WorldWideScience

Sample records for hydrogen final technical

  1. Startech Hydrogen Production Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Startech Engineering Department

    2007-11-27

    The assigned work scope includes the modification and utilization of the Plasma Converter System, Integration of a StarCell{trademark} Multistage Ceramic Membrane System (StarCell), and testing of the integrated systems towards DOE targets for gasification and membrane separation. Testing and evaluation was performed at the Startech Engineering and Demonstration Test Center in Bristol, CT. The Objectives of the program are as follows: (1) Characterize the performance of the integrated Plasma Converter and StarCell{trademark} Systems for hydrogen production and purification from abundant and inexpensive feedstocks; (2) Compare integrated hydrogen production performance to conventional technologies and DOE benchmarks; (3) Run pressure and temperature testing to baseline StarCell's performance; and (4) Determine the effect of process contaminants on the StarCell{trademark} system.

  2. Final Technical Report: Hydrogen Codes and Standards Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Karen I.

    2007-05-12

    This project contributed significantly to the development of new codes and standards, both domestically and internationally. The NHA collaborated with codes and standards development organizations to identify technical areas of expertise that would be required to produce the codes and standards that industry and DOE felt were required to facilitate commercialization of hydrogen and fuel cell technologies and infrastructure. NHA staff participated directly in technical committees and working groups where issues could be discussed with the appropriate industry groups. In other cases, the NHA recommended specific industry experts to serve on technical committees and working groups where the need for this specific industry expertise would be on-going, and where this approach was likely to contribute to timely completion of the effort. The project also facilitated dialog between codes and standards development organizations, hydrogen and fuel cell experts, the government and national labs, researchers, code officials, industry associations, as well as the public regarding the timeframes for needed codes and standards, industry consensus on technical issues, procedures for implementing changes, and general principles of hydrogen safety. The project facilitated hands-on learning, as participants in several NHA workshops and technical meetings were able to experience hydrogen vehicles, witness hydrogen refueling demonstrations, see metal hydride storage cartridges in operation, and view other hydrogen energy products.

  3. Texas Hydrogen Education Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, David; Bullock, Dan

    2011-06-30

    , and hydrogen fueling) are effective for engaging target audiences, and (3) a clear path forward is needed for state and local agencies interested in project implementation (funding, financing, preliminary design, technical assistance, etc.).

  4. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  5. Final Technical Report for GO17004 Regulatory Logic: Codes and Standards for the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nakarado, Gary L. [Regulatory Logic LLC, Golden, CO (United States)

    2017-02-22

    The objectives of this project are to: develop a robust supporting research and development program to provide critical hydrogen behavior data and a detailed understanding of hydrogen combustion and safety across a range of scenarios, needed to establish setback distances in building codes and minimize the overall data gaps in code development; support and facilitate the completion of technical specifications by the International Organization for Standardization (ISO) for gaseous hydrogen refueling (TS 20012) and standards for on-board liquid (ISO 13985) and gaseous or gaseous blend (ISO 15869) hydrogen storage by 2007; support and facilitate the effort, led by the NFPA, to complete the draft Hydrogen Technologies Code (NFPA 2) by 2008; with experimental data and input from Technology Validation Program element activities, support and facilitate the completion of standards for bulk hydrogen storage (e.g., NFPA 55) by 2008; facilitate the adoption of the most recently available model codes (e.g., from the International Code Council [ICC]) in key regions; complete preliminary research and development on hydrogen release scenarios to support the establishment of setback distances in building codes and provide a sound basis for model code development and adoption; support and facilitate the development of Global Technical Regulations (GTRs) by 2010 for hydrogen vehicle systems under the United Nations Economic Commission for Europe, World Forum for Harmonization of Vehicle Regulations and Working Party on Pollution and Energy Program (ECE-WP29/GRPE); and to Support and facilitate the completion by 2012 of necessary codes and standards needed for the early commercialization and market entry of hydrogen energy technologies.

  6. Achieving Hydrogen Storage Goals through High-Strength Fiber Glass - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong [PPG Industries, Inc., Cheswick, PA (United States); Johnson, Kenneth I. [PPG Industries, Inc., Cheswick, PA (United States); Newhouse, Norman L. [PPG Industries, Inc., Cheswick, PA (United States)

    2017-06-05

    Led by PPG and partnered with Hexagon Lincoln and Pacific Northwest National Laboratory (PNNL), the team recently carried out a project “Achieving Hydrogen Storage Goals through High-Strength Fiber Glass”. The project was funded by DOE’s Fuel Cell Technologies office within the Office of Energy Efficiency and Renewable Energy, starting on September 1, 2014 as a two-year project to assess technical and commercial feasibilities of manufacturing low-cost, high-strength glass fibers to replace T700 carbon fibers with a goal of reducing the composite total cost by 50% of the existing, commercial 700 bar hydrogen storage tanks used in personal vehicles.

  7. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Grasman

    2011-12-31

    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan

  8. Final Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, Richard E.

    2008-09-30

    -efficiency CIGS and a-Si:H with operating features compatible with high-efficiency photoelectrochemical (PEC) water-splitting. The objective of one activity under the hydrogen production from biomass task was to conduct parametric testing of the Pearson gasifier and to determine the effects of gasifier operating conditions on the gas yields and quality. The hydrogen yield from this gasifier was evaluated in a parametric test series over a range of residence times from 0.8 to 2.2 seconds. H2 concentrations as high as 55% (volume) were measured in the product gas at the longer residence times and this corresponds to a hydrogen yield of 90 kg per tonne of bagasse without gas upgrading. The objective of another activity was to develop hot gas clean-up capabilities for the HNEI gasifier test facility to support hydrogen-from-biomass research. The product gas stream at the outlet of the hot gas filter was characterized for concentrations of permanent gas species and contaminants. Biomass feedstock processing activity included a preliminary investigation into methods for processing sugar cane trash at the Puunene Sugar Factory on the island of Maui, Hawaii. The objective of the investigation was to explore treatment methods that would enable the successful use of cane trash as fuel for the production of hydrogen via gasification. Analyses were completed for the technical and economic feasibility of producing biofuel from photosynthetic marine microbes on a commercial scale. Results included estimates for total costs, energy efficiency, and return on investment. The biohydrogen team undertook a comprehensive review of the field and came to what is considered a realistic conclusion. To summarize, continued research is recommended in the fundamentals of the science related to genetic engineering and specific topics to cover knowledge gaps. In the meantime, the team also advocates continued development of related processes which can be linked to pollution control and other real world

  9. Final Technical Report: Hydrogen Energy in Engineering Education (H2E3)

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, Peter A.; Cashman, Eileen; Lipman, Timothy; Engel, Richard A.

    2011-09-15

    Schatz Energy Research Center's Hydrogen Energy in Engineering Education curriculum development project delivered hydrogen energy and fuel cell learning experiences to over 1,000 undergraduate engineering students at five California universities, provided follow-on internships for students at a fuel cell company; and developed commercializable hydrogen teaching tools including a fuel cell test station and a fuel cell/electrolyzer experiment kit. Monitoring and evaluation tracked student learning and faculty and student opinions of the curriculum, showing that use of the curriculum did advance student comprehension of hydrogen fundamentals. The project web site (hydrogencurriculum.org) provides more information.

  10. Microstructural studies of hydrogen and deuterium in bcc refractory metals. Final technical report

    International Nuclear Information System (INIS)

    Moss, S.C.

    1984-04-01

    Research was conducted on the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals with emphasis on V and Nb. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction was used, with neutron scattering providing useful corollary data. One objective was to determine the phase relations, solid solution structures and phase transitions in metal-hydride alloys which depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties (as in critical wetting) which are revealed in structural studies. Crystals were supplied for positron annihilation studies of the Fermi surface of H-Ta alloys which have revealed significant electronic trends. Work on alkali-graphite intercalates was initiated

  11. Develop improved metal hydride technology for the storage of hydrogen. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.

    1998-12-04

    The overall objective was to develop commercially viable metal hydrides capable of reversibly storing at least 3 wt.% hydrogen for use with PEM fuel cells and hydrogen fueled internal combustion engine (HICE) applications. Such alloys are expected to result in system capacities of greater than 2 wt.%, making metal hydride storage systems (MHSS`s) a practical means of supplying hydrogen for many consumer applications. ECD`s (Energy Conversion Devices, Inc.) past work on sputtered thin films of transition metal-based alloys led to the commercialization of it`s nickel/metal hydride batteries, and similar work on thin film Mg-based alloys demonstrated potential to achieve very high gravimetric and volumetric energy densities approaching 2,500 Wh/Kg and 2,500 Wh/M{sup 3} respectively. Under this 2-year cost shared project with the DOE, the authors have successfully demonstrated the feasibility of scaling up the Mg-based hydrides from thin film to bulk production without substantial loss of storage capacity. ECD made progress in alloy development by means of compositional and process modification. Processes used include Mechanical Alloying, Melt spinning and novel Gas Phase Condensation. It was showed that the same composition when prepared by melt-spinning resulted in a more homogeneous material having a higher PCT plateau pressure as compared to mechanical alloying. It was also shown that mechanically alloyed Mg-Al-Zn results in much higher plateau pressures, which is an important step towards reducing the desorption temperature. While significant progress has been made during the past two years in alloy development and understanding the relationship between composition, structure, morphology, and processing parameters, additional R and D needs to be performed to achieve the goals of this work.

  12. Final Technical Report for EE0006091: H2Pump Hydrogen Recycling System Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, Rhonda [H2Pump LLC, Latham, NY (United States)

    2017-02-21

    The objective of this project is to demonstrate the product readiness and to quantify the benefits and customer value proposition of H2Pump’s Hydrogen Recycling System (HRS-100™) by installing and analyzing the operation of multiple prototype 100-kg per day systems in real world customer locations. The data gathered will be used to measure reliability, demonstrate the value proposition to customers, and validate our business model. H2Pump will install, track and report multiple field demonstration systems in industrial heat treating and semi-conductor applications. The customer demonstrations will be used to develop case studies and showcase the benefits of the technology to drive market adoption.

  13. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, Alan H. [Fusion Theory and Computation Inc., Kingston, WA (United States)

    2018-02-02

    Final technical report on DE-SC0016106. This is the final technical report for a portion of the multi-institutional CEMM project. This report is centered around 3 publications and a seminar presentation, which have been submitted to E-Link.

  14. Hydrogen Delivery Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  15. Hydrogen Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  16. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    John Ross

    2003-04-30

    The Final Technical Report summarizes research accomplishments and Publications in the period of 5/1/99 to 4/30/03 done on the grant. Extensive progress was made in the period covered by this report in the areas of chemical kinetics of non-linear systems; spatial structures, reaction - diffusion systems, and thermodynamic and stochastic theory of electrochemical and general systems.

  17. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations

  18. Final technical report

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    gas jet chamber and laser beam path from the final focusing mirror. The project consists of three phases: Phase 1: Fundamental studies of cutting front mechanisms, beam propagation, nozzle design and chemical reactions in the cut kerf with special emphasize on high laser powers and thick sections...... cutting nozzle which can be adjusted independently to the laser beam has been developed. The position of the focus relative the workpiece can be adjusted to cutting applications with relatively large processing windows, i.e. both mild and stainless steels, and of a broad thickness range. A build-in auto......This project entails research with the goal to extend laser cutting of steel based metals to thickness above 20 mm and laser powers in the 10 kW range, with adequate accuracy and economically viable cutting speeds. The technical approach is to develop mirror based cutting heads with truly coaxial...

  19. Hydrogen Production Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Hydrogen Production Technical Team Roadmap identifies research pathways leading to hydrogen production technologies that produce near-zero net greenhouse gas (GHG) emissions from highly efficient and diverse renewable energy sources. This roadmap focuses on initial development of the technologies, identifies their gaps and barriers, and describes activities by various U.S. Department of Energy (DOE) offices to address the key issues and challenges.

  20. AIMES Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Daniel S [Univ. of Illinois, Urbana-Champaign, IL (United States). National Center for Supercomputing Applications (NCSA); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Weissman, Jon [Univ. of Minnesota, Minneapolis, MN (United States); Turilli, Matteo [Rutgers Univ., New Brunswick, NJ (United States)

    2017-01-31

    This is the final technical report for the AIMES project. Many important advances in science and engineering are due to large-scale distributed computing. Notwithstanding this reliance, we are still learning how to design and deploy large-scale production Distributed Computing Infrastructures (DCI). This is evidenced by missing design principles for DCI, and an absence of generally acceptable and usable distributed computing abstractions. The AIMES project was conceived against this backdrop, following on the heels of a comprehensive survey of scientific distributed applications. AIMES laid the foundations to address the tripartite challenge of dynamic resource management, integrating information, and portable and interoperable distributed applications. Four abstractions were defined and implemented: skeleton, resource bundle, pilot, and execution strategy. The four abstractions were implemented into software modules and then aggregated into the AIMES middleware. This middleware successfully integrates information across the application layer (skeletons) and resource layer (Bundles), derives a suitable execution strategy for the given skeleton and enacts its execution by means of pilots on one or more resources, depending on the application requirements, and resource availabilities and capabilities.

  1. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Aristos Aristidou Natureworks); Robert Kean (NatureWorks); Tom Schechinger (IronHorse Farms, Mat); Stuart Birrell (Iowa State); Jill Euken (Wallace Foundation & Iowa State)

    2007-10-01

    The two main objectives of this project were: 1) to develop and test technologies to harvest, transport, store, and separate corn stover to supply a clean raw material to the bioproducts industry, and 2) engineer fermentation systems to meet performance targets for lactic acid and ethanol manufacturers. Significant progress was made in testing methods to harvest corn stover in a “single pass” harvest mode (collect corn grain and stover at the same time). This is technically feasible on small scale, but additional equipment refinements will be needed to facilitate cost effective harvest on a larger scale. Transportation models were developed, which indicate that at a corn stover yield of 2.8 tons/acre and purchase price of $35/ton stover, it would be unprofitable to transport stover more than about 25 miles; thus suggesting the development of many regional collection centers. Therefore, collection centers should be located within about 30 miles of the farm, to keep transportation costs to an acceptable level. These collection centers could then potentially do some preprocessing (to fractionate or increase bulk density) and/or ship the biomass by rail or barge to the final customers. Wet storage of stover via ensilage was tested, but no clear economic advantages were evident. Wet storage eliminates fire risk, but increases the complexity of component separation and may result in a small loss of carbohydrate content (fermentation potential). A study of possible supplier-producer relationships, concluded that a “quasi-vertical” integration model would be best suited for new bioproducts industries based on stover. In this model, the relationship would involve a multiyear supply contract (processor with purchase guarantees, producer group with supply guarantees). Price will likely be fixed or calculated based on some formula (possibly a cost plus). Initial quality requirements will be specified (but subject to refinement).Producers would invest in harvest

  2. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Oscar [Millennium Cell Inc., Eatontown, NJ (United States)

    2017-02-22

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  3. Technical Report: Final

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela D.; Wang, Cheng-Yu

    2014-09-30

    The objective of this work was to develop catalyzed nanoporous materials that have superior hydrogen uptake between 300K and 400K and moderate pressures. Platinum nanoparticles were introduced to both activated carbons (ACs) and microporous metal organic frameworks (MMOFs) in order to dissociate molecular hydrogen into an active hydrogen species that diffuses from the catalyst to weakly chemisorbs to the AC/MMOF support; this combined sequence is referred to as the hydrogen spillover mechanism. For all materials studied, maximum excess hydrogen uptake was 1-1.4 wt% (excess) at 300K, falling short of DOE storage goals (5.5 wt% by 2015). Select Pt/AC materials (after in situ catalyst activation) had high uptake (up to 1.4 wt%) at low pressure which significantly exceeded that expected for physisorption. The uptake was not correlated to size of Pt catalyst, but appeared to be associated with high surface activity of the AC support and the methodology of catalyst doping. Multiple techniques were explored to introduce Pt nanoparticles into MMOFs, but most led to significant structural degradation. Ultimately, a ‘pre-bridge’ (PB) technique was used to introduce Pt/AC catalysts into MMOFs, as the PB technique led to virtually non-detectable changes in structure. At high pressure, hydrogen spillover of ~1 wt% (excess) to a PB-MMOF was very slow (i.e. >80 hours at 70-80 bar), which can be attributed to high diffusion barriers in a complex three-surface domain material (Pt, AC, MMOF) as well as unexpected evidence for mechanical instability of the undoped MMOF precursor. In a low-pressure comparison study of three PB-MMOFs, we found evidence that the doping technique may introduce defects which may contribute to enhanced adsorption at 300K. However, we could not rule out the effect of active Pt sites, as common predictors of adsorption generally favored the materials without Pt. Furthermore, spectroscopic evidence provided definitive evidence of weak hydrogen

  4. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bohdan W. Oppenheim; Rudolf Marloth

    2007-10-26

    Executive Summary The document contains Final Technical Report on the Industrial Assessment Center Program at Loyola Marymount University in Los Angeles, covering the contract period of 9/1/2002 to 11/30/2006, under the contract DE-FC36-02GO 12073. The Report describes six required program tasks, as follows: TASK 1 is a summary of the assessments performed over the life of the award: 77 assessments were performed, 595 AR were recommended, covering a very broad range of manufacturing plants. TASK 2 is a description of the efforts to promote and increase the adoption of assessment recommendations and employ innovative methods to assist in accomplishing these goals. The LMU IAC has been very successful in accomplishing the program goals, including implemented savings of $5,141,895 in energy, $10,045,411 in productivity and $30,719 in waste, for a total of $15,218,025. This represents 44% of the recommended savings of $34,896,392. TASK 3 is a description of the efforts promoting the IAC Program and enhancing recruitment efforts for new clients and expanded geographic coverage. LMU IAC has been very successful recruiting new clients covering Southern California. Every year, the intended number of clients was recruited. TASK 4 describes the educational opportunities, training, and other related activities for IAC students. A total of 38 students graduated from the program, including 2-3 graduate students every semester, and the remainder undergraduate students, mostly from the Mechanical Engineering Department. The students received formal weekly training in energy (75%) and productivity (25). All students underwent extensive safety training. All students praised the IAC experience very highly. TASK 5 describes the coordination and integration of the Center activities with other Center and IAC Program activities, and DOE programs. LMU IAC worked closely with MIT, and SDSU IAC and SFSU IAC, and enthusiastically supported the SEN activities. TASK 6 describes other tasks

  5. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schuur, Edward [Northern Arizona Univ., Flagstaff, AZ (United States); Luo, Yiqi [Univ. of Oklahoma, Norman, OK (United States)

    2016-12-01

    This final grant report is a continuation of the final grant report submitted for DE-SC0006982 as the Principle Investigator (Schuur) relocated from the University of Florida to Northern Arizona University. This report summarizes the original project goals, as well as includes new project activities that were completed in the final period of the project.

  6. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate (1) high-temperature-superconductor (HTS) magnet coils, (2) cold copper RF cavities, and (3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant). The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects

  7. Nano Structured Activated Carbon for Hydrogen Storge. Project Final Technical Report (May 2, 2005-Dec. 31, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Cabasso, Israel; Yuan, Youxin

    2013-02-27

    Development of a nanostructured synthetic carbons materials that have been synthesized by thermal-decomposition of aromatic rich polyether such as poly(ether ether ketone) (PEEK) is reported. These polymers based nanostructured carbons efficacious for gas adsorption and storage and have Brunauer-Emmett-Teller (BET) surface area of more than 3000 m2/g, and with average pore diameter of < 2nm. Surface-area, pore characteristics, and other critical variables for selecting porous materials of high gas adsorption capacities are presented. Analysis of the fragments evolved under various carbonization temperatures, and the correlation between the activation and carbonization temperatures provides a mechanistic perspective of the pore evolution during activation. Correlations between gas (N2 and H2) adsorption capacity and porous texture of the materials have been established. The materials possess excellent hydrogen storage properties, with hydrogen storage capacity up to 7.4 wt% (gravimetric) and ~ 45 g H2 L-1 (volumetric) at -196oC and 6.0 MPa.

