables were added to the regression equation based on their partial correlation coefficient and confidence level. The regression equations developed had correlation coefficients of 0.87 to 1.00, which was much better than the correlation coefficient (0.84) of an existing model DeGeare and Ongerth (1971) and a correlation coefficient of 0.54 based on the current solid waste disposal tax. (author)

  10. Enhanced Polymer Hydrogen Getters for Use in the TRUPACTT-II

    International Nuclear Information System (INIS)

    Tim Shepodd

    2002-01-01

    Addressing the needs to safely and more efficiently ship Transuranic (TRU) wastes that may generate flammable levels of hydrogen, polymer getters were previously evaluated for deployment in the TRUPACT-II. Subsequently, enhanced polymer getters, collectively known as ''TRUGETTER,'' were formulated and pelletized, then tested against the challenging conditions defined for transport of TRU wastes. Reaction rate, reversibility, compatibility, structure/shape, passivity and capacity were evaluated. The effects of temperature extremes, radiation exposure, poisons, pressure, and free liquids were quantified. The manufacturing parameters for production of getter powder and pellets were determined. The TRUGETTER hazards have been characterized and flammability studies completed demonstrating it is not regulated as a hazardous material by DOT. TRUGETTER is commercially available on a multikilogram scale. The precious metal content of the getters is easily recycled. The optimum formulation of TRUGETTER pellets has a hydrogen capacity of 6.3 mol kg -1 . The hydrogenation rate at 5% hydrogen, ambient temperature and 50% getter loading is 1.2 x 10 -3 mol s -1 kg -1 , and the rate is proportional to the hydrogen concentration (i.e., partial pressure). Therefore, the amount of getter required to meet the performance specification of 1.2 x 10 -5 mol s -1 for 60 days at ambient temperature is determined by the getter capacity rather than rate. About 20 kg of getter will provide 2X the required hydrogen capacity. Reducing the temperature to -20 F reduces the hydrogenation rate at 5% hydrogen and 50% getter loading to 1.4 x 10 -5 mol s -1 kg -1 . The rate of hydrogen removal from air at -20 F is about 10 times faster. Therefore, based on initial results 20 kg of getter should be sufficient to maintain the hydrogen concentration in the ICV below 0.4% by volume even at the low temperature extreme. Codeployment of the getter with zeolite and Hopcalite' catalyst mitigates the effects of

  11. Proceedings of the 14. world hydrogen energy conference 2002 : The hydrogen planet. CD-ROM ed.

    Energy Technology Data Exchange (ETDEWEB)

    Venter, R.D.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene; Veziroglu, N. [International Association for Hydrogen Energy, Coral Gables, FL (United States)] (eds.)

    2002-07-01

    Hydrogen has often been named as the ultimate fuel because it can be generated from a variety of renewable and non-renewable fuels and its direct conversion to electricity in fuel cells is efficient and results in no emissions other than water vapour. The opportunities and issues associated with the use of hydrogen as the energy carrier of the future were presented at this conference which addressed all aspects of hydrogen and fuel cell development including hydrogen production, storage, hydrogen-fuelled internal combustion engines, hydrogen infrastructure, economics, and the environment. Hydrogen is currently used as a chemical feedstock and a space fuel, but it is receiving considerable attention for bring renewable energy into the transportation and power generation sectors with little or no environmental impact at the point of end use. Canada leads the way in innovative ideas for a hydrogen infrastructure, one of the most challenging tasks for the transportation sector along with hydrogen storage. Major vehicle manufacturers have announced that they will have hydrogen-fueled cars and buses on the market beginning in 2003 and 2004. Solid oxide fuel cells will be used for generating electricity with efficiencies of 70 per cent, and proton exchange membrane (PEM) and other fuel cells are being tested for residential power supply with efficiencies of 85 per cent. The conference included an industrial exposition which demonstrated the latest developments in hydrogen and fuel cell research. More than 300 papers were presented at various oral and poster sessions, of which 172 papers have been indexed separately for inclusion in the database.

  12. Energy distribution and transfer in flowing hydrogen microwave plasmas

    International Nuclear Information System (INIS)

    Chapman, R.A.

    1987-01-01

    This thesis is an experimental investigation of the physical and chemical properties of a hydrogen discharge in a flowing microwave plasma system. The plasma system is the mechanisms utilized in an electrothermal propulsion concept to convert electromagnetic energy into the kinetic energy of flowing hydrogen gas. The plasmas are generated inside a 20-cm ID resonant cavity at a driving frequency of 2.45 GHz. The flowing gas is contained in a coaxially positioned 22-mm ID quartz discharge tube. The physical and chemical properties are examined for absorbed powers of 20-100 W, pressures of 0.5-10 torr, and flow rates of 0-10,000 μ-moles/sec. A calorimetry system enclosing the plasma system to accurately measure the energy inputs and outputs has been developed. The rate of energy that is transferred to the hydrogen gas as it flows through the plasma system is determined as a function of absorbed power, pressure, and flow rate to +/-1.8 W from an energy balance around the system. The percentage of power that is transferred to the gas is found to increase with increasing flow rate, decrease with increasing pressure, and to be independent of absorbed power

  13. Hydrogen sulfide generation in simulated construction and demolition debris landfills: impact of waste composition.

    Science.gov (United States)

    Yang, Kenton; Xu, Qiyong; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel; Booth, Matthew

    2006-08-01

    Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were debris landfills are suggested.

  14. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  15. Measures for removing hydrogen

    International Nuclear Information System (INIS)

    Baukal, W.; Koehling, A.; Langer, G.; Poeschel, E.

    1984-01-01

    Basis for the investigation is a 1300-MW-PWR. The evolution of hydrogen was studied in design-basis and three hypothetical accident scenarios, the loss-of-coolant accident, the failure of emergency cooling system and core meltdown. It was shown that in the case of release rates of 4m 3 H 2 /h, the known post-accident hydrogen removal systems can be used and at medium rates up to 80 m 3 H 2 /h recombines of nuclear and non-nuclear industries are suitable under certain conditions. In the case of larger release rates it appears useful to apply a small recombiner of the type of the post-accident hydrogen removal system combined with an other hydrogen countermeasures. Recommendations are being made for the installation of an accident-proof hydrogen measuring system. (DG) [de

  16. Demonstration technology development of new hydrogen energy; Shinsuiso energy jissho gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    A phenomenon of excess heat generation through the electrolysis of heavy water using palladium metals as electrode can be recognized as new hydrogen energy. Its mechanism has been investigated for four years since FY 1993. In FY 1993, the New Hydrogen Energy Demonstration Research Center and the New Hydrogen Energy Demonstration Laboratory were organized, and the research was initiated. For the excess heat generation demonstration model tests, two types of electrolysis experimental units were constructed, and the Pd/D-based electrolysis experiments were initiated. For the measurements of excess heat using an open type electrolysis cell, there were rather large errors ranging from -13% to +7%. It is necessary to improve the accuracy. For the measurements using a fuel cell type electrolysis cell, generation of the excess heat ranging from 0% to 6% was observed. For the validity of this, it is required to confirm the long-term stability of calibration and cell components. For the correlation between the increase in absorbing rate and the generation of excess heat, results of 2 to 3% lower were obtained. 28 refs., 89 figs., 26 tabs.

  17. Towards sustainable energy systems: The related role of hydrogen

    International Nuclear Information System (INIS)

    Hennicke, Peter; Fischedick, Manfred

    2006-01-01

    The role of hydrogen in long run sustainable energy scenarios for the world and for the case of Germany is analysed, based on key criteria for sustainable energy systems. The possible range of hydrogen within long-term energy scenarios is broad and uncertain depending on assumptions on used primary energy, technology mix, rate of energy efficiency increase and costs degression ('learning effects'). In any case, sustainable energy strategies must give energy efficiency highest priority combined with an accelerated market introduction of renewables ('integrated strategy'). Under these conditions hydrogen will play a major role not before 2030 using natural gas as a bridge to renewable hydrogen. Against the background of an ambitious CO 2 -reduction goal which is under discussion in Germany the potentials for efficiency increase, the necessary structural change of the power plant system (corresponding to the decision to phase out nuclear energy, the transformation of the transportation sector and the market implementation order of renewable energies ('following efficiency guidelines first for electricity generation purposes, than for heat generation and than for the transportation sector')) are analysed based on latest sustainable energy scenarios

  18. Measurement of percent hydrogen in the mechanical vacuum pump gas stream during BWR startup

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    All U.S BWRs use a Mechanical Vacuum Pump (MVP) to establish condenser vacuum during start-ups, normally from the initial heat-up to the point where sufficient reactor steam pressure and flow is available to place the Steam Jet Air Ejector (SJAE) and off-gas treatment system in service. MVP operation is restricted to <5% power and gas stream concentrations of <4% H 2 , the lower flammability limit (LFL) for hydrogen/air mixtures. For a particular plant startup prior to hydrogen injection for hydrogen water chemistry (HWC), the MVP %H 2 would depend on the air in-leakage rate, the H 2 gas generation rate from radiolysis and the gas/steam transport rate from the reactor vessel to the main condenser. The radiolysis rate at low power, which is not precisely known and has not been modeled for the BWR, is normally assumed to increase in proportion to thermal power. Two thirds of the radiolytic gas by volume would be H 2 and one third O 2 . The MVP is not equipped with %H 2 sampling and measurement capability, and many MVP systems include no flow measurement. No U.S plant or literature data on MVP %H 2 were found. The industry-first Early Hydrogen Water Chemistry (EHWC) demonstration at the Peach Bottom 3 nuclear power plant involved hydrogen gas injection into the reactor vessel during startup while the MVP was in service. To support the EHWC project, it was necessary to collect baseline MVP %H 2 data during a startup without hydrogen injection and to monitor MVP %H 2 during the startup with EHWC. The MVP system had no normal sample point, but included test taps in the suction and discharge piping. A sampling method and apparatus was invented (EPRI patent pending), designed, built and applied to obtain %H 2 measurements in the MVP gas stream. The apparatus allowed a gas sample stream to be taken from either the suction (vacuum) or discharge side of the MVP. The gas sample stream was preconditioned to remove moisture (the MVP uses water as a liquid compressant), flowed to

  19. Controlled Synthesis of CuS/TiO2 Heterostructured Nanocomposites for Enhanced Photocatalytic Hydrogen Generation through Water Splitting.

    Science.gov (United States)

    Chandra, Moumita; Bhunia, Kousik; Pradhan, Debabrata

    2018-04-16

    Photocatalytic hydrogen (H 2 ) generation through water splitting has attracted substantial attention as a clean and renewable energy generation process that has enormous potential in converting solar-to-chemical energy using suitable photocatalysts. The major bottleneck in the development of semiconductor-based photocatalysts lies in poor light absorption and fast recombination of photogenerated electron-hole pairs. Herein we report the synthesis of CuS/TiO 2 heterostructured nanocomposites with varied TiO 2 contents via simple hydrothermal and solution-based process. The morphology, crystal structure, composition, and optical properties of the as-synthesized CuS/TiO 2 hybrids are evaluated in detail. Controlling the CuS/TiO 2 ratio to an optimum value leads to the highest photocatalytic H 2 production rate of 1262 μmol h -1 g -1 , which is 9.7 and 9.3 times higher than that of pristine TiO 2 nanospindles and CuS nanoflakes under irradiation, respectively. The enhancement in the H 2 evolution rate is attributed to increased light absorption and efficient charge separation with an optimum CuS coverage on TiO 2 . The photoluminescence and photoelectrochemical measurements further confirm the efficient separation of charge carriers in the CuS/TiO 2 hybrid. The mechanism and synergistic role of CuS and TiO 2 semiconductors for enhanced photoactivity is further delineated.

