WorldWideScience

Sample records for hydrogen future learning

  1. Hydrogen: Fueling the Future

    International Nuclear Information System (INIS)

    Leisch, Jennifer

    2007-01-01

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  2. Hydrogen, energy of the future?

    International Nuclear Information System (INIS)

    Alleau, Th.

    2007-01-01

    A cheap, non-polluting energy with no greenhouse gas emissions and unlimited resources? This is towards this fantastic future that this book brings us, analyzing the complex but promising question of hydrogen. The scientific and technical aspects of production, transport, storage and distribution raised by hydrogen are thoroughly reviewed. Content: I) Energy, which solutions?: 1 - hydrogen, a future; 2 - hydrogen, a foreseeable solution?; II) Hydrogen, an energy vector: 3 - characteristics of hydrogen (physical data, quality and drawbacks); 4 - hydrogen production (from fossil fuels, from water, from biomass, bio-hydrogen generation); 5 - transport, storage and distribution of hydrogen; 6 - hydrogen cost (production, storage, transport and distribution costs); III) Fuel cells and ITER, utopias?: 7 - molecular hydrogen uses (thermal engines and fuel cells); 8 - hydrogen and fusion (hydrogen isotopes, thermonuclear reaction, ITER project, fusion and wastes); IV) Hydrogen acceptability: 9 - risk acceptability; 10 - standards and regulations; 11 - national, European and international policies about hydrogen; 12 - big demonstration projects in France and in the rest of the world; conclusion. (J.S.)

  3. Transitioning to a Hydrogen Future: Learning from the Alternative Fuels Experience

    Energy Technology Data Exchange (ETDEWEB)

    Melendez, M.

    2006-02-01

    This paper assesses relevant knowledge within the alternative fuels community and recommends transitional strategies and tactics that will further the hydrogen transition in the transportation sector.

  4. Future outlook of hydrogen market

    International Nuclear Information System (INIS)

    Ozmen, S.; Leprince, P.

    1976-01-01

    Up to now, hydrogen has been produced from hydrocarbons for chemical uses. In the future, it will have to find a new market for itself which will depend on the development of nuclear power plants. Through the use of electric or thermal energy available during off-peak hours, water decomposition by electrolytic or thermal methods (redox cycle) could produce hydrogen, a storable and transportable gas. In addition to hydrogen consumption for chemical uses (methanol and ammonia manufacturing, petroleum fraction processing, metallurgy, etc.) plans are being drawn up to use hydrogen as a vehicle for energy [fr

  5. Hydrogen, fuel of the future?

    International Nuclear Information System (INIS)

    Bello, B.

    2008-01-01

    The European project HyWays has drawn out the road map of hydrogen energy development in Europe. The impact of this new energy vector on the security of energy supplies, on the abatement of greenhouse gases and on the economy should be important in the future. This article summarizes the main conclusions of the HyWays study: CO 2 emissions, hydrogen production mix, oil saving abatement, economic analysis, contribution of hydrogen to the development of renewable energies, hydrogen uses, development of regional demand and of users' centers, transport and distribution. The proposals of the HyWays consortium are as follows: implementing a strong public/private European partnership to reach the goals, favoring market penetration, developing training, tax exemption on hydrogen in the initial phase for a partial compensation of the cost difference, inciting public fleets to purchase hydrogen-fueled vehicles, using synergies with other technologies (vehicles with internal combustion engines, hybrid vehicles, biofuels of second generation..), harmonizing hydrogen national regulations at the European scale. (J.S.)

  6. Integrating hydrogen into Canada's energy future

    International Nuclear Information System (INIS)

    Rivard, P.

    2006-01-01

    This presentation outlines the steps in integrating of hydrogen into Canada's energy future. Canada's hydrogen and fuel cell investment is primarily driven by two government commitments - climate change commitments and innovation leadership commitments. Canada's leading hydrogen and fuel cell industry is viewed as a long-term player in meeting the above commitments. A hydrogen and fuel cell national strategy is being jointly developed to create 'Win-Wins' with industry

  7. Manitoba: path to a hydrogen future

    International Nuclear Information System (INIS)

    Parsons, R.V.; Crone, J.

    2003-01-01

    A hydrogen economy is not just about future clean energy but is also about future economic development. It is about new products, new services, new knowledge, and renewable energy sources that will be ultimately used by consumers in the future, and thus represent potential new economic opportunities. The concept of achieving important environmental and health goals through a cleaner energy economy, based on hydrogen, is not new. Similarly, the desire of individual jurisdictions to seek out and develop economic development opportunities is not new. The key question today becomes one of how to plot directions on hydrogen that will yield appropriate economic development gains in the future. While hydrogen offers significant promise, the prospect benefits are recognized to be still largely long-term in nature. In addition, the ability to identify appropriate future directions is clouded by a degree of 'hydrogen hype' and by a variety of major technical and market uncertainties. During 2002, a unique process was initiated within Manitoba combining these elements to work toward a Hydrogen Economic Development Strategy, a strategy that is ultimately intended to lead the province as a whole to determining our future economic niches for hydrogen. This paper describes the nature of the assessment process undertaken within Manitoba, the outcomes achieved and general insights of relevance to a broader audience. (author)

  8. Hydrogen - the fuel of the future

    International Nuclear Information System (INIS)

    Schoenwiesner, R.; Prosnan, J.

    2003-01-01

    Experts see hydrogen as the best possible long-term solution of the transport problem. Hydrogen as the fuel of the future should increase the competition amongst fuel suppliers and at the same time decrease the dependence of developed countries on oil import. Hydrogen can be produced from renewable sources - biomass, water, wind or solar energy. Hydrogen can be used as power source of mobile phones, computers, printers, television sets or even whole buildings. Hydrogen can be used as fuel for traditional combustion engines of cars but the system of mixing with air would have to be adjusted. For instance car producers like BMW or Hyundai have already started tests with hydrogen engines. These would then be much 'cleaner' then the traditional engines using diesel, petrol or natural gas. But rather then using hydrogen in traditional engines the experts consider fuel cells more perspective. According to company Shell Hydrogen first transformers would produce hydrogen using natural gas or other traditional fuels but this should decrease the volume of green-house-gasses by about 50 percent. In the opinion of company Shell the use of fuel cells would represent the most effective way of using minerals. Shell currently operates hydrogen filling stations on Island and in Tokyo, recently has opened a new one in Luxembourg and by the end of this month another one should open in Amsterdam. These plans are connected to a project of city busses run in cooperation of European Union and car producer Daimler Chrysler. (Authors)

  9. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  10. Hydrogen, an energy carrier with a future

    International Nuclear Information System (INIS)

    Zimmer, K.H.

    1975-01-01

    The inefficient use, associated with pollutants, of the fossil energy carriers coal, crude oil and natural gas, will deplete resources, if the energy demand increases exponentially, in the not-too-distant future. That is the reason why the hydrogen-energy concept gains in importance. This requires drastic changes in structure in a lot of technological fields. This task is only to be mastered if there is cooperation between all special fields, in order to facilitate the economical production, distribution and utilization of hydrogen. (orig.) [de

  11. The Future of Learning Institute

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2009-01-01

    this article describes Harvard University’s learning institute, which focuses on several fundamental issues on the future of learning. Specific focus is given to the effect og globalising, digitalising and brain research on learning and education.......this article describes Harvard University’s learning institute, which focuses on several fundamental issues on the future of learning. Specific focus is given to the effect og globalising, digitalising and brain research on learning and education....

  12. Hydrogen: implications for the future automobile

    International Nuclear Information System (INIS)

    Frise, P. R.; Woodward, W.

    2004-01-01

    'Full text:' The presentation will focus upon the challenges within the automotive manufacturing industry related to the hydrogen fuelled automobile of the future. Challenges and opportunities include issues of power train design and packaging as well as on-road performance capabilities, fuel system packaging and materials for body structures. Due to the size and complexity of the automotive sector, technology changes tend to be evolutionary rather than revolutionary, but changes are being made to today's cars in preparation for the evolution toward the future hydrogen automobile. Real world applications of new technologies will be described that are assisting automakers to prepare for the hydrogen future today. The work will be described in the context of AUTO21, a national Network of Centres of Excellence (NCE), is helping to position Canada as a leader in automotive research and development. More than 250 researchers in 34 Canadian universities and over 110 industry and government partners contribute to AUTO21 through applied research projects in six themes of study ranging from health and societal issues to pure engineering applications. (author)

  13. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  14. Hydrogen technologies and the technology learning curve

    International Nuclear Information System (INIS)

    Rogner, H.-H.

    1998-01-01

    On their bumpy road to commercialization, hydrogen production, delivery and conversion technologies not only require dedicated research, development and demonstration efforts, but also protected niche markets and early adopters. While niche markets utilize the unique technological properties of hydrogen, adopters exhibit a willingness to pay a premium for hydrogen fueled energy services. The concept of the technology learning curve is applied to estimate the capital requirements associated with the commercialization process of several hydrogen technologies. (author)

  15. Future hydrogen markets for large-scale hydrogen production systems

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2007-01-01

    The cost of delivered hydrogen includes production, storage, and distribution. For equal production costs, large users (>10 6 m 3 /day) will favor high-volume centralized hydrogen production technologies to avoid collection costs for hydrogen from widely distributed sources. Potential hydrogen markets were examined to identify and characterize those markets that will favor large-scale hydrogen production technologies. The two high-volume centralized hydrogen production technologies are nuclear energy and fossil energy with carbon dioxide sequestration. The potential markets for these technologies are: (1) production of liquid fuels (gasoline, diesel and jet) including liquid fuels with no net greenhouse gas emissions and (2) peak electricity production. The development of high-volume centralized hydrogen production technologies requires an understanding of the markets to (1) define hydrogen production requirements (purity, pressure, volumes, need for co-product oxygen, etc.); (2) define and develop technologies to use the hydrogen, and (3) create the industrial partnerships to commercialize such technologies. (author)

  16. Wind in the future hydrogen economy

    International Nuclear Information System (INIS)

    Andres, P.

    2006-01-01

    Converting to a hydrogen economy will only be sustainable and have a positive impact on the environment if the fuel source for the hydrogen production is from a renewable or GHG free fuel source. Wind energy is of particular interest as a potential energy source for hydrogen production. It is modular, abundant and competitive and is far from fully exploited around the globe. Transmission constraints are however the current bottle neck to fully exploiting this resource. Producing electrolytic hydrogen from wind energy in transmission constraint areas will allow for better utilization of the available wind energy and transmission resources. The type of hydrogen storage and transportation option chosen and the size of the facilities will be the crucial factors in determining the relative cost competitiveness of a wind / hydrogen facility verses traditional hydrogen production from fossil fuels. With fossil fuel prices at record highs and the traditional demand for hydrogen growing (oil refining, ammonia production) and the fact that the world has entered a GHG constraint era the need to explore large scale wind / hydrogen production facilities has never been more urgent. (author)

  17. Hydrogen, energy vector of the future?

    International Nuclear Information System (INIS)

    Perrin, J.; Deschamps, J.F.

    2004-01-01

    In the framework of a sustainable development with a reduction of the greenhouse gases emissions, the hydrogen seems a good solution because its combustion produces only water. From the today hydrogen industrial market, the authors examine the technological challenges and stakes of the hydrogen-energy. They detail the hydrogen production, distribution and storage and compare with the petrol and the natural gas. Then they explain the fuel cells specificity and realize a classification of the energy efficiency of many associations production-storage-distribution-use. a scenario of transition is proposed. (A.L.B.)

  18. Hydrogen - the energy source of the future

    International Nuclear Information System (INIS)

    Aakervik, Anne-Lise

    2001-01-01

    The use of hydrogen is an excellent way of reducing the emission of greenhouse gases. It causes no emission when used in fuel cells. Iceland has set itself the goal of becoming the world's first hydrogen society without emission of carbon dioxide and other greenhouse gases. In the USA, California has decided to concentrate on cars that do not pollute. Hydrogen power is then an interesting alternative. Germany, Japan and the USA are all concentrating on hydrogen. The world production of hydrogen is 50 million tons, 90 per cent of which is made from fossil material, 4 per cent by electrolysis of water. The largest consumers of hydrogen are the petroleum industry and the fertilizer industry. The sale of hydrogen in the refining industry has increased recently and is expected to rise substantially when the fuel cell technology is commercialized. At present, storage of hydrogen is the major problem. Gas storage at atmospheric pressure is inconvenient because of the large volumes required. Alternatives are storage as compressed gas under high pressure, liquid gas at low temperature, storage in metal hydrides or carbon materials, or chemically bound in methanol or ammonia

  19. Hydrogen: an energy vector for the future?

    International Nuclear Information System (INIS)

    His, St.

    2004-01-01

    Used today in various industrial sectors including refining and chemicals, hydrogen is often presented as a promising energy vector for the transport sector. However, its balance sheet presents disadvantages as well as advantages. For instance, some of its physical characteristics are not very well adapted to transport use and hydrogen does not exist in pure form. Hydrogen technologies can offer satisfactory environmental performance in certain respects, but remain handicapped by costs too high for large-scale development. A great deal of research will be required to develop mass transport application. (author)

  20. Hydrogen: an energy vector for the future?

    Energy Technology Data Exchange (ETDEWEB)

    His, St

    2004-07-01

    Used today in various industrial sectors including refining and chemicals, hydrogen is often presented as a promising energy vector for the transport sector. However, its balance sheet presents disadvantages as well as advantages. For instance, some of its physical characteristics are not very well adapted to transport use and hydrogen does not exist in pure form. Hydrogen technologies can offer satisfactory environmental performance in certain respects, but remain handicapped by costs too high for large-scale development. A great deal of research will be required to develop mass transport application. (author)

  1. The future of hydrogen - opportunities and challenges

    International Nuclear Information System (INIS)

    Ball, Michael; Wietschel, Martin

    2009-01-01

    The following article is reproduced from 'The Hydrogen Economy: Opportunities and Challenges', edited by Michael Ball and Martin Wietschel, to be published by Cambridge University Press in June 2009. In the light of ever-increasing global energy use, the increasing cost of energy services, concerns over energy supply security, climate change and local air pollution, this book centres around the question of how growing energy demand for transport can be met in the long term. Given the sustained interest in and controversial discussion of the prospects of hydrogen, the authors highlight the opportunities and the challenges of introducing hydrogen as alternative fuel in the transport sector from an economic, technical and environmental point of view. Through its multi-disciplinary approach the book provides a broad range of researchers, decision makers and policy makers with a solid and wide-ranging knowledge base concerning the hydrogen economy. (author)

  2. Hydrogen: the future of the car

    International Nuclear Information System (INIS)

    Beuzit, P.

    2007-01-01

    With the end of the petroleum resources, the hydrogen offers interesting perspectives in the context of a sustainable development. The authors analyze the challenges of the hydrogen vehicle: the substitution fuels, the technical interior design, the cost of this evolution, the impacts on the world energy map and the part played by the France and the automobile sector in this evolution. (A.L.B.)

  3. Hydrogen: an energy carrier of the future

    Energy Technology Data Exchange (ETDEWEB)

    Hamerak, K

    1977-02-01

    Some advantages and fields of application of hydrogen are outlined in the introduction. Hydrogen production by conventional water electrolysis, by the thermochemical iron-chlorine cycle process, and by a new water electrolysis method still in the laboratory stage are dealt with in which the electrolysis voltage is considerably reduced by the action of solar UV light on an anode consisting of p-conducting material.

  4. Future role of hydrogen in FRG

    International Nuclear Information System (INIS)

    Bradke, H.

    1992-01-01

    Relative to the Federal Republic of Germany energy-economy framework, this paper prepares supply and demand assessments for a set of energy source diversification strategy alternatives involving the substantial use of hydrogen fuels, with the aim of reducing the strain on the the earth's limited supplies of fossil fuels and limiting carbon dioxide emissions into the atmosphere. These assessments include forecasts of population dynamics, GNP, and sectoral energy consumption, production, imports and prices for fossil fuels and renewable energy sources. The comparative evaluation of the diversification scenarios includes sensitivity analyses to establish the optimum mix of economy-energy planning criteria that would allow for the successful evolution of a hydrogen based economy in the FRG by the year 2040

  5. French hydrogen markets in 2008-Overview and future prospects

    International Nuclear Information System (INIS)

    Le Duigou, A.; Amalric, Y.; Miguet, M.

    2011-01-01

    This study analyses the current industrial hydrogen markets in France on both a European and international scale, while endeavouring to assess future prospects by 2030. Hydrogen is produced either on purpose or unintentionally as a co-product. Intentional production of hydrogen, generally from natural gas, is classified as captive or merchant hydrogen. France produces about 920,000 metric tons of hydrogen annually. The producer and consumer industries are, in decreasing order of importance are: oil for refinery and petrochemicals, ammonia, iron and steel (co-production), chemicals, and chlorine (co-production). The intentional production of hydrogen from natural gas amounts to less than that co-produced: 40% compared with 60%. The amount of burned hydrogen is about 25% of the total. Production-related carbon dioxide emissions range between 1% and 2% of the total emissions in France. There is an increasing trend in the industrial hydrogen production, essentially due to the oil industry whereas a decline in production is expected in the ammonia industry. The annual production around 2030 should therefore be greater than 1 million metric tons (MMT) per year. If the iron and steel industry were to use hydrogen in every possible situation, it would double the total quantity of hydrogen produced and consumed in France. (authors)

  6. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  7. Hydrogen and the materials of a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  8. Hydrogen: Its Future Role in the Nation's Energy Economy.

    Science.gov (United States)

    Winsche, W E; Hoffman, K C; Salzano, F J

    1973-06-29

    In examining the potential role of hydrogen in the energy economy of the future, we take an optimistic view. All the technology required for implementation is feasible but a great deal of development and refinement is necessary. A pessimistic approach would obviously discourage further thinking about an important and perhaps the most reasonable alternative for the future. We have considered a limited number of alternative energy systems involving hydrogen and have shown that hydrogen could be a viable secondary source of energy derived from nuclear power; for the immediate future, hydrogen could be derived from coal. A hydrogen supply system could have greater flexibility and be competitive with a more conventional all-electric delivery system. Technological improvements could make hydrogen as an energy source an economic reality. The systems examined in this article show how hydrogen can serve as a general-purpose fuel for residential and automotive applications. Aside from being a source of heat and motive power, hydrogen could also supply the electrical needs of the household via fuel cells (19), turbines, or conventional "total energy systems." The total cost of energy to a residence supplied with hydrogen fuel depends on the ratio of the requirements for direct fuel use to the requirements for electrical use. A greater direct use of hydrogen as a fuel without conversion to electricity reduces the overall cost of energy supplied to the household because of the greater expense of electrical transmission and distribution. Hydrogen fuel is especially attractive for use in domestic residential applications where the bulk of the energy requirement is for thermal energy. Although a considerable amount of research is required before any hydrogen energy delivery system can be implemented, the necessary developments are within the capability of present-day technology and the system could be made attractive economically .Techniques for producing hydrogen from water by

  9. A hydrogen economy - an answer to future energy problems

    International Nuclear Information System (INIS)

    Seifritz, W.

    1975-01-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems. (Auth.)

  10. Hydrogen Learning for Local Leaders – H2L3

    Energy Technology Data Exchange (ETDEWEB)

    Serfass, Patrick [Technology Transition Corporation, Washington, DC (United States)

    2017-03-30

    The Hydrogen Learning for Local Leaders program, H2L3, elevates the knowledge about hydrogen by local government officials across the United States. The program reaches local leaders directly through “Hydrogen 101” workshops and webinar sessions; the creation and dissemination of a unique report on the hydrogen and fuel cell market in the US, covering 57 different sectors; and support of the Hydrogen Student Design Contest, a competition for interdisciplinary teams of university students to design hydrogen and fuel cell systems based on technology that’s currently commercially available.

  11. Hydrogen energy and fuel cells. A vision of our future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  12. Hydrogen energy and fuel cells. A vision of our future

    International Nuclear Information System (INIS)

    2003-01-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  13. Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications

    Directory of Open Access Journals (Sweden)

    Christopher Winnefeld

    2018-01-01

    Full Text Available In the near future, the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for, e.g., the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application, such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs, such as the blended-wing-body, enable a more flexible integration of new storage technologies and energy converters, e.g., cryogenic hydrogen tanks and fuel cells. Against this background, a tank-design model is formulated, which considers geometrical, mechanical and thermal aspects, as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density, respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently, a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass, which is further improved by the use of a fuel cell.

  14. Metal hydride hydrogen compression: recent advances and future prospects

    Science.gov (United States)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  15. Different Futures of Adaptive Collaborative Learning Support

    Science.gov (United States)

    Rummel, Nikol; Walker, Erin; Aleven, Vincent

    2016-01-01

    In this position paper we contrast a Dystopian view of the future of adaptive collaborative learning support (ACLS) with a Utopian scenario that--due to better-designed technology, grounded in research--avoids the pitfalls of the Dystopian version and paints a positive picture of the practice of computer-supported collaborative learning 25 years…

  16. Games and (Preparation for Future) Learning

    Science.gov (United States)

    Hammer, Jessica; Black, John

    2009-01-01

    What makes games effective for learning? The authors argue that games provide vicarious experiences for players, which then amplify the effects of future, formal learning. However, not every game succeeds in doing so! Understanding why some games succeed and others fail at this task means investigating both a given game's design and the…

  17. The Future of Professional Learning

    Science.gov (United States)

    Burns, Mary

    2013-01-01

    What will technology-based teacher professional development look like in the next few years? In this article, teacher training curriculum designer Mary Burns presents her 5 top picks from the professional learning technologies now emerging around the world: (1) IPTV; (2) Immersive Environments; (3) Video; (4) Social Media; and (5) Mobile…

  18. Support of a pathway to a hydrogen future

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A.R. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which outline the content of the presentation. Subjects addressed include: hydrogen research program vision; electricity industry restructuring -- opportunities and challenges for hydrogen; transportation sector -- opportunities for hydrogen; near-term and mid-term opportunities for hydrogen; and hydrogen production technologies from water. It is concluded that the global climate change challenge is the potential driver for the development of hydrogen systems.

  19. Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature

    International Nuclear Information System (INIS)

    McDowall, William; Eames, Malcolm

    2006-01-01

    Scenarios, roadmaps and similar foresight methods are used to cope with uncertainty in areas with long planning horizons, such as energy policy, and research into the future of hydrogen energy is no exception. Such studies can play an important role in the development of shared visions of the future: creating powerful expectations of the potential of emerging technologies and mobilising resources necessary for their realisation. This paper reviews the hydrogen futures literature, using a six-fold typology to map the state of the art of scenario construction. The paper then explores the expectations embodied in the literature, through the 'answers' it provides to questions about the future of hydrogen. What are the drivers, barriers and challenges facing the development of a hydrogen economy? What are the key technological building blocks required? In what kinds of futures does hydrogen become important? What does a hydrogen economy look like, how and when does it evolve, and what does it achieve? The literature describes a diverse range of possible futures, from decentralised systems based upon small-scale renewables, through to centralised systems reliant on nuclear energy or carbon-sequestration. There is a broad consensus that the hydrogen economy emerges only slowly, if at all, under 'Business as Usual' scenarios. Rapid transitions to hydrogen occur only under conditions of strong governmental support combined with, or as a result of, major 'discontinuities' such as shifts in society's environmental values, 'game changing' technological breakthroughs, or rapid increases in the oil price or speed and intensity of climate change

  20. Fuel cells and hydrogen : implications for the future automobile

    International Nuclear Information System (INIS)

    Frise, P.R.

    2006-01-01

    The generation, storage, transportation, distribution and dispensing of hydrogen has clearly emerged as the central issue in the global move toward a carbon-free fuel future for the mobility industry. The technical, economic and societal issues surrounding the provision of fuels for fuel cells appear to be at least as daunting, if not more, than any other issue. Nonetheless, automakers from all over the world are pressing ahead with their extensive research and development programs and these have showed great promise in addressing the key on-vehicle issues such as durability, cold starting and packaging. More work remains on several key problems and the presentation will elucidate these and endeavor to point the way to solutions as seen from an automotive engineering viewpoint. (author)

  1. Learning in PV trends and future prospects

    International Nuclear Information System (INIS)

    Schaeffer, G.J.; De Moor, H.H.C.

    2004-06-01

    For large scale application of PV cost reduction is essential. It is shown in this study that the price evolution is on track and even accelerating the last 15 years. Using an experience curve approach a learning rate of little over 20% was found consistent with other studies. As data were collected for small rooftop grid connected systems, it could be shown that this learning rate is not only found for modules, but also for BOS (all costs apart from the modules) in Germany as well as in the Netherlands. Projections of the future price of PV systems show that a learning rate of at least 20% is needed to make introduction of PV affordable. It is very effective to invest in learning, thus increasing the learning rate, as well as developing market segments were the value of PV is higher, such as residential PV systems in southern Europe

  2. E-Learning: Future of Education

    Directory of Open Access Journals (Sweden)

    SUMIT GOYAL

    2012-09-01

    Full Text Available This paper highlights the significance of E-learning in modern education and discusses its technical aspect, market, pros and cons, comparison with instructor led training and possibility of weather E-learning will replace the old classroom teaching. Presently the concept of E-learning is becoming very popular as the numbers of internet savvy users are increasing. E-learning gives the advantage of 24x7 and 365 days a year round access as compared to Instructor-Led Training, which is one time class that must be scheduled. E-learning is cost effective as course content once developed could be easily used and modified for teaching and training. E-learning also provides students freedom from carrying heavy school bags and stop cutting of trees for the sake of paper, pencil and rubber. E-learning is the future of education as it is interactive, interesting and entertaining way of learning, and will soon replace the paper books in the form of touch screen tablets.

  3. Learning Analytics: Challenges and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Vlatko Lukarov

    2014-12-01

    Full Text Available In recent years, learning analytics (LA has attracted a great deal of attention in technology-enhanced learning (TEL research as practitioners, institutions, and researchers are increasingly seeing the potential that LA has to shape the future TEL landscape. Generally, LA deals with the development of methods that harness educational data sets to support the learning process. This paper provides a foundation for future research in LA. It provides a systematic overview on this emerging field and its key concepts through a reference model for LA based on four dimensions, namely data, environments, context (what?, stakeholders (who?, objectives (why?, and methods (how?. It further identifies various challenges and research opportunities in the area of LA in relation to each dimension.

  4. Application of hydrogen isotopes and metal hydrides in future energy source

    Energy Technology Data Exchange (ETDEWEB)

    Guoqiang, Jiang [Sichuan Inst. of Materials and Technology, Chengdu, SC (China)

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China`s energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed.

  5. Application of hydrogen isotopes and metal hydrides in future energy source

    International Nuclear Information System (INIS)

    Jiang Guoqiang

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China's energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed

  6. Future Scenarios for Mobile Science Learning

    Science.gov (United States)

    Burden, Kevin; Kearney, Matthew

    2016-04-01

    This paper adopts scenario planning as a methodological approach and tool to help science educators reconceptualise their use of mobile technologies across various different futures. These `futures' are set out neither as predictions nor prognoses but rather as stimuli to encourage greater discussion and reflection around the use of mobile technologies in science education. Informed by the literature and our empirical data, we consider four alternative futures for science education in a mobile world, with a particular focus on networked collaboration and student agency. We conclude that `seamless learning', whereby students are empowered to use their mobile technologies to negotiate across physical and virtual boundaries (e.g. between school and out-of-school activities), may be the most significant factor in encouraging educators to rethink their existing pedagogical patterns, thereby realizing some of the promises of contextualised participatory science learning.

  7. IAHE Hydrogen Civilization Conception for the Humankind Sustainable Future

    International Nuclear Information System (INIS)

    Victor A Goltsov; Lyudmila F Goltsova; T Nejat Veziroglu

    2006-01-01

    There are generalized of a novel Hydrogen Civilization (HyCi-) conception of the International Association for Hydrogen Energy. The HyCi-Conception states that at this rigorous, severe historical period the humankind still has a real possibility to save the biosphere and makes living out of humanity be possible and real process. The above objective can be achieved by the only way, the way of advantageous all-planetary work along the direction of ecologically clean vector 'Hydrogen energy → Hydrogen economy → Hydrogen civilization'. The HyCi-Conception includes three constituent, mutually conditioned parts: industrially-ecological, humanitarian-cultural and geopolitical-internationally legislative ones. Legislative-economical mechanism of transition to hydrogen civilization is formulated, and the most important possible stages of HyCi-transition are indicated and discussed. (authors)

  8. The Future of Learning: From eLearning to mLearning.

    Science.gov (United States)

    Keegan, Desmond

    The future of electronic learning was explored in an analysis that viewed the provision of learning at a distance as a continuum and traced the evolution from distance learning to electronic learning to mobile learning in Europe and elsewhere. Special attention was paid to the following topics: (1) the impact of the industrial revolution, the…

  9. Hydrogen storage: state-of-the-art and future perspective

    International Nuclear Information System (INIS)

    Tzimas, E.; Filiou, C.; Peteves, S.D.; Veyret, J.B.

    2003-01-01

    The EU aims at establishing a sustainable energy supply, able to provide affordable and clean energy without increasing green house gas emissions. Hydrogen and fuel cells are seen by many as key energy system solutions for the 21. century, enabling clean and efficient production of power and heat from a broad range of primary energy sources. To be effective, there is a crucial need for well-coordinated research, development and deployment at European Level. The particular segment of hydrogen storage is one key element of the full hydrogen chain and it must meet a number of challenges before it is introduced into the global energy system. Regarding its energy characteristics, the gravimetric energy density of hydrogen is about three times higher than gasoline, but its energy content per volume is about a quarter. Therefore, the most significant problem for hydrogen (in particular for on-board vehicles) is to store sufficient -amounts of hydrogen. The volumetric energy density of hydrogen can be increased by compression or liquefaction which are both the most mature technologies. Still the energy required for both compression and liquefaction is one element to be properly assessed in considering the different pathways in particular for distribution. As far as on-board vehicle storage is concerned all possible options (compressed, liquid, metal hydrides and porous structures) have their own advantages and disadvantages with respect to weight, volume, energy efficiency, refuelling times, cost and safety aspects. To address these problems, long-term commitments to scientific excellence in research, coupled with co-ordination between the many different stakeholders, is required. In the current state-of-the-art in hydrogen storage, no single technology satisfies all of the criteria required by manufacturers and end-users, and a large number of obstacles have to be overcome. The current hydrogen storage technologies and their associated limitations/needs for improvement

  10. Development of a hydrogen permeation sensor for future tritium applications

    Energy Technology Data Exchange (ETDEWEB)

    Llivina, L.; Colominas, S.; Abellà, J., E-mail: sergi.colominas@iqs.es

    2014-10-15

    Highlights: • Designing and testing of a hydrogen permeation sensor. • Palladium and α-iron have been used as a hydrogen permeation materials in the sensor. • The experiments performed using both membranes showed that the operation of the sensors in the equilibrium mode required at least several hours to reach the hydrogen equilibrium pressure. - Abstract: Tritium monitoring in lithium–lead eutectic is of great importance for the performance of liquid blankets in fusion reactors. In addition, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. In this work, an experimental set up was designed in order to test the permeation hydrogen sensors at 500 °C. This experimental set-up allowed working with controlled environments (different hydrogen partial pressures) and the temperature was measured using a thermocouple connected to a temperature controller that regulated an electrical heater. In a first set of experiments, a hydrogen sensor was constructed using an α-iron capsule as an active hydrogen area. The sensor was mounted and tested in the experimental set up. In a second set of experiments the α-iron capsule was replaced by a welded thin palladium disk in order to minimize the death volume. The experiments performed using both membranes (α-iron and palladium) showed that the operation of the sensors in the equilibrium mode required at least several hours to reach the hydrogen equilibrium pressure.

  11. Hydrogen storage in clathrate hydrates: Current state of the art and future directions

    International Nuclear Information System (INIS)

    Veluswamy, Hari Prakash; Kumar, Rajnish; Linga, Praveen

    2014-01-01

    Hydrogen is looked upon as the next generation clean energy carrier, search for an efficient material and method for storing hydrogen has been pursued relentlessly. Improving hydrogen storage capacity to meet DOE targets has been challenging and research efforts are continuously put forth to achieve the set targets and to make hydrogen storage a commercially realizable process. This review comprehensively summarizes the state of the art experimental work conducted on the storage of hydrogen as hydrogen clathrates both at the molecular level and macroscopic level. It identifies future directions and challenges for this exciting area of research. Hydrogen storage capacities of different clathrate structures – sI, sII, sH, sVI and semi clathrates have been compiled and presented. In addition, promising new approaches for increasing hydrogen storage capacity have been described. Future directions for achieving increased hydrogen storage and process scale up have been outlined. Despite few limitations in storing hydrogen in the form of clathrates, this domain receives prominent attention due to more environmental-friendly method of synthesis, easy recovery of molecular hydrogen with minimum energy requirement, and improved safety of the process

  12. The California experience : lessons learned and prospects for the future

    Energy Technology Data Exchange (ETDEWEB)

    Levin, J. [AC Transit, Oakland, CA (United States)

    2007-07-01

    AC Transit operates 650 hydrogen-powered mass transit buses that serve 1.5 million people in 13 cities in California. This presentation discussed the impact of the buses on public health, quality of life and cost savings. Hydrogen has been touted as a diversified and renewable energy supply that can provide energy independence and reduction in global warming. Mass transit systems have proven to be well suited for testing the limits of hydrogen-powered vehicles primarily because of the centralized fueling and maintenance structure. AC Transit began ZEbus testing in November 1999 and became involved in the California Fuel Cell Partnership in 2000. The NeBus test was performed in 2000, followed by the ISE/UTC Thor Bus in 2003/2004. The governor's inauguration of the zero emission buses was in January 2007. The lessons learned from the California experience were: (1) motivation must be for the right reason, (2) a champion is required, (3) community and political support is required, (4) capital investment is required, (5) a strong management team is required, (6) partners must be chosen wisely, (7) the end user or customer must be allowed to drive the design, (8) inform the public about plans, (9) evaluation is essential to industry-wide application, (10) all resources must be considered for outreach and education, (11) optimism is required to surpass challenges, (12) the technology should be promoted for future generations. The presentation concluded with comments on market value of hydrogen and fuel cell vehicles, their fuel efficiency, reliability and durability. tabs., figs.

  13. A Theme-Based Course: Hydrogen as the Fuel of the Future

    Science.gov (United States)

    Shultz, Mary Jane; Kelly, Matthew; Paritsky, Leonid; Wagner, Julia

    2009-01-01

    A theme-based course focusing on the potential role of hydrogen as a future fuel is described. Numerous topics included in typical introductory courses can be directly related to the issue of hydrogen energy. Beginning topics include Avogadro's number, the mole, atomic mass, gas laws, and the role of electrons in chemical transformations. Reaction…

  14. Vision of the U.S. biofuel future: a case for hydrogen-enriched biomass gasification

    Science.gov (United States)

    Mark A. Dietenberger; Mark Anderson

    2007-01-01

    Researchers at the Forest Product Laboratory (FPL) and the University of Wisconsin-Madison (UW) envision a future for biofuels based on biomass gasification with hydrogen enrichment. Synergisms between hydrogen production and biomass gasification technologies will be necessary to avoid being marginalized in the biofuel marketplace. Five feasible engineering solutions...

  15. Changing the world with hydrogen and nuclear: From past successes to shaping the future

    International Nuclear Information System (INIS)

    Carre, F.

    2010-01-01

    This presentation reviews the past history of hydrogen and nuclear energy, while considering how they had been important forever, how they have been used to change the world when they were discovered and understood, and how they will likely shape our future to face specific challenges of the 21. century. Content: 1 - hydrogen and nuclear reactions at the origin of the universe: the universe and supernovae, the sun, the blue planet, the evolution of man; 2 - understanding and first uses of hydrogen: the discovery of hydrogen, hydrogen balloons, airships or dirigibles, the discovery of the electrolysis and the fuel cell, Jules Vernes; 3 - development of nuclear over the 20. century: pioneers of nuclear energy, Fermi reactor, EBR-1; 4 - development of hydrogen over the 20. century, expanding uses of hydrogen over the second half of the 20. century; 5 - four major endeavours gathering hydrogen and nuclear: light water reactors, naval reactors, nuclear rockets, controlled fusion, the PNP-500 project; 6 - stakes in hydrogen and nuclear production in the 21. century: energy challenge for the 21. century, peaking of fossil fuel production, renaissance of nuclear energy, changes in transportation model, hydrogen market, technologies for nuclear hydrogen production, carbon taxes, the path forward: international demonstrations towards industrialisation, a new generation of scientists for our dreams come true

  16. The hydrogen economy for a sustainable future and the potential contribution of nuclear power

    International Nuclear Information System (INIS)

    Hardy, C.

    2003-01-01

    The Hydrogen Economy encompasses the production of hydrogen using a wide range of energy sources, its storage and distribution as an economic and universal energy carrier, and its end use by industry and individuals with negligible emission of pollutants and greenhouse gases. Hydrogen is an energy carrier not a primary energy source, just like electricity is an energy carrier. The advantages of hydrogen as a means of storage and distribution of energy, and the methods of production of hydrogen, are reviewed. Energy sources for hydrogen production include fossil fuels, renewables, hydropower and nuclear power. Hydrogen has many applications in industry, for residential use and for transport by air, land and sea. Fuel cells are showing great promise for conversion of hydrogen into electricity and their development and current status are discussed. Non-energy uses of hydrogen and the safety aspects of hydrogen are also considered. It is concluded that the Hydrogen Economy, especially if coupled to renewable and nuclear energy sources, is a technically viable and economic way of achieving greater energy diversity and security and a sustainable future in this century

  17. Hydrogen energy and fuel cells. A vision of our future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document presents the possibilities of energy systems based on the hydrogen, in the world and more specially in Europe in the context of an environmental and energy strategy. It proposes then the necessary structures and actions to implement at a commercial feasibility. (A.L.B.)

  18. Hydrogen from renewable sources. Current and future constraints

    International Nuclear Information System (INIS)

    Falchetta, M.; Galli, S.

    2001-01-01

    Using renewable energy sources to produce hydrogen as an energy vector could assure a fully sustainable renewable energy system with zero emissions. Many conversion technologies (in particular water electrolysis) are already available and proven, but are still far from being economically competitive [it

  19. Hydrogen energy and fuel cells. A vision of our future

    International Nuclear Information System (INIS)

    2003-01-01

    This document presents the possibilities of energy systems based on the hydrogen, in the world and more specially in Europe in the context of an environmental and energy strategy. It proposes then the necessary structures and actions to implement at a commercial feasibility. (A.L.B.)

  20. Role of hydrogen in future North European power system in 2060

    DEFF Research Database (Denmark)

    Meibom, Peter; Karlsson, Kenneth Bernard

    2010-01-01

    the heat production in heat pumps and electric heat boilers, and by varying the production of hydrogen in electrolysis plants in combination with hydrogen storage. Investment in hydrogen storage capacity corresponded to 1.2% of annual wind power production in the scenarios without a hydrogen demand from...... the future success of fuel cell technologies have been investigated as well as different electricity and heat demand assumptions. The variability of wind power production was handled by varying the hydropower production and the production on CHP plants using biomass, by power transmission, by varying...

  1. British Columbia hydrogen and fuel cell strategy : an industry vision for our hydrogen future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-05-15

    British Columbia's strategy for global leadership in hydrogen fuel cell technology was outlined. It was suggested that hydrogen and fuel cells will power a significant portion of the province by 2020, and will be used in homes, businesses, industry and transportation. The following 3 streams of activity were identified as leading to the achievement of this vision: (1) a hydrogen highway of technology demonstrations in vehicles, refuelling facilities and stationary power systems in time for and building on the 2010 Winter Olympic and Paralympic Games, (2) the development of a globally leading sustainable energy technology cluster that delivers products and services as well as securing high-value jobs, and (3) the renewal of the province's resource heartlands to supply the fuel and knowledge base for hydrogen-based communities and industries, and clean hydrogen production and distribution. It was suggested that in order to achieve the aforementioned goals, the government should promote the hydrogen highway and obtain $135 million in funding from various sources. It was recommended that the BC government and members of industry should also work with the federal government and other provinces to make Canada an early adopter market. Creative markets for BC products and services both in Canada and abroad will be accomplished by global partnerships, collaboration with Alberta and the United States. It was suggested that in order to deploy clean energy technologies, BC must integrate their strategy into the province's long-term sustainable energy plan. It was concluded that the hydrogen and fuel cell cluster has already contributed to the economy through jobs, private sector investment and federal and provincial tax revenues. The technology cluster's revenues have been projected at $3 billion with a workforce of 10,000 people by 2010. The hydrogen economy will reduce provincial air emissions, improve public health, and support sustainable tourism

  2. AMC’s Hydrogen Future: Sustainable Air Mobility

    Science.gov (United States)

    2009-06-01

    levels, acidification of the oceans , desertification and the increased intensity of hurricanes. Since the United States is the leading consumer of...and steel to Carbon Fiber Reinforced Plastics (CFRP). The Institute of Space and Astronautical Science (ISAS) designed a liquid hydrogen composite...shell interior with a carbon fiber reinforced plastic outer shell with insulation and water proof tape cover (see Figure 35). The tank ended up

  3. The Learning of Biology: A Structural Basis for Future Research

    Science.gov (United States)

    Murray, Darrel L.

    1977-01-01

    This article reviews recent research studies and experiences relating the learning theories of Ausubel to biology instruction. Also some suggestions are made for future research on the learning of biology. (MR)

  4. A future, intense source of negative hydrogen ions

    Science.gov (United States)

    Siefken, Hugh; Stein, Charles

    1994-01-01

    By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.

  5. Spatio-temporal model based optimization framework to design future hydrogen infrastructure networks

    International Nuclear Information System (INIS)

    Konda, N.V.S.; Shah, N.; Brandon, N.P.

    2009-01-01

    A mixed integer programming (MIP) spatio-temporal model was used to design hydrogen infrastructure networks for the Netherlands. The detailed economic analysis was conducted using a multi-echelon model of the entire hydrogen supply chain, including feed, production, storage, and transmission-distribution systems. The study considered various near-future and commercially available technologies. A multi-period model was used to design evolutionary hydrogen supply networks in coherence with growing demand. A scenario-based analysis was conducted in order to account for uncertainties in future demand. The study showed that competitive hydrogen networks can be designed for any conceivable scenario. It was concluded that the multi-period model presented significant advantages in relation to decision-making over long time-horizons

  6. Leveraging Affective Learning for Developing Future Airmen

    Science.gov (United States)

    2009-11-01

    highly inter- active, information-saturated, and global environment is tougher than ever. Mission success requires knowledge-enabled Airmen who...and learning aids. According to the eLearning Guild, over 30 percent of organizations surveyed currently deliver some amount of learning content

  7. The Future of Learning Technology: Some Tentative Predictions

    Science.gov (United States)

    Rushby, Nick

    2013-01-01

    This paper is a snapshot of an evolving vision of what the future may hold for learning technology. It offers three personal visions of the future and raises many questions that need to be explored if learning technology is to realise its full potential.

  8. From water to water, hydrogen as a renewable energy vector for the future

    International Nuclear Information System (INIS)

    Gillet, A.C.

    2000-01-01

    The most important property of hydrogen is that it is the cleanest fuel. Its combustion produces only water and a small amount of NO x . No acid rain, no greenhouse effect, no ozone layer depletion, no particulates aerosols. It seems then ideally suited for the conversion to renewable energy. Hydrogen has now established it self as a clean choice for an environmentally compatible energy system. It can provide a sustainable future for building, industrial and transport sectors of human activities. On average, it has about 20-30% higher combustion efficiency than fossil fuels and can produce electricity directly in fuel cells. In combination with solar PV- and hydro-electrolysis, it is compatible with land area requirements on a worldwide basis. If fossil fuels combustion environmental damage is taken into account, the hydrogen energy system is already cost effective. The question is thus no longer , but, and soon, will hydrogen energy become a practical solution to sustainable energy development. (Author)

  9. Well-To-Wheel Analysis of Solar Produced Hydrogen for Future Transportation Systems

    International Nuclear Information System (INIS)

    Remo Felder; Anton Meier

    2006-01-01

    Hydrogen production, transport, and usage in future passenger car transportation systems is compared for selected solar and conventional hydrogen production technologies using a comprehensive life cycle assessment (LCA) approach. Solar scenarios show distinctly lower greenhouse gas (GHG) emissions than fossil-based scenarios. For example, using solar produced hydrogen in fuel cell cars reduces life cycle GHG emissions by 75% compared to advanced gasoline vehicles and by more than 90% if car and road infrastructure are not considered. Utilization of solar produced hydrogen has the potential of reducing fossil energy requirements by a factor of up to 10 compared to conventional technologies. Environmental impacts are associated with the construction of the steel-intensive infrastructure for concentrating solar power plants due to mineral and fossil resource consumption as well as discharge of pollutants related to today's non-sustainable steel production technology. (authors)

  10. Well-To-Wheel Analysis of Solar Produced Hydrogen for Future Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Remo Felder; Anton Meier [Solar Technology Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI, (Switzerland)

    2006-07-01

    Hydrogen production, transport, and usage in future passenger car transportation systems is compared for selected solar and conventional hydrogen production technologies using a comprehensive life cycle assessment (LCA) approach. Solar scenarios show distinctly lower greenhouse gas (GHG) emissions than fossil-based scenarios. For example, using solar produced hydrogen in fuel cell cars reduces life cycle GHG emissions by 75% compared to advanced gasoline vehicles and by more than 90% if car and road infrastructure are not considered. Utilization of solar produced hydrogen has the potential of reducing fossil energy requirements by a factor of up to 10 compared to conventional technologies. Environmental impacts are associated with the construction of the steel-intensive infrastructure for concentrating solar power plants due to mineral and fossil resource consumption as well as discharge of pollutants related to today's non-sustainable steel production technology. (authors)

  11. System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, M.; Sandor, D.

    2008-06-01

    From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

  12. Key Factors in Planning a Sustainable Energy Future Including Hydrogen and Fuel Cells

    Science.gov (United States)

    Hedstrom, Lars; Saxe, Maria; Folkesson, Anders; Wallmark, Cecilia; Haraldsson, Kristina; Bryngelsson, Marten; Alvfors, Per

    2006-01-01

    In this article, a number of future energy visions, especially those basing the energy systems on hydrogen, are discussed. Some often missing comparisons between alternatives, from a sustainability perspective, are identified and then performed for energy storage, energy transportation, and energy use in vehicles. It is shown that it is important…

  13. E-Learning: Future of Education

    OpenAIRE

    SUMIT GOYAL

    2012-01-01

    This paper highlights the significance of E-learning in modern education and discusses its technical aspect, market, pros and cons, comparison with instructor led training and possibility of weather E-learning will replace the old classroom teaching. Presently the concept of E-learning is becoming very popular as the numbers of internet savvy users are increasing. E-learning gives the advantage of 24x7 and 365 days a year round access as compared to Instructor-Led Training, which is one time ...