  8. Technical Report - FINAL

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory

    2007-04-25

    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current building standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities

  9. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Eggeman, Tim [ZeaChem Inc., Lakewood, CO (United States); O' Neill, Brian [ZeaChem Inc., Lakewood, CO (United States)

    2016-08-17

    ZeaChem Inc. and US DOE successfully demonstrated the ZeaChem process for producing sugars and ethanol from high-impact biomass feedstocks. The project was executed over a 5-year period under a $31.25 million cooperative agreement (80:20 Federal:ZeaChem cost share). The project was managed by dividing it into three budget periods. Activities during Budget Period 1 were limited to planning, permitting, and other pre-construction planning. Budget Period 2 activities included engineering, procurement, construction, commissioning, start-up and initial operations through the Independent Engineer Test Runs. The scope of construction was limited to the Chem Frac and Hydrogenolysis units, as the Core Facility was already in place. Construction was complete in December 2012, and the first cellulosic ethanol was produced in February 2013. Additional operational test runs were conducted during Budget Period 3 (completed June 2015) using hybrid poplar, corn stover, and wheat straw feedstocks, resulting in the production of cellulosic ethanol and various other biorefinery intermediates. The research adds to the understanding of the Chem Frac and Hydrogenolysis technologies in that the technical performance of each unit was measured, and the resulting data and operational experience can be used as the basis for engineering designs, thus mitigating risks for deployment in future commercial facilities. The Chem Frac unit was initially designed to be operated as two-stage dilute acid hydrolysis, with first stage conditions selected to remove the hemicellulose fraction of the feedstock, and the second stage conditions selected to remove the cellulose fraction. While the Chem Frac unit met or exceeded the design capacity of 10 ton(dry)/day, the technical effectiveness of the Chem Frac unit was below expectations in its initial two-stage dilute acid configuration. The sugars yields were low, the sugars were dilute, and the sugars had poor fermentability caused by excessive inhibitors

  10. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Daniel [Univ. of Oklahoma, Norman, OK (United States). School of Chemical, Biological and Materials Engineering; Lobban, Lance [Univ. of Oklahoma, Norman, OK (United States); Crossley, Steven [Univ. of Oklahoma, Norman, OK (United States); Khanna, Vikas [Univ. of Pittsburgh, PA (United States); Maravelias, Christos [Univ. of Wisconsin, Madison, WI (United States); Petkovic, Lucia [Idaho National Lab. (INL), Idaho Falls, ID (United States); Duong, Nhung [Univ. of Oklahoma, Norman, OK (United States)

    2018-01-24

    The goal was to develop a biomass conversion process that optimizes fractionation and conversion to maximize Carbon efficiency and Hydrogen consumption to obtain drop-in fuels. Selective fractionation of raw biomass was obtained via multi-stage thermal fractionation to produce different streams that are enriched in a particular chemical family (acids, furanics or phenolics). These streams were later catalytically upgraded in both liquid and vapor phase to perform C-C bond formation and hydrodeoxygenation. Among various upgrading strategies investigated we have identified an effective path in which cyclopentanone is a crucial intermediate that can be derived from furfural and other furanics obtained in high concentrations from this thermal staged process. Cyclopentanone is a very versatile molecule, which can couple with itself to product high quality jet-fuel, or couple with phenolic or furanics to create long chain molecules. These (mono-oxygenated) compounds in the correct molecular weight fuel range can be hydrotreated to direct drop-in fuels. Interestingly, we have found that the conversion of furfural to cyclopentanone is not affected by the presence of acetic acid, and, more interestingly, it is enhanced by the presence of water. These are very significant findings, since water and acetic acid are always present in all streams from the primary conversion stage. These results have allowed to complete detailed life-cycle assessment and techno-economic analysis that have been back-fed to the experimentalists to refine the catalyst selection and process operations with the objective of maximizing C efficiency at minimum H utilization. These combined investigations have opened the possibility of an economically and technologically effective process that could result in commercial fuels produced from renewable sources at a cost that might be competitive with fossil fuels.

  11. Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    J.Y. Hwang; R.C. Greenlund

    2002-12-31

    Michigan Technological University has demonstrated major inroads in establishing the viability of utilizing aluminum smelting by-product waste materials in lightweight concrete product applications. The research identified key elements of producing various forms of lightweight concrete products through utilizing various procedures and mixture components with the by-product materials. A process was developed through pilot plant testing that results in additional aluminum recovery at finer sizes, a clean returnable salt product through spray drying technology, and a low-salt-content oxide product with enough aluminum metal content that it can be used to form lightweight cementitious mixtures. Having three distinct products aids in generating favorable process economics. Revenue projections from aluminum recovery and salt recovery are enough to cover processing costs and create a cost-free oxide product to market for lightweight concrete applications. This supply side commercialization strategy offers aluminum by-product recyclers a potentially no cost product, which has been demonstrated through this project to create desirable and marketable lightweight concrete products of various forms. Environmental benefits to the public are tremendous. At best, all dross and salt cake materials have the potential to be completely recycled and utilized. At worst, disposal sites would see a reduced amount of material: a post processed oxide product with little salt and no hydrogen sulfide or ammonia gas generating capability, which, if isolated from high alkali conditions, would pose no reactivity concerns. The US aluminum industry has historically, along with the steel industry, been a leader in recycling metal. The findings from this project, increased metal recovery, improved salt recycling, and demonstrated end uses for oxide residues, will go a long way in helping the aluminum industry obtain 100% material utilization and zero discharge.

  12. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Held, Isaac [Princeton Univ., NJ (United States); Balaji, V. [Princeton Univ., NJ (United States); Fueglistaler, Stephan [Princeton Univ., NJ (United States)

    2016-09-19

    We have constructed and analyzed a series of idealized models of tropical convection interacting with large-scale circulations, with 25-50km resolution and with 1-2km cloud resolving resolution to set the stage for rigorous tests of convection closure schemes in high resolution global climate models. Much of the focus has been on the climatology of tropical cyclogenesis in rotating systems and the related problem of the spontaneous aggregation of convection in non-rotating systems. The PI (Held) will be delivering the honorary Bjerknes lecture at the Fall 2016 AGU meeting in December on this work. We have also provided new analyses of long-standing issues related to the interaction between convection and the large-scale circulation: Kelvin waves in the upper troposphere and lower stratosphere, water vapor transport into the stratosphere, and upper tropospheric temperature trends. The results of these analyses help to improve our understanding of processes, and provide tests for future high resolution global modeling. Our final goal of testing new convections schemes in next-generation global atmospheric models at GFDL has been left for future work due to the complexity of the idealized model results meant as tests for these models uncovered in this work and to computational resource limitations. 11 papers have been published with support from this grant, 2 are in review, and another major summary paper is in preparation.

  13. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, Mayda [Northwestern University

    2013-11-01

    This work is focused on the design and construction of novel beam diagnostic and instrumentation for charged particle accelerators required for the next generation of linear colliders. Our main interest is in non-invasive techniques. The Northwestern group of Velasco has been a member of the CLIC Test Facility 3 (CTF3) collaboration since 2003, and the beam instrumentation work is developed mostly at this facility1. This 4 kW electron beam facility has a 25-170 MeV electron LINAC. CTF3 performed a set of dedicated measurements to finalize the development of our RF-Pickup bunch length detectors. The RF-pickup based on mixers was fully commissioned in 2009 and the RF-pickup based on diodes was finished in time for the 2010-11 data taking. The analysis of all the data taken in by the summer of 2010 was finish in time and presented at the main conference of the year, LINAC 2010 in Japan.

  14. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Gary [RTI International, Research Triangle Park, NC (United States); Albritton, John [RTI International, Research Triangle Park, NC (United States); Denton, David [RTI International, Research Triangle Park, NC (United States); Turk, Brian [RTI International, Research Triangle Park, NC (United States); Gupta, Raghubir [RTI International, Research Triangle Park, NC (United States)

    2018-01-31

    technology has great potential to provide clean syngas from coal and petcoke-based gasification at increased efficiency and at significantly lower capital and operating costs than conventional syngas cleanup technologies. However, before the technology can be deemed ready for scale-up to a full commercial-scale demonstration, additional R&D testing is needed at the site to address the following critical technical risks: WDP sorbent stability and performance; Impact of WDP on downstream cleanup and conversion steps; Metallurgy and refractory; Syngas cleanup performance and controllability; Carbon capture performance and additional syngas cleanup The proposed plan to acquire this additional R&D data involves: Operation of the units to achieve an additional 3,000 hours of operation of the system within the performance period, with a target of achieving 1,000 hours of those hours via continuous operation of the entire integrated pre-commercial demonstration system; Rapid turnaround of repairs and/or modifications required as necessary to return any specific unit to operating status with documentation and lessons learned to support technology maturation, and; Proactive performance of maintenance activities during any unplanned outages and if possible while operating.

  15. CEEM Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, John [Univ. of California, Santa Barbara, CA (United States)

    2014-11-26

    concentrating photovoltaic applications thathave substantially higher efficiency than single substrate cells made of elemental semiconductors such as silicon. This task required the development of new cell bonding methods with excellent coupling of both photons and electrons between the sub-cells. To accomplish this, we developed (1) GaInN solar cells with enhanced performance by using quantum-well absorbers and front-surface optical texturing, (2) a hybrid "pillar-array" bond which uses an array of metal pillars for electrical coupling, and (3) a "hybrid moth-eye" optical coating which combines the benefits of nano-imprinted moth-eye coatings and traditional multilayer coatings. The technical effectiveness was assessed by measurement of the photovoltaic efficiency of solar cells made using these techniques; the ultrahigh efficiencies targeted by this work are of compelling economic value for concentrating photovoltaics.

  16. Production of Hydrogen by Superadiabatic Decomposition of Hydrogen Sulfide - Final Technical Report for the Period June 1, 1999 - September 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Rachid B. Slimane; Francis S. Lau; Javad Abbasian

    2000-10-01

    The objective of this program is to develop an economical process for hydrogen production, with no additional carbon dioxide emission, through the thermal decomposition of hydrogen sulfide (H{sub 2}S) in H{sub 2}S-rich waste streams to high-purity hydrogen and elemental sulfur. The novel feature of the process being developed is the superadiabatic combustion (SAC) of part of the H{sub 2}S in the waste stream to provide the thermal energy required for the decomposition reaction such that no additional energy is required. The program is divided into two phases. In Phase 1, detailed thermochemical and kinetic modeling of the SAC reactor with H{sub 2}S-rich fuel gas and air/enriched air feeds is undertaken to evaluate the effects of operating conditions on exit gas products and conversion efficiency, and to identify key process parameters. Preliminary modeling results are used as a basis to conduct a thorough evaluation of SAC process design options, including reactor configuration, operating conditions, and productivity-product separation schemes, with respect to potential product yields, thermal efficiency, capital and operating costs, and reliability, ultimately leading to the preparation of a design package and cost estimate for a bench-scale reactor testing system to be assembled and tested in Phase 2 of the program. A detailed parametric testing plan was also developed for process design optimization and model verification in Phase 2. During Phase 2 of this program, IGT, UIC, and industry advisors UOP and BP Amoco will validate the SAC concept through construction of the bench-scale unit and parametric testing. The computer model developed in Phase 1 will be updated with the experimental data and used in future scale-up efforts. The process design will be refined and the cost estimate updated. Market survey and assessment will continue so that a commercial demonstration project can be identified.

  17. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction. Final technical report, September 1, 1988--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1992-04-07

    The ultimate objective of this research has been to uncover novel reagents and experimental conditions for heteroatom removal and hydrogen transfer processes, which would be applicable to the liquefaction of coal under low-severity conditions. To this end, one phase of this research has investigated the cleavage of carbon-heteroatom bonds involving sulfur, oxygen, nitrogen and halogen by subvalent transition-metal complexes. A second phase of the study has assessed the capability of the same transition-metal complexes or of organoaluminum Lewis acids to catalyze the cleavage of carbon-hydrogen bonds in aromatics and hence to promote hydrogen shuttling. Finally, a third phase of our work has uncovered a remarkable synergistic effect of combinations of transition metals with organoaluminum Lewis acids on hydrogen shuttling between aromatics and hydroaromatics. (VC)

  18. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2009-04-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production cost. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items confirmed to the NHDD concepts. We developed and applied R and D quality management methodology to meet 'Development of Key Technologies for Nuclear Hydrogen' project. And we also distributed R and D QAM and R and D QAP to each teams and are in operation. The preconceptual flow diagrams of SI, HTSE, and HyS processes are introduced and their material and energy balances have been proposed. The hydrogen production thermal efficiencies of not only the SI process as a reference process but also the HTSE and HyS processes were also estimated. Technical feasibility assessments of SI, HTSE, and HyS processes have been carried out by using the pair-wise comparison and analytic hierarchy process, and it is revealed that the experts are considering the SI process as the most feasible process. The secondary helium pathway across the SI process is introduced. Dynamic simulation codes for the H2S04vaporizer, sulfuric acid and sulfur trioxide decomposers, and HI decomposer on the secondary helium pathway and for the primary and secondary sulfuric acid distillation columns, HIx solution distillation column, and preheater for HI vapor have been developed and integrated

  19. Hydrogen Technical Analysis -- Dissemination of Information

    Energy Technology Data Exchange (ETDEWEB)

    George Kervitsky, Jr.

    2006-03-20

    SENTECH is a small energy and environmental consulting firm providing technical, analytical, and communications solutions to technology management issues. The activities proposed by SENTECH focused on gathering and developing communications materials and information, and various dissemination activities to present the benefits of hydrogen energy to a broad audience while at the same time establishing permanent communications channels to enable continued two-way dialog with these audiences in future years. Effective communications and information dissemination is critical to the acceptance of new technology. Hydrogen technologies face the additional challenge of safety preconceptions formed primarily as a result of the crash of the Hindenburg. Effective communications play a key role in all aspects of human interaction, and will help to overcome the perceptual barriers, whether of safety, economics, or benefits. As originally proposed SENTECH identified three distinct information dissemination activities to address three distinct but important audiences; these formed the basis for the task structure used in phases 1 and 2. The tasks were: (1) Print information--Brochures that target the certain segment of the population and will be distributed via relevant technical conferences and traditional distribution channels. (2) Face-to-face meetings--With industries identified to have a stake in hydrogen energy. The three industry audiences are architect/engineering firms, renewable energy firms, and energy companies that have not made a commitment to hydrogen (3) Educational Forums--The final audience is students--the future engineers, technicians, and energy consumers. SENTECH will expand on its previous educational work in this area. The communications activities proposed by SENTECH and completed as a result of this cooperative agreement was designed to compliment the research and development work funded by the DOE by presenting the technical achievements and validations

  20. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  1. 76 FR 4645 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Science.gov (United States)

    2011-01-26

    ... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department...: This notice announces a meeting of the Hydrogen and Fuel Cell Technical Advisory Committee (HTAC). HTAC... Agenda: (Subject to change; updates will be posted on http://hydrogen.energy.gov and copies of the final...

  2. 76 FR 60478 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Science.gov (United States)

    2011-09-29

    ... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department...: The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under section 807 of... website at: http://hydrogen.energy.gov and copies of the final agenda will available the date of the...

  3. Final Report: Hydrogen Storage System Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel A. [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-30

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allow comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.

  4. Technical and economic analysis of hydrogen refuelling

    International Nuclear Information System (INIS)

    Nistor, Silviu; Dave, Saraansh; Fan, Zhong; Sooriyabandara, Mahesh

    2016-01-01

    Highlights: • Technical and economic models of a hydrogen station for vehicles refuelling. • Hydrogen demand from fuel cell electric vehicles modelled stochastically. • Study case based on a UK pilot project. • Operation of the H_2 station using combined energy from wind and power grid is preferred. • Return on investment of 5–10 years is possible for the hydrogen station. - Abstract: This paper focuses on technical and economic analysis of a hydrogen refilling station to provide operational insight through tight coupling of technical models of physical processes and economic models. This allows the dynamic relationships of the system to be captured and analysed to provide short/medium term analytical capability to support system design, planning, and financing. The modelling developed here highlights the need to closely link technical and economic models for technology led projects where technical capability and commercial feasibility are important. The results show that hydrogen fuel can be competitive with petrol on a GBP/KG basis if the return on investment period is over 10 years for PEM electrolysers and 5 for Alkaline electrolysers. We also show that subsidies on capital costs (as reflected by some R&D funding programs) make both PEM and Alkaline technologies cheaper than the equivalent price of petrol, which suggests more emphasis should be put on commercialising R&D funded projects as they have commercial advantages. The paper also shows that a combined wind and grid connected station is preferable so that a higher number of customers are served (i.e. minimum shortage of hydrogen).

  5. Technical planning activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements.

  6. Technical planning activity: Final report

    International Nuclear Information System (INIS)

    1987-01-01

    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements

  7. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    Lee, Ki Young; Chang, J. H.; Park, J. K.

    2007-06-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production system, and the assessment of the nuclear hydrogen production economy. To estimate the attainments of the key technologies in progress with the performance goals of GIF, itemized are the attainment indices based on SRP published in VHTR R and D steering committee of Gen-IV. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items conformed to the NHDD concepts established in a preconceptual design in 2005. The codes for analyzing the hydrogen production economy are developed for calculating the unit production cost of nuclear hydrogen. We developed basic R and D quality management methodology to meet design technology of VHTR's needs. By putting it in practice, we derived some problems and solutions. We distributed R and D QAP and Q and D QAM to each teams and these are in operation. Computer simulations are performed for estimating the thermal efficiency for the electrodialysis component likely to adapting as one of the hydrogen production system in Korea and EED-SI process known as the key components of the hydrogen production systems. Using the commercial codes, the process diagrams and the spread-sheets were produced for the Bunsen reaction process, Sulphuric Acid dissolution process and HI dissolution process, respectively, which are the key components composing of the SI process

  8. 75 FR 2860 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Science.gov (United States)

    2010-01-19

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell... Energy. ACTION: Notice of Open Meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee... change; updates will be posted on http://hydrogen.energy.gov and copies of the final agenda will...

  9. Development of technical marginal conditions for the application of hydrogen as storage for renewable energies. Short version of the final report

    International Nuclear Information System (INIS)

    1993-04-01

    Due to the present experiences gained in pilot projects and by the application of hydrogen in the industry it can be expected that an equivalent safety standard will be achieved for a manifold application of hydrogen as energy carrier as e.g. in the case of natural gas or liquid gas. A decentral generation and storage of hydrogen in detached houses is not recommended in conurbation because of necessary structural measurements and safety requirements. Small supply networks on the level of municipalities shall be erected instead. The use of hydrogen in the traffic seems to be useful in utility vehicles (e.g. buses) because the vehicle construction is more suitable for a safe integration of the tank system than in case of a car. The regulation shall be extended for a broader use of hydrogen and contain minimum requirements for the equipment and design of each application in terms of safety technology. (orig./MM) [de

  10. DOE FINAL TECHNICAL REPORT RP

    Energy Technology Data Exchange (ETDEWEB)

    RUSS PETERMAN

    2012-01-01

    The City of Georgetown Utility Systems (GUS) patnered with the private sector, the American Public Power Association (APPA) and Southwestern University to design, construct, test and monitor a solar co-generation system directly connected to the GUS electric distribution system. This report consists of the Primary Technical Report and 3 attachments.

  11. Low alloy steels that minimize the hydrogen-carbide reaction. Final technical report, October 1, 1978-September 30, 1979. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Kar, R. J.; Parker, E. R.; Zackay, V. F.

    1979-01-01

    This report presents results obtained during the first year of a research program to investigate important metallurgical parameters that control the reactions of hydrogen with carbides in steels. Preliminary work included a detailed literature review of th phenomenon of decarburization and methane bubble formation in steels and a suitable experimental technique for investigating hydrogen attack in laboratory conditions was established. Detailed microstructural-mechanical property evaluations were carried out on two series of alloys; the first was based on a plain carbon steel to which binary and ternary alloy additions were made to vary the carbide structure and morphology and assess these effects on the observed hydrogen attack resistance. The second group of steels consisted of commercial Mn-Mo-Ni (A 533 B) and Cr-Mo (A 542 type) steels and their alloy modifications, with a view towards developing steels with improved hydrogen attack resistance.

  12. Guidelines for Preparing Final Technical Reports

    International Development Research Centre (IDRC) Digital Library (Canada)

    fdieudonne

    Prior to submitting the Final Technical Report, any outstanding issues related to dissemination in accordance with ... The report should be an opportunity to reflect on the management of the project from various perspectives: .... of poor quality.

  13. 77 FR 50488 - Hydrogen and Fuel Cell Technical Advisory Committee

    Science.gov (United States)

    2012-08-21

    ... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee AGENCY: Department of...). SUMMARY: This notice announces an open meeting (Webinar) of the Hydrogen and Fuel Cell Technical Advisory... Avenue, Washington, DC 20585. SUPPLEMENTARY INFORMATION: Purpose of the Committee: The Hydrogen and Fuel...

  14. IRIS Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Carelli

    2003-11-03

    OAK-B135 This NERI project, originally started as the Secure Transportable Autonomous Light Water Reactor (STAR-LW) and currently known as the International Reactor Innovative and Secure (IRIS) project, had the objective of investigating a novel type of water-cooled reactor to satisfy the Generation IV goals: fuel cycle sustainability, enhanced reliability and safety, and improved economics. The research objectives over the three-year (1999-2002) program were as follows: First year: Assess various design alternatives and establish main characteristics of a point design; Second year: Perform feasibility and engineering assessment of the selected design solutions; Third year: Complete reactor design and performance evaluation, including cost assessment These objectives were fully attained and actually they served to launch IRIS as a full fledged project for eventual commercial deployment. The program did not terminate in 2002 at the end of the NERI program, and has just entered in its fifth year. This has been made possible by the IRIS project participants which have grown from the original four member, two-countries team to the current twenty members, nine countries consortium. All the consortium members work under their own funding and it is estimated that the value of their in-kind contributions over the life of the project has been of the order of $30M. Currently, approximately 100 people worldwide are involved in the project. A very important constituency of the IRIS project is the academia: 7 universities from four countries are members of the consortium and five more US universities are associated via parallel NERI programs. To date, 97 students have worked or are working on IRIS; 59 IRIS-related graduate theses have been prepared or are in preparation, and 41 of these students have already graduated with M.S. (33) or Ph.D. (8) degrees. This ''final'' report (final only as far as the NERI program is concerned) summarizes the work performed

  15. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R. C.; McCarley, T. M.

    2006-05-04

    . Platform teams organize faculty and students for cross-disciplinary, systems-oriented research and collaborative learning. To date, nine platforms have been developed, although these will most likely be reorganized into a smaller number of broader topics. In the spring of 2004, BRT faculty initiated a regional partnership and collaborative learning program with colleagues at the University of Minnesota, Kansas State University, and South Dakota State University to develop distance education courses in biorenewable resources and technology. As a fledgling graduate program, the BRT graduate program didn’t have the breadth of resources to offer a large number of courses in biorenewables. Other schools faced a similar problem. The academic consortium as first conceived would allow students from the member schools to enroll in biorenewables courses from any of the participating schools, which would assure the necessary enrollment numbers to offer specialized course work. Since its inception, the collaborative curriculum partnership has expanded to include Louisiana State University and the University of Wisconsin. A second international curriculum development campaign was also initiated in the spring of 2004. In particular, several BRT faculty teamed with colleagues at the University of Arkansas, University of Washington, University of Gent (Belgium), National Polytechnic Institute of Toulouse (France), and Technical University of Graz (Austria) to develop an EU-US exchange program in higher education and vocational education/training (entitled “Renewable Resources and Clean Technology”).