  20. Atomic processes in hydrogen and deuterium negative ion discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1992-01-01

    A knowledge of the atomic processes active in a hydrogen negative ion discharge and their respective rates is an essential component of the interpretation, modeling, and enhancement of negative ion systems. The generation of the cross sections and rate processes appropriate to this problem has been a principal activity at several laboratories. In this paper is discussed those collision processes that are of major importance for the destruction of the vibrationally excited molecules generated in the discharge, processes that are essential to the valuation of the optimization procedure that is to be discussed in this paper

  1. Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 11. Distributed transportation of hydrogen/hydrogen absorbing alloy for hydrogen storage; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 11. Suiso bunsan yuso chozoyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Studies were conducted to find out hydrogen absorbing alloys with an effective hydrogen absorption rate of 3 mass % or more, hydrogen discharge temperature of 100 degrees C or lower, hydrogen absorbing capacity after 5,000 cycles not less than 90% of the initial capacity, applicable to stationary and mobile systems. The V-based alloy that achieved an effective hydrogen absorption rate of 2.6 mass % in the preceding fiscal year was subjected to studies relating to safety and durability. Since V is costly, efforts were exerted to develop TiCrMo alloys to replace the V-based alloy. In the search for novel high-performance alloys, endeavors centered on novel ternary alloys, novel alloys based on Mg and Ti, and novel intermetallic compounds of the Mg-4 family. In the study of guidelines for developing next-generation high-performance alloys, methods for creating hydrides with an H/M (hydrogen/metal) ratio far higher than 2 were discussed. Mentioned as techniques to produce such hydrides were the utilization of the hole regulated lattice, novel alloys based on the ultrahigh pressure hydride phase, new substances making use of the cooperative phenomenon in the coexistent multiple-phase structure, and the like. (NEDO)

  2. Hydrogen Village : creating hydrogen and fuel cell communities

    International Nuclear Information System (INIS)

    Smith, G.R.

    2009-01-01

    The Hydrogen Village (H2V) is a collaborative public-private partnership administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. This end user-driven, market development program accelerates the commercialization of hydrogen and fuel cell (FC) technologies throughout the Greater Toronto Area (GTA). The program targets 3 specific aspects of market development, notably deployment of near market technologies in community based stationary and mobile applications; development of a coordinated hydrogen delivery and equipment service infrastructure; and societal factors involving corporate policy and public education. This presentation focused on lessons learned through outreach programs and the deployment of solid oxide fuel cell (SOFC) heat and power generation; indoor and outdoor fuel cell back up power systems; fuel cell-powered forklifts, delivery vehicles, and utility vehicles; hydrogen internal combustion engine powered shuttle buses, sedans, parade float; hydrogen production/refueling stations in the downtown core; and temporary fuel cell power systems

  3. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall

  4. Liquid hydrogen production via hydrogen sulfide methane reformation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [University of Central Florida, Florida Solar Energy Center, 1769 Clearlake Road, Cocoa, FL 32922 (United States)

    2008-01-03

    Hydrogen sulfide (H{sub 2}S) methane (CH{sub 4}) reformation (H{sub 2}SMR) (2H{sub 2}S + CH{sub 4} = CS{sub 2} + 4H{sub 2}) is a potentially viable process for the removal of H{sub 2}S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H{sub 2}SMR produces carbon disulfide (CS{sub 2}), a liquid under ambient temperature and pressure - a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H{sub 2}SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH{sub 4} to H{sub 2}S ratios are needed. In this paper, we analyze H{sub 2}SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H{sub 2}SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively. (author)

  5. Impact of temperature and substrate concentration on degradation rates of acetate, propionate and hydrogen and their links to microbial community structure.

    Science.gov (United States)

    Zhao, Jing; Westerholm, Maria; Qiao, Wei; Yin, Dongmin; Bi, Shaojie; Jiang, Mengmeng; Dong, Renjie

    2018-05-01

    The present study investigates the conversion of acetate, propionate and hydrogen consumption linked to the microbial community structure and related to temperature and substrate concentration. Biogas reactors were continuously fed with coffee powder (20 g-COD/L) or acetate (20, 40, and 60 g-COD/L) and operated for 193 days at 37 °C or 55 °C conditions. Starting HRT was 23 days which was then reduced to 7 days. The kinetics of acetate and propionate degradation and hydrogen consumption rates were measured in batch assays. At HRT 7 days, the degradation rate of propionate was higher in thermophilic batches, while acetate degradation rate was higher at mesophilic conditions. The gaseous hydrogen consumption in acetate reactors increased proportionally with temperature and substrate concentration, while the dissolved hydrogen was not affected. The relative high abundance of hydrogentrophic methanogens indicated that the methanogenesis was directed towards the syntrophic acetate oxidation pathway at high acetate concentration and high temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Hourly energy management for grid-connected wind-hydrogen systems

    International Nuclear Information System (INIS)

    Bernal-Agustin, Jose L.; Dufo-Lopez, Rodolfo

    2008-01-01

    This paper is a complete technical-economic analysis of the hourly energy management of the energy generated in wind-hydrogen systems. Wind power generation depends on the unpredictable nature of the wind. If the wind-power penetration becomes high in the Spanish electrical grid, energy management will be necessary for some wind farms. A method is proposed in this paper to adjust the generation curve to the demand curve, consisting of the generation of hydrogen and storing it in a hydrogen tank during off-peak (low demand) hours, while during the rest of the hours (peak hours, high demand) the stored hydrogen can be used to generate electricity. After revising the results obtained in this paper, for the current values of efficiency of the electricity-hydrogen-electricity conversion (approximately 30%) and due to the high cost of the hydrogen components, for a wind-hydrogen system to be economically viable the price of the sale of the energy generated by the fuel cell would be very high (approximately 171 cEUR/kWh). (author)

  7. Hydrogen-based industry from remote excess hydroelectricity

    International Nuclear Information System (INIS)

    Ouellette, N.; Rogner, H.-H.; Scott, D.S.

    1997-01-01

    This paper examines synergies, opportunities and barriers associated with hydrogen and excess hydro-electricity in remote areas. The work is based on a case study that examined the techno-economic feasibility of a new hydrogen-based industry using surplus/off-peak generating capacity of the Taltson Dam and Generating Station in the Northwest Territories, Canada. After evaluating the amount and cost of hydrogen that could be produced from the excess capacity, the study investigates three hydrogen utilization scenarios: (1) merchant liquid or compressed hydrogen, (2) hydrogen as a chemical feedstock for the production of hydrogen peroxide, (3) methanol production from biomass, oxygen and hydrogen. Hydrogen peroxide production is the most promising and attractive strategy in the Fort Smith context. The study also illustrates patterns that recur in isolated sites throughout the world. (Author)

  8. ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane.

    Science.gov (United States)

    Li, Pei-Zhou; Aranishi, Kengo; Xu, Qiang

    2012-03-28

    Highly dispersed Ni nanoparticles have been successfully immobilized by the zeolitic metal-organic framework ZIF-8 via sequential deposition-reduction methods, which show high catalytic activity and long durability for hydrogen generation from hydrolysis of aqueous ammonia borane (NH(3)BH(3)) at room temperature. This journal is © The Royal Society of Chemistry 2012

  9. Effect of hydrogen coverage on hydrogenation of o-cresol on Pt(111)

    Science.gov (United States)

    Li, Yaping; Liu, Zhimin; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu

    2018-06-01

    The conversion of phenolics over metal catalysts is an important process for upgrading biofuels. With density functional calculations, hydrogenation of o-cresol on the hydrogen-covered Pt(111) surface was investigated. The results show that the coverage of hydrogen plays a significant role in the reaction rate while it does not affect the reaction selectivity. The reaction barriers of the hydrogenation process leading to the formation of both 2-methyl-cyclohexanone (the intermediate product) and 2-methyl-cyclohexanol (the final product) at high H coverages (∼1 ML) are found to be smaller by 0.14-0.69 eV than those at lower H coverages (∼1/25 ML). After both hydrogen and cresol are adsorbed on Pt(111) from their initial gas phase state, the reaction energy of each hydrogenation step on the surface is also dependent on the hydrogen coverage. On the H-covered Pt(111) surface, most steps of hydrogenation involve exothermic reactions when the hydrogen coverage is high while they are endothermic reactions at low hydrogen coverages. The differences in reaction rate and reaction energy between high and low H coverages can be understood with the coverage-dependent bonding strength and configurations.

  10. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  11. Design of a hydrogen fueling station for Vancouver, BC

    International Nuclear Information System (INIS)

    Dikeos, J.; Haas, J.; Maddaloni, J.; Owen, T.; Smolak, T.; Songprakorp, R.; Sodouri, P.; St Germain, L.; Tura, A.; Rowe, A.

    2004-01-01

    A public hydrogen refueling station has been designed to service a minimum daily capacity of 50 light-duty hydrogen fuel cell vehicles, each requiring 3 kg of compressed gaseous hydrogen at 5000 psi. A peak hourly fueling rate of 20 kg, or slightly less than 7 cars, can be accommodated. The station is designed around bulk liquid hydrogen storage, and energy efficient liquid compression. On-site storage with centralized production allows for great flexibility in the design and the simple fueling process results in fewer potential failure modes. High customer demand can easily be accommodated due to a four minute filling time, made possible by a low temperature hydrogen filling system. The overall well to wheel pathway of this fueling process generates up to 95% less CO 2 and requires up to 42% less energy than gasoline. The proposed design requires a low capital investment, and uses components easily available from a proven supplier base. An economic analysis shows that the delivered hydrogen cost is between $0.11/mile and $0.18/mile, based on a ten year discounted cash flow analysis. (author)

  12. Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands

    International Nuclear Information System (INIS)

    Olateju, Babatunde; Kumar, Amit

    2011-01-01

    Hydrogen is produced via steam methane reforming (SMR) for bitumen upgrading which results in significant greenhouse gas (GHG) emissions. Wind energy based hydrogen can reduce the GHG footprint of the bitumen upgrading industry. This paper is aimed at developing a detailed data-intensive techno-economic model for assessment of hydrogen production from wind energy via the electrolysis of water. The proposed wind/hydrogen plant is based on an expansion of an existing wind farm with unit wind turbine size of 1.8 MW and with a dual functionality of hydrogen production and electricity generation. An electrolyser size of 240 kW (50 Nm 3 H 2 /h) and 360 kW (90 Nm 3 H 2 /h) proved to be the optimal sizes for constant and variable flow rate electrolysers, respectively. The electrolyser sizes aforementioned yielded a minimum hydrogen production price at base case conditions of $10.15/kg H 2 and $7.55/kg H 2 . The inclusion of a Feed-in-Tariff (FIT) of $0.13/kWh renders the production price of hydrogen equal to SMR i.e. $0.96/kg H 2, with an internal rate of return (IRR) of 24%. The minimum hydrogen delivery cost was $4.96/kg H 2 at base case conditions. The life cycle CO 2 emissions is 6.35 kg CO 2 /kg H 2 including hydrogen delivery to the upgrader via compressed gas trucks. -- Highlights: ► This study involves development of a data intensive techno-economic model for estimation cost of hydrogen production from wind energy. ► Wind energy based electricity is used for electrolysis to produce hydrogen in Western Canada for bitumen upgrading for oil sands. ► Several scenarios were developed to study the electricity generation and hydrogen production from wind energy. ► The cost of production of hydrogen is significantly higher than natural based hydrogen in Western Canada.

  13. The next generation of CANDU technologies: profiling the potential for hydrogen fuel

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    2001-01-01

    This report discusses the Next-generation CANDU Power Reactor technologies currently under development at AECL. The innovations introduced into proven CANDU technologies include a compact reactor core design, which reduces the size by a factor of one third for the same power output; improved thermal efficiency through higher-pressure steam turbines; reduced use of heavy water (one quarter of the heavy water required for existing plants), thus reducing the cost and eliminating many material handling concerns; use of slightly enriched uranium to extend fuel life to three times that of existing natural uranium fuel and additions to CANDU's inherent passive safety. With these advanced features, the capital cost of constructing the plant can be reduced by up to 40 per cent compared to existing designs. The clean, affordable CANDU-generated electricity can be used to produce hydrogen for fuel cells for the transportation sector, thereby reducing emissions from the transportation sector

  14. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor.

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO(2)/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H(2) generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g(-1) at 0.5 A g(-1) and 287 F g(-1) at 1 A g(-1) are obtained with TiO(2)/Ni(OH)(2) nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application.

  15. A versatile, steam reforming based small-scale hydrogen production process

    International Nuclear Information System (INIS)

    P C Hulteberg; F A Silversand; B Porter; R Woods

    2006-01-01

    In this paper, a new design methodology and process is proposed for small scale pure hydrogen production capable of serving energy markets ranging from distributed generation to vehicular refuelling. The system was designed for producing 7 Nm 3 /hr pure hydrogen (purity of ≤ 1 ppm CO dry), yielding 10 kWe net power from a fuel cell system with an overall parasitic power loss ≤ 10 %. The discussion of this process includes a detailed description of the design methodology and operational results of the catalytic converter, the hydrogen purification system and the fuel cell system. This paper will discuss the design methodology of the overall system, as well as the specific design of the catalytic converter, the catalysts used within, and the hydrogen purification system. It will also report the system performance including gas purity, recovery rate, overall hydrogen production efficiencies, and electrical efficiencies during fuel cell operation. (authors)

  16. Neutron Scattering in Hydrogenous Moderators, Studied by Time Dependent Reaction Rate Method

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L G; Moeller, E; Purohit, S N

    1966-03-15

    The moderation and absorption of a neutron burst in water, poisoned with the non-1/v absorbers cadmium and gadolinium, has been followed on the time scale by multigroup calculations, using scattering kernels for the proton gas and the Nelkin model. The time dependent reaction rate curves for each absorber display clear differences for the two models, and the separation between the curves does not depend much on the absorber concentration. An experimental method for the measurement of infinite medium reaction rate curves in a limited geometry has been investigated. This method makes the measurement of the time dependent reaction rate generally useful for thermalization studies in a small geometry of a liquid hydrogenous moderator, provided that the experiment is coupled to programs for the calculation of scattering kernels and time dependent neutron spectra. Good agreement has been found between the reaction rate curve, measured with cadmium in water, and a calculated curve, where the Haywood kernel has been used.