  14. Fuel cells and hydrogen : implications for the future automobile

    Energy Technology Data Exchange (ETDEWEB)

    Frise, P.R. [Auto 21 Network of Centres of Excellence, Windsor, ON (Canada)

    2006-07-01

    This presentation outlined the organization of the auto industry, with reference to the tier levels of the supply chain. Automakers or original equipment manufacturers (OEMs) such as Daimler Chrysler, Ford Motor Company, General Motors, Honda, Toyota and Nissan are at the top of the structure, followed by tier 1 suppliers, tier 2 suppliers and tier 3 companies. In recent years, the auto industry has experienced an explosion of new products, building more vehicle types with fewer plants. It was shown that since 1990, auto parts supply companies have consolidated. Currently, Canada's automotive sector is the world's eighth largest producer of motor vehicles. The 6 OEMs operate 12 active assembly plants in Canada plus several engine and drivetrain part plants and support facilities. More than 500,000 Canadians work directly and indirectly in the auto industry, which generates 12 to 13 per cent of Canada's gross domestic product. It was noted that automotive design is driven, in large part, by energy prices. The industry strives to make vehicles safer; improve fuel economy and reduce environmental impacts; and, re-tool the business model by improving supplier relationship and making assembly more efficient and safer in order to control cost and improve profitability. The challenges for the new automobile include new powertrains that use alternate fuels or have electric drive and control systems; new structures and materials; and, new systems and capabilities. The future of fuel cell powertrains was also discussed with reference to prototypes or products already in the market. tabs., figs.

  15. How Future Goals Enhance Motivation and Learning in Multicultural Classrooms

    NARCIS (Netherlands)

    Andriessen, I.; Lens, W.; Phalet, K.

    2004-01-01

    This review examines the impact of future goals on motivation and learning in multicultural classrooms. Across cultures, schooling is a future-oriented investment. Studies of minority students’ school achievement have advanced future goals as a crucial protective factor in the face of frequent

  16. Creating the Future of Games and Learning

    Science.gov (United States)

    Squire, Kurt

    2015-01-01

    Games for learning are poised to enter mainstream education. Several factors driving this movement are the following: (1) Digital distribution through cloud computing services and ubiquitous connectivity which will make digital learning tools--such as games--affordable and easily accessible; (2) The proliferation of digital devices; (3) Digital…

  17. A hydrogen economy: an answer to future energy problems. [Overview of 1974 THEME Conference

    Energy Technology Data Exchange (ETDEWEB)

    Seifritz, W [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1975-06-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems.

  18. Hydrogen as Future Energy Carrier: The ENEA Point of View on Technology and Application Prospects

    Directory of Open Access Journals (Sweden)

    Marina Ronchetti

    2009-03-01

    Full Text Available Hydrogen and fuel cells should reduce costs and increase reliability and durability to compete in the energy market. A considerable long term effort is necessary for research, development and demonstration of adequate solutions; important programs in this sense are carried out in the main industrialized countries, with the involvement of many industries, research structures and stakeholders. In such framework a relevant role is played in Italy by ENEA (Italian Agency for New Technologies, Energy and Environment. In the paper the main aspects related to the possible hydrogen role in the future society are addressed, according to ENEA perspectives.

  19. Future Scenarios for Mobile Science Learning

    Science.gov (United States)

    Burden, Kevin; Kearney, Matthew

    2016-01-01

    This paper adopts scenario planning as a methodological approach and tool to help science educators reconceptualise their use of mobile technologies across various different futures. These "futures" are set out neither as predictions nor prognoses but rather as stimuli to encourage greater discussion and reflection around the use of…

  20. Aluminum hydride as a hydrogen and energy storage material: Past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, J., E-mail: graetz@bnl.gov [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, NY (United States); Reilly, J.J. [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, NY (United States); Yartys, V.A.; Maehlen, J.P. [Institute for Energy Technology, Kjeller (Norway); Bulychev, B.M. [Department of Chemistry, Lomonosov Moscow State University, Moscow (Russian Federation); Antonov, V.E. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation); Tarasov, B.P. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation); Gabis, I.E. [Department of Physics, Saint-Petersburg State University, St. Petersburg (Russian Federation)

    2011-09-15

    Aluminum hydride (AlH{sub 3}) and its associated compounds make up a fascinating class of materials that have motivated considerable scientific and technological research over the past 50 years. Due primarily to its high energy density, AlH{sub 3} has become a promising hydrogen and energy storage material that has been used (or proposed for use) as a rocket fuel, explosive, reducing agent and as a hydrogen source for portable fuel cells. This review covers the past, present and future research on aluminum hydride and includes the latest research developments on the synthesis of {alpha}-AlH{sub 3} and the other polymorphs (e.g., microcrystallization reaction, batch and continuous methods), crystallographic structures, thermodynamics and kinetics (e.g., as a function of crystallite size, catalysts and surface coatings), high-pressure hydrogenation experiments and possible regeneration routes.

  1. Dye-Sensitized Photocatalytic Water Splitting and Sacrificial Hydrogen Generation: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Pankaj Chowdhury

    2017-05-01

    Full Text Available Today, global warming and green energy are important topics of discussion for every intellectual gathering all over the world. The only sustainable solution to these problems is the use of solar energy and storing it as hydrogen fuel. Photocatalytic and photo-electrochemical water splitting and sacrificial hydrogen generation show a promise for future energy generation from renewable water and sunlight. This article mainly reviews the current research progress on photocatalytic and photo-electrochemical systems focusing on dye-sensitized overall water splitting and sacrificial hydrogen generation. An overview of significant parameters including dyes, sacrificial agents, modified photocatalysts and co-catalysts are provided. Also, the significance of statistical analysis as an effective tool for a systematic investigation of the effects of different factors and their interactions are explained. Finally, different photocatalytic reactor configurations that are currently in use for water splitting application in laboratory and large scale are discussed.

  2. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  3. History and Future of Technology-Enhanced Learning

    NARCIS (Netherlands)

    Westera, Wim

    2009-01-01

    Westera, W. (2009). History and Future of Technology-Enhanced Learning. Keynote Presentation at the First International Conference on Software, Services & Semantic Technologies (3ST). October, 28, 2009, Sofia, Bulgaria.

  4. Assessment of the potential future market in Sweden for hydrogen as an energy carrier

    Science.gov (United States)

    Carleson, G.

    Future hydrogen markets for the period 1980-2025 are projected, the probable range of hydrogen production costs for various manufacturing methods is estimated, and expected market shares in competition with alternative energy carriers are evaluated. A general scenario for economic and industrial development in Sweden for the given period was evaluated, showing the average increase in gross national product to become 1.6% per year. Three different energy scenarios were then developed: alternatives were based on nuclear energy, renewable indigenous energy sources, and the present energy situation with free access to imported natural or synthetic fuels. An analysis was made within each scenario of the competitiveness of hydrogen on both the demand and the supply of the following sectors: chemical industry, steel industry, peak power production, residential and commercial heating, and transportation. Costs were calculated for the production, storage and transmission of hydrogen according to technically feasible methods and were compared to those of alternative energy carriers. Health, environmental and societal implications were also considered. The market penetration of hydrogen in each sector was estimated, and the required investment capital was shown to be less than 4% of the national gross investment sum.

  5. The Future Revisited: Can Global Learning Still Save the World?

    Science.gov (United States)

    Van Hook, Steven R.

    2018-01-01

    This article provides a twelve-year review of my "OJDLA" article ("Online Journal of Distance Learning Administration," University of West Georgia) on the future of global learning, and updates related to issues such as societal need, technologies, course design, administration affairs, faculty support, and student service.

  6. Double Consciousness and the Future of Service-Learning

    Science.gov (United States)

    Hickmon, Gabrielle

    2015-01-01

    The author begins this essay by reflecting on an article penned twenty years earlier, "Does Service-Learning Have a Future?" (Zlotkowski, 1995) that called educators to attend seriously to the academic aspects of service-learning (SL), to situate the pedagogy strongly within the academy as a means of legitimizing and expanding the work.…

  7. Preparing Students for Future Learning with Teachable Agents

    Science.gov (United States)

    Chin, Doris B.; Dohmen, Ilsa M.; Cheng, Britte H.; Oppezzo, Marily A.; Chase, Catherine C.; Schwartz, Daniel L.

    2010-01-01

    One valuable goal of instructional technologies in K-12 education is to prepare students for future learning. Two classroom studies examined whether Teachable Agents (TA) achieves this goal. TA is an instructional technology that draws on the social metaphor of teaching a computer agent to help students learn. Students teach their agent by…

  8. The future of learning disabilities nursing in the UK.

    Science.gov (United States)

    Clapham, Anthony

    2014-07-02

    This article appraises the report Strengthening the Commitment, which is a UK-wide review of learning disabilities nursing by the UK's four chief nursing officers. Strengthening the Commitment has strategic importance in reviewing progress in the care of people with learning disabilities in the UK. It also has a role in helping to guide future strategies and initiatives addressing the continuing health inequalities experienced by people with learning disabilities throughout the UK.

  9. Teaching and learning for the future

    NARCIS (Netherlands)

    Plomp, T.; ten Brummelhuis, A.C.A.; Rapmund, R.

    1996-01-01

    This is the final report of the Committee on MultiMedia in Teacher Training (COMMITT), which offers a strategic framework to support efforts of teacher training institutes in the Netherlands to develop their own plans for enhancing the teaching and learning process as well as its outcomes through

  10. Machine Learning and Experimental Design for Hydrogen Cosmology

    Science.gov (United States)

    Rapetti, David; Tauscher, Keith A.; Burns, Jack O.; Mirocha, Jordan; Switzer, Eric; Monsalve, Raul A.; Furlanetto, Steven R.; Bowman, Judd D.

    2018-06-01

    Based on two powerful innovations, we present a new pipeline to analyze the redshifted sky-averaged 21-cm spectrum (~10-200 MHz) of neutral hydrogen from the first stars, galaxies and black holes. First, we combine machine learning and model selection techniques to extract the global 21-cm signal from foreground and instrumental systematics. Second, we employ experimental designs to increase our ability to separate these two components in data sets. For measurements with foreground polarization induced by rotation about the anisotropic low-frequency radio sky on a large beam, we incorporate this information into the likelihood to distinguish the unpolarized 21-cm signal from the rest of the data. For experiments with a drift scan strategy, we take advantage of the varying foreground in time to identify the constant 21-cm signal. This pipeline can be applied to either lunar orbit/surface instruments shielded from terrestrial and solar radio contamination, or existing ground-based observations, such as those from the EDGES collaboration that recently observed an absorption trough potentially consistent with the global 21-cm signal of Cosmic Dawn. Finally, this pipeline allows us to constrain physical parameters for a given model of the first luminous objects plus exotic physics in the early universe, from e.g. dark matter, through an MCMC analysis that uses the extracted signal as a starting point, providing key efficiency for unexplored cosmologies.

  11. Can anything better come along? Reflections on the deep future of hydrogen-electricity systems

    International Nuclear Information System (INIS)

    Scott, D. S.

    2006-01-01

    Sometimes, for some things, we can project the deep future better than tomorrow. This is particularly relevant to our energy system where, if we focus on energy currencies, looking further out allows us to leap the tangles of today's conventional wisdom, vested mantras and ill-found hopes. We will first recall the rationale that sets out why - by the time the 22. century rolls around - hydrogen and electricity will have become civilizations staple energy currencies. Building on this dual-currency inevitability we'll then evoke the wisdom that, while we never know everything about the future we always know something. For future energy systems that 'something' is the role and nature of the energy currencies. From this understanding, our appreciation of the deep future can take shape - at least for infrastructures, energy sources and some imbedded technologies - but not service-delivery widgets. The long view provides more than mere entertainment. It should form the basis of strategies for today that, in turn, will avoid setbacks and blind alleys on our journey to tomorrow. Some people accept that hydrogen and electricity will be our future, but only 'until something better comes along.' The talk will conclude with logic that explains the response: 'No! Nothing better will ever come along.'. (authors)

  12. Can anything better come along? Reflections on the deep future of hydrogen-electricity systems

    International Nuclear Information System (INIS)

    Scott, D.S.

    2004-01-01

    'Full text:' Sometimes, for some things, we can project the deep future better than tomorrow. This is particularly relevant to our energy system where, if we focus on energy currencies, looking further out allows us to leap the tangles of today's conventional wisdom, vested mantras and ill-found hopes. We will first recall the rationale that sets out why - by the time the 22nd century rolls around - hydrogen and electricity will have become civilization's staple energy currencies. Building on this dual-currencies inevitability we'll then evoke the wisdom that, we never know everything about the future but we always know something. For future energy systems that 'something' is the role and nature of the energy currencies. From this understanding, our appreciation of the deep future can take shape - at least for infrastructures, energy sources and some imbedded technologies-but not service-delivery widgets. The long view provides more than mere entertainment. It should form the basis of strategies for today that, in turn, will avoid blind alleys on our journey to tomorrow. Some people accept that hydrogen and electricity will be our future, but only 'until something better comes along.' The talk will conclude with logic that explains the response: No, nothing better will ever come along. (author)

  13. The role of hydrogen as a future solution to energetic and environmental problems for residential buildings

    Science.gov (United States)

    Badea, G.; Felseghi, R. A.; Aşchilean, I.; Rǎboacǎ, S. M.; Şoimoşan, T.

    2017-12-01

    The concept of sustainable development aims to meet the needs of the present without compromising the needs of future generations. In achieving the desideratum "low-carbon energy system", in the domain of energy production, the use of innovative low-carbon technologies providing maximum efficiency and minimum pollution is required. Such technology is the fuel cell; as these will be developed, it will become a reality to obtain the energy based on hydrogen. Thus, hydrogen produced by electrolysis of water using different forms of renewable resources becomes a secure and sustainable energy alternative. In this context, in the present paper, a comparative study of two different hybrid power generation systems for residential building placed in Cluj-Napoca was made. In these energy systems have been integrated renewable energies (photovoltaic panels and wind turbine), backup and storage system based on hydrogen (fuel cell, electrolyser and hydrogen storage tank), and, respectively, backup and storage system based on traditional technologies (diesel generator and battery). The software iHOGA was used to simulate the operating performance of the two hybrid systems. The aim of this study was to compare energy, environmental and economic performances of these two systems and to define possible future scenarios of competitiveness between traditional and new innovative technologies. After analyzing and comparing the results of simulations, it can be concluded that the fuel cells technology along with hydrogen, integrated in a hybrid system, may be the key to energy production systems with high energy efficiency, making possible an increased capitalization of renewable energy which have a low environmental impact.

  14. The Vision of the Role of Hydrogen in Energy Supply in the Future

    International Nuclear Information System (INIS)

    Barbir, F.

    2008-01-01

    Europe is in a very difficult situation regarding the future of energy supply because it is highly dependent on import of oil and natural gas. In addition, because of environmental pollution, global climate changes, ?nite World reserves of fossil fuels and geo-political implications of distribution of those reserves, such an energy system is not sustainable. The need for inevitable changes in energy supply is becoming more and more obvious. This includes not only a change of the energy sources, but also in energy carriers and technologies for their conversion into useful forms of energy, as well as a change in the ways energy is used today. Based on present knowledge, the only energy sources that satisfy the sustainability requirements are the renewable energy sources - direct solar insolation and its consequences (wind, hydro, biomass). As the renewable energy sources cannot be utilized directly in most of applications there is a need for such energy carriers which can be produced from renewable energy sources and which can satisfy all the energy needs at the end use, again satisfying the sustainability requirements. Electricity is one of such energy carrier which may be used in most but not in all applications. There is a need for other energy carriers in the form of fuels which can be stored and used, for example, in the transportation sector. This is a role that hydrogen can fulfill in a future energy system - hydrogen satisfies the conditions of sustainability, can be produced from renewable energy sources and together with electricity can satisfy all energy needs. Although the role of hydrogen in a future energy system can be envisioned with some certainty, the problem is the transition, i.e. switching from the present energy system based on fossil fuels to the future energy system based on renewable energy sources. Of course, such transition cannot happen overnight, but the question is where and how to start and at which pace to proceed. Insistence on short

  15. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  16. Current and Future Trends in Game-Based Learning

    Directory of Open Access Journals (Sweden)

    Carlos Vaz de Carvalho

    2014-05-01

    Full Text Available The first number of the second volume of the EAI Transactions on Serious Games focuses on the results presented on the European Conference on Game-Based Learning. This event, already on the 8th edition, has set standards in terms of presentation of research and practice and in the pointing out of new and future trends in the development of Game-Based Learning. As such, we are quite thrilled to be able to report them here.

  17. The Future of e-Learning in Medical Education: Current Trend and Future Opportunity

    Directory of Open Access Journals (Sweden)

    Sara Kim

    2006-09-01

    Full Text Available A wide range of e-learning modalities are widely integrated in medical education. However, some of the key questions related to the role of e-learning remain unanswered, such as (1 what is an effective approach to integrating technology into pre-clinical vs. clinical training?; (2 what evidence exists regarding the type and format of e-learning technology suitable for medical specialties and clinical settings?; (3 which design features are known to be effective in designing on-line patient simulation cases, tutorials, or clinical exams?; and (4 what guidelines exist for determining an appropriate blend of instructional strategies, including online learning, face-to-face instruction, and performance-based skill practices? Based on the existing literature and a variety of e-learning examples of synchronous learning tools and simulation technology, this paper addresses the following three questions: (1 what is the current trend of e-learning in medical education?; (2 what do we know about the effective use of e-learning?; and (3 what is the role of e-learning in facilitating newly emerging competency-based training? As e-learning continues to be widely integrated in training future physicians, it is critical that our efforts in conducting evaluative studies should target specific e-learning features that can best mediate intended learning goals and objectives. Without an evolving knowledge base on how best to design e-learning applications, the gap between what we know about technology use and how we deploy e-learning in training settings will continue to widen.

  18. The Future of Learning and Training in Augmented Reality

    Directory of Open Access Journals (Sweden)

    Kangdon Lee

    2012-08-01

    Full Text Available Students acquire knowledge and skills through different modes of instruction that include classroom lectures with textbooks, computers, and the like. The availability and choice of learning innovation depends on the individual’s access to technologies and on the infrastructure environment of the surrounding community. In this rapidly changing society, information needs to be adopted and applied at the right time and right place to maintain efficiency in all settings. Augmented reality is one technology that dramatically shifts the timing and location of learning. This paper describes augmented reality, how it applies to learning, and its potential impact on future education.

  19. Perspectives on Advanced Learning Technologies and Learning Networks and Future Aerospace Workforce Environments

    Science.gov (United States)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    An overview of the advanced learning technologies is given in this presentation along with a brief description of their impact on future aerospace workforce development. The presentation is divided into five parts (see Figure 1). In the first part, a brief historical account of the evolution of learning technologies is given. The second part describes the current learning activities. The third part describes some of the future aerospace systems, as examples of high-tech engineering systems, and lists their enabling technologies. The fourth part focuses on future aerospace research, learning and design environments. The fifth part lists the objectives of the workshop and some of the sources of information on learning technologies and learning networks.

  20. The future of the IMS Learning Design specification: a critical look

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    P. B. Sloep (2009). The future of the IMS Learning Design specification: a critical look. Presentation at the IMS Learning Design seminar 'The future of IMS Learning Design'. December, 10, 2009, Wollongong, Australia: University of Wollongong.

  1. Advanced Learning Technologies and Learning Networks and Their Impact on Future Aerospace Workforce

    Science.gov (United States)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    This document contains the proceedings of the training workshop on Advanced Learning Technologies and Learning Networks and their impact on Future Aerospace Workforce. The workshop was held at the Peninsula Workforce Development Center, Hampton, Virginia, April 2 3, 2003. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to: 1) provide broad overviews of the diverse activities related to advanced learning technologies and learning environments, and 2) identify future directions for research that have high potential for aerospace workforce development. Eighteen half-hour overviewtype presentations were made at the workshop.

  2. Transforming Future Teaching through ‘Carpe Diem’ Learning Design

    Directory of Open Access Journals (Sweden)

    Gilly Salmon

    2014-01-01

    Full Text Available Academic staff in Higher Education (HE need to transform their teaching practices to support more future-orientated, digital, student-centered learning. Promoting, enabling and implementing these changes urgently requires acceptable, meaningful and effective staff development for academics. We identify four key areas that are presenting as barriers to the implementation of successful staff development. We illuminate the Carpe Diem learning design workshop process and illustrate its impact on academic staff as a viable, constructive alternative to traditional staff development processes. The Carpe Diem model directly exposes and addresses the irony that educational institutions expect their academic staff to learn to design and deliver personalized, mobile and technology-enhanced learning to students, whilst wedded to ‘one size fits all’ face-to-face interventions…or worse, ‘page turning’ e-learning that masquerades as staff development. To avoid further frustrations and expensive, inappropriate initiatives, the spirit and practice of Carpe Diem could act as a ‘pathfinder beacon’, and be more widely adopted to enable fast, effective and fully embedded, learner-ready, future-proofed learning.

  3. Design to learn: customizing services when the future matters

    Directory of Open Access Journals (Sweden)

    Dan Ariely

    2013-04-01

    Full Text Available Internet-based customization tools can be used to design service encounters that maximize customers' utility in the present or explore their tastes to provide more value in the future, where these two goals conflict with each other. Maximizing expected customer satisfaction in the present leads to slow rates of learning that may limit the ability to provide quality in the future. An emphasis on learning can lead to unsatisfied customers that will not only forego purchasing in the current period, but, more seriously, never return if they lose trust in the service provider's ability to meet their needs. This paper describes service design policies that balance the objectives of learning and selling by characterizing customer lifetime value as a function of knowledge. The analysis of the customization problem as a dynamic program yields three results. The first result is the characterization of customization policies that quantify the value of knowledge so as to adequately balance the expected revenue of present and future interactions. The second result is an analysis of the impact of operational decisions on loyalty, learning, and profitability over time. Finally, the quantification of the value of knowing the customer provides a connection between customer acquisition and retention policies, thus enhancing the current understanding of the mechanisms connecting service customization, value creation, and customer lifetime value.

  4. The Present and Future State of Blended Learning in Workplace Learning Settings in the United States

    Science.gov (United States)

    Bonk, Curtis J.; Kim, Kyong-Jee; Oh, Eun Jung; Teng, Ya-Ting; Son, Su Jin

    2007-01-01

    This paper reports survey findings related to the present and future state of blended learning in workplace learning settings across the U.S. Surveyed in this study are 118 practitioners in corporate training or elearning in various workplace settings. The findings reveal interesting perceptions by respondents regarding the benefits of and…

  5. BIG DATA AND E-LEARNING: THE IMPACT ON THE FUTURE OF LEARNING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Valentin PAU

    2015-11-01

    Full Text Available In nowadays, one of the most interesting aspects of e-Learning is that he is continuously evolving, where, the big data architecture represents an important component over which the e-Learning communities has stopped more and more. In our work paper we will analyze the technological benefits of the big data concept and the impact on the future of e-Learning but also we will mention the critical aspects regarding the integrity of the data.

  6. What is the future of work based learning in VET?

    DEFF Research Database (Denmark)

    Jørgensen, Christian Helms

    not to pursue an academic career. Countries with strong apprenticeship systems tend to have less youth unemployment and a smoother transition to the labour market than others. Furthermore, from a learning perspective, the outcomes of work-based training and informal learning are enhanced when they are combined...... that question the future role and organisation of work-based training in VET. The purpose of this paper is to examine these challenges based on a review of research on European VET systems and analyses of the Danish dual system of VET. In the end of the paper, some innovative solutions to these challenges...

  7. Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future

    Science.gov (United States)

    Zhang, Wenyan; Gao, Wei; Zhang, Xuqiang; Li, Zhen; Lu, Gongxuan

    2018-03-01

    Hydrogen is a green energy carrier with high enthalpy and zero environmental pollution emission characteristics. Photocatalytic hydrogen evolution (HER) is a sustainable and promising way to generate hydrogen. Despite of great achievements in photocatalytic HER research, its efficiency is still limited due to undesirable electron transfer loss, high HER over-potential and low stability of some photocatalysts, which lead to their unsatisfied performance in HER and anti-photocorrosion properties. In recent years, many spintronics works have shown their enhancing effects on photo-catalytic HER. For example, it was reported that spin polarized photo-electrons could result in higher photocurrents and HER turn-over frequency (up to 200%) in photocatalytic system. Two strategies have been developed for electron spin polarizing, which resort to heavy atom effect and magnetic induction respectively. Both theoretical and experimental studies show that controlling spin state of OHrad radicals in photocatalytic reaction can not only decrease OER over-potential (even to 0 eV) of water splitting, but improve stability and charge lifetime of photocatalysts. A convenient strategy have been developed for aligning spin state of OHrad by utilizing chiral molecules to spin filter photo-electrons. By chiral-induced spin filtering, electron polarization can approach to 74%, which is significantly larger than some traditional transition metal devices. Those achievements demonstrate bright future of spintronics in enhancing photocatalytic HER, nevertheless, there is little work systematically reviewing and analysis this topic. This review focuses on recent achievements of spintronics in photocatalytic HER study, and systematically summarizes the related mechanisms and important strategies proposed. Besides, the challenges and developing trends of spintronics enhanced photo-catalytic HER research are discussed, expecting to comprehend and explore such interdisciplinary research in

  8. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  9. Evaluating theories of bird song learning: implications for future directions.

    Science.gov (United States)

    Margoliash, D

    2002-12-01

    Studies of birdsong learning have stimulated extensive hypotheses at all levels of behavioral and physiological organization. This hypothesis building is valuable for the field and is consistent with the remarkable range of issues that can be rigorously addressed in this system. The traditional instructional (template) theory of song learning has been challenged on multiple fronts, especially at a behavioral level by evidence consistent with selectional hypotheses. In this review I highlight the caveats associated with these theories to better define the limits of our knowledge and identify important experiments for the future. The sites and representational forms of the various conceptual entities posited by the template theory are unknown. The distinction between instruction and selection in vocal learning is not well established at a mechanistic level. There is as yet insufficient neurophysiological data to choose between competing mechanisms of error-driven learning and reinforcement learning. Both may obtain for vocal learning. The possible role of sleep in acoustic or procedural memory consolidation, while supported by some physiological observations, does not yet have support in the behavioral literature. The remarkable expansion of knowledge in the past 20 years and the recent development of new technologies for physiological and behavioral experiments should permit direct tests of these theories in the coming decade.

  10. Building Future Directions for Teacher Learning in Science Education

    Science.gov (United States)

    Smith, Kathy; Lindsay, Simon

    2016-04-01

    In 2013, as part of a process to renew an overall sector vision for science education, Catholic Education Melbourne (CEM) undertook a review of its existing teacher in-service professional development programs in science. This review led to some data analysis being conducted in relation to two of these programs where participant teachers were positioned as active learners undertaking critical reflection in relation to their science teaching practice. The conditions in these programs encouraged teachers to notice critical aspects of their teaching practice. The analysis illustrates that as teachers worked in this way, their understandings about effective science pedagogy began to shift, in particular, teachers recognised how their thinking not only influenced their professional practice but also ultimately shaped the quality of their students' learning. The data from these programs delivers compelling evidence of the learning experience from a teacher perspective. This article explores the impact of this experience on teacher thinking about the relationship between pedagogical choices and quality learning in science. The findings highlight that purposeful, teacher-centred in-service professional learning can significantly contribute to enabling teachers to think differently about science teaching and learning and ultimately become confident pedagogical leaders in science. The future of quality school-based science education therefore relies on a new vision for teacher professional learning, where practice explicitly recognises, values and attends to teachers as professionals and supports them to articulate and share the professional knowledge they have about effective science teaching practice.

  11. Preparing medical students for future learning using basic science instruction.

    Science.gov (United States)

    Mylopoulos, Maria; Woods, Nicole

    2014-07-01

    The construct of 'preparation for future learning' (PFL) is understood as the ability to learn new information from available resources, relate new learning to past experiences and demonstrate innovation and flexibility in problem solving. Preparation for future learning has been proposed as a key competence of adaptive expertise. There is a need for educators to ensure that opportunities are provided for students to develop PFL ability and that assessments accurately measure the development of this form of competence. The objective of this research was to compare the relative impacts of basic science instruction and clinically focused instruction on performance on a PFL assessment (PFLA). This study employed a 'double transfer' design. Fifty-one pre-clerkship students were randomly assigned to either basic science instruction or clinically focused instruction to learn four categories of disease. After completing an initial assessment on the learned material, all participants received clinically focused instruction for four novel diseases and completed a PFLA. The data from the initial assessment and the PFLA were submitted to independent-sample t-tests. Mean ± standard deviation [SD] scores on the diagnostic cases in the initial assessment were similar for participants in the basic science (0.65 ± 0.11) and clinical learning (0.62 ± 0.11) conditions. The difference was not significant (t[42] = 0.90, p = 0.37, d = 0.27). Analysis of the diagnostic cases on the PFLA revealed significantly higher mean ± SD scores for participants in the basic science learning condition (0.72 ± 0.14) compared with those in the clinical learning condition (0.63 ± 0.15) (t[42] = 2.02, p = 0.05, d = 0.62). Our results show that the inclusion of basic science instruction enhanced the learning of novel related content. We discuss this finding within the broader context of research on basic science instruction, development of adaptive expertise and assessment

  12. Future Learning Strategy and ePortfolios in Education

    Directory of Open Access Journals (Sweden)

    C. Dorninger

    2008-03-01

    Full Text Available The rapid change of the information andknowledge Society does no stop at education:communication, teaching and learning are changing due todigital media. Therefore at Austrian schools a “FutureLearning”- strategy was started in October 2007, where newforms of learning are underlined by new media and socialsoftware. This strategy will be presented. An important partof the strategy is the introduction of electronic Portfolios forstudents. Portfolios could be powerful tools to realizeindividualisation in formal education. There are two maintypes, the process portfolio for learning, working andreflection and the application portfolio for assessmentpurposes and job application. It is now possible to collectformal and informal competences and skills-orientedknowledge for the later professional career.

  13. New and future developments in catalysis batteries, hydrogen storage and fuel cells

    CERN Document Server

    Suib, Steven L

    2013-01-01

    New and Future Developments in Catalysis is a package of seven books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes. Batteries and fuel cells are considered to be environmentally friendly devices for storage and production of electricity, and they are gaining considerable attention. The preparation of the feed for fuel cells (fuel) as well as the catalysts and the various conversion processes taking place in these devices are covered in this volume, together with the catalytic processes for hydrogen generation and storage. An economic analysis of the various processes is also part of this volume and enables an informed choice of the most suitable process. Offers in-depth coverage of all ca...

  14. Needs of thermal-hydraulic codes for analyzing hydrogen behavior of future chinese NPPs

    International Nuclear Information System (INIS)

    Zhiwei Zhou; Jianjun Xiao; Mengjia Yang

    2005-01-01

    severe accident management guidelines are therefore needed for dealing with both the in-vessel and ex-vessel phenomena, including hydrogen generation, diffusion/convection and deflagration/detonation. To develop the sophisticated thermalhydraulic codes for analyzing severe accident related hydrogen behavior of a light water reactor system is quite expensive and rather unrealistic for China along to bear the cost. Therefore, the most effective way for China to establish the design capability of analyzing severe accident for new nuclear power plant projects is to participate the international or multi-national R and D program, such as EUROATOM cost-sharing program and GEN-IV program, etc. By international cooperation, China can not only gain in most extent the successful experience of the countries with advanced technology in developing nuclear power plants, but also contribute itself most effectively in keeping the momentum of enlarging the peaceful utilization of nuclear energy in the world. Certainly, the future Chinese nuclear power market will be a significant industrial driver for developing the-state-of-the-art thermal-hydraulic codes, including hydrogen behavior analysis codes. This paper also reports some computational study on hydrogen diffusion/convection behavior in the containment related to Daya Bay NPP severe accident analysis with CFD code GASFLOW. The code validation were largely carried out in past few years in Germany and had been applied to EPR and other German NPPs. (authors)

  15. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  16. Learning about Regiochemistry from a Hydrogen-Atom Abstraction Reaction in Water

    Science.gov (United States)

    Sears-Dundes, Christopher; Huon, Yoeup; Hotz, Richard P.; Pinhas, Allan R.

    2011-01-01

    An experiment has been developed in which the hydrogen-atom abstraction and the coupling of propionitrile, using Fenton's reagent, are investigated. Students learn about the regiochemistry of radical formation, the stereochemistry of product formation, and the interpretation of GC-MS data, in a safe reaction that can be easily completed in one…

  17. Lessons learned from hydrogen generation and burning during the TMI-2 event

    International Nuclear Information System (INIS)

    Henrie, J.O.; Postma, A.K.

    1987-05-01

    This document summarizes what has been learned from generation of hydrogen in the reactor core and the hydrogen burn that occurred in the containment building of the Three Mile Island Unit No. 2 (TMI-2) nuclear power plant on March 28, 1979. During the TMI-2 loss-of-coolant accident (LOCA), a large quantity of hydrogen was generated by a zirconium-water reaction. The hydrogen burn that occurred 9 h and 50 min after the initiation of the TMI-2 accident went essentially unnoticed for the first few days. Even through the burn increased the containment gas temperature and pressure to 1200 0 F (650 0 C) and 29 lb/in 2 (200 kPa) gage, there was no serious threat to the containment building. The processes, rates, and quantities of hydrogen gas generated and removed during and following the LOCA are described in this report. In addition, the methods which were used to define the conditions that existed in the containment building before, during, and after the hydrogen burn are described. The results of data evaluations and engineering calculations are presented to show the pressure and temperature histories of the atmosphere in various containment segments during and after the burn. Material and equipment in reactor containment buildings can be protected from burn damage by the use of relatively simple enclosures or insulation

  18. iLearning: The Future of Higher Education? Student Perceptions on Learning with Mobile Tablets

    Science.gov (United States)

    Rossing, Jonathan P.; Miller, Willie M.; Cecil, Amanda K.; Stamper, Suzan E.

    2012-01-01

    The growing use of mobile technology on college campuses suggests the future of the classroom, including learning activities, research, and even student faculty communications, will rely heavily on mobile technology. Since Fall 2010, an interdisciplinary team of faculty from Indiana University--Purdue University Indianapolis (IUPUI) has…

  19. Strongly lensed neutral hydrogen emission: detection predictions with current and future radio interferometers

    Science.gov (United States)

    Deane, R. P.; Obreschkow, D.; Heywood, I.

    2015-09-01

    Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.

  20. Learning clinically useful information from images: Past, present and future.

    Science.gov (United States)

    Rueckert, Daniel; Glocker, Ben; Kainz, Bernhard

    2016-10-01

    Over the last decade, research in medical imaging has made significant progress in addressing challenging tasks such as image registration and image segmentation. In particular, the use of model-based approaches has been key in numerous, successful advances in methodology. The advantage of model-based approaches is that they allow the incorporation of prior knowledge acting as a regularisation that favours plausible solutions over implausible ones. More recently, medical imaging has moved away from hand-crafted, and often explicitly designed models towards data-driven, implicit models that are constructed using machine learning techniques. This has led to major improvements in all stages of the medical imaging pipeline, from acquisition and reconstruction to analysis and interpretation. As more and more imaging data is becoming available, e.g., from large population studies, this trend is likely to continue and accelerate. At the same time new developments in machine learning, e.g., deep learning, as well as significant improvements in computing power, e.g., parallelisation on graphics hardware, offer new potential for data-driven, semantic and intelligent medical imaging. This article outlines the work of the BioMedIA group in this area and highlights some of the challenges and opportunities for future work. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Neuropsychology of Learning Disabilities: The Past and the Future.

    Science.gov (United States)

    Fletcher, Jack M; Grigorenko, Elena L

    2017-10-01

    Over the past 50 years, research on children and adults with learning disabilities has seen significant advances. Neuropsychological research historically focused on the administration of tests sensitive to brain dysfunction to identify putative neural mechanisms underlying learning disabilities that would serve as the basis for treatment. Led by research on classifying and identifying learning disabilities, four pivotal changes in research paradigms have produced a contemporary scientific, interdisciplinary, and international understanding of these disabilities. These changes are (1) the emergence of cognitive science, (2) the development of quantitative and molecular genetics, (3) the advent of noninvasive structural and functional neuroimaging, and (4) experimental trials of interventions focused on improving academic skills and addressing comorbid conditions. Implications for practice indicate a need to move neuropsychological assessment away from a primary focus on systematic, comprehensive assessment of cognitive skills toward more targeted performance-based assessments of academic achievement, comorbid conditions, and intervention response that lead directly to evidence-based treatment plans. Future research will continue to cross disciplinary boundaries to address questions regarding the interaction of neurobiological and contextual variables, the importance of individual differences in treatment response, and an expanded research base on (a) the most severe cases, (b) older people with LDs, and (c) domains of math problem solving, reading comprehension, and written expression. (JINS, 2017, 23, 930-940).

  2. H2 at Scale: Benefitting our Future Energy System - Update for the Hydrogen Technical Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2016-12-06

    Hydrogen is a flexible, clean energy carrying intermediate that enables aggressive market penetration of renewables while deeply decarbonizing our energy system. H2 at Scale is a concept that supports the electricity grid by utilizing energy without other demands at any given time and also supports transportation and industry by providing low-priced hydrogen to them. This presentation is an update to the Hydrogen Technical Advisory Committee (HTAC).

  3. Support of future lighthouse projects and beyond. Managing the transition to hydrogen for transport

    International Nuclear Information System (INIS)

    Ros, M.E.; Jeeninga, H.; Godfroij, P.

    2007-06-01

    Large scale demonstration projects as the 'Lighthouse projects' are an important step towards commercialisation. However, costs for disruptive technologies such as hydrogen, are high in the first phase of market introduction. Therefore, policy support is needed to facilitate the introduction of hydrogen. But, how can the government support and stimulate (early) market introduction and use of hydrogen in the transportation sector? What kind of policy instruments are needed in what phase of the introduction trajectory? And what are the current instruments in the EU and US? Can these affect the introduction of hydrogen in transport? Generally, the hydrogen chain can be stimulated by providing an investment subsidy, production subsidy, tax exemptions and a (production or sales) obligation. Technology specific configurations of these support mechanisms for the diverse technologies in the hydrogen chain have to be taken into account. Besides that the support measures have to act upon each other for every technology development stage. A comparison of the EU and US policies shows differences in the approach of bringing the hydrogen vehicles to the market. The amount of support differs. The US funds RD and D 50% and stimulates the market by obligating sales (ZEV obligation) and procurement, while the EU funds R and D 50%, demonstration 35% and is now looking into large scale demonstration projects, after which the commercial market introduction of hydrogen vehicles is envisaged

  4. Support of future lighthouse projects and beyond. Managing the transition to hydrogen for transport

    Energy Technology Data Exchange (ETDEWEB)

    Ros, M.E.; Jeeninga, H.; Godfroij, P. [ECN Policy Studies, Petten (Netherlands)

    2007-06-15

    Large scale demonstration projects as the 'Lighthouse projects' are an important step towards commercialisation. However, costs for disruptive technologies such as hydrogen, are high in the first phase of market introduction. Therefore, policy support is needed to facilitate the introduction of hydrogen. But, how can the government support and stimulate (early) market introduction and use of hydrogen in the transportation sector? What kind of policy instruments are needed in what phase of the introduction trajectory? And what are the current instruments in the EU and US? Can these affect the introduction of hydrogen in transport? Generally, the hydrogen chain can be stimulated by providing an investment subsidy, production subsidy, tax exemptions and a (production or sales) obligation. Technology specific configurations of these support mechanisms for the diverse technologies in the hydrogen chain have to be taken into account. Besides that the support measures have to act upon each other for every technology development stage. A comparison of the EU and US policies shows differences in the approach of bringing the hydrogen vehicles to the market. The amount of support differs. The US funds RD and D 50% and stimulates the market by obligating sales (ZEV obligation) and procurement, while the EU funds R and D 50%, demonstration 35% and is now looking into large scale demonstration projects, after which the commercial market introduction of hydrogen vehicles is envisaged.

  5. The future of e-learning in healthcare professional education: some possible directions. Commentary.

    Science.gov (United States)

    Walsh, Kieran

    2014-01-01

    E-learning in healthcare professional education still seems like it is a new innovation but the reality is that e-learning has been around for as long as the internet has been around. This is approximately twenty years and so it is probably appropriate to now take stock and consider what the future of e-learning in healthcare professional education might be. One likely occurrence is that there will be more formats, more interactive technology, and sometimes game-based learning. Another future of healthcare professional education will likely be in simulation. Like other forms of technology outside of medicine, the cost of e-learning in healthcare professional education will fall rapidly. E-learning will also become more adaptive in the future and so will deliver educational content based on learners' exact needs. The future of e-learning will also be mobile. Increasingly in the future e-learning will be blended with face to face education.

  6. Designing future learning. A posthumanist approach to researching design processes

    DEFF Research Database (Denmark)

    Juelskjær, Malou

    I investigate how a design process – leading up to the design of a new education building - enact, transform and highlight tacit everyday practices and experiences in an education setting, whereby becoming an art of managing. I apply a post-humanist performative perspective, highlighting entangled...... agencies rather than focusing on human agency. I focus on the design process rather than the designer. The design process accelerated and performed past and future experiences of schooling, learning, teaching. This called for analytical attention to agential forces of not only the material but also...... and temporalities matter in design processes. Furthermore, the analysis emphasise how design translate affective economies and that attention to those affective economies are vital for the result of the design process....

  7. Machine learning for medical ultrasound: status, methods, and future opportunities.

    Science.gov (United States)

    Brattain, Laura J; Telfer, Brian A; Dhyani, Manish; Grajo, Joseph R; Samir, Anthony E

    2018-04-01

    Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited image quality control. Tremendous opportunities have arisen in the last decade as a result of exponential growth in available computational power coupled with progressive miniaturization of US devices. As US devices become smaller, enhanced computational capability can contribute significantly to decreasing variability through advanced image processing. In this paper, we review leading machine learning (ML) approaches and research directions in US, with an emphasis on recent ML advances. We also present our outlook on future opportunities for ML techniques to further improve clinical workflow and US-based disease diagnosis and characterization.

  8. Virtual Reality in Engineering Education: The Future of Creative Learning

    Directory of Open Access Journals (Sweden)

    Abdul-Hadi Ghazi Abulrub

    2011-12-01

    Full Text Available Virtual reality has achieved an adequate level of development for it to be considered in innovative applications such as education, training, and research in higher education. Virtual reality offers both opportunities and challenges for the educational sector. One of the challenges of virtual reality technology is the costs associated which have been unaffordable for educational institutes. However, in recent years, computer hardware and software development has made it more feasible to incorporate virtual reality technology into future teaching strategies. Despite the cost challenges, educational benefits of implementing virtual reality remain compelling. This paper explains virtual reality principle and describes the interactive educational environment developed at WMG, the University of Warwick. It also discusses the benefits of using state-of-the-art 3D photorealistic interactive and immersive virtual environment for engineering undergraduates and postgraduate teaching, learning and training.

  9. The Future of Personalized Learning for Students with Disabilities

    Science.gov (United States)

    Worthen, Maria

    2016-01-01

    Personalized learning models can give each student differentiated learning experiences based on their needs, interests, and strengths, including students with disabilities. Personalized learning can pinpoint specific gaps in student learning, identify where a student is on his or her learning pathway, and provide the appropriate interventions to…

  10. Context-aware Recommender Systems for Learning: a Survey and Future Challenges

    NARCIS (Netherlands)

    Verbert, Katrien; Manouselis, Nikos; Xavier, Ochoa; Wolpers, Martin; Drachsler, Hendrik; Ivana, Bosnic; Erik, Duval

    2011-01-01

    Verbert, K., Manouselis, N., Xavier, O., Wolpers, M., Drachsler, H., Bosnic, I., & Duval, E. (accepted). Context-aware Recommender Systems for Learning: a Survey and Future Challenges. IEEE Transactions on Learning Technologies (TLT).