  16. Santa Barbara Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Angela; Hansen, Sherman; Watkins, Ashley

    2013-11-30

    This report serves as the Final Report for Santa Barbara County’s Energy Efficiency and Conservation Block Grant (EECBG) BetterBuildings Neighborhood Program (BBNP) award from the U.S. Department of Energy (DOE). This report explains how DOE BBNP funding was invested to develop robust program infrastructure designed to help property owners complete energy improvements, thereby generating substantial outcomes for the local environment and economy. It provides an overview of program development and design within the grant period, program accomplishments and challenges to date, and a plan for the future sustainability of emPower, the County’s innovative clean energy and building efficiency program. During the grant period, Santa Barbara County’s emPower program primarily targeted 32,000 owner occupied, single family, detached residential homes over 25 years old within the County. In order to help these homeowners and their contractors overcome market barriers to completing residential energy improvements, the program developed and promoted six voluntary, market-based service areas: 1) low cost residential financing (loan loss reserve with two local credit unions), 2) residential rebates, 3) local customer service, 4) expert energy advising, 5) workforce development and training, and 6) marketing, education and outreach. The main goals of the program were to lower building energy use, create jobs and develop a lasting regional building performance market. These services have generated important early outcomes and lessons after the program’s first two years in service. The DOE BBNP funding was extended through October 2014 to enable Santa Barbara County to generate continued outcomes. In fact, funding related to residential financing remains wholly available for the foreseeable future to continue offering Home Upgrade Loans to approximately 1,300 homeowners. The County’s investment of DOE BBNP funding was used to build a lasting, effective, and innovative

  17. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Reeder, Richard [Stony Brook Univ., NY (United States); Phillips, Brian [Stony Brook Univ., NY (United States)

    2017-10-18

    A variety of calcifying organisms produce a transient or metastable amorphous calcium carbonate (ACC) precursor phase that is assembled and subsequently transformed into a crystalline biomineral, typically calcite or aragonite. The complex shapes, hierarchical structures, and unique physical properties of the biominerals that result from this calcification pathway have stimulated interest in adapting these concepts for the design and creation of bio-inspired functional materials in the laboratory. ACC also forms as a reactive precursor in diverse inorganic systems and is likely to play a much broader role in calcium carbonate formation. Knowledge of the structure, composition, and behavior of this metastable phase is critical for establishing a structural and mechanistic framework for calcium carbonate formation and its role in biogeochemical processes, including carbon cycling. Minor additives, such as magnesium, phosphorus, and organic macromolecules, are known to play important roles in controlling ACC stability, transformation kinetics, and selection of final crystalline polymorph. Molecular water also occurs in many types of ACC and is thought to play a structural role in its stability and transformation behavior. One of the major challenges that remain unresolved is identification of the structural basis for the role of these minor additives and molecular water. The absence of long-range order in ACC, and other amorphous phases, has posed a challenge for study by techniques commonly used for crystalline solids. Preliminary studies in our group show that the combination of two techniques, synchrotron X-ray-based pair distribution function (PDF) analysis and nuclear magnetic resonance (NMR) spectroscopy can provide entirely new insight to structural properties of synthetic ACC over length scales that are most relevant for understanding its transformation properties. Building on preliminary experiments, we propose a systematic study of synthesis, structure, and

  18. Emission spectroscopy of hydrogen molecules in technical and divertor plasmas

    International Nuclear Information System (INIS)

    Fantz, U.

    2002-01-01

    The paper gives an overview of the diagnostics of hydrogen molecules in technical plasmas (MW and RF discharges) and in divertor plasmas of fusion experiments (ASDEX Upgrade / Tokamak at the Max-Planck-Institut fuer Plasmaphysik in Garching near Munich, Germany). The Fulcher transition in the visible spectral range was chosen for analysis since this is the most prominent band in the spectrum of molecular hydrogen. Examples for diagnostics of molecular densities will be given, and the problems arising in the interpretation of spectra will be discussed. In divertor plasmas the diagnostics of molecular.uxes will be introduced and the contribution of molecules to the plasma recombination will be discussed. Results for vibrational populations in the ground state and the correlation to the upper Fulcher state will be given, providing an electron temperature diagnostic. Finally, the in.uence of surfaces (high-grade steel and graphite) on vibrational populations and on re.ection coe.cients of atoms will be shown. Special attention is given on a comparison of the isotopes hydrogen and deuterium. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  19. NCSU reactor sharing program. Final technical report

    International Nuclear Information System (INIS)

    Perez, P.B.

    1997-01-01

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities. This report is the Final Technical Report for the DOE award reference number DE-FG05-95NE38136 which covers the period September 30, 1995 through September 30, 1996

  20. Technical suitability mapping of feedstocks for biological hydrogen production

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Karaoglanoglou, L.S.; Koullas, D.P.; Bakker, R.R.; Claassen, P.A.M.; Koukios, E.G.

    2015-01-01

    The objective of this work was to map and compare the technical suitability of different raw materials for biological hydrogen production. Our model was based on hydrogen yield potential, sugar mobilization efficiency, fermentability and coproduct yield and value. The suitability of the studied

  1. Enhanced Hydrogen Dipole Physisorption, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Channing [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2014-01-03

    The hydrogen gas adsorption effort at Caltech was designed to probe and apply our understanding of known interactions between molecular hydrogen and adsorbent surfaces as part of a materials development effort to enable room temperature storage of hydrogen at nominal pressure. The work we have performed over the past five years has been tailored to address the outstanding issues associated with weak hydrogen sorbent interactions in order to find an adequate solution for storage tank technology.

  2. Clean Energy Works Oregon Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Andria [City of Portland; Cyr, Shirley [Clean Energy Works

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  3. Hycom Pre - Feasibility study. Final report[Hydrogen communities

    Energy Technology Data Exchange (ETDEWEB)

    Lacobazzi, A; Mario, F di [ENEA, (Italy); Hasenauer, U [Fraunhofer IS, (Germany); Joergensen, B H; Bromand Noergaard, P [Risoe National Lab., (Denmark)

    2005-07-01

    The Quick-start Programme of the European Union Initiative for Growth identifies the hydrogen economy as one of the key areas for investment in the medium term (2004-2015). In this context the HyCOM (Hydrogen Communities) programme has been initiated. The main goal of this programme is the creation of a limited number of strategically sited stand-alone hydrogen communities producing hydrogen from various primary sources (mostly renewables) and using it for heat and electricity production and as fuel for vehicles. This report looks at the establishment of such hydrogen communities, analysing the main technical, economic, social, and environmental aspects as well as financial and regulatory barriers associated with the creation and operation of hydrogen communities. It also proposes a number of concepts for Hydrogen Communities and criteria with which a Hydrogen Community should be evaluated. The study is not in any way intended to be prescriptive. (ln)

  4. Energy Impact Illinois - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Daniel [Senior Energy Efficiency Planner; Plagman, Emily [Senior Energy Planner; Silberhorn, Joey-Lin [Energy Efficiency Program Assistant

    2014-02-18

    Energy Impact Illinois (EI2) is an alliance of government organizations, nonprofits, and regional utility companies led by the Chicago Metropolitan Agency for Planning (CMAP) that is dedicated to helping communities in the Chicago metropolitan area become more energy efficient. Originally organized as the Chicago Region Retrofit Ramp-Up (CR3), EI2 became part of the nationwide Better Buildings Neighborhood Program (BBNP) in May 2010 after receiving a $25 million award from the U.S. Department of Energy (DOE) authorized through the American Recovery and Reinvestment Act of 2009 (ARRA). The program’s primary goal was to fund initiatives that mitigate barriers to energy efficiency retrofitting activities across residential, multifamily, and commercial building sectors in the seven-county CMAP region and to help to build a sustainable energy efficiency marketplace. The EI2 Final Technical Report provides a detailed review of the strategies, implementation methods, challenges, lessons learned, and final results of the EI2 program during the initial grant period from 2010-2013. During the program period, EI2 successfully increased direct retrofit activity in the region and was able to make a broader impact on the energy efficiency market in the Chicago region. As the period of performance for the initial grant comes to an end, EI2’s legacy raises the bar for the region in terms of helping homeowners and building owners to take action on the continually complex issue of energy efficiency.

  5. Analysis of Hybrid Hydrogen Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  6. Final Report: Metal Perhydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One Li

  7. CU-ICAR Hydrogen Infrastructure Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Robert Leitner; David Bodde; Dennis Wiese; John Skardon; Bethany Carter

    2011-09-28

    The goal of this project was to establish an innovation center to accelerate the transition to a 'hydrogen economy' an infrastructure of vehicles, fuel resources, and maintenance capabilities based on hydrogen as the primary energy carrier. The specific objectives of the proposed project were to: (a) define the essential attributes of the innovation center; (b) validate the concept with potential partners; (c) create an implementation plan; and (d) establish a pilot center and demonstrate its benefits via a series of small scale projects.

  8. Amineborane Based Chemical Hydrogen Storage - Final Report

    International Nuclear Information System (INIS)

    Sneddon, Larry G.

    2011-01-01

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH 3 BH 3 (AB), 19.6-wt% H 2 , and ammonia triborane NH 3 B 3 H 7 (AT), 17.7-wt% H 2 , were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H 2 -release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H 2 -release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H 2 -release, the tunability of both their H 2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic-liquid based systems attractive candidates for chemical hydrogen storage applications. These

  9. Amineborane Based Chemical Hydrogen Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2011-04-21

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2­-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic­-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also

  10. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  11. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  12. Final Scientifc Report - Hydrogen Education State Partnership Project

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Warren

    2012-02-03

    Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for states and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.

  13. Virginia Solar Pathways Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Katharine; Cosby, Sarah

    2018-03-28

    This Report provides a technical review of the final results of a funding award to Virginia Electric and Power Company (Dominion Energy Virginia (DEV) or the Company) for a project under the U.S. Department of Energy’s Solar Energy Technologies Office. The three-year project was formally known as the Virginia Solar Pathways Project (VSPP or the Project). The purpose of the VSPP was to develop a collaborative utility-administered solar strategy (Solar Strategy) for DEV’s service territory in the Commonwealth that could serve as a replicable model for other states with similar policy environments. The U.S. Department of Energy (DOE) funding award enabled DEV to take a focused approach to developing the Solar Strategy for its Virginia service territory. The structure and funding from the DOE award also facilitated valuable input from a formal stakeholder team convened to serve as advisors (Advisory Team) to the VSPP and contribute their perspectives and expertise to both the analysis and strategy development aspects of the Project. The development of the Solar Strategy involved three main goals: • Establish a policy and program framework that would integrate existing solar programs with new options appropriate for the Commonwealth’s policy environment and broader economic development objectives; • Promote wider deployment of solar within a low retail electric rate environment; and • Serve as a sustainable, utility-administered solar model that could be replicated in other states with similar policy environments, including, but not limited to, the entire Southeast region. In support of the VSPP goals, the Project Team commissioned four studies to support the Solar Strategy development. Two studies, completed by Navigant Consulting, focused on the integration of solar into the electric grid. The first solar integration study focused on integration of solar into the distribution grid where the utility system directly connects to and serves end-use customers

  14. Technical assistance contractor Management Plan. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project comprises Jacobs Engineering Group Inc. (JEG) and its major teaming partners [Roy F. Weston, Inc. (RFW), Sergent, Hauskins & Beckwith Agra, Inc. (SHB Agra), and Geraghty & Miller, Inc. (G&M)]. The first three companies have worked together effectively on the UMTRA Project for more than 10 years. With the initiation of the UMTRA Groundwater Project in April 1991, a need arose to increase the TAC`s groundwater technical breadth and depth, so G&M was brought in to augment the team`s capabilities. The TAC contract`s scope is to provide technical, analytical, environmental, engineering, design, inspection, and management support services to the US Department of Energy (DOE) for both surface and groundwater projects. The TAC team continues to support the DOE in completing surface remedial actions and initiating groundwater remediation work for start-up, characterization, design, construction oversight, and remedial operations. A key feature of the TAC`s management approach is the extensive set of communication systems implemented for the UMTRA Project. These systems assist all functional disciplines in performing UMTRA Project tasks associated with management, technical support, administrative support, and financial/project controls.

  15. 77 FR 18243 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC); Notice of Open Meeting

    Science.gov (United States)

    2012-03-27

    ... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC); Notice of Open... open meeting. SUMMARY: This notice announces a meeting of the Hydrogen and Fuel Cell Technical Advisory... Committee: The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under Section 807...

  16. 78 FR 60866 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Science.gov (United States)

    2013-10-02

    ... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Office of...: This notice announces an open meeting of the Hydrogen and Fuel Cell Technical Advisory Committee (HTAC... Committee: The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under section 807...

  17. Technical review of externalities issues. Final report

    International Nuclear Information System (INIS)

    Niemeyer, V.

    1994-12-01

    Externalities has become the catchword for a major experiment in electric utility regulation. Together with increased competition as a means for economic regulation, this experiment represents a potential revolution in how electric utilities are regulated. It is very important for utilities and policy makers to understand the technical issues and arguments driving the externality experiment. This Technical Review presents four papers covering topics in economics that may play important roles in this revolution. The four papers are: Economic Issues in the Application of Externalities to Electricity Resource Selection; Climate Change, the Marginal Cost of Carbon Dioxide Emissions and the Implications for Carbon Dioxide Emissions Adders; Positive Externalities and Benefits from Electricity; and Socioeconomic Effects of Externality Adders for Electric Utility Emissions

  18. Technical study gas storage. Final report

    International Nuclear Information System (INIS)

    Borowka, J.; Moeller, A.; Zander, W.; Koischwitz, M.A.

    2001-01-01

    This study will answer the following questions: (a) For what uses was the storage facility designed and for what use is it currently applied? Provide an overview of the technical data per gas storage facility: for instance, what is its capacity, volume, start-up time, etc.; (b) How often has this facility been used during the past 10 years? With what purpose was the facility brought into operation at the time? How much gas was supplied at the time from the storage facility?; (c) Given the characteristics and the use of the storage facility during the past 10 years and projected gas consumption in the future, how will the storage facility be used in the future?; (d) Are there other uses for which the gas storage facility can be deployed, or can a single facility be deployed for numerous uses? What are the technical possibilities in such cases? Questions (a) and (b) are answered separately for every storage facility. Questions (c) and (d) in a single chapter each (Chapter 2 and 3). An overview of the relevant storage data relating to current use, use in the last 10 years and use in future is given in the Annex

  19. Bellona and hydrogen - the role of mediation in technical change

    International Nuclear Information System (INIS)

    Kristiansen, Beate

    2001-01-01

    The energy production and consumption is a major contributor to our environmental problems. The energy carrier hydrogen can be a part of the solution. In the thesis the Bellona Foundation's role in the process of technical change towards utilisation of hydrogen in Norway is investigated. Its role is analysed through the concept of mediation, which is based on seeing technical change as a social process. Mediators connect, or build bridges between, different actors, as well as between different types of knowledge. They establish new kinds of links and create new arenas of interaction for previously separated units. In addition, or through their work, they translate knowledge from one context or domain to another. They are also processing, interpreting and combining knowledge in new ways. Mediators bring together people with different competencies, and orchestrate their efforts often on a consensus basis. Bellona combines the different kinds of mediations, to influence the process of technical change at various levels and steps. They mediate mainly within the industry and between the industrial- and governmental domain. To some degree they also mediate between the experts and the public. But the direct contact with the public seems to be more or less absent in their hydrogen work. It seems like Bellona's mediator role fills an open space in the realm of technology policy making. Environmental oriented NGOs will perform or combine various mediating roles differently. To be able to make socially appropriate and sustainable technical change, probably other actors than the established traditional ones should be more involved. The possibilities for public participation should be strengthened, as well as the possibilities for mediation. (Author)

  20. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    International Nuclear Information System (INIS)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27 C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully ''gettered'' by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  1. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  2. DOE Utility Matching Program Final Technical Report

    International Nuclear Information System (INIS)

    Haghighat, Alireza

    2002-01-01

    This is the Final report for the DOE Match Grant (DE-FG02-99NE38163) awarded to the Nuclear and Radiological Engineering (NRE) Department, University of Florida, for the period of September 1999 to January 2002. This grant has been instrumental for maintaining high-quality graduate and undergraduate education at the NRE department. The grant has been used for supporting student entry and retention and for upgrading nuclear educational facilities, nuclear instrumentation, computer facilities, and computer codes to better enable the incorporation of experimental experiences and computer simulations related to advanced light water fission reactor engineering and other advanced reactor concepts into the nuclear engineering course curricula

  3. High tracking resolution detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Vasile, Stefan; Li, Zheng

    2010-01-01

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  4. AISI Direct Steelmaking Program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Aukrust, E.

    1994-08-01

    This final report deals with the results of a 5-yr project for developing a more energy-efficient, environmentally friendly, less costly process for producing hot metal than current coke ovens and blast furnaces. In the process, iron ore pellets are smelted in a foamy slag created by reaction of coal char with molten slag to produce CO. The CO further reacts with oxygen, which also reacts with coal volatile matter, to produce the heat necessary to sustain the endothermic reduction reaction. The uncombusted CO and H{sub 2} from the coal are used to preheat and prereduce hematite pellets for the most efficient use of the energy in the coal. Laboratory programs confirmed that the process steps worked. Pilot plant studies were successful. Economic analysis for a 1 million tpy plant is promising.

  5. Final Technical Report: Results of Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Narang, David, J.; Hambrick, Joshua; Srinivasan, Devarajan; Ayyannar, Raja; O' Brien, Kathleen

    2011-09-28

    working, utility distribution feeder. To address the technical challenges related to the integration of distributed PV when PV penetration levels reach or exceed 30% of the total load, technologies and methods to ensure the stable and safe operation of the feeder will be evaluated. Lessons learned will enable APS to improve the framework for future PV integration on its system and may also aid other utilities across the United States energy sector in accelerating the adoption of distributed photovoltaic generation.

  6. 78 FR 6086 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Science.gov (United States)

    2013-01-29

    ... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Office of...). SUMMARY: This notice announces an open meeting (Webinar) of the Hydrogen and Fuel Cell Technical Advisory... Avenue, Washington, DC 20585. SUPPLEMENTARY INFORMATION: Purpose of the Committee: The Hydrogen and Fuel...

  7. 77 FR 2714 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Science.gov (United States)

    2012-01-19

    ... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department.... SUMMARY: This notice announces an open meeting of the Hydrogen and Fuel Cell Technical Advisory Committee... posted on http://hydrogen.energy.gov ). Public Comment (10 minutes) Discussion of HTAC's draft annual...

  8. 75 FR 59705 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Science.gov (United States)

    2010-09-28

    ... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department...: The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under section 807 of... Agenda Topics: (Subject to change; updates will be posted on the web at http://hydrogen.energy.gov and...

  9. Final Technical Report - DE-EE0003542

    Energy Technology Data Exchange (ETDEWEB)

    Haley, James D

    2013-03-31

    Wind has provided energy for thousands of years: some of the earliest windmill engineering designs date back to ancient Babylonia and India where wind would be used as a source of irrigation. Today, wind is the quickest growing resource in Americas expanding energy infrastructure. However, to continue to positively diversify Americas energy portfolio and further reduce the countrys reliance of foreign oil, the industry must grow substantially over the next two decades in both turbine installations and skilled industrial manpower to support. The wind sector is still an emergent industry requiring maturation and development of its labor force: dedicated training is needed to provide the hard and soft skills to support the increasingly complex wind turbine generators as the technology evolves. Furthermore, the American workforce is facing a steep decline in available labor resources as the baby boomer generation enters retirement age. It is therefore vital that a process is quickly created for supporting the next generation of wind technicians. However, the manpower growth must incorporate three key components. First, the safety and technical training curriculum must be standardized across the industry - current wind educational programs are disparate and dedicated standardization programs must be further refined and implemented. Second, it is essential that the wind sector avoid disrupting other energy production industries by cannibalizing workers, which would indirectly affect the rest of Americas energy portfolio. The future wind workforce must be created organically utilizing either young people entering the workforce or train personnel emerging from careers outside of energy production. Third, the training must be quick and efficient as large amounts of wind turbines are being erected each year and this growth is expected to continue until at least 2035. One source that matches these three requirements is personnel transitioning from military service to the

  10. Solar Living House Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Bradley [Univ. of Florida, Gainesville, FL (United States)

    2017-03-09

    permanent site constructions. This project suggest that high-performance buildings can be realized for more modest budgets. Public Benefits: Work on the Solar Living House and Solar Decathlon 2015 offered our student team unparalleled learning opportunities. Because of the duration of the project, a number of students participated at different points in their education, from first year undergraduates all the way through to advanced graduate students. The opportunity for collaboration with students and faculty from the National University of Singapore was also extraordinary, allowing for a sharing of technical knowledge and cultural exchange. The wider public has benefited from this work as its findings have been shared through public presentations and publications. It serves as a useful stepping stone along the path towards affordable, high-performance buildings.