  17. Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires.

    Science.gov (United States)

    Park, Ji-Hyeon; Mandal, Arjun; Kang, San; Chatterjee, Uddipta; Kim, Jin Soo; Park, Byung-Guon; Kim, Moon-Deock; Jeong, Kwang-Un; Lee, Cheul-Ro

    2016-08-24

    This article demonstrates for the first time to the best of our knowledge, the merits of InGaN/GaN multiple quantum wells (MQWs) grown on hollow n-GaN nanowires (NWs) as a plausible alternative for stable photoelectrochemical water splitting and efficient hydrogen generation. These hollow nanowires are achieved by a growth method rather not by conventional etching process. Therefore this approach becomes simplistic yet most effective. We believe relatively low Ga flux during the selective area growth (SAG) aids the hollow nanowire to grow. To compare the optoelectronic properties, simultaneously solid nanowires are also studied. In this present communication, we exhibit that lower thermal conductivity of hollow n-GaN NWs affects the material quality of InGaN/GaN MQWs by limiting In diffusion. As a result of this improvement in material quality and structural properties, photocurrent and photosensitivity are enhanced compared to the structures grown on solid n-GaN NWs. An incident photon-to-current efficiency (IPCE) of around ~33.3% is recorded at 365 nm wavelength for hollow NWs. We believe that multiple reflections of incident light inside the hollow n-GaN NWs assists in producing a larger amount of electron hole pairs in the active region. As a result the rate of hydrogen generation is also increased.

  18. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    Hydrogenases catalyze the reduction of protons to molecular hydrogen with outstanding efficiency. An electrode surface which is covered with active hydrogenase molecules becomes a promising alternative to platinum for electrochemical hydrogen production. To immobilize the hydrogenase on the electrode, the gold surface was modified by heterobifunctional molecules. A thiol headgroup on one side allowed the binding to the gold surface and the formation of a self-assembled monolayer. The other side of the molecules provided a surface with a high affinity for the hydrogenase CrHydA1 from Chlamydomonas reinhardtii. With methylviologen as a soluble energy carrier, electrons were transferred from carboxy-terminated electrodes to CrHydA1 and conducted to the active site (H-cluster), where they reduce protons to molecular hydrogen. A combined approach of surface-enhanced infrared absorption spectroscopy, gas chromatography, and surface plasmon resonance allowed quantifying the hydrogen production on a molecular level. Hydrogen was produced with a rate of 85 mol H{sub 2} min{sup -1} mol{sup -1}. On a 1'- benzyl-4,4'-bipyridinum (BBP)-terminated surface, the electrons were mediated by the monolayer and no soluble electron carrier was necessary to achieve a comparable hydrogen production rate (approximately 50% of the former system). The hydrogen evolution potential was determined to be -335 mV for the BBP-bound hydrogenase and -290 mV for the hydrogenase which was immobilized on a carboxy-terminated mercaptopropionic acid SAM. Therefore, both systems significantly reduce the hydrogen production overpotential and allow electrochemical hydrogen production at an energy level which is close to the commercially applied platinum electrodes (hydrogen evolution potential of -270 mV). In order to couple hydrogen production and photosynthesis, photosystem I (PS1) from Synechocystis PCC 6803 and membrane-bound hydrogenase (MBH) from Ralstonia eutropha were bound to each other

  19. Experimental determination of reaction rates of water. Hydrogen exchange of tritium with hydrophobic catalysts

    International Nuclear Information System (INIS)

    Bixel, J.C.; Hartzell, B.W.; Park, W.K.

    1976-01-01

    This study was undertaken to obtain data needed for further development of a process for the enrichment and removal of tritium from the water associated with light-water reactors, fuel-reprocessing plants, and tritium-handling laboratories. The approach is based on the use of antiwetting, hydrophobic catalysts which permit the chemical exchange reactions between liquid water and gaseous hydrogen in direct contact, thus eliminating problems of catalyst deactivation and the complexity of reactor design normally associated with current catalytic-detritiation techniques involving gas-phase catalysis. An apparatus and procedure were developed for measuring reaction rates of water-hydrogen chemical exchange with hydrophobic catalysts. Preliminary economic evaluations of the process were made as it might apply to the AGNS fuel reprocessing plant

  20. Rate amplification of the two photon emission from para-hydrogen toward the neutrino mass measurement

    International Nuclear Information System (INIS)

    Masuda, Takahiko; Hara, Hideaki; Miyamoto, Yuki; Kuma, Susumu; Nakano, Itsuo; Ohae, Chiaki; Sasao, Noboru; Tanaka, Minoru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2015-01-01

    We recently reported an experiment which focused on demonstrating the macro-coherent amplification mechanism. This mechanism, which was proposed for neutrino mass measurements, indicates that a multi-particle emission rate should be amplified by coherence in a suitable medium. Using a para-hydrogen molecule gas target and the adiabatic Raman excitation method, we observed that the two photon emission rate was amplified by a factor of more than 10 15 from the spontaneous emission rate. This paper briefly summarizes the previous experimental result and presents the current status and the future prospect

  1. Rate amplification of the two photon emission from para-hydrogen toward the neutrino mass measurement

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takahiko, E-mail: masuda@okayama-u.ac.jp; Hara, Hideaki; Miyamoto, Yuki [Okayama University, Research Core for Extreme Quantum World (Japan); Kuma, Susumu [Atomic, Molecular and Optical Physics Laboratory, RIKEN (Japan); Nakano, Itsuo [Okayama University, Research Core for Extreme Quantum World (Japan); Ohae, Chiaki [University of Electro-Communications, Department of Engineering Science (Japan); Sasao, Noboru [Okayama University, Research Core for Extreme Quantum World (Japan); Tanaka, Minoru [Osaka University, Department of Physics (Japan); Uetake, Satoshi [Okayama University, Research Center of Quantum Universe (Japan); Yoshimi, Akihiro; Yoshimura, Koji [Okayama University, Research Core for Extreme Quantum World (Japan); Yoshimura, Motohiko [Okayama University, Research Center of Quantum Universe (Japan)

    2015-11-15

    We recently reported an experiment which focused on demonstrating the macro-coherent amplification mechanism. This mechanism, which was proposed for neutrino mass measurements, indicates that a multi-particle emission rate should be amplified by coherence in a suitable medium. Using a para-hydrogen molecule gas target and the adiabatic Raman excitation method, we observed that the two photon emission rate was amplified by a factor of more than 10{sup 15} from the spontaneous emission rate. This paper briefly summarizes the previous experimental result and presents the current status and the future prospect.

  2. Hydrogen generation from formic acid catalyzed by a metal complex under amine-free and aqueous conditions

    KAUST Repository

    Huang, Kuo-Wei; Guan, Chao; Pan, Yupeng; Hu, Jinsong; Li, Huaifeng

    2018-01-01

    invention provides catalysts used to produce hydrogen that has a satisfactory and sufficient lifespan (measured by turnover number (TON)), that has stability in the presence of moisture, air, acid, or impurities, promote a rapid reaction rate, and remain

  3. Dissolved hydrogen and oxygen sensors using semiconductor devices

    International Nuclear Information System (INIS)

    Hara, Nobuyoshi; Sugimoto, Katsuhisa

    1995-01-01

    The concentrations of DH and DO in aqueous solution are the factors that determine the equilibrium potential of hydrogen and oxygen electrode reactions, respectively, and are the quantities which directly related to the rates of hydrogen generation type and oxygen consumption type corrosion reactions, therefore, they have the important meaning in the electrochemistry of corrosion. In the hydrogen injection into BWR cooling water, the concentration of hydrogen must be controlled strictly, accordingly DH and DO sensors and electrochemical potential sensors are required. For the chemical sensors used in reactor cooling water, the perfectly solid state sensors made of high corrosion resistance materials, which are small size and withstand high temperature and high pressure, must be developed. The structure and the characteristics of the semiconductor devices used as gas sensors, and the principles of DH and DO sensors are described. If the idea of porous or discontinuous membrane gate is developed, the ion sensor of solid structure with one-body reference electrode may be made. (K.I.)

  4. A new mechanism of hydrogen absorption in water-water reactor core materials

    International Nuclear Information System (INIS)

    Gann, V.V.; Gann, A.V.

    2012-01-01

    The spectrum of fast protons, generated in water by fast neutrons of WWER-1000 reactor core, has been calculated using the code MCNPX. The main mechanism of fast proton generation in the moderator is found to be elastic scattering of fast neutrons on hydrogen nuclei. Fast protons with mean energy 1 MeV flow towards the surface of cladding material at flux density ∼ 0.1 μA/cm 2 . Proton range distribution profile in cladding material is calculated. The range of fast protons in zirconium averages 20 μm, the maximal proton range is larger than 200 μm. The rate of hydrogen deposition in 40 μm layer amounts to 5 x 10 -5 H/n/μ. A role of the suggested mechanism in process of zirconium clad hydrogenation during reactor irradiation is discussed.

  5. Alternative method for steam generation for thermal oxidation of silicon

    Science.gov (United States)

    Spiegelman, Jeffrey J.

    2010-02-01

    Thermal oxidation of silicon is an important process step in MEMS device fabrication. Thicker oxide layers are often used as structural components and can take days or weeks to grow, causing high gas costs, maintenance issues, and a process bottleneck. Pyrolytic steam, which is generated from hydrogen and oxygen combustion, was the default process, but has serious drawbacks: cost, safety, particles, permitting, reduced growth rate, rapid hydrogen consumption, component breakdown and limited steam flow rates. Results from data collected over a 24 month period by a MEMS manufacturer supports replacement of pyrolytic torches with RASIRC Steamer technology to reduce process cycle time and enable expansion previously limited by local hydrogen permitting. Data was gathered to determine whether Steamers can meet or exceed pyrolytic torch performance. The RASIRC Steamer uses de-ionized water as its steam source, eliminating dependence on hydrogen and oxygen. A non-porous hydrophilic membrane selectively allows water vapor to pass. All other molecules are greatly restricted, so contaminants in water such as dissolved gases, ions, total organic compounds (TOC), particles, and metals can be removed in the steam phase. The MEMS manufacturer improved growth rate by 7% over the growth range from 1μm to 3.5μm. Over a four month period, wafer uniformity, refractive index, wafer stress, and etch rate were tracked with no significant difference found. The elimination of hydrogen generated a four-month return on investment (ROI). Mean time between failure (MTBF) was increased from 3 weeks to 32 weeks based on three Steamers operating over eight months.

  6. Stuart Energy's experiences in developing 'Hydrogen Energy Station' infrastructure

    International Nuclear Information System (INIS)

    Crilly, B.

    2004-01-01

    'Full text:' With over 50 years experience, Stuart Energy is the global leader in the development, manufacture and integration of multi-use hydrogen infrastructure products that use the Company's proprietary IMET hydrogen generation water electrolysis technology. Stuart Energy offers its customers the power of hydrogen through its integrated Hydrogen Energy Station (HES) that provides clean, secure and distributed hydrogen. The HES can be comprised of five modules: hydrogen generation, compression, storage, fuel dispensing and / or power generation. This paper discusses Stuart Energy's involvement with over 10 stations installed in recent years throughout North America, Asia and Europe while examining the economic and environmental benefits of these systems. (author)

  7. Effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames

    International Nuclear Information System (INIS)

    Guo, H.; Tayebi, B.; Galizzi, C.; Escudie, D.