  11. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    OpenAIRE

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Hydrogen is emerging beyond its conventional role as an additive component for gasoline production, chemical and fertilizer manufacture, and food production to become a promising fuel for transportation and stationary power. Hydrogen offers a potentially unmatched ability to deliver a de-carbonized energy system, thereby addressing global climate change concerns, while simultaneously improving local air quality and reducing dependence on imported fossil fuels. This "trifecta" of potential ben...

  12. Cyanobacterial Hydrogenases and Hydrogen Metabolism Revisited: Recent Progress and Future Prospects

    Directory of Open Access Journals (Sweden)

    Namita Khanna

    2015-05-01

    Full Text Available Cyanobacteria have garnered interest as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms can utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical processes. Our limited understanding of the cellular hydrogen production pathway is a primary setback in the potential scale-up of this process. In this regard, the present review discusses the recent insight around ferredoxin/flavodoxin as the likely electron donor to the bidirectional Hox hydrogenase instead of the generally accepted NAD(PH. This may have far reaching implications in powering solar driven hydrogen production. However, it is evident that a successful hydrogen-producing candidate would likely integrate enzymatic traits from different species. Engineering the [NiFe] hydrogenases for optimal catalytic efficiency or expression of a high turnover [FeFe] hydrogenase in these photo-autotrophs may facilitate the development of strains to reach target levels of biohydrogen production in cyanobacteria. The fundamental advancements achieved in these fields are also summarized in this review.

  13. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  14. Industrial implications of hydrogen

    International Nuclear Information System (INIS)

    Pressouyre, G.M.

    1982-01-01

    Two major industrial implications of hydrogen are examined: problems related to the effect of hydrogen on materials properties (hydrogen embrittlement), and problems related to the use and production of hydrogen as a future energy vector [fr

  15. Fueling our future: Four steps to a new, reliable, cleaner, decentralized energy supply based on hydrogen and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Evers, A. A. [Arno A. Evers FAIR-PR, Starnberg (Germany)

    2004-07-01

    The necessary preconditions and the driving forces operating to move hydrogen and fuel cells to world-wide commercialization are examined, focusing on trends that impacted the progress of new technologies in the past. The consensus is that consumers have played a vital role in the past, and will continue to play an even more vital role in the future as drivers in the mass market evolution of technological progress. The automobile, aircraft and cell phone industries are examined as examples of consumer influence on technology development. One such scenario, specific to the hydrogen economy is the potential dual role played by fuel cell-powered personal automobiles which may not only provide transportation but also supply electricity and heat to residential and commercial buildings while in a stationary mode. It is suggested that given the size of the population and the current level of economic development in the Peoples' Republic of China, conditions there are most favourable to accelerate the development of a hydrogen and fuel cell-based economy. Details of developments in China and how the hydrogen-fuel cells scenario may develop there, are discussed. 11 figs.

  16. MedHySol: Future federator project of massive production of solar hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mahmah, Bouziane; Harouadi, Farid; Chader, Samira; Belhamel, Maiouf; M' Raoui, Abdelhamid; Abdeladim, Kamel [CDER, BP 62, Route de l' Observatoire, Bouzareah, Alger (Algeria); Benmoussa, H. [LESEI, Universite de Batna, Batna (Algeria); Cherigui, Adel Nasser [Universite Joseph Fourier Grenoble I, BP 87, Saint-Martin-D' Heres 38400 (France); Etievant, Claude [CETH, Innov' valley Entreprises, 91460 Marcoussis (France)

    2009-06-15

    Mediterranean Hydrogen Solar (MedHySol) is a federator project for development of a massive hydrogen production starting from solar energy and its exportation within a framework of a Euro-Maghrebian Cooperation project for industrial and energetic needs in the Mediterranean basin. The proposal of this project is included in the Algiers Declaration's on Hydrogen from Renewable Origin following the organization of the first international workshop on hydrogen which was held in 2005. Algeria is the privileged site to receive the MedHySol platform. The objective of the first step of the project is to realize a technological platform allowing the evaluation of emergent technologies of hydrogen production from solar energy with a significant size (10-100 kW) and to maintain the development of energetic rupture technologies. The second step of the project is to implement the most effective and less expensive technologies to pilot great projects (1-1000 MW). In this article we present the potentialities and the feasibility of MedHySol, as well as the fundamental elements for a scientific and technical supervision of this great project. (author)

  17. M-Learning: Implications in Learning Domain Specificities, Adaptive Learning, Feedback, Augmented Reality, and the Future of Online Learning

    Science.gov (United States)

    Squires, David R.

    2014-01-01

    The aim of this paper is to examine the potential and effectiveness of m-learning in the field of Education and Learning domains. The purpose of this research is to illustrate how mobile technology can and is affecting novel change in instruction, from m-learning and the link to adaptive learning, to the uninitiated learner and capacities of…

  18. Computerisation of procedures. Lessons learned and future perspectives

    International Nuclear Information System (INIS)

    O'Hara, J.; Pirus, D.; Nilsen, S.; Bisio, R.; Hulsund, J.-E.; Zhang, W.

    2003-07-01

    The computerisation of the procedures has been investigated for several years. Even though guidelines for such computerisation have been proposed, there is a need to extend and revise these guidelines. In this report, we look at what has been achieved so far, both within the Halden Project as well as within other organisations related to nuclear power plants. These experiences are often related to testing of particular computerised procedure systems either in research laboratories or in nuclear utilities. These activities have accumulated a body of general knowledge on the subject, as documented in other 'lessons learned' reports of the past. This report will extend this accepted body of knowledge. Furthermore, we identify the unresolved problems that need to be further studied to make usable computerised procedures for the future. The report identifies selected qualities that should be reinforced to make computerised procedure systems better. In particular, the integration aspect is emphasised. A flexible integration with the operator tasks and the remaining interfaces of the control room is important. Unless this integration is accomplished, the computerised procedures will not be functional. Another aspect of integration is combination with other systems inclusive those systems that deal with the plant documentation, electronic or paper based. This kind of integration is important to the safe and reliable operation of the plant. Good integration with plant documentation is instrumental in creating reliable QA of the procedures that covers the whole life cycle of the procedure. (Author). 48 refs., 12 figs., 2 tabs

  19. Perspective d'avenir du marché de l'hydrogène Future Outlook of the Hydrogen Market

    Directory of Open Access Journals (Sweden)

    Ozmen S.

    2006-11-01

    Full Text Available L'hydrogène qui avait été jusqu'à présent produit à partir des hydrocarbures pour des usages chimiques devra dans les années futures, trouver un marché nouveau qui sera foncfion du développement des centrales nucléaires. Par utilisation de l'énergie électrique ou thermique disponible aux heures creuses, la décomposition de l'eau par voie électrolytique ou thermique (cycle d'oxydoréduction produirait l'hydrogène; gaz stockable et transportable. En plus de la consommation de l'hydrogène pour usage chimique-fabrication du méthanol, de l'ammoniac, hydrotraitement des fractions pétrolières, la métallurgie,... dont l'importance va croître, on envisage l'emploi de l'hydrogène comme véhicule d'énergie. Up to now, hydrogen has been produced from hydrocarbons for chemical uses. In the future, if will have to find a new market for itself which will depend on the development of nucleor power plants. Through the use of electric or thermal energy available during off-peak hours, water decomposition by electrolic or thermal methods (redox cycle could produce hydrogen, a storable and transportable gas. In addition to hydrogen consumption for chemical uses (manufacturing methanol, ammonia, hydrotreating petroleum fractions, metallurgy, etc. which will become greater, plans are being drawn up to use hydrogen as a vehicle for energy.

  20. Growing Experiential Learning for the Future: REAL School Gardens

    Science.gov (United States)

    McCarty, Jeanne; Ford, Vanessa; Ludes, Joe

    2018-01-01

    Sometimes taking innovative approach to learning means changing the venue. Traditional schooling takes place within walls, but an outdoor environment offers significant benefit in terms of learning through experience.

  1. Language Learning in Virtual Reality Environments: Past, Present, and Future

    Science.gov (United States)

    Lin, Tsun-Ju; Lan, Yu-Ju

    2015-01-01

    This study investigated the research trends in language learning in a virtual reality environment by conducting a content analysis of findings published in the literature from 2004 to 2013 in four top ranked computer-assisted language learning journals: "Language Learning & Technology," "CALICO Journal," "Computer…

  2. What Is Game-Based Learning? Past, Present, and Future

    Science.gov (United States)

    Jan, Mingfong; Gaydos, Matthew

    2016-01-01

    This article aims at clarifying and conceptualizing game-based learning (GBL) in order to pinpoint directions for practices and research. The authors maintain that GBL should be conceptualized toward the transformation of a textbook-learning culture. The authors emphasize the importance of a paradigm shift in learning and a reorientation in…

  3. Studies of Expansive Learning: Foundations, Findings and Future Challenges

    Directory of Open Access Journals (Sweden)

    Yrjö Engeström

    2013-07-01

    Full Text Available The paper examines studies based on the theory of expansive learning, formulated in 1987. In recent years the theory has been used in a wide variety of studies and interventions. The theory builds on foundational ideas put forward by Vygotsky, Leont’ev, Il’enkov, and Davydov, key figures in the Russian school of cultural-historical activity theory. Studies based on the theory are reviewed in six sections: expansive learning as transformation of the object, expansive learning as movement in the zone of proximal development, expansive learning as cycles of learning actions, expansive learning as boundary crossing and network building, expansive learning as distributed and discontinuous movement, and formative interventions.A separate section is devoted to critiques of expansive learning. It is concluded that the ultimate test of learning theories is how they help practitioners to generate learning that grasps pressing issues the humankind is facing. The theory of expansive learning currently expands its analyses both up and down, outward and inward. Moving up and outward, it tackles learning in fields or networks of interconnected activity systems with their partially shared and often contested objects. Moving down and inward, it tackles issues of subjectivity, experiencing, personal sense, emotion, embodiment, identity, and moral commitment.

  4. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  5. Current and future multimodal learning analytics data challenges

    DEFF Research Database (Denmark)

    Spikol, Daniel; Prieto, Luis P.; Rodriguez-Triana, M.J.

    2017-01-01

    Multimodal Learning Analytics (MMLA) captures, integrates and analyzes learning traces from different sources in order to obtain a more holistic understanding of the learning process, wherever it happens. MMLA leverages the increasingly widespread availability of diverse sensors, high......-frequency data collection technologies and sophisticated machine learning and artificial intelligence techniques. The aim of this workshop is twofold: first, to expose participants to, and develop, different multimodal datasets that reflect how MMLA can bring new insights and opportunities to investigate complex...... learning processes and environments; second, to collaboratively identify a set of grand challenges for further MMLA research, built upon the foundations of previous workshops on the topic....

  6. Recognizing molecular patterns by machine learning: An agnostic structural definition of the hydrogen bond

    International Nuclear Information System (INIS)

    Gasparotto, Piero; Ceriotti, Michele

    2014-01-01

    The concept of chemical bonding can ultimately be seen as a rationalization of the recurring structural patterns observed in molecules and solids. Chemical intuition is nothing but the ability to recognize and predict such patterns, and how they transform into one another. Here, we discuss how to use a computer to identify atomic patterns automatically, so as to provide an algorithmic definition of a bond based solely on structural information. We concentrate in particular on hydrogen bonding – a central concept to our understanding of the physical chemistry of water, biological systems, and many technologically important materials. Since the hydrogen bond is a somewhat fuzzy entity that covers a broad range of energies and distances, many different criteria have been proposed and used over the years, based either on sophisticate electronic structure calculations followed by an energy decomposition analysis, or on somewhat arbitrary choices of a range of structural parameters that is deemed to correspond to a hydrogen-bonded configuration. We introduce here a definition that is univocal, unbiased, and adaptive, based on our machine-learning analysis of an atomistic simulation. The strategy we propose could be easily adapted to similar scenarios, where one has to recognize or classify structural patterns in a material or chemical compound

  7. Recognizing molecular patterns by machine learning: An agnostic structural definition of the hydrogen bond

    Energy Technology Data Exchange (ETDEWEB)

    Gasparotto, Piero; Ceriotti, Michele, E-mail: michele.ceriotti@epfl.ch [Laboratory of Computational Science and Modeling, and National Center for Computational Design and Discovery of Novel Materials MARVEL, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

    2014-11-07

    The concept of chemical bonding can ultimately be seen as a rationalization of the recurring structural patterns observed in molecules and solids. Chemical intuition is nothing but the ability to recognize and predict such patterns, and how they transform into one another. Here, we discuss how to use a computer to identify atomic patterns automatically, so as to provide an algorithmic definition of a bond based solely on structural information. We concentrate in particular on hydrogen bonding – a central concept to our understanding of the physical chemistry of water, biological systems, and many technologically important materials. Since the hydrogen bond is a somewhat fuzzy entity that covers a broad range of energies and distances, many different criteria have been proposed and used over the years, based either on sophisticate electronic structure calculations followed by an energy decomposition analysis, or on somewhat arbitrary choices of a range of structural parameters that is deemed to correspond to a hydrogen-bonded configuration. We introduce here a definition that is univocal, unbiased, and adaptive, based on our machine-learning analysis of an atomistic simulation. The strategy we propose could be easily adapted to similar scenarios, where one has to recognize or classify structural patterns in a material or chemical compound.

  8. Recognizing molecular patterns by machine learning: An agnostic structural definition of the hydrogen bond

    Science.gov (United States)

    Gasparotto, Piero; Ceriotti, Michele

    2014-11-01

    The concept of chemical bonding can ultimately be seen as a rationalization of the recurring structural patterns observed in molecules and solids. Chemical intuition is nothing but the ability to recognize and predict such patterns, and how they transform into one another. Here, we discuss how to use a computer to identify atomic patterns automatically, so as to provide an algorithmic definition of a bond based solely on structural information. We concentrate in particular on hydrogen bonding - a central concept to our understanding of the physical chemistry of water, biological systems, and many technologically important materials. Since the hydrogen bond is a somewhat fuzzy entity that covers a broad range of energies and distances, many different criteria have been proposed and used over the years, based either on sophisticate electronic structure calculations followed by an energy decomposition analysis, or on somewhat arbitrary choices of a range of structural parameters that is deemed to correspond to a hydrogen-bonded configuration. We introduce here a definition that is univocal, unbiased, and adaptive, based on our machine-learning analysis of an atomistic simulation. The strategy we propose could be easily adapted to similar scenarios, where one has to recognize or classify structural patterns in a material or chemical compound.

  9. Exploring future hydrogen development and the impact of policy: A novel investment-led approach

    International Nuclear Information System (INIS)

    Houghton, T.; Cruden, A.

    2011-01-01

    It is generally recognised that the primary tools being utilised today for hydrogen energy forecasting and policy development take a least-cost approach. While useful for comparing the viability of different technologies from a cost perspective, it is argued that these models fail to capture the potential value contribution such technologies could offer companies and, in consequence, the likelihood of their receiving investment. The authors propose a novel model for forecasting the deployment of hydrogen energy systems based on a company value maximisation approach designed to assist governments in the development of appropriate policy instruments. In this paper a theoretical relationship between market sector valuations and investment activity is presented using 3 value metrics, namely net present value (NPV), earnings per share (EPS) and sum of the parts (SOP). It is shown that, as the electricity and transport fuel markets begin to converge, examination of the effects of different policy measures through the value-led model can highlight otherwise hidden counter incentives. The model further recognises that the propensity to invest in hydrogen differs according to the characteristics of the company looking to make the investment and the implications for policy-makers regarding levels of support are also discussed in the paper. - Research highlights: → A novel approach to forecasting energy market development is proposed. → Approach based on analysis of value contribution of investment opportunities. → Model applied to the potential hydrogen energy market in Scotland. → Reveals potential inadequacy of assessing market development based on levelised cost alone. → Highlights relevance of investor company performance in assessing market development.

  10. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    International Nuclear Information System (INIS)

    Offer, G.J.; Howey, D.; Contestabile, M.; Clague, R.; Brandon, N.P.

    2010-01-01

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV.

  11. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    Energy Technology Data Exchange (ETDEWEB)

    Offer, G.J.; Brandon, N.P. [Department Earth Science Engineering, Imperial College London, SW7 2AZ (United Kingdom); Howey, D. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ (United Kingdom); Contestabile, M. [Centre for Environmental Policy, Imperial College London, SW7 2AZ (United Kingdom); Clague, R. [Energy Futures Lab, Imperial College London, SW7 2AZ (United Kingdom)

    2010-01-15

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV. (author)

  12. Stand-alone power systems for the future: Optimal design, operation and control of solar-hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Ulleberg, Oeystein

    1999-12-31

    This thesis gives a systematic review of the fundamentals of energy systems, the governing physical and chemical laws related to energy, inherent characteristics of energy system, and the availability of the earth`s energy. It shows clearly why solar-hydrogen systems are one of the most viable options for the future. The main subject discussed is the modelling of SAPS (Stand-Alone Power Systems), with focus on photovoltaic-hydrogen energy systems. Simulation models for a transient simulation program are developed for PV-H{sub 2} components, including models for photovoltaics, water electrolysis, hydrogen storage, fuel cells, and secondary batteries. A PV-H{sub 2} demonstration plant in Juelich, Germany, is studied as a reference plant and the models validated against data from this plant. Most of the models developed were found to be sufficiently accurate to perform short-term system simulations, while all were more than accurate enough to perform long-term simulations. Finally, the verified simulation models are used to find the optimal operation and control strategies of an existing PV-H{sub 2} system. The main conclusion is that the simulation methods can be successfully used to find optimal operation and control strategies for a system with fixed design, and similar methods could be used to find alternative system designs. 148 refs., 78 figs., 31 tabs.

  13. Stand-alone power systems for the future: Optimal design, operation and control of solar-hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Ulleberg, Oeystein

    1998-12-31

    This thesis gives a systematic review of the fundamentals of energy systems, the governing physical and chemical laws related to energy, inherent characteristics of energy system, and the availability of the earth`s energy. It shows clearly why solar-hydrogen systems are one of the most viable options for the future. The main subject discussed is the modelling of SAPS (Stand-Alone Power Systems), with focus on photovoltaic-hydrogen energy systems. Simulation models for a transient simulation program are developed for PV-H{sub 2} components, including models for photovoltaics, water electrolysis, hydrogen storage, fuel cells, and secondary batteries. A PV-H{sub 2} demonstration plant in Juelich, Germany, is studied as a reference plant and the models validated against data from this plant. Most of the models developed were found to be sufficiently accurate to perform short-term system simulations, while all were more than accurate enough to perform long-term simulations. Finally, the verified simulation models are used to find the optimal operation and control strategies of an existing PV-H{sub 2} system. The main conclusion is that the simulation methods can be successfully used to find optimal operation and control strategies for a system with fixed design, and similar methods could be used to find alternative system designs. 148 refs., 78 figs., 31 tabs.

  14. E-LEARNING: CURRENT STATE, TRENDS AND FUTURE PROSPECTS

    Directory of Open Access Journals (Sweden)

    Г А Краснова

    2017-12-01

    Full Text Available The article is devoted to the main trends of development of e-learning in formal and non-formal education in different countries. The article discusses the main quantitative and qualitative characteristics of the market of e-learning education. The authors define main reasons the development of e-learning education in higher education. The authors note that the demand for e-learning by various groups of users will push the education authorities and educational institutions to develop different forms of e-learning and implement new business models of universities. In most universities in Europe and the United States adopted or will be adopted for the institutional strategy of development of e-learning.

  15. BLENDED LEARNING COURSE FOR FUTURE PRIMARY SCHOOL TEACHERS IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Vira V. Kotkova

    2017-09-01

    Full Text Available Ukrainian and foreign scientists’ views on the essence of blended learning are analyzed in the article. The author's definition of a blended learning course is presented. The process of such course designing is described according to target, motivational, substantive, operational and diagnostic components. Both the structure of the blended learning course implementation as well as students’ educational-cognitive activity distribution between classroom learning and distance course are shown. The problems for students, teachers, and educational institutions of blended courses effective implementation are summarized. Students’ academic performance of three years study is analyzed. The results of students’ questioning to determine their perception of blended learning course are described according to the following categories: the effectiveness of blended course, evaluation objectivity, motivation to study, the use of plagiarism in studies, understanding of blended learning course.

  16. Machine learning for epigenetics and future medical applications

    OpenAIRE

    Holder, Lawrence B.; Haque, M. Muksitul; Skinner, Michael K.

    2017-01-01

    ABSTRACT Understanding epigenetic processes holds immense promise for medical applications. Advances in Machine Learning (ML) are critical to realize this promise. Previous studies used epigenetic data sets associated with the germline transmission of epigenetic transgenerational inheritance of disease and novel ML approaches to predict genome-wide locations of critical epimutations. A combination of Active Learning (ACL) and Imbalanced Class Learning (ICL) was used to address past problems w...

  17. Entering the Interaction Age: Implementing a Future Vision for Campus Learning Spaces...Today

    Science.gov (United States)

    Milne, Andrew J.

    2007-01-01

    Learning space design for higher education has become a popular topic of discussion as institutions attempt to chart a course for the future of their campuses. Several authors in EDUCAUSE publications have forecast the future for such spaces, a future infused with new and sometimes exotic-sounding technologies. Indeed, some discussions in the…

  18. Assessment and E-Learning: Current Issues and Future Trends

    Science.gov (United States)

    Cowie, Neil; Sakui, Keiko

    2015-01-01

    This paper describes different ways in which digital technology can be used for language learning. It then identifies some key trends connecting assessment and technology in language learning and higher education: the use of automated systems to enhance traditional assessment practices; the use of Web 2.0 tools to facilitate new assessment…

  19. Blended learning in anesthesia education: current state and future model.

    Science.gov (United States)

    Kannan, Jaya; Kurup, Viji

    2012-12-01

    Educators in anesthesia residency programs across the country are facing a number of challenges as they attempt to integrate blended learning techniques in their curriculum. Compared with the rest of higher education, which has made advances to varying degrees in the adoption of online learning anesthesiology education has been sporadic in the active integration of blended learning. The purpose of this review is to discuss the challenges in anesthesiology education and relevance of the Universal Design for Learning framework in addressing them. There is a wide chasm between student demand for online education and the availability of trained faculty to teach. The design of the learning interface is important and will significantly affect the learning experience for the student. This review examines recent literature pertaining to this field, both in the realm of higher education in general and medical education in particular, and proposes the application of a comprehensive learning model that is new to anesthesiology education and relevant to its goals of promoting self-directed learning.

  20. Augmented Reality, the Future of Contextual Mobile Learning

    Science.gov (United States)

    Sungkur, Roopesh Kevin; Panchoo, Akshay; Bhoyroo, Nitisha Kirtee

    2016-01-01

    Purpose: This study aims to show the relevance of augmented reality (AR) in mobile learning for the 21st century. With AR, any real-world environment can be augmented by providing users with accurate digital overlays. AR is a promising technology that has the potential to encourage learners to explore learning materials from a totally new…

  1. Maker Culture and "Minecraft": Implications for the Future of Learning

    Science.gov (United States)

    Niemeyer, Dodie J.; Gerber, Hannah R.

    2015-01-01

    Collaborative learning environments found with gaming communities can provide excellent structures to study the way that learners act within informal learning environments. For example, many of these gaming communities encourage gamers to create videogames and virtual world walkthroughs and commentaries. Walkthroughs and commentaries provide…

  2. Corporate Blended Learning in Portugal: Current Status and Future Directions

    Science.gov (United States)

    Marcal, Julia; Caetano, Antonio

    2010-01-01

    The aim of this study is to characterize the current status of blended learning in Portugal, given that b-learning has grown exponentially in the Portuguese market over recent years. 38 organizations (representing 68% of all institutions certified to provide distance training by the Government Labour Office--DGERT-) participated in this study. The…

  3. Distance learning: the future of continuing professional development.

    Science.gov (United States)

    Southernwood, Julie

    2008-10-01

    The recent development of a market economy in higher education has resulted in the need to tailor the product to the customers, namely students, employers and commissioning bodies. Distance learning is an opportunity for nurse educators and institutions to address marketing initiatives and develop a learning environment in order to enhance continuing professional development. It provides options for lifelong learning for healthcare professionals--including those working in community settings--that is effective and cost efficient. Development of continuing professional development programmes can contribute to widening the participation of community practitioners in lifelong learning, practice and role development. This paper considers the opportunities that web-based and online education programmes can provide community practitioners to promote professional skills while maintaining a work-life balance, and the role of the lecturer in successfully supporting professionals on web-based learning programmes.

  4. Techno-economic prospects of small-scale membrane reactors in a future hydrogen-fuelled transportation sector

    International Nuclear Information System (INIS)

    Sjardin, M.; Damen, K.J.; Faaij, A.P.C.

    2006-01-01

    The membrane reactor is a novel technology for the production of hydrogen from natural gas. It promises economic small-scale hydrogen production, e.g. at refuelling stations and has the potential of inexpensive CO 2 separation. Four configurations of the membrane reactor have been modelled with Aspen plus to determine its thermodynamic and economic prospects. Overall energy efficiency is 84% HHV without H 2 compression (78% with compression up to 482bar). The modelling results also indicate that by using a sweep gas, the membrane reactor can produce a reformer exit stream consisting mainly of CO 2 and H 2 O (>90% mol ) suited for CO 2 sequestration after water removal with an efficiency loss of only 1% pt . Reforming with a 2MW membrane reactor (250 unit production volume) costs 14$/GJ H 2 including compression, which is more expensive than conventional steam reforming+compression (12$/GJ). It does, however, promise a cheap method of CO 2 separation, 14$/t CO 2 captured, due to the high purity of the exit stream. The well-to-wheel chain of the membrane reactor has been compared to centralised steam reforming to assess the trade-off between production scale and the construction of a hydrogen and a CO 2 distribution infrastructure. If the scale of centralised hydrogen production is below 40MW, the trade-off could be favourable for the membrane reactor with small-scale CO 2 capture (18$/GJ including H 2 storage, dispensing and CO 2 sequestration for 40MW SMR versus 19$/GJ for MR). The membrane reactor might become competitive with conventional steam reforming provided that thin membranes can be combined with high stability and a cheap manufacturing method for the membrane tubes. Thin membranes, industrial utility prices and larger production volumes (i.e. technological learning) might reduce the levelised hydrogen cost of the membrane reactor at the refuelling station to less than 14$/GJ including CO 2 sequestration cost, below that of large-scale H 2 production with

  5. Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions.

    Science.gov (United States)

    Choi, Hongyoon

    2018-04-01

    Recent advances in deep learning have impacted various scientific and industrial fields. Due to the rapid application of deep learning in biomedical data, molecular imaging has also started to adopt this technique. In this regard, it is expected that deep learning will potentially affect the roles of molecular imaging experts as well as clinical decision making. This review firstly offers a basic overview of deep learning particularly for image data analysis to give knowledge to nuclear medicine physicians and researchers. Because of the unique characteristics and distinctive aims of various types of molecular imaging, deep learning applications can be different from other fields. In this context, the review deals with current perspectives of deep learning in molecular imaging particularly in terms of development of biomarkers. Finally, future challenges of deep learning application for molecular imaging and future roles of experts in molecular imaging will be discussed.

  6. Scoping the future: a model for integrating learning environments

    OpenAIRE

    Honeychurch, Sarah; Barr, Niall

    2013-01-01

    The Virtual Learning Environment (VLE) has become synonymous with online learning in HE.However, with the rise of Web 2.0 technologies, social networking tools and cloud computing thearchitecture of the current VLEs is increasingly anachronistic. This paper suggests an alternative tothe traditional VLE: one which allows for flexibility and adaptation to the needs of individual teachers,while remaining resilient and providing students with a seamless experience. We present a prototypeof our vi...

  7. The future of e-learning in healthcare professional education: some possible directions

    Directory of Open Access Journals (Sweden)

    Kieran Walsh

    2014-12-01

    Full Text Available E-learning in healthcare professional education still seems like it is a new innovation but the reality is that e-learning has been around for as long as the internet has been around. This is approximately twenty years and so it is probably appropriate to now take stock and consider what the future of e-learning in healthcare professional education might be. One likely occurrence is that there will be more formats, more interactive technology, and sometimes game-based learning. Another future of healthcare professional education will likely be in simulation. Like other forms of technology outside of medicine, the cost of e-learning in healthcare professional education will fall rapidly. E-learning will also become more adaptive in the future and so will deliver educational content based on learners' exact needs. The future of e-learning will also be mobile. Increasingly in the future e-learning will be blended with face to face education.

  8. Learning Outcomes in Sustainability Education among Future Elementary School Teachers

    Science.gov (United States)

    Foley, Rider W.; Archambault, Leanna M.; Hale, Annie E.; Dong, Hsiang-Kai

    2017-01-01

    Universities and colleges around the world are exploring ways of reorganizing curricula to educate future leaders in sustainability. Preservice teachers hold tremendous potential to introduce concepts of sustainability far earlier than post-secondary education. However, there is little research of such efforts to yield changes in future elementary…

  9. A Social Learning Space Grid for MOOCs: Exploring a FutureLearn Case

    OpenAIRE

    Manathunga, Kalpani; Hernández-Leo, Davinia; Sharples, Mike

    2017-01-01

    Collaborative and social engagement promote active learning through knowledge intensive interactions. Massive Open Online Courses (MOOCs) are dynamic and diversified learning spaces with varying factors like flexible time frames, student count, demographics requiring higher engagement and motivation to continue learning and for designers to implement novel pedagogies including collaborative learning activities. This paper looks into available and potential collaborative and social learning sp...

  10. Machine learning for epigenetics and future medical applications.

    Science.gov (United States)

    Holder, Lawrence B; Haque, M Muksitul; Skinner, Michael K

    2017-07-03

    Understanding epigenetic processes holds immense promise for medical applications. Advances in Machine Learning (ML) are critical to realize this promise. Previous studies used epigenetic data sets associated with the germline transmission of epigenetic transgenerational inheritance of disease and novel ML approaches to predict genome-wide locations of critical epimutations. A combination of Active Learning (ACL) and Imbalanced Class Learning (ICL) was used to address past problems with ML to develop a more efficient feature selection process and address the imbalance problem in all genomic data sets. The power of this novel ML approach and our ability to predict epigenetic phenomena and associated disease is suggested. The current approach requires extensive computation of features over the genome. A promising new approach is to introduce Deep Learning (DL) for the generation and simultaneous computation of novel genomic features tuned to the classification task. This approach can be used with any genomic or biological data set applied to medicine. The application of molecular epigenetic data in advanced machine learning analysis to medicine is the focus of this review.

  11. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  12. Fueling our future: four steps to a new reliable, cleaner, decentralized energy supply based on Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    Evers, A.

    2005-01-01

    In examining various market strategies, this presentation demonstrates the possible driving factors and necessary elements needed to move Hydrogen and Fuel Cells (H2/FC) to worldwide commercialisation. Focusing not only on the technology itself, this presentation looks at the 'bigger picture' explaining how certain trends have impacted the progress of new technologies developments in the past. The presentation demonstrates how these models can be applied to our present day situation. In this process, the consumer has played and will continue to play the key and leading role. Due to such strong influence, the consumer will ultimately fuel the future of H2/FC commercialisation by a desire for new and not yet discovered products and services. Examining different Distributed Generation scenarios, the catalyst to the Hydrogen Economy may be found through distributed generation via fuel cells. One possible step could be the use of Personal Power Cars equipped with Fuel Cells which not only drive on Hydrogen, but also supply (while standing) electricity /heat to residential and commercial buildings. The incentive for car owners driving and using these vehicles is twofold: either save (at his own home) or earn (at his office) money while their cars are parked and plugged into buildings via smart docking stations available at key parking sites. Cars parked at home in the garage will supply electricity to the homes and additionally, replace the function of the existing boiler. Car owners can earn money by selling the electricity generated (but not needed at that time) to the utilities and feed it into the existing electricity grid. The inter-dependability between supply and consumer-driven demand (or better, demand and supply) and other examples are explained. The steps necessary to achieve a new, reliable, cleaner and decentralized Energy Supply based on H2/FC are also presented and examined. (author)

  13. Future Ready Learning: Reimagining the Role of Technology in Education. 2016 National Education Technology Plan

    Science.gov (United States)

    Thomas, Susan

    2016-01-01

    The National Education Technology Plan is the flagship educational technology policy document for the United States. The 2016 Plan, "Future Ready Learning: Reimagining the Role of Technology in Education," articulates a vision of equity, active use, and collaborative leadership to make everywhere, all-the-time learning possible. While…

  14. Thinking Beyond Numbers: Learning Numeracy for the Future Workplace. Support Document

    Science.gov (United States)

    Marr, Beth; Hagston, Jan

    2007-01-01

    The use, learning and transfer of workplace numeracy skills, as well as current understandings of the term numeracy, are examined in this study. It also highlights the importance of numeracy as an essential workplace skill. "Thinking Beyond Numbers: Learning Numeracy for the Future Workplace" challenges the training system and training…

  15. The Role of Age and Occupational Future Time Perspective in Workers' Motivation to Learn

    Science.gov (United States)

    Kochoian, Nané; Raemdonck, Isabel; Frenay, Mariane; Zacher, Hannes

    2017-01-01

    The purpose of this paper is to better understand the relationship between employees' chronological age and their motivation to learn, by adopting a lifespan perspective. Based on socioemotional selectivity theory, we suggest that occupational future time perspective mediates the relationship between age and motivation to learn. In accordance with…

  16. Flexible Pedagogies: Technology-Enhanced Learning. Flexible Pedagogies: Preparing for the Future Series

    Science.gov (United States)

    Gordon, Neil

    2014-01-01

    This publication is part of our five-strand research project "Flexible Pedagogies: preparing for the future". It focuses on a better understanding of technology-enhanced learning (TEL) and: (1) identifies key international drivers in the move towards technology-enhanced learning; (2) highlights some of the challenges and opportunities…

  17. Distance Learning and the Future of Kamehameha Schools Bishop Estate.

    Science.gov (United States)

    Meyer, Henry E.

    1995-01-01

    This article details some of the ways that the Kamehameha Schools Bishop Estate (Hawaii) is dealing with the challenge of education in the computer age, including distance learning, Internet linkups, the Hawaii Educational Wide Area Network, and campus closed-circuit and cable television. (SM)

  18. Future Competencies and Learning Methods in Engineering Education

    DEFF Research Database (Denmark)

    Kolmos, Anette

    2002-01-01

    What are the competencies for tommorow´s enginnering education and the implications of these regarding the choice of teaching content and learning methods? The paper analyses two trends: the traditional and the techo-science approach. These two trends are based on technological innovation...... and change processes and impact on educational content and methods....

  19. Development of a Global Lifelong Learning Index for Future Education

    Science.gov (United States)

    Kim, JuSeuk

    2016-01-01

    Since the transition from industrial society to a knowledge-based society, the source of national competitiveness is also changing. In this context, lifelong education has become a new competitive strategy for countries. This study broadly consists of three steps. Step I features a theoretical review of global lifelong learning indices and a…

  20. The Future of Learning and Training in Augmented Reality

    Science.gov (United States)

    Lee, Kangdon

    2012-01-01

    Students acquire knowledge and skills through different modes of instruction that include classroom lectures with textbooks, computers, and the like. The availability and choice of learning innovation depends on the individual's access to technologies and on the infrastructure environment of the surrounding community. In this rapidly changing…

  1. Things to Say: Future Applications of Smart Objects in Learning

    Science.gov (United States)

    Preis, Kevin

    2008-01-01

    Smart object technology allows users to know something in real time about the physical objects in their presence. Each object, from cereal boxes to skyscrapers, becomes a source of information with which users can interact. Through a series of usage scenarios, the article explores the potential impact of smart objects on learning in formal and…

  2. Online Learning Integrity Approaches: Current Practices and Future Solutions

    Science.gov (United States)

    Lee-Post, Anita; Hapke, Holly

    2017-01-01

    The primary objective of this paper is to help institutions respond to the stipulation of the Higher Education Opportunity Act of 2008 by adopting cost-effective academic integrity solutions without compromising the convenience and flexibility of online learning. Current user authentication solutions such as user ID and password, security…

  3. Introduction into Sparks of the Learning Analytics Future

    Science.gov (United States)

    Pechenizkiy, Mykola; Gaševic, Dragan

    2014-01-01

    This section offers a compilation of 16 extended abstracts summarizing research of the doctoral students who participated in the Second Learning Analytics Summer Institute (LASI 2014) held at Harvard University in July 2014. The abstracts highlight the motivation, main goals and expected contributions to the field from the ongoing learning…

  4. Introduction into sparks of the learning analytics future

    NARCIS (Netherlands)

    Pechenizkiy, M.; Gasevic, D.

    2015-01-01

    This section offers a compilation of 16 extended abstracts summarizing research of the doctoral students who participated in the Second Learning Analytics Summer Institute (LASI 2014) held at Harvard University in July 2014. The abstracts highlight the motivation, main goals and expected

  5. Imagine! On the Future of Teaching and Learning and the Academic Research Library

    Science.gov (United States)

    Miller, Kelly E.

    2014-01-01

    In the future, what role will the academic research library play in achieving the mission of higher education? This essay describes seven strategies that academic research libraries can adopt to become future-present libraries--libraries that foster what Douglas Thomas and John Seely Brown have called "a new culture of learning." Written…

  6. Hydrogenation of carbon dioxide towards synthetic natural gas. A route to effective future energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schoder, M. [Hochschule Lausitz, Cottbus (Germany); Armbruster, U.; Martin, A. [Rostock Univ. (Germany). Leibniz Institute for Catalysis

    2012-07-01

    Ni- and Ru-based catalysts are best suited for the so-called Sabatier reaction, i.e., the hydrogenation of CO{sub 2} to synthetic natural gas (SNG). Besides using commercial materials, catalyst syntheses (5 wt% Ru or Ni) were carried out by incipient wetness impregnation of four carriers (TiO{sub 2}, SiO{sub 2}, ZrO{sub 2} and {gamma}-Al{sub 2}O{sub 3}). Some pre-tests revealed that catalysts supported on TiO{sub 2} and SiO{sub 2} mostly produced CO, and therefore, they were not studied in detail. The catalyst tests were carried out in a continuously operated tube reactor at 623-723 K and 1-20 bar. Ru/ZrO{sub 2} and Ni/{gamma}-Al{sub 2}O{sub 3} revealed best catalytic performance at ambient pressure. Methane selectivities of 99.9% at 81.2% CO{sub 2} conversion for Ru/ZrO{sub 2} (623 K) and of 98.9% at 73.8% CO{sub 2} conversion for Ni/{gamma}-Al{sub 2}O{sub 3} (673 K) were obtained. The conversion increased significantly with raising reaction pressure above 10 bar to reach more than 93% for the Ni-containing catalyst and more than 96% for the Zr catalysts. Methane as the target product was formed with a selectivity of 100%. In addition, the catalysts were characterized by various solid-state techniques such as BET, TPR, ICP-OES, XRD, XPS and TEM. (orig.)

  7. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.

    Science.gov (United States)

    Akkus, Zeynettin; Galimzianova, Alfiia; Hoogi, Assaf; Rubin, Daniel L; Erickson, Bradley J

    2017-08-01

    Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.

  8. Review of the status of learning in research on sport education: future research and practice.

    Science.gov (United States)

    Araújo, Rui; Mesquita, Isabel; Hastie, Peter A

    2014-12-01

    Research concerning Sport Education's educational impact has shown unequivocal results according to students' personal and social development. Nevertheless, research is still sparse with respect to the model's impact on student learning outcomes. The goal of the present review is to therefore scrutinize what is currently known regarding students' learning during their participation in Sport Education. This research spans a variety of studies, cross various countries, school grades, the sports studied, as well as the methods applied and dimensions of student learning analyzed. While research on the impact of Sport Education on students' learning, as well as teachers' and students' perceptions about student learning has shown students' improvements during the participation in Sport Education seasons, there is still considerable variance in these results. For example, some studies report superior learning opportunities to boys and higher skill-level students while other studies have identified superior learning opportunities for girls and lower skill-level students. These inconsistent results can be explained by factors not considered in the Sport Education research, such as the effect of time on students' learning and the control of the teaching-learning process within Sport Education units. In this review directions for future research and practice are also described. Future research should define, implement, and evaluate protocols for student-coaches' preparation in order to understand the influence of this issue on students' learning as well as consider the implementation of hybrid approaches. Moreover, future studies should consider the interaction of gender and skill level and a retention test in the analysis of students' learning improvements in order to obtain a more realist and complete portrait of the impact of Sport Education. Finally, in order to reach an entirely understanding of the teaching-learning process, it is necessary to use research designs that

  9. Review of the Status of Learning in Research on Sport Education: Future Research and Practice

    Science.gov (United States)

    Araújo, Rui; Mesquita, Isabel; Hastie, Peter A.

    2014-01-01

    Research concerning Sport Education’s educational impact has shown unequivocal results according to students’ personal and social development. Nevertheless, research is still sparse with respect to the model’s impact on student learning outcomes. The goal of the present review is to therefore scrutinize what is currently known regarding students’ learning during their participation in Sport Education. This research spans a variety of studies, cross various countries, school grades, the sports studied, as well as the methods applied and dimensions of student learning analyzed. While research on the impact of Sport Education on students’ learning, as well as teachers’ and students’ perceptions about student learning has shown students’ improvements during the participation in Sport Education seasons, there is still considerable variance in these results. For example, some studies report superior learning opportunities to boys and higher skill-level students while other studies have identified superior learning opportunities for girls and lower skill-level students. These inconsistent results can be explained by factors not considered in the Sport Education research, such as the effect of time on students’ learning and the control of the teaching-learning process within Sport Education units. In this review directions for future research and practice are also described. Future research should define, implement, and evaluate protocols for student-coaches’ preparation in order to understand the influence of this issue on students’ learning as well as consider the implementation of hybrid approaches. Moreover, future studies should consider the interaction of gender and skill level and a retention test in the analysis of students’ learning improvements in order to obtain a more realist and complete portrait of the impact of Sport Education. Finally, in order to reach an entirely understanding of the teaching-learning process, it is necessary to

  10. The Future of Digital Working: Knowledge Migration and Learning

    Science.gov (United States)

    Malcolm, Irene

    2014-01-01

    Against the backdrop of intensified migration linked to globalisation, this article considers the implications of knowledge migration for future digital workers. It draws empirically on a socio-material analysis of the international software localisation industry. Localisers' work requires linguistic, cultural and software engineering skills to…

  11. Imagining Future Forests: What Models Can Learn from Field Data.

    Science.gov (United States)

    Ward, E. J.; Domec, J. C.; Laviner, M. A.; Fox, T. D.; Sun, G.; McNulty, S. G.; King, J.; Noormets, A.

    2014-12-01

    General circulation models predict that future forests in the U.S. Southeast will experience higher temperatures and more variable precipitation in the future, resulting in a moderate decrease in water availability (precipitation minus evapotranspiration), though considerable uncertainty in and disagreement between projections remain. The Pine Integrated Network: Education, Mitigation, and Adaptation Project (PINEMAP) represents an effort to understand the future of 20 million acres of planted pine forests managed by private landowners in the Atlantic and Gulf coastal states. Decades of productivity research on loblolly pine (Pinus taeda) has led to a widespread practice of mid-rotation fertilization of loblolly plantations, supplying additional nutrients as stands approach canopy closure. It remains an open question what the effects of fertilization of pine forests in this region will be in the face of periodic or persistent droughts, in terms of forest water use and its implications to other water uses downstream. Therefore, we will review key results from past ecophysiological research on the responses of loblolly pine to fertilization, elevated CO2 and water availability, as well as a recent PINEMAP field trial of fertilization and drought imposed through rainfall displacement over two growing seasons. Despite high rainfall in 2013 (1224 mm compared an average 1120 mm) and a lack of leaf area response, transpiration decreased in response to fertilization and through rainfall displacement. Treatment differences were greatest in the growing season of 2013, when transpiration was on average 13.6, 20.2 and 28.7% lower in the rainfall displacement, fertilization and combined treatment than the control (46 mm/month), respectively. We will conclude by reviewing the important lessons from this research for regional models of future forests in this region in terms of LAI, transpiration, growth and water use efficiency.

  12. Learning from Ebola Virus: How to Prevent Future Epidemics

    Directory of Open Access Journals (Sweden)

    Alexander S. Kekulé

    2015-07-01

    Full Text Available The recent Ebola virus disease (EVD epidemic in Guinea, Liberia and Sierra Leone demonstrated that the World Health Organization (WHO is incapable to control outbreaks of infectious diseases in less developed regions of the world. This essay analyses the causes for the failure of the international response and proposes four measures to improve resilience, early detection and response to future outbreaks of infectious diseases.