  11. Final Technical Report 09 LW 112

    Energy Technology Data Exchange (ETDEWEB)

    Lenhoff, R J

    2010-11-28

    Since the development of new antibiotics is out-paced by the emergence of bacterial resistance to existing antibiotics, it is crucial to understand the genetic mechanisms underlying resistance existing antibiotics. At the center of this mystery is a poorly understood phenomenon, heteroresistance: the coexistence of multiple subpopulations with varying degrees of antibiotic resistance. A better understanding of the fundamental basis of heteroresistance could result in sorely needed breakthroughs in treatment options. This project proposed to leverage a novel microfluidic (microchemostat) technology to probe the heteroresistance phenomenon in bacteria, with the aim of restoring the efficacy of existing {beta}-lactam antibiotics. The clinically important bacteria Methicillin Resistant S. aureus (MRSA) was used as the test case of bacteria that exhibits antibiotic heteroresistance. MRSA is difficult to treat because it is resistant to all {beta}-lactam antibiotics, as well as other classes of antimicrobials. Whereas {beta}-lactams such as methicillin and oxacillin are the preferred antibiotics to treat S. aureus infections due to their efficacy and low side effects, accurate determination and use of oxacillin/methicillin dosage is hampered by heteroresistance. In fact, invasive MRSA infections now account for about 95,000 deaths per year, a number that exceeds the deaths due to either influenza or HIV (12). In some MRSA strains, two subpopulations of cells may coexist: both populations carry the mecA gene that confers resistance, but mecA is differentially expressed so that only a small number of cells are observed during in vitro testing. Why this occurs is not understood. Prior experiments have sought to explain this phenomenon with conflicting results, with technology being the primary barrier to test the system sufficiently. This is the final report on work accomplished under the Lab-wide LDRD project 09-LW-112. This project was awarded to Frederick Balagadde who

  12. Transition towards a hydrogen economy: infrastructures and technical change

    International Nuclear Information System (INIS)

    Bento, Nuno

    2010-01-01

    The double constraint of climate change and increasing scarcity of oil requires that we consider alternative energies for the medium term. This thesis focuses on the development of a hydrogen economy, which is conditional on the existence of an infrastructure for the distribution of the new fuel and the readiness of fuel cells. The main idea is that the state can play a central role in both infrastructure implementation and preparation of fuel cells technology. The thesis begins with a techno-economic analysis of the hydrogen-energy chain, which highlights the difficulty of setting up the infrastructure. The study of the development of electricity and gas networks in the past provides the empirical basis supporting the hypothesis that government can play an important role to consolidate the diffusion of socio-technical networks. In addition, private projects of stations may be justified by early-move benefits, although their financial viability depends on the demand for hydrogen which is in turn dependent on the performance of the fuel cell vehicle. The introduction of radical innovations, such as fuel cell, has been made more difficult by the domination of conventional technologies. This assertion is particularly true in the transport sector which was progressively locked into fossil fuels by a process of technological and institutional co-evolution driven by increasing returns of scale. Hence, fuel cells may primarily diffuse through the accumulation of niches where the innovation is closer to commercialization. These niches may be located in portable applications segment. Investments in research and demonstration are still necessary in order to reduce costs and increase performances of fuel cells. Using a simple model of multi-technological diffusion, we analyze the competition between the hydrogen fuel cell vehicle and the plug-in hybrid car for the automotive market. We show that an early entry of the latter may block the arrival of hydrogen in the market

  13. A technical and environmental comparison between hydrogen and some fossil fuels

    International Nuclear Information System (INIS)

    Nicoletti, Giovanni; Arcuri, Natale; Nicoletti, Gerardo; Bruno, Roberto

    2015-01-01

    Highlights: • Hydrogen as new non-conventional energy system. • Technical and environmental comparison between different type of fuels. • Combustion products analysis. • Technical and environmental quality indexes for investigated fuels. • Proposal of a suitable new energy scenario supplied by hydrogen. - Abstract: The exploitation of some fossil fuels such as oil, intended as gasoline or diesel fuel, natural gas and coal, currently satisfy the majority of the growing world energy demand, but they are destined to run out relatively quickly. Beyond this point, their combustion products are the main cause of some global problems such as the greenhouse effect, the hole in the ozone layer, acid rains and generalized environment pollution, so their impact is extremely harmful. Therefore, it is clear that a solution to the energy problem can be obtained only through the use of renewable sources and by means of the exploitation of new low-polluting fuels. In this scenario an important role might be played by hydrogen, which is able to define a new energy system that is more sustainable and cleaner than current systems. For the comparison of the different fuels investigated in this paper, a methodology, which defines appropriate technical and environmental quality indexes, has been developed. These indexes are connected to the pollution produced by combustion reactions and to their intrinsic characteristics of flammability and expansiveness linked to the use of the considered fuels. An appropriate combination of these indexes, in the specific sector of utilization, allows to evaluate a global environmental index for the investigated fuels, highlighting that hydrogen reaches the highest score. In the final part of the paper, a new hydrogen energy economy that would lead to solving the serious environmental problems that damages all the ecosystems of the planet earth, is presented

  14. Systems study 'Alternative Entsorgung'. Final report. Technical annex 10

    International Nuclear Information System (INIS)

    Hartje, B.; Kronschnabel, H.; Mueller, W.F.W.

    1984-01-01

    There is an investigation whether accessibility can be produced to fuel elements stored in a salt mine. All solutions of the problem were followed up until the technically best one was found. Two conditions must be fulfilled for access to the final storage barrel: - There must be a climate which is suitable for people. The Mining Order is the basis for this. - The pit building must be fixed, in the convergence in the salt mine should not lead to it becoming impossible to reach part of the mine. Due to heat-producing waste, rock temperatures are caused in the salt mine, in which mining is no longer possible. Building on the idea of cooling the whole final storage area using concentric sections, the amount of heat to be removal was first estimated. Cooling of the whole final storage area proved to be technically unjustifiable and uninteresting at present. (orig./HP) [de

  15. Technical analysis of photovoltaic/wind systems with hydrogen storage

    Directory of Open Access Journals (Sweden)

    Bakić Vukman V.

    2012-01-01

    Full Text Available The technical analysis of a hybrid wind-photovoltaic energy system with hydrogen gas storage was studied. The market for the distributed power generation based on renewable energy is increasing, particularly for the standalone mini-grid applications. The main design components of PV/Wind hybrid system are the PV panels, the wind turbine and an alkaline electrolyzer with tank. The technical analysis is based on the transient system simulation program TRNSYS 16. The study is realized using the meteorological data for a Typical Metrological Year (TMY for region of Novi Sad, Belgrade cities and Kopaonik national park in Serbia. The purpose of the study is to design a realistic energy system that maximizes the use of renewable energy and minimizes the use of fossil fuels. The reduction in the CO2 emissions is also analyzed in the paper. [Acknowledgment. This paper is the result of the investigations carried out within the scientific project TR33036 supported by the Ministry of Science of the Republic of Serbia.

  16. 77 FR 65542 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Science.gov (United States)

    2012-10-29

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell... Energy. ACTION: Notice of Open Meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee... Agenda: (updates will be posted on the web at: http://hydrogen.energy.gov ). Public Comment DOE Program...

  17. Technical Analysis of Projects Being Funded by the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Edward G. Skolnik

    2006-02-10

    In July 2000, Energetics began a project in which we performed site-visit based technical analyses or evaluations on hydrogen R&D projects for the purpose of providing in-depth information on the status and accomplishments of these projects to the public, and especially to hydrogen stakeholders. Over a three year period, 32 site-visit analyses were performed. In addition two concepts gleaned from the site visits became subjects of in depth techno-economic analyses. Finally, Energetics produced a compilation document that contains each site-visit analysis that we have performed, starting in 1996 on other contracts through the end of Year One of the current project (July 2001). This included 21 projects evaluated on previous contracts, and 10 additional ones from Year One. Reports on projects visited in Years One and Two were included in their respective Annual Reports. The Year Two Report also includes the two In-depth Analyses and the Compilation document. Reports in Year three began an attempt to perform reviews more geared to hydrogen safety. This Final Report contains a summary of the overall project, all of the 32 site-visit analyses and the two In-depth Analyses.

  18. High energy physics research. Final technical report, 1957--1994

    International Nuclear Information System (INIS)

    Williams, H.H.

    1995-01-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development

  19. High energy physics research. Final technical report, 1957--1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  20. Technical evaluation report of the Fort St. Vrain final draft upgraded technical specifications

    International Nuclear Information System (INIS)

    Kimura, C.Y.

    1989-01-01

    This report is a technical evaluation of the final draft of the Fort St. Vrain (FSV) Upgraded Technical Specifications (UT/S) as issued by Public Service of Colorado (PSC) on May 27, 1988 with subsequent supplemental updates issued on June 15, 1988 and August 5, 1988. It has been compared for consistency, and safety conservatism with the Fort St. Vrain (FSV) Updated Final Safety Analysis Report (FSAR), the FSV Safety Evaluation Report (SER), the Facility Operating License, DPR-34, and all amendments to the Facility Operating License issued as of June 1, 1988, and Appendix A to the Operating License DPR-34, Technical Specifications. Because of the age of the plant, no supplements to the Fort St. Vrain SER have been issued since the original SER was not issued as a WASH or a NUREG report. This made it necessary to review all amendments to the Facility Operating License since they would contain the safety evaluations done to support changes to the Facility Operating License. The upgraded Fort St. Vrain Technical Specifications were also broadly compared with the latest Westinghouse Standard Technical Specifications (WSTS) to assure that what was proposed for Fort St. Vrain was consistent with the latest NRC staff practices for standard technical specifications

  1. Power to gas. The final breakthrough for the hydrogen economy?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler-Goldstein, Raphael [Germany Trade and Invest (GTAI), Paris (France); Rastetter, Aline [Alphea Hydrogene, Forbach (France)

    2013-04-01

    In Germany more than 20% of the energy mix is made up of renewable energy and its share is rapidly increasing. The federal government expects renewables to account for 35% of Germany's electricity consumption by 2020, 50% by 2030 and 80% by 2050. According to the German Energy Agency, multi-billion euro investments in energy storage are expected by 2020 in order to reach these goals. The growth of this fluctuating energy supply has created demand for innovative storage options in Germany and it is accelerating the development of technologies in this field. Along with batteries and smart grids, hydrogen is expected to be one of the lead technologies. 2010 a commercialization roadmap for wind hydrogen was set up by the two northern federal states of Hamburg and Schleswig-Holstein with the goal of utilizing surplus wind power for the electrolytic production of hydrogen. With the creation of the 'performing energy initiative', 2011, Brandenburg and Lower Saxony joined this undertaking. The aim of this initiative is to set up demonstration projects in order to develop and optimize wind-hydrogen hybrid systems and prepare their commercialization for the time after 2020. Beside the conversion of hydrogen into electricity and fuel for cars, further markets like raw material for the chemical, petrochemical, metallurgy and food industry are going to be addressed. Considering the fact there are over 40 caves currently used for natural gas storage with a total volume of 23.5 billion cubic meters and 400 000 km gas grid available in Germany, the German Technical and Scientific Association for Gas and Water sees opportunities for hydrogen to be fed into the existing natural gas grid network. The name of this concept is power-to-gas. According to the current DVGW-Standards natural gas in Germany can contain up to 5% hydrogen. The GERG, European Group on the Gas Research sees potential to increase this amount up to 6% to 20%. Power-to-gas could serve both for fuel and for the

  2. Hydrogen production by supercritical water gasification of biomass. Phase 1 -- Technical and business feasibility study, technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The nine-month Phase 1 feasibility study was directed toward the application of supercritical water gasification (SCWG) for the economical production and end use of hydrogen from renewable energy sources such as sewage sludge, pulp waste, agricultural wastes, and ultimately the combustible portion of municipal solid waste. Unique in comparison to other gasifier systems, the properties of supercritical water (SCW) are ideal for processing biowastes with high moisture content or contain toxic or hazardous contaminants. During Phase I, an end-to-end SCWG system was evaluated. A range of process options was initially considered for each of the key subsystems. This was followed by tests of sewage sludge feed preparation, pumping and gasification in the SCW pilot plant facility. Based on the initial process review and successful pilot-scale testing, engineering evaluations were performed that defined a baseline system for the production, storage and end use of hydrogen. The results compare favorably with alternative biomass gasifiers currently being developed. The results were then discussed with regional wastewater treatment facility operators to gain their perspective on the proposed commercial SCWG systems and to help define the potential market. Finally, the technical and business plans were developed based on perceived market needs and the projected capital and operating costs of SCWG units. The result is a three-year plan for further development, culminating in a follow-on demonstration test of a 5 MT/day system at a local wastewater treatment plant.

  3. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  4. Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schucan, T. [Paul Scherrer Inst., Villigen PSI (Switzerland)

    1999-12-31

    Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich

  5. Final Technical Report, Wind Generator Project (Ann Arbor)

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Nathan [City of Ann Arbor, MI (United States)

    2017-03-20

    A Final Technical Report (57 pages) describing educational exhibits and devices focused on wind energy, and related outreach activities and programs. Project partnership includes the City of Ann Arbor, MI and the Ann Arbor Hands-on Museum, along with additional sub-recipients, and U.S. Department of Energy/Office of Energy Efficiency and Renewable Energy (EERE). Report relays key milestones and sub-tasks as well as numerous graphics and images of five (5) transportable wind energy demonstration devices and five (5) wind energy exhibits designed and constructed between 2014 and 2016 for transport and use by the Ann Arbor Hands-on Museum.

  6. Iowa Hill Pumped Storage Project Investigations - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, David [Sacramento Municipal Unitlity District, Sacramento, CA (United States)

    2016-07-01

    This Final Technical Report is a summary of the activities and outcome of the Department of Energy (DOE) Assistance Agreement DE-EE0005414 with the Sacramento Municipal Utility District (SMUD). The Assistance Agreement was created in 2012 to support investigations into the Iowa Hill Pumped-storage Project (Project), a new development that would add an additional 400 MW of capacity to SMUD’s existing 688MW Upper American River Hydroelectric Project (UARP) in the Sierra Nevada mountains east of Sacramento, California.

  7. Admiralty Inlet Pilot Tidal Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig [Public Utility District No. 1 of Snohomish County, Everett, WA (United States)

    2015-09-14

    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  8. Technical and economic assessment of solar hybrid repowering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    Public Service Company of New Mexico (PNM) has performed a Technical and Economic Assessment of Solar Hybrid Repowering under funding by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), Western Energy Supply and Transmission (WEST) Associates, and a number of southwestern utilities. Solar hybrid repowering involves placement of solar hardware adjacent to and connected to existing gas- and oil-fueled electric generation units to displace some of or all the fossil fuel normally used during daylight hours. The subject study assesses the technical economic viability of the solar hybrid repowering concept within the southwestern United States and the PNM system. This document is a final report on the study and its results. The study was divided into the six primary tasks to allow a systematic investigation of the concept: (1) market survey and cost/benefit analysis, (2) study unit selection, (3) conceptual design and cost estimates, (4) unit economic analysis, (5) program planning, future phases, and (6) program management. Reeves Station No. 2 at Albuquerque, New Mexico, was selected for repowering with a design goal of 50 percent (25 MWe). The solar system design is based on the 10 MW solar central receiver pilot plant preliminary design for Barstow, California. SAN--1608-4-2 contains the technical drawings. (WHK)

  9. Technical and economic evaluation of hydrogen storage systems based on light metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jepsen, Julian

    2014-07-01

    Novel developments regarding materials for solid-state hydrogen storage show promising prospects. These complex hydrides exhibit high mass-related storage capacities and thus great technical potential to store hydrogen in an efficient and safe way. However, a comprehensive evaluation of economic competitiveness is still lacking, especially in the case of the LiBH4 / MgH2 storage material. In this study, an assessment with respect to the economic feasibility of implementing complex hydrides as hydrogen storage materials is presented. The cost structure of hydrogen storage systems based on NaAlH4 and LiBH4 / MgH2 is discussed and compared with the conventional high pressure (700 bar) and liquid storage systems. Furthermore, the properties of LiBH4 / MgH2, so-called Li-RHC (Reactive Hydride Composite), are scientifically compared and evaluated on the lab and pilot plant scale. To enhance the reaction rate, the addition of TiCl3 is investigated and high energy ball milling is evaluated as processing technique. The effect of the additive in combination with the processing technique is described in detail. Finally, an optimum set of processing parameters and additive content are identified and can be applied for scaled-up production of the material based on simple models considering energy input during processing. Furthermore, thermodynamic, heat transfer and kinetic properties are experimentally determined by different techniques and analysed as a basis for modelling and designing scaled-up storage systems. The results are analysed and discussed with respect to the reaction mechanisms and reversibility of the system. Heat transfer properties are assessed with respect to the scale-up for larger hydrogen storage systems. Further improvements of the heat transfer were achieved by compacting the material. In this regard, the influence of the compaction pressure on the apparent density, thermal conductivity and sorption behaviour, was investigated in detail. Finally, scaled

  10. The hydrogen resource. Productive, technical and economic analysis

    International Nuclear Information System (INIS)

    De Fronzo, G.

    2000-01-01

    Diffusion of hydrogen as an energetic vector meets with a lot of obstacles that don't depend on available raw material, but on hydrogen combination with other elements. It is necessary, therefore, to separate hydrogen picking out the available different technologies to have different pure hydrogen of variable quantities. Besides, its diffusion as fuel is limited because of the great production cost compared to fuels sprung from petroleum. Hydrogen used on a large scale could have advantages on the environment and occupation, but there are economic and politic obstacles to limit its diffusion. Future of economic system, based on hydrogen as the main energetic vector, will depend on the programme that national and international qualified governing bodies will be able to do [it

  11. H2 at Scale: Benefitting our Future Energy System - Update for the Hydrogen Technical Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2016-12-06

    Hydrogen is a flexible, clean energy carrying intermediate that enables aggressive market penetration of renewables while deeply decarbonizing our energy system. H2 at Scale is a concept that supports the electricity grid by utilizing energy without other demands at any given time and also supports transportation and industry by providing low-priced hydrogen to them. This presentation is an update to the Hydrogen Technical Advisory Committee (HTAC).

  12. Technical project of complex fast cycle heat treatment of hydrogenous coal preparation

    OpenAIRE

    Moiseev, V. A.; Andrienko, V. G.; Pileckij, V. G.; Urvancev, A. I.; Gvozdyakov, Dmitry Vasilievich; Gubin, Vladimir Evgenievich; Matveev, Aleksandr Sergeevich; Savostiyanova, Ludmila Viktorovna

    2015-01-01

    Problems of heat-treated milled hydrogenous coal preparation site creation in leading fast cycle heat treatment complex were considered. Conditions for effective use of electrostatic methods of heat-treated milled hydrogenous coal preparation were set. Technical project of heat treatment of milled hydrogenous coal preparation site was developed including coupling of working equipment complex on fast heat treatment and experimental samples of equipment being designed for manufacturing. It was ...

  13. Final Technical Report for SISGR: Ultrafast Molecular Scale Chemical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hersam, Mark C. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Guest, Jeffrey R. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Guisinger, Nathan P. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Hla, Saw Wai [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Schatz, George C. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Seideman, Tamar [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Van Duyne, Richard P. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry

    2017-04-10

    The Northwestern-Argonne SISGR program utilized newly developed instrumentation and techniques including integrated ultra-high vacuum tip-enhanced Raman spectroscopy/scanning tunneling microscopy (UHV-TERS/STM) and surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS) to advance the spatial and temporal resolution of chemical imaging for the study of photoinduced dynamics of molecules on plasmonically active surfaces. An accompanying theory program addressed modeling of charge transfer processes using constrained density functional theory (DFT) in addition to modeling of SE-FSRS, thereby providing a detailed description of the excited state dynamics. This interdisciplinary and highly collaborative research resulted in 62 publications with ~ 48% of them being co-authored by multiple SISGR team members. A summary of the scientific accomplishments from this SISGR program is provided in this final technical report.

  14. FERMI(at)Elettra FEL Design Technical Optimization Final Report

    International Nuclear Information System (INIS)

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno, Giovanni; Graves, William

    2006-01-01

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI(at)ELETTRA project. The FERMI(at)ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn

  15. Mathematics Intensive Summer Session (MISS). Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This final technical report appears in two parts: the report for the 1995 summer MISS program and the report for the 1996 summer MISS program. Copies of the US Department of Energy Pre-Freshman Enrichment Program 1995 Entry Form and 1996 Entry Form completed by all participants were sent to the Oak Ridge Institute for Science and Education in the fall of 1995 and 1996 respectively. Those forms are on file should they be needed. Attached also is a copy of the Summary of ideas for panel discussions, problem-solving sessions, or small group discussions presented at the Department of Energy Oak Ridge Institute for Science and Education Pre-Freshman Enrichment Program Project Directors Meeting held in San Antonio, TX, November 12--14, 1995.

  16. Audit of Wolf Creek Generating Station, Unit 1 technical specifications. Final technical evaluation report

    International Nuclear Information System (INIS)

    Stromberg, H.M.

    1985-07-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Wolf Creek Generating Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumptions of the Final Safety Analysis Report (FSAR) as amended, the requirements of the Safety Evaluation Report (SER) as supplemented, and the Comments and Responses to the Wolf Creek Technical Specification Draft Inspection Report. A comparative audit of the FSAR as amended, the SER as supplemented, and the Draft Inspection Report was performed with the Wolf Creek T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Wolf Creek Generating Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR, SER, and Draft Inspection Report

  17. Hydrogen demonstration projects options in the Netherlands. Final report

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Van der Werff, T.T.; Rooijers, F.J.

    1996-01-01

    Based on a survey of hydrogen demonstration projects, contacts with different actors and discussions in a sounding board for the study on the title subject, it is concluded that a conference can be organized where the possibilities of setting up hydrogen demonstration projects in the Netherlands can be discussed. The following projects offer good chances to be realized in the next few years: large-scale CO 2 storage in the underground, applying enhanced gas recovery. It appears to be a relatively cheap CO 2 emission reduction measure with a large potential. It can be combined with a hydrogen mixing project with the sale of hydrogen as a so-called eco-gas to consumers. There is little interest in the other options for CO 2 storage at coal gasification and the prompt supply of 100% H 2 to small-scale consumers. Hydrogen for cogeneration, fuel cells in the industry, hydrogen in road transport and hydrogen as a storage medium are projects in which some actors are interested. Hydrogen for air transport has a large potential to which only few parties in the Netherlands can anticipate. Hydrogen demonstration projects will show important surplus value when it is supported by a hydrogen research program. Such a program can be carried out in cooperation with several other programmes of the International Energy Agency, in Japan, Germany and a number of research programs of the Netherlands Agency for Energy and the Environment (Novem). 10 figs., 4 tabs., 33 refs

  18. Key technical issues associated with a method of pulse compression. Final technical report

    International Nuclear Information System (INIS)

    Hunter, R.O. Jr.