    2009-01-01

    Hydrogen (H 2 ) is a clean burning component, but relatively expensive. Mixing a small amount of hydrogen with other fuels is an effective way to use H 2 . H 2 enriched combustion significantly improves fuel efficiency and reduces pollutant (nitrogen oxide and particulate matter) emissions. This presentation discussed the effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames. The presentation discussed flame configuration; the experimental methodology using laser tomography; and results for typical images, burning velocity, ratio of turbulent to laminar burning velocities, flame surface density, curvature, flame brush thickness, and integrated flame surface area. It was concluded that the increase of turbulent burning velocity was faster than that of laminar burning velocity, which contradicted traditional theory. figs.

  8. Hydrogen and methane generation from large hydraulic plant: Thermo-economic multi-level time-dependent optimization

    International Nuclear Information System (INIS)

    Rivarolo, M.; Magistri, L.; Massardo, A.F.

    2014-01-01

    Highlights: • We investigate H 2 and CH 4 production from very large hydraulic plant (14 GW). • We employ only “spilled energy”, not used by hydraulic plant, for H 2 production. • We consider the integration with energy taken from the grid at different prices. • We consider hydrogen conversion in chemical reactors to produce methane. • We find plants optimal size using a time-dependent thermo-economic approach. - Abstract: This paper investigates hydrogen and methane generation from large hydraulic plant, using an original multilevel thermo-economic optimization approach developed by the authors. Hydrogen is produced by water electrolysis employing time-dependent hydraulic energy related to the water which is not normally used by the plant, known as “spilled water electricity”. Both the demand for spilled energy and the electrical grid load vary widely by time of year, therefore a time-dependent hour-by-hour one complete year analysis has been carried out, in order to define the optimal plant size. This time period analysis is necessary to take into account spilled energy and electrical load profiles variability during the year. The hydrogen generation plant is based on 1 MWe water electrolysers fuelled with the “spilled water electricity”, when available; in the remaining periods, in order to assure a regular H 2 production, the energy is taken from the electrical grid, at higher cost. To perform the production plant size optimization, two hierarchical levels have been considered over a one year time period, in order to minimize capital and variable costs. After the optimization of the hydrogen production plant size, a further analysis is carried out, with a view to converting the produced H 2 into methane in a chemical reactor, starting from H 2 and CO 2 which is obtained with CCS plants and/or carried by ships. For this plant, the optimal electrolysers and chemical reactors system size is defined. For both of the two solutions, thermo

  9. Numerical analysis on hydrogen stratification and post-inerting of hydrogen risk

    International Nuclear Information System (INIS)

    Peng, Cheng; Tong, Lili; Cao, Xuewu

    2016-01-01

    Highlights: • A three-dimensional computational model was built and the applicability was discussed. • The formation of helium stratification was further studied. • Three influencing factors on the post-inerting of hydrogen risk were analyzed. - Abstract: In the case of severe accidents, the risk of hydrogen explosion threatens the integrity of the nuclear reactor containment. According to nuclear regulations, hydrogen control is required to ensure the safe operation of the nuclear reactor. In this study, the method of Computational Fluid Dynamics (CFD) has been applied to analyze process of hydrogen stratification and the post-inerting of hydrogen risk in the Large-Scale Gas Mixing Facility. A three-dimensional computational model was built and the applicability of different turbulence models was discussed. The result shows that the helium concentration calculated by the standard k–ε turbulence model is closest to the experiment data. Through analyzing the formation of helium stratification at different injection velocities, it is found that when the injection mass flow is constant and the injection velocity of helium increases, the mixture of helium and air is enhanced while there is rarely influence on the formation of helium stratification. In addition, the influences of mass flow rate, injection location and direction and inert gas on the post-inerting of hydrogen risk have been analyzed and the results are as follows: with the increasing of mass flow rate, the mitigation effect of nitrogen on hydrogen risk will be further improved; there is an obvious local difference between the mitigation effects of nitrogen on hydrogen risk in different injection directions and locations; when the inert gas is injected at the same mass flow rate, the mitigation effect of steam on hydrogen risk is better than that of nitrogen. This study can provide technical support for the mitigation of hydrogen risk in the small LWR containment.

  10. Hydrogen production in a PWR during LOCA

    International Nuclear Information System (INIS)

    Cassette, P.

    1984-01-01

    Hydrogen generation during a PWR LOCA has been estimated for design basis accident and for two more severe hypothetical accidents. Hydrogen production during design basis accident is a rather slow mechanism, allowing in the worst case, 15 days to connect a hydrogen recombining unit to the containment atmosphere monitoring system. Hydrogen generated by steam oxidation during more severe hypothetical accidents was found limited by steam availability and fuel melting phenomena. Uncertainty is, however, still remaining on corium-zirconium-steam interaction. In the worst case, calculations lead to the production of 500 kg of hydrogen, thus leading to a volume concentration of 15% in containment atmosphere, assuming homogeneous hydrogen distribution within the reactor building. This concentration is within flammability limits but not within detonation limits. However, hydrogen detonation due to local hydrogen accumulation cannot be discarded. A major uncertainty subsisting on hydrogen hazard is hydrogen distribution during the first hours of the accident. This point determines the effects and consequences of local detonation or deflagration which could possibly be harmful to safeguard systems, or induce missile generation in the reactor building. As electrical supply failures are identified as an important contributor to severe accident risk, corrective actions have been taken in France to improve their reliability, including the installation of a gas turbine on each site to supplement the existing sources. These actions are thus contributing to hydrogen hazard reduction

  11. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  12. Turbulent burning rates of methane and methane-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  13. Treatment of simulated high-level radioactive waste with formic acid: Bench-scale study on hydrogen evolution

    International Nuclear Information System (INIS)

    Hsu, C.L.W.; Ritter, J.A.

    1996-01-01

    At the Savannah River Site, the Defense Waste Processing Facility (DWPF) was constructed to vitrify high-level radioactive liquid waste in borosilicate glass for permanent storage. Formic acid, which serves as both an acid and a reducing agent, is used to treat the washed alkaline sludge during melter feed preparation primarily to improve the processability of the feed and to reduce mercury to its zero state for steam stripping. The high-level sludge is composed of many transition metal hydroxides. Among them, there are small quantities of platinum group metals. During the treatment of simulated sludge with formic acid, significant amounts of hydrogen were generated when the platinum group metals were included in the sludge. Apparently the noble metals in the sludge were reduced to their zero states and caused formic acid to decompose catalytically into hydrogen and carbon dioxide, usually with an induction period. The production of hydrogen gas presented the DWPF with a safety issue. Therefore, the objective of this research was to gain a fundamental understanding of what controlled the hydrogen evolution so that a practical solution to the safety issue could be obtained. A bench-scale parametric study revealed the following: increasing the amount of formic acid added to the sludge increased the hydrogen generation rate dramatically; once the catalysts were activated, the hydrogen generation rate decreased significantly with a lowering of the temperature of the sludge; the relative catalytic activities of the noble metals in the sludge decreased in the following order: rhodium > ruthenium much-gt palladium; ammonium ions were generated catalytically from the reaction between formic acid and nitrate; and when present, the noble metals caused higher upward drifts of the sludge pH

  14. An insight on hydrogen fuel injection techniques with SCR system for NO{sub X} reduction in a hydrogen-diesel dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC Engines, Hall 11A, Tata Motors, Pimpri, Pune 411019, Maharashtra (India); Nagarajan, G. [Department of Mechanical Engineering, ICE Division, College of Engineering, Guindy, Anna University-Chennai, Chennai 600 025 (India)

    2009-11-15

    Internal combustion engines continue to dominate in many fields like transportation, agriculture and power generation. Among the various alternative fuels, hydrogen is a long-term renewable and less polluting fuel (Produced from renewable energy sources). In the present experimental investigation, the performance and emission characteristics were studied on a direct injection diesel engine in dual fuel mode with hydrogen inducted along with air adopting carburetion, timed port and manifold injection techniques. Results showed that in timed port injection, the specific energy consumption reduces by 15% and smoke level by 18%. The brake thermal efficiency and NO{sub X} increases by 17% and 34% respectively compared to baseline diesel. The variation in performance between port and manifold injection is not significant. The unburnt hydrocarbons and carbon monoxide emissions are lesser in port injection. The oxides of nitrogen are higher in hydrogen operation (both port and manifold injection) compared to diesel engine. In order to reduce the NO{sub X} emissions, a selective catalytic converter was used in hydrogen port fuel injection. The NO{sub X} emission reduced upto a maximum of 74% for ANR (ratio of flow rate of ammonia to the flow rate of NO) of 1.1 with a marginal reduction in efficiency. Selective catalytic reduction technique has been found to be effective in reducing the NO{sub X} emission from hydrogen fueled diesel engines. (author)

  15. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  16. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope.

    Science.gov (United States)

    Hamuro, Yoshitomo

    2017-03-01

    A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification. Graphical Abstract ᅟ.

  17. Hydrogen production by several cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dhruv; Kumar, H.D. (Banaras Hindu Univ., Varanasi (India). Dept. of Botany)

    1992-11-01

    Twenty species belonging to eleven genera of nitrogen-fixing and non-nitrogen-fixing cyanobacteria were screened for production of hydrogen. Only one species each of Nostoc and Anabaena showed light-and nitrogenase-dependent aerobic hydrogen production. The highest rate of aerobic hydrogen production was recorded in Anabaena sp. strain CA. When incubated anaerobically under 99% Ar + 1% CO[sub 2], all the tested strains produced hydrogen. Nickel supplementation completely abolished hydrogen production both under aerobic and anaerobic conditions, except in Anabaena sp. strain CA, where only the rate of production was decreased. Species of Plectonema, Oscillatoria and Spirulina showed methyl viologen-dependent (hydrogenase-dependent) hydrogen production. Other physiological activities were also studied with a view to selecting a suitable organism for large-scale production of hydrogen. (author)

  18. Photocatalytic hydrogen generation with Ag-loaded LiNbO3

    Indian Academy of Sciences (India)

    Administrator

    rhodamine B decomposition under solar illumination was also reported (Stock ... photocatalytic hydrogen production. ... lytic hydrogen production from a methanol aqueous solu- .... estimated bandgap energy of Nb2O5 and LiNbO3 samples.

  19. Hydrogen generation due to water splitting on Si - terminated 4H-Sic(0001) surfaces

    Science.gov (United States)

    Li, Qingfang; Li, Qiqi; Yang, Cuihong; Rao, Weifeng

    2018-02-01

    The chemical reactions of hydrogen gas generation via water splitting on Si-terminated 4H-SiC surfaces with or without C/Si vacancies were studied by using first-principles. We studied the reaction mechanisms of hydrogen generation on the 4H-SiC(0001) surface. Our calculations demonstrate that there are major rearrangements in surface when H2O approaches the SiC(0001) surface. The first H splitting from water can occur with ground-state electronic structures. The second H splitting involves an energy barrier of 0.65 eV. However, the energy barrier for two H atoms desorbing from the Si-face and forming H2 gas is 3.04 eV. In addition, it is found that C and Si vacancies can form easier in SiC(0001)surfaces than in SiC bulk and nanoribbons. The C/Si vacancies introduced can enhance photocatalytic activities. It is easier to split OH on SiC(0001) surface with vacancies compared to the case of clean SiC surface. H2 can form on the 4H-SiC(0001) surface with C and Si vacancies if the energy barriers of 1.02 and 2.28 eV are surmounted, respectively. Therefore, SiC(0001) surface with C vacancy has potential applications in photocatalytic water-splitting.

  20. Hydrogen loss and its improved retention in hydrogen plasma treated a-SiNx:H films: ERDA study with 100 MeV Ag7+ ions

    Science.gov (United States)

    Bommali, R. K.; Ghosh, S.; Khan, S. A.; Srivastava, P.

    2018-05-01

    Hydrogen loss from a-SiNx:H films under irradiation with 100 MeV Ag7+ ions using elastic recoil detection analysis (ERDA) experiment is reported. The results are explained under the basic assumptions of the molecular recombination model. The ERDA hydrogen concentration profiles are composed of two distinct hydrogen desorption processes, limited by rapid molecular diffusion in the initial stages of irradiation, and as the fluence progresses a slow process limited by diffusion of atomic hydrogen takes over. Which of the aforesaid processes dominates, is determined by the continuously evolving Hydrogen concentration within the films. The first process dominates when the H content is high, and as the H concentration falls below a certain threshold (Hcritical) the irradiation generated H radicals have to diffuse through larger distances before recombining to form H2, thereby significantly bringing down the hydrogen evolution rate. The ERDA measurements were also carried out for films treated with low temperature (300 °C) hydrogen plasma annealing (HPA). The HPA treated films show a clear increase in Hcritical value, thus indicating an improved diffusion of atomic hydrogen, resulting from healing of weak bonds and passivation of dangling bonds. Further, upon HPA films show a significantly higher H concentration relative to the as-deposited films, at advanced fluences. These results indicate the potential of HPA towards improved H retention in a-SiNx:H films. The study distinguishes clearly the presence of two diffusion processes in a-SiNx:H whose diffusion rates differ by an order of magnitude, with atomic hydrogen not being able to diffuse further beyond ∼ 1 nm from the point of its creation.