  13. Energy policy conference on the technical-economical stakes of hydrogen as future energy vector; Conference de politique energetique sur les enjeux technico-economiques de l'hydrogene comme vecteur energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    This document is the report of the conference meeting jointly organized by the French general plan commission and the general direction of energy and raw materials on the technical-economical stakes of hydrogen as future energy source, and in particular of hydrogen fuel-cells for cogeneration and vehicle applications: 1 - presentation of the general context: status of the hydrogen industry, French R and D and industrial actors, international status; 2 - competition or association with fossil fuels: which opportunities for hydrogen, recall of the 2020 and 2050 energy prospects, impact of hydrogen on climate change, energy efficiency reference of vehicles, CO{sub 2} emissions 'from the well to the wheel' for the different energy sources, perspectives of hydrogen fuels; 3 - main results of the study carried out by the CEREN on the prospects of stationary fuel cells in France: description of the study, concrete case of a 500 beds hospital, economic and environmental conclusions. The transparencies corresponding to the 3 points above are attached to the report. (J.S.)

  14. Integrating Research, Teaching and Learning: Preparing the Future National STEM Faculty

    Science.gov (United States)

    Hooper, E. J.; Pfund, C.; Mathieu, R.

    2010-08-01

    A network of universities (Howard, Michigan State, Texas A&M, University of Colorado at Boulder, University of Wisconsin-Madison, Vanderbilt) have created a National Science Foundation-funded network to prepare a future national STEM (science, technology, engineering, mathematics) faculty committed to learning, implementing, and advancing teaching techniques that are effective for the wide range of students enrolled in higher education. The Center for the Integration of Research, Teaching and Learning (CIRTL; http://www.cirtl.net) develops, implements and evaluates professional development programs for future and current faculty. The programs comprise graduate courses, internships, and workshops, all integrated within campus learning communities. These elements are unified and guided by adherence to three core principles, or pillars: "Teaching as Research," whereby research skills are applied to evaluating and advancing undergraduate learning; "Learning through Diversity," in which the diversity of students' backgrounds and experiences are used as a rich resource to enhance teaching and learning; and "Learning Communities" that foster shared learning and discovery among students, and between future and current faculty within a department or institution. CIRTL established a laboratory for testing its ideas and practices at the University of Wisconsin-Madison, known as the Delta Program in Research, Teaching and Learning (http://www.delta.wisc.edu). The program offers project-based graduate courses, research mentor training, and workshops for post-docs, staff, and faculty. In addition, graduate students and post-docs can partner with a faculty member in a teaching-as-research internship to define and tackle a specific teaching and learning problem. Finally, students can obtain a Delta Certificate as testimony to their engagement in and commitment to teaching and learning. Delta has proved very successful, having served over 1500 UW-Madison instructors from graduate

  15. Teaching and learning community work online: can e-learning promote competences for future practice?

    OpenAIRE

    Larsen, Anne Karin; Visser-Rotgans, Rina; Hole, Grete Oline

    2011-01-01

    This article presents a case study of an online course in Community Work and the learning outcomes for an international group of students participating in the course. Examples from the process of, and results from the development of virtual-learning material are presented. Finally, the students' learning experience and competences achieved by the use of innovative learning material and ICT communication tools are presented.

  16. Learning from Higgs physics at future Higgs factories

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jiayin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chinese Academy of Sciences, Beijing (China). Center for Future High Energy Physics; Li, Honglei [Jinan Univ., Shandong (China). School of Physics and Technology; Arizona Univ., Tucson, AZ (United States). Dept. of Physics; Liu, Zhen [Fermi National Accelerator Laboratory, Batavia, IL (United States). Theoretical Physics Dept.; Su, Shufang [Arizona Univ., Tucson, AZ (United States). Dept. of Physics; Su, Wei [Arizona Univ., Tucson, AZ (United States). Dept. of Physics; Chinese Academy of Sciences, Beijing (China). Inst. of Theoretical Physics; Univ. of Chinese Academy of Sciences, Beijing (China). School of Physics

    2017-09-15

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sinθ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tanβ vs. cos(β-α) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).

  17. Learning from Higgs physics at future Higgs factories

    International Nuclear Information System (INIS)

    Gu, Jiayin; Chinese Academy of Sciences, Beijing; Li, Honglei; Arizona Univ., Tucson, AZ; Liu, Zhen; Su, Shufang; Su, Wei; Chinese Academy of Sciences, Beijing; Univ. of Chinese Academy of Sciences, Beijing

    2017-09-01

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sinθ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tanβ vs. cos(β-α) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).

  18. Professional Learning between Past Experience and Future Work

    DEFF Research Database (Denmark)

    Weber, Kirsten

    2010-01-01

    This paper is about learning, qualification and possible professionalization in human service work. With human services we primarily refer to work related to health care, child care, social work, and education. I present empirical findings from different phases of training and workplace experience...... of Danish child care pedagogues. The investigation is part of a human resource centered research program studying the development of welfare institutions and systems in Denmark. Welfare institutions have been developing since World War II as an important aspect of and precondition for the socio...... reality as well as defensive “shyings-away”. It cannot be produced by a formal education alone, neither can it emerge from life experiences alone. In the development of research methodology we explore the interplay of regression and progression, the lifelong and everyday active functions of what was named...

  19. Connectivism: Learning theory of the future or vestige of the past?

    Directory of Open Access Journals (Sweden)

    Rita Kop

    2008-10-01

    Full Text Available Siemens and Downes initially received increasing attention in the blogosphere in 2005 when they discussed their ideas concerning distributed knowledge. An extended discourse has ensued in and around the status of ‘connectivism’ as a learning theory for the digital age. This has led to a number of questions in relation to existing learning theories. Do they still meet the needs of today’s learners, and anticipate the needs of learners of the future? Would a new theory that encompasses new developments in digital technology be more appropriate, and would it be suitable for other aspects of learning, including in the traditional class room, in distance education and e-learning? This paper will highlight current theories of learning and critically analyse connectivism within the context of its predecessors, to establish if it has anything new to offer as a learning theory or as an approach to teaching for the 21st Century.

  20. MEDLINE MeSH Indexing: Lessons Learned from Machine Learning and Future Directions

    DEFF Research Database (Denmark)

    Jimeno-Yepes, Antonio; Mork, James G.; Wilkowski, Bartlomiej

    2012-01-01

    and analyzed the issues when using standard machine learning algorithms. We show that in some cases machine learning can improve the annotations already recommended by MTI, that machine learning based on low variance methods achieves better performance and that each MeSH heading presents a different behavior......Map and a k-NN approach called PubMed Related Citations (PRC). Our motivation is to improve the quality of MTI based on machine learning. Typical machine learning approaches fit this indexing task into text categorization. In this work, we have studied some Medical Subject Headings (MeSH) recommended by MTI...

  1. Future production of hydrogen from solar energy and water - A summary and assessment of U.S. developments

    Science.gov (United States)

    Hanson, J. A.; Escher, W. J. D.

    1979-01-01

    The paper examines technologies of hydrogen production. Its delivery, distribution, and end-use systems are reviewed, and a classification of solar energy and hydrogen production methods is suggested. The operation of photoelectric processes, biophotolysis, photocatalysis, photoelectrolysis, and of photovoltaic systems are reviewed, with comments on their possible hydrogen production potential. It is concluded that solar hydrogen derived from wind energy, photovoltaic technology, solar thermal electric technology, and hydropower could supply some of the hydrogen for air transport by the middle of the next century.

  2. Learning from the Past, Planning for the Future...

    Directory of Open Access Journals (Sweden)

    Blanche Cameron

    2013-02-01

    Full Text Available Ever since the National Planning Policy Framework hove into view, it has been polarising opinions, either for or against this most radical shake up of UK planning policy since just after the Second World War. Suddenly, what was a highly (some say over complex system of thousands of pages of detailed planning guidance has been simplified to a 58 page document, which has been through a year of consultation before coming into law. It is interesting to consider how the NPPF is now being viewed and applied in different contexts. Flatman and Perring’s paper explores the potential (positive and negative impacts of the NPPF on archaeological practice, in terms of conservation, but also in social and cultural terms – the fear being that, without the proper requirements in place, archaeological evidence may at best be conserved, but without sufficient capacity to research, understand and integrate its meaning for us and our future.

  3. The image-interpretation-workstation of the future: lessons learned

    Science.gov (United States)

    Maier, S.; van de Camp, F.; Hafermann, J.; Wagner, B.; Peinsipp-Byma, E.; Beyerer, J.

    2017-05-01

    In recent years, professionally used workstations got increasingly complex and multi-monitor systems are more and more common. Novel interaction techniques like gesture recognition were developed but used mostly for entertainment and gaming purposes. These human computer interfaces are not yet widely used in professional environments where they could greatly improve the user experience. To approach this problem, we combined existing tools in our imageinterpretation-workstation of the future, a multi-monitor workplace comprised of four screens. Each screen is dedicated to a special task in the image interpreting process: a geo-information system to geo-reference the images and provide a spatial reference for the user, an interactive recognition support tool, an annotation tool and a reporting tool. To further support the complex task of image interpreting, self-developed interaction systems for head-pose estimation and hand tracking were used in addition to more common technologies like touchscreens, face identification and speech recognition. A set of experiments were conducted to evaluate the usability of the different interaction systems. Two typical extensive tasks of image interpreting were devised and approved by military personal. They were then tested with a current setup of an image interpreting workstation using only keyboard and mouse against our image-interpretationworkstation of the future. To get a more detailed look at the usefulness of the interaction techniques in a multi-monitorsetup, the hand tracking, head pose estimation and the face recognition were further evaluated using tests inspired by everyday tasks. The results of the evaluation and the discussion are presented in this paper.

  4. Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories

    KAUST Repository

    Chikalov, Igor

    2011-02-15

    Background: Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. They form and break while a protein deforms, for instance during the transition from a non-functional to a functional state. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor.Methods: This paper describes inductive learning methods to train protein-independent probabilistic models of H-bond stability from molecular dynamics (MD) simulation trajectories of various proteins. The training data contains 32 input attributes (predictors) that describe an H-bond and its local environment in a conformation c and the output attribute is the probability that the H-bond will be present in an arbitrary conformation of this protein achievable from c within a time duration ?. We model dependence of the output variable on the predictors by a regression tree.Results: Several models are built using 6 MD simulation trajectories containing over 4000 distinct H-bonds (millions of occurrences). Experimental results demonstrate that such models can predict H-bond stability quite well. They perform roughly 20% better than models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a conformation. In most tests, about 80% of the 10% H-bonds predicted as the least stable are actually among the 10% truly least stable. The important attributes identified during the tree construction are consistent with previous findings.Conclusions: We use inductive learning methods to build protein-independent probabilistic models to study H-bond stability, and demonstrate that the models perform better than H-bond energy alone. 2011 Chikalov et al; licensee BioMed Central Ltd.

  5. Online learning in dentistry: an overview of the future direction for dental education.

    Science.gov (United States)

    Schönwetter, D J; Reynolds, P A; Eaton, K A; De Vries, J

    2010-12-01

    This paper provides an overview of the diversity of tools available for online learning and identifies the drivers of online learning and directives for future research relating to online learning in dentistry. After an introduction and definitions of online learning, this paper considers the democracy of knowledge and tools and systems that have democratized knowledge. It identifies assessment systems and the challenges of online learning. This paper also identifies the drivers for online learning, including those for instructors, administrators and leaders, technology innovators, information and communications technology personnel, global dental associations and government. A consideration of the attitudes of the stakeholders and how they might work together follows, using the example of the unique achievement of the successful collaboration between the Universities of Adelaide, Australia and Sharjah, United Arab Emirates. The importance of the interaction of educational principles and research on online learning is discussed. The paper ends with final reflections and conclusions, advocating readers to move forward in adopting online learning as a solution to the increasing worldwide shortage of clinical academics to teach dental clinicians of the future. © 2010 Blackwell Publishing Ltd.

  6. Affordances of Augmented Reality in Science Learning: Suggestions for Future Research

    Science.gov (United States)

    Cheng, Kun-Hung; Tsai, Chin-Chung

    2013-08-01

    Augmented reality (AR) is currently considered as having potential for pedagogical applications. However, in science education, research regarding AR-aided learning is in its infancy. To understand how AR could help science learning, this review paper firstly has identified two major approaches of utilizing AR technology in science education, which are named as image- based AR and location- based AR. These approaches may result in different affordances for science learning. It is then found that students' spatial ability, practical skills, and conceptual understanding are often afforded by image-based AR and location-based AR usually supports inquiry-based scientific activities. After examining what has been done in science learning with AR supports, several suggestions for future research are proposed. For example, more research is required to explore learning experience (e.g., motivation or cognitive load) and learner characteristics (e.g., spatial ability or perceived presence) involved in AR. Mixed methods of investigating learning process (e.g., a content analysis and a sequential analysis) and in-depth examination of user experience beyond usability (e.g., affective variables of esthetic pleasure or emotional fulfillment) should be considered. Combining image-based and location-based AR technology may bring new possibility for supporting science learning. Theories including mental models, spatial cognition, situated cognition, and social constructivist learning are suggested for the profitable uses of future AR research in science education.

  7. NASA Composite Materials Development: Lessons Learned and Future Challenges

    Science.gov (United States)

    Tenney, Darrel R.; Davis, John G., Jr.; Pipes, R. Byron; Johnston, Norman

    2009-01-01

    Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960 s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. The lessons learned from this research are highlighted with specific examples to illustrate the problems encountered and solutions to these problems. Examples include specific technologies related to environmental effects, processing science, fabrication technologies, nondestructive inspection, damage tolerance, micromechanics, structural mechanics, and residual life prediction. The current state of the technology is reviewed and key issues requiring additional research identified. Also, grand challenges to be solved for expanded use of composites in aero structures are identified.

  8. Learning in the e-environment: new media and learning for the future

    Directory of Open Access Journals (Sweden)

    Milan Matijević

    2015-03-01

    Full Text Available We live in times of rapid change in all areas of science, technology, communication and social life. Every day we are asked to what extent school prepares us for these changes and for life in a new, multimedia environment. Children and adolescents spend less time at school or in other settings of learning than they do outdoors or within other social communities (family, clubs, societies, religious institutions and the like. Experts must constantly inquire about what exactly influences learning and development in our rich media environment. The list of the most important life competences has significantly changed and expanded since the last century. Educational experts are attempting to predict changes in the content and methodology of learning at the beginning of the 21st century. Answers are sought to key questions such as: what should one learn; how should one learn; where should one learn; why should one learn; and how do these answers relate to the new learning environment? In his examination of the way children and young people learn and grow up, the author places special attention on the relationship between personal and non-personal communication (e.g. the internet, mobile phones and different types of e-learning. He deals with today's questions by looking back to some of the more prominent authors and studies of the past fifty years that tackled identical or similar questions (Alvin Toffler, Ivan Illich, George Orwell, and the members of the Club of Rome. The conclusion reached is that in today's world of rapid and continuous change, it is much more crucial than in the last century, both, to be able to learn, and to adapt to learning with the help of new media.

  9. Technology utilization and energy efficiency: Lessons learned and future prospects

    International Nuclear Information System (INIS)

    Rosenberg, N.

    1992-01-01

    The concept of energy efficiency within the context of economic and environmental policy making is quite complex. Relatively poor economic performance ratings can weaken the validity of some energy supply systems which tend to reduce energy inputs for specific volumes of output, but don't minimize total cost per unit product; and industry is often slow to adopt new technologies, even those proven to reduce total costs. In this paper, the problems connected with growth in energy requirements in relation to product are first examined within the context of world economic performance history. Three key elements are shown to explain the differences in energy intensity and consumption typology among various countries, i.e., availability of energy sources, prices and government policies. Reference is made to the the role of recent energy prices and policies in the United States whose industrialization has been directly connected with the vast availability of some energy sources. In delineating possible future energy scenarios, the paper cites the strong influence of long term capital investment on the timing of the introduction of energy efficient technologies into industrial process schemes. It illustrates the necessity for flexibility in new energy strategies which are to take advantage the opportunities offered by a wide range of alternative energy sources now being made available through technological innovation

  10. The Belem Framework for Action: Harnessing the Power and Potential of Adult Learning and Education for a Viable Future

    Science.gov (United States)

    Adult Learning, 2012

    2012-01-01

    This article presents the Belem Framework for Action. This framework focuses on harnessing the power and potential of adult learning and education for a viable future. This framework begins with a preamble on adult education and towards lifelong learning.

  11. Supporting Adaptive Learning Pathways through the Use of Learning Analytics: Developments, Challenges and Future Opportunities

    Science.gov (United States)

    Mavroudi, Anna; Giannakos, Michail; Krogstie, John

    2018-01-01

    Learning Analytics (LA) and adaptive learning are inextricably linked since they both foster technology-supported learner-centred education. This study identifies developments focusing on their interplay and emphasises insufficiently investigated directions which display a higher innovation potential. Twenty-one peer-reviewed studies are…

  12. Teaching Research Methods and Statistics in eLearning Environments: Pedagogy, Practical Examples, and Possible Futures

    Science.gov (United States)

    Rock, Adam J.; Coventry, William L.; Morgan, Methuen I.; Loi, Natasha M.

    2016-01-01

    Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology. PMID:27014147

  13. Teaching Research Methods and Statistics in eLearning Environments: Pedagogy, Practical Examples, and Possible Futures.

    Science.gov (United States)

    Rock, Adam J; Coventry, William L; Morgan, Methuen I; Loi, Natasha M

    2016-01-01

    Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology.

  14. SMOS and SMAP: from Lessons Learned to Future Mission Requirements

    Science.gov (United States)

    Kerr, Y. H.; Wigneron, J. P.; Cabot, F.; Escorihuela, M. J.; Anterrieu, E.; Rouge, B.; Rodriguez Fernandez, N.; Bindlish, R.; Khazaal, A.; Al-Bitar, A.; Mialon, A.; Lesthievent, G.

    2017-12-01

    , vegetation water content, but also dielectric constant, are carrying a wealth of information and some interesting perspectives will be presented. More important it is now possible to draw conclusions from the lessons learnt and, with the help of the user's community, define the requirements for future missions. And, finally, from these requirement to propose mission scenarii.

  15. Self-supervised learning as an enabling technology for future space exploration robots: ISS experiments on monocular distance learning

    Science.gov (United States)

    van Hecke, Kevin; de Croon, Guido C. H. E.; Hennes, Daniel; Setterfield, Timothy P.; Saenz-Otero, Alvar; Izzo, Dario

    2017-11-01

    Although machine learning holds an enormous promise for autonomous space robots, it is currently not employed because of the inherent uncertain outcome of learning processes. In this article we investigate a learning mechanism, Self-Supervised Learning (SSL), which is very reliable and hence an important candidate for real-world deployment even on safety-critical systems such as space robots. To demonstrate this reliability, we introduce a novel SSL setup that allows a stereo vision equipped robot to cope with the failure of one of its cameras. The setup learns to estimate average depth using a monocular image, by using the stereo vision depths from the past as trusted ground truth. We present preliminary results from an experiment on the International Space Station (ISS) performed with the MIT/NASA SPHERES VERTIGO satellite. The presented experiments were performed on October 8th, 2015 on board the ISS. The main goals were (1) data gathering, and (2) navigation based on stereo vision. First the astronaut Kimiya Yui moved the satellite around the Japanese Experiment Module to gather stereo vision data for learning. Subsequently, the satellite freely explored the space in the module based on its (trusted) stereo vision system and a pre-programmed exploration behavior, while simultaneously performing the self-supervised learning of monocular depth estimation on board. The two main goals were successfully achieved, representing the first online learning robotic experiments in space. These results lay the groundwork for a follow-up experiment in which the satellite will use the learned single-camera depth estimation for autonomous exploration in the ISS, and are an advancement towards future space robots that continuously improve their navigation capabilities over time, even in harsh and completely unknown space environments.

  16. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  17. Profiles of Opportunities to Learn for TEDS-M Future Secondary Mathematics Teachers

    Science.gov (United States)

    Wang, Ting-Ying; Tang, Shu-Jyh

    2013-01-01

    This study used the data set from the Teacher Education and Development Study in Mathematics to identify the profiles of opportunities to learn (OTL) regarding topics studied in teacher preparation programs by future secondary mathematics teachers from 15 participating countries. The topics of inquiry covered tertiary-level mathematics,…

  18. The Importance of Future Kindergarten Teachers' Beliefs about the Usefulness of Games Based Learning

    Science.gov (United States)

    Manessis, Dionysios

    2014-01-01

    This paper examines the importance of future kindergarten teachers' beliefs about the usefulness of Games Based Learning in Early Childhood Education. Data were collected by using questionnaires which were given to the participants at the end of an introductory level, Information and Communication Technologies course. The sample of this study was…

  19. Use of Social Emotional Learning Skills to Predict Future Academic Success and Progress toward Graduation

    Science.gov (United States)

    Davis, Alan; Solberg, V. Scott; de Baca, Christine; Gore, Taryn Hargrove

    2014-01-01

    This study evaluated the degree to which a range of social emotional learning skills--academic self-efficacy, academic motivation, social connections, importance of school, and managing psychological and emotional distress and academic stress--could be used as an indicator of future academic outcomes. Using a sample of 4,797 from a large urban…

  20. Still Far from Personal Learning: Key Aspects and Emergent Topics about How Future Professionals' PLEs Are

    Science.gov (United States)

    Prendes Espinosa, María Paz; Castañeda, Linda; Gutierrez, Isabel; Román, Mª del Mar

    2016-01-01

    The CAPPLE project is an exploratory research project that aims to analyse the PLEs of future Spanish professionals. An ad-hoc survey about their habits for learning was conducted using a sample of 2054 university students from the last year of a degree. After data collection, two main processes were carried out: (1) the analysis of some of the…

  1. Berklee College of Music Archives: Preserving the Past and Learning for the Future

    Science.gov (United States)

    Esty, Anna

    2012-01-01

    In this article, the author discusses how the Berklee College of Music preserves its past and learns for the future. Though the library has received support from the college administration for the creation of an archive, it has been difficult for the interest in preserving the college's history to compete with more urgent needs, such as being able…

  2. Learning from the Past: Implications for the Future Internet and its Management? (Dagstuhl Seminar 11042)

    NARCIS (Netherlands)

    Dreo Rodosek, Gabi; Pras, Aiko; Schulzrinne, Henning; Stiller, Burkhard

    This report documents the program and the outcomes of Dagstuhl Seminar 11042 “Learning from the Past: Implications for the Future Internet and its Management?‿. The discussion centered around the question if by analyzing the past - especially why certain technologies did or did not succeed - it is

  3. Mapping a sustainable future: Community learning in dialogue at the science-society interface

    Science.gov (United States)

    Barth, Matthias; Lang, Daniel J.; Luthardt, Philip; Vilsmaier, Ulli

    2017-12-01

    In 2015, the German Federal Ministry of Education and Research (BMBF) announced that the Science Year 2015 would focus on the "City of the Future". It called for innovative projects from cities and communities in Germany dedicated to exploring future options and scenarios for sustainable development. Among the successful respondents was the city of Lüneburg, located in the north of Germany, which was awarded funding to establish a community learning project to envision a sustainable future ("City of the Future Lüneburg 2030+"). What made Lüneburg's approach unique was that the city itself initiated the project and invited a broad range of stakeholders to participate in a community learning process for sustainable development. The authors of this article use the project as a blueprint for sustainable city development. Presenting a reflexive case study, they report on the process and outcomes of the project and investigate community learning processes amongst different stakeholders as an opportunity for transformative social learning. They discuss outputs and outcomes (intended as well as unintended) in relation to the specific starting points of the project to provide a context-sensitive yet rich narrative of the case and to overcome typical criticisms of case studies in the field.

  4. Show Me the Way: Future Faculty Prefer Directive Feedback When Trying Active Learning Approaches

    Science.gov (United States)

    Stephens, Jessica D.; Battle, David C.; Gormally, Cara L.; Brickman, Peggy

    2017-01-01

    Early training opportunities for future faculty, namely graduate students and postdoctoral researchers, can better prepare them to use active learning approaches. We know that instructional feedback supports sustained change and motivates instructors to improve teaching practices. Here, we incorporate feedback as a key component of a pedagogical…

  5. Who Are with Us: MOOC Learners on a FutureLearn Course

    Science.gov (United States)

    Liyanagunawardena, Tharindu Rekha; Lundqvist, Karsten Øster; Williams, Shirley Ann

    2015-01-01

    Massive open online courses (MOOCs) attract learners with a variety of backgrounds. Engaging them using game development was trialled in a beginner's programming course, "Begin programming: build your first mobile game," on FutureLearn platform. The course has completed two iterations: first in autumn 2013 and second in spring 2014 with…

  6. Bridging the European Wind Energy Market and a Future Renewable Hydrogen-Inclusive Economy. A Dynamic Techno-economic Assessment

    International Nuclear Information System (INIS)

    Shaw, S.; Peteves, S.D.

    2006-01-01

    The study establishes the link between the growing wind market and the emerging hydrogen market of the European Union, in a so-called 'wind-hydrogen strategy'. It considers specifically the diversion of wind electricity, as a wind power control mechanism in high wind penetration situations, for the production of renewable electrolytic hydrogen - a potentially important component of a renewable hydrogen-inclusive economy. The analysis examines the long-term competitiveness of a wind-hydrogen strategy via cost-benefit assessment. It indicates the duration and extent to which (financial) support, if any, would need to be provided in support of such a strategy, and the influence over time of certain key factors on the outcome

  7. Learning Probabilistic Models of Hydrogen Bond Stability from Molecular Dynamics Simulation Trajectories

    KAUST Repository

    Chikalov, Igor

    2011-04-02

    Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. H-bonds involving atoms from residues that are close to each other in the main-chain sequence stabilize secondary structure elements. H-bonds between atoms from distant residues stabilize a protein’s tertiary structure. However, H-bonds greatly vary in stability. They form and break while a protein deforms. For instance, the transition of a protein from a nonfunctional to a functional state may require some H-bonds to break and others to form. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor. Other local interactions may reinforce (or weaken) an H-bond. This paper describes inductive learning methods to train a protein-independent probabilistic model of H-bond stability from molecular dynamics (MD) simulation trajectories. The training data describes H-bond occurrences at successive times along these trajectories by the values of attributes called predictors. A trained model is constructed in the form of a regression tree in which each non-leaf node is a Boolean test (split) on a predictor. Each occurrence of an H-bond maps to a path in this tree from the root to a leaf node. Its predicted stability is associated with the leaf node. Experimental results demonstrate that such models can predict H-bond stability quite well. In particular, their performance is roughly 20% better than that of models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a given conformation. The paper discusses several extensions that may yield further improvements.

  8. Social Gaming and Learning Applications: A Driving Force for the Future of Virtual and Augmented Reality?

    Science.gov (United States)

    Dörner, Ralf; Lok, Benjamin; Broll, Wolfgang

    Backed by a large consumer market, entertainment and education applications have spurred developments in the fields of real-time rendering and interactive computer graphics. Relying on Computer Graphics methodologies, Virtual Reality and Augmented Reality benefited indirectly from this; however, there is no large scale demand for VR and AR in gaming and learning. What are the shortcomings of current VR/AR technology that prevent a widespread use in these application areas? What advances in VR/AR will be necessary? And what might future “VR-enhanced” gaming and learning look like? Which role can and will Virtual Humans play? Concerning these questions, this article analyzes the current situation and provides an outlook on future developments. The focus is on social gaming and learning.

  9. Preparation of human resources for future nuclear energy using FBNR as the instrument of learning

    International Nuclear Information System (INIS)

    Sefidvash, Farhang; Espinoza, Patricio; Guerrero, Victor Hugo

    2015-01-01

    An increasing number of developing countries are showing interest to become the emerging countries to nuclear energy. Most of these countries lack human resources and adequate infrastructures to enter such a venture. The principle objective of activities of FBNR Group is to train human resources for the countries that at the present lack the necessary conditions, but aim at the future clean and safe nuclear energy through the fourth generation and INPRO compatible nuclear reactors. The preparation for the future nuclear energy is done through development of innovative nuclear reactor that meets the INPRO philosophies and criteria. These countries may or may not have decided as yet to utilize nuclear energy, but are interested to gain a strong educational foundation for their future. The research and development of a small innovative nuclear reactor FBNR is used as the instrument for learning. The young scientists will learn how to be innovative with the vision of INPRO philosophy and criteria.

  10. Preparation of human resources for future nuclear energy using FBNR as the instrument of learning

    Energy Technology Data Exchange (ETDEWEB)

    Sefidvash, Farhang; Espinoza, Patricio; Guerrero, Victor Hugo [Escuela Politecnica Nacional (EPN), Quito (Ecuador); and others

    2015-11-15

    An increasing number of developing countries are showing interest to become the emerging countries to nuclear energy. Most of these countries lack human resources and adequate infrastructures to enter such a venture. The principle objective of activities of FBNR Group is to train human resources for the countries that at the present lack the necessary conditions, but aim at the future clean and safe nuclear energy through the fourth generation and INPRO compatible nuclear reactors. The preparation for the future nuclear energy is done through development of innovative nuclear reactor that meets the INPRO philosophies and criteria. These countries may or may not have decided as yet to utilize nuclear energy, but are interested to gain a strong educational foundation for their future. The research and development of a small innovative nuclear reactor FBNR is used as the instrument for learning. The young scientists will learn how to be innovative with the vision of INPRO philosophy and criteria.

  11. Preparing Student Nurses for the Future of Wound Management: Telemedicine in a Simulated Learning Enviroment

    DEFF Research Database (Denmark)

    Christiansen, Sytter; Rethmeier, Anita

    2015-01-01

    Background: The Danish Society for Wound Healing advocates for the use of telemedicine in chronic wound management. It is crucial that student nurses are prepared for the technological demands of the future so that they will be competent to manage chronic wounds. Aim: The aim of this project...... was to integrate the concept of telemedicine for wound care into a simulation-based class for undergraduate student nurses and to evaluate their experiences with this integrated learning method. Methods: Five medium-fidelity mannequins were used in a simulated learning environment consisting of a simulated......, the simulated learning environment seems to be a constructive didactic method. The simulated learning environment should also be tested with postgraduate nurses with less experience in telemedicine....

  12. FEATURES OF ORGANIZATION OF BLENDED LEARNING IN PREPARATION OF FUTURE TEACHERS OF INFORMATICS

    Directory of Open Access Journals (Sweden)

    Inna Stoliarenko

    2015-10-01

    Full Text Available The term "blended learning" described by domestic and foreign scientists is considered in the article. A number of advantages of blended learning have been marked out in comparison with traditional one: flexibility, learning personification, increase of motivation of students to training, variety of forms of arrangement of educational process and forms of presentation of teaching material and increase of efficiency of activity of the teacher. A set of key competencies a teacher should possess to support effective activity in the mixed educational environment has been analyzed. The scientists of the Learning Accelerator organization engaged in support of introduction of blended learning in American schools presented it. It is determined that its main difference from a teacher who uses traditional methods and training forms – desire to experiment, introducing various innovative pedagogical technologies in educational process to achieve maximum result. There is also a desire to create favorable conditions for successful learning of each student considering strong and weak sides. The scientists of Clayton Christensen Institute designed the models of organization of blended learning. These models were analyzed. Two expedient models for implementation in higher school, in particular, in preparation of future teachers of informatics have been defined: station rotation and "flipped classroom".

  13. Adult sibling experience, roles, relationships and future concerns - a review of the literature in learning disabilities.

    Science.gov (United States)

    Davys, Deborah; Mitchell, Duncan; Haigh, Carol

    2011-10-01

    This paper provides a review of the literature related to adult siblings of learning-disabled people. Siblings of learning-disabled people are often looked upon as next of kin when older parents die; however, there is little research regarding sibling views and wishes. A literature review of published peer-reviewed empirical research was undertaken. Electronic databases and citation tracking were used to collate data using key terms such as adult siblings and learning disability. Relevant articles were analysed, compared and contrasted. Six key themes emerged suggesting a varied impact of learning disability upon sibling lives in areas that include life choices, relationships, identity and future plans. Some siblings report a positive impact upon life, others state their lives are comparable with other adults who do not have a learning-disabled sibling and others still report a negative impact. Sibling roles and relationships are varied. Evidence suggests that sibling roles, relationships and experience are affected by life stage. Parents often have a primary care role for the disabled person, whilst siblings perform a more distant role; however, sibling involvement often rises when parents are no longer able to provide previous levels of support. Many factors appear to affect the sibling experience and uptake of roles including gender, life stage and circumstances, level of disability, health status and relationships between family members. Siblings are concerned about the future, particularly when parents are no longer able to provide support, and many appear to have expectations of future responsibilities regarding their disabled sibling. As siblings of people who have a learning disability are often expected by society to provide support, it is important that health and social care practitioners are aware of issues that may impact on this relationship. © 2011 Blackwell Publishing Ltd.

  14. Thinking Ahead: Improving Support for People with Learning Disabilities and Their Families to Plan for the Future

    Science.gov (United States)

    Towers, Christine

    2013-01-01

    The increasing life expectancy of people with learning disabilities makes it imperative that families plan for the future. The number of people with learning disabilities over the age of 65 is predicted to double over the next two decades. The greatest increase in life expectancy will be amongst people with mild learning disabilities who will have…

  15. Machine Learning, Statistical Learning and the Future of Biological Research in Psychiatry

    OpenAIRE

    Iniesta, Raquel; Stahl, Daniel Richard; McGuffin, Peter

    2016-01-01

    Psychiatric research has entered the age of ‘Big Data’. Datasets now routinely involve thousands of heterogeneous vari- ables, including clinical, neuroimaging, genomic, proteomic, transcriptomic and other ‘omic’ measures. The analysis of these datasets is challenging, especially when the number of measurements exceeds the number of individuals, and may be further complicated by missing data for some subjects and variables that are highly correlated. Statistical learning- based models are a n...

  16. In-Factory Learning - Qualification For The Factory Of The Future

    Science.gov (United States)

    Quint, Fabian; Mura, Katharina; Gorecky, Dominic

    2015-07-01

    The Industry 4.0 vision anticipates that internet technologies will find their way into future factories replacing traditional components by dynamic and intelligent cyber-physical systems (CPS) that combine the physical objects with their digital representation. Reducing the gap between the real and digital world makes the factory environment more flexible, more adaptive, but also more complex for the human workers. Future workers require interdisciplinary competencies from engineering, information technology, and computer science in order to understand and manage the diverse interrelations between physical objects and their digital counterpart. This paper proposes a mixed-reality based learning environment, which combines physical objects and visualisation of digital content via Augmented Reality. It uses reality-based interaction in order to make the dynamic interrelations between real and digital factory visible and tangible. We argue that our learning system does not work as a stand-alone solution, but should fit into existing academic and advanced training curricula.

  17. Fueling our future: four steps to a new, reliable, cleaner, decentralized energy supply based on hydrogen and fuel cells

    International Nuclear Information System (INIS)

    Evers, A.A.

    2004-01-01

    'Full text:' This manuscript demonstrates the possible driving factors and necessary elements needed to move Hydrogen and Fuel Cells (H2/FC) to worldwide commercialisation. Focusing not only on the technology itself, we look at the 'bigger picture' explaining how certain trends have impacted the progress of new technologies developments in the past. In this process, the consumer has played and will continue to play the key and leading role. We also examine different Distributed Generation scenarios including distributed generation via fuel cells for automotive applications which may be the catalyst to the Hydrogen Economy. One possible step could be the use of Personal Power Cars equipped with Fuel Cells which not only drive on Hydrogen, but also supply (while standing) electricity /heat to residential and commercial buildings. With 1.3 billion potential customers, P.R. China is one country where such a scenario may fit. The up-and-coming Chinese H2/FC industry deals with applied fundamental research such as advances in Hydrogen production from Natural Gas, Methanol and Gasoline. The current activities in P.R. China certain to further accelerate the trend towards the coming Hydrogen Economy, together with the steps necessary to achieve a new reliable, cleaner and decentralized Energy Supply based on H2/FC are examined. (author)

  18. Theory of Digital Natives in the Light of Current and Future E-Learning Concepts

    Directory of Open Access Journals (Sweden)

    Bodo von der Heiden

    2011-06-01

    Full Text Available The digital generation has many names: Net Generation, Generation@ or Digital Natives. The meaning behind these terms is, that the current generation of students is digitally and media literate, technology-savvy and are able to use other learning approaches than former generations. But these topics are discussed controversial and even the cause-effect-relationship is not as clear as it seems. Did the digital generation really have other learning approaches, or do they have only the possibility to live other learning modes? Against this background this article tries to shed some light on this debate. Therefore we use current and future projects performed at RWTH Aachen University to illustrate the relevance, value and significance due to the theory of the digital natives.

  19. Face-to-face: Changing future teachers through direct service learning

    Directory of Open Access Journals (Sweden)

    Ron Caro

    2012-04-01

    Full Text Available This qualitative research study analyzed the changes in social dispositions of pre-service teachers. These pre-service teachers tutored homeless children in an urban homeless shelter as part of a direct service learning project. Utilizing surveys at the beginning of the study and at the end, and reflective journals of participants, data was analyzed according to changes in the following dispositions: understanding students with social needs, anticipated changes in future teaching dispositions, and anticipated changes in pedagogical approaches. Findings support the need for imbedding direct service learning into teacher preparation programs. KEYWORDSteacher preparation, social dispositions, service-learning, community-based research, civic engagement, community engagement, community partnerships

  20. Tangible User Interfaces and Contrasting Cases as a Preparation for Future Learning

    Science.gov (United States)

    Schneider, Bertrand; Blikstein, Paulo

    2018-04-01

    In this paper, we describe an experiment that compared the use of a Tangible User Interface (physical objects augmented with digital information) and a set of Contrasting Cases as a preparation for future learning. We carried out an experiment (N = 40) with a 2 × 2 design: the first factor compared traditional instruction ("Tell & Practice") with a constructivist activity designed using the Preparation for Future Learning framework (PFL). The second factor contrasted state-of-the-art PFL learning activity (i.e., students studying Contrasting Cases) with an interactive tabletop featuring digitally enhanced manipulatives. In agreement with prior work, we found that dyads of students who followed the PFL activity achieved significantly higher learning gains compared to their peers who followed a traditional "Tell & Practice" instruction (large effect size). A similar effect was found in favor of the interactive tabletop compared to the Contrasting Cases (small-to-moderate effect size). We discuss implications for designing socio-constructivist activities using new computer interfaces.

  1. Strategic planning for future learning environments: an exploration of interpersonal, interprofessional and political factors.

    Science.gov (United States)

    Schmidt, Cathrine

    2013-09-01

    This article, written from the stance of a public planner and a policy maker, explores the challenges and potential in creating future learning environments through the concept of a new learning landscape. It is based on the belief that physical planning can support the strategic goals of universities. In Denmark, a political focus on education as a mean to improve national capacity for innovation and growth are redefining the universities role in society. This is in turn changing the circumstances for the physical planning. Drawing on examples of physical initiatives in three different scales--city, building and room scale, the paper highlights how space and place matters on an interpersonal, an interprofessional and a political level. The article suggests that a wider understanding of how new learning landscapes are created--both as a material reality and a political discourse--can help frame an emerging community of practice. This involves university leaders, faculty and students, architects, designers and urban planners, citizens and policy makers with the common goal of creating future learning environments today.

  2. Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning

    Science.gov (United States)

    Mueller, Tim; Johlin, Eric; Grossman, Jeffrey C.

    2014-03-01

    Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.

  3. Future goal setting, task motivation and learning of minority and non-minority students in Dutch schools.

    Science.gov (United States)

    Andriessen, Iris; Phalet, Karen; Lens, Willy

    2006-12-01

    Cross-cultural research on minority school achievement yields mixed findings on the motivational impact of future goal setting for students from disadvantaged minority groups. Relevant and recent motivational research, integrating Future Time Perspective Theory with Self-Determination Theory, has not yet been validated among minority students. To replicate across cultures the known motivational benefits of perceived instrumentality and internal regulation by distant future goals; to clarify when and how the future motivates minority students' educational performance. Participants in this study were 279 minority students (100 of Turkish and 179 of Moroccan origin) and 229 native Dutch students in Dutch secondary schools. Participants rated the importance of future goals, their perceptions of instrumentality, their task motivation and learning strategies. Dependent measures and their functional relations with future goal setting were simultaneously validated across minority and non-minority students, using structural equation modelling in multiple groups. As expected, Positive Perceived Instrumentality for the future increases task motivation and (indirectly) adaptive learning of both minority and non-minority students. But especially internally regulating future goals are strongly related to more task motivation and indirectly to more adaptive learning strategies. Our findings throw new light on the role of future goal setting in minority school careers: distant future goals enhance minority and non-minority students' motivation and learning, if students perceive positive instrumentality and if their schoolwork is internally regulated by future goals.

  4. Futures

    Directory of Open Access Journals (Sweden)

    Roger S Gottlieb

    2017-10-01

    Full Text Available In fictional form, this piece explores two possible ways in which the current environmental crisis (in general and climate change (in particular might unfold in coming years. In each case there is great suffering and many things are lost. However, in the first humanity and other species are simply devastated, and little human learning has been accomplished. In the second, a profoundly new appreciation of our connection with and dependence on the natural world has replaced the now dominant attitude and practice of domination and exploitation.

  5. Children's success at detecting circular explanations and their interest in future learning.

    Science.gov (United States)

    Mills, Candice M; Danovitch, Judith H; Rowles, Sydney P; Campbell, Ian L

    2017-10-01

    These studies explore elementary-school-aged children's ability to evaluate circular explanations and whether they respond to receiving weak explanations by expressing interest in additional learning. In the first study, 6-, 8-, and 10-year-olds (n = 53) heard why questions about unfamiliar animals. For each question, they rated the quality of single explanations and later selected the best explanation between pairs of circular and noncircular explanations. When judging single explanations, 8- and 10-year-olds, and to some extent 6-year-olds, provided higher ratings for noncircular explanations compared to circular ones. When selecting between pairs of explanations, all age groups preferred noncircular explanations to circular ones, but older children did so more consistently than 6-year-olds. Children who recognized the weakness of the single circular explanations were more interested in receiving additional information about the question topics. In Study 2, all three age groups (n = 87) provided higher ratings for noncircular explanations compared to circular ones when listening to responses to how questions, but older children showed a greater distinction in their ratings than 6-year-olds. Moreover, the link between recognizing circular explanations as weak and interest in future learning could not be accounted for solely by individual differences in verbal intelligence. These findings illustrate the developmental trajectory of explanation evaluation and support that recognition of weak explanations is linked to interest in future learning across the elementary years. Implications for education are discussed.

  6. Futures

    DEFF Research Database (Denmark)

    Pedersen, Michael Haldrup

    2017-01-01

    Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores the potenti......Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores...... the potentials of speculative thinking in relation to design and social and cultural studies, arguing that both offer valuable insights for creating a speculative space for new emergent criticalities challenging current assumptions of the relations between power and design. It does so by tracing out discussions...... of ‘futurity’ and ‘futuring’ in design as well as social and cultural studies. Firstly, by discussing futurist and speculative approaches in design thinking; secondly by engaging with ideas of scenario thinking and utopianism in current social and cultural studies; and thirdly by showing how the articulation...

  7. Scenarios for total utilisation of hydrogen as an energy carrier in the future Danish energy system. Final report; Scenarier for samlet udnyttelse af brint som energibaerer i Danmarks fremtidige energisystem. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Petersen, A; Engberg Pedersen, T; Joergensen, K [and others

    2001-04-01

    This is the final report from a project performed for the Danish Energy Agency under its Hydrogen Programme. The project, which within the project group goes by the abbreviated title 'Hydrogen as an energy carrier', constructs and analyses different total energy scenarios for introducing hydrogen as an energy carrier, as energy storage medium and as a fuel in the future Danish energy system. The primary aim of the project is to study ways of handling the large deficits and surpluses of electricity from wind energy expected in the future Danish energy system. System-wide aspects of the choice of hydrogen production technologies, distribution methods, infrastructure requirements and conversion technologies are studied. Particularly, the possibility of using in the future the existing Danish natural gas distribution grid for carrying hydrogen will be assessed. For the year 2030, two scenarios are constructed: One using hydrogen primarily in the transportation sector, the other using it as a storage option for the centralised power plants still in operation by this year. For the year 2050, where the existing fossil power plants are expected to have been phased out completely, the scenarios for two possible developments are investigated: Either, there is a complete decentralisation of the use of hydrogen, converting and storing electricity surpluses into hydrogen in individual buildings, for later use in vehicles or regeneration of power and heat. Or, some centralised infrastructure is retained, such as hydrogen cavern stores and a network of vehicle hydrogen filling stations. The analysis is used to identify the components in an implementation strategy, for the most interesting scenarios, including a time sequence of necessary decisions and technology readiness. The report is in Danish, because it is part of the dissemination effort of the Hydrogen Committee, directed at the Danish population in general and the Danish professional community in particular. (au)

  8. Scenarios for total utilisation of hydrogen as an energy carrier in the future Danish energy system. Final report; Scenarier for samlet udnyttelse af brint som energibaerer i Danmarks fremtidige energisystem. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Petersen, A.; Engberg Pedersen, T.; Joergensen, K. (and others)

    2001-04-01

    This is the final report from a project performed for the Danish Energy Agency under its Hydrogen Programme. The project, which within the project group goes by the abbreviated title 'Hydrogen as an energy carrier', constructs and analyses different total energy scenarios for introducing hydrogen as an energy carrier, as energy storage medium and as a fuel in the future Danish energy system. The primary aim of the project is to study ways of handling the large deficits and surpluses of electricity from wind energy expected in the future Danish energy system. System-wide aspects of the choice of hydrogen production technologies, distribution methods, infrastructure requirements and conversion technologies are studied. Particularly, the possibility of using in the future the existing Danish natural gas distribution grid for carrying hydrogen will be assessed. For the year 2030, two scenarios are constructed: One using hydrogen primarily in the transportation sector, the other using it as a storage option for the centralised power plants still in operation by this year. For the year 2050, where the existing fossil power plants are expected to have been phased out completely, the scenarios for two possible developments are investigated: Either, there is a complete decentralisation of the use of hydrogen, converting and storing electricity surpluses into hydrogen in individual buildings, for later use in vehicles or regeneration of power and heat. Or, some centralised infrastructure is retained, such as hydrogen cavern stores and a network of vehicle hydrogen filling stations. The analysis is used to identify the components in an implementation strategy, for the most interesting scenarios, including a time sequence of necessary decisions and technology readiness. The report is in Danish, because it is part of the dissemination effort of the Hydrogen Committee, directed at the Danish population in general and the Danish professional community in particular. (au)

  9. Decoding the future from past experience: learning shapes predictions in early visual cortex.

    Science.gov (United States)

    Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe

    2015-05-01

    Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.