    1980-06-01

    Key technical issues for angular multiplexing as a method of pulse compression in a 100 KJ KrF laser have been studied. Environmental issues studied include seismic vibrations man-made vibrations, air propagation, turbulence, and thermal gradient-induced density fluctuations. These studies have been incorporated in the design of mirror mounts and an alignment system, both of which are reported. A design study and performance analysis of the final amplifier have been undertaken. The pulse compression optical train has been designed and assessed as to its performance. Individual components are described and analytical relationships between the optical component size, surface quality, damage threshold and final focus properties are derived. The optical train primary aberrations are obtained and a method for aberration minimization is presented. Cost algorithms for the mirrors, mounts, and electrical hardware are integrated into a cost model to determine system costs as a function of pulse length, aperture size, and spot size

  19. 48 CFR 252.235-7011 - Final scientific or technical report.

    Science.gov (United States)

    2010-10-01

    ... technical report. 252.235-7011 Section 252.235-7011 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.235-7011 Final scientific or technical report. As prescribed in 235.072(d), use the following clause: Final Scientific or Technical Report (NOV 2004) The Contractor...

  20. 77 FR 47495 - Final Priority; Technical Assistance on State Data Collection, Analysis, and Reporting-National...

    Science.gov (United States)

    2012-08-08

    ... Priority; Technical Assistance on State Data Collection, Analysis, and Reporting--National IDEA Technical... 34 CFR Chapter III [CFDA Number 84.373Z] Final Priority; Technical Assistance on State Data Collection, Analysis, and Reporting--National IDEA Technical Assistance Center on Early Childhood...

  1. Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Melendez, M.; Milbrandt, A.

    2006-10-01

    In FY 2004 and 2005, NREL developed a proposed minimal infrastructure to support nationwide deployment of hydrogen vehicles by offering infrastructure scenarios that facilitated interstate travel. This report identifies key metropolitan areas and regions on which to focus infrastructure efforts during the early hydrogen transition.

  2. H2@Scale: Technical and Economic Potential of Hydrogen as an Energy Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jadun, Paige [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pivovar, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-09

    The H2@Scale concept is focused on developing hydrogen as an energy carrier and using hydrogen's properties to improve the national energy system. Specifically hydrogen has the abilities to (1) supply a clean energy source for industry and transportation and (2) increase the profitability of variable renewable electricity generators such as wind turbines and solar photovoltaic (PV) farms by providing value for otherwise potentially-curtailed electricity. Thus the concept also has the potential to reduce oil dependency by providing a low-carbon fuel for fuel cell electric vehicles (FCEVs), reduce emissions of carbon dioxide and pollutants such as NOx, and support domestic energy production, manufacturing, and U.S. economic competitiveness. The analysis reported here focuses on the potential market size and value proposition for the H2@Scale concept. It involves three analysis phases: 1. Initial phase estimating the technical potential for hydrogen markets and the resources required to meet them; 2. National-scale analysis of the economic potential for hydrogen and the interactions between willingness to pay by hydrogen users and the cost to produce hydrogen from various sources; and 3. In-depth analysis of spatial and economic issues impacting hydrogen production and utilization and the markets. Preliminary analysis of the technical potential indicates that the technical potential for hydrogen use is approximately 60 million metric tons (MMT) annually for light duty FCEVs, heavy duty vehicles, ammonia production, oil refining, biofuel hydrotreating, metals refining, and injection into the natural gas system. The technical potential of utility-scale PV and wind generation independently are much greater than that necessary to produce 60 MMT / year hydrogen. Uranium, natural gas, and coal reserves are each sufficient to produce 60 MMT / year hydrogen in addition to their current uses for decades to centuries. National estimates of the economic potential of

  3. Defining the hydrogen bond: An account (IUPAC Technical Report)

    Czech Academy of Sciences Publication Activity Database

    Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, Pavel; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J.

    2011-01-01

    Roč. 83, č. 8 (2011), s. 1619-1636 ISSN 0033-4545 Institutional research plan: CEZ:AV0Z40550506 Keywords : bonding * electrostatic interactions * hydrogen bonding * molecular interactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.789, year: 2011

  4. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  5. 76 FR 18624 - Research, Technical Assistance and Training Programs: Notice of Final Circular

    Science.gov (United States)

    2011-04-04

    ... to FTA Circular 6100.1D, Research and Technical Assistance Training Program: Application Instructions... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Research, Technical Assistance and Training Programs: Notice of Final Circular AGENCY: Federal Transit Administration (FTA), DOT. ACTION...

  6. Final Technical Report - Kotzebue Wind Power Project - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-31

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  7. Energy-related inventions program invention 637. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The final technical report for the Pegasus plow, a stalk and root embedding apparatus, describes progress from the development stage to the product support stage. The US Department of Agriculture - Agriculture Research Service (ARS) is now in the second year of a three year study comparing the Pegasus to conventional tillage. So far, no downside has been with the Pegasus and the following benefits have been documented: (1) Energy savings of 65.0 kilowatt hours per hectare over conventional tillage. This is when the Pegasus plow is used to bury whole stalks, and represents a 70% savings over conventional tillage (92.5 kilowatt hours per hectare). (2) Four to seven fewer passes of tillage, depending on the particular situation. This represents a substantial time savings to farmers. (3) So far, no differences in cotton yields. Recent cotton boll counts in one study indicate a higher yield potential with the Pegasus. (4) No disease problems. (5) Significantly higher levels of organic matter in the soil. A hypothesis of the study is that whole stalk burial may reduce plant disease problems. This hypothesis has not yet been proven. (6) Significantly higher levels of nitrate nitrogen. Total nitrogen and ammonia nitrogen trended higher but were not significantly different. This shows that whole stalk burial does not adversely affect the nitrogen cycle in the soil and may actually improve it. The marketing support stage of the project is also described in the report.

  8. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fornetti, Micheal [Escanaba Paper Company, MI (United States); Freeman, Douglas [Escanaba Paper Company, MI (United States)

    2012-10-31

    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  9. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.157 Section 52.157 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  10. 10 CFR 52.79 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. (a) The application must contain a final safety... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.79 Section 52.79 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  11. Technical and economical feasibility studies and preliminary plan of a heavy water plant by the criogenic distillation method of hydrogen

    International Nuclear Information System (INIS)

    Dias Vargas, F.

    1983-01-01

    This paper presents the pre-feasibility study of a heavy water production plant, both from the technical and economical point of view. Criogenic distillation of hydrogen is used as the final enrichment stage. The deuterium source is water treated previously by a process of enrichment based on the water-hydrogen isotopic exchange. The economical analysis is aimed at the study of the feasibility of the installation of a heavy water moderated reaction in Chile. General properties of heavy water are presented and also the various materials of its enrichment at the industrial scale. The plant itself has a first stage based on the water-hydrogen isotopic exchange procesS, where deuterium is extracted from the water by the hydrogen which is subsequently treated in a criogenic distillation stage. An important fact of the plant analysis is the calculation of heat exchangers mainly in relation to the problem posed by tHe hydrogen's low point of liquifaction. The distillation units are also treated and designed. The economic evaluation produces project diScount rates of 15.71% and 21.97%, for 25 tons/year and 40 tons/year of production capacity. The heavy water price used for these evaluation was 600 $/Kg

  12. Differential charge transfer and continuum electron capture studies for ions in atomic hydrogen. Final report, August 1, 1979-September 31, 1983

    International Nuclear Information System (INIS)

    Sellin, I.A.; Elston, S.B.

    1983-01-01

    A final technical narrative is given of progress and results obtained during the period August 1, 1979 through September 30, 1983 in a project designed to test existing theories of electron capture to continuum states of fully stripped nuclei traversing atomic hydrogen targets. 5 references

  13. Hydrogen production from small hyropower sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    A synergistic relationship was not found to exist between low-head hydropower and electrolytic hydrogen production. The storageability of hydrogen was expected to mitigate problems of hydrogen generation variability associated with the use of low-head hydropower as the power source. The expense of gaseous hydrogen storage equipment effectively eliminates storage as a means to decouple hydrogen demand and power/hydrogen production. From the opposite perspective, the availability of a low and stable cost of power from low-head hydro was expected to improve the competitiveness of electrolysis. In actuality, the results indicated that hydroelectric power from small dams would be comparatively expensive by current grid power standards (mid-1979). Electrolysis, in the capacity range considered here, is less sensitive to the cost of the power than originally presumed. Other costs including depreciation and capital related charges are more significant. Due to power generation variability, sole reliance on low-head hydropower to provide electricity to the cells would reduce the utilization of the hydrogen production investment, resulting in an increase in unit production costs. These factors were paramount in the Air Products recommendation to discontinue the study before continuing to more detailed stages of analysis, including an analysis of a site specific facility and the construction of a demonstration facility. Another major factor was the unavailability of a pipeline hydrogen supply situation which, because of lower distribution and capital costs, could have been commercially viable. An unfavorable judgment on the combined facility should not be misinterpreted and extended to the component systems. Although a detailed analysis of the individual prospects for electrolysis and low-head hydropower was beyond the study scope, the reader will realize, as the study is reviewed, that each is worthy of individual consideration.

  14. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Hua, T. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Peng, J. -K. [Argonne National Lab. (ANL), Argonne, IL (United States); Lasher, S. [TIAX LLC, Lexington, MA (United States); McKenney, Kurtis [TIAX LLC, Lexington, MA (United States); Sinha, J. [TIAX LLC, Lexington, MA (United States)

    2009-12-01

    Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The report includes an overview of technical progress to date, including the potential to meet DOE onboard storage targets, as well as independent reviews of system cost and energy analyses of the technology paired with delivery costs.

  15. NTRCI Legacy Engine Research and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Holbert, Connie [National Transportation Research Center, Inc., Knoxville, TN (United States); Petrolino, Joseph [National Transportation Research Center, Inc., Knoxville, TN (United States); Watkins, Bart [Power Source Technologies Inc., Corvallis, OR (United States); Irick, David [Power Source Technologies Inc., Corvallis, OR (United States)

    2011-12-31

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine's commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector

  16. Steam reforming of technical bioethanol for hydrogen production

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Johansson, Roger; Møller, Martin Hulbek

    2008-01-01

    Essentially all work on ethanol steam reforming so far has been carried out using simulated bioethanol feedstocks, which means pure ethanol mixed with water. However, technical bioethanol consists of a lot of different components including sugars, which cannot be easily vaporized and steam reformed....... For ethanol steam reforming to be of practical interest, it is important to avoid the energy-intensive purification steps to fuel grade ethanol. Therefore, it is imperative to analyze how technical bioethanol, with the relevant impurities, reacts during the steam reforming process. We show how three different...... bioethanol will result in a faster catalyst deactivation than what is observed when using pure ethanol-water mixtures because of contaminants remaining in the feed. However, the initial activity of the catalysts are not affected by this, hence it is important to not only focus on catalyst activity but rather...

  17. Hydrogen Energy Storage: Grid and Transportation Services (Technical Report)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    Proceedings of an expert workshop convened by the U.S. Department of Energy and Industry Canada, and hosted by the National Renewable Energy Laboratory and the California Air Resources Board, May 14-15, 2014, in Sacramento, California, to address the topic of hydrogen energy storage (HES). HES systems provide multiple opportunities to increase the resilience and improve the economics of energy sup supply systems underlying the electric grid, gas pipeline systems, and transportation fuels. This is especially the case when considering particular social goals and market drivers, such as reducing carbon emissions, increasing reliability of supply, and reducing consumption of conventional petroleum fuels. This report compiles feedback collected during the workshop, which focused on policy and regulatory issues related to HES systems. Report sections include an introduction to HES pathways, market demand, and the "smart gas" concept; an overview of the workshop structure; and summary results from panel presentations and breakout groups.

  18. 77 FR 30512 - Native American Career and Technical Education Program; Final Waivers and Extension of Project...

    Science.gov (United States)

    2012-05-23

    ... DEPARTMENT OF EDUCATION Native American Career and Technical Education Program; Final Waivers and... American Career and Technical Education Program Catalog of Federal Domestic Assistance (CFDA) Number: 84... and Technical Education Program (NACTEP), the Secretary waives 34 CFR 75.250 and 75.261(c)(2) in order...

  19. Hyapproval : final handbook for approval of hydrogen refuelling stations

    NARCIS (Netherlands)

    Wurster, R.; Landinger, H.; Machens, C.; Allidières, L.; Molag, M.; Barron, J.; Reijalt, M.; Hill, H.J.

    2006-01-01

    HyApproval is an EC co-financed Specific Targeted Research Project (STREP) to develop a Handbook facilitating the approval of Hydrogen Refuelling Stations (HRS). The project, started in October 2005, will be performed over 24 months by a balanced partnership including 25 partners from industry, SMEs

  20. A Detector for Combined SPECT/CT. Final Technical Report

    International Nuclear Information System (INIS)

    Vivek Nagarkar

    2006-01-01

    The goal of the Phase I research was to demonstrate the feasibility of developing a high performance SPECT/CT detector module based on a combination of microcolumnar CsI(Tl) scintillator coupled to an EMCCD readout. We are very pleased to report that our Phase I research has demonstrated the technical feasibility of our approach with a very high degree of success. Specifically, we were able to implement a back-thinned EMCCD with a fiberoptic window which was successfully used to demonstrate the feasibility of near simultaneous radionuclide/CT using the proposed concept. Although significantly limited in imaging area (24 x 24 mm 2 ) and pixel resolution (512 x 512), this prototype has shown exceptional capabilities such as a single optical photon sensitivity, very low noise, an intrinsic resolution of 64 (micro)m for radionuclide imaging, and a resolution in excess of 10 lp/mm for x-ray imaging. Furthermore, the combination of newly developed, thick, microcolumnar CsI and an EMCCD has shown to be capable of operating in a photon counting mode, and that the position and energy information obtained from these data can be used to improve resolution in radionuclide imaging. Finally, the prototype system has successfully been employed for near simultaneous SPECT/CT imaging using both, 125 I and 99m Tc radioisotopes. The tomographic reconstruction data obtained using a mouse heart phantom and other phantoms clearly demonstrate the feasibility and efficacy of the detector in small animal research. The following were the objectives specified in the Phase I proposal: (1) In consultation with Professor Hasegawa, develop specifications for the Phase I/Phase II prototype detector; (2) Modify current vapor deposition protocols to fabricate ∼2 mm thick microcolumnar CsI(Tl) scintillators with excellent columnar structure, high light yield, and high spatial resolution; (3) Perform detailed characterization of the film morphology, light output, and spatial resolution, and use

  1. Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration

    Energy Technology Data Exchange (ETDEWEB)

    Parks, G.; Boyd, R.; Cornish, J.; Remick, R.

    2014-05-01

    At the request of the U.S. Department of Energy Fuel Cell Technologies Office (FCTO), the National Renewable Energy Laboratory commissioned an independent review of hydrogen compression, storage, and dispensing (CSD) for pipeline delivery of hydrogen and forecourt hydrogen production. The panel was asked to address the (1) cost calculation methodology, (2) current cost/technical status, (3) feasibility of achieving the FCTO's 2020 CSD levelized cost targets, and to (4) suggest research areas that will help the FCTO reach its targets. As the panel neared the completion of these tasks, it was also asked to evaluate CSD costs for the delivery of hydrogen by high-pressure tube trailer. This report details these findings.

  2. CATALYTICALLY ENHANCED SYSTEMS FOR HYDROGEN STORAGE. Final report

    International Nuclear Information System (INIS)

    Craig M. Jensen

    2007-01-01

    Previous U.S. DOE sponsored research at the University of Hawaii resulted in the development of methods of doping of sodium aluminum hydride, NaAlH4 with titanium, zirconium and other catalysts such that: dehydriding occurs at temperatures as low as 100 C; rehydriding requires less than 1 h; and >4 weight percent hydrogen can be repeatedly cycled through dehydriding/rehydriding. These materials appeared to be on the threshold of practical viability as hydrogen carriers for onboard fuel cells. However, it was apparent that further kinetic enhancement was required to achieve commercial viability. Thus, one of the primary goals of this project was to develop the requisite improved catalysts. Over the course of this project, a variety of titanium and zirconium dopant precursors were investigated. Moreover, the approach was to conduct guided search for improved catalysts by obtaining a fundamental understanding of the chemical nature of the titanium dopants and their mechanism of action. Therefore, the projected also aimed to determined the chemical nature of the titanium species that are formed upon mechanical milling of NaAlH4 with the dopant precursors through synchrotron X-ray and neutron diffraction as well as transmission electron microscopy, scanning electron microscopy, and electron paramagnetic resonance (EPR) spectroscopy. In addition to kinetic studies, insight into the mechanism of action of the dopants was gained through studies of the destabilization of hydrogen in NaAlH4 by the dopants through infrared, NMR, and anelastic spectroscopy

  3. Final waste classification and waste form technical position papers

    International Nuclear Information System (INIS)

    1983-05-01

    The waste classification technical position paper describes overall procedures acceptable to NRC staff which may be used by licensees to determine the presence and concentrations of the radionuclides listed in section 61.55, and thereby classifying waste for near-surface disposal. This technical position paper also provides guidance on the types of information which should be included in shipment manifests accompanying waste shipments to near-surface disposal facilities. The technical position paper on waste form provides guidance to waste generators on test methods and results acceptable to NRC staff for implementing the 10 CFR Part 61 waste form requirements. It can be used as an acceptable approach for demonstrating compliance with the 10 CFR Part 61 waste structural stability criteria. This technical position paper includes guidance on processing waste into an acceptable stable form, designing acceptable high-integrity containers, packaging cartridge filters, and minimizing radiation effects on organic ion-exchange resins. The guidance in the waste form technical position paper may be used by licensees as the basis for qualifying process control programs to meet the waste form stability requirements, including tests which can be used to demonstrate resistance to degradation arising from the effects of compression, moisture, microbial activity, radiation, and chemical changes. Generic test data (e.g., topical reports prepared by vendors who market solidification technology) may be used for process control program qualification where such generic data is applicable to the particular types of waste generated by a licensee

  4. Final Technical Report DOE/GO/13142-1

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Mulvihill; Quang Nguyen

    2010-09-15

    This research adds to the understanding of the areas of residual starch and biomass conversion to alcohol, by providing data from pilot plant equipment of larger scale than the minimum required to give commercially scalable data. Instrumentation and control is in place to capture the information produced, for economic and technical evaluation. The impact of rheology, recycle streams, and residence time distributions on the technical and economic performance can be assessed. Various processes can be compared technically and economically because the pilot plants are readily modifiable. Several technologies for residual starch yield improvement have been identified, implemented, and patent applications filed. Various biomass-to-ethanol processes have been compared and one selected for technical optimization and commercialization. The technical and economic feasibility of the current simplified biomass conversion process is being confirmed by intensive pilot plant efforts as of this writing. Optimization of the feedstock handling and pretreatment is occurring to increase the alcohol yield above the minimum commercially viable level already demonstrated. Samples of biomass residue and reactor blowdown condensate are being collected to determine the technical and economic performance of the high-water-recycle waste treatment system being considered for the process. The project is of benefit to the public because it is advancing the efforts to achieve low-cost fermentable substrates for conversion to transportation fuels. This process combines the hydrolysis of agricultural residues with novel enzymes and organisms to convert the sugars released to transportation fuels. The process development is taking place at a scale allowing commercial development to proceed at a rapid pace.

  5. Technical advisory panel for the large acceptance spectrometer: Final report

    International Nuclear Information System (INIS)

    1989-01-01

    The Technical Advisory Panel for the Large Acceptance Spectrometer met on November 17--19, 1988, at CEBAF to perform a second review of the status of this project. The charge to the Panel was ''to provide technical advice to the CEBAF directorate on the design, construction, cost, schedule, and implementation of the Large Acceptance Spectrometer.'' In this written report, an overview of the entire project is given. Specific comments on the major components, data handling and analysis, assembly and installation, and management are presented. The Panel's conclusions are contained in the Executive Summary at the beginning of the report

  6. Modular Radioisotope Thermoelectric Generator (RTG) Program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Section 2.0 of this report summarizes the MOD-RTG reference flight design, and Section 3.0 discusses the Ground Demonstration System design. Multicouple technology development is discussed in Section 4.0, and Section 5.0 lists all published technical papers prepared during the course of the contract.

  7. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    Energy Technology Data Exchange (ETDEWEB)

    TIAX, LLC

    2005-05-04

    patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

  8. Final Report: Hydrogen Production Pathways Cost Analysis (2013 – 2016)

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel Allan [Strategic Analysis Inc., Arlington, VA (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-30

    This report summarizes work conducted under a three year Department of Energy (DOE) funded project to Strategic Analysis, Inc. (SA) to analyze multiple hydrogen (H2) production technologies and project their corresponding levelized production cost of H2. The analysis was conducted using the H2A Hydrogen Analysis Tool developed by the DOE and National Renewable Energy Laboratory (NREL). The project was led by SA but conducted in close collaboration with the NREL and Argonne National Laboratory (ANL). In-depth techno-economic analysis (TEA) of five different H2 production methods was conducted. These TEAs developed projections for capital costs, fuel/feedstock usage, energy usage, indirect capital costs, land usage, labor requirements, and other parameters, for each H2 production pathway, and use the resulting cost and system parameters as inputs into the H2A discounted cash flow model to project the production cost of H2 ($/kgH2). Five technologies were analyzed as part of the project and are summarized in this report: Proton Exchange Membrane technology (PEM), High temperature solid oxide electrolysis cell technology (SOEC), Dark fermentation of biomass for H2 production, H2 production via Monolithic Piston-Type Reactors with rapid swing reforming and regeneration reactions, and Reformer-Electrolyzer-Purifier (REP) technology developed by Fuel Cell Energy, Inc. (FCE).

  9. Phase 1 feasibility study of an integrated hydrogen PEM fuel cell system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Luczak, F.

    1998-03-01

    Evaluated in the report is the use of hydrogen fueled proton exchange membrane (PEM) fuel cells for devices requiring less than 15 kW. Metal hydrides were specifically analyzed as a method of storing hydrogen. There is a business and technical part to the study that were developed with feedback from each other. The business potential of a small PEM product is reviewed by examining the markets, projected sales, and required investment. The major technical and cost hurdles to a product are also reviewed including: the membrane and electrode assembly (M and EA), water transport plate (WTP), and the metal hydrides. It was concluded that the best potential stationary market for hydrogen PEM fuel cell less than 15 kW is for backup power use in telecommunications applications.