  1. Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst

    Directory of Open Access Journals (Sweden)

    Hongbin Dai

    2017-02-01

    Full Text Available The synthesis of highly active and selective catalysts is the central issue in the development of hydrous hydrazine (N2H4·H2O as a viable hydrogen carrier. Herein, we report the synthesis of bimetallic Ni-Ir nanocatalyts supported on CeO2 using a one-pot coprecipitation method. A combination of XRD, HRTEM and XPS analyses indicate that the Ni-Ir/CeO2 catalyst is composed of tiny Ni-Ir alloy nanoparticles with an average size of around 4 nm and crystalline CeO2 matrix. The Ni-Ir/CeO2 catalyst exhibits high catalytic activity and excellent selectivity towards hydrogen generation from N2H4·H2O at mild temperatures. Furthermore, in contrast to previously reported Ni-Pt catalysts, the Ni-Ir/CeO2 catalyst shows an alleviated requirement on alkali promoter to achieve its optimal catalytic performance.

  2. Empirical Correction for Differences in Chemical Exchange Rates in Hydrogen Exchange-Mass Spectrometry Measurements.

    Science.gov (United States)

    Toth, Ronald T; Mills, Brittney J; Joshi, Sangeeta B; Esfandiary, Reza; Bishop, Steven M; Middaugh, C Russell; Volkin, David B; Weis, David D

    2017-09-05

    A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences. First, differences in chemical exchange rates are measured by use of an unstructured reporter peptide, YPI. An empirical chemical exchange correction factor, determined by use of the HX data from the reporter peptide, is then applied to the HX measurements obtained from a protein of interest under different solution conditions. We demonstrate that the correction is experimentally sound through simulation and in a proof-of-concept experiment using unstructured peptides under slow-exchange conditions (pD 4.5 at ambient temperature). To illustrate its utility, we applied the correction to HX-MS excipient screening data collected for a pharmaceutically relevant IgG4 mAb being characterized to determine the effects of different formulations on backbone dynamics.

  3. Hydrogen peroxide safety issues

    International Nuclear Information System (INIS)

    Conner, W.V.

    1993-01-01

    A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors

  4. Solar Hydrogen Reaching Maturity

    Directory of Open Access Journals (Sweden)

    Rongé Jan

    2015-09-01

    Full Text Available Increasingly vast research efforts are devoted to the development of materials and processes for solar hydrogen production by light-driven dissociation of water into oxygen and hydrogen. Storage of solar energy in chemical bonds resolves the issues associated with the intermittent nature of sunlight, by decoupling energy generation and consumption. This paper investigates recent advances and prospects in solar hydrogen processes that are reaching market readiness. Future energy scenarios involving solar hydrogen are proposed and a case is made for systems producing hydrogen from water vapor present in air, supported by advanced modeling.

  5. BIG-10 fission product generation and reaction rates

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1976-01-01

    Fission product generation rates for high quality fission foils and reaction rates of nonfission foils have been measured by gamma ray activation analyses. These foils were irradiated in the BIG-10 facility and the activities were measured by NaI counting techniques

  6. Effects of hydrogen burning and associated engineered safety features on containment building response

    International Nuclear Information System (INIS)

    Iyer, S.S.; Deem, R.E.

    1982-01-01

    It is established that large amounts of hydrogen can be generated during degraded core events. The burning of this hydrogen can produce resulting loads which may represent a serious challenge to containment integrity. This paper presents some perspectives on hydrogen behavior during various degraded core events for a large dry containment. The analysis addresses the hydrogen transport and its subsequent diffusion once released to the containment. Since the distribution of hydrogen in the containment depends on the rate of release and various driving forces, the effects from various subsystems (i.e. fan coolers, sprays, heat structures, etc.) are examined to determine the sensitivity of each effect on the overall containment response. The sensitivity of results due to subcompartmentalization of the containment is also examined. Effects from localized hydrogen pocketing and burning will be addressed with emphasis on its relative impact on containment integrity

  7. Hydrogen: Fueling the Future

    International Nuclear Information System (INIS)

    Leisch, Jennifer

    2007-01-01

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  8. Real-time integration of optimal generation scheduling with MPC for the energy management of a renewable hydrogen-based microgrid

    International Nuclear Information System (INIS)

    Petrollese, Mario; Valverde, Luis; Cocco, Daniele; Cau, Giorgio; Guerra, José

    2016-01-01

    Highlights: • Energy management strategy for a renewable hydrogen-based microgrid. • Integration of optimal generation scheduling with a model predictive control. • Experimental tests are carried out simulating typical summer and winter days. • Effective improvement in performance and reduction in microgrid operating cost are achieved. - Abstract: This paper presents a novel control strategy for the optimal management of microgrids with high penetration of renewable energy sources and different energy storage systems. The control strategy is based on the integration of optimal generation scheduling with a model predictive control in order to achieve both long and short-term optimal planning. In particular, long-term optimization of the various microgrid components is obtained by the adoption of an optimal generation scheduling, in which a statistical approach is used to take into account weather and load forecasting uncertainties. The real-time management of the microgrid is instead entrusted to a model predictive controller, which has the important feature of using the results obtained by the optimal generation scheduling. The proposed control strategy was tested in a laboratory-scale microgrid present at the University of Seville, which is composed of an electronic power source that emulates a photovoltaic system, a battery bank and a hydrogen production and storage system. Two different experimental tests that simulate a summer and a winter day were carried out over a 24-h period to verify the reliability and performance enhancement of the control system. Results show an effective improvement in performance in terms of reduction of the microgrid operating cost and greater involvement of the hydrogen storage system for the maintenance of a spinning reserve in batteries.

  9. Hydrogen retention in carbon-tungsten co-deposition layer formed by hydrogen RF plasma

    International Nuclear Information System (INIS)

    Katayama, K.; Kawasaki, T.; Manabe, Y.; Nagase, H.; Takeishi, T.; Nishikawa, M.

    2006-01-01

    Carbon-tungsten co-deposition layers (C-W layers) were formed by sputtering method using hydrogen or deuterium RF plasma. The deposition rate of the C-W layer by deuterium plasma was faster than that by hydrogen plasma, where the increase of deposition rate of tungsten was larger than that of carbon. This indicates that the isotope effect on sputtering-depositing process for tungsten is larger than that for carbon. The release curve of hydrogen from the C-W layer showed two peaks at 400 deg. C and 700 deg. C. Comparing the hydrogen release from the carbon deposition layer and the tungsten deposition layer, it is considered that the increase of the release rate at 400 deg. C is affected by tungsten and that at 700 deg. C is affected by carbon. The obtained hydrogen retention in the C-W layers which have over 60 at.% of carbon was in the range between 0.45 and 0.16 as H/(C + W)

  10. Hydrogen and helium trapping in tungsten deposition layers formed by RF plasma sputtering

    International Nuclear Information System (INIS)

    Kazunari Katayama; Kazumi Imaoka; Takayuki Okamura; Masabumi Nishikawa

    2006-01-01

    Understanding of tritium behavior in plasma facing materials is an important issue for fusion reactor from viewpoints of fuel control and radiation safety. Tungsten is used as a plasma facing material in the divertor region of ITER. However, investigation of hydrogen isotope behavior in tungsten deposition layer is not sufficient so far. It is also necessary to evaluate an effect of helium on a formation of deposition layer and an accumulation of hydrogen isotopes because helium generated by fusion reaction exists in fusion plasma. In this study, tungsten deposition layers were formed by sputtering method using hydrogen and helium RF plasma. An erosion rate and a deposition rate of tungsten were estimated by weight measurement. Hydrogen and helium retention were investigated by thermal desorption method. Tungsten deposition was performed using a capacitively-coupled RF plasma device equipped with parallel-plate electrodes. A tungsten target was mounted on one electrode which is supplied with RF power at 200 W. Tungsten substrates were mounted on the other electrode which is at ground potential. The plasma discharge was continued for 120 hours where pressure of hydrogen or helium was controlled to be 10 Pa. The amounts of hydrogen and helium released from deposition layers was quantified by a gas chromatograph. The erosion rate of target tungsten under helium plasma was estimated to be 1.8 times larger than that under hydrogen plasma. The deposition rate on tungsten substrate under helium plasma was estimated to be 4.1 times larger than that under hydrogen plasma. Atomic ratio of hydrogen to tungsten in a deposition layer formed by hydrogen plasma was estimated to be 0.17 by heating to 600 o C. From a deposition layer formed by helium plasma, not only helium but also hydrogen was released by heating to 500 o C. Atomic ratios of helium and hydrogen to tungsten were estimated to be 0.080 and 0.075, respectively. The trapped hydrogen is probably impurity hydrogen

  11. A pilot study to determine medical laser generated air contaminant emission rates for a simulated surgical procedure.

    Science.gov (United States)

    Lippert, Julia F; Lacey, Steven E; Lopez, Ramon; Franke, John; Conroy, Lorraine; Breskey, John; Esmen, Nurtan; Liu, Li

    2014-01-01

    The U.S. Occupational Safety and Health Administration (OSHA) estimates that half a million health-care workers are exposed to laser surgical smoke each year. The purpose of this study was to establish a methodology to (1) estimate emission rates of laser-generated air contaminants (LGACs) using an emission chamber, and to (2) perform a screening study to differentiate the effects of three laser operational parameters. An emission chamber was designed, fabricated, and assessed for performance to estimate the emission rates of gases and particles associated with LGACs during a simulated surgical procedure. Two medical lasers (Holmium Yttrium Aluminum Garnet [Ho:YAG] and carbon dioxide [CO2]) were set to a range of plausible medical laser operational parameters in a simulated surgery to pyrolyze porcine skin generating plume in the emission chamber. Power, pulse repetition frequency (PRF), and beam diameter were evaluated to determine the effect of each operational parameter on emission rate using a fractional factorial design. The plume was sampled for particulate matter and seven gas phase combustion byproduct contaminants (benzene, ethylbenzene, toluene, formaldehyde, hydrogen cyanide, carbon dioxide, and carbon monoxide): the gas phase emission results are presented here. Most of the measured concentrations of gas phase contaminants were below their limit of detection (LOD), but detectable measurements enabled us to determine laser operation parameter influence on CO2 emissions. Confined to the experimental conditions of this screening study, results indicated that beam diameter was statistically significantly influential and power was marginally statistically significant to emission rates of CO2 when using the Ho:YAG laser but not with the carbon dioxide laser; PRF was not influential vis-a-vis emission rates of these gas phase contaminants.

  12. A Measurement of the Rate of Muon Capture in Hydrogen Gas andDetermination of the Proton's Induced Pseudoscalar Coupling gP

    Energy Technology Data Exchange (ETDEWEB)

    Banks, Thomas Ira [Univ. of California, Berkeley, CA (United States)

    2007-07-01

    This dissertation describes a measurement of the rate ofnuclear muon capture by the proton, performed by the MuCap Collaborationusing a new technique based on a time projection chamber operating inultraclean, deuterium-depleted hydrogen gas at room temperature and 1 MPapressure. The hydrogen target's low gas density of 1 percent compared toliquid hydrogen is key to avoiding uncertainties that arise from theformation of muonic molecules. The capture rate was obtained from thedifference between the μ- disappearance rate in hydrogen--as determinedfrom data collected in the experiment's first physics run in fall2004--and the world averagefor the μ+ decay rate. After combining theresults of my analysis with the results from another independent analysisof the 2004 data, the muon capture rate from the hyperfine singlet groundstate of the mu-p atom is found to be ΛS = 725.0 ± 17.4 1/s, fromwhich the induced pseudoscalar coupling of the nucleon, gP(q2 = -0.88m$2\\atop{μ}$)= 7.3 ± 1.1, is extracted. This result for gP is consistent withtheoretical predictions that are based on the approximate chiral symmetryof QCD.