  10. Stereotyping at the undergraduate level revealed during interprofessional learning between future doctors and biomedical scientists.

    Science.gov (United States)

    Lewitt, Moira S; Ehrenborg, Ewa; Scheja, Max; Brauner, Annelie

    2010-01-01

    Interprofessional education (IPE) involving undergraduate health professionals is expected to promote collaboration in their later careers. The role of IPE between doctors and biomedical scientists has not been explored at the undergraduate level. Our aim was to introduce IPE sessions for medical and biomedical students in order to identify the benefits and barriers to these groups learning together. Medical and biomedical students together discussed laboratory results, relevant literature, and ideas for developing new diagnostic tools. The programme was evaluated with questionnaires and interviews. While there was general support for the idea of IPE, medical and biomedical students responded differently. Biomedical students were more critical, wanted more explicit learning objectives and felt that their professional role was often misunderstood. The medical students were more enthusiastic but regarded the way the biomedical students communicated concerns about their perceived role as a barrier to effective interprofessional learning. We conclude that stereotyping, which can impede effective collaborations between doctors and biomedical scientists, is already present at the undergraduate level and may be a barrier to IPE. Effective learning opportunities should be supported at the curriculum level and be designed to specifically enable a broad appreciation of each other's future professional roles.

  11. Transformative Learning for a Sustainable Future: An Exploration of Pedagogies for Change at an Alternative College

    Directory of Open Access Journals (Sweden)

    Joanna Blake

    2013-12-01

    Full Text Available Educators and policy makers have long recognised the central role that education can play in creating a more sustainable and equitable world. Yet some question whether current processes across mainstream higher education prepare learners sufficiently to graduate with the capabilities or motivation to shape and create a future that is life-sustaining. This paper presents findings from a qualitative research project carried out by Plymouth University in association with Schumacher College, Devon, UK. Schumacher College is an alternative, civil society college, owned by the Dartington Hall Trust that claims to provide transformative learning opportunities within a broad context of sustainability. The study explored the nature and application of transformative learning as a pedagogical approach to advance change towards sustainability. If learners claimed transformational learning experiences, the research asked whether, and to what extent, this transformation could be attributed to the pedagogies employed at the College. The paper begins by setting out the broad background to the relationship between marginal and mainstream educational settings, and definitions and theoretical underpinnings of transformative learning, and then leads into the research design and findings. The potential for transformative pedagogies to be applied to and employed within the wider higher education (HE sector is then discussed, and the overall findings and conclusions are presented.

  12. How Student Teachers Describe the Online Collaborative Learning Experience and Evaluate Its Contribution to Their Learning and Their Future Work as Teachers

    Science.gov (United States)

    Margaliot, Adva; Gorev, Dvora; Vaisman, Tami

    2018-01-01

    This study examined student teachers' attitudes toward online collaborative learning (OCL) as related to their satisfaction, learning experience, contribution to personal knowledge, and future teaching. One hundred and four students participated in a program that retrains university graduates to become K-12 teachers. The study combines both…

  13. The Future of Nuclear Energy As a Primary Source for Clean Hydrogen Energy System in Developing Countries

    International Nuclear Information System (INIS)

    Ahmed, K.; Shaaban, H.

    2007-01-01

    The limited availability of fossil fuels compared to the increasing demand and the connected environmental questions have become topics of growing importance and international attention. Many other clean alternative sources of energy are available, but most of them are either relatively undeveloped technologically or are not yet fully utilized. Also, there is a need for a medium which can carry the produced energy to the consumer in a convenient and environmentally acceptable way. In this study, a fission reactor as a primary energy source with hydrogen as an energy carrier is suggested. An assessment of hydrogen production from nuclear energy is presented. A complete nuclear-electro-hydrogen energy system is proposed for a medium size city (population of 500,000). The whole energy requirement is assessed including residential, industrial and transportation energies. A preliminary economical and environmental impact study is performed on the proposed system. The presented work could be used as a nucleus for a feasibility study for applying this system in any newly established city

  14. Developing technology-enhanced active learning for medical education: challenges, solutions, and future directions.

    Science.gov (United States)

    McCoy, Lise; Pettit, Robin K; Lewis, Joy H; Bennett, Thomas; Carrasco, Noel; Brysacz, Stanley; Makin, Inder Raj S; Hutman, Ryan; Schwartz, Frederic N

    2015-04-01

    Growing up in an era of video games and Web-based applications has primed current medical students to expect rapid, interactive feedback. To address this need, the A.T. Still University-School of Osteopathic Medicine in Arizona (Mesa) has developed and integrated a variety of approaches using technology-enhanced active learning for medical education (TEAL-MEd) into its curriculum. Over the course of 3 years (2010-2013), the authors facilitated more than 80 implementations of games and virtual patient simulations into the education of 550 osteopathic medical students. The authors report on 4 key aspects of the TEAL-MEd initiative, including purpose, portfolio of tools, progress to date regarding challenges and solutions, and future directions. Lessons learned may be of benefit to medical educators at academic and clinical training sites who wish to implement TEAL-MEd activities.

  15. Convergence Of Cloud Computing Internet Of Things And Machine Learning The Future Of Decision Support Systems

    Directory of Open Access Journals (Sweden)

    Gilberto Crespo-Perez

    2017-07-01

    Full Text Available The objective of this research was to develop a framework for understanding the Convergence of Cloud Computing Machine Learning and Internet of Things as the future of Decision Support Systems. To develop this framework the researchers analyzed and synthesized 35 research articles from 2006 to 2017. The results indicated that when the data is massive it is necessary to use computational algorithms and complex analytical techniques. The Internet of Things in combination with the large accumulation of data and data mining improves the learning of automatic intelligence for business. This is due to the fact that the technology has the intelligence to infer and provide solutions based on past experiences and past events.

  16. Harmful algal blooms and climate change: Learning from the past and present to forecast the future

    CSIR Research Space (South Africa)

    Wells, ML

    2015-11-01

    Full Text Available Harmful algal blooms and climate change: Learning from the past and present to forecast the future Mark L. Wellsa,*, Vera L. Trainerb, Theodore J. Smaydac, Bengt S.O. Karlsond, Charles G. Tricke, Raphael M. Kudelaf, Akira Ishikawag, Stewart Bernardh... and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA c Graduate School of Oceanography, University of Rhode Island, Kingston, RI 02881, USA d SMHI Research & Development, Oceanography, Sven Ka¨llfelts gata 15, 426 71 Va¨stra Fro...

  17. FREE SOFTWARE IN ELECTRONIC LEARNING FUTURE TEACHERS OF MATHEMATICS, PHYSICS AND COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Vladyslav Ye. Velychko

    2016-05-01

    Full Text Available Popularity of the use of free software in the IT industry is much higher than its popular use in educational activities. Disadvantages of free software and problems of its implementation in the educational process is a limiting factor for its use in the education system, however, openness, accessibility and functionality are the main factors for the introduction of free software in the educational process. Nevertheless, for future teachers of mathematics, physics and informatics free software is designed as well as possible because of the specificity of its creation, and therefore, there is a question of the system analysis of the possibilities of using open source software in e-learning for future teachers of mathematics, physics and computer science.

  18. E-learning tools for education: regulatory aspects, current applications in radiology and future prospects.

    Science.gov (United States)

    Pinto, A; Selvaggi, S; Sicignano, G; Vollono, E; Iervolino, L; Amato, F; Molinari, A; Grassi, R

    2008-02-01

    E-learning, an abbreviation of electronic learning, indicates the provision of education and training on the Internet or the World Wide Web. The impact of networks and the Internet on radiology is undoubtedly important, as it is for medicine as a whole. The Internet offers numerous advantages compared with other mass media: it provides access to a large amount of information previously known only to individual specialists; it is flexible, permitting the use of images or video; and it allows linking to Web sites on a specific subject, thus contributing to further expand knowledge. Our purpose is to illustrate the regulatory aspects (including Internet copyright laws), current radiological applications and future prospects of e-learning. Our experience with the installation of an e-learning platform is also presented. We performed a PubMed search on the published literature (without time limits) dealing with e-learning tools and applications in the health sector with specific reference to radiology. The search included all study types in the English language with the following key words: e-learning, education, teaching, online exam, radiology and radiologists. The Fiaso study was referred to for the regulatory aspects of e-learning. The application of e-learning to radiology requires the development of a model that involves selecting and creating e-learning platforms, creating and technologically adapting multimedia teaching modules, creating and managing a unified catalogue of teaching modules, planning training actions, defining training pathways and Continuing Education in Medicine (CME) credits, identifying levels of teaching and technological complexity of support tools, sharing an organisational and methodological model, training the trainers, operators' participation and relational devices, providing training, monitoring progress of the activities, and measuring the effectiveness of training. Since 2004, a platform--LiveLearning--has been used at our

  19. Connections between Future Time Perspectives and Self-Regulated Learning for Mid-Year Engineering Students: A Multiple Case Study

    Science.gov (United States)

    Chasmar, Justine

    2017-01-01

    This dissertation presents multiple studies with the purpose of understanding the connections between undergraduate engineering students' motivations, specifically students' Future Time Perspectives (FTPs) and Self-Regulated Learning (SRL). FTP refers to the views students hold about the future and how their perceptions of current tasks are…

  20. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future.

    Science.gov (United States)

    Bailey, Helen; Brookes, Kate L; Thompson, Paul M

    2014-01-01

    Offshore wind power provides a valuable source of renewable energy that can help reduce carbon emissions. Technological advances are allowing higher capacity turbines to be installed and in deeper water, but there is still much that is unknown about the effects on the environment. Here we describe the lessons learned based on the recent literature and our experience with assessing impacts of offshore wind developments on marine mammals and seabirds, and make recommendations for future monitoring and assessment as interest in offshore wind energy grows around the world. The four key lessons learned that we discuss are: 1) Identifying the area over which biological effects may occur to inform baseline data collection and determining the connectivity between key populations and proposed wind energy sites, 2) The need to put impacts into a population level context to determine whether they are biologically significant, 3) Measuring responses to wind farm construction and operation to determine disturbance effects and avoidance responses, and 4) Learn from other industries to inform risk assessments and the effectiveness of mitigation measures. As the number and size of offshore wind developments increases, there will be a growing need to consider the population level consequences and cumulative impacts of these activities on marine species. Strategically targeted data collection and modeling aimed at answering questions for the consenting process will also allow regulators to make decisions based on the best available information, and achieve a balance between climate change targets and environmental legislation.

  1. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  2. Teaching information literacy- for the benefit of the future profession and lifelong learning?

    Directory of Open Access Journals (Sweden)

    Madeleine du Toit

    2013-12-01

    Full Text Available What opportunities do dental hygienists have to search for information in his or her daily professional life? Do dental technicians continue to update their skills after graduation? Do private dental practitioners have access to databases? Are graduating students experiencing that training in information literacy is relevant in their professional life? These questions gave birth to the idea to study if and in what ways dental hygienists, dental technicians and dentists are searching for information in their professional life, and which information resources they have access to. Through a study of this kind we were hoping to evaluate our work with teaching information literacy. We sent a survey to 164 students that had graduated from the Faculty of Odontology during the years 2005-2009, and got 97 responses. From the responses we have seen that the most frequently used resources were Google, books, colleagues and journals. A far larger percentage of those who work within the public sector and universities have access to a library than those within the private sector. We have observed differences between the three professional groups in terms of search patterns and choice of sources. 79 % of the respondents answered that they benefit from what they learned through the library's instruction and guidance in their work. Thus, the lack of time often determines how often, and where, the information searching is done. Many expressed that they have forgotten what they learned during their studies and comment that refreshing these skills would be beneficial. The results made us think about how we could adjust our teaching in order to prepare the students for their professional life, without cutting down on the regular teaching which the students need in order to manage their studies. How do we highlight the future usefulness of information literacy? The students who graduate from Malmo University will be a part of the surrounding society with which the

  3. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    Barnstaple, A.G.; Petrella, A.J.

    1982-05-01

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  4. Internet of Things in Higher Education: A Study on Future Learning

    Science.gov (United States)

    Aldowah, Hanan; Rehman, Shafiq Ul; Ghazal, Samar; Naufal Umar, Irfan

    2017-09-01

    In the coming years, technology will impact the learning experience in many ways. Internet of Things (IoT) continues to confirm its important position in the context of Information and Communication Technologies and the development of society. With the support of IoT, institutions can enhance learning outcomes by providing more affluent learning experiences, improved operational efficiency, and by gaining real-time, actionable insight into student performance. The purpose of this study is to find out the potential of IoT in higher education and how to maximize its benefits and reducing the risks involved with it. Further efforts are necessary for releasing the full potential of IoT systems and technologies. Therefore, this paper presents a study about the impact of IoT on higher education especially universities. IoT stands to change dramatically the way universities work, and enhance student learning in many disciplines and at any level. It has huge potential for universities or any other educational institutions; if well prepared to ensure widespread and successful implementation by leadership, staff, and students. IoT needs development where universities can lead. Academics, researchers, and students are in a unique place to lead the discovery and development of IoT systems, devices, applications, and services. Moreover, this paper provides an evidences about the future of IoT in the higher education during the next few years, which have offered by a number of research organizations and enterprises. On the other hand, IoT also brings tremendous challenges to higher education. Hence, this paper also presents the perspective on the challenges of IoT in higher education.

  5. IEA Hydrogen Implementing Agreement's Second Generation R and D and the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Beck, N.; Garcia-Conde, A. G.; Riis, T. U.; Luzzi, A.; Valladares, M. R. de

    2005-07-01

    join the HIA soon. This paper and presentation will inform the audience about the HIA, recent advances in its collaborative R and D program as well as its future plans. Learn how the HIA, the premier global resource for technical expertise in hydrogen R and D, will contribute to the coming hydrogen economy and how you can benefit from participation in the HIA. (Author)

  6. Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories

    KAUST Repository

    Chikalov, Igor; Yao, Peggy; Moshkov, Mikhail; Latombe, Jean-Claude

    2011-01-01

    . The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor.Methods: This paper describes inductive learning methods to train protein-independent probabilistic models of H

  7. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    Directory of Open Access Journals (Sweden)

    Jesper Bruun

    2013-07-01

    Full Text Available The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1 communication about how to solve physics problems in the course (called the PS category, (2 communications about the nature of physics concepts (called the CD category, and (3 social interactions that are not strictly related to the content of the physics classes (called the ICS category in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI scores. We find highly significant correlations (p<0.001 between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network, the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively with future grades. In the CD network, the network measure target entropy shows the highest correlation

  8. Reporting intellectual capital in health care organizations: specifics, lessons learned, and future research perspectives.

    Science.gov (United States)

    Veltri, Stefania; Bronzetti, Giovanni; Sicoli, Graziella

    2011-01-01

    This article analyzes the concept of intellectual capital (IC) in the health sector sphere by studying the case of a major nonprofit research organization in this sector, which has for some time been publishing IC reports. In the last few years, health care organizations have been the object of great attention in the implementation and transfer of managerial models and tools; however, there is still a lack of attention paid to the strategic management of IC as a fundamental resource for supporting and enhancing performance improvement dynamics. The main aim of this article is to examine the IC reporting model used by the Center of Molecular Medicine (CMM), a Swedish health organization which is an outstanding benchmark in reporting its IC. We also consider the specifics of IC reporting for health organizations, the lessons learned by analyzing CMM's IC reporting, and future perspectives for research.

  9. State Support for Clean Energy Deployment. Lessons Learned for Potential Future Policy

    Energy Technology Data Exchange (ETDEWEB)

    Kubert, Charles [Clean Energy States Alliance, Montpelier, VT (United States); Sinclair, Mark [Clean Energy States Alliance, Montpelier, VT (United States)

    2011-04-01

    Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

  10. State Support for Clean Energy Deployment: Lessons Learned for Potential Future Policy

    Energy Technology Data Exchange (ETDEWEB)

    Kubert, C.; Sinclair, M.

    2011-04-01

    Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

  11. Outline of Fukushima nuclear accident and future action. Lessons learned from accident and countermeasure plan

    International Nuclear Information System (INIS)

    Fukuda, Toshihiko

    2012-01-01

    Fukushima nuclear accident was caused by loss of all AC power sources (SBO) and loss of ultimate heat sink (LUHS) at Fukushima Daiichi Nuclear Power Plants (NPPs) hit by the Great East Japan Earthquake. This article reviewed outline of Fukushima nuclear accident progression when on year had passed since and referred to lessons learned from accident and countermeasure plan to prevent severe accident in SBO and LUHS events by earthquake and tsunami as future action. This countermeasure would be taken to (1) prevent serious flooding in case a tsunami overwhelms the breakwater, with improving water tightness of rooms for emergency diesel generator, batteries and power centers, (2) enhance emergency power supply and cooling function with mobile electricity generator, high pressure fire pump car and alternate water supply source, (3) mitigate environmental effects caused by core damage with installing containment filtered venting, and (4) enforce emergency preparedness in case of severe accident. Definite countermeasure plan for Kashiwazaki-Kariwa NPPs was enumerated. (T. Tanaka)

  12. Alzheimer's Caregiver Support Online: lessons learned, initial findings and future directions.

    Science.gov (United States)

    Glueckauf, Robert L; Loomis, Jeffrey S

    2003-01-01

    Family caregivers of older adults with progressive dementia (e.g., Alzheimer's disease) are faced with a variety of emotional and behavioral difficulties, such as dealing with persistent, repetitive questions, managing agitation and depression, and monitoring hygiene and self-care activities. Although professional and governmental organizations have called for the creation of community-based education and support programs, most dementia caregivers continue to receive little or no formal instruction in responding effectively to these challenges. The current paper describes the development and implementation of Alzheimer's Caregiver Support Online, a Web- and telephone-based education and support network for caregivers of individuals with progressive dementia. Lessons learned from the first two years of this state-supported initiative are discussed, followed by the findings of a Robert Wood Johnson Foundation-funded strategic marketing initiative and an initial program evaluation of AlzOnline's Positive Caregiving classes. Finally, clinical implications and future directions for program development and evaluation research are proposed.

  13. Present and future activities of the IAEA on internal dosimetry: Lessons learned from international intercomparisons

    International Nuclear Information System (INIS)

    Cruz Suarez, R.; Gustafsson, M.; Mrabit, K.

    2003-01-01

    The International Atomic Energy Agency (IAEA) conducts safety activities to support the assessment of occupational exposure due to intakes of radionuclides; a comprehensive set of safety documents will soon be completed. In recent years, extensive improvements in measurement techniques, phantoms and computational tools have been made. Thus, it is important for laboratories involved in internal dosimetry to undergo performance testing procedures to demonstrate the correctness of the methods applied and also to determine the consistency of their results with those obtained by other laboratories. Several intercomparisons were organised, and they revealed significant differences among laboratories in their approaches, methods and assumptions, and consequently in their results. This paper presents the current and future IAEA activities in support of assessment of occupational exposure due to intakes of radionuclides in the IAEA Member States, as well as the lessons learned from several intercomparison exercises in the last 5 years. (author)

  14. Hydrogen production by reforming of fossil and biomass fuels accompanied by carbon dioxide capture process is the energy source for the near future

    International Nuclear Information System (INIS)

    Aboudheir, Ahmed; Idem, Raphael; Tontiwachwuthikul, Paitoon; Wilson, Malcolm; Kambietz, Lionel

    2006-01-01

    Hydrogen has a significant future potential as an alternative energy source for the transportation sector as well as in residential homes and offices, H 2 in fuel cell power systems provides an alternative to direct fossil fuel and biomass combustion based technologies and offer the possibility for a significant reduction in greenhouse gas emission based on improved H 2 yield per unit of fossil fuel and biomass, compatibility with renewable energies and motivation to convert to a H 2 -based energy economy. Several practical techniques for H 2 production to service H 2 refuelling stations as well as homes and offices, all of which need to be located at the end of the energy distribution network, include: (1) the carbon dioxide reforming of natural gas; (2) reforming of gasoline; (3) reforming of crude ethanol. Locating the H 2 production at the end of the energy distribution network solves the well-known problems of metal fatigue and high cost of H 2 compression for long distance transportation if H 2 is produced in a large centralized plant. In addition, the ratification of the Kyoto Protocol and the need to reduce emissions of CO 2 to the atmosphere has prompted the capture and utilization of the CO 2 produced from the reforming process. In this research: (1) new efficient catalysts for each reforming process was developed; (2) a new efficient catalyst for our version of the water gas shift reaction to convert carbon monoxide to carbon dioxide was developed; (3) a new membrane separation process for production of high purity, fuel cell-grade H 2 was designed; (4) a numerical model for optimum process design and optimum utilization of resources both at the laboratory and industrial scales was developed; (5) various processes for CO 2 capture were investigated experimentally in order to achieve a net improvement in the absorption process; (6) the utilization of captured CO 2 for enhanced oil recovery and/or storage in an aging oil field were investigated; (7

  15. Editorial volume 3 - issue 3: The future of the Learning Management System

    Directory of Open Access Journals (Sweden)

    Yngve Nordkvelle

    2007-12-01

    participation and reflexivity in the social construction of the development of educational technology”. Larsen, Hole and Fahlvik demonstrate how this is a dynamic developmental process. The last paper has a different topic, but relates to the first article in the sense that if the technology is the same, different users approach it differently. The authors: Neil Anderson, Carolyn Timms and Lyn Courtney of James Cook University address the rural/urban distinction in a complex project, investigated in several aspects. If the difference is systematic and in conflict with educational and political aims, the alarm goes off. In this case the troubling news are that students in rural areas are less interested in adopting new technologies. References:Brown, D. (2007 Mashing up the Once and Future CMS. Educause Review. March/April (s.7-8 McInnis, C. (2001 Inaugural proffesorial lecture. Signs of disengagement? The changing undergraduate experience in Australian universities. http://eprints.unimelb.edu.au/archive /00000094/01/InaugLec23_8_01.pdf Zemsky, R. & Massy, W.F (2004 Thwarted Innovation. What happened to e-learning and why? http://www.irhe.upenn.edu/Docs/Jun2004/ThwartedInnovation.pdf

  16. LEARNING MATERIALS SELECTION FOR DIFFERENTIATED INSTRUCTION OF ENGLISH FOR SPECIFIC PURPOSES OF FUTURE PROFESSIONALS IN THE FIELD OF INFORMATION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Oksana Synekop

    2017-09-01

    Full Text Available In conditions of differentiation the learning materials selection will optimize the training English for Specific Purposes of the future professionals in the field of information technology at university level. The purpose of the article is to define the basic unit of learning material, the factors of influence on the learning material selection, principles, criteria and the procedure of learning material selection in this paper. Reviewing the scientific achievements in the learning material selection in teaching English has become a basis for defining the factors of influence, principles and criteria in the research. The basic unit of learning material (learning English text for professional purposes is outlined. The factors of influence and principles (correspondence of learning materials to professional interests and needs of information technology students; necessary ability and accessibility; regarding the linguistic and stylistic necessity and sufficiency; availability of Internet sources information of the learning material selection are defined. Also, the qualitative criteria (authenticity; professional significance, relevance and informativeness; conformity of foreign language level and intellectual development of students; variety of genres and forms of speech, their sufficient filling by linguistic material; coherence, integrity, consistency, semantic completeness; topic conformity; situation conformity; unlimited access, reliability and exemplarity of Internet sources and the quantitative criteria (the amount of material of the learning material selection are highlighted. The process of English for Specific Purposes material selection (defining the disciplines of different cycles; defining spheres and related topics; outlining situations, communicative roles and intentions of professional communication; specifying the sources of selection; evaluating the texts; analysis of the knowledge, skills and sub-skills required for the

  17. Economics of producing hydrogen as transportation fuel using offshore wind energy systems

    International Nuclear Information System (INIS)

    Mathur, Jyotirmay; Agarwal, Nalin; Swaroop, Rakesh; Shah, Nikhar

    2008-01-01

    Over the past few years, hydrogen has been recognized as a suitable substitute for present vehicular fuels. This paper covers the economic analysis of one of the most promising hydrogen production methods-using wind energy for producing hydrogen through electrolysis of seawater-with a concentration on the Indian transport sector. The analysis provides insights about several questions such as the advantages of offshore plants over coastal installations, economics of large wind-machine clusters, and comparison of cost of producing hydrogen with competing gasoline. Robustness of results has been checked by developing several scenarios such as fast/slow learning rates for wind systems for determining future trends. Results of this analysis show that use of hydrogen for transportation is not likely to be attractive before 2012, and that too with considerable learning in wind, electrolyzer and hydrogen storage technology

  18. Machine-Learning-Based Future Received Signal Strength Prediction Using Depth Images for mmWave Communications

    OpenAIRE

    Okamoto, Hironao; Nishio, Takayuki; Nakashima, Kota; Koda, Yusuke; Yamamoto, Koji; Morikura, Masahiro; Asai, Yusuke; Miyatake, Ryo

    2018-01-01

    This paper discusses a machine-learning (ML)-based future received signal strength (RSS) prediction scheme using depth camera images for millimeter-wave (mmWave) networks. The scheme provides the future RSS prediction of any mmWave links within the camera's view, including links where nodes are not transmitting frames. This enables network controllers to conduct network operations before line-of-sight path blockages degrade the RSS. Using the ML techniques, the prediction scheme automatically...

  19. Teaching Research Methods and Statistics in eLearning Environments:Pedagogy, Practical Examples and Possible Futures

    Directory of Open Access Journals (Sweden)

    Adam John Rock

    2016-03-01

    Full Text Available Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal, Ginsburg, & Schau, 1997. Given the ubiquitous and distributed nature of eLearning systems (Nof, Ceroni, Jeong, & Moghaddam, 2015, teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology.

  20. Energies of the future

    International Nuclear Information System (INIS)

    2005-12-01

    This document takes stock on the researches concerning the energies of the future. The hydrogen and the fuel cells take the main part with also the new fuels. Some researches programs are detailed as the costs decrease of the hydrogen engines, the design of an hydrogen production reactor from ethanol or the conversion of 95% of ethanol in gaseous hydrogen. (A.L.B.)

  1. Solar Hydrogen Reaching Maturity

    Directory of Open Access Journals (Sweden)

    Rongé Jan

    2015-09-01

    Full Text Available Increasingly vast research efforts are devoted to the development of materials and processes for solar hydrogen production by light-driven dissociation of water into oxygen and hydrogen. Storage of solar energy in chemical bonds resolves the issues associated with the intermittent nature of sunlight, by decoupling energy generation and consumption. This paper investigates recent advances and prospects in solar hydrogen processes that are reaching market readiness. Future energy scenarios involving solar hydrogen are proposed and a case is made for systems producing hydrogen from water vapor present in air, supported by advanced modeling.

  2. Canada's hydrogen energy sector

    International Nuclear Information System (INIS)

    Kimmel, T.B.

    2009-01-01

    Canada produces the most hydrogen per capita of any Organization of Economic Cooperation and Development (OECD) country. The majority of this hydrogen is produced by steam methane reforming for industrial use (predominantly oil upgrading and fertilizer production). Canada also has a world leading hydrogen and fuel cell sector. This sector is seeking new methods for making hydrogen for its future energy needs. The paper will discuss Canada's hydrogen and fuel cell sector in the context of its capabilities, its demonstration and commercialization activities and its stature on the world stage. (author)

  3. Looking for practical tools to achieve next-future applicability of dark fermentation to produce bio-hydrogen from organic materials in Continuously Stirred Tank Reactors.

    Science.gov (United States)

    Tenca, A; Schievano, A; Lonati, S; Malagutti, L; Oberti, R; Adani, F

    2011-09-01

    This study aimed at finding applicable tools for favouring dark fermentation application in full-scale biogas plants in the next future. Firstly, the focus was obtaining mixed microbial cultures from natural sources (soil-inocula and anaerobically digested materials), able to efficiently produce bio-hydrogen by dark fermentation. Batch reactors with proper substrate (1 gL(glucose)(-1)) and metabolites concentrations, allowed high H(2) yields (2.8 ± 0.66 mol H(2)mol(glucose)(-1)), comparable to pure microbial cultures achievements. The application of this methodology to four organic substrates, of possible interest for full-scale plants, showed promising and repeatable bio-H(2) potential (BHP=202 ± 3 NL(H2)kg(VS)(-1)) from organic fraction of municipal source-separated waste (OFMSW). Nevertheless, the fermentation in a lab-scale CSTR (nowadays the most diffused typology of biogas-plant) of a concentrated organic mixture of OFMSW (126 g(TS)L(-1)) resulted in only 30% of its BHP, showing that further improvements are still needed for future full-scale applications of dark fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  5. Contributions of Cognitive Psychology to the Future of E-Learning

    OpenAIRE

    Aibert, Dietrich; Mori, Toshiaki

    2002-01-01

    At the beginning of the 215t century strong efforts are made for facilitating e-learning (electronic-based learning and teaching). This development is driven mainly by economical and technological dynamics, however also the contributions of educational and learning sciences are requested by the decision maker. Beside methodological contributions, cognitive psychology is fundamental for individualising e-learning processes. Essential for individualisation is the adaptivity of the e-learning sy...

  6. Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future

    Science.gov (United States)

    Caldera, Upeksha; Breyer, Christian

    2017-12-01

    Seawater reverse osmosis (SWRO) desalination is expected to play a pivotal role in helping to secure future global water supply. While the global reliance on SWRO plants for water security increases, there is no consensus on how the capital costs of SWRO plants will vary in the future. The aim of this paper is to analyze the past trends of the SWRO capital expenditures (capex) as the historic global cumulative online SWRO capacity increases, based on the learning curve concept. The SWRO capex learning curve is found based on 4,237 plants that came online from 1977 to 2015. A learning rate of 15% is determined, implying that the SWRO capex reduced by 15% when the cumulative capacity was doubled. Based on SWRO capacity annual growth rates of 10% and 20%, by 2030, the global average capex of SWRO plants is found to fall to 1,580 USD/(m3/d) and 1,340 USD/(m3/d), respectively. A learning curve for SWRO capital costs has not been presented previously. This research highlights the potential for decrease in SWRO capex with the increase in installation of SWRO plants and the value of the learning curve approach to estimate future SWRO capex.

  7. Relations between the development of future time perspective in three life domains, investment in learning, and academic achievement

    NARCIS (Netherlands)

    Peetsma, T.; van der Veen, I.

    2011-01-01

    Relations between the development of future time perspectives in three life domains (i.e., school and professional career, social relations, and leisure time) and changes in students’ investment in learning and academic achievement were examined in this study. Participants were 584 students in the

  8. Relations between the Development of Future Time Perspective in Three Life Domains, Investment in Learning, and Academic Achievement

    Science.gov (United States)

    Peetsma, Thea; van der Veen, Ineke

    2011-01-01

    Relations between the development of future time perspectives in three life domains (i.e., school and professional career, social relations, and leisure time) and changes in students' investment in learning and academic achievement were examined in this study. Participants were 584 students in the first and 584 in the second year of the lower…

  9. Understanding the Association between Future Time Perspective and Self-Regulated Learning through the Lens of Self-Determination Theory

    Science.gov (United States)

    de Bilde, Jerissa; Vansteenkiste, Maarten; Lens, Willy

    2011-01-01

    The present cross-sectional research examined a process underlying the positive association between holding an extended future time perspective (FTP) and learning outcomes through the lens of self-determination theory. High school students and university students (N = 275) participated in the study. It was found that students with an extended FTP…

  10. Development of X-33/X-34 Aerothermodynamic Data Bases: Lessons Learned and Future Enhancements

    Science.gov (United States)

    Miller, C. G.

    2000-01-01

    A synoptic of programmatic and technical lessons learned in the development of aerothermodynamic data bases for the X-33 and X-34 programs is presented in general terms and from the perspective of the NASA Langley Research Center Aerothermodynamics Branch. The format used is that of the "aerothermodynamic chain," the links of which are personnel, facilities, models/test articles, instrumentation, test techniques, and computational fluid dynamics (CFD). Because the aerodynamic data bases upon which the X-33 and X-34 vehicles will fly are almost exclusively from wind tunnel testing, as opposed to CFD, the primary focus of the lessons learned is on ground-based testing. The period corresponding to the development of X-33 and X-34 aerothermodynamic data bases was challenging, since a number of other such programs (e.g., X-38, X-43) competed for resources at a time of downsizing of personnel, facilities, etc., outsourcing, and role changes as NASA Centers served as subcontractors to industry. The impact of this changing environment is embedded in the lessons learned. From a technical perspective, the relatively long times to design and fabricate metallic force and moment models, delays in delivery of models, and a lack of quality assurance to determine the fidelity of model outer mold lines (OML) prior to wind tunnel testing had a major negative impact on the programs. On the positive side, the application of phosphor thermography to obtain global, quantitative heating distributions on rapidly fabricated ceramic models revolutionized the aerothermodynamic optimization of vehicle OMLs, control surfaces, etc. Vehicle designers were provided with aeroheating information prior to, or in conjunction with, aerodynamic information early in the program, thereby allowing trades to be made with both sets of input; in the past only aerodynamic data were available as input. Programmatically, failure to include transonic aerodynamic wind tunnel tests early in the assessment phase

  11. STEPS OF THE DESIGN OF CLOUD ORIENTED LEARNING ENVIRONMENT IN THE STUDY OF DATABASES FOR FUTURE TEACHERS OF INFORMATICS

    Directory of Open Access Journals (Sweden)

    Oleksandr M. Kryvonos

    2018-02-01

    Full Text Available The article describes the introduction of cloud services in the educational process of the discipline «Databases» of future teachers of informatics and the design of the cloud oriented learning environment on their basis. An analysis of the domestic experience of forming a cloud oriented learning environment of educational institutions is carried out, given interpretation of concepts «cloud oriented distance learning system», «cloud oriented learning environment in the study of databases», «the design of the cloud oriented learning environment in the study of databases for future teachers of informatics». The following stages of designing COLE are selected and described: targeted, conceptual, meaningful, component, introductory, appraisal-generalization. The structure of the educational interaction of subjects in the study of databases in the conditions of the COLE is developed by the means of the cloud oriented distance learning system Canvas, consisting of communication tools, joint work, and planning of educational events, cloud storages.

  12. FUKUSHIMA DAI-ICHI ACCIDENT: LESSONS LEARNED AND FUTURE ACTIONS FROM THE RISK PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    JOON-EON YANG

    2014-02-01

    Full Text Available The Fukushima Dai-Ichi accident in 2011 has affected various aspects of the nuclear society worldwide. The accident revealed some problems in the conventional approaches used to ensure the safety of nuclear installations. To prevent such disastrous accidents in the future, we have to learn from them and improve the conventional approaches in a more systematic manner. In this paper, we will cover three issues. The first is to identify the key issues that affected the progress of the Fukushima Dai-Ichi accident greatly. We examine the accident from a defense-in-depth point of view to identify such issues. The second is to develop a more systematic approach to enhance the safety of nuclear installations. We reexamine nuclear safety from a risk point of view. We use the concepts of residual and unknown risks in classifying the risk space. All possible accident scenarios types are reviewed to clarify the characteristics of the identified issues. An approach is proposed to improve our conventional approaches used to ensure nuclear safety including the design of safety features and the safety assessments from a risk point of view. Finally, we address some issues to be improved in the conventional risk assessment and management framework and/or practices to enhance nuclear safety.

  13. Fukushima Dai-Ichi accident: Lessons Learned and Future Actions from the Risk Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jooneon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-02-15

    The Fukushima Dai-Ichi accident in 2011 has affected various aspects of the nuclear society worldwide. The accident revealed some problems in the conventional approaches used to ensure the safety of nuclear installations. To prevent such disastrous accidents in the future, we have to learn from them and improve the conventional approaches in a more systematic manner. In this paper, we will cover three issues. The first is to identify the key issues that affected the progress of the Fukushima Dai-Ichi accident greatly. We examine the accident from a defense-in-depth point of view to identify such issues. The second is to develop a more systematic approach to enhance the safety of nuclear installations. We reexamine nuclear safety from a risk point of view. We use the concepts of residual and unknown risks in classifying the risk space. All possible accident scenarios types are reviewed to clarify the characteristics of the identified issues. An approach is proposed to improve our conventional approaches used to ensure nuclear safety including the design of safety features and the safety assessments from a risk point of view. Finally, we address some issues to be improved in the conventional risk assessment and management framework and/or practices to enhance nuclear safety.

  14. The future role of photovoltaics: A learning curve versus portfolio perspective

    International Nuclear Information System (INIS)

    Albrecht, Johan

    2007-01-01

    The current cost disadvantage of photovoltaics (PV) risks to reduce its relevance in climate policy strategies. Depending on the used assumptions, electricity from PV can become competitive between 2015 and 2040. Cost competitiveness is, however, a conditional criterion and as an alternative to the learning curve perspective, the future role of PV in electricity production is assessed from a portfolio theory or Capital Asset Pricing Model perspective. In this analysis, the focus is on the input price risks. Fossil fuel price volatility can strongly reduce the financial return of conventional generating technologies. From a welfare perspective, energy planners should try to minimise this risk by adding risk-neutral or no-risk technologies to their portfolio. With an analysis for the year 2025, we illustrate how the addition of renewable capacity to an existing portfolio can lower total portfolio risk without a significant reduction of profitability. PV then emerges as an attractive technology, especially once the best locations for wind energy are already developed

  15. The future role of photovoltaics: a learning curve versus portfolio perspective

    International Nuclear Information System (INIS)

    Albrecht, J.

    2007-01-01

    The current cost disadvantage of photovoltaics (PV) risks to reduce its relevance in climate policy strategies. Depending on the used assumptions, electricity from PV can become competitive between 2015 and 2040. Cost competitiveness is, however, a conditional criterion and as an alternative to the learning curve perspective, the future role of PV in electricity production is assessed from a portfolio theory or Capital Asset Pricing Model perspective. In this analysis, the focus is on the input price risks. Fossil fuel price volatility can strongly reduce the financial return of conventional generating technologies. From a welfare perspective, energy planners should try to minimise this risk by adding risk-neutral or no-risk technologies to their portfolio. With an analysis for the year 2025, we illustrate how the addition of renewable capacity to an existing portfolio can lower total portfolio risk without a significant reduction of profitability. PV then emerges as an attractive technology, especially once the best locations for wind energy are already developed. (author)

  16. Parent-child mediated learning interactions as determinants of cognitive modifiability: recent research and future directions.

    Science.gov (United States)

    Tzuriel, D

    1999-05-01

    The main objectives of this article are to describe the effects of mediated learning experience (MLE) strategies in mother-child interactions on the child's cognitive modifiability, the effects of distal factors (e.g., socioeconomic status, mother's intelligence, child's personality) on MLE interactions, and the effects of situational variables on MLE processes. Methodological aspects of measurement of MLE interactions and of cognitive modifiability, using a dynamic assessment approach, are discussed. Studies with infants showed that the quality of mother-infant MLE interactions predict later cognitive functioning and that MLE patterns and children's cognitive performance change as a result of intervention programs. Studies with preschool and school-aged children showed that MLE interactions predict cognitive modifiability and that distal factors predict MLE interactions but not the child's cognitive modifiability. The child's cognitive modifiability was predicted by MLE interactions in a structured but not in a free-play situation. Mediation for transcendence (e.g., teaching rules and generalizations) appeared to be the strongest predictor of children's cognitive modifiability. Discussion of future research includes the consideration of a holistic transactional approach, which refers to MLE processes, personality, and motivational-affective factors, the cultural context of mediation, perception of the whole family as a mediational unit, and the "mediational normative scripts."

  17. Proceedings of a Canadian Hydrogen Association workshop in support of the transition to the hydrogen age : Greening the fleet : the status of hydrogen-powered vehicles for fleet applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Canadian Hydrogen Association (CHA) endorses hydrogen as an energy carrier and promotes the development of a supporting hydrogen infrastructure. It promotes the research, development and commercialization of innovative ways to accelerate the application of hydrogen technologies to reduce greenhouse gas emissions. The presentations at this conference described new technologies and the companies that are developing hydrogen-powered vehicles, including hybrid-electric powered vehicles for fleet application. Some international activities were also covered, including lessons learned from the California experience and European fuel cell fleets. The benefits of fuel cell hybrids were highlighted along with methods to overcome the barriers to the introduction of new vehicle fuels. A review of current and future hydrogen supply infrastructure systems was also provided. The conference featured 14 presentations, of which 2 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  18. Hydrogen and its challenges

    International Nuclear Information System (INIS)

    Schal, M.

    2008-01-01

    The future of hydrogen as a universal fuel is in jeopardy unless we are able to produce it through an environment-friendly way and at a competitive cost. Today almost all the hydrogen used in the world is produced by steam reforming of natural gas. This process releases 8 tonnes of CO 2 per tonne of hydrogen produced. Other means of producing hydrogen are the hydrolysis, the very high temperature hydrolysis, and the direct chemical dissociation of water, these processes are greener than steam reforming but less efficient. About one hundred buses in the world operate on fuel cells fed by hydrogen, but it appears that the first industrial use of hydrogen at great scale will be for the local generation of electricity. Globally the annual budget for research concerning hydrogen is 4.4 milliard (10 9 ) euros worldwide. (A.C.)

  19. Context-Aware Recommender Systems for Learning: A Survey and Future Challenges

    Science.gov (United States)

    Verbert, K.; Manouselis, N.; Ochoa, X.; Wolpers, M.; Drachsler, H.; Bosnic, I.; Duval, E.

    2012-01-01

    Recommender systems have been researched extensively by the Technology Enhanced Learning (TEL) community during the last decade. By identifying suitable resources from a potentially overwhelming variety of choices, such systems offer a promising approach to facilitate both learning and teaching tasks. As learning is taking place in extremely…

  20. The Social Semantic Web in Intelligent Learning Environments: State of the Art and Future Challenges

    Science.gov (United States)

    Jovanovic, Jelena; Gasevic, Dragan; Torniai, Carlo; Bateman, Scott; Hatala, Marek

    2009-01-01

    Today's technology-enhanced learning practices cater to students and teachers who use many different learning tools and environments and are used to a paradigm of interaction derived from open, ubiquitous, and socially oriented services. In this context, a crucial issue for education systems in general, and for Intelligent Learning Environments…

  1. Connected and Ubiquitous: A Discussion of Two Theories That Impact Future Learning Applications

    Science.gov (United States)

    Bair, Richard A.; Stafford, Timothy

    2016-01-01

    Mobile media break down traditional barriers that have defined learning in schools because they enable constant, personalized access to media. This information-rich environment could dramatically expand learning opportunities. This article identifies and discusses two instructional design theories for mobile learning including the major…

  2. Learning from Objects: A Future for 21st Century Urban Arts Education

    Science.gov (United States)

    Lasky, Dorothea

    2009-01-01

    In this technological age, where mind and body are increasingly disconnected in the classroom, object-based learning--along with strong museum-school partnerships--provide many benefits for student learning. In this article, the author first outlines some of the special mind-body connections that object-based learning in museums affords learners…

  3. E-Learning in Supplemental Educational Systems in Taiwan: Present Status and Future Challenges

    Science.gov (United States)

    Zhang, Ke; Hung, Jui-Long

    2009-01-01

    As Taiwan's full-scale e-learning initiatives moved to the seventh year in 2009, the current status and challenges of e-learning development there are yet to be fully understood. Further extending Zhang and Hung's (2006) investigation on e-learning in all universities and colleges in Taiwan, this study investigated the after-school programs (ASPs)…

  4. Educational Psychology's Past and Future Contributions to the Science of Learning, Science of Instruction, and Science of Assessment

    Science.gov (United States)

    Mayer, Richard E.

    2018-01-01

    Patricia Alexander (2018) provides a thought-provoking analysis of the past and future of educational psychology. Based on the themes in Alexander's paper, the present paper explores the past and future of educational psychology's contributions to: (a) the science of learning, corresponding to Alexander's theme of "a focus on learning as a…

  5. Hydrogen from biomass

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    Hydrogen is generally regarded as the energy carrier of the future. The development of a process for hydrogen production from biomass complies with the policy of the Dutch government to obtain more renewable energy from biomass. This report describes the progress of the BWP II project, phase 2 of

  6. Teaching Research Methods and Statistics in eLearning Environments: Pedagogy, Practical Examples, and Possible Futures

    OpenAIRE

    Rock, Adam J.; Coventry, William L.; Morgan, Methuen I.; Loi, Natasha M.

    2016-01-01

    Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal, Ginsburg, & Schau, 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof, Ceroni, Jeong, & Moghaddam, 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to...