  10. 78 FR 29239 - Final Priority; Technical Assistance To Improve State Data Capacity-National Technical Assistance...

    Science.gov (United States)

    2013-05-20

    ... Assistance To Improve State Data Capacity--National Technical Assistance Center To Improve State Capacity To... Education and Rehabilitative Services announces a priority under the Technical Assistance to Improve State... (FY) 2013 and later years. We take this action to focus attention on an identified national need to...

  11. Development of a partnership with government and industry to accelerate the commercialization of hydrogen. Final report, November 1, 1996--October 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The National Hydrogen Association (NHA) was born out of a Hydrogen Workshop, November 16 and 17, 1988, held at the Electric Power Research Institute in Palo Alto, California. The following mission statement was adopted and remains the statement of the organization: to foster the development of hydrogen technologies and their utilization in industrial and commercial applications and to promote the transition role of hydrogen in the energy field. This final technical report provides a summary of the activities performed by the NHA. Activities are broken down by task area, and include the following: Information exchange within the NHA; Information exchange within the hydrogen industry; Information exchange with other critical industries and the public; Annual US hydrogen meeting; Codes and standards which includes establishing industry consensus on safety issues; Industry perspective and needs; and Administrative. Appendices to this report include the following: Role of the NHA in strategic planning for the hydrogen economy--An international initiative; Hydrogen safety report; and Implementation plan workshop II, whose purpose was to seek commercialization scenarios and strategies to introduce hydrogen in near-term transportation and power markets.

  12. Final Scientific and Technical Report State and Regional Biomass Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    Handley, Rick; Stubbs, Anne D.

    2008-12-29

    The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

  13. Technical oversight for installation of TNX piezometers, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pidcoe, W.W. Jr. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1997-06-05

    Science Applications International Corporation was tasked under subcontract C002025P to provide technical oversight for the drilling of one pilot borehole, and the drilling and installation of five piezometers in the TNX Area Swamp. The work was performed in accordance with the Statement of Work in Task Order Proposal No. ER39-129 dated August 6, 1996. This report describes the activities associated with the performance of the task.

  14. Technical considerations associated with spent fuel acceptance. Final report

    International Nuclear Information System (INIS)

    Supko, E.M.

    1996-06-01

    This study was initiated by the Electric Power Research Institute (EPRI) to identify technical considerations associated with spent fuel acceptance and implementation of a waste management system that includes the use of transportable storage systems, and to serve as an opening dialogue among Standard Contract Holders and the department of Energy's Office of Civilian Radioactive Waste management (OCRWM) prior to the development of waste acceptance criteria or issuance of a Notice of Proposed Rulemaking by OCRWM to amend the Standard Contract. The original purpose of the Notice of Proposed Rulemaking was to address changes to the Standard Contract to implement a multi-purpose canister based system and to address other issues that were not adequately addressed in the standard contract. Even if DOE does not develop a multi-purpose canister based system for waste acceptance, it will still be necessary to develop waste acceptance criteria in order to accept spent fuel in transportable storage systems that are being deployed for at-reactor storage. In this study, technical issues associated with spent fuel acceptance will be defined and potential options and alternatives for resolution of technical considerations will be explored

  15. Systems study 'Alternative Entsorgung'. Final report. Technical annex 6

    International Nuclear Information System (INIS)

    1984-08-01

    In the conditioning plant, fuel elements which have been stored for ten years are loaded into transport containers, unloaded, identified and welded into a dry storage box. The dry store barrel is introduced into a final storage container, which, after being closed, is packed in lost shielding. This so-called final storage barrel is finally placed in a transport container and leaves the conditioning plant in this form by rail for transport to the final storage mine. The fuel element method of treatment 'packing of three complete fuel elements' was used as the reference process. In addition, the method of treatment 'fuel elements dismantled into fuel rods' was also examined. The handling of fuel elements and secondary waste treatment in the reference process are described in detail. (orig./HP) [de

  16. Experimental studies of the Negative Ion of Hydrogen. Final Report

    International Nuclear Information System (INIS)

    Bryant, Howard C.

    1999-01-01

    This document presents an overview of the results of the DOE'S support of experimental research into the structure and interactions of the negative ion of hydrogen conducted by the Department of Physics and Astronomy of the University of New Mexico at the Los Alamos National Laboratory. The work involves many collaborations with scientists from both institutions, as well as others. Although official DOE support for this work began in 1977, the experiment that led to it was done in 1971, near the time the 800 MeV linear accelerator at Los Alamos (LAMPF) first came on line. Until the mid nineties, the work was performed using the relativistic beam at LAMFF. The most recent results were obtained using the 35 keV injector beam for the Ground Test Accelerator at Los Alamos. A list of all published results from this work is presented

  17. Experimental studies of the Negative Ion of Hydrogen. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Howard C.

    1999-06-30

    This document presents an overview of the results of the DOE'S support of experimental research into the structure and interactions of the negative ion of hydrogen conducted by the Department of Physics and Astronomy of the University of New Mexico at the Los Alamos National Laboratory. The work involves many collaborations with scientists from both institutions, as well as others. Although official DOE support for this work began in 1977, the experiment that led to it was done in 1971, near the time the 800 MeV linear accelerator at Los Alamos (LAMPF) first came on line. Until the mid nineties, the work was performed using the relativistic beam at LAMFF. The most recent results were obtained using the 35 keV injector beam for the Ground Test Accelerator at Los Alamos. A list of all published results from this work is presented.

  18. Final Technical Report_Clean Energy Program_SLC-SELF

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Glenn; Coward, Doug

    2014-01-22

    This is the Final Technical Report for DOE's Energy Efficiency and Conservation Block Grant, Award No. DE-EE0003813, submitted by St. Lucie County, FL (prime recipient) and the Solar and Energy Loan Fund (SELF), the program's third-party administrator. SELF is a 501(c)(3) and a certified Community Development Financial Institution (CDFI). SELF is a community-based lending organization that operates the Clean Energy Loan Program, which focuses on improving the overall quality of life of underserved populations in Florida with an emphasis on home energy improvements and cost-effective renewable energy alternatives. SELF was launched in 2010 through the creation of the non-profit organization and with a $2.9 million Energy Efficiency and Conservation Block (EECBG) grant from the U.S. Department of Energy (DOE). SELF has its main office and headquarters in St. Lucie County, in the region known as the Treasure Coast in East-Central Florida. St. Lucie County received funding to create SELF as an independent non-profit institution, outside the control of local government. This was important for SELF to create its identity as an integral part of the business community and to help in its quest to become a Community Development Financial Institution (CDFI). This goal was accomplished in 2013, allowing SELF to focus on its mission to increase energy savings while serving markets that have struggled to find affordable financial assistance. These homeowners are most impacted by high energy costs. Energy costs are a disproportionate percentage of household expenses for low to moderate income (LMI) households. Electricity costs have been steadily rising in Florida by nearly 5% per year. Housing in LMI neighborhoods often includes older inefficient structures that further exacerbate the problem. Despite the many available clean energy solutions, most LMI property owners do not have the disposable income or equity in their homes necessary to afford the high upfront cost

  19. IRIS Toxicological Review of Hydrogen Cyanide and Cyanide Salts (Final Report)

    Science.gov (United States)

    EPA has finalized the Toxicological Review of Hydrogen Cyanide and Cyanide Salts: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health.

  20. Functional criteria for emergency response facilities. Technical report (final)

    International Nuclear Information System (INIS)

    1981-02-01

    This report describes the facilities and systems to be used by nuclear power plant licensees to improve responses to emergency situations. The facilities include the Technical Support Center (TSC), Onsite Operational Support Center (OSC), and Nearsite Emergency Operations Facility (EOF), as well as a brief discussion of the emergency response function of the control room. The data systems described are the Safety Parameter Display System (SPDS) and Nuclear Data Link (NDL). Together, these facilities and systems make up the total Emergency Response Facilities (ERFs). Licensees should follow the guidance provided both in this report and in NUREG-0654 (FEMA-REP-1), Revision 1, for design and implementation of the ERFs

  1. FINAL TECHNICAL REPORT: 20% Wind by 2030: Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Tom Kaiserski; Dan Lloyd

    2012-02-28

    The funds allocated through the Wind Powering America (WPA) grant were utilized by the State of Montana to support broad outreach activities communicating the benefits and opportunities of increased wind energy and transmission development. The challenges to increased wind development were also clearly communicated with the understanding that a clearer comprehension of the challenges would be beneficial in overcoming the obstacles to further development. The ultimate purpose of these activities was to foster the increased development of Montana's rich wind resources through increased public acceptance and wider dissemination of technical resources.

  2. Establishment of the International Power Institute. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Julius E. Coles

    2000-08-04

    The International Power Institute, in collaboration with American industries, seeks to address technical, political, economic and cultural issues of developing countries in the interest of facilitating profitable transactions in power related infrastructure projects. IPI works with universities, governments and commercial organizations to render project-specific recommendations for private-sector investment considerations. IPI also established the following goals: Facilitate electric power infrastructure transactions between developing countries and the US power industry; Collaborate with developing countries to identify development strategies to achieve energy stability; and Encourage market driven solutions and work collaboratively with other international trade energy, technology and banking organizations.

  3. Final Scientific/Technical Report – BISfuel EFRC

    Energy Technology Data Exchange (ETDEWEB)

    Gust, Devens

    2015-07-13

    The vast majority of the country’s energy needs are met with fossil fuels in the form of natural gas, coal and oil. The use of these fossil fuels contributes to climate change, the unequal distribution of fossil fuel deposits in the earth leads to geopolitical and economic problems, and eventually, fossil fuels will be exhausted. Thus, a renewable, widely distributed, environmentally benign, and inexpensive substitute large enough to meet the needs of society is required. Solar energy meets these criteria. Solar energy may be converted to electricity by photovoltaics, but the need for a continuous energy supply and high-density energy requirements for transportation necessitate technology for storage of energy from sunlight in a fuel. Cost-effective technologies for solar fuel production do not exist, prompting the need for new fundamental science. Fuel production requires not only energy, but also a source of electrons and precursor materials suitable for reduction to useful fuels. Given the immense magnitude of the human energy requirement, the most reasonable source of electrons is water oxidation, and suitable precursor materials are hydrogen ions (for hydrogen gas production) and carbon dioxide (for production of reduced carbon fuels such as methane or methanol). Natural photosynthesis is the only proven “technology” for solar fuel production. It harvests solar energy on a magnitude much larger than that necessary to fill human needs, and has done so for billions of years, creating fossil fuels along the way. BISfuel has approached the design of a complete system for solar water oxidation and hydrogen production by applying the fundamental principles of photosynthesis to the construction of synthetic components and their incorporation into an operational unit. In this artificial photosynthetic approach, the functional blueprint of photosynthesis is followed using non-biological materials. BISfuel brought together a group of investigators from the

  4. SIAM Conference on Geometric Design and Computing. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-03-11

    The SIAM Conference on Geometric Design and Computing attracted 164 domestic and international researchers, from academia, industry, and government. It provided a stimulating forum in which to learn about the latest developments, to discuss exciting new research directions, and to forge stronger ties between theory and applications. Final Report

  5. University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dorland, William [University of Maryland

    2014-11-18

    The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA were the host universities. This final technical report describes the physics results from the UMD CMPD.

  6. 78 FR 12955 - Final Requirements, Definitions, and Selection Criteria-Native American Career and Technical...

    Science.gov (United States)

    2013-02-26

    ... career and technical education programs (20 U.S.C. 2326(e)). This notice does not preclude us from... DEPARTMENT OF EDUCATION 34 CFR Chapter IV [Docket ID ED-2012-OVAE-0053] Final Requirements, Definitions, and Selection Criteria--Native American Career and Technical Education Program (NACTEP) [Catalog...

  7. Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Dale Edward

    2013-02-12

    This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  8. Alternative Energy Center, Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dillman, Howard D.; Marshall, JaNice C.

    2007-09-07

    The Lansing Community College Alternative Energy Center was created with several purposes in mind. The first purpose was the development of educational curricula designed to meet the growing needs of advanced energy companies that would allow students to articulate to other educational institutions or enter this growing workforce. A second purpose was the professional development of faculty and teachers to prepare them to train tomorrow's workforce and scholars. Still another purpose was to design, construct, and equip an alternative energy laboratory that could be used for education, demonstration, and public outreach. Last, the Center was to engage in community outreach and education to enhance industry partnerships, inform decision makers, and increase awareness and general knowledge of hydrogen and other alternative energy technologies and their beneficial impacts on society. This project has enabled us to accomplish all of our goals, including greater faculty understanding of advanced energy concepts, who are now able to convey this knowledge to students through a comprehensive alternative energy curriculum, in a facility well-equipped with advanced technologies, which is also being used to better educate the public on the advantages to society of exploring alternative energy technologies.

  9. Final Technical Report for subcontract number B612144

    Energy Technology Data Exchange (ETDEWEB)

    Mayali, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marcu, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-11

    The original statement of work stipulated that the Subcontractor shall perform bacterial and algal cultivation and manipulation, microbe isolation, preparation of samples for sequencing and isotopic analysis, data analysis, and manuscript preparation. The Subcontractor shall work closely with Dr. Mayali and other LLNL scientists, and shall participate in monthly SFA meetings (either in person or by telephone). The Subcontractor shall deliver a final report at the conclusion of the work.

  10. Direct Biohydrometallurgical Extraction of Iron from Ore. Final Technical Report

    International Nuclear Information System (INIS)

    T.C. Eisele

    2005-01-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe +2 ) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron

  11. Direct Biohydrometallurgical Extraction of Iron from Ore. Final technical report

    International Nuclear Information System (INIS)

    T.C. Eisele

    2005-01-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe +2 ) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron

  12. FINAL TECHNICAL REPORT Chagas Prevention in Central America

    International Development Research Centre (IDRC) Digital Library (Canada)

    Carlota Monroy

    INFORME FINAL: PROYECTO ID 106531 - 001. CORRESPONDIENTE AL PERIODO DEL 1 DE MARZO 2011 AL 31 DE MARZO 2014. CONTENIDO. 1. Información general ……………………………………………………………1. 2. Resumen del proyecto ………………………………………………………….2. 3. Metas objetivos ...

  13. Technical and economic feasibility of thermal storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shelpuk, B.; Joy, P.; Crouthamel, M.

    1977-06-01

    The technical and economic feasibility of various thermal energy storage alternatives is determined by comparing the system performance and annualized cost which result from each storage alternative operating with the same solar collector model, the same building load model, and the same heating system and controls model. Performance and cost calculations are made on the basis of an hour-by-hour time step using actual weather bureau data for Albuquerque, N. M., and New York City for a single six-month heating season. The primary approach to comparing various storage alternatives is to allow the collector area and storage mass to vary until a minimum cost combination is achieved. In the Albuquerque location collector area of 325 ft/sup 2/, water storage mass of 12.5 lb/ft/sup 2/ of collector area, and phase change mass of 6.25 lb/ft/sup 2/ of collector area results in minimum cost systems, each of which delivers about 50% of the total building demand. The primary conclusion is that, using current costs for materials and containers, water is the cheapest storage alternative for heating applications in both Albuquerque and New York City. The cost of containing or encapsulating phase change materials, coupled with their small system performance advantage, is the main reason for this conclusion. The use of desiccant materials for thermal storage is considered to be impractical due to irreversibilities in thermal cycling.

  14. Modular Electric Vehicle Program (MEVP). Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  15. Final Technical Report Steam Cycle Washer for Unbleached Pulp

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, Yvonne; Salminen, Reijo; Karlsnes, Andy

    2008-09-22

    Project Abstract for “Steam Cycle Washer for Unbleached Pulp” When completed, the patented SC Washer will provide an innovative, energy efficient demonstration project to wash unbleached pulp using a pressure vessel charged with steam. The Port Townsend Paper Corporation’s pulp mill in Port Townsend, WA was initially selected as the host site for conducting the demonstration of the SCW. Due to 2006 and 2007 delays in the project caused by issues with 21st Century Pulp & Paper, the developer of the SCW, and the 2007 bankruptcy proceedings and subsequent restructuring at Port Townsend Paper, the mill can no longer serve as a host site. An alternate host site is now being sought to complete the commercial demonstration of the Steam Cycle Washer for Unbleached Pulp. Additionally, estimated costs to complete the project have more than doubled since the initial estimates for the project were completed in 2002. Additional grant funding from DOE was sought and in July, 2008 the additional DOE funds were procured under a new DOE award, DE-PS36-08GO98014 issued to INL. Once the new host site is secured the completion of the project will begin under the management of INL. Future progress reports and milestone tracking will be completed under requirements of new DOE Award Number DE-PS36-08GO98014. The following are excerpts from the project Peer Review completed in 2006. They describe the project in some detail. Additional information can be found by reviewing DOE Award Number: DE-PS36-08GO98014. 5. Statement of Problem and Technical Barriers: The chemical pulping industry is one of the major users of fresh water in the United States. On average the industry uses over 80 tons of water to produce one ton of pulp, some states use up to 50% more (Washington 120 and Wisconsin 140). In order to process one ton of pulp using 80 tons of process water, a large amount of: • energy is used in process heat and • power is required for pumping the large volume of pulp slurries

  16. Team Massachusetts & Central America Solar Decathlon 2015 Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kenneth [Western New England Univ., Springfield, MA (United States)

    2016-04-29

    Our team was Team MASSCA (Massachusetts and Central America), which was a partnership of Western New England University (WNE) located in Massachusetts USA, The Technological University of Panama (UTP), and Central American Technological University (UNITEC) of Honduras. Together we had a group of 6 faculty members and approximately 30 undergraduate students. Our house is ‘The EASI’ House, which stands for Efficient, Affordable, Solar Innovation. The EASI house is rectangular with two bedrooms and one bath, and offers a total square footage of 680. Based on competition estimates, The EASI house costs roughly $121,000. The EASI house has a 5kW solar system. Faculty and students from all three institutions were represented at the competition in Irvine California. Team MASSCA did well considering this was our first entry in the Solar Decathlon competition. Team MASSCA won the following awards: First Place – Affordability Contest Second Place – Energy Balance Contest. The competition provided a great experience for our students (and faculty as well). This competition provided leadership, endurance, and technical knowledge/skills for our students, and was the single most important hands-on experience during their undergraduate years. We are extremely pleased with the awards we received. At the same time we have learned from our efforts and would do better if we were to compete in the future. Furthermore, as a result of our team’s Inter-Americas collaborative effort, UTP and WNE have partnered to form Team PANAMASS (PANAma and MASSachusetts) and have developed The 3 SMART House for the inaugural Solar Decathlon Latin America & Caribbean competition held in Colombia.

  17. Final Scientific Technical Report Crowder College MARET Center

    Energy Technology Data Exchange (ETDEWEB)

    Boyt, Art [Crowder College, Neosho, MO (United States); Eberle, Dan [Crowder College, Neosho, MO (United States); Hudson, Pam [Crowder College, Neosho, MO (United States); Hopper, Russ [Crowder College, Neosho, MO (United States)

    2013-06-30

    , exploring and validating new applications of solar and other renewable technologies, the MARET Facility will house a wide variety of programs which will advance implementation of renewable energy throughout the region. These program goals include; Curriculum in renewable energy for pre-engineering transfer programs; Certification and degree programs for technical degrees for Energy Efficiency, Wind, Photovoltaic and Solar Thermal professionals; Short courses and workshops for building management and design professionals; Public education and demonstration projects in renewable energy through conferences and K-12 educational outreach; Technical degree offering in building construction incorporating “best practices” for energy efficiency and renewables; and Business incubators for new renewable energy businesses and new product development The new MARET facility will support the mission of the US Department of Energy (DOE) Solar Program, “to improve America’s security, environmental quality, and economic prosperity through public-private partnerships that bring reliable and affordable solar energy technologies to the marketplace,” through a variety of educational and business assistance programs. Further, technical innovations planned for the MARET facility and its applied research activities will advance the Solar Program strategic goals to “reduce the cost of solar energy to the point it becomes competitive in relevant energy markets (e.g., buildings, power plants) and for solar technology to enable a sustainable solar industry.” Overarching Goals relative to program needs, future expansion, flexibility, quality of materials, and construction and operational costs:; Experimental: The structure and systems of the building operate as an educational resource. The systems are meant to be a source for data collection and study for building users and instructors; Educational: Part of the evolution of this building and its ongoing goals is to use the building as an

  18. Final priority; Technical Assistance on State Data Collection--IDEA Data Management Center. Final priority.

    Science.gov (United States)

    2014-08-05

    The Assistant Secretary for the Office of Special Education and Rehabilitative Services (OSERS) announces a priority under the Technical Assistance on State Data Collection program. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to fund a cooperative agreement to establish and operate an IDEA Data Management Center (Center) that will provide technical assistance (TA) to improve the capacity of States to meet the data collection requirements of the Individuals with Disabilities Education Act (IDEA).

  19. 48 CFR 1852.235-73 - Final Scientific and Technical Reports.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Final Scientific and Technical Reports. 1852.235-73 Section 1852.235-73 Federal Acquisition Regulations System NATIONAL..., including recommendations and conclusions based on the experience and results obtained. The final report...