  13. Developing models for the prediction of hospital healthcare waste generation rate.

    Science.gov (United States)

    Tesfahun, Esubalew; Kumie, Abera; Beyene, Abebe

    2016-01-01

    An increase in the number of health institutions, along with frequent use of disposable medical products, has contributed to the increase of healthcare waste generation rate. For proper handling of healthcare waste, it is crucial to predict the amount of waste generation beforehand. Predictive models can help to optimise healthcare waste management systems, set guidelines and evaluate the prevailing strategies for healthcare waste handling and disposal. However, there is no mathematical model developed for Ethiopian hospitals to predict healthcare waste generation rate. Therefore, the objective of this research was to develop models for the prediction of a healthcare waste generation rate. A longitudinal study design was used to generate long-term data on solid healthcare waste composition, generation rate and develop predictive models. The results revealed that the healthcare waste generation rate has a strong linear correlation with the number of inpatients (R(2) = 0.965), and a weak one with the number of outpatients (R(2) = 0.424). Statistical analysis was carried out to develop models for the prediction of the quantity of waste generated at each hospital (public, teaching and private). In these models, the number of inpatients and outpatients were revealed to be significant factors on the quantity of waste generated. The influence of the number of inpatients and outpatients treated varies at different hospitals. Therefore, different models were developed based on the types of hospitals. © The Author(s) 2015.

  14. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    Energy Technology Data Exchange (ETDEWEB)

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  15. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  16. Solar generation of hydrogen; Wasserstofferzeugung auf solarer Basis. Thermische Dissoziation des Wassers mit dem Licht-Kraft-Werk

    Energy Technology Data Exchange (ETDEWEB)

    Ziemba, G.

    2003-04-01

    Solar generation of hydrogen. The ''Licht-Kraft-Werke'' (LKW) is described. Due to this it will be possible to supply solid-state-lasers directly by sunlight. Supplied by lasers water should be split in a highest-temperature-reactor. An efficiency of more than 21% is supposed to be reached. (orig.)

  17. The car on hydrogen: problems and solutions

    International Nuclear Information System (INIS)

    Koroteev, A.S.; Smolyarov, V.A.

    2004-01-01

    Development of the hydrogen power for transformation of the most power-consumption branch of the industry and transport into new power source - hydrogen as strategy direction for the reduction of pollution of environment and deficit of oil motor fuel is considered. On the basis of comparison of different type of electrochemical generators conclusion on advantages of electrochemical generator with solid polymer membrane was made. Different systems of hydrogen storage in automobile are considered. The system of the gaseous hydrogen storage at high pressure in cistern from composite materials is the most promise [ru

  18. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    McKellar, Michael G.; Harvego, Edwin A.; Gandrik, Anastasia A.

    2010-01-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322 C and 750 C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  19. Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply to fuel cell.

    Science.gov (United States)

    Shin, Jong-Hwan; Yoon, Jong Hyun; Lee, Seung Hoon; Park, Tai Hyun

    2010-01-01

    Enterobacter asburiae SNU-1 harvested after cultivation was used as a whole cell biocatalyst, for the production of hydrogen. Formic acid was efficiently converted to hydrogen using the harvested cells with an initial hydrogen production rate and total hydrogen production of 491 ml/l/h and 6668 ml/l, respectively, when 1 g/l of whole cell enzyme was used. Moreover, new pH-stat fed-batch operation was conducted, and total hydrogen production was 1.4 times higher than that of batch operation. For practical application, bio-hydrogen produced from formic acid using harvested cells was directly applied to PEMFC for power generation.

  20. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  1. Utilizing hydrogen in aqueous phase conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Baoxiang; Zhao, Chen; Li, Xuebing; Lercher, Johannes A. [Technische Univ. Muenchen, Garching (Germany). Technische Chemie II

    2010-12-30

    Hydrogen generation and selective hydrodeoxygenation of biomass are the key for the successful integration of biogenic carbon resources for energy carriers and intermediates. This includes the generation of hydrogen from biomass in the liquid phase and more importantly, for the direct utilization of the hydrogen generated into the molecules. We will outline this strategy with two groups of oxofunctionalized molecules, i.e., glycerol as example for the aliphatic group and substituted phenols as the aromatic group. (orig.)

  2. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO2/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H2 generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g−1 at 0.5 A g−1 and 287 F g−1 at 1 A g−1 are obtained with TiO2/Ni(OH)2 nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application. PMID:23248745

  3. Design of hydrogen fueling station for Vancouver BC

    International Nuclear Information System (INIS)

    Tura, A.; Dikeos, J.; St Germain, L.; Smolak, T.; Owen, T.; Hass, J.; Songprakorp, R.; Sodouri, P.; Maddaloni, J.

    2004-01-01

    'Full text:' A public hydrogen refueling station has been designed to service a minimum daily capacity of 50 light-duty hydrogen fuel cell vehicles, each requiring 3 kg of compressed gaseous hydrogen at 5000 psi. The station can accommodate a peak hourly fueling rate of 20 kg, or slightly less than 7 cars. The station is designed around liquid hydrogen, and energy efficient liquid compression. On-site storage with centralized production allows for great flexibility in the design and the simple fueling process results in fewer potential failure modes. High customer demand can easily be accommodated due to a four minute filling time, made possible by a low temperature hydrogen filling system. The overall well to wheel pathway of this fueling process generates up to 95% less CO2 and requires up to 42% less energy than gasoline. The proposed design requires a low capital investment, and uses components easily available from a proven supplier base. An economic analysis shows that the delivered hydrogen cost is between $0.11/mile and $0.18/mile, based on a ten year discounted cash flow analysis. This design was the grand prize winner in the NHA/DOE sponsored 2004 University Design Contest. (author)

  4. Extremophile mediated hydrogen production for hydrogenation of substrates in aqueous media

    Science.gov (United States)

    Anjom, Mouzhgun

    Catalytic hydrogenation reactions are pervasive throughout our economy, from production of margarine as food, liquid fuels for transportation and chiral drugs such as L-DOPA. H2 production from non-fossil fuel feedstocks is highly desirable for transition to the "Hydrogen Economy". Also, the rates of hydrogenation reactions that involve a substrate, H 2 gas and a catalyst are often limited by the solubility of H2 in solvent. The present research thus envisioned designing water-soluble catalysts that could effectively utilize biologically produced H2 in a coupled system to hydrogenate substrates in homogeneous mode (two-phase system). Biological production of H2 as an end product or byproduct of the metabolism of organisms that operate under strict anaerobic conditions has been proposed. However, contrary to what was previously observed, Thermotoga neapolitana, belonging to the order of Thermotogales efficiently produces H2 gas under microaerobic conditions (Van Ooteghem et al. 2004). For H2 production by T. neapolitana in the bacterial growth medium (DSM 5068) at an optimum temperature of 70 C, our results in batch mode show that: (1) H2 was produced from glucose though with 16% efficiency, the rest goes to biomass production, (2) H2 gas was produced even when the cultures were inoculated under microaerobic conditions (up to 8% (v/v) O2) suggesting a protective mechanism for one or more [Fe-Fe] hydrogenases in T. neapolitana, (3) H2 production was pH dependent but addition of simple, non-toxic physiological buffering additives such as Methylene succinic acid increased H2 production and (4) H2 production rate varied linearly in the 100--6800 kPa pressure range. We then screened various water-soluble metal catalysts in batch mode and selected the RhCl3.3H2O/TPPTS (TPPTS is a water-soluble ligand) system that achieved 86% hydrogenation of Methylene succinic acid (an olefin) in an aqueous medium pressurized with preformed H2. When water was replaced with the DSM 5068

  5. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  6. A high stability Ni-La0.5Ce0.5O2-δ asymmetrical metal-ceramic membrane for hydrogen separation and generation

    Science.gov (United States)

    Zhu, Zhiwen; Sun, Wenping; Wang, Zhongtao; Cao, Jiafeng; Dong, Yingchao; Liu, Wei

    2015-05-01

    In this work, hydrogen permeation properties of Ni-La0.5Ce0.5O2-δ (LDC) asymmetrical cermet membrane are investigated, including hydrogen fluxes (JH2) under different hydrogen partial pressures, the influence of water vapor on JH2 and the long-term stability of the membrane operating under the containing-CO2 atmosphere. Ni-LDC asymmetrical membrane shows the best hydrogen permeability among LDC-based hydrogen separation membranes, inferior to Ni-BaZr0.1Ce0.7Y0.2O3-δ asymmetrical membrane. The water vapor in feed gas is beneficial to hydrogen transport process, which promote an increase of JH2 from 5.64 × 10-8 to 6.83 × 10-8 mol cm-2 s-1 at 900 °C. Stability testing of hydrogen permeation suggests that Ni-LDC membrane remains stable against CO2. A dual function of combining hydrogen separation and generation can be realized by humidifying the sweep gas and enhance the hydrogen output by 1.0-1.5 times. Ni-LDC membrane exhibits desirable performance and durability in dual-function mode. Morphologies and phase structures of the membrane after tests are also characterized by SEM and XRD.

  7. Integration of Wind Energy, Hydrogen and Natural Gas Pipeline Systems to Meet Community and Transportation Energy Needs: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Shahryar Garmsiri

    2014-04-01

    Full Text Available The potential benefits are examined of the “Power-to-Gas” (P2G scheme to utilize excess wind power capacity by generating hydrogen (or potentially methane for use in the natural gas distribution grid. A parametric analysis is used to determine the feasibility and size of systems producing hydrogen that would be injected into the natural gas grid. Specifically, wind farms located in southwestern Ontario, Canada are considered. Infrastructure requirements, wind farm size, pipeline capacity, geographical dispersion, hydrogen production rate, capital and operating costs are used as performance measures. The model takes into account the potential production rate of hydrogen and the rate that it can be injected into the local gas grid. “Straw man” systems are examined, centered on a wind farm size of 100 MW integrating a 16-MW capacity electrolysis system typically producing 4700 kg of hydrogen per day.

  8. Fabrication of A/R-TiO2 composite for enhanced photoelectrochemical performance: Solar hydrogen generation and dye degradation

    Science.gov (United States)

    Mahadik, Mahadeo A.; An, Gil Woo; David, Selvaraj; Choi, Sun Hee; Cho, Min; Jang, Jum Suk

    2017-12-01

    Anatase/rutile TiO2 nanorods composites were prepared by a facile hydrothermal method followed by dip coating method using titanium isopropoxide in acetic acid and ethanol solvent. The effects of the titanium isopropoxide precursor concentration, on the formation of dip coated anatase/rutile TiO2 nanorods composite were systematically explored. The growth of anatase on rutile TiO2 nanorods can be controlled by varying the titanium isopropoxide concentration. The morphological study reveals that anatase TiO2 nanograins formed on the surface of rutile TiO2 nanorod arrays through dip coating method. Photoelectrochemical analyses showed that the enhancement of the photocatalytic activities of the samples is affected by the anatase nanograins present on the rutile TiO2 nanorods, which can induce the separation of electrons and holes. To interpret the photoelectrochemical behaviors, the prepared photoelectrodes were applied in photoelectrochemical solar hydrogen generation and orange II dye degradation. The optimized photocurrent density of 1.8 mA cm-2 and the 625 μmol hydrogen generation was observed for 10 mM anatase/rutile TiO2 NRs composites. Additionally, 96% removal of the orange II dye was achieved within 5 h during oxidative degradation under solar light irradiation. One of the benefits of high specific surface area and the efficient photogenerated charge transport in the anatase/rutile TiO2 nanorod composite improves the photoelectrochemical hydrogen generation and orange dye degradation compared to the rutile TiO2. Thus, our strategy provides a promising, stable, and low cost alternative to existing photocatalysts and is expected to attract considerable attention for industrial applications.

  9. Analysis of hydrogen generation according to the specific concrete composition during severe accident

    International Nuclear Information System (INIS)

    Seo, M. R.; Kim, M. K.