  7. Approximation Methods for Inference and Learning in Belief Networks: Progress and Future Directions

    National Research Council Canada - National Science Library

    Pazzan, Michael

    1997-01-01

    .... In this research project, we have investigated methods and implemented algorithms for efficiently making certain classes of inference in belief networks, and for automatically learning certain...

  8. Resident Self-Assessment and Learning Goal Development: Evaluation of Resident-Reported Competence and Future Goals.

    Science.gov (United States)

    Li, Su-Ting T; Paterniti, Debora A; Tancredi, Daniel J; Burke, Ann E; Trimm, R Franklin; Guillot, Ann; Guralnick, Susan; Mahan, John D

    2015-01-01

    To determine incidence of learning goals by competency area and to assess which goals fall into competency areas with lower self-assessment scores. Cross-sectional analysis of existing deidentified American Academy of Pediatrics' PediaLink individualized learning plan data for the academic year 2009-2010. Residents self-assessed competencies in the 6 Accreditation Council for Graduate Medical Education (ACGME) competency areas and wrote learning goals. Textual responses for goals were mapped to 6 ACGME competency areas, future practice, or personal attributes. Adjusted mean differences and associations were estimated using multiple linear and logistic regression. A total of 2254 residents reported 6078 goals. Residents self-assessed their systems-based practice (51.8) and medical knowledge (53.0) competencies lowest and professionalism (68.9) and interpersonal and communication skills (62.2) highest. Residents were most likely to identify goals involving medical knowledge (70.5%) and patient care (50.5%) and least likely to write goals on systems-based practice (11.0%) and professionalism (6.9%). In logistic regression analysis adjusting for postgraduate year (PGY), gender, and degree type (MD/DO), resident-reported goal area showed no association with the learner's relative self-assessment score for that competency area. In the conditional logistic regression analysis, with each learner serving as his or her own control, senior residents (PGY2/3+s) who rated themselves relatively lower in a competency area were more likely to write a learning goal in that area than were PGY1s. Senior residents appear to develop better skills and/or motivation to explicitly turn self-assessed learning gaps into learning goals, suggesting that individualized learning plans may help improve self-regulated learning during residency. Copyright © 2015 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  9. The Future of Online Teaching and Learning in Higher Education: The Survey Says...

    Science.gov (United States)

    Kim, Kyong-Jee; Bonk, Curtis J.

    2006-01-01

    Considering the extensive turbulence created by the perfect storm surrounding e-learning, it is not surprising that opinions are mixed about the benefits of online teaching and learning in higher education. As illustrated in numerous issues of the "Chronicle of Higher Education" during the past decade, excitement and enthusiasm for…

  10. Affordances of Augmented Reality in Science Learning: Suggestions for Future Research

    Science.gov (United States)

    Cheng, Kun-Hung; Tsai, Chin-Chung

    2013-01-01

    Augmented reality (AR) is currently considered as having potential for pedagogical applications. However, in science education, research regarding AR-aided learning is in its infancy. To understand how AR could help science learning, this review paper firstly has identified two major approaches of utilizing AR technology in science education,…

  11. Blended Learning: The Army’s Future in Education, Training, and Development

    Science.gov (United States)

    2011-03-24

    John Wiley & Sons, 2006), Norman Vaughan, “Perspectives on Blended Learning in Higher Education,” International Journal on ELearning . 6(1) (2007...Vaughan, “Perspectives on Blended Learning in Higher Education,” International Journal on ELearning 6(1) (2007): 81-94. 54 U.S. Army, The United

  12. Reflective Learning in a Chinese MBA Programme: Scale Assessment and Future Recommendations

    Science.gov (United States)

    Xiao, Qian; Zhu, Pinghui; Hsu, Maxwell K.; Zhuang, Weiling; Peltier, James

    2016-01-01

    The purpose of this study was twofold: (1) to use Chinese MBA students to validate the expanded reflective learning continuum and address the concerns raised in this regard in business education; (2) to determine whether the continuum concept holds true in a non-western culture and whether the reflective learning continuum remains a powerful force…

  13. Educating for Digital Futures: What the Learning Strategies of Digital Media Professionals Can Teach Higher Education

    Science.gov (United States)

    Bridgstock, Ruth

    2016-01-01

    This article explores how universities might engage more effectively with the imperative to develop students' twenty-first century skills for the information society, by examining learning challenges and professional learning strategies of successful digital media professionals. The findings of qualitative interviews with professionals from…

  14. The Current Status and Future Prospects of Corporate e-Learning in Korea

    Science.gov (United States)

    Lim, Cheolil

    2007-01-01

    Corporate e-Learning in Korea has grown rapidly over the previous six years (2000-2005). This study argues that the main cause of this heightened interest in corporate e-Learning in Korea was not that companies needed to provide high-quality training programs through the Internet, but rather that the government took initiative to transform the…

  15. Technology Support for Discussion Based Learning: From Computer Supported Collaborative Learning to the Future of Massive Open Online Courses

    Science.gov (United States)

    Rosé, Carolyn Penstein; Ferschke, Oliver

    2016-01-01

    This article offers a vision for technology supported collaborative and discussion-based learning at scale. It begins with historical work in the area of tutorial dialogue systems. It traces the history of that area of the field of Artificial Intelligence in Education as it has made an impact on the field of Computer-Supported Collaborative…

  16. Connections Between Future Time Perspectives and Self-Regulated Learning for Mid-Year Engineering Students: A Multiple Case Study

    Science.gov (United States)

    Chasmar, Justine

    This dissertation presents multiple studies with the purpose of understanding the connections between undergraduate engineering students' motivations, specifically students' Future Time Perspectives (FTPs) and Self-Regulated Learning (SRL). FTP refers to the views students hold about the future and how their perceptions of current tasks are affected by these views. SRL connects the behaviors, metacognition, and motivation of students in their learning. The goals of this research project were to 1) qualitatively describe and document engineering students' SRL strategies, 2) examine interactions between engineering students' FTPs and SRL strategy use, and 3) explore goal-setting as a bridge between FTP and SRL. In an exploratory qualitative study with mid-year industrial engineering students to examine the SRL strategies used before and after an SRL intervention, results showed that students intended to use more SRL strategies than they attempted. However, students self-reported using new SRL strategies from the intervention. Students in this population also completed a survey and a single interview about FTP and SRL. Results showed perceptions of instrumentality of coursework and skills as motivation for using SRL strategies, and a varied use of SRL strategies for students with different FTPs. Overall, three types of student FTP were seen: students with a single realistic view of the future, conflicting ideal and realistic future views, or open views of the future. A sequential explanatory mixed methods study was conducted with mid-year students from multiple engineering majors. First a cluster analysis of survey results of FTP items compared to FTP interview responses was used for participant selection. Then a multiple case study was conducted with data collected through surveys, journal entries, course performance, and two interviews. Results showed that students with a well-defined FTP self-regulated in the present based on their varied perceptions of

  17. Preparing nursing students to be competent for future professional practice: applying the team-based learning-teaching strategy.

    Science.gov (United States)

    Cheng, Ching-Yu; Liou, Shwu-Ru; Hsu, Tsui-Hua; Pan, Mei-Yu; Liu, Hsiu-Chen; Chang, Chia-Hao

    2014-01-01

    Team-based learning (TBL) has been used for many years in business and science, but little research has focused on its application in nursing education. This quasi-experimental study was to apply the TBL in four nursing courses at a university in Taiwan and to evaluate its effect on students' learning outcomes and behaviors. Adult health nursing, maternal-child nursing, community health nursing, and medical-surgical nursing were the 4 designated courses for this study. Three hundred ninety-nine students in 2-year registered nurse-bachelor of science in nursing, and regular 4-year nursing programs enrolled in the designated courses were contacted. Three hundred eighty-seven students agreed to participate in the data collection. Results showed that the TBL significantly improved the learning behaviors of students in both programs, including class engagement (p students' academic performance. The study revealed that TBL generally improves students' learning behaviors and academic performance. These learning behaviors are important and beneficial for the students' future professional development. The TBL method can be considered for broader application in nursing education. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Back to the future with hands-on science: students' perceptions of learning anatomy and physiology.

    Science.gov (United States)

    Johnston, Amy Nicole Burne; McAllister, Margaret

    2008-09-01

    This article examines student perceptions of learning related to anatomy and physiology in a bachelor of nursing program. One strategy to teach the sciences is simulated learning, a technology that offers exciting potential. Virtual environments for laboratory learning may offer numerous benefits: teachers can convey information to a larger group of students, reducing the need for small laboratory classes; less equipment is required, thus containing ongoing costs; and students can learn in their own time and place. However, simulated learning may also diminish access to the teacher-student relationship and the opportunity for guided practice and guided linking of theory with practice. Without this hands-on experience, there is a risk that students will not engage as effectively, and thus conceptual learning and the development of critical thinking skills are diminished. However, student perceptions of these learning experiences are largely unknown. Thus, this study examined students' perceptions of anatomy and physiology laboratory experiences and the importance they placed on hands-on experience in laboratory settings.

  19. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  20. The Current Status and Future Prospects of Corporate e-Learning in Korea

    Directory of Open Access Journals (Sweden)

    Cheolil Lim

    2007-03-01

    Full Text Available Corporate e-Learning in Korea has grown rapidly over the previous six years (2000-2005. This study argues that the main cause of this heightened interest in corporate e-Learning in Korea was not that companies needed to provide high-quality training programs through the Internet, but rather that the government took initiative to transform the state into an information-based society. The policies for quantitative growth with minimum levels of quality and uniformity have been dominant and have resulted in the lack of diverse e-Learning types for authentic practices in workplaces. This paper suggests that in order to cope with the new competency requirements of employees, corporate e-Learning should be guided both by governmental support and by company initiative.

  1. Promoting the Learning Mobility of Future Workers: Experiments with Virtual Placements in University-Business Arrangements.

    NARCIS (Netherlands)

    van Dorp, C.A.; Herrero de Egaña y Espinosa de los Monteros, A.; Lansu, A.; Kocsis Baán, M.; Virkus, S.

    2011-01-01

    Virtual placements are learning arrangements, which generate new possibilities for accumulating professional (work-based) knowledge. Virtual placements are beneficial in many ways; they merit increased training opportunities, exposure to not/never-thought-of occupations, integration of disadvantaged

  2. Machine learning applications in proteomics research: how the past can boost the future.

    Science.gov (United States)

    Kelchtermans, Pieter; Bittremieux, Wout; De Grave, Kurt; Degroeve, Sven; Ramon, Jan; Laukens, Kris; Valkenborg, Dirk; Barsnes, Harald; Martens, Lennart

    2014-03-01

    Machine learning is a subdiscipline within artificial intelligence that focuses on algorithms that allow computers to learn solving a (complex) problem from existing data. This ability can be used to generate a solution to a particularly intractable problem, given that enough data are available to train and subsequently evaluate an algorithm on. Since MS-based proteomics has no shortage of complex problems, and since publicly available data are becoming available in ever growing amounts, machine learning is fast becoming a very popular tool in the field. We here therefore present an overview of the different applications of machine learning in proteomics that together cover nearly the entire wet- and dry-lab workflow, and that address key bottlenecks in experiment planning and design, as well as in data processing and analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Future of Contextual Fear Learning for PTSD Research: A Methodological Review of Neuroimaging Studies.

    Science.gov (United States)

    Glenn, Daniel E; Risbrough, Victoria B; Simmons, Alan N; Acheson, Dean T; Stout, Daniel M

    2017-10-21

    There has been a great deal of recent interest in human models of contextual fear learning, particularly due to the use of such paradigms for investigating neural mechanisms related to the etiology of posttraumatic stress disorder. However, the construct of "context" in fear conditioning research is broad, and the operational definitions and methods used to investigate contextual fear learning in humans are wide ranging and lack specificity, making it difficult to interpret findings about neural activity. Here we will review neuroimaging studies of contextual fear acquisition in humans. We will discuss the methodology associated with four broad categories of how contextual fear learning is manipulated in imaging studies (colored backgrounds, static picture backgrounds, virtual reality, and configural stimuli) and highlight findings for the primary neural circuitry involved in each paradigm. Additionally, we will offer methodological recommendations for human studies of contextual fear acquisition, including using stimuli that distinguish configural learning from discrete cue associations and clarifying how context is experimentally operationalized.

  4. "Yes, and …" Exploring the Future of Learning Analytics in Medical Education.

    Science.gov (United States)

    Cirigliano, Matt M; Guthrie, Charlie; Pusic, Martin V; Cianciolo, Anna T; Lim-Dunham, Jennifer E; Spickard, Anderson; Terry, Valerie

    2017-01-01

    This Conversations Starter article presents a selected research abstract from the 2017 Association of American Medical Colleges Northeastern Region Group on Educational Affairs annual spring meeting. The abstract is paired with the integrative commentary of three experts who shared their thoughts stimulated by the study. Commentators brainstormed "what's next" with learning analytics in medical education, including advancements in interaction metrics and the use of interactivity analysis to deepen understanding of perceptual, cognitive, and social learning and transfer processes.

  5. Framework for e-learning assessment in dental education: a global model for the future.

    Science.gov (United States)

    Arevalo, Carolina R; Bayne, Stephen C; Beeley, Josie A; Brayshaw, Christine J; Cox, Margaret J; Donaldson, Nora H; Elson, Bruce S; Grayden, Sharon K; Hatzipanagos, Stylianos; Johnson, Lynn A; Reynolds, Patricia A; Schönwetter, Dieter J

    2013-05-01

    The framework presented in this article demonstrates strategies for a global approach to e-curricula in dental education by considering a collection of outcome assessment tools. By combining the outcomes for overall assessment, a global model for a pilot project that applies e-assessment tools to virtual learning environments (VLE), including haptics, is presented. Assessment strategies from two projects, HapTEL (Haptics in Technology Enhanced Learning) and UDENTE (Universal Dental E-learning), act as case-user studies that have helped develop the proposed global framework. They incorporate additional assessment tools and include evaluations from questionnaires and stakeholders' focus groups. These measure each of the factors affecting the classical teaching/learning theory framework as defined by Entwistle in a standardized manner. A mathematical combinatorial approach is proposed to join these results together as a global assessment. With the use of haptic-based simulation learning, exercises for tooth preparation assessing enamel and dentine were compared to plastic teeth in manikins. Equivalence for student performance for haptic versus traditional preparation methods was established, thus establishing the validity of the haptic solution for performing these exercises. Further data collected from HapTEL are still being analyzed, and pilots are being conducted to validate the proposed test measures. Initial results have been encouraging, but clearly the need persists to develop additional e-assessment methods for new learning domains.

  6. Final report: Imagining Fire Futures - An interactive, online learning activity for high school and college students

    Science.gov (United States)

    Jane Kapler Smith

    2014-01-01

    In IMAGINING FIRE FUTURES, students in a high school or college class use model results to develop a vision of the future for Flathead County, Montana. This is a rural area in the northern Rocky Mountains where more than half of the landscape is covered by wildland ecosystems that have evolved with and are shaped by wildland fire.

  7. Future Technology Workshop: A Collaborative Method for the Design of New Learning Technologies and Activities

    Science.gov (United States)

    Vavoula, Giasemi N.; Sharples, Mike

    2007-01-01

    We describe the future technology workshop (FTW), a method whereby people with everyday knowledge or experience in a specific area of technology use (such as using digital cameras) envision and design the interactions between current and future technology and activity. Through a series of structured workshop sessions, participants collaborate to…

  8. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  9. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  10. Coupling between Metacognition and Emotions during STEM Learning with Advanced Learning Technologies: A Critical Analysis, Implications for Future Research, and Design of Learning Systems

    Science.gov (United States)

    Azevedo, Roger; Mudrick, Nicholas; Taub, Michelle; Wortha, Franz

    2017-01-01

    Metacognition and emotions play a critical role in learners' ability to monitor and regulate their learning about 21st-century skills related to science, technology, engineering, and mathematics (STEM) content while using advanced learning technologies (ALTs; e.g., intelligent tutoring systems, serious games, hypermedia, augmented reality). In…

  11. Navigating Bioethical Waters: Two Pilot Projects in Problem-Based Learning for Future Bioscience and Biotechnology Professionals.

    Science.gov (United States)

    Berry, Roberta M; Levine, Aaron D; Kirkman, Robert; Blake, Laura Palucki; Drake, Matthew

    2016-12-01

    We believe that the professional responsibility of bioscience and biotechnology professionals includes a social responsibility to contribute to the resolution of ethically fraught policy problems generated by their work. It follows that educators have a professional responsibility to prepare future professionals to discharge this responsibility. This essay discusses two pilot projects in ethics pedagogy focused on particularly challenging policy problems, which we call "fractious problems". The projects aimed to advance future professionals' acquisition of "fractious problem navigational" skills, a set of skills designed to enable broad and deep understanding of fractious problems and the design of good policy resolutions for them. A secondary objective was to enhance future professionals' motivation to apply these skills to help their communities resolve these problems. The projects employed "problem based learning" courses to advance these learning objectives. A new assessment instrument, "Skills for Science/Engineering Ethics Test" (SkillSET), was designed and administered to measure the success of the courses in doing so. This essay first discusses the rationale for the pilot projects, and then describes the design of the pilot courses and presents the results of our assessment using SkillSET in the first pilot project and the revised SkillSET 2.0 in the second pilot project. The essay concludes with discussion of observations and results.

  12. Disturbance of endogenous hydrogen sulfide generation and endoplasmic reticulum stress in hippocampus are involved in homocysteine-induced defect in learning and memory of rats.

    Science.gov (United States)

    Li, Man-Hong; Tang, Ji-Ping; Zhang, Ping; Li, Xiang; Wang, Chun-Yan; Wei, Hai-Jun; Yang, Xue-Feng; Zou, Wei; Tang, Xiao-Qing

    2014-04-01

    Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Hydrogen sulfide (H2S) acts as an endogenous neuromodulator and neuroprotectant. It has been shown that endoplasmic reticulum (ER) stress is involved in the pathological mechanisms of the learning and memory dysfunctions and that H2S exerts its neuroprotective role via suppressing ER stress. In the present work, we explored the effects of intracerebroventricular injection of Hcy on the formation of learning and memory, the generation of endogenous H2S, and the expression of ER stress in the hippocampus of rats. We found that intracerebroventricular injection of Hcy in rats leads to learning and memory dysfunctions in the Morris water maze and novel of object recognition test and decreases in the expression of cystathionine-β-synthase, the major enzyme responsible for endogenous H2S generation, and the generation of endogenous H2S in the hippocampus of rats. We also showed that exposure of Hcy could up-regulate the expressions of glucose-regulated protein 78 (GRP78), CHOP, and cleaved caspase-12, which are the major mark proteins of ER stress, in the hippocampus of rats. Taken together, these results suggest that the disturbance of hippocampal endogenous H2S generation and the increase in ER stress in the hippocampus are related to Hcy-induced defect in learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Neurological assessment of the fitness of young people for learning their future profession

    Energy Technology Data Exchange (ETDEWEB)

    Polakowska, B

    1981-01-01

    2195 pupils finishing the Grammar School were examined neurologically in view of their future professions. Contraindications were determined related to the type of the future work. The contraindications were found in 34.7% of the young people. Many of them were disqualified from professional training in exposure to neurotoxic substances and physical hazards. The limitations related to future work were referred to those exhibiting symptoms of organic nervous system diseases, considerably intensified nervous irritability, headache and those in whom certain of those symptoms coexisted.

  14. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  15. Deep learning in mammography and breast histology, an overview and future trends.

    Science.gov (United States)

    Hamidinekoo, Azam; Denton, Erika; Rampun, Andrik; Honnor, Kate; Zwiggelaar, Reyer

    2018-07-01

    Recent improvements in biomedical image analysis using deep learning based neural networks could be exploited to enhance the performance of Computer Aided Diagnosis (CAD) systems. Considering the importance of breast cancer worldwide and the promising results reported by deep learning based methods in breast imaging, an overview of the recent state-of-the-art deep learning based CAD systems developed for mammography and breast histopathology images is presented. In this study, the relationship between mammography and histopathology phenotypes is described, which takes biological aspects into account. We propose a computer based breast cancer modelling approach: the Mammography-Histology-Phenotype-Linking-Model, which develops a mapping of features/phenotypes between mammographic abnormalities and their histopathological representation. Challenges are discussed along with the potential contribution of such a system to clinical decision making and treatment management. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  16. Courage to care for our United States veterans: A constructivist way of teaching and learning for future nurses.

    Science.gov (United States)

    Magpantay-Monroe, Edna R

    2018-01-01

    The knowledge and skills in providing veteran centered care is essential. The purpose of this retrospective evaluation is to examine a faculty's reflections on a BSN psychiatric mental health curriculum initiative that provides knowledge and skills regarding veterans care through several avenues to senior nursing students. This qualitative study use self-reflections through a constructivist view of teaching and learning as the framework. Open discussions in didactic about the unique psychological health issues of veterans formed a foundational knowledge for the students. The seminar time was used to discuss real veteran case situations. Simulation provided opportunities to address veteran resources. Problem based projects use available evidence to solve veteran health issues. The educators show their commitment to the compassionate and caring ideals of our profession by fostering an educational environment where future nurses can truly learn about veteran centered care. Copyright © 2017. Published by Elsevier Ltd.

  17. Building a quality culture in the Office of Space Flight: Approach, lessons learned and implications for the future

    Science.gov (United States)

    Roberts, C. Shannon

    1992-01-01

    The purpose of this paper is to describe the approach and lessons learned by the Office of Space Flight (OSF), National Aeronautics and Space Administration (NASA), in its introduction of quality. In particular, the experience of OSF Headquarters is discussed as an example of an organization within NASA that is considering both the business and human elements of the change and the opportunities the quality focus presents to improve continuously. It is hoped that the insights shared will be of use to those embarking upon similar cultural changes. The paper is presented in the following parts: the leadership challenge; background; context of the approach to quality; initial steps; current initiatives; lessons learned; and implications for the future.

  18. A TWO CENTURY HISTORY OF PACIFIC NORTHWEST SALMON: LESSONS LEARNED FOR ACHIEVING A SUSTAINABLE FUTURE

    Science.gov (United States)

    Achieving ecological sustainability is a daunting challenge. In the Pacific Northwest one of the most highly visible public policy debates concerns the future of salmon populations. Throughout the Pacific Northwest, many wild salmon stocks have declined and some have disappeare...

  19. Prediction of Human Drug Targets and Their Interactions Using Machine Learning Methods: Current and Future Perspectives.

    Science.gov (United States)

    Nath, Abhigyan; Kumari, Priyanka; Chaube, Radha

    2018-01-01

    Identification of drug targets and drug target interactions are important steps in the drug-discovery pipeline. Successful computational prediction methods can reduce the cost and time demanded by the experimental methods. Knowledge of putative drug targets and their interactions can be very useful for drug repurposing. Supervised machine learning methods have been very useful in drug target prediction and in prediction of drug target interactions. Here, we describe the details for developing prediction models using supervised learning techniques for human drug target prediction and their interactions.

  20. ORGANIZATION OF FUTURE ENGINEERS' PROJECT-BASED LEARNING WHEN STUDYING THE PROJECT MANAGEMENT METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Halyna V. Lutsenko

    2015-02-01

    Full Text Available The peculiarities of modern world experience of implementation of project-based learning in engineering education have been considered. The potential role and place of projects in learning activity have been analyzed. The methodology of organization of project-based activity of engineering students when studying the project management methodology and computer systems of project management has been proposed. The requirements to documentation and actual results of students' projects have been described in detail. The requirements to computer-aided systems of project management developed by using Microsoft Project in the scope of diary scheduling and resources planning have been formulated.

  1. Learning through simulated independent practice leads to better future performance in a simulated crisis than learning through simulated supervised practice.

    Science.gov (United States)

    Goldberg, A; Silverman, E; Samuelson, S; Katz, D; Lin, H M; Levine, A; DeMaria, S

    2015-05-01

    Anaesthetists may fail to recognize and manage certain rare intraoperative events. Simulation has been shown to be an effective educational adjunct to typical operating room-based education to train for these events. It is yet unclear, however, why simulation has any benefit. We hypothesize that learners who are allowed to manage a scenario independently and allowed to fail, thus causing simulated morbidity, will consequently perform better when re-exposed to a similar scenario. Using a randomized, controlled, observer-blinded design, 24 first-year residents were exposed to an oxygen pipeline contamination scenario, either where patient harm occurred (independent group, n=12) or where a simulated attending anaesthetist intervened to prevent harm (supervised group, n=12). Residents were brought back 6 months later and exposed to a different scenario (pipeline contamination) with the same end point. Participants' proper treatment, time to diagnosis, and non-technical skills (measured using the Anaesthetists' Non-Technical Skills Checklist, ANTS) were measured. No participants provided proper treatment in the initial exposure. In the repeat encounter 6 months later, 67% in the independent group vs 17% in the supervised group resumed adequate oxygen delivery (P=0.013). The independent group also had better ANTS scores [median (interquartile range): 42.3 (31.5-53.1) vs 31.3 (21.6-41), P=0.015]. There was no difference in time to treatment if proper management was provided [602 (490-820) vs 610 (420-800) s, P=0.79]. Allowing residents to practise independently in the simulation laboratory, and subsequently, allowing them to fail, can be an important part of simulation-based learning. This is not feasible in real clinical practice but appears to have improved resident performance in this study. The purposeful use of independent practice and its potentially negative outcomes thus sets simulation-based learning apart from traditional operating room learning. © The Author

  2. THE PROCESS OF FORMING OF ENGLISH-LANGUAGE LEXICAL COMPETENCE OF FUTURE SPECIALISTS IN TOURISM BASED ON LEARNING STRATEGIES

    Directory of Open Access Journals (Sweden)

    Ірина Потюк

    2014-10-01

    Full Text Available Peculiarities of mastering the English-language lexical competence in unlinguistic educational establishment, which appears an integral component of professionally directed communicative competence of the student, provides future specialists’ knowledge with professional vocabulary and forms ability to recognize and understand it with the help of learning strategies, have been analyzed in the article. The theoretical aspects of research, the basic methodical aspects of forming the English-language lexical competence and results of the verification of efficiency of the offered methodology have been highlighted and characterized by the author.

  3. Raising the Bar: Significant Advances and Future Needs for Promoting Learning for Students with Severe Disabilities

    Science.gov (United States)

    Spooner, Fred; Browder, Diane M.

    2015-01-01

    This essay describes major advances in educating students with severe disabilities. The authors propose that applied behavior analysis, the focus on functional life skills, and the promotion of academic content have been the major advances in the "how" and "what" of learning for this population. An increased focus on literacy,…

  4. Preparing for Future Learning with a Tangible User Interface: The Case of Neuroscience

    Science.gov (United States)

    Schneider, B.; Wallace, J.; Blikstein, P.; Pea, R.

    2013-01-01

    In this paper, we describe the development and evaluation of a microworld-based learning environment for neuroscience. Our system, BrainExplorer, allows students to discover the way neural pathways work by interacting with a tangible user interface. By severing and reconfiguring connections, users can observe how the visual field is impaired and,…

  5. Building Sustainable Futures: Emerging Understandings of the Significant Contribution of the Professional Learning Community

    Science.gov (United States)

    Andrews, Dorothy; Lewis, Marian

    2004-01-01

    This article draws on the experiences of a range of Australian schools engaging with a teacher-centred process of whole-school renewal known as IDEAS (Innovative Designs for Enhancing Achievement in Schools). IDEAS enhances the professional capacity of teachers to improve school outcomes such as student learning, relationships with the community,…

  6. Teaching Future Middle Level Educators to Craft Learning Activities That Enhance Young Adolescent Creativity

    Science.gov (United States)

    Hilton, Jason T.

    2016-01-01

    As social and academic forces begin to collide for young adolescents at the beginning of the middle level experience, students experience an unfortunate drop in their creativity. Appropriately trained middle level teachers have the potential to lessen this problem through the use of carefully selected open-ended learning activities that increase…

  7. Edufare for the Future Precariat: The Moral Agenda in Australia's "Earning or Learning" Policy

    Science.gov (United States)

    Doherty, Catherine

    2017-01-01

    This paper considers the educational experience constructed under Australia's policy decision in 2009 to extend compulsory education by requiring that students must be "earning or learning" till 17 years of age. The discussion draws on an empirical project that explored the moral order operating in classrooms for students retained under…

  8. Understanding the Design Context for Australian University Teachers: Implications for the Future of Learning Design

    Science.gov (United States)

    Bennett, Sue; Thomas, Lisa; Agostinho, Shirley; Lockyer, Lori; Jones, Jennifer; Harper, Barry

    2011-01-01

    Based on the premise that providing support for university teachers in designing for their teaching will ultimately improve the quality of student learning outcomes, recent interest in the development of support tools and strategies has gained momentum. This article reports on a study that examined the context in which Australian university…

  9. The Future of Schooling: Children and Learning at the Edge of Chaos

    Science.gov (United States)

    Mitra, Sugata

    2014-01-01

    This paper describes the effect that assistive technologies, such as paper, printing, protractors, logarithm tables, computers, and the Internet, have on pedagogy. It reports the results of experiments with self-organising systems in primary education and develops the concept of a self-organised learning environment (SOLE). It then describes how…

  10. Thinking Beyond Numbers: Learning Numeracy for the Future Workplace. An Adult Literacy National Project Report

    Science.gov (United States)

    Marr, Beth; Hagston, Jan

    2007-01-01

    The use, learning and transfer of workplace numeracy skills, as well as current understandings of the term numeracy, are examined in this study. It also highlights the importance of numeracy as an essential workplace skill. The report challenges the training system and training organisations to provide numeracy training which makes links directly…

  11. A Future-Focus for Teaching and Learning: Technology Education in Two New Zealand Secondary Schools

    Science.gov (United States)

    Reinsfield, Elizabeth

    2016-01-01

    Technology education has been a part of the New Zealand curriculum in many forms since its inception as a craft subject. With a global push towards technological innovation and an increased awareness of the impact of technology on society, it is reasonable to assume that technology education has an established role in student learning around the…

  12. Animated Pedagogical Agents in Interactive Learning Environment: The Future of Air Force Training?

    Science.gov (United States)

    2008-02-01

    and continuing on with the Global War on Terror (GWOT) along with various humanitarian missions (Moseley, 2007). The bottom line can be summarized...education.guardian.co.uk/ elearning /story/0,,2051195,00.html Peck, M. (2005, February). Soldiers learn hazards of war in virtual reality. Retrieved November

  13. Past and future in accident prevention and learning : Single case or big data?

    NARCIS (Netherlands)

    Stoop, J.A.A.M.; Dechy, Nicolas; Dien, Yves; Tulonen, Tuuli

    2016-01-01

    The European Safety Reliability and Data Association (ESReDA) has since 1993 set up a series of Project Groups dealing with the different angles of ‘accident investigation’ and ‘learning from events’. With the 25th Anniversary of ESReDA now in 2016, the core of this group is still active, and has

  14. The Practice of Supervision for Professional Learning: The Example of Future Forensic Specialists

    Science.gov (United States)

    Köpsén, Susanne; Nyström, Sofia

    2015-01-01

    Supervision intended to support learning is of great interest in professional knowledge development. No single definition governs the implementation and enactment of supervision because of different conditions, intentions, and pedagogical approaches. Uncertainty exists at a time when knowledge and methods are undergoing constant development. This…

  15. Beyond the Personal Learning Environment: Attachment and Control in the Classroom of the Future

    Science.gov (United States)

    Johnson, Mark William; Sherlock, David

    2014-01-01

    The Personal Learning Environment (PLE) has been presented in a number of guises over a period of 10 years as an intervention which seeks the reorganisation of educational technology through shifting the "locus of control" of technology towards the learner. In the intervening period to the present, a number of initiatives have attempted…

  16. Cognitive Load Theory and Complex Learning: Recent Developments and Future Directions

    NARCIS (Netherlands)

    Van Merriënboer, Jeroen; Sweller, J.

    2007-01-01

    Traditionally, Cognitive Load Theory (CLT) has focused on instructional methods to decrease extraneous cognitive load so that available cognitive resources can be fully devoted to learning. This article strengthens the cognitive base of CLT by linking cognitive processes to the processes used by

  17. How Digital Technologies, Blended Learning and MOOCs Will Impact the Future of Higher Education

    Science.gov (United States)

    Morris, Neil P.

    2014-01-01

    Digital technologies are revolutionizing all parts of society, including higher education. Universities are rapidly adapting to the prevalence of staff and student mobile devices, digital tools and services on campus, and are developing strategies to harness these technologies to enhance student learning. In this paper, I explore the use of…

  18. Learning from the Learners: Preparing Future Teachers to Leverage the Benefits of Laptop Computers

    Science.gov (United States)

    Grundmeyer, Trent; Peters, Randal

    2016-01-01

    Technology is changing the teaching and learning landscape. Teacher preparation programs must produce teachers who have new skills and strategies to leverage the benefits of laptop computers in their classrooms. This study used a phenomenological strategy to explain first-year college students' perceptions of the effects of a 1:1 laptop experience…

  19. Interactions among Future Study Abroad Students: Exploring Potential Intercultural Learning Sequences

    Science.gov (United States)

    Borghetti, C.; Beaven, A.; Pugliese, R.

    2015-01-01

    The study presented in this article aims to explore if and how intercultural learning may take place in students' class interaction. It is grounded in the assumption that interculturality is not a clear-cut feature inherent to interactions occurring when individuals with presumed different linguistic and cultural/national backgrounds talk to each…

  20. The Effects of Source Unreliability on Prior and Future Word Learning

    Science.gov (United States)

    Faught, Gayle G.; Leslie, Alicia D.; Scofield, Jason

    2015-01-01

    Young children regularly learn words from interactions with other speakers, though not all speakers are reliable informants. Interestingly, children will reverse to trusting a reliable speaker when a previously endorsed speaker proves unreliable. When later asked to identify the referent of a novel word, children who reverse trust are less willing…

  1. Using Social Media to Support the Learning Needs of Future IS Security Professionals

    Science.gov (United States)

    Neville, Karen; Heavin, Ciara

    2013-01-01

    The emergence of social media has forced educators to think differently about the way learning occurs. Students and practitioners alike are using new technologies to connect with peers/colleagues, share ideas, resources and experiences for extracurricular activities. The social business gaming platform considered in this study leverages the social…

  2. A Joint Learning Activity in Process Control and Distance Collaboration between Future Engineers and Technicians

    Science.gov (United States)

    Deschênes, Jean-Sebastien; Barka, Noureddine; Michaud, Mario; Paradis, Denis; Brousseau, Jean

    2013-01-01

    A joint learning activity in process control is presented, in the context of a distance collaboration between engineering and technical-level students, in a similar fashion as current practices in the industry involving distance coordination and troubleshooting. The necessary infrastructure and the setup used are first detailed, followed by a…

  3. L'hydrogène : maillon essentiel du raffinage de l'avenir Hydrogen: an Essential Link in Refining of the Future

    Directory of Open Access Journals (Sweden)

    Raimbault C.

    2006-11-01

    Full Text Available L'hydrogène est déjà largement utilisé dans le raffinage du pétrole brut. L'évolution de la demande et de l'approvisionnement moyen augmentent les besoins en hydrogène. Un déficit éventuel peut être comblé par la purification ou la récupération de l'hydrogène de divers effluents ou par des unités de production autonomes alimentées par des fractions difficilement valorisables sur le marché. Hydrogen is already widely used in crude-oil refining. The evolution of the demand and mean supply is increasing the needs for hydrogen. An eventual deficit could be overcome by the purification or recovery of hydrogen from various effluents or by independent production plants fed with fractions that are difficult to upgrade on the market.

  4. A green hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Clark, W.W. II [Clark Communications, Beverly Hills, CA (United States). Green Hydrogen Scientific Advisory Committee; Rifkin, J. [The Foundation on Economic Trends (United States)

    2006-11-15

    This paper is the result of over a dozen scholars and practitioners who strongly felt that a hydrogen economy and hence the future is closer than some American politicians and bureaucrats state. Moreover, when seen internationally, there is strong evidence, the most recent and obvious ones are the proliferation of hybrid vehicles, that for any nation-state to be energy independent it must seek a renewable or green hydrogen future in the near term. The State of California has once again taken the lead in this effort for both an energy-independent future and one linked strongly to the hydrogen economy. Then why a hydrogen economy in the first instance? The fact is that hydrogen most likely will not be used for refueling of vehicles in the near term. The number of vehicles to make hydrogen commercially viable will not be in the mass market by almost all estimates until 2010. However, it is less than a decade away. The time frame is NOT 30-40 years as some argue. The hydrogen economy needs trained people, new ventures and public-private partnerships now. The paper points out how the concerns of today, including higher costs and technologies under development, can be turned into opportunities for both the public and private sectors. It was not too long ago that the size of a mobile phone was that of a briefcase, and then almost 10 years ago, the size of a shoe box. Today, they are not only the size of a man's wallet but also often given away free to consumers who subscribe or contract for wireless services. While hydrogen may not follow this technological commercialization exactly, it certainly will be on a parallel path. International events and local or regional security dictate that the time for a hydrogen must be close at hand. (author)

  5. A green hydrogen economy

    International Nuclear Information System (INIS)

    Clark, Woodrow W.; Rifkin, Jeremy

    2006-01-01

    This paper is the result of over a dozen scholars and practitioners who strongly felt that a hydrogen economy and hence the future is closer than some American politicians and bureaucrats state. Moreover, when seen internationally, there is strong evidence, the most recent and obvious ones are the proliferation of hybrid vehicles, that for any nation-state to be energy independent it must seek a renewable or green hydrogen future in the near term. The State of California has once again taken the lead in this effort for both an energy-independent future and one linked strongly to the hydrogen economy. Then why a hydrogen economy in the first instance? The fact is that hydrogen most likely will not be used for refueling of vehicles in the near term. The number of vehicles to make hydrogen commercially viable will not be in the mass market by almost all estimates until 2010. However, it is less than a decade away. The time frame is NOT 30-40 years as some argue. The hydrogen economy needs trained people, new ventures and public-private partnerships now. The paper points out how the concerns of today, including higher costs and technologies under development, can be turned into opportunities for both the public and private sectors. It was not too long ago that the size of a mobile phone was that of a briefcase, and then almost 10 years ago, the size of a shoe box. Today, they are not only the size of a man's wallet but also often given away free to consumers who subscribe or contract for wireless services. While hydrogen may not follow this technological commercialization exactly, it certainly will be on a parallel path. International events and local or regional security dictate that the time for a hydrogen must be close at hand

  6. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M; Lien, S; Weaver, P F

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  7. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M.; Lien, S.; Weaver, P.F.

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  8. National hydrogen energy roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  9. Entangled ethnography: imagining a future for young adults with learning disabilities.

    Science.gov (United States)

    Ginsburg, Faye; Rapp, Rayna

    2013-12-01

    Our article draws on one aspect of our multi-sited long-term ethnographic research in New York City on cultural innovation and Learning Disabilities (LD). We focus on our efforts to help create two innovative transition programs that also became sites for our study when we discovered that young adults with disabilities were too often "transitioning to nowhere" as they left high school. Because of our stakes in this process as parents of children with learning disabilities as well as anthropologists, we have come to think of our method as entangled ethnography, bringing the insights of both insider and outsider perspectives into productive dialog, tailoring a longstanding approach in critical anthropology to research demedicalizing the experience of disability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Ecological literacy and beyond: Problem-based learning for future professionals.

    Science.gov (United States)

    Lewinsohn, Thomas M; Attayde, José Luiz; Fonseca, Carlos Roberto; Ganade, Gislene; Jorge, Leonardo Ré; Kollmann, Johannes; Overbeck, Gerhard E; Prado, Paulo Inácio; Pillar, Valério D; Popp, Daniela; da Rocha, Pedro L B; Silva, Wesley Rodrigues; Spiekermann, Annette; Weisser, Wolfgang W

    2015-03-01

    Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.

  11. Campus Retrofitting (CARE) Methodology: A Way to Co-Create Future Learning Environments

    DEFF Research Database (Denmark)

    Nenonen, Suvi; Eriksson, Robert; Niemi, Olli

    2016-01-01

    (CARE)- methodology for user-centric and co- creative campus retrofitting processes. The campus development research in Nordic countries and co-creation in retrofitting processes are discussed. The campus retrofitting cases in different countries are described by emphasising especially the methods...... of resources in form of both teachers and university facilities is challenged by development of integration of learning, teaching and the spaces where it takes place. The challenges are shared among users and owners of campus, where retrofitting is needed too. This paper aims to describe Campus Retrofitting...... they used. Based on the analysis of the methods the framework for Campus retrofitting (CARE) - methodology is presented and discussed. CARE-methodology is a tool to capture new logic to learning environment design. It has three key activities: co-creating, co-financing and co-evaluating. The integrated...

  12. New HOPE Pilot TM workshops in New York State : lessons learned in hydrogen education and teacher training

    Energy Technology Data Exchange (ETDEWEB)

    De Valladares, M.R. [M.R.S. Enterprises LLC, Bethesda, MD (United States)

    2009-07-01

    More than 300 New York State high school science and technology teachers participated at the New HOPE (Hydrogen Outreach Program for Education) workshops hosted by New York Energy Research Development Authority (NYSERDA), New York Power Authority (NYPA) and the Long Island Power Authority (LIPA). These teachers will impact approximately 150,000 students over the next 5 years. The teacher training was provided by M.R.S. Enterprises, LLC and its HOPE team. The workshops featured hands-on activities, such as construction of a fuel cell vehicle from everyday materials. Workshop topics ranged from hydrogen production, storage, distribution and utilization, and fuel cells. Teachers received the New HOPE Pilot TM, a user friendly curriculum with lesson plans along with 2 kits, namely a fuel cell and car chassis kit, and a HOPEMobileTM materials kit with which to continue the design and engineering process in the classroom.

  13. WE-H-BRB-03: Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, T. [Johns Hopkins University (United States)

    2016-06-15

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  14. WE-H-BRB-03: Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success

    International Nuclear Information System (INIS)

    McNutt, T.

    2016-01-01

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  15. Hydrogen and nuclear power

    International Nuclear Information System (INIS)

    Holt, D.J.

    1976-12-01

    This study examines the influence that the market demand for hydrogen might have on the development of world nuclear capacity over the next few decades. In a nuclear economy, hydrogen appears to be the preferred energy carrier over electricity for most purposes, due to its ready substitution and usage for all energy needs, as well as its low transmission costs. The economic factors upon which any transition to hydrogen fuelling will be largely based are seen to be strongly dependent on the form of future energy demand, the energy resource base, and on the status of technology. Accordingly, the world energy economy is examined to identify the factors which might affect the future demand price structure for energy, and a survey of current estimates of world energy resources, particularly oil, gas, nuclear, and solar, is presented. Current and projected technologies for production and utilization of hydrogen are reviewed, together with rudimentary cost estimates. The relative economics are seen to favour production of hydrogen from fossil fuels far into the foreseeable future, and a clear case emerges for high temperature nuclear reactors in such process heat applications. An expanding industrial market for hydrogen, and near term uses in steelmaking and aircraft fuelling are foreseen, which would justify an important development effort towards nuclear penetration of that market. (author)

  16. Makiguchi in the "Fractured Future": Value-Creating and Transformative World Language Learning

    Science.gov (United States)

    Goulah, Jason

    2009-01-01

    This article examines the applicability of Tsunesaburo Makiguchi's (1871-1944) educational ideas in what Denzin and Lincoln (2005) call the "fractured future," a time marked by human, environmental, and climatic destabilization, and a time in which the social sciences "are normative disciplines always already embedded in issues of…

  17. Deltas for the future : Lessons learned in a water innovation programme

    NARCIS (Netherlands)

    Van der Duin, P.; Bruggeman, W.; Sule, M.

    2011-01-01

    Delta regions worldwide have to cope with increasing pressure on land use and the consequences of climate change and rising sea-levels. Usual methods and solutions are no longer satisfactory for future challenges of flood protection, sustainable energy, and freshwater supply. Consequently, truly

  18. Flexible Pedagogies: Employer Engagement and Work-Based Learning. Flexible Pedagogies: Preparing for the Future Series

    Science.gov (United States)

    Kettle, Jane

    2013-01-01

    This publication focuses on national and international policy initiatives to develop a better understanding of work-based learners and the types of flexibility that may well enhance their study especially pedagogically. As part of our five-strand research project "Flexible Pedagogies: preparing for the future" it: (1) highlights the…

  19. Thorotrast: what we have learned and how it applies to radiobiological concerns of the future

    International Nuclear Information System (INIS)

    Kaul, Alexander; Miller, R.W.; Mole, R.H.

    1989-01-01

    Highlights of the Thorotrast panel discussion were the gaps in the dosimetric information, despite the wealth of epidemiological data, agents which might interact with Thorotrast in producing haemangiosarcoma of the liver, bone sarcomas, possible chemical toxicity of Thorotrast, the current state of various international studies, and the importance of maintaining tissue specimens for the future. (author)

  20. Future Directions in Assessment: Influences of Standards and Implications for Language Learning

    Science.gov (United States)

    Cox, Troy L.; Malone, Margaret E.; Winke, Paula

    2018-01-01

    As "Foreign Language Annals" concludes its 50th anniversary, it is fitting to review the past and peer into the future of standards-based education and assessment. Standards are a common yardstick used by educators and researchers as a powerful framework for conceptualizing teaching and measuring learner success. The impact of standards…

  1. Hydrogen fuel : well-to-pump pathways for 2050

    Energy Technology Data Exchange (ETDEWEB)

    Molburg, J. [Argonne National Lab., IL (United States); Mintz, M.; Folga, S.; Gillette, J.