  20. Transportation and Greenhouse Gas Emissions Trading. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Steve Winkelman; Tim Hargrave; Christine Vanderlan

    1999-10-01

    The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the road prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation

  1. Final Technical Progress Report Long term risk from actinides in the environment: Modes of mobility; FINAL

    International Nuclear Information System (INIS)

    Thomas B. Kirchner

    2002-01-01

    The key source of uncertainty in assessing actinide mobility is the relative importance of transport by: (1) wind erosion, (2) water erosion, and (3) vertical migration. Each of these three processes depends on several environmental factors and they compete with one another. A scientific assessment of the long-term risks associated with actinides in surface soils depends on better quantifying each of these three modes of mobility. The objective from our EMSP study was to quantify the mobility of soil actinides by wind erosion, water erosion, and vertical migration at three semiarid sites where actinide mobility is a key technical, social and legal issue. This EMSP project was the first to evaluate all three factors at a site. The approach has been to investigate both short- and long-term issues based on field and lab studies and model comparisons. Our results demonstrate the importance of incorporating threshold responses into a modeling framework that accounts for environmental factors and natural disturbances that trigger large changes in actinide mobility. The study measured erosional losses of sediment and fallout cesium (an actinide analogue) from field plots located near WIPP in 1998. The results highlight the large effect of burning as a disturbance on contaminant transport and mobility via runoff and erosion. The results show that runoff, erosion, and actinide transport are (1) strongly site specific-differences in radionuclide transport between WIPP and Rocky Flats differed by a factor of twelve because of soil and vegetation differences, and (2) are strongly impacted by disturbances such as fire, which can increase runoff, erosion, and actinide transport by more than an order of magnitude. In addition, a laboratory experiment using soil columns was conducted to investigate the vertical transport of contaminants in sandy soils. Nine columns of soil collected from the vicinity of the WIPP site were prepared. The column consisted of a piece of PVC pipe 20 cm

  2. Development of High-Performance Cast Crankshafts. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Mark E [General Motors, Detroit, MI (United States)

    2017-03-31

    The objective of this project was to develop technologies that would enable the production of cast crankshafts that can replace high performance forged steel crankshafts. To achieve this, the Ultimate Tensile Strength (UTS) of the new material needs to be 850 MPa with a desired minimum Yield Strength (YS; 0.2% offset) of 615 MPa and at least 10% elongation. Perhaps more challenging, the cast material needs to be able to achieve sufficient local fatigue properties to satisfy the durability requirements in today’s high performance gasoline and diesel engine applications. The project team focused on the development of cast steel alloys for application in crankshafts to take advantage of the higher stiffness over other potential material choices. The material and process developed should be able to produce high-performance crankshafts at no more than 110% of the cost of current production cast units, perhaps the most difficult objective to achieve. To minimize costs, the primary alloy design strategy was to design compositions that can achieve the required properties with minimal alloying and post-casting heat treatments. An Integrated Computational Materials Engineering (ICME) based approach was utilized, rather than relying only on traditional trial-and-error methods, which has been proven to accelerate alloy development time. Prototype melt chemistries designed using ICME were cast as test specimens and characterized iteratively to develop an alloy design within a stage-gate process. Standard characterization and material testing was done to validate the alloy performance against design targets and provide feedback to material design and manufacturing process models. Finally, the project called for Caterpillar and General Motors (GM) to develop optimized crankshaft designs using the final material and manufacturing processing path developed. A multi-disciplinary effort was to integrate finite element analyses by engine designers and geometry-specific casting

  3. IRIS International Reactor Innovative and Secure Final Technical Progress Report

    International Nuclear Information System (INIS)

    Carelli, M.D.

    2003-01-01

    OAK-B135 This NERI project, originally started as the Secure Transportable Autonomous Light Water Reactor (STAR-LW) and currently known as the International Reactor Innovative and Secure (IRIS) project, had the objective of investigating a novel type of water-cooled reactor to satisfy the Generation IV goals: fuel cycle sustainability, enhanced reliability and safety, and improved economics. The research objectives over the three-year (1999-2002) program were as follows: First year: Assess various design alternatives and establish main characteristics of a point design; Second year: Perform feasibility and engineering assessment of the selected design solutions; Third year: Complete reactor design and performance evaluation, including cost assessment These objectives were fully attained and actually they served to launch IRIS as a full fledged project for eventual commercial deployment. The program did not terminate in 2002 at the end of the NERI program, and has just entered in its fifth year. This has been made possible by the IRIS project participants which have grown from the original four member, two-countries team to the current twenty members, nine countries consortium. All the consortium members work under their own funding and it is estimated that the value of their in-kind contributions over the life of the project has been of the order of $30M. Currently, approximately 100 people worldwide are involved in the project. A very important constituency of the IRIS project is the academia: 7 universities from four countries are members of the consortium and five more US universities are associated via parallel NERI programs. To date, 97 students have worked or are working on IRIS; 59 IRIS-related graduate theses have been prepared or are in preparation, and 41 of these students have already graduated with M.S. (33) or Ph.D. (8) degrees. This ''final'' report (final only as far as the NERI program is concerned) summarizes the work performed in the first four

  4. SENTINEL trademark technical basis report for Limerick. Final report

    International Nuclear Information System (INIS)

    Burns, E.T.; Lee, L.K.; Mitman, J.T.; Vanover, D.E.; Wilson, D.K.

    1997-12-01

    PECO Energy in cooperation with the Electric Power Research Institute (EPRI) installed the SENTINEL trademark software at its Limerick Generating Station. This software incorporates models of the safety and support systems which are used to display the defense in depth present in the plant and a quantitative assessment of the plant risks during proposed on-line maintenance. During the past year, PECO Energy personnel have used this display to evaluate the safety of proposed on-line maintenance schedules. The report describes the motivation for and the development of the SENTINEL software. It describes the generation of Safety Function Assessment Trees and Plant Transient Assessment Trees and their use in evaluating the level of defense-in-depth of key plant safety functions and the susceptibility of the plant to critical transient events. Their results are displayed by color indicators ranging from green, through yellow and orange to red to show increasingly hazardous conditions. The report describes the use of the Limerick Probabilistic Safety Assessment within the SENTINEL code to calculate an instantaneous core damage frequency and the criteria by which this frequency is translated to a color indicator. Finally, the report describes the Performance Criteria Assessment which tracks and trends system/train unavailability to document conformance to the requirements of the Maintenance Rule

  5. Final Technical Report for DE-SC0012297

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Antonio, Ian [Brown Univ., Providence, RI (United States)

    2017-08-01

    This is the final report on the work performed in award DE-SC0012297, Cosmic Frontier work in support of the LSST Dark Energy Science Collaboration's work to develop algorithms, simulations, and statistical tests to ensure optimal extraction of the dark energy properties from galaxy clusters observed with LSST. This work focused on effects that could produce a systematic error on the measurement of cluster masses (that will be used to probe the effects of dark energy on the growth of structure). These effects stem from the deviations from pure ellipticity of the gravitational lensing signal and from the blending of light of neighboring galaxies. Both these effects are expected to be more significant for LSST than for the stage III experiments such as the Dark Energy Survey. We calculate the magnitude of the mass error (or bias) for the first time and demonstrate that it can be treated as a multiplicative correction and calibrated out, allowing mass measurements of clusters from gravitational lensing to meet the requirements of LSST's dark energy investigation.

  6. Final technical report on studies of plasma transport

    International Nuclear Information System (INIS)

    O'Neil, T.M.; Driscoll, C.F.; Malmberg, J.H.

    1997-01-01

    This document gives an overview of the scientific results obtained under the DOE grant, and references the journal articles which give more complete descriptions of the various topics. Recently, the research has been focused on 2-dimensional vortices and turbulence: experiments using a new camera-diagnosed electron plasma apparatus have given surprising results which both clarify and challenge theories. Here, the crossfield E x B flow of the electron plasma is directly analogous to the 2-d flow of an ideal fluid such as water, and may also give insight into more complicated poloidal flows exhibited in toroidal plasmas. The shear-flow instabilities, turbulence, and vortices can be accurately observed, and the free relaxation of this turbulence has been characterized. The physical processes underlying the complicated turbulent evolution can also be studied in more controlled near-linear regimes. The original experimental focus of this program was on radial particle transport from applied external field asymmetries. Here, this research program clearly identified the importance of the collective response of the plasma, giving smaller fields from shielding, or enhanced fields from resonant modes. Experiments and theory work have also elucidated the flow of a plasma along the magnetic field. Finally, some theory was pursued for direct application to fusion plasmas, and to gravitating gas clouds in astrophysics. This program was highly successful in clarifying basic plasma transport processes

  7. Advanced Beta Dosimetry Techniques.Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    David M. Hamby, PhD

    2006-01-01

    Final report describing NEER research on Advanced Beta Dosimetry Techniques. The research funded by this NEER grant establishes the framework for a detailed understanding of the challenges in beta dosimetry, especially in the presence of a mixed radiation field. The work also stimulated the thinking of the research group which will lead to new concepts in digital signal processing to allow collection of detection signals and real-time analysis such that simultaneous beta and gamma spectroscopy can take place. The work described herein (with detail in the many publications that came out of this research) was conducted in a manner that provided dissertation and thesis topics for three students, one of which was completely funded by this grant. The overall benefit of the work came in the form of a dramatic shift in signal processing that is normally conducted in pulse shape analysis. Analog signal processing was shown not to be feasible for this type of work and that digital signal processing was a must. This, in turn, led the research team to a new understanding of pulse analysis, one in which expands the state-of-the-art in simultaneous beta and gamma spectroscopy with a single detector

  8. Systems study 'Alternative Entsorgung'. Final report. Technical annex 7

    International Nuclear Information System (INIS)

    Engelmann, H.J.

    1984-10-01

    A radiation protection concept was worked out for final storage of spent fuel elements. It contains the areas of instrumentation and equipment with the necessary devices and measuring equipment for monitoring emission and the room air, personnel dosimetry, measuring contamination, local dose rate measurements and division into radiation protection areas. The barrel incoming inspection is described. The work for determining the radiological load of the operating staff and the environment for correct and incorrect operation is also described. The radiological load of the operating staff for correct operation was determined in the form of the collective dose with dose factors in accordance with ICRP and individual doses according to Radiation Protection Ordinance. The collective dose is 0.28 pers. Sv/a and the maximum individual dose remains below 1.0 E-2 Sv/a. The individual doses determined remain below the permitted limits of Radiation Protection Ordinance. In the context of accident analysis, it was found that no accidents occur, which load the operating staff radiologically above the permitted limits of the Radiation Protection Ordinance. A probability consideration of accidents shows that the accident risk of the operating staff is several orders of magnitude below that of the normal operating risk. (orig./HP) [de

  9. Final Technical Report: Development of Post-Installation Monitoring Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Polagye, Brian [University of Washington

    2014-03-31

    The development of approaches to harness marine and hydrokinetic energy at large-scale is predicated on the compatibility of these generation technologies with the marine environment. At present, aspects of this compatibility are uncertain. Demonstration projects provide an opportunity to address these uncertainties in a way that moves the entire industry forward. However, the monitoring capabilities to realize these advances are often under-developed in comparison to the marine and hydrokinetic energy technologies being studied. Public Utility District No. 1 of Snohomish County has proposed to deploy two 6-meter diameter tidal turbines manufactured by OpenHydro in northern Admiralty Inlet, Puget Sound, Washington. The goal of this deployment is to provide information about the environmental, technical, and economic performance of such turbines that can advance the development of larger-scale tidal energy projects, both in the United States and internationally. The objective of this particular project was to develop environmental monitoring plans in collaboration with resource agencies, while simultaneously advancing the capabilities of monitoring technologies to the point that they could be realistically implemented as part of these plans. In this, the District was joined by researchers at the Northwest National Marine Renewable Energy Center at the University of Washington, Sea Mammal Research Unit, LLC, H.T. Harvey & Associates, and Pacific Northwest National Laboratory. Over a two year period, the project team successfully developed four environmental monitoring and mitigation plans that were adopted as a condition of the operating license for the demonstration project that issued by the Federal Energy Regulatory Commission in March 2014. These plans address nearturbine interactions with marine animals, the sound produced by the turbines, marine mammal behavioral changes associated with the turbines, and changes to benthic habitat associated with colonization

  10. Final Technical Report - Photovoltaics for You (PV4You) Program

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, J. M. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Sherwood, L. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Pulaski, J. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Cook, C. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Kalland, S. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Haynes, J. [Interstate Renewable Energy Council (IREC), New York, NY (United States)

    2005-08-14

    position in developing quality and competency standards for solar professionals and for training programs critical components to bring the solar industry into step with other recognized craft labor forces. IREC's objective was to provide consumer assurances and assist the states and the solar industry in building a strong and qualified workforce. IREC's Schools Going Solar Clearinghouse provided channels of information to educate students, teachers, parents and the community at large about the benefits of solar energy. Solar school projects enhance science and math education while creating an initial entry market for domestic PV. And, IREC's community and outreach network got the right information out to capture the interest and met the needs of different audiences and reached groups that weren't traditionally part of the solar community. IREC's PV4You project was effective because it resulted in reduced costs through easier interconnection and better net metering agreements and by raising the competency standards for solar practitioners. The project provided ways to eliminate barriers and constraints by providing technical assistance, offering model agreements based on industry consensus that were used by state and local decision makers. And, the project increased public acceptance by providing information, news and guidelines for different audiences.

  11. Final Technical Report - In-line Uranium Immunosensor

    International Nuclear Information System (INIS)

    Blake, Diane A.

    2006-01-01

    In this project, personnel at Tulane University and Sapidyne Instruments Inc. developed an in-line uranium immunosensor that could be used to determine the efficacy of specific in situ biostimulation approaches. This sensor was designed to operate autonomously over relatively long periods of time (2-10 days) and was able to provide near real-time data about uranium immobilization in the absence of personnel at the site of the biostimulation experiments. An alpha prototype of the in-line immmunosensor was delivered from Sapidyne Instruments to Tulane University in December of 2002 and a beta prototype was delivered in November of 2003. The beta prototype of this instrument (now available commercially from Sapidyne Instruments) was programmed to autonomously dilute standard uranium to final concentrations of 2.5 to 100 nM (0.6 to 24 ppb) in buffer containing a fluorescently labeled anti-uranium antibody and the uranium chelator, 2,9-dicarboxyl-1,10-phenanthroline. The assay limit of detection for hexavalent uranium was 5.8 nM or 1.38 ppb. This limit of detection is well below the drinking water standard of 30 ppb recently promulgated by the EPA. The assay showed excellent precision; the coefficients of variation (CV's) in the linear range of the assay were less than 5% and CV?s never rose above 14%. Analytical recovery in the immunosensors-based assay was assessed by adding variable known quantities of uranium to purified water samples. A quantitative recovery (93.75% - 108.17%) was obtained for sample with concentrations from 7.5 to 20 nM (2-4.75 ppb). In August of 2005 the sensor was transported to Oak Ridge National Laboratory, for testing of water samples at the Criddle test site (see Wu et al., Environ. Sci. Technol. 40:3978-3985 2006 for a description of this site). In this first on-site test, the in-line sensor was able to accurately detect changes in the concentrations of uranium in effluent samples from this site. Although the absolute values for the uranium

  12. OTEC Advanced Composite Cold Water Pipe: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Alan Miller; Matthew Ascari

    2011-09-12

    Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow 'planks,' holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline

  13. Technical assistance for Meharry Medical College Energy Efficiency Project. Final project status and technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-08

    This report presents the results of a program to provide technical assistance to Meharry Medical College. The purpose of the program is to facilitate Meharry`s effort to finance a campus-wide facility retrofit. The US Department of Energy (USDOE) funded the program through a grant to the Tennessee Department of Economic and Community Development (TECD). The University of Memphis-Technology and Energy Services (UM-TES), under contract to TECD, performed program services. The report has three sections: (1) introduction; (2) project definition, financing, and participants; and (3) opportunities for federal participation.

  14. Final priority. Rehabilitation Training: Job-Driven Vocational Rehabilitation Technical Assistance Center. Final priority.

    Science.gov (United States)

    2014-08-19

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Rehabilitation Training program to establish a Job-Driven Vocational Rehabilitation Technical Assistance Center (JDVRTAC). The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to focus on training in an area of national need. Specifically, this priority responds to the Presidential Memorandum to Federal agencies directing them to take action to address job-driven training for the Nation's workers. The JDVRTAC will provide technical assistance (TA) to State vocational rehabilitation (VR) agencies to help them develop for individuals with disabilities training and employment opportunities that meet the needs of today's employers.

  15. Development of a partnership with government and industry to accelerate the commercialization of hydrogen. Final report, 9/30/1995--10/31/1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This Final Technical Report provides a summary of the activities performed by the NHA in accordance with the Cooperative Agreement. Activities are broken down by task area, and include the following: (1) Information exchange within the NHA, which includes the two NHA newsletters, the NHA Advocate, and the H{sub 2} Digest, as well as directory information. (2) Information exchange within the hydrogen industry, which includes conferences and meeting attendance, presentations of papers, and HTAP activities. (3) Information exchange with other critical industries and the public, which includes press conferences, and public awareness activities. (4) Annual US hydrogen meeting, NHA`s signature event. The 7th Annual US Hydrogen Meeting was held April 2--4, 1996 in Alexandria, Virginia in conjunction with the US DOE`s Hydrogen Technical Advisory Panel Meeting and the SAE`s Fuel Cell TOPTEC. (5) Industry perspective and needs, which covers activities related to the Hydrogen Industrialization Plan. (6) Codes and standards, which includes workshop and workgroup activities, as well as other safety-related activities. The objective of the codes and standards activities is to establish expert working groups to develop industry consensus on safety issues, and develop compatible standards and formats, and product certification protocols.

  16. SIMS study on statistics and environmental factors in health. Final technical report to Department of Energy

    International Nuclear Information System (INIS)

    1982-07-01

    This final technical report to DOE consists of five individual technical reports and one working paper by members of the SIMS Study at Stanford. Research topics include testing goodness-of-fit for the distribution of errors in regression models, mathematical models of cancer and their use in risk assessment, pollutant standards index (Psi), osteosarcomas among beagles exposed to 239 Plutonium, air pollution and respiratory disease, and models of human exposure to air pollution. Individual summaries of the six reports are indexed separately

  17. A Novel Slurry-Based Biomass Reforming Process Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Sean C. [United Technologies Research Center, East Hartford, CT (United States); Davis, Timothy D. [United Technologies Research Center, East Hartford, CT (United States); Peles, A. [United Technologies Research Center, East Hartford, CT (United States); She, Ying [United Technologies Research Center, East Hartford, CT (United States); Sheffel, Joshua [United Technologies Research Center, East Hartford, CT (United States); Willigan, Rhonda R. [United Technologies Research Center, East Hartford, CT (United States); Vanderspurt, Thomas H. [United Technologies Research Center, East Hartford, CT (United States); Zhu, Tianli [United Technologies Research Center, East Hartford, CT (United States)

    2011-09-30

    to hydrogen, methane, and carbon dioxide was repeatedly demonstrated in batch reactors varying in size from 50 mL to 7.6 L. The different wood sources (e.g., swamp maple, poplar, and commercial wood flour) were converted in the presence of a heterogeneous catalyst and base at relatively low temperatures (e.g., 310°C) at sub-critical pressures sufficient to maintain the liquid phase. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly Pt-Re, were shown to be more selective toward breaking C-C bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking C-O bonds, favoring the production of methane. The project showed that increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen but at the expense of increasing the production of undesirable organic acids from the wood, lowering the amount of wood converted to gas. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids. The final stage of the project was the construction and testing of a demonstration unit for H2 production. This continuous flow demonstration unit consisted of wood slurry and potassium carbonate feed pump systems, two reactors for hydrolysis and reforming, and a gas-liquid separation system. The technical challenges associated with unreacted wood fines and Raney Ni catalyst retention limited the demonstration unit to using a fixed bed Raney Ni catalyst form. The lower activity of the larger particle Raney Ni in turn limited the residence time and thus the wood mass flow feed rate to 50 g min-1 for a 1 wt% wood slurry. The project demonstrated continuous H2 yields with unmodified, fixed bed

  18. Dissemination of Continuing Education Materials Via Television Delivery Systems. Final Technical Report and Final Report.

    Science.gov (United States)

    Munushian, Jack

    In 1972, the University of Southern California School of Engineering established a 4-channel interactive instructional television network. It was designed to allow employees of participating industries to take regular university science and engineering courses and special continuing education courses at or near their work locations. Final progress…

  19. Final test results for the ground operations demonstration unit for liquid hydrogen

    Science.gov (United States)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    Described herein is a comprehensive project-a large-scale test of an integrated refrigeration and storage system called the Ground Operations and Demonstration Unit for Liquid Hydrogen (GODU LH2), sponsored by the Advanced Exploration Systems Program and constructed at Kennedy Space Center. A commercial cryogenic refrigerator interfaced with a 125,000 l liquid hydrogen tank and auxiliary systems in a manner that enabled control of the propellant state by extracting heat via a closed loop Brayton cycle refrigerator coupled to a novel internal heat exchanger. Three primary objectives were demonstrating zero-loss storage and transfer, gaseous liquefaction, and propellant densification. Testing was performed at three different liquid hydrogen fill-levels. Data were collected on tank pressure, internal tank temperature profiles, mass flow in and out of the system, and refrigeration system performance. All test objectives were successfully achieved during approximately two years of testing. A summary of the final results is presented in this paper.

  20. The Michigan high-level radioactive waste program: Final technical progress report

    International Nuclear Information System (INIS)

    1987-01-01

    This report comprises the state of Michigan's final technical report on the location of a proposed high-level radioactive waste disposal site. Included are a list of Michigan's efforts to review the DOE proposal and a detailed report on the application of geographic information systems analysis techniques to the review process

  1. DOE final technical report 3/1997 to 2/2005

    International Nuclear Information System (INIS)

    Gross, Franz L.

    2005-01-01

    DOE final technical report 3/1997 to 2/2005 This grant supported basic theoretical research into the derivation (from relativistic field theories) of relativistic equations for few body systems, with practical applications to the properties of 2 and 3 nucleon systems and to the nature of few-quark systems

  2. "Type Ia Supernovae: Tools for Studying Dark Energy" Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, Stan [Lick Observatory, San Jose, CA (United States); Kasen, Dan [Univ. of California, Berkeley, CA (United States)

    2017-05-10

    Final technical report for project "Type Ia Supernovae: Tools for the Study of Dark Energy" awarded jointly to scientists at the University of California, Santa Cruz and Berkeley, for computer modeling, theory and data analysis relevant to the use of Type Ia supernovae as standard candles for cosmology.