    2001-01-01

    The chemical composition of reactor cavity floor concrete affects the kind and amout of gases generated by MCCI and ablation of concrete. And if affects the physical and chemical characteristics of molten pool formed in the cavity. So, the specific concrete compostion is inputted in the MAAP Code used in the Level 2 PSA. and since Ulchin Unit 3 and 4 PSA, the analysis of concrete composition has been performed by the concrete mold prepared for this usage at the installation of cavity floor concrete. But, the composition of domestic concrete for construction of NPP is nearly the same as that of the standard basaltic concrete, and the effect of minor variation in composition is expected to be negligible. This report analyze the effect of the concrete composition to the generation of hydrogen due to MCCI, and discuss the necessity of analysis about the specific concrete composition for Level 2 PSA

  10. Hydrogenation of ethylene over PrCo5Hsub(2.4)

    International Nuclear Information System (INIS)

    Soga, Kazuo; Imamura, Hayao; Ikeda, Sakuji

    1977-01-01

    To elucidate the chemical reactivity of the hydrogen atom absorbed in the hydrogenated alloy PrCo 5 H sub(n), the hydrogenation of ethylene was carried out over PrCo 5 Hsub(2.4) in the absence (A) or presence (B) of hydrogen in gas phase. PrCo 5 Hsub(2.4) was prepared from PrCo 5 according to an ordinary procedure with repeated heating and cooling in hydrogen atmosphere. The hydrogenation of ethylene was conducted at about -70 0 C in a conventional gas circulation system in a pressure range of ethylene 5 -- 16 cmHg and hydrogen 0 -- 38.0 cmHg. The hydrogenation rate was followed by gas chromatography. In the case of (A), the total gas pressure in the gas phase remained constant during the reaction. The hydrogenation rate was independent of the partial pressure of ethylene and it increased in proportion to the concentration of the absorbed hydrogen atom. The rate of desorption of the absorbed hydrogen atom from PrCo 5 Hsub(2.4) also measured under a reduced pressure. The desorption rate was approximately the same as the hydrogenation rate under the similar conditions. From these results, it was concluded that the migration process of the absorbed hydrogen atom from the bulk of the alloy to its surface was rate-determining. In the case of (B), on the other hand, the hydrogenation rate was accelerated by the gaseous hydrogen; the rate increased almost linearly with increasing pressure of hydrogen. The hydrogenation of ethylene was also conducted over PrCo 5 under the similar conditions. (auth.)

  11. Hydrogen Peroxide Probes Directed to Different Cellular Compartments

    Science.gov (United States)

    Malinouski, Mikalai; Zhou, You; Belousov, Vsevolod V.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells. PMID:21283738

  12. Hydrogen peroxide probes directed to different cellular compartments.

    Directory of Open Access Journals (Sweden)

    Mikalai Malinouski

    2011-01-01

    Full Text Available Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells.Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events.We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells.

  13. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  14. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy - Technology Summary

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; McKellar, M.G.; Harvego, E.A.; Sohal, M.S.; Condie, K.G.

    2010-01-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  15. Electrochemical generation of oxygen. 1: The effects of anions and cations on hydrogen chemisorption and anodic oxide film formation on platinum electrode. 2: The effects of anions and cations on oxygen generation on platinum electrode

    Science.gov (United States)

    Huang, C. J.; Yeager, E.; Ogrady, W. E.

    1975-01-01

    The effects were studied of anions and cations on hydrogen chemisorption and anodic oxide film formation on Pt by linear sweep voltammetry, and on oxygen generation on Pt by potentiostatic overpotential measurement. The hydrogen chemisorption and anodic oxide film formation regions are greatly influenced by anion adsorption. In acids, the strongly bound hydrogen occurs at more cathodic potential when chloride and sulfate are present. Sulfate affects the initial phase of oxide film formation by produced fine structure while chloride retards the oxide-film formation. In alkaline solutions, both strongly and weakly bound hydrogen are influenced by iodide, cyanide, and barium and calcium cations. These ions also influence the oxide film formation. Factors considered to explain these effects are discussed. The Tafel slope for oxygen generation was found to be independent on the oxide thickness and the presence of cations or anions. The catalytic activity indicated by the exchange current density was observed decreasing with increasing oxide layer thickness, only a minor dependence on the addition of certain cations and anions was found.

  16. Small leak detection by measuring surface oscillation during sodium-water reaction in steam generator

    International Nuclear Information System (INIS)

    Nei, Hiromichi; Hori, Masao

    1977-01-01

    Small leak sodium-water reaction tests were conducted to develop various kinds of leak detectors for the sodium-heated steam generator in FBR. The super-heated steam was injected into sodium in a reaction vessel having a sodium free surface, simulating the steam generator. The level gauge in the reaction vessel generated the most reliable signal among detectors, as long as the leak rates were relatively high. The level gauge signal was estimated to be the sodium surface oscillation caused by hydrogen bubbles produced in sodium-water reaction. Experimental correlation was derived, predicting the amplitude as a function of leak rate, hydrogen dissolution ratio, bubble rise velocity and other parameters concerned, assuming that the surface oscillation is in proportion to the gas hold-up. The noise amplitude under normal operation without water leak was increased with sodium flow rate and found to be well correlated with Froud number. These two correlations predict that a water leak in a ''MONJU'' class (300 MWe) steam generator could possibly be detected by level gauges at a leak rate above 2 g/sec. (auth.)

  17. Exergoeconomic estimates for a novel zero-emission process generating hydrogen and electric power

    International Nuclear Information System (INIS)

    Tsatsaronis, George; Kapanke, Kerstin; Maria Blanco Marigorta, Ana

    2008-01-01

    This paper presents the exergoeconomic analysis of a novel process generating electric energy and hydrogen. Coal and high-temperature heat are used as input energy to the process. The process is a true 'zero-emission process' because (a) no NO X is formed during coal combustion with sulfuric acid, and (b) the combustion products CO 2 and SO 2 are removed separately as compressed liquids from the overall process. The process cycle is based on two chemical reactions. The first reaction takes place in an electrolytic cell and delivers the hydrogen product. In the second step, coal reacts with sulfuric acid in a high-pressure combustion reactor. The combustion gas is expanded in a gas turbine to produce electric power. The combustion products are compressed and separated so that almost pure CO 2 can be removed from the cycle. The overall process is characterized by very high energetic and exergetic efficiencies. However, the overall process is very capital intensive. The electrolytic cell dominates the costs associated with the overall process. Detailed results of the thermodynamic simulation, the economic and the exergoeconomic analyses of the process including estimates of the product costs are presented

  18. New generation of full composite vessels for 70 MPa gaseous hydrogen storage : results and achievements of the French HyBou project

    Energy Technology Data Exchange (ETDEWEB)

    Nony, F. [CEA Materials, Monts (France); Weber, M. [Air Liquide, Paris (France); Tcharkhtchi, A. [Ecole Nationale Superieure d' Arts et Metiers, Paris (France); Lafarie-Frenot, M.C. [Ecole Nationale Superique De Mecanique et d' Aerotechnique, Poitiers (France); Perrier, O. [Raigi, Arbouville (France)

    2009-07-01

    The French collaborative Project known as HyBou explores hydrogen storage as a key enabling technology for the extensive use of hydrogen as an energy carrier. HyBou aims to develop robust, safe and efficient compressed gaseous hydrogen (CGH2) storage systems and validate innovative materials and processes suitable for storage vessel manufacturing with improved performance at low cost. The development of a new generation of type-4 70 MPa vessel was described along with a newly developed liner based on polyurethane materials. The new liner presents increased thermal stability, hydrogen barrier properties and cost effectiveness. The project also aims to evaluate the potential of new high resistance fibers and develop an improved thermosetting resin for composite winding with enhanced mechanical resistance and durability. A specific apparatus was therefore designed to characterize and evaluate coupled thermal and mechanical fatigue resistance in representative conditions.

  19. Measurement of the variable track-etch rate of hydrogen, carbon and oxygen Ions in CR-39

    International Nuclear Information System (INIS)

    Lengar, I.; Skvarc, J.; Ilic, R.

    2003-01-01

    The ratio of the track-etch rate to the bulk-etch rate for hydrogen, carbon and oxygen ions was studied for the CR-39 detector with addition of dioctylphthalate. The response was reconstructed from etch-pit growth curves obtained by the multi-step etching technique. A theoretical analysis of the correctness of the method due to the 'missing track segment' is assessed and utilisation of the results obtained for the calibration of fast neutron dosimetry is discussed. (author)

  20. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion

    International Nuclear Information System (INIS)

    Libert, M.F.; Sellier, R.; Marty, V.; Camaro, S.

    2000-01-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H 2 production in a bituminized nuclear waste environment were simulated in the present study: - H 2 production by iron corrosion under anaerobic conditions was simulated by adding 10% of H 2 in the atmosphere; - H 2 production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H 2 in water allows the growth of hydrogen oxidizing bacteria leading to: - CO 2 and N 2 production; - H 2 consumption; - lower NO 3 - concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO 3 - release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H 2 instead of hydrocarbons. (authors)

  1. Assessment of Hydrogen Generation Potential from Biomass and its Application for Power Generation in Andaman and Nicobar Islands: A Review

    Directory of Open Access Journals (Sweden)

    Vinaya C. Mathad

    2016-09-01

    Full Text Available The Andaman and Nicobar Islands located southeast of Bay of Bengal in the Indian Ocean comprises of several small islands separated by sea over large distances which makes it impractical for electrifying all the islands by a single grid. A population of 380,581 (Census, 2011 living in these group of islands get their electricity demand catered through Diesel Generator Sets from 34 power houses with an aggregate capacity of 67.8 MW. Unavailability of any form of conventional fossil fuel reserves in the islands makes the diesel supplied in barges from southeastern coast of India as a sole lifeline for its power generation. Hence there is an urgent need for the development of a self sustainable model from non conventional energy resources to not only cater for the power demands but also to reduce the GHG emissions related with diesel powered generator sets. This paper discusses a self sustainable model for Andaman and Nicobar Islands that would cater the electrical demand through hydrogen produced from waste biomass resource which has a potential of replacing 86.65% of the diesel utilized in the diesel generator sets. The reduction in both the GHG emission and the cost of power generation would be evaluated to understand the impact of the self sustainable model on the environment and the livelihood of the local population of Andaman and Nicobar Islands

  2. Hydrogen and its challenges

    International Nuclear Information System (INIS)

    Schal, M.

    2008-01-01

    The future of hydrogen as a universal fuel is in jeopardy unless we are able to produce it through an environment-friendly way and at a competitive cost. Today almost all the hydrogen used in the world is produced by steam reforming of natural gas. This process releases 8 tonnes of CO 2 per tonne of hydrogen produced. Other means of producing hydrogen are the hydrolysis, the very high temperature hydrolysis, and the direct chemical dissociation of water, these processes are greener than steam reforming but less efficient. About one hundred buses in the world operate on fuel cells fed by hydrogen, but it appears that the first industrial use of hydrogen at great scale will be for the local generation of electricity. Globally the annual budget for research concerning hydrogen is 4.4 milliard (10 9 ) euros worldwide. (A.C.)

  3. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  4. Gas generation from low-level radioactive waste: Concerns for disposal

    International Nuclear Information System (INIS)

    Siskind, B.

    1992-01-01

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H 2 ) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW

  5. Production method of hydrogen jet plasma process in hydro machinery

    International Nuclear Information System (INIS)

    Amini, F.

    2007-01-01

    The purpose of present paper is to the process of plasma formation in hydro machinery when a hydro turbine operates at various conditions and load rejection. By investigation the power, shock pressure , and impact effects of hydro machinery, it is revealed that energy and hydrogen are generated by the plasma process. The investigation on several turbines of various hydro power plants reveals that cold fusion process in hydro machinery generates hydrogen. The hypothesis concerning the participation of alkaline metals in river water and the atomic nuclei of the runner blade material in the formation of hydrogen are considered. It is possible to assume hydrogen, deuterium, helium, and tritium atoms (based on Dr. Mizuno and Dr. Kanarev theories) that are formed, diffuse into cavitation bubbles. The plasma is generated during the collapse of the bubble; thus, the quantity of burnt hydrogen determine the volume of generating hydrogen and the impact force caused by hydrogen explosion (noise).There are five main notions, which can determine hydrogen and plasma process: (1) turbine power effect, (2) high shock pressure, (3) crack on turbine parts, (4) impacts effects and (4) the lift of rotating parts. The frequency of the excitation lies in a range from 0.786 to 1.095 Hz.In future, it may be possible to design hydro turbines based on the plasma process that generates hydrogen; or there may exist turbines that rotate with a mixture of hydrogen explosion and water energies

  6. The evolution of hydrogen and iodine by the decomposition of ammonium iodide and hydrogen iodide

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Nakane, Masanori; Ishii, Eiichi; Uehara, Itsuki; Miyake, Yoshizo

    1977-01-01

    As a fundamental study on thermochemical production of hydrogen from water, the evolution of hydrogen and iodine from ammonium iodide and hydrogen iodide was investigated. Hydrogen was evolved by the reaction of nickel with ammonium iodide or with hydrogen iodide, and the resulting nickel(II) iodide was decomposed thermally at 600 -- 700 0 C to form nickel. First, the iodination of powdered nickel with ammonium iodide was studied by heating their powder mixture. The maximum yield of hydrogen was obtained at a temperature near 430 0 C. The iodination of powdered nickel with gaseous ammonium iodide or with dry hydrogen iodide gas was also investigated. In this case, coating of nickel particles with a layer of resulting nickel(II) iodide prevented further conversion of nickel and lowered the reaction rate. Such a retardation effect was appreciably lessened by use of carrier. When nickel was supported on such a carrier as ''isolite'', the nickel was converted into nickel(II) iodide easily. In a reaction temperature from 400 to 500 0 C, the rate of reaction between nickel and hydrogen iodide increased slightly with the elevation of the reaction temperature. In the case of ammonium iodide, the reaction rate was higher than that for hydrogen iodide and decreased apparently with the elevation of the reaction temperature, because ammonium iodide decomposed to ammonia and hydrogen iodide. Tests using a fixed bed reactor charged with 8 -- 10 mesh ''isolite''-nickel (30 wt%) were also carried out. The maximum yield of hydrogen was about 80% for ammonium iodide at 430 0 C of reaction temperature and 60% for hydrogen iodide at 500 0 C. (auth.)