    2002-07-01

    The authors discussed the topic of hydrogen fuels, and began the presentation by stating that the carbon intensity of world primary energy has been falling and hydrogen intensity has been rising. The declines in carbon can be explained by efficiency gains and fuel switches. There are several alternatives to gasoline fuel for vehicles, such as hydrogen, compressed natural gas, compressed natural gas/hydrogen. Emissions of greenhouse gases in the atmosphere represent a growing concern. The authors discussed four hydrogen pathways that have been modeled. They indicated that both natural gas pathways required additional natural gas transmission and storage. To better illustrate the hydrogen pathway, a conceptual representation of hydrogen pipeline loop supporting local hydrogen delivery was displayed. Some hydrogen distribution assumptions for centralized hydrogen production were examined. A cost modeling procedure was described, with the following topics: defining paths, determining tank-in fuel requirement, size pathway components, estimating component costs, and calculating pathway costs. The results indicated that the natural gas-based pathways were sensitive to feedstock cost, while coal and nuclear were not. Some of the conclusions that were arrived at were: (1) on a well-to-pump basis, with current technologies, the unit cost of hydrogen is expected to be 2 to 3 time that of gasoline, (2) the mpge of hydrogen-fueled vehicles must be more than double gasoline, and (3) hydrogen transport and production are the largest components of all pathways. For the future, the focus has to be on transition, including total and unit costs through study time frame, penetration of hydrogen blends, and niche markets. One must compare apples to apples, i e cost of infrastructure components over time, and learning curves. Pathways and scenarios must be re-examined, to include issues such as truck, rail marine market penetration; and hydrogen carrier pathways. Disruptive

  2. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    International Nuclear Information System (INIS)

    Offer, G.J.; Contestabile, M.; Howey, D.A.; Clague, R.; Brandon, N.P.

    2011-01-01

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: → Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. → The optimum size for a PHEV battery is between 5 and 15 kWh. → Current behaviour decreases percentage electric only miles for larger vehicles. → Low carbon electricity favours larger battery sizes as long as carbon is priced. → Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  3. Moderate Temperature Dense Phase Hydrogen Storage Materials within the US Department of Energy (DOE H2 Storage Program: Trends toward Future Development

    Directory of Open Access Journals (Sweden)

    Scott McWhorter

    2012-05-01

    Full Text Available Hydrogen has many positive attributes that make it a viable choice to augment the current portfolio of combustion-based fuels, especially when considering reducing pollution and greenhouse gas (GHG emissions. However, conventional methods of storing H2 via high-pressure or liquid H2 do not provide long-term economic solutions for many applications, especially emerging applications such as man-portable or stationary power. Hydrogen storage in materials has the potential to meet the performance and cost demands, however, further developments are needed to address the thermodynamics and kinetics of H2 uptake and release. Therefore, the US Department of Energy (DOE initiated three Centers of Excellence focused on developing H2 storage materials that could meet the stringent performance requirements for on-board vehicular applications. In this review, we have summarized the developments that occurred as a result of the efforts of the Metal Hydride and Chemical Hydrogen Storage Centers of Excellence on materials that bind hydrogen through ionic and covalent linkages and thus could provide moderate temperature, dense phase H2 storage options for a wide range of emerging Proton Exchange Membrane Fuel Cell (PEM FC applications.

  4. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Offer, G.J., E-mail: gregory.offer@imperial.ac.u [Department Earth Science Engineering, Imperial College London, SW7 2AZ London (United Kingdom); Contestabile, M. [Centre for Environmental Policy, Imperial College London, SW7 2AZ (United Kingdom); Howey, D.A. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ (United Kingdom); Clague, R. [Energy Futures Lab, Imperial College London, SW7 2AZ (United Kingdom); Brandon, N.P. [Department Earth Science Engineering, Imperial College London, SW7 2AZ London (United Kingdom)

    2011-04-15

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: {yields} Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. {yields} The optimum size for a PHEV battery is between 5 and 15 kWh. {yields} Current behaviour decreases percentage electric only miles for larger vehicles. {yields} Low carbon electricity favours larger battery sizes as long as carbon is priced. {yields} Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  5. Dual-track CCS stakeholder engagement: Lessons learned from FutureGen in Illinois

    Science.gov (United States)

    Hund, G.; Greenberg, S.E.

    2011-01-01

    FutureGen, as originally planned, was to be the world's first coal-fueled, near-zero emissions power plant with fully integrated, 90% carbon capture and storage (CCS). From conception through siting and design, it enjoyed strong support from multiple stakeholder groups, which benefited the overall project. Understanding the stakeholder engagement process for this project provides valuable insights into the design of stakeholder programs for future CCS projects. FutureGen is one of few projects worldwide that used open competition for siting both the power plant and storage reservoir. Most site proposals were coordinated by State governments. It was unique in this and other respects relative to the site selection method used on other DOE-supported projects. At the time of site selection, FutureGen was the largest proposed facility designed to combine an integrated gasification combined cycle (IGCC) coal-fueled power plant with a CCS system. Stakeholder engagement by states and the industry consortium responsible for siting, designing, building, and operating the facility took place simultaneously and on parallel tracks. On one track were states spearheading state-wide site assessments to identify candidate sites that they wanted to propose for consideration. On the other track was a public-private partnership between an industry consortium of thirteen coal companies and electric utilities that comprised the FutureGen Alliance (Alliance) and the U.S. Department of Energy (DOE). The partnership was based on a cooperative agreement signed by both parties, which assigned the lead for siting to the Alliance. This paper describes the stakeholder engagement strategies used on both of these tracks and provides examples from the engagement process using the Illinois semi-finalist sites. ?? 2011 Published by Elsevier Ltd.

  6. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  7. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  8. Envisioning the future of wildlife in a changing climate: Collaborative learning for adaptation planning

    Science.gov (United States)

    LeDee, Olivia E.; Karasov, W.H.; Martin, Karl J.; Meyer, Michael W.; Ribic, Christine; Van Deelen, Timothy R.

    2011-01-01

    Natural resource managers are tasked with assessing the impacts of climate change on conservation targets and developing adaptation strategies to meet agency goals. The complex, transboundary nature of climate change demands the collaboration of scientists, managers, and stakeholders in this effort. To share, integrate, and apply knowledge from these diverse perspectives, we must engage in social learning. In 2009, we initiated a process to engage university researchers and agency scientists and managers in collaborative learning to assess the impacts of climate change on terrestrial fauna in the state of Wisconsin, USA. We constructed conceptual Bayesian networks to depict the influence of climate change, key biotic and abiotic factors, and existing stressors on the distribution and abundance of 3 species: greater prairie-chicken (Tympanuchus cupido), wood frog (Lithobates sylvaticus), and Karner blue butterfly (Plebejus melissa samuelis). For each species, we completed a 2-stage expert review that elicited dialogue on information gaps, management opportunities, and research priorities. From our experience, collaborative network modeling proved to be a powerful tool to develop a common vision of the potential impacts of climate change on conservation targets.

  9. Cognitive learning and its future in urology: surgical skills teaching and assessment.

    Science.gov (United States)

    Shafiei, Somayeh B; Hussein, Ahmed A; Guru, Khurshid A

    2017-07-01

    The aim of this study is to provide an overview of the current status of novel cognitive training approaches in surgery and to investigate the potential role of cognitive training in surgical education. Kinematics of end-effector trajectories, as well as cognitive state features of surgeon trainees and mentors have recently been studied as modalities to objectively evaluate the expertise level of trainees and to shorten the learning process. Virtual reality and haptics also have shown promising in research results in improving the surgical learning process by providing feedback to the trainee. 'Cognitive training' is a novel approach to enhance training and surgical performance. The utility of cognitive training in improving motor skills in other fields, including sports and rehabilitation, is promising enough to justify its utilization to improve surgical performance. However, some surgical procedures, especially ones performed during human-robot interaction in robot-assisted surgery, are much more complicated than sport and rehabilitation. Cognitive training has shown promising results in surgical skills-acquisition in complicated environments such as surgery. However, these methods are mostly developed in research groups using limited individuals. Transferring this research into the clinical applications is a demanding challenge. The aim of this review is to provide an overview of the current status of these novel cognitive training approaches in surgery and to investigate the potential role of cognitive training in surgical education.

  10. The Italian hydrogen programme

    International Nuclear Information System (INIS)

    Raffaele Vellone

    2001-01-01

    Hydrogen could become an important option in the new millennium. It provides the potential for a sustainable energy system as it can be used to meet most energy needs without harming the environment. In fact, hydrogen has the potential for contributing to the reduction of climate-changing emissions and other air pollutants as it exhibits clean combustion with no carbon or sulphur oxide emissions and very low nitrogen oxide emissions. Furthermore, it is capable of direct conversion to electricity in systems such as fuel cells without generating pollution. However, widespread use of hydrogen is not feasible today because of economic and technological barriers. In Italy, there is an ongoing national programme to facilitate the introduction of hydrogen as an energy carrier. This programme aims to promote, in an organic frame, a series of actions regarding the whole hydrogen cycle. It foresees the development of technologies in the areas of production, storage, transport and utilisation. Research addresses the development of technologies for separation and sequestration of CO 2 , The programme is shared by public organisations (research institutions and universities) and national industry (oil companies, electric and gas utilities and research institutions). Hydrogen can be used as a fuel, with significant advantages, both for electric energy generation/ co-generation (thermo-dynamic cycles and fuel cells) and transportation (internal combustion engine and fuel cells). One focus of research will be the development of fuel cell technologies. Fuel cells possess all necessary characteristics to be a key technology in a future economy based on hydrogen. During the initial phase of the project, hydrogen will be derived from fossil sources (natural gas), and in the second phase it will be generated from renewable electricity or nuclear energy. The presentation will provide a review of the hydrogen programme and highlight future goals. (author)

  11. Ten questions on hydrogen Jean Dhers

    International Nuclear Information System (INIS)

    2005-01-01

    The author proposes explanations and comments on the use of hydrogen in energy production. He discusses whether hydrogen can be a new energy technology within the context of a sustainable development, whether hydrogen is actually an energy vector, what would be the benefits of using hydrogen in energy applications, why it took so much time to be interested in hydrogen, when the hydrogen vector will be needed, whether we can economically produce hydrogen to meet energy needs (particularly in transports), whether hydrogen is the best suited energy vector for ground transports in the future, how to retail hydrogen for ground transports, what are the difficulties to store hydrogen for ground transport applications, and how research programs on hydrogen are linked together

  12. The hydrogen highway

    International Nuclear Information System (INIS)

    Grigg, A.

    2004-01-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  13. The hydrogen highway

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, A. [Fuel Cells Canada, Vancouver, British Columbia (Canada)

    2004-07-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  14. Closing the gap between socioeconomic and financial implications of residential and community level hydrogen-based energy systems: Incentives needed for a bridge to the future

    Science.gov (United States)

    Verduzco, Laura E.

    The use of hydrogen as an energy carrier has the potential to decrease the amount of pollutants emitted to the atmosphere, significantly reduce our dependence on imported oil and resolve geopolitical issues related to energy consumption. The current status of hydrogen technology makes it prohibitive and financially risky for most investors to commit the money required for large-scale hydrogen production. Therefore, alternative strategies such as small and medium-scale hydrogen applications should be implemented during the early stages of the transition to the hydrogen economy in order to test potential markets and technology readiness. While many analysis tools have been built to estimate the requirements of the transition to a hydrogen economy, few have focused on small and medium-scale hydrogen production and none has paired financial with socioeconomic costs at the residential level. The computer-based tool (H2POWER) presented in this study calculates the capacity, cost and socioeconomic impact of the systems needed to meet the energy demands of a home or a community using home and neighborhood refueling units, which are systems that can provide electricity and heat to meet the energy demands of either (1) a home and automobile or (2) a cluster of homes and a number of automobiles. The financial costs of the production, processing and delivery sub-systems that conform the refueling units are calculated using cost data of existing technology and normalizing them to calculate capital and net present cost. The monetary value of the externalities (socioeconomic analysis) caused by each system is calculated by H2POWER through a statistical analysis of the cost associated to various externalities. Additionally, H2POWER calculates the financial impact of different penalties and incentives (such as net metering, low interest loans, fuel taxes, and emission penalties) on the cost of the system from the point of view of a developer and a homeowner. In order to assess the

  15. Artificial intelligence in nuclear engineering: developments, lesson learned and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Da [The Belgian Nuclear Research Centre (SCK.CEN), Mol (Belgium)]. E-mail: druan@sckcen.be

    2005-07-01

    Full text of publication follows: In this lecture, an overview on artificial intelligence (AI) from control to decision making in nuclear engineering will be given mainly based on the 10 years progress of the FLINS forum (Fuzzy Logic and Intelligent Technology in Nuclear Science). Some FLINS concrete examples on nuclear reactor operation, nuclear safeguards information management, and cost estimation under uncertainty for a large nuclear project will be illustrated for the potential use of AI in nuclear engineering. Recommendations and future research directions on AI in nuclear engineering will be suggested from a practical point of view. (author)

  16. Artificial intelligence in nuclear engineering: developments, lesson learned and future directions

    International Nuclear Information System (INIS)

    Ruan, Da

    2005-01-01

    Full text of publication follows: In this lecture, an overview on artificial intelligence (AI) from control to decision making in nuclear engineering will be given mainly based on the 10 years progress of the FLINS forum (Fuzzy Logic and Intelligent Technology in Nuclear Science). Some FLINS concrete examples on nuclear reactor operation, nuclear safeguards information management, and cost estimation under uncertainty for a large nuclear project will be illustrated for the potential use of AI in nuclear engineering. Recommendations and future research directions on AI in nuclear engineering will be suggested from a practical point of view. (author)

  17. Obligatory course unit! Trainee astronomers learn to communicate their future scientific results

    Science.gov (United States)

    Del Puerto, C.

    2008-06-01

    A scientist must not only do science, but must also know how to communicate it. It is possible that he or she even ends up becoming devoted professionally either to outreach or to teaching. Therefore, the Master's Degree Course in Astrophysics, created by the University of La Laguna (ULL) with the collaboration of the Instituto de Astrofisica de Canarias (IAC), includes in its programme the four-month core course unit Communicating Astronomy: Professional Results and Educational Practice (in Spanish, Comunicación de Resultados Cientificos y Didactica de la Astronomia), that is worth three ECTs. In this poster, I present the results of our experience from the academic year 2006-2007, in which seventeen Master's students, in addition to learning the skills necessary to communicating their results within the scientific community, have also studied the language of popularisation in a practical and fun way through role-playing as science writers and schoolteachers in the classroom.

  18. National Hydrogen Roadmap Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    This document summarizes the presentations and suggestions put forth by officials, industry experts and policymakers in their efforts to come together to develop a roadmap for America''s clean energy future and outline the key barriers and needs to achieve the hydrogen vision. The National Hydrogen Roadmap Workshop was held April 2-3, 2002. These proceedings were compiled into a formal report, The National Hydrogen Energy Roadmap, which is also available online.

  19. Towards the next generation of climate change assessment: learning from past experiences to inform a sustainable future

    Science.gov (United States)

    Mach, K. J.; Field, C. B.

    2017-12-01

    Over decades, assessment by the Intergovernmental Panel on Climate Change and many others has bolstered understanding of the climate problem: unequivocal warming, pervasive impacts, and serious risks from continued high emissions of heat-trapping gases. Societies are increasingly responding with early actions to decarbonize energy systems and prepare for impacts. This emerging era of climate solutions creates a need for new approaches to assessment that emphasize learning from ongoing real-world experiences and that help close the gap between aspirations and the pace of progress. Against this backdrop, the presentation will take stock of recent advances and challenges in assessment, especially drawing from analysis of climate change assessment. Four assessment priorities will be considered: (1) integrating diverse evidence including quantitative and qualitative results, (2) applying rigorous expert judgment in evaluating knowledge and uncertainties, (3) exploring widely ranging futures and their connections to ongoing choices and actions, and (4) incorporating interactions among experts and decision-makers in assessment processes. Across these assessment priorities, the presentation will critique both opportunities and pitfalls, outlining possibilities for future experimentation, innovation, and learning. It will evaluate, in particular, lessons from risk-based approaches; strategies for transparently acknowledging persistent uncertainties and contested priorities; ways to minimize biases and foster creativity in expert judgments; scenario-based assessment of surprises, deep uncertainties, and decision-making implications; and opportunities for broadening the conception of expertise and engaging different decision-makers and stakeholders. Overall, these approaches can advance assessment products and processes as a basis for sustained dialogue supporting decision-making.

  20. Emerging zoonoses: responsible communication with the media--lessons learned and future perspectives.

    Science.gov (United States)

    Tabbaa, D

    2010-11-01

    Emerging zoonotic disease outbreaks are inevitable and often unpredictable events. The environment surrounding an outbreak is unique in public health, and outbreaks are frequently marked by uncertainty, confusion and a sense of urgency. Good communication at this time, generally through the media, is essential, but examples unfortunately abound of communication failures that have delayed outbreak control, undermined public trust and compliance, and unnecessarily prolonged economic, social and political turmoil. With this paper we hope to disseminate the idea that communication expertise has become as essential to outbreak control as epidemiological training and laboratory analysis. The paper presents the best practices for communicating with the public and discusses future aspects of communicating through the mass media during an outbreak. Copyright © 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  1. A review of stairway falls and stair negotiation: Lessons learned and future needs to reduce injury.

    Science.gov (United States)

    Jacobs, Jesse V

    2016-09-01

    Stairways are a common location for falls, and they result in a disproportionate risk of death or severe injury. Stairway falls are a significant problem across the lifespan and are often coincident with risky behaviors during stair use. The mechanics of successful stair negotiation for healthy young and older adults have been well described. These studies imply that current stair design does not offer an optimal universal design to meet the needs of older adults or people with health conditions. In addition, impaired stair negotiation associates with more than impaired strength, including functional impairments of cognitive load, sensory function and central motor coordination. Identification of behavioral strategies or stairway environments that assist or hinder recovery from a loss of balance on stairs remains incomplete. Therefore, future studies should investigate the mechanisms of balance recovery on stairs as well as the effectiveness of environmental interventions to mitigate stairway falls and injuries. Potential areas for evaluation may include modifying stair dimensions, surfaces, handrails, visual cues, and removing distractors of attention. Studies should also evaluate combinatorial interventions on person-related factors, such as behavioral interventions to decrease risky behaviors during stair use as well as interventions on cognitive, sensory, and motor functions relevant to stair use. Moreover, future studies should take advantage of new technologies to record stair use outside the laboratory in order to identify people or locations at risk for stairway falls. Such studies would inform the potential for broad-spectrum programs that decrease the risk of stairway falls and injuries. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.

  2. Canadian hydrogen strategies

    International Nuclear Information System (INIS)

    Fairlie, M.; Scepanovic, V.; Dube, J.; Hammerli, M.; Taylor, J.

    2004-01-01

    'Full text:' In May of 2004, industry and government embarked on a process to create a strategic plan for development of the 'hydrogen economy' in Canada. The process was undertaken to determine how the development and commercialization of hydrogen technologies could be accelerated to yield a 'visible' reduction in greenhouse gases within the timeframe of Kyoto, while establishing a direction that addresses the necessity of far greater reductions in the future. Starting with a meeting of twenty seven experts drawn from the hydrogen technology, energy and transportation industries and government, a vision and mission for the planning process was developed. Two months later a second meeting was held with a broader group of stakeholders to develop hydrogen transition strategies that could achieve the mission, and from identifying the barriers and enablers for these strategies, an action plan was created. This paper reviews the results from this consultation process and discusses next steps. (author)

  3. Hydrogen perspectives in Japan

    International Nuclear Information System (INIS)

    Furutani, H.

    2000-01-01

    Hydrogen energy is considered to present a potential effective options for achieving the greenhouse gas minimization. The MITI (Ministry of International Trade and Industry) of Japanese Government is promoting the WE-NET (World Energy Network System) Project which envisions (1) construction of a global energy network for effective supply, transportation, storage and utilization of renewable energy using hydrogen as an energy carrier as a long-term options of sustainable energy economy, and (2) promotion of market entry of hydrogen energy in near and/or mid future even before construction of a WE-NET system. In this paper, I would like to report how far the hydrogen energy technology development addressed under Phase I has progressed, and describe the outline of the Phase II Plan. (author)

  4. Clinical Trials for Disease-Modifying Therapies in Alzheimer's Disease: A Primer, Lessons Learned, and a Blueprint for the Future.

    Science.gov (United States)

    Cummings, Jeffrey; Ritter, Aaron; Zhong, Kate

    2018-03-16

    Alzheimer's disease (AD) has no currently approved disease-modifying therapies (DMTs), and treatments to prevent, delay the onset, or slow the progression are urgently needed. A delay of 5 years if available by 2025 would decrease the total number of patients with AD by 50% in 2050. To meet the definition of DMT, an agent must produce an enduring change in the course of AD; clinical trials of DMTs have the goal of demonstrating this effect. AD drug discovery entails target identification followed by high throughput screening and lead optimization of drug-like compounds. Once an optimized agent is available and has been assessed for efficacy and toxicity in animals, it progresses through Phase I testing with healthy volunteers, Phase II learning trials to establish proof-of-mechanism and dose, and Phase III confirmatory trials to demonstrate efficacy and safety in larger populations. Phase III is followed by Food and Drug Administration review and, if appropriate, market access. Trial populations include cognitively normal at-risk participants in prevention trials, mildly impaired participants with biomarker evidence of AD in prodromal AD trials, and subjects with cognitive and functional impairment in AD dementia trials. Biomarkers are critical in trials of DMTs, assisting in participant characterization and diagnosis, target engagement and proof-of-pharmacology, demonstration of disease-modification, and monitoring side effects. Clinical trial designs include randomized, parallel group; delayed start; staggered withdrawal; and adaptive. Lessons learned from completed trials inform future trials and increase the likelihood of success.

  5. Effects of implementation of problem-based learning tutorials on fifth-year pharmacy students and future issues.

    Science.gov (United States)

    Sato, Atsuko; Morone, Mieko; Azuma, Yutaka

    2011-01-01

    At Tohoku Pharmaceutical University, problem-based learning (PBL) tutorials were incorporated into "prescription analysis" and "case analysis" for fifth-year students in 2010 with the following objectives: ① application and confirmation of acquired knowledge and skills, and acquisition of ② communication ability, ③ presentation ability, ④ cooperativeness through groupwork, and ⑤ information collecting ability. In the present study, we conducted a questionnaire survey on a total of 158 fifth-year students in order to investigate the educational benefits of PBL tutorials. The results showed that the above five objectives of PBL tutorials were being achieved, and confirmed the educational benefits expected of PBL tutorials. In contrast, it was found to be necessary to improve the contents of scenarios and lectures, time allocation regarding schedules, the learning environment, the role of tutors, and other matters. In order to maximize the educational benefits of PBL tutorials, it will be necessary in the future to continue to conduct surveys on students and make improvements to the curriculum based on survey results.

  6. Future Time Orientation and Learning Conceptions: Effects on Metacognitive Strategies, Self-Efficacy Beliefs, Study Effort and Academic Achievement

    Science.gov (United States)

    Gutiérrez-Braojos, Calixto

    2015-01-01

    During the past decade, research on the constructive learning process has been conducted mainly from two perspectives: student approaches to learning (SAL) and self-regulated learning (SRL). The SAL perspective has highlighted the role of learning conceptions with respect to other topics involved in constructive learning processes, whereas…

  7. Hydrogen Village : creating hydrogen and fuel cell communities

    International Nuclear Information System (INIS)

    Smith, G.R.

    2009-01-01

    The Hydrogen Village (H2V) is a collaborative public-private partnership administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. This end user-driven, market development program accelerates the commercialization of hydrogen and fuel cell (FC) technologies throughout the Greater Toronto Area (GTA). The program targets 3 specific aspects of market development, notably deployment of near market technologies in community based stationary and mobile applications; development of a coordinated hydrogen delivery and equipment service infrastructure; and societal factors involving corporate policy and public education. This presentation focused on lessons learned through outreach programs and the deployment of solid oxide fuel cell (SOFC) heat and power generation; indoor and outdoor fuel cell back up power systems; fuel cell-powered forklifts, delivery vehicles, and utility vehicles; hydrogen internal combustion engine powered shuttle buses, sedans, parade float; hydrogen production/refueling stations in the downtown core; and temporary fuel cell power systems

  8. Harmful algal blooms and climate change: Learning from the past and present to forecast the future

    Science.gov (United States)

    Wells, Mark L.; Trainer, Vera L.; Smayda, Theodore J.; Karlson, Bengt S.O.; Trick, Charles G.; Kudela, Raphael M.; Ishikawa, Akira; Bernard, Stewart; Wulff, Angela; Anderson, Donald M.; Cochlan, William P.

    2015-01-01

    Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB “best practices” manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic

  9. Fundamental biomechanics of the spine--What we have learned in the past 25 years and future directions.

    Science.gov (United States)

    Oxland, Thomas R

    2016-04-11

    Since the publication of the 2nd edition of White and Panjabi׳s textbook, Clinical Biomechanics of the Spine in 1990, there has been considerable research on the biomechanics of the spine. The focus of this manuscript will be to review what we have learned in regards to the fundamentals of spine biomechanics. Topics addressed include the whole spine, the functional spinal unit, and the individual components of the spine (e.g. vertebra, intervertebral disc, spinal ligaments). In these broad categories, our understanding in 1990 is reviewed and the important knowledge or understanding gained through the subsequent 25 years of research is highlighted. Areas where our knowledge is lacking helps to identify promising topics for future research. In this manuscript, as in the White and Panjabi textbook, the emphasis is on experimental research using human material, either in vivo or in vitro. The insights gained from mathematical models and animal experimentation are included where other data are not available. This review is intended to celebrate the substantial gains that have been made in the field over these past 25 years and also to identify future research directions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Case based learning and traditional teaching strategies: where lies the future

    International Nuclear Information System (INIS)

    Bano, N.; Arshad, F.; Khan, S.; Safdar, C.A.

    2015-01-01

    To explore the perceptions of final year medical students about efficacy of traditional teaching methods and Case based learning (CBL) and to evaluate the effect of CBL on students' performance and satisfaction level during their clinical rotation in Obstetrics and Gynaecology Department. Study Design: Sequential mixed method study. Place and Duration of Study: Department of Obstetrics and Gynaecology, Holy Family Hospital, Rawalpindi from January 2013 to June 2013. Participants and Methods: Students expressed their perceptions on a Likert scale in a questionnaire. It was triangulated with data collected from 4 focus group discussions (FGD). Students for FGD were selected using purposive sampling. Students' performance in OSPE and long case was compared with another group who was taught with traditional methods. Quantitative data was analyzed by SPSS version 17. For qualitative data, themes and patterns were identified using content analysis technique. Results: Of 141 students, 134 returned completed forms giving a response rate of 95%.Gender distribution was similar in both the groups. There was no statistically significant difference in performance assessment. Strong preference for CBL was expressed by 97% as it improved their confidence (83%), clinical and presentation skills (91 and 80%), attitude and student teacher relationship (68 and 77%), strengthened link between theory and practice (90%), and integrated basic and clinical knowledge (92%). Seventy six percent stated that all teaching should be CBL. Qualitative data from SGD strongly supported these views. Conclusion: Although test performance was similar in both the groups, students expressed strong preference for CBL as compared to traditional methods. (author)

  11. Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future?

    Directory of Open Access Journals (Sweden)

    Ariel E. Turcios

    2014-02-01

    Full Text Available Many aquaculture systems generate high amounts of wastewater containing compounds such as suspended solids, total nitrogen and total phosphorus. Today, aquaculture is imperative because fish demand is increasing. However, the load of waste is directly proportional to the fish production. Therefore, it is necessary to develop more intensive fish culture with efficient systems for wastewater treatment. A number of physical, chemical and biological methods used in conventional wastewater treatment have been applied in aquaculture systems. Constructed wetlands technology is becoming more and more important in recirculating aquaculture systems (RAS because wetlands have proven to be well-established and a cost-effective method for treating wastewater. This review gives an overview about possibilities to avoid the pollution of water resources; it focuses initially on the use of systems combining aquaculture and plants with a historical review of aquaculture and the treatment of its effluents. It discusses the present state, taking into account the load of pollutants in wastewater such as nitrates and phosphates, and finishes with recommendations to prevent or at least reduce the pollution of water resources in the future.

  12. Learning from the Past, Looking to the Future: Modeling Social Unrest in Karachi, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Jarrod [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kurzrok, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hund, Gretchen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fagley, Erik M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-01

    Social unrest represents a major challenge for policy makers around the globe, as it can quickly escalate from small scale disturbances to highly public protests, riots and even civil war. This research was motivated by a need to understand social instability and to unpack the comments made during a spring 2013 conference hosted by Pacific Northwest National Laboratory’s Center for Global Security and the U.S. Institute for Peace, where policymakers noted that models considering social instability are often not suitable for decision-making. This analysis shows that existing state level models of instability could be improved in spatial scale to the city level, even without significantly improved data access. Better data would make this analysis more complete and likely improve the quality of the model. Another challenge with incorporating modeling into decision-making is the need to understand uncertainty in a model. Policy makers are frequently tasked with making decisions without a clear outcome, so characterization of uncertainty is critical. This report describes the work and findings of the project. It took place in three phases: a literature review of social stability research, a “hindsight scan” that looked at historical data, and a “foresight scan” looking at future scenarios.

  13. Vitamin D Requirements for the Future-Lessons Learned and Charting a Path Forward.

    Science.gov (United States)

    Cashman, Kevin D

    2018-04-25

    Estimates of dietary requirements for vitamin D or Dietary Reference Values (DRV) are crucial from a public health perspective in providing a framework for prevention of vitamin D deficiency and optimizing vitamin D status of individuals. While these important public health policy instruments were developed with the evidence-base and data available at the time, there are some issues that need to be clarified or considered in future iterations of DRV for vitamin D. This is important as it will allow for more fine-tuned and truer estimates of the dietary requirements for vitamin D and thus provide for more population protection. The present review will overview some of the confusion that has arisen in relation to the application and/or interpretation of the definitions of the Estimated Average Requirement (EAR) and Recommended Dietary Allowance (RDA). It will also highlight some of the clarifications needed and, in particular, how utilization of a new approach in terms of using individual participant-level data (IPD), over and beyond aggregated data, from randomised controlled trials with vitamin D may have a key role in generating these more fine-tuned and truer estimates, which is of importance as we move towards the next iteration of vitamin D DRVs.

  14. The National Diabetes Education Program at 20 Years: Lessons Learned and Plans for the Future.

    Science.gov (United States)

    Siminerio, Linda M; Albright, Ann; Fradkin, Judith; Gallivan, Joanne; McDivitt, Jude; Rodríguez, Betsy; Tuncer, Diane; Wong, Faye

    2018-02-01

    The National Diabetes Education Program (NDEP) was established to translate findings from diabetes research studies into clinical and public health practice. Over 20 years, NDEP has built a program with partnership engagement that includes science-based resources for multiple population and stakeholder audiences. Throughout its history, NDEP has developed strategies and messages based on communication research and relied on established behavior change models from health education, communication, and social marketing. The program's success in continuing to engage diverse partners after 20 years has led to time-proven and high-quality resources that have been sustained. Today, NDEP maintains a national repository of diabetes education tools and resources that are high quality, science- and audience-based, culturally and linguistically appropriate, and available free of charge to a wide variety of audiences. This review looks back and describes NDEP's evolution in transforming and communicating diabetes management and type 2 diabetes prevention strategies through partnerships, campaigns, educational resources, and tools and identifies future opportunities and plans. © 2018 by the American Diabetes Association.

  15. Genomics of Aspergillus oryzae: Learning from the History of Koji Mold and Exploration of Its Future

    Science.gov (United States)

    Machida, Masayuki; Yamada, Osamu; Gomi, Katsuya

    2008-01-01

    At a time when the notion of microorganisms did not exist, our ancestors empirically established methods for the production of various fermentation foods: miso (bean curd seasoning) and shoyu (soy sauce), both of which have been widely used and are essential for Japanese cooking, and sake, a magical alcoholic drink consumed at a variety of ritual occasions, are typical examples. A filamentous fungus, Aspergillus oryzae, is the key organism in the production of all these traditional foods, and its solid-state cultivation (SSC) has been confirmed to be the secret for the high productivity of secretory hydrolases vital for the fermentation process. Indeed, our genome comparison and transcriptome analysis uncovered mechanisms for effective degradation of raw materials in SSC: the extracellular hydrolase genes that have been found only in the A. oryzae genome but not in A. fumigatus are highly induced during SSC but not in liquid cultivation. Also, the temperature reduction process empirically adopted in the traditional soy-sauce fermentation processes has been found to be important to keep strong expression of the A. oryzae-specific extracellular hydrolases. One of the prominent potentials of A. oryzae is that it has been successfully applied to effective degradation of biodegradable plastic. Both cutinase, responsible for the degradation of plastic, and hydrophobin, which recruits cutinase on the hydrophobic surface to enhance degradation, have been discovered in A. oryzae. Genomic analysis in concert with traditional knowledge and technology will continue to be powerful tools in the future exploration of A. oryzae. PMID:18820080

  16. Materials towards carbon-free, emission-free and oil-free mobility: hydrogen fuel-cell vehicles--now and in the future.

    Science.gov (United States)

    Hirose, Katsuhiko

    2010-07-28

    In the past, material innovation has changed society through new material-induced technologies, adding a new value to society. In the present world, engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector, the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global economy, it is time to accelerate our efforts towards this change. Industries are tackling global energy issues such as oil and CO2, as well as local environmental problems, such as NO(x) and particulate matter. Hydrogen is the most promising candidate to provide carbon-free, emission-free and oil-free mobility. As such, engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies, as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.

  17. [Disasters and emergency situations: what have we learned from the past to prepare for the future?].

    Science.gov (United States)

    Peleg, Kobi

    2010-07-01

    Israel has gained extensive experience in the mass casuaLty field, especially from dealing with terrorism events. This special issue of "Harefuah" includes articles that describe and analyze several aspects and approaches related to mass casualty event (MCE) preparedness and response strategies, based on Israel's experience. Feigenberg reports that Magen David Adom (MDA) was able to evacuate all urgent injuries during an MCE from the site to a hospital in 28 minutes, on average. Of the MCE casualties, 71% were evacuated directly to level 1 trauma centers. Rafalowski notes that the ability of MDA to implement organizational and operational Learning processes close to the time of the incident, as well as their modular operational approach, which allows flexibility in responding to simultaneous events, are probably among the reasons that have helped MDA reach a high Level of success in dealing with MCEs. Analysis of terrorism injury data demonstrates that these injuries, suffered by both children and adults, are characterized by increased complexity, with higher severity, higher in-patient mortality rates, and significantly greater use of precious hospital resources such as intensive care, operating rooms, CT, and days of hospitalization. Extensive experience dealing with MCEs has brought managerial insights to the entire health system, for instance in the hospitalization system and clinical management of injuries. In her article, Adini defines five major components for assessing the Israeli health system in emergencies. Shasha's article discusses the principles of hospital preparedness while working under fire. The importance of this subject has in recent years helped bring a more academic approach to emergency and disaster management in the world and in Israel, as enacted at Tel Aviv University's Multidisciplinary Master's Program in Emergency and Disaster Management, and also in other universities that focus on specific disciplines. In summary, achieving

  18. Synthesizing late Holocene paleoclimate reconstructions: Lessons learned, common challenges, and implications for future research

    Science.gov (United States)

    Rodysill, J. R.

    2017-12-01

    Proxy-based reconstructions provide vital information for developing histories of environmental and climate changes. Networks of spatiotemporal paleoclimate information are powerful tools for understanding dynamical processes within the global climate system and improving model-based predictions of the patterns and magnitudes of climate changes at local- to global-scales. Compiling individual paleoclimate records and integrating reconstructed climate information in the context of an ensemble of multi-proxy records, which are fundamental for developing a spatiotemporal climate data network, are hindered by challenges related to data and information accessibility, chronological uncertainty, sampling resolution, climate proxy type, and differences between depositional environments. The U.S. Geological Survey (USGS) North American Holocene Climate Synthesis Working Group has been compiling and integrating multi-proxy paleoclimate data as part of an ongoing effort to synthesize Holocene climate records from North America. The USGS North American Holocene Climate Synthesis Working Group recently completed a late Holocene hydroclimate synthesis for the North American continent using several proxy types from a range of depositional environments, including lakes, wetlands, coastal marine, and cave speleothems. Using new age-depth relationships derived from the Bacon software package, we identified century-scale patterns of wetness and dryness for the past 2000 years with an age uncertainty-based confidence rating for each proxy record. Additionally, for highly-resolved North American lake sediment records, we computed average late Holocene sediment deposition rates and identified temporal trends in age uncertainty that are common to multiple lakes. This presentation addresses strengths and challenges of compiling and integrating data from different paleoclimate archives, with a particular focus on lake sediments, which may inform and guide future paleolimnological studies.

  19. Thermal Fatigue Evaluation of Pb-Free Solder Joints: Results, Lessons Learned, and Future Trends

    Science.gov (United States)

    Coyle, Richard J.; Sweatman, Keith; Arfaei, Babak

    2015-09-01

    Thermal fatigue is a major source of failure of solder joints in surface mount electronic components and it is critically important in high reliability applications such as telecommunication, military, and aeronautics. The electronic packaging industry has seen an increase in the number of Pb-free solder alloy choices beyond the common near-eutectic Sn-Ag-Cu alloys first established as replacements for eutectic SnPb. This paper discusses the results from Pb-free solder joint reliability programs sponsored by two industry consortia. The characteristic life in accelerated thermal cycling is reported for 12 different Pb-free solder alloys and a SnPb control in 9 different accelerated thermal cycling test profiles in terms of the effects of component type, accelerated thermal cycling profile and dwell time. Microstructural analysis on assembled and failed samples was performed to investigate the effect of initial microstructure and its evolution during accelerated thermal cycling test. A significant finding from the study is that the beneficial effect of Ag on accelerated thermal cycling reliability (measured by characteristic lifetime) diminishes as the severity of the accelerated thermal cycling, defined by greater ΔT, higher peak temperature, and longer dwell time increases. The results also indicate that all the Pb-free solders are more reliable in accelerated thermal cycling than the SnPb alloy they have replaced. Suggestions are made for future work, particularly with respect to the continued evolution of alloy development for emerging application requirements and the value of using advanced analytical methods to provide a better understanding of the effect of microstructure and its evolution on accelerated thermal cycling performance.

  20. Optimization of pH and nitrogen for enhanced hydrogen production by Synechocystis sp. PCC 6803 via statistical and machine learning methods.

    Science.gov (United States)

    Burrows, Elizabeth H; Wong, Weng-Keen; Fern, Xiaoli; Chaplen, Frank W R; Ely, Roger L

    2009-01-01

    The nitrogen (N) concentration and pH of culture media were optimized for increased fermentative hydrogen (H(2)) production from the cyanobacterium, Synechocystis sp. PCC 6803. The optimization was conducted using two procedures, response surface methodology (RSM), which is commonly used, and a memory-based machine learning algorithm, Q2, which has not been used previously in biotechnology applications. Both RSM and Q2 were successful in predicting optimum conditions that yielded higher H(2) than the media reported by Burrows et al., Int J Hydrogen Energy. 2008;33:6092-6099 optimized for N, S, and C (called EHB-1 media hereafter), which itself yielded almost 150 times more H(2) than Synechocystis sp. PCC 6803 grown on sulfur-free BG-11 media. RSM predicted an optimum N concentration of 0.63 mM and pH of 7.77, which yielded 1.70 times more H(2) than EHB-1 media when normalized to chlorophyll concentration (0.68 +/- 0.43 micromol H(2) mg Chl(-1) h(-1)) and 1.35 times more when normalized to optical density (1.62 +/- 0.09 nmol H(2) OD(730) (-1) h(-1)). Q2 predicted an optimum of 0.36 mM N and pH of 7.88, which yielded 1.94 and 1.27 times more H(2) than EHB-1 media when normalized to chlorophyll concentration (0.77 +/- 0.44 micromol H(2) mg Chl(-1) h(-1)) and optical density (1.53 +/- 0.07 nmol H(2) OD(730) (-1) h(-1)), respectively. Both optimization methods have unique benefits and drawbacks that are identified and discussed in this study. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  1. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  2. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  3. California Power-to-Gas and Power-to-Hydrogen Near-Term Business Case Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, Josh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    Flexible operation of electrolysis systems represents an opportunity to reduce the cost of hydrogen for a variety of end-uses while also supporting grid operations and thereby enabling greater renewable penetration. California is an ideal location to realize that value on account of growing renewable capacity and markets for hydrogen as a fuel cell electric vehicle (FCEV) fuel, refineries, and other end-uses. Shifting the production of hydrogen to avoid high cost electricity and participation in utility and system operator markets along with installing renewable generation to avoid utility charges and increase revenue from the Low Carbon Fuel Standard (LCFS) program can result in around $2.5/kg (21%) reduction in the production and delivery cost of hydrogen from electrolysis. This reduction can be achieved without impacting the consumers of hydrogen. Additionally, future strategies for reducing hydrogen cost were explored and include lower cost of capital, participation in the Renewable Fuel Standard program, capital cost reduction, and increased LCFS value. Each must be achieved independently and could each contribute to further reductions. Using the assumptions in this study found a 29% reduction in cost if all future strategies are realized. Flexible hydrogen production can simultaneously improve the performance and decarbonize multiple energy sectors. The lessons learned from this study should be used to understand near-term cost drivers and to support longer-term research activities to further improve cost effectiveness of grid integrated electrolysis systems.

  4. California-Specific Power-to-Hydrogen and Power-to-Gas Business Case Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, Joshua D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-12

    Flexible operation of electrolysis systems represents an opportunity to reduce the cost of hydrogen for a variety of end-uses while also supporting grid operations and thereby enabling greater renewable penetration. California is an ideal location to realize that value on account of growing renewable capacity and markets for hydrogen as a fuel cell electric vehicle (FCEV) fuel, refineries, and other end-uses. Shifting the production of hydrogen to avoid high cost electricity and participation in utility and system operator markets along with installing renewable generation to avoid utility charges and increase revenue from the Low Carbon Fuel Standard (LCFS) program can result in around $2.5/kg (21%) reduction in the production and delivery cost of hydrogen from electrolysis. This reduction can be achieved without impacting the consumers of hydrogen. Additionally, future strategies for reducing hydrogen cost were explored and include lower cost of capital, participation in the Renewable Fuel Standard program, capital cost reduction, and increased LCFS value. Each must be achieved independently and could each contribute to further reductions. Using the assumptions in this study found a 29% reduction in cost if all future strategies are realized. Flexible hydrogen production can simultaneously improve the performance and decarbonize multiple energy sectors. The lessons learned from this study should be used to understand near-term cost drivers and to support longer-term research activities to further improve cost effectiveness of grid integrated electrolysis systems.

  5. Developing dental faculty for the future: ADEA/AAL Institute for Teaching and Learning, 2006-09.

    Science.gov (United States)

    Haden, N Karl; Hendricson, William D; Killip, John W; O'Neill, Paula N; Reed, Michael J; Weinstein, George; Williams, John N; Valachovic, Richard W

    2009-11-01

    This report summarizes the history and curriculum of the American Dental Education Association/Academy for Academic Leadership Institute for Teaching and Learning (ADEA/AAL ITL) Program for Dental School Faculty, describes participant feedback, and reviews how the program serves the faculty development initiatives of the American Dental Education Association. The fifty-hour program (6.5 days), conducted in two phases at collaborating dental schools, enhances core academic competencies of new and transitional faculty, including faculty members whose responsibilities include predoctoral, allied, and postdoctoral dental education. The program's mission is to prepare participants to become more effective teachers and develop other skills that will facilitate confidence, job satisfaction, and professional growth in the academic environment. From 2005 to 2009, 174 individuals graduated from the program, representing forty-three schools of dentistry in the United States and Canada and twenty-nine private practices. A total of forty scholarships have been awarded to participants by the American Academy of Periodontology Foundation, the American Academy of Pediatric Dentistry, and the American Association of Orthodontists. In an online survey completed by 75 percent of ADEA/AAL ITL participants, 99 percent indicated they were positive or highly positive about their learning experience in this faculty development program. Ninety-six percent stated that the program had been important or very important in their effectiveness as a teacher. In 2010, the program will be held at the University of North Carolina at Chapel Hill School of Dentistry, with phase I occurring on August 19-22, 2010, and phase II on October 22-24, 2010. In summary, the ADEA/AAL ITL is addressing an unmet need through a formal professional development program designed to help new and potential faculty members thrive as educators and become future leaders in academic health care.

  6. Tutoring and Mentoring: An A.R.C. Model for Future Teachers: Affective, Reflexive and Cognitive Orientation to Self-Regulated Learning

    Science.gov (United States)

    Remy, Philippe

    2015-01-01

    With a specific focus on tutoring among future teachers this article proposes a model of self-regulated learning. The focus on different mechanisms inherent to the tutoring relationship will consider Affective impacts or motivation, Reflexive or metacognitive and Cognitive resolutions. The ARC combination proposes that personal skills will be…

  7. The Ocean: Source of Nutrition for the Future. A Learning Experience for Coastal and Oceanic Awareness Studies, No. 305. [Project COAST].

    Science.gov (United States)

    Delaware Univ., Newark. Coll. of Education.

    The question of future sources of food is posed with increasing frequency as the amount of arable land per person decreases with population growth. The role of the ocean as a food supplier is currently being explored. This learning experience is designed for secondary school students. It is divided into four major areas: (1) an overview, (2)…

  8. Developing the International Business Curriculum: Results and Implications of a Delphi Study on the Futures of Teaching and Learning in International Business

    Science.gov (United States)

    Zettinig, Peter; Vincze, Zsuzsanna

    2008-01-01

    This article presents the results of a Delphi study concerning the futures of teaching and learning in International Business (IB), a topic that has been receiving a lot of discussion during recent years. Based on our findings we identify two dimensions which may be at the core and instrumental for developing the value proposition of IB. The first…

  9. Unleashing the Future: Educators "Speak Up" about the Use of Emerging Technologies for Learning. Speak Up 2009 National Findings: Teachers, Aspiring Teachers & Administrators

    Science.gov (United States)

    Project Tomorrow, 2010

    2010-01-01

    Technology has enabled students to have greater access to vast array of resources, classes and experts; empowering students to become "Free Agent Learners" who are creating meaningful personalized learning experiences 24/7 outside of the traditional classroom and school structure. In the report "Creating our Future: Students Speak Up about their…

  10. The Future of STEM Curriculum and Instructional Design: A Research and Development Agenda for Learning Designers. Report of a Workshop Series

    Science.gov (United States)

    Center for the Study of Mathematics Curriculum, 2012

    2012-01-01

    In 2009-10 a series of Workshops was organized to focus on STEM (science, technology, engineering, and mathematics) learning design for young students and adolescents. The objective was to provide visionary leadership to the education community by: (a) identifying and analyzing the needs and opportunities for future STEM curriculum development and…

  11. Hydrogen production from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Docekal, J

    1986-01-01

    Hydrogen is an important feed stock for chemical and petroleum industries, in addition to being considered as the energy carrier of the future. At the present time the feed stock hydrogen is mainly manufactured from hydrocarbons using steam reforming. In steam reforming two processes are employed, the conventional process and PSA (pressure swing adsorption) process. These two processes are described and compared. The results show that the total costs and the maintenance costs are lower for the PSA process, the capital outlay is lower for the conventional process, and the operating costs are similar for the two processes.

  12. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  13. Hydrogen energy stations: along the roadside to the hydrogen economy

    International Nuclear Information System (INIS)

    Clark, W.W.; Rifkin, J.; O'Connor, T.; Swisher, J.; Lipman, T.; Rambach, G.

    2005-01-01

    Hydrogen has become more than an international topic of discussion within government and among industry. With the public announcements from the European Union and American governments and an Executive Order from the Governor of California, hydrogen has become a ''paradigm change'' targeted toward changing decades of economic and societal behaviours. The public demand for clean and green energy as well as being ''independent'' or not located in political or societal conflict areas, has become paramount. The key issues are the commitment of governments through public policies along with corporations. Above all, secondly, the advancement of hydrogen is regional as it depends upon infrastructure and fuel resources. Hence, the hydrogen economy, to which the hydrogen highway is the main component, will be regional and creative. New jobs, businesses and opportunities are already emerging. And finally, the costs for the hydrogen economy are critical. The debate as to hydrogen being 5 years away from being commercial and available in the marketplace versus needing more research and development contradicts the historical development and deployment of any new technology be it bio-science, flat panel displays, computers or mobile phones. The market drivers are government regulations and standards soon thereafter matched by market forces and mass production. Hydrogen is no different. What this paper does is describes is how the hydrogen highway is the backbone to the hydrogen economy by becoming, with the next five years, both regional and commercial through supplying stationary power to communities. Soon thereafter, within five to ten years, these same hydrogen stations will be serving hundreds and then thousands of hydrogen fuel powered vehicles. Hydrogen is the fuel for distributed energy generation and hence positively impacts the future of public and private power generators. The paradigm has already changed. (author)

  14. Y(BH4)3--an old-new ternary hydrogen store aka learning from a multitude of failures.

    Science.gov (United States)

    Jaroń, Tomasz; Grochala, Wojciech

    2010-01-07

    Fourteen different synthetic approaches towards pure solvent-free Y(BH(4))(3) have been tested, thirteen of which have failed. Attempted reactions of YCl(3) or Y(OC(4)H(9))(3) with LiBH(4) in THF, those of YCl(3) with (C(4)H(9))(4)N(+) BH(4)(-), as well as between YH(x approximately 3) and R(4)NBH(3) (R = CH(3), C(2)H(5)) in the presence or absence of a solvent (n-hexane or CH(2)Cl(2)) did not lead to the expected product. The mechanochemical solid/solid reactions (MBH(4) + 3 YX(3)--> Y(BH(4))(3) + 3 LiCl, where M = Li, Na; X = F, Cl) have succeeded only for the LiBH(4) and YCl(3) reagents, but the separation of the crystalline reaction products (Y(BH(4))(3) in its Pa3 phase and LiCl) by dissolution or flotation in various solvents has not been successful. The thermal decomposition process of Y(BH(4))(3) in a mixture with LiCl has been investigated with thermogravimetric (TGA) and calorimetric analysis (DSC) combined with spectroscopic evolved gas analysis (EGA). Three major endothermic steps could be distinguished in the DSC profile at ca. 232, 282, 475 degrees C (heating rate 10 K min(-1)) corresponding to a phase transition and two steps of thermal decomposition. Solid decomposition products are amorphous except for the new cubic polymorph of Y(BH(4))(3) overlooked in previous work. The high-temperature phase forms at the onset of thermal decomposition and it may be prepared by heating of the low-temperature phase up to a narrow temperature range (194-210 degrees C) followed by rapid quenching. Y(BH(4))(3) constitutes a novel highly efficient hydrogen storage material (theor. 9.0 wt% H) but, unfortunately, the evolved H(2) is contaminated by toxic boron hydrides and products of their pyrolysis.

  15. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McNeil, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-18

    Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in the future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically

  16. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  17. The hydrogen issue.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  18. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  19. Video Lectures in E-Learning: Effects of Viewership and Media Diversity on Learning, Satisfaction, Engagement, Interest, and Future Behavioral Intention

    Science.gov (United States)

    Costley, Jamie; Lange, Christopher Henry

    2017-01-01

    Purpose: Because student viewership of video lectures serves as an important aspect of e-learning environments, video lectures should be delivered in a way that enhances the learning experience. The delivery of video lectures through diverse forms of media is a useful approach, which may have an effect on student learning, satisfaction, engagement…

  20. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  1. HUG - the Hydrogen Utility Group

    International Nuclear Information System (INIS)

    Tinkler, M.

    2006-01-01

    The Hydrogen Utility Group (HUG) was formally established in October 2005 by a group of leading electric utilities with a common interest in sharing hydrogen experiences and lessons learned. HUG's Mission Statement is: 'To accelerate utility integration of promising hydrogen energy related business applications through the coordinated efforts and actions of its members in collaboration with key stakeholders, including government agencies and utility support organizations.' In February 2006, HUG members presented a briefing to the US Senate Hydrogen and Fuel Cell Caucus in Washington, DC, outlining the significant role that the power industry should play in an emerging hydrogen economy. This presentation provides an overview of that briefing, summarizing the HUG's ongoing interests and activities

  2. DIRECTIONS OF PREPARATION OF FUTURE TEACHERS TO THE USE OF DISTANCE LEARNING TECHNOLOGIES IN PROFESSIONAL ACTIVITY (PRAXIOLOGICAL ASPECT OF THE ACTIVITY APPROACH

    Directory of Open Access Journals (Sweden)

    Tatyana A. Boronenko

    2015-01-01

    Full Text Available The aim of the article is to demonstrate the need of preparing future teachers to use distance learning technologies in the professional activities. Introduction in educational process of distance learning technologies contributes to improving the quality of education. Methods. The authors’ technique of preparation of students of pedagogical specialities to work in the information-educational environment is designed on the basis of the analysis and generalisation of numerous scientific publications. Results. The system of training to implementation of the distance learning technologies in the teaching activity is developed and described, consisting of the following directions: realisation within the program of the principal educational program of specialised training courses in variable-based curriculum parts; the organisation of educational and research activity of students with the use of distance learning technologies; classroom-based and extracurricular independent work of students directed to designing of teaching and learning aids and materials on the basis of distance learning technologies; application of elements of distance learning technologies for students’ teaching; attraction of students to formation of corpus of multimedia educational resources of university. The purposes, the content and expected results of each direction are specified. Scientific novelty. The authors point out that concrete scientifically wellfounded methodical recommendations for the future teachers on implementation of distance learning technologies haven’t been presented in the Russian literature till now; despite an abundance of scientifically-information sources of distance learning technologies and sufficiently high-leveled degree knowledge of the issues of its efficiency in educational activity, conditions of introduction of such technologies in high school, construction of models of distance training. Authors of article have tried to close this

  3. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  4. Effective e-learning in surgical education: the core values underpinning effective e-learning environments and how these may be enhanced for future surgical education.

    Science.gov (United States)

    Bamford, R; Coulston, J

    2016-01-01

    e-learning is a valuable tool that has a number of advantages for Surgical Oncology training and education. The rapidly evolving nature of, and limited clinical exposure to oncological practice creates challenges for surgical trainees to stay up to date and engaged. Online learning can be accessed anywhere at any time and allows trainees to develop, apply and be assessed on their learning. To be effective, it must be educationally sound and embrace technology to enhance learners' experience.

  5. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  6. The Norwegian hydrogen guide 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Hydrogen technologies are maturing at rapid speed, something we experience in Norway and around the globe every day as demonstration projects for vehicles and infrastructure expand at a rate unthinkable of only a few years ago. An example of this evolution happened in Norway in 2009 when two hydrogen filling stations were opened on May the 11th, making it possible to arrange the highly successful Viking Rally from Oslo to Stavanger with more than 40 competing teams. The Viking Rally demonstrated for the public that battery and hydrogen-electric vehicles are technologies that exist today and provide a real alternative for zero emission mobility in the future. The driving range of the generation of vehicles put into demonstration today is more than 450 km on a full hydrogen tank, comparable to conventional vehicles. As the car industry develops the next generation of vehicles for serial production within the next 4-5 years, we will see vehicles that are more robust, more reliable and cost effective. Also on the hydrogen production and distribution side progress is being made, and since renewable hydrogen from biomass and electrolysis is capable of making mobility basically emission free, hydrogen can be a key component in combating climate change and reducing local emissions. The research Council of Norway has for many years supported the development of hydrogen and fuel cell technologies, and The Research Council firmly believes that hydrogen and fuel cell technologies play a crucial role in the energy system of the future. Hydrogen is a flexible transportation fuel, and offers possibilities for storing and balancing intermittent electricity in the energy system. Norwegian companies, research organisations and universities have during the last decade developed strong capabilities in hydrogen and fuel cell technologies, capabilities it is important to further develop so that Norwegian actors can supply high class hydrogen and fuel cell technologies to global markets

  7. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  8. Future goal setting, task motivation and learning of minority and non-minority students in Dutch schools

    NARCIS (Netherlands)

    Andriessen, I.; Phalet, K.; Lens, W.

    2006-01-01

    Background. Cross-cultural research on minority school achievement yields mixed findings on the motivational impact of future goal setting for students from disadvantaged minority groups. Relevant and recent motivational research, integrating Future Time Perspective Theory with Self-Determination

  9. Trends in Hydrogen Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hoevenaars, A.J.; Weeda, M. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2009-09-15

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  10. Trends in Hydrogen Vehicles

    International Nuclear Information System (INIS)

    Hoevenaars, A.J.; Weeda, M.

    2009-09-01

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  11. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  12. A Draft Conceptual Framework of Relevant Theories to Inform Future Rigorous Research on Student Service-Learning Outcomes

    Science.gov (United States)

    Whitley, Meredith A.

    2014-01-01

    While the quality and quantity of research on service-learning has increased considerably over the past 20 years, researchers as well as governmental and funding agencies have called for more rigor in service-learning research. One key variable in improving rigor is using relevant existing theories to improve the research. The purpose of this…

  13. Procuring a Sustainable Future: An Action Learning Approach to the Development and Modelling of Ethical and Sustainable Procurement Practices

    Science.gov (United States)

    Boak, George; Watt, Peter; Gold, Jeff; Devins, David; Garvey, Robert

    2016-01-01

    This paper contributes to an understanding of the processes by which organisational actors learn how to affect positive and sustainable social change in their local region through action learning, action research and appreciative inquiry. The paper is based on a critically reflective account of key findings from an ongoing action research project,…

  14. "We've Spent Too Much Money to Go Back Now": Credit-Crunched Literacy and a Future for Learning

    Science.gov (United States)

    Brabazon, Tara

    2011-01-01

    This is an article of activism, application and intervention. It offers new models and modes of teaching and learning by aligning information literacy, media literacy and multiliteracy. The priority is on learning outcomes rather than technological choices, and social justice rather than transferable skills. These are not--obviously--"either/or"…

  15. Shaping the Future of Learning Using the Student Voice: We're Listening but Are We Hearing Clearly?

    Science.gov (United States)

    Meadows, Chris; Soper, Kate; Cullen, Rod; Wasiuk, Catherine; McAllister-Gibson, Colin; Danby, Phil

    2016-01-01

    Student voice data is a key factor as Manchester Metropolitan University strives to continually improve institutional technology enhanced learning (TEL) infrastructure. A bi-annual Institutional Student Survey enables students to communicate their experience of learning, teaching and assessment on programmes and specific units studied. Each cycle…

  16. Making Sense of Quality Teaching and Learning in Higher Education in Ethiopia: Unfolding Existing Realities for Future Promises

    Science.gov (United States)

    Tadesse, Tefera; Manathynga, Catherine E.; Gillies, Robyn M.

    2018-01-01

    Current approaches for assessing the quality of teaching and learning in higher education focus solely on compliance and accountability, and use quantitative measures that serve as indicators of institutional effectiveness and efficiency, yet whether such approaches have linked to instructional activities or students learning in universities are…

  17. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  18. Is blended learning and problem-based learning course design suited to develop future public health leaders? An explorative European study.

    Science.gov (United States)

    Könings, Karen D; de Jong, Nynke; Lohrmann, Christa; Sumskas, Linas; Smith, Tony; O'Connor, Stephen J; Spanjers, Ingrid A E; Van Merriënboer, Jeroen J G; Czabanowska, Katarzyna

    2018-01-01

    Public health leaders are confronted with complex problems, and developing effective leadership competencies is essential. The teaching of leadership is still not common in public health training programs around the world. A reconceptualization of professional training is needed and can benefit from innovative educational approaches. Our aim was to explore learners' perceptions of the effectiveness and appeal of a public health leadership course using problem-based, blended learning methods that used virtual learning environment technologies. In this cross-sectional evaluative study, the Self-Assessment Instrument of Competencies for Public Health Leaders was administered before and after an online, blended-learning, problem-based (PBL) leadership course. An evaluation questionnaire was also used to measure perceptions of blended learning, problem-based learning, and tutor functioning among 19 public health professionals from The Netherlands ( n  = 8), Lithuania ( n  = 5), and Austria ( n  = 6).Participants showed overall satisfaction and knowledge gains related to public health leadership competencies in six of eight measured areas, especially Political Leadership and Systems Thinking. Some perceptions of blended learning and PBL varied between the institutions. This might have been caused by lack of experience of the educational approaches, differing professional backgrounds, inexperience of communicating in the online setting, and different expectations towards the course. Blended, problem-based learning might be an effective way to develop leadership competencies among public health professionals in international and interdisciplinary context.

  19. Development of Premacy Hydrogen RE Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Wakayama, N. [Mazda Motor Corporation, Hiroshima (Japan)

    2010-07-01

    Hydrogen powered ICE (internal combustion engine) vehicles can play an important role as an automotive power source in the future, because of its higher reliability and cost performance than those of fuel cell vehicles. Combined with hydrogen, Mazda's unique rotary engine (RE) has merits such as a prevention of hydrogen pre-ignition. Mazda has been developing hydrogen vehicles with the hydrogen RE from the early 1990s. Premacy (Mazda5) Hydrogen RE Hybrid was developed and launched in 2009, following RX-8 Hydrogen RE delivered in 2006. A series hybrid system was adopted in Premacy Hydrogen RE Hybrid. A traction motor switches its windings while the vehicle is moving. This switching technology allows the motor to be small and high-efficient. The lithium-ion high voltage battery, which has excellent input-output characteristics, was installed. These features extend the hydrogen fuel driving range to 200 km and obtain excellent acceleration performance. The hydrogen RE can be also operated by gasoline (Dual Fuel System). The additional gasoline operation makes hydrogen vehicles possible to drive in non-hydrogen station area. With approval from the Japanese Ministry of Land Infrastructure and Transport, Mazda Premacy Hydrogen RE Hybrid was delivered successfully to the Japanese market in the form of leasing. (orig.)

  20. Ten years of ASTER thermal infrared data from Terra: Discoveries, lessons learned, and insights into future missions

    Science.gov (United States)

    Ramsey, M. S.; Dehn, J.; Duda, K.; Hughes, C. G.; Lee, R.; Rose, S.; Scheidt, S. P.; Wessels, R. L.

    2009-12-01

    Soon after its launch in December 1999, the ASTER sensor on the NASA Terra satellite began acquiring infrared data of dynamic surface processes around the world. For the first time in history, well calibrated, relatively high spatial resolution thermal infrared (TIR) data was being collected in more than two spectral bands. These data began a new era in Earth science from space allowing us to examine such diverse topics as the compositional mapping of eolian systems, the accurate detection of subpixel thermal heterogeneities, the relationship between emitted energy from glassy materials and the volcanic processes that formed them, and the thermophysical behavior of the land surface. The TIR subsystem of ASTER has maintained very good radiometric accuracy over the last decade, which is double the original design life. The diligence of the ASTER Science Team to maintain this quality and expand the data through programs such as the night time TIR global map will provide a scientific dataset utilized for many years in the future. For example, one such program started in 2003 was a new collaboration between the ASTER project and the U.S. Geological Survey to help better monitor the explosive volcanoes of the northern Pacific region. The rapid response mode of the instrument has now been automated and linked to a larger-scale and more rapid monitoring alert system operated by the Alaska Volcano Observatory. ASTER TIR data collected under this project are commonly the first detailed views of new activity at these remote volcanoes, with over 1400 TIR images having been acquired for the five most active Kamchatka volcanoes. This presentation will focus on an overview of the science and operational results over the last decade using data from the ASTER TIR sensor. ASTER has the capability to acquire high spatial resolution data from the visible to the TIR wavelength region. Those data, in conjunction with its ability to generate digital elevation models (DEM’s), makes the

  1. Hydrogen evolution by a metal-free electrocatalyst

    KAUST Repository

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Luhua; Han, Yu; Chen, Ying; Du, Aijun; Jaronieć, Mietek; Qiao, Shizhang

    2014-01-01

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All

  2. Global environmental impacts of the hydrogen economy

    International Nuclear Information System (INIS)

    Derwent, R.; Simmonds, P.; O'Doherty, S.; Manning, A.; Collins, W.; Stevenson, D.

    2006-01-01

    Hydrogen-based energy systems appear to be an attractive proposition in providing a future replacement for the current fossil-fuel based energy systems. Hydrogen is an important, though little studied, trace component of the atmosphere. It is present at the mixing ratio of about 510 ppb currently and has important man-made and natural sources. Because hydrogen reacts with tropospheric hydroxyl radicals, emissions of hydrogen to the atmosphere perturb the distributions of methane and ozone, the second and third most important greenhouse gases after carbon dioxide. Hydrogen is therefore an indirect greenhouse gas with a global warming potential GWP of 5.8 over a 100-year time horizon. A future hydrogen economy would therefore have greenhouse consequences and would not be free from climate perturbations. If a global hydrogen economy replaced the current fossil fuel-based energy system and exhibited a leakage rate of 1%, then it would produce a climate impact of 0.6% of the current fossil fuel based system. Careful attention must be given to reduce to a minimum the leakage of hydrogen from the synthesis, storage and use of hydrogen in a future global hydrogen economy if the full climate benefits are to be realised. (author)

  3. Challenges and Prospects of Exchange Activities and Collaborative Learning Towards the Construction of Inclusive Education System : Focusing on eff ective methods of collaborative learning in the future

    OpenAIRE

    Kawai, Norimune; Nosaki, Hitomi

    2014-01-01

    Various studies on Exchange Activities have been conducted and revealed many instruction methods to promote exchanging between students with disabilities and those without disabilities. However, for Collaborative Learning that takes place in children between those students, the number of research studies are limited despite the fact that the importance of research on Collaborative Learning has been pointed out by many researchers and teachers. In this study, the nature of Exchange Activities ...

  4. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  5. Metastable hydrogen

    International Nuclear Information System (INIS)

    Dose, V.

    1982-01-01

    This paper deals with the basic physical properties of the metastable 2 2 sub(1/2) state of atomic hydrogen. Applications relying on its special properties, including measurement of the Lamb shift, production of spin-polarized protons and the measurement of molecular electric moments, are discussed. (author)

  6. Hydrogen energy for the transportation sector in China

    International Nuclear Information System (INIS)

    Zong Qiangmao

    2006-01-01

    Hydrogen is a promising energy carrier for providing a clean, reliable and affordable energy supply. This paper provides a blueprint for the hydrogen energy in the transportation sector in the future of China. This paper is divided into three parts. The first part answers this question: why is China interested in hydrogen energy? The second part describes the possibility of a hydrogen fuel cell engine and a hydrogen internal-combustion engine in the transportation in China in the near future. The final part describes the production of hydrogen in China. (author)

  7. Colour in Learning from Film and TV: A Survey of the Research with Some Indications for Future Investigations

    Science.gov (United States)

    Cox, Stephen M.

    1976-01-01

    Sixteen studies from 1944 to 1974 are reviewed. The overall conclusion is that there is no marked difference in learning from color or black and white film or television. This may be due to the insensitivity of our instruments. (BD)

  8. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Marc A.; Koohi-Fayegh, Seama [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2016-02-15

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  9. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  10. PSYCHOLOGICAL STRATEGY OF COOPERATION, MOTIVATIONAL, INFORMATION AND TECHNOLOGICAL COMPONENTS OF FUTURE HUMANITARIAN TEACHER READINESS FOR PROFESSIONAL ACTIVITY IN POLYSUBJECTIVE LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Y. Spivakovska

    2014-04-01

    Full Text Available Redefining of modern information and communication technologies (ICT from teaching aids to teaching process subjects, continuous growth of their subjectivity necessary demands appropriate knowledge, skills, appropriate attitude to didactic capabilities of ICT, ability to cooperate with them and to build pupils learning activity aimed at formation and development of self organization, self development skills, promoting their subjective position in getting education that will be readiness of modern teacher to organize effective professional activities in polysubjective learning environment (PLE. The new tasks of humanitarian teacher related to self selection and design of educational content as well as the modeling of the learning process in conditions of PLE virtualized alternatives choice, impose special requirements to professionally important teacher’s personality qualities, rather to his readiness to implement effective professional work in such conditions. In this article the essence of future humanitarian teacher readiness concept to professional activity in polysubjective educational environment is proved. The structure of the readiness is analyzed. Psychological strategy of cooperation, reflective, motivational and informational partials are substantiated and characterized as components of the future humanitarian teacher readiness to professional activities in polysubjective educational environment.

  11. 未来学习空间应用效果评价--以北京师范大学未来学习体验中心为例%Evaluation of the Future Learning Space:A Case Analysis of the Future Experiential Learning Center at Beijing Normal University

    Institute of Scientific and Technical Information of China (English)

    宋畅; 刘月; 陈悦; 李秋菊; 江丰光

    2015-01-01

    Research on active learning spaces has attracted great attention in recent years. A focus of the research is the design and use of these spaces that provide diverse and comfortable learning experiences. In 2014, the Future Ex-periential Learning Center at Beijing Normal University which contained eight classrooms with different functions was opened. They are interactive discussion classroom, interactive teaching classroom, interactive group-learning class-room, teacher education-training classroom, international cooperation remote classroom, mobile learning classroom, explore learning classroom, and recording and broadcasting control room. Twenty-one classes were taught in the Fu-ture Experiential Learning Center with eighteen teachers and more than 300 students involved. This study employed a combination of quantitative and qualitative methods to systematically evaluate the design and effects of the active learn-ing space at the Future Experiential Learning Center. We used questionnaires, interviews, and classroom observations to obtain data about student and teacher satisfaction and classroom interaction. Student satisfaction survey involved all the students. Questionnaires were sent to 215 students and 180 questionnaires were ultimate recovered. Teacher satis-faction survey was a sampling survey. Interviews were conducted with four typical teachers among all the eighteen teachers. Classroom observations were carried out in four typical classes which were chosen from all the twenty-one classes. The study found that students and teachers were overall satisfied with the classroom and believed the Future Learning Space could better support teaching. Firstly, the questionnaires showed that the mean value of the student satisfaction was 3. 90 (M=3. 90) which indicated the students were satisfied with the classroom generally. In all eight dimensions, there were five dimensions of which mean values were higher than the overall average (M=3. 90). They were classroom

  12. Progress of Nuclear Hydrogen Program in Korea

    International Nuclear Information System (INIS)

    Lee, Won Jae

    2009-01-01

    To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels is required. Hydrogen is considered a promising future energy solution because it is clean, abundant and storable and has a high energy density. As other advanced countries, the Korean government had established a long-term vision for transition to the hydrogen economy in 2005. One of the major challenges in establishing a hydrogen economy is how to produce massive quantities of hydrogen in a clean, safe and economical way. Among various hydrogen production methods, the massive, safe and economic production of hydrogen by water splitting using a very high temperature gas-cooled reactor (VHTR) can provide a success path to the hydrogen economy. Particularly in Korea, where usable land is limited, the nuclear production of hydrogen is deemed a practical solution due to its high energy density. To meet the expected demand for hydrogen, the Korea Atomic Energy Institute (KAERI) launched a nuclear hydrogen program in 2004 together with Korea Institute of Energy Research (KIER) and Korea Institute of Science and Technology (KIST). Then, the nuclear hydrogen key technologies development program was launched in 2006, which aims at the development and validation of key and challenging technologies required for the realization of the nuclear hydrogen production demonstration system. In 2008, Korean Atomic Energy Commission officially approved a long-term development plan of the nuclear hydrogen system technologies as in the figure below and now the nuclear hydrogen program became the national agenda. This presentation introduces the current status of nuclear hydrogen projects in Korea and the progress of the nuclear hydrogen key technologies development. Perspectives of nuclear process heat applications are also addressed

  13. The importance of social and collaborative learning for online continuing medical education (OCME): directions for future development and research.

    Science.gov (United States)

    Sandars, John; Kokotailo, Patricia; Singh, Gurmit

    2012-01-01

    There is an increasing use of online continuing medical education (OCME), but the potential use of social and collaborative learning to change professional performance and improve patient care has yet to be fully realised. The integration of the main themes from the presentations and comments from participants at a symposium at AMEE 2011. Sociological perspectives on change in professional performance highlight the need for social and collaborative learning in OCME so that learners can share information (explicit knowledge) and opinion (tacit knowledge). The educational topic should be relevant to the complexity of professional practice and use iterative cycles of implementation and critical reflection in social networks so that proposed solutions can be tested in actual practice. The challenge of developing effective online discussions for collaborative learning is recognised. The provision of OCME requires a shift in both policy and practice to emphasise the importance of social and collaborative learning. Further research is recommended, especially to evaluate the implementation and impact of social and collaborative learning for OCME on patient care and the use of newer Web 2.0 approaches.

  14. Literature Review of Cloud Based E-learning Adoption by Students: State of the Art and Direction for Future Work

    Science.gov (United States)

    Hassan Kayali, Mohammad; Safie, Nurhizam; Mukhtar, Muriati

    2016-11-01

    Cloud computing is a new paradigm shift in information technology. Most of the studies in the cloud are business related while the studies in cloud based e-learning are few. The field is still in its infancy and researchers have used several adoption theories to discover the dimensions of this field. The purpose of this paper is to review and integrate the literature to understand the current situation of the cloud based e-learning adoption. A total of 312 articles were extracted from Science direct, emerald, and IEEE. Screening processes were applied to select only the articles that are related to the cloud based e-learning. A total of 231 removed because they are related to business organization. Next, a total of 63 articles were removed because they are technical articles. A total of 18 articles were included in this paper. A frequency analysis was conducted on the paper to identify the most frequent factors, theories, statistical software, respondents, and countries of the studies. The findings showed that usefulness and ease of use are the most frequent factors. TAM is the most prevalent adoption theories in the literature. The mean of the respondents in the reviewed studies is 377 and Malaysia is the most researched countries in terms of cloud based e-learning. Studies of cloud based e-learning are few and more empirical studies are needed.

  15. Hydrogen and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, N J.D.

    1976-03-01

    There is much debate about the form and availability of energy supplies in the future. It is assumed that nuclear fuel is the only source of controlled energy. Energy inputs from the sun, the wind, the waves, the tides, and other sources not available in the form of fuels are not excluded. In this situation it has been argued that because the cost of transporting energy as a liquid or gaseous fuel is lower than the cost of transmitting energy as electricity it would be more effective to transmit and distribute energy from nuclear fuel in the form of a chemical fuel such as hydrogen. This argument has been critized by Hampson et al., (EAPA 1: 2200) who calculate that the reduced costs of transmission only outweigh the costs of production over distances so large that there appears no realistic application. These calculations neglect the time variation of electricity supply which is fundamental to the planning of an electricity supply system; they also do not appear to do justice to the relationship between the costs of hydrogen and electricity production in an integrated system. These points are included in the analysis presented here by means of the observation that hydrogen generated by nuclear plants with high capital cost and low running cost will be burned by the supply system itself in low-capital-cost plants, suitable for chemical fuels, in order to meet peak demands on the system. This establishes a relationship between the long-run marginal costs of electricity at various times of the day and the long-run marginal cost of hydrogen. These costs are then used to show that, in certain favorable, but common, circumstances, electrolytic hydrogen is the lower-cost source of energy. (from Introduction)

  16. Hydrogen from nuclear power

    International Nuclear Information System (INIS)

    Miller, A.I.

    2006-01-01

    A few years ago, one frequently heard the view that LNG would cap the price of natural gas in North America at around 5 or 6 US$/GJ just as soon as sufficient terminal capacity could be installed. Recent experience with international LNG prices suggests that this is unlikely. While oil and gas prices have proven almost impossible to predict it seems likely that the price of gas will in future broadly track its energy equivalent in oil. Consequently, planning for natural gas at 10 $/GJ would seem prudent. Using steam-methane reforming, this produces hydrogen at 1500 $/t. If CO 2 has to be sequestered, adding another 500 $/t H 2 is a likely additional cost. So is water electrolysis now competitive? Electrolysis would deliver hydrogen at 2000$/t if electricity costs 3.7 US cents/kWh. This is lower than the Alberta Pool average supply price but very close to AECL's estimated cost for power from a new reactor. However, electricity prices in deregulated markets vary hugely and there would be large leverage on the hydrogen price in delivering a mix of electricity (when the Pool price is high) and hydrogen (when it is low). The key to that possibility - as well as other issues of interruptibility - is low-cost cavern storage, similar to that used for natural gas. One long-standing example for hydrogen storage exists in the UK. The nuclear-electrolysis route offers long-term price stability. It also has co-product possibilities if a use can be found for oxygen (equivalent to about 300 $/t H 2 ) and to produce heavy water (provided the scale is at least 100 MW)

  17. Saga of hydrogen civilization

    International Nuclear Information System (INIS)

    Veziroglu, T.N.

    2009-01-01

    'Full text': Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted quickly. Also, their combustion products are causing global problems such as the greenhouse effect, ozone layer depletion, acid rains and pollution, all of which are posing great danger for our environment and eventually for the life on our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, and little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century. (author)

  18. Saga of hydrogen civilization

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T.N. [Clean Energy Research Inst., Univ. of Miami, Coral Gables, Florida (United States)

    2009-07-01

    'Full text': Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted quickly. Also, their combustion products are causing global problems such as the greenhouse effect, ozone layer depletion, acid rains and pollution, all of which are posing great danger for our environment and eventually for the life on our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, and little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century. (author)

  19. Photovoltaic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J. [Univ. of Miami, Coral Gables, FL (United States)

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  20. Hydrogen. A small molecule with large impact

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, H.; Ruthardt, K.; Mathiak, J.; Roosen, C. [Uhde GmbH, Dortmund (Germany)

    2010-12-30

    The first section of the presentation will provide general information about hydrogen including physical data, natural abundance, production and consumption figures. This will be followed by detailed information about current industrial production routes for hydrogen. Main on-purpose production for hydrogen is by classical steam reforming (SR) of natural gas. A brief overview of most important steps in stream reforming is given including reforming section, CO conversion and gas purification. Also the use of heavier than methane feedstocks and refinery off-gases is discussed. Alternative routes for hydrogen production or production of synthesis gas are autothermal reforming (ATR) or partial oxidation (POX). Pros and Cons for each specific technology are given and discussed. Gasification, especially gasification of renewable feedstocks, is a further possibility to produce hydrogen or synthesis gas. New developments and current commercial processes are presented. Hydrogen from electrolysis plants has only a small share on the hydrogen production slate, but in some cases this hydrogen is a suitable feedstock for niche applications with future potential. Finally, production of hydrogen by solar power as a new route is discussed. The final section focuses on the use of hydrogen. Classical applications are hydrogenation reactions in refineries, like HDS, HDN, hydrocracking and hydrofinishing. But, with an increased demand for liquid fuels for transportation or power supply, hydrogen becomes a key player in future as an energy source. Use of hydrogen in synthesis gas for the production of liquid fuels via Fischer-Tropsch synthesis or coal liquefaction is discussed as well as use of pure hydrogen in fuel cells. Additional, new application for biomass-derived feedstocks are discussed. (orig.)

  1. Storage of hydrogen in metals

    International Nuclear Information System (INIS)

    Wiswall, R.

    1981-01-01

    A review is dedicated to a problem of hydrogen storage as fuel of future, that can be used under various conditions, is easily obtained with the help of other types of energy and can be transformed into them. Data on reversible metal-hydrogen systems, where hydrogen can be obtained by the way of reaction of thermal decomposition are presented. Pressure-temperature-content diagrams, information on concrete Pd-H, TiFe-H, V-N systems are presented and analyzed from the point of view of thermodynamics. A table with thermodynamical characteristics of several hydrides is presented. The majority of known solid hydrides in relation to their use for hydrogen storage are characterized. The review includes information on real or supposed uses in concrete systems: in fuel cells, for levelling of loading of electric plants, in automobile engines, in hydride engines, for heat storage [ru

  2. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu

    2004-12-01

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  3. Ensuring New Zealand's Future Prosperity: A Professional Learning Development Initiative to Bridge the Gap between Theory and Practice

    Science.gov (United States)

    Kennedy, I.; Smith, P.; Sexton, S. S.

    2015-01-01

    This paper reports on a study investigating the effectiveness of a new professional learning development (PLD) initiative in New Zealand, The Sir Paul Callaghan Science Academy (The Academy). The Academy is designed to provide primary and intermediate (students aged 5 to 13) classroom teachers with the knowledge, materials and support needed for…

  4. Considering Alternate Futures to Classify Off-Task Behavior as Emotion Self-Regulation: A Supervised Learning Approach

    Science.gov (United States)

    Sabourin, Jennifer L.; Rowe, Jonathan P.; Mott, Bradford W.; Lester, James C.

    2013-01-01

    Over the past decade, there has been growing interest in real-time assessment of student engagement and motivation during interactions with educational software. Detecting symptoms of disengagement, such as off-task behavior, has shown considerable promise for understanding students' motivational characteristics during learning. In this paper, we…

  5. Defining the Future or Reliving the Past? Unions, Employers, and the Challenge of Workplace Learning. Information Series No. 380.

    Science.gov (United States)

    Harris, Howard

    This document examines the current state of workplace learning within the context of the changing workplace of the late 20th century. The document begins with an overview of the evolution of employer-dominated training from Taylorism to the rise of human resource development during the late 1970s and 1980s. The development of the concepts of…

  6. Students' Perceived Learning and Anticipated Future Behaviors as a Result of Participation in the Student Judicial Process

    Science.gov (United States)

    Howell, Martin T.

    2005-01-01

    This qualitative study was undertaken to explore the meaning that students make of their interactions with campus judicial systems. Using a multiple case study approach, 10 students from 3 institutions in the Southeastern United States were observed and interviewed. The findings presented here relate to students' perceived learning and anticipated…

  7. Information and Communication Technology to Facilitate Learning for Students in the Health Professions: Current Uses, Gaps, and Future Directions

    Science.gov (United States)

    Costello, Ellen; Corcoran, Mary; Barnett, Jacqueline S.; Birkmeier, Marisa; Cohn, Rhea; Ekmekci, Ozgur; Falk, Nancy L.; Harrod, Thomas; Herrmann, Debra; Robinson, Sean; Walker, Bryan

    2014-01-01

    Changes in the U.S. Healthcare System along with the need for institutions of higher education to prepare a work force ready to address the challenges of today and tomorrow have highlighted the need to incorporate technology in its broadest sense as part of the student learning experience. In health professional education, this becomes challenging…

  8. Education and Social Media: Toward a Digital Future. MacArthur Foundation Series on Digital Media and Learning

    Science.gov (United States)

    Greenhow, Christine, Ed.; Sonnevend, Julia, Ed.; Agur, Colin, Ed.

    2016-01-01

    How are widely popular social media such as Facebook, Twitter, and Instagram transforming how teachers teach, how kids learn, and the very foundations of education? What controversies surround the integration of social media in students' lives? The past decade has brought increased access to new media, and with this new opportunities and…

  9. Shaping the future of learning using the student voice: we’re listening but are we hearing clearly?

    Directory of Open Access Journals (Sweden)

    Chris Meadows

    2016-11-01

    Full Text Available Student voice data is a key factor as Manchester Metropolitan University strives to continually improve institutional technology enhanced learning (TEL infrastructure. A bi-annual Institutional Student Survey enables students to communicate their experience of learning, teaching and assessment on programmes and specific units studied. Each cycle of the survey contains approximately 40–50,000 free text comments from students pertaining to what they appreciate and what they would like to see improved. A detailed thematic analysis of this data has identified 18 themes, arranged into six categories relating to the ‘Best’ aspects of courses, and 25 themes, arranged in seven categories in relation to aspects of courses considered to be ‘in need of improvement’. This student data was then used as a basis for semi-structured interviews with staff. Anecdotally, evidence suggested that student expectations and staff expectations around TEL and the virtual learning environment (VLE differed. On-going evaluation of this work has highlighted a disconnect. In significant instances, academic colleagues seemingly misinterpret the student voice analysis and consequently struggle to respond effectively. In response to the analysis, the learning technologist's role has been to re-interpret the analysis and redevelop TEL staff development and training activities. The changes implemented have focused on: contextualising resources in VLE; making lectures more interactive; enriching the curriculum with audio–visual resources; and setting expectations around communications.

  10. Distance Learning Masters Students in the Department of Information Studies, University of Wales, Aberystwyth: Past, Present and Future

    Science.gov (United States)

    Preston, Hugh

    2005-01-01

    This paper examines the postgraduate student body studying by distance learning within the Department of Information Studies at the University of Wales, Aberystwyth. The demands of both students and employers have been the chief influences on the evolution of the specialist postgraduate programmes and also the later generalist and further…

  11. Canadian Hydrogen Association workshop on building Canadian strength with hydrogen systems. Proceedings

    International Nuclear Information System (INIS)

    2006-01-01

    The Canadian Hydrogen Association workshop on 'Building Canadian Strength with Hydrogen Systems' was held in Montreal, Quebec, Canada on October 19-20, 2006. Over 100 delegates attended the workshop and there were over 50 presentations made. The Canadian Hydrogen Association (CHA) promotes the development of a hydrogen infrastructure and the commercialization of new, efficient and economic methods that accelerate the adoption of hydrogen technologies that will eventually replace fossil-based energy systems to reduce greenhouse gas emissions. This workshop focused on defining the strategic direction of research and development that will define the future of hydrogen related energy developments across Canada. It provided a forum to strengthen the research, development and innovation linkages among government, industry and academia to build Canadian strength with hydrogen systems. The presentations described new technologies and the companies that are making small scale hydrogen and hydrogen powered vehicles. Other topics of discussion included storage issues, hydrogen safety, competition in the hydrogen market, hydrogen fuel cell opportunities, nuclear-based hydrogen production, and environmental impacts

  12. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  13. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  14. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  15. Transforming the energy efficiency market in California: Key findings, lessons learned and future directions from California's market effects studies

    International Nuclear Information System (INIS)

    Vine, Edward

    2013-01-01

    In the last three years, the California Institute for Energy and Environment (CIEE), along with the California Public Utilities Commission (CPUC), managed three market effects studies that were funded by the CPUC. This paper summarizes the key findings from these studies that focused on compact fluorescent lamps (CFLs), residential new construction (RNC), and high bay lighting (HBL), with a particular focus on changes to California's market effects evaluation protocol and lessons learned during the evaluation of market effects. This paper also summarizes the key results from a survey that was conducted by CIEE in February 2011 to determine what additional studies should be conducted in the evaluation of market effects. - Highlights: • We summarize three market effects studies and provide lessons learned. • Collect baseline market data as early as possible and throughout program lifecycle. • Estimate market effects throughout a program's lifecycle. • Require hypothesis testing as part of the evaluation. • Include elements of market effects evaluation in other program evaluations

  16. HYDROGEN USE IN INTERNAL COMBUSTION ENGINE:

    OpenAIRE

    Ciniviz, Murat

    2012-01-01

    Fast depletion of fossil fuels is urgently demanding a carry out work for research to find out the viable alternative fuels for meeting sustainable energy demand with minimum environmental impact. In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen is expected to be one of the most important fuels in the near future to meet the stringent emission norms. The use of the hydrogen as fuel in the internal combusti...

  17. Machine learning for large-scale wearable sensor data in Parkinson's disease: Concepts, promises, pitfalls, and futures.

    Science.gov (United States)

    Kubota, Ken J; Chen, Jason A; Little, Max A

    2016-09-01

    For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, "wearable," sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that "learn" from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  18. MAHRES: Spanish hydrogen geography

    International Nuclear Information System (INIS)

    Bordallo, C.R.; Moreno, E.; Brey, R.; Guerrero, F.M.; Carazo, A.F.

    2004-01-01

    Nowadays, it is common to hear about the hydrogen potential as an energetic vector or the renewable character of fuel cells; thus, the conjunction between both of them as a way to produce electricity, decreasing pollutant emission, is often discussed. However, that renewable character is only guaranteed in the case that the hydrogen used comes from some renewable energy source. Because of that, and due to the Spanish great potential related to natural usable resources like water, sun, wind or biomass, for instance, it seems attractive to make a meticulous study (supported by the statistical Multicriteria Decision Making Method) in order to quantify that potential and place it in defined geographical areas. Moreover, the growth of the electricity demand is always significant, and in this way the energy consumption in Spain is estimated to grow up to 3'4 % above the average during the next ten years. On the other hand, it must be taken into account that the contribution of the oil production will not be enough in the future. The study being carried out will try to elaborate 'The Spanish Renewable Hydrogen Map', that would contemplate, not only the current situation but also predictable scenarios and their implementation. (author)

  19. Hydrogen and nuclear energy

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Hancox, W.T.; Pendergast, D.R.

    1999-01-01

    The current world-wide emphasis on reducing greenhouse gas (GHG) emissions provides an opportunity to revisit how energy is produced and used, consistent with the need for human and economic growth. Both the scale of the problem and the efforts needed for its resolution are extremely large. We argue that GHG reduction strategies must include a greater penetration of electricity into areas, such as transportation, that have been the almost exclusive domain of fossil fuels. An opportunity for electricity to displace fossil fuel use is through electrolytic production of hydrogen. Nuclear power is the only large-scale commercially proven non-carbon electricity generation source, and it must play a key role. As a non-carbon power source, it can also provide the high-capacity base needed to stabilize electricity grids so that they can accommodate other non-carbon sources, namely low-capacity factor renewables such as wind and solar. Electricity can be used directly to power standalone hydrogen production facilities. In the special case of CANDU reactors, the hydrogen streams can be preprocessed to recover the trace concentrations of deuterium that can be re-oxidized to heavy water. World-wide experience shows that nuclear power can achieve high standards of public safety, environmental protection and commercially competitive economics, and must . be an integral part of future energy systems. (author)

  20. Toward a Theoretical Model of Text Complexity for the Early Grades: Learning from the Past, Anticipating the Future

    Science.gov (United States)

    Mesmer, Heidi Anne; Cunningham, James W.; Hiebert, Elfrieda H.

    2012-01-01

    In this conceptual essay, we offer rationales and evidence for critical components of a working model of text complexity for the early grades. In the first three sections of the article, we examine word-level, syntax-level, and discourse-level features of text, posing questions for future research. In the fourth section, we address elements of…