  7. Hydrogen, energy of the future?

    International Nuclear Information System (INIS)

    Alleau, Th.

    2007-01-01

    A cheap, non-polluting energy with no greenhouse gas emissions and unlimited resources? This is towards this fantastic future that this book brings us, analyzing the complex but promising question of hydrogen. The scientific and technical aspects of production, transport, storage and distribution raised by hydrogen are thoroughly reviewed. Content: I) Energy, which solutions?: 1 - hydrogen, a future; 2 - hydrogen, a foreseeable solution?; II) Hydrogen, an energy vector: 3 - characteristics of hydrogen (physical data, quality and drawbacks); 4 - hydrogen production (from fossil fuels, from water, from biomass, bio-hydrogen generation); 5 - transport, storage and distribution of hydrogen; 6 - hydrogen cost (production, storage, transport and distribution costs); III) Fuel cells and ITER, utopias?: 7 - molecular hydrogen uses (thermal engines and fuel cells); 8 - hydrogen and fusion (hydrogen isotopes, thermonuclear reaction, ITER project, fusion and wastes); IV) Hydrogen acceptability: 9 - risk acceptability; 10 - standards and regulations; 11 - national, European and international policies about hydrogen; 12 - big demonstration projects in France and in the rest of the world; conclusion. (J.S.)

  8. Gas Generation Testing of Spherical Resorcinol-Formaldehyde (sRF) Resin

    Energy Technology Data Exchange (ETDEWEB)

    Colburn, Heather A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryan, Samuel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Camaioni, Donald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahoney, Lenna A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adami, Susan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-01-19

    This report describes gas generation testing of the spherical resorcinol-formaldehyde (sRF) resin that was conducted to support the technology maturation of the LAWPS facility. The current safety basis for the LAWPS facility is based primarily on two studies that had limited or inconclusive data sets. The two studies indicated a 40% increase in hydrogen generation rate of water (as predicted by the Hu model) with sRF resin over water alone. However, the previous studies did not test the range of conditions (process fluids and temperatures) that are expected in the LAWPS facility. Additionally, the previous studies did not obtain replicate test results or comparable liquid-only control samples. All of the testing described in this report, conducted with water, 0.45M nitric acid, and waste simulants with and without sRF resin, returned hydrogen generation rates that are within the current safety basis for the facility of 1.4 times the Hu model output for water.

  9. Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Xu Qiyong [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States); School of Environment and Energy, Shenzhen Graduate School of Peking University, 518055, (China); Townsend, Timothy, E-mail: ttown@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States); Bitton, Gabriel [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States)

    2011-07-15

    Disposal of gypsum drywall in landfills has been demonstrated to elevate hydrogen sulfide (H{sub 2}S) concentrations in landfill gas, a problem with respect to odor, worker safety, and deleterious effect on gas-to-energy systems. Since H{sub 2}S production in landfills results from biological activity, the concept of inhibiting H{sub 2}S production through the application of chemical agents to drywall during disposal was studied. Three possible inhibition agents - sodium molybdate (Na{sub 2}MoO{sub 4}), ferric chloride (FeCl{sub 3}), and hydrated lime (Ca(OH){sub 2}) - were evaluated using flask and column experiments. All three agents inhibited H{sub 2}S generation, with Na{sub 2}MoO{sub 4} reducing H{sub 2}S generation by interrupting the biological sulfate reduction process and Ca(OH){sub 2} providing an unfavorable pH for biological growth. Although FeCl{sub 3} was intended to provide an electron acceptor for a competing group of bacteria, the mechanism found responsible for inhibiting H{sub 2}S production in the column experiment was a reduction in pH. Application of both Na{sub 2}MoO{sub 4} and FeCl{sub 3} inhibited H{sub 2}S generation over a long period (over 180 days), but the impact of Ca(OH){sub 2} decreased with time as the alkalinity it contributed was neutralized by the generated H{sub 2}S. Practical application and potential environmental implications need additional exploration.

  10. Metal and hydrogen catalysis in isotopic hydrogen exchange in some biologically important heterocyclic compounds

    International Nuclear Information System (INIS)

    Buncel, E.; Joly, H.A.; Jones, J.R.; Onyido, I.

    1989-01-01

    This study reports on the catalytic roles of metal and hydrogen ions in tritium exchange in some heterocyclic substrates which occur as residues in many biologically important molecules. We have found that detritiation of 1-methyl[2- 3 H]imidazole is inhibited by a number of metal ions. As well, inhibition of exchange rates was noted with Ag(I) and Cu(II) for [2- 3 H]thiazole and 1-methyl[8- 3 H]inosine, with Ag(I) for [2- 3 H]benzothiazole, and with Cu(II) for 1-methyl[8- 3 H]guanosine. A complete mechanistic description, which includes the various metal ion-coordinated species generated under the experimental conditions, is presented. The results demonstrate the reactivity order: protonated >> metal-coordinated >> neutral substrates. The differential catalytic effects of metal and hydrogen ions in these processes are discussed in terms of the extent of charge developed on the ligating heteroatom in the reaction intermediate. (author). 13 refs.; 1 fig

  11. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    Science.gov (United States)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  12. Efficiency Evaluation of a Photovoltaic System Simultaneously Generating Solar Electricity and Hydrogen for Energy Storage

    Directory of Open Access Journals (Sweden)

    Abermann S.

    2012-10-01

    Full Text Available The direct combination of a photovoltaic system with an energy storage component appears desirable since it produces and stores electrical energy simultaneously, enabling it to compensate power generation fluctuations and supply sufficient energy during low- or non-irradiation periods. A novel concept based on hydrogenated amorphous silicon (a-Si:H triple-junction solar cells, as for example a-Si:H/a-SiGe:H/a-SiGe:H, and a solar water splitting system integrating a polymer electrolyte membrane (PEM electrolyser is presented. The thin film layer-by-layer concept allows large-area module fabrication applicable to buildings, and exhibits strong cost-reduction potential as compared to similar concepts. The evaluation shows that it is possible to achieve a sufficient voltage of greater than 1.5 V for effective water splitting with the a-Si based solar cell. Nevertheless, in the case of grid-connection, the actual energy production cost for hydrogen storage by the proposed system is currently too high.

  13. Hydrogenation of the alpha,beta-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and Prenal over Pt Single Crystals: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, C.J.; Somorjai, G.A.

    2008-11-26

    Sum-frequency generation vibrational spectroscopy (SFG-VS) and kinetic measurements using gas chromatography have been used to study the surface reaction intermediates during the hydrogenation of three {alpha},{beta}-unsaturated aldehydes, acrolein, crotonaldehyde, and prenal, over Pt(111) at Torr pressures (1 Torr aldehyde, 100 Torr hydrogen) in the temperature range of 295K to 415K. SFG-VS data showed that acrolein has mixed adsorption species of {eta}{sub 2}-di-{sigma}(CC)-trans, {eta}{sub 2}-di-{sigma}(CC)-cis as well as highly coordinated {eta}{sub 3} or {eta}{sub 4} species. Crotonaldehyde adsorbed to Pt(111) as {eta}{sub 2} surface intermediates. SFG-VS during prenal hydrogenation also suggested the presence of the {eta}{sub 2} adsorption species, and became more highly coordinated as the temperature was raised to 415K, in agreement with its enhanced C=O hydrogenation. The effect of catalyst surface structure was clarified by carrying out the hydrogenation of crotonaldehyde over both Pt(111) and Pt(100) single crystals while acquiring the SFG-VS spectra in situ. Both the kinetics and SFG-VS showed little structure sensitivity. Pt(100) generated more decarbonylation 'cracking' product while Pt(111) had a higher selectivity for the formation of the desired unsaturated alcohol, crotylalcohol.

  14. Next Generation Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined), Data through Quarter 2 of 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Christopher D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peters, Michael C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-05

    This publication includes 95 composite data products (CDPs) produced for next generation hydrogen stations with data through the second quarter of 2017. These CDPs include data for all stations in NREL's evaluation (retail and non-retail combined).

  15. Next Generation Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined), Data through Quarter 4 of 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peters, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-31

    This publication includes 90 composite data products (CDPs) produced for next generation hydrogen stations with data through the fourth quarter of 2016. These CDPs include data for all stations in NREL's evaluation (retail and non-retail combined).

  16. Next Generation Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined), Data through Quarter 3 of 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peters, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jeffers, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-06

    This publication includes 87 composite data products (CDPs) produced for next generation hydrogen stations with data through the third quarter of 2016. These CDPs include data for all stations in NREL's evaluation (retail and non-retail combined).

  17. Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis

    Directory of Open Access Journals (Sweden)

    Guangzai Nong

    2015-12-01

    Full Text Available Black liquor is generated in Kraft pulping of wood or non-wood raw material in pulp mills, and regarded as a renewable resource. The objective of this paper was to develop an effective means to remove the water pollutants by recovery of both lignin and sodium hydroxide from black liquor, based on electrolysis. The treatment of a 1000 mL of black liquor (122 g/L solid contents consumed 345.6 kJ of electric energy, and led to the generation of 30.7 g of sodium hydroxide, 0.82 g of hydrogen gas and 52.1 g of biomass solids. Therefore, the recovery ratios of elemental sodium and biomass solids are 80.4% and 76%, respectively. Treating black liquor by electrolysis is an environmentally friendly technology that can, in particular, be an alternative process in addressing the environmental issues of pulping waste liquor to the small-scale mills without black liquor recovery.

  18. IEA Hydrogen Implementing Agreement: Three Decades of Collaborative Hydrogen R and D

    International Nuclear Information System (INIS)

    Nick Beck; Mary-Rose de Valladares

    2006-01-01

    Created in 1977 and now in its Second Generation of Hydrogen R, D and D, the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) is the oldest, largest international collaboration on hydrogen Research, Development and Demonstration (RD and D). As a global resource for technical expertise in hydrogen R, D and D, the HIA has expanded worldwide opportunities for hydrogen by undertaking 21 annexes (or tasks) on hydrogen production, storage, analysis of integrated systems and related topics with its 19 member countries. Related topics include hydrogen safety, conversion, economics and markets. The majority of the HIA's R and D portfolio has focused on longer term, pre-competitive R, D and D issues. Of the 21 annexes undertaken by the HIA, 15 are now complete. The HIA is also committed to outreach in support of both its core R and D activities and related issues such as regulation and infrastructure. As ever, the HIA welcomes collaboration and liaison with interested groups in the public and private sectors. (authors)

  19. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  20. Coupling the modular helium reactor to hydrogen production processes

    International Nuclear Information System (INIS)

    Richards, M.B.; Shenoy, A.S.; Schultz, K.R.

    2004-01-01

    Steam reforming of natural gas (methane) currently produces the bulk of hydrogen gas used in the world today. Because this process depletes natural gas resources and generates the greenhouse gas carbon dioxide as a by-product, there is a growing interest in using process heat and/or electricity generated by nuclear reactors to generate hydrogen by splitting water. Process heat from a high temperature nuclear reactor can be used directly to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850 deg C to 950 deg C can drive the sulphur-iodine (S-I) thermochemical process to produce hydrogen with high efficiency. The S-I process produces highly pure hydrogen and oxygen, with formation, decomposition, regeneration, and recycle of the intermediate chemical reagents. Electricity can also 1)e used directly to split water, using conventional, low-temperature electrolysis (LTE). Hydrogen can also be produced with hybrid processes that use both process heat and electricity to generate hydrogen. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. This process is of interest because the efficiency of electrolysis increases with temperature. Because of its high temperature capability, advanced stage of development relative to other high-temperature reactor concepts, and passive-safety features, the modular helium reactor (MHR) is well suited for producing hydrogen using nuclear energy. In this paper we investigate the coupling of the MHR to the S-I process, LTE, and HTE. These concepts are referred to as the H2-MHR. (author)