  3. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS): Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs [Univ. of Colorado, Boulder, CO (United States); Lawrence, Dale [Univ. of Colorado, Boulder, CO (United States); Palo, Scott [Univ. of Colorado, Boulder, CO (United States); Argrow, Brian [Univ. of Colorado, Boulder, CO (United States); LoDolce, Gabriel [Univ. of Colorado, Boulder, CO (United States); Curry, Nathan [Univ. of Colorado, Boulder, CO (United States); Weibel, Douglas [Univ. of Colorado, Boulder, CO (United States); Finamore, William [Univ. of Colorado, Boulder, CO (United States); D' Amore, Phillip [Univ. of Colorado, Boulder, CO (United States); Borenstein, Steven [Univ. of Colorado, Boulder, CO (United States); Nichols, Tevis [Univ. of Colorado, Boulder, CO (United States); Elston, Jack [Blackswift Technologies, Boulder, CO (United States); Ivey, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bendure, Albert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Long, Charles [Univ. of Colorado, Boulder, CO (United States); Telg, Hagen [Univ. of Colorado, Boulder, CO (United States); Gao, Ru-Shan [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Hock, Terry [National Center for Atmospheric Research, Boulder, CO (United States); Bland, Geoff [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States)

    2017-03-29

    This final technical report details activities undertaken as part of the referenced project. Included is information on the preparation of aircraft for deployment to Alaska, summaries of the three deployments covered under this project, and a brief description of the dataset and science directions pursued. Additionally, we provide information on lessons learned, publications, and presentations resulting from this work.

  4. Characterization of the radon source in North-Central Florida. Final report part 1 -- Final project report; Final report part 2 -- Technical report

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains two separate parts: Characterization of the Radon Source in North-Central Florida (final report part 1 -- final project report); and Characterization of the Radon Source in North-Central Florida (technical report). The objectives were to characterize the radon 222 source in a region having a demonstrated elevated indoor radon potential and having geology, lithology, and climate that are different from those in other regions of the U.S. where radon is being studied. Radon availability and transport in this region were described. Approaches for predicting the radon potential of lands in this region were developed

  5. Technical approach to finalizing sensible soil cleanup levels at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Carr, D.; Hertel, B.; Jewett, M.; Janke, R.; Conner, B.

    1996-01-01

    The remedial strategy for addressing contaminated environmental media was recently finalized for the US Department of Energy's (DOE) Fernald Environmental Management Project (FEMP) following almost 10 years of detailed technical analysis. The FEMP represents one of the first major nuclear facilities to successfully complete the Remedial Investigation/Feasibility Study (RI/FS) phase of the environmental restoration process. A critical element of this success was the establishment of sensible cleanup levels for contaminated soil and groundwater both on and off the FEMP property. These cleanup levels were derived based upon a strict application of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations and guidance, coupled with positive input from the regulatory agencies and the local community regarding projected future land uses for the site. The approach for establishing the cleanup levels was based upon a Feasibility Study (FS) strategy that examined a bounding range of viable future land uses for the site. Within each land use, the cost and technical implications of a range of health-protective cleanup levels for the environmental media were analyzed. Technical considerations in driving these cleanup levels included: direct exposure routes to viable human receptors; cross- media impacts to air, surface water, and groundwater; technical practicality of attaining the levels; volume of affected media; impact to sensitive environmental receptors or ecosystems; and cost. This paper will discuss the technical approach used to support the finalization of the cleanup levels for the site. The final cleanup levels provide the last remaining significant piece to the puzzle of establishing a final site-wide remedial strategy for the FEMP, and positions the facility for the expedient completion of site-wide remedial activities

  6. Technical area status report for low-level mixed waste final waste forms

    International Nuclear Information System (INIS)

    Mayberry, J.L.; DeWitt, L.M.; Darnell, R.

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA's Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities

  7. Technical area status report for low-level mixed waste final waste forms. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

  8. Technical and logistic provisions for the delivery of radioactive wastes in the final repository Konrad

    International Nuclear Information System (INIS)

    Poeppinghaus, Jens

    2013-01-01

    The beginning of radioactive waste delivery to the final repository Konrad is planned for 2019. The main issue for the technical and logistic provisions is the development of a concept for the transport of the licensed radioactive waste containers to the site, including a turning concept for cylindrical waste forms and planning, construction and manufacture of transport equipment. Further issues include a logistic concept considering specific boundary conditions as administrative processes, priorities, special features of the delivering institutions and technical requirements of the repository.

  9. 77 FR 30514 - Native Hawaiian Career and Technical Education Program; Final Waiver and Extension of Project Period

    Science.gov (United States)

    2012-05-23

    ... DEPARTMENT OF EDUCATION Native Hawaiian Career and Technical Education Program; Final Waiver and... Career and Technical Education Program Catalog of Federal Domestic Assistance (CFDA) Number: 84.259A... Technical Education Program (NHCTEP), the Secretary hereby waives 34 CFR 75.261(c)(2) in order to extend the...

  10. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, T.A.

    1998-01-31

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  11. Summary report of the final technical meeting on 'International Reactor Dosimetry File: IRDF-2002'

    International Nuclear Information System (INIS)

    Griffin, Patrick J.; Paviotti-Corcuera, R.

    2003-10-01

    Presentations, recommendations and conclusions of the Final Technical Meeting on 'International Reactor Dosimetry File: IRDF-2002' are summarized in this report. The main aims of this meeting were to discuss scientific and technical matters related to reactor dosimetry and to assign responsibilities for the preparation of the final version of the IRDF- 2002 library and the associated TECDOC. Tasks were assigned and deadlines were agreed. Participants emphasized that accurate and complete nuclear data for reactor dosimetry are essential to improve the assessment accuracies for reactor pressure vessel service lifetimes in nuclear power plants, as well as for other neutron metrology applications such as boron neutron capture therapy, therapeutic use of medical isotopes, nuclear physics measurements, and reactor safety applications. (author)

  12. Experimental Program Final Technical Progress Report: 15 February 2007 to 30 September 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Edward R. [University of Colorado, Boulder, CO

    2014-09-12

    This is the final technical report of the grant DE-FG02-04ER41301 to the University of Colorado at Boulder entitled "Intermediate Energy Nuclear Physics" and describes the results of our funded activities during the period 15 February 2007 to 30 September 2012. These activities were primarily carried out at Fermilab, RHIC, and the German lab DESY. Significant advances in these experiments were carried out by members of the Colorado group and are described in detail.

  13. Final Technical Report for DE-FG02-98ER45737

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Harald W.

    2018-04-24

    Final Technical Report For DOE Grant No. DE-FG02-98ER45737 Development of a Scanning Transmission X-Ray Microscope Polymer Thin Films and Self Assembled Monolayers: Pattern Formation and Surface Interactions NEXAFS Microscopy and Resonant Scattering of Polymeric Materials Organic Heterojunction Devices: Structure, Composition, and Performance at <20 nm Resolution Fundamental Science of High Open Circuit Voltage Excitonic Solar Cells Control of Interface- and Mesoscopic Structure in High Performance Organic Solar Cells: Towards a Predictive Device Paradigm

  14. Final Technical Report for contract number DE-FG02-05ER15670

    Energy Technology Data Exchange (ETDEWEB)

    Glazebrook, Jane [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-02-29

    This is the final technical report for contract number DE-FG02-05ER15670. The project is now complete, and results of the project have been published. Two papers were published based on work done in the last three-year funding period. The DOIs of these papers are included below. The abstracts of the papers, providing summaries of the work, are included in the body of the report.

  15. Hydrogen as an energy carrier. Final report; Wasserstoff als Energietraeger. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rebholz, H. [ed.

    1998-12-01

    This final report of the Special Field of Research 270 (SFB 270) documents the work and results of the four promotion phases from 1989 to 1998, presented in reports on 15 part-projects. From its inception, SFB 270, which bears the title ''Hydrogen as an Energy Carrier'', has been dedicated to two fields of work: in Project Area A to the production of hydrogen (7 part-projects) and in Project Area B to the transport and storage of hydrogen (8 part-projects). The scientific results of the part-projects have also been presented in detail in the progress reports and interim reports of 1991, 1994 and 1997. Some of them have also been presented at the colloquiums of SFB 270. Twelve part-projects have been abstracted individually for the ENERGY database. [German] Der vorliegende Abschlussbericht des Sonderforschungsbereichs 270 dokumentiert die Arbeiten und Ergebnisse der vier Foerderungsphasen von 1989 bis 1998. Sie sind in den Berichten von 15 Teilprojekten wiedergegeben. Der Sonderforschungsbereich 270 'Wasserstoff als Energietraeger' hat sich von Anfang an zwei Aufgabengebieten gewidmet: Im Projektbereich A der Herstellung von Wasserstoff (7 Teilprojekte) und im Projektbereich B dem Transport und der Speicherung von Wasserstoff (8 Teilprojekte). Wissenschaftliche Ergebnisse der Teilprojekte sind ausfuehrlich auch in den Arbeits- und Ergebnisberichten 1991, 1994 und 1997 wiedergegeben. Sie wurden auch, in Teilen, in entsprechenden Kolloquien des SFB 270 praesentiert. Fuer die Datenbank ENERGY wurden 12 Teilprojekte separat aufgenommen. (orig.)

  16. Development on the cryogenic hydrogen isotopes distillation process technology for tritium removal (Final report)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ki Woung; Kim, Yong Ik; Na, Jeong Won; Ku, Jae Hyu; Kim, Kwang Rak; Jeong, Yong Won; Lee, Han Soo; Cho, Young Hyun; Ahn, Do Hee; Baek, Seung Woo; Kang, Hee Seok; Kim, You Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    While tritium exposure to the site-workers in Wolsung NPP is up to about 40% of the total personnel exposure, Ministry of Science and Technology has asked tritium removal facility for requirement of post heavy-water reactor construction. For the purpose of essential removal of tritium from the Wolsung heavy-water reactor system, a preliminary study on the cryogenic Ar-N{sub 2} and H{sub 2}-D{sub 2} distillation process for development of liquid-phase catalytic exchange cryogenic hydrogen distillation process technology. The Ar-N{sub 2} distillation column showed good performance with approximately 97% of final Ar concentration, and a computer simulation code was modified using these data. A simulation code developed for cryogenic hydrogen isotopes (H{sub 2}, HD, D{sub 2}, HT, DT, T{sub 2}) distillation column showed good performance after comparison with the result of a JAERI code, and a H{sub 2}-D{sub 2} distillation column was made. Gas chromatography for hydrogen isotopes analysis was established using a vacuum sampling loop, and a schematic diagram of H{sub 2}-D{sub 2} distillation process was suggested. A feasibility on modification of H{sub 2}-D{sub 2} distillation process control system using Laser Raman Spectroscopy was studied, and the consideration points for tritium storage system for Wolsung tritium removal facility was suggested. 31 tabs., 79 figs., 68 refs. (Author).

  17. Development on the cryogenic hydrogen isotopes distillation process technology for tritium removal (Final report)

    International Nuclear Information System (INIS)

    Sung, Ki Woung; Kim, Yong Ik; Na, Jeong Won; Ku, Jae Hyu; Kim, Kwang Rak; Jeong, Yong Won; Lee, Han Soo; Cho, Young Hyun; Ahn, Do Hee; Baek, Seung Woo; Kang, Hee Seok; Kim, You Sun

    1995-12-01

    While tritium exposure to the site-workers in Wolsung NPP is up to about 40% of the total personnel exposure, Ministry of Science and Technology has asked tritium removal facility for requirement of post heavy-water reactor construction. For the purpose of essential removal of tritium from the Wolsung heavy-water reactor system, a preliminary study on the cryogenic Ar-N 2 and H 2 -D 2 distillation process for development of liquid-phase catalytic exchange cryogenic hydrogen distillation process technology. The Ar-N 2 distillation column showed good performance with approximately 97% of final Ar concentration, and a computer simulation code was modified using these data. A simulation code developed for cryogenic hydrogen isotopes (H 2 , HD, D 2 , HT, DT, T 2 ) distillation column showed good performance after comparison with the result of a JAERI code, and a H 2 -D 2 distillation column was made. Gas chromatography for hydrogen isotopes analysis was established using a vacuum sampling loop, and a schematic diagram of H 2 -D 2 distillation process was suggested. A feasibility on modification of H 2 -D 2 distillation process control system using Laser Raman Spectroscopy was studied, and the consideration points for tritium storage system for Wolsung tritium removal facility was suggested. 31 tabs., 79 figs., 68 refs. (Author)

  18. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  19. Final Report for the DOE-BES Program Mechanistic Studies of Activated Hydrogen Release from Amine-Boranes

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Sneddon; R. Thomas Baker

    2013-01-13

    Effective storage of hydrogen presents one of the most significant technical gaps to successful implementation of the hydrogen economy, particularly for transportation applications. Amine boranes, such as ammonia borane H3NBH3 and ammonia triborane H3NB3H7, have been identified as promising, high-capacity chemical hydrogen storage media containing potentially readily released protic (N-H) and hydridic (B-H) hydrogens. At the outset of our studies, dehydrogenation of ammonia borane had been studied primarily in the solid state, but our DOE sponsored work clearly demonstrated that ionic liquids, base-initiators and/or metal-catalysts can each significantly increase both the rate and extent of hydrogen release from amine boranes under moderate conditions. Our studies also showed that depending upon the activation method, hydrogen release from amine boranes can occur by very different mechanistic steps and yield different types of spent-fuel materials. The fundamental understanding that was developed during this grant of the pathways and controlling factors for each of these hydrogen-release mechanisms is now enabling continuing discovery and optimization of new chemical-hydride based hydrogen storage systems.

  20. Main Group Element Chemistry in Service of Hydrogen Storage and Activation. Final report

    International Nuclear Information System (INIS)

    Dixon, David A.; Arduengo, Anthony J. III

    2010-01-01

    Replacing combustion of carbon-based fuels with alternative energy sources that have minimal environmental impact is one of the grand scientific and technological challenges of the early 21st century. Not only is it critical to capture energy from new, renewable sources, it is also necessary to store the captured energy efficiently and effectively for use at the point of service when and where it is needed, which may not be collocated with the collection site. There are many potential storage media but we focus on the storage of energy in chemical bonds. It is more efficient to store energy on a per weight basis in chemical bonds. This is because it is hard to pack electrons into small volumes with low weight without the use of chemical bonds. The focus of the project was the development of new chemistries to enable DOE to meet its technical objectives for hydrogen storage using chemical hydrogen storage systems. We provided computational chemistry support in terms of thermodynamics, kinetics, and properties prediction in support of the experimental efforts of the DOE Center of Excellence for Chemical Hydrogen Storage. The goal of the Center is to store energy in chemical bonds involving hydrogen atoms. Once the hydrogen is stored in a set of X-H/Y-H bonds, the hydrogen has to be easily released and the depleted fuel regenerated very efficiently. This differs substantially from our current use of fossil fuel energy sources where the reactant is converted to energy plus CO 2 (coal) or CO 2 and H 2 O (gasoline, natural gas), which are released into the atmosphere. In future energy storage scenarios, the spent fuel will be captured and the energy storage medium regenerated. This places substantial additional constraints on the chemistry. The goal of the computational chemistry work was to reduce the time to design new materials and develop materials that meet the 2010 and 2015 DOE objectives in terms of weight percent, volume, release time, and regeneration ability

  1. Final Report: Main Group Element Chemistry in Service of Hydrogen Storage and Activation

    Energy Technology Data Exchange (ETDEWEB)

    David A. Dixon; Anthony J. Arduengo, III

    2010-09-30

    Replacing combustion of carbon-based fuels with alternative energy sources that have minimal environmental impact is one of the grand scientific and technological challenges of the early 21st century. Not only is it critical to capture energy from new, renewable sources, it is also necessary to store the captured energy efficiently and effectively for use at the point of service when and where it is needed, which may not be collocated with the collection site. There are many potential storage media but we focus on the storage of energy in chemical bonds. It is more efficient to store energy on a per weight basis in chemical bonds. This is because it is hard to pack electrons into small volumes with low weight without the use of chemical bonds. The focus of the project was the development of new chemistries to enable DOE to meet its technical objectives for hydrogen storage using chemical hydrogen storage systems. We provided computational chemistry support in terms of thermodynamics, kinetics, and properties prediction in support of the experimental efforts of the DOE Center of Excellence for Chemical Hydrogen Storage. The goal of the Center is to store energy in chemical bonds involving hydrogen atoms. Once the hydrogen is stored in a set of X-H/Y-H bonds, the hydrogen has to be easily released and the depleted fuel regenerated very efficiently. This differs substantially from our current use of fossil fuel energy sources where the reactant is converted to energy plus CO2 (coal) or CO2 and H2O (gasoline, natural gas), which are released into the atmosphere. In future energy storage scenarios, the spent fuel will be captured and the energy storage medium regenerated. This places substantial additional constraints on the chemistry. The goal of the computational chemistry work was to reduce the time to design new materials and develop materials that meet the 2010 and 2015 DOE objectives in terms of weight percent, volume, release time, and regeneration ability. This

  2. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    International Nuclear Information System (INIS)

    Anderson, Scott; Baca, Georgina; O'Connor, Michael

    2015-01-01

    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  3. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company; Baca, Georgina [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company; O' Connor, Michael [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company

    2015-12-31

    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  4. Hydrogen production from wastes. State-of-the-art and development potential. Final report

    International Nuclear Information System (INIS)

    Megret, O.; Hubert, L.; Calbry, M.; Trably, E.; Carrere, H.; Garcia-Bernet, D.; Bernet, N.

    2015-09-01

    Within the framework of the search for a virtuous energy system, the energy production known as 'clean' presents major stakes as well environmental as economic and societal. Among the potentially usable energy vectors, the dihydrogen gas proves to be a serious alternative to fossil energies. The 'traditional' production processes rest on extraction of hydrocarbon fossil resources and are strongly disparaged for their environmental impacts and the dependences with international access to fossil resources. To date, in addition to hydrogen production by water electrolysis based on renewable resources, the promising sectors of hydrogen production are those of the bio-refinery applied to layers of rough biomass, waste organic, sludges, etc. They involve both thermochemical and biological conversion processes. The objective of this study is to carry out a detailed state of the art of these alternative processes allowing the conversion of biomass-type wastes and by-products, on the scale of France, Europe and World. The study thus makes it possible to identify, describe and characterize the thermal and biological processes. The operating conditions to increase hydrogen production as well as the limits of the systems are presented: temperature, pressure, pH, quality of the layers, undesirable, gear robustness, etc. A brief study of the potential layers is proposed, making it possible to outline the potential of hydrogen production; however identification of the layers known as 'of implementation' (corresponding to the layers really expected taking into account the technical and economic context and of the competition of other valorization sectors) was not performed. For the thermal processes, theoretical examples of integrated processes are presented and an economic estimate of the hydrogen resulting cost is introduced. Regarding biological processes, the study identifies and analyses projects (on a pilot-scale for the most succeeded) which

  5. Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier

    International Nuclear Information System (INIS)

    Mann, M.K.

    1995-08-01

    The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus trademark to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product

  6. Final Technical Report for Quantum Embedding for Correlated Electronic Structure in Large Systems and the Condensed Phase

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Garnet Kin-Lic [Princeton Univ., NJ (United States)

    2017-04-30

    This is the final technical report. We briefly describe some selected results below. Developments in density matrix embedding. DMET is a quantum embedding theory that we introduced at the beginning of the last funding period, around 2012-2013. Since the first DMET papers, which demonstrated proof-of- principle calculations on the Hubbard model and hydrogen rings, we have carried out a number of different developments, including: Extending the DMET technology to compute broken symmetry phases, including magnetic phases and super- conductivity (Pub. 13); Calibrating the accuracy of DMET and its cluster size convergence against other methods, and formulation of a dynamical cluster analog (Pubs. 4, 10) (see Fig. 1); Implementing DMET for ab-initio molecular calculations, and exploring different self-consistency criteria (Pubs. 9, 14); Using embedding to defi ne quantum classical interfaces Pub. 2; Formulating DMET for spectral functions (Pub. 7) (see Fig. 1); Extending DMET to coupled fermion-boson problems (Pub. 12). Together with these embedding developments, we have also implemented a wide variety of impurity solvers within our DMET framework, including DMRG (Pub. 3), AFQMC (Pub. 10), and coupled cluster theory (CC) (Pub. 9).

  7. Technical support document for the surface disposal of sewage sludge. Final report

    International Nuclear Information System (INIS)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed

  8. Technical support document for the surface disposal of sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed.

  9. Technical basis for the ITER final design report, cost review and safety analysis (FDR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The ITER final design report, cost review and safety analysis (FDR) is the 4th major milestone, representing the progress made in the ITER Engineering Design Activities. With the approval of the Detailed Design Report (DDR), the design work was concentrated on the requirements of operation, with only relatively minor changes to design concepts of major components. The FDR is the culmination of almost 6 years collaborative design and supporting technical work by the ITER Joint Central Team and Home Teams under the terms of the ITER EDA Agreement. Refs, figs, tabs

  10. Technical basis for the ITER final design report, cost review and safety analysis (FDR)

    International Nuclear Information System (INIS)

    1998-01-01

    The ITER final design report, cost review and safety analysis (FDR) is the 4th major milestone, representing the progress made in the ITER Engineering Design Activities. With the approval of the Detailed Design Report (DDR), the design work was concentrated on the requirements of operation, with only relatively minor changes to design concepts of major components. The FDR is the culmination of almost 6 years collaborative design and supporting technical work by the ITER Joint Central Team and Home Teams under the terms of the ITER EDA Agreement

  11. Technical support document for land application of sewage sludge. Volume 1. Final report

    International Nuclear Information System (INIS)

    Jones, A.; Beyer, L.; Rookwood, M.; Pacenka, J.; Bergin, J.

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the land application of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in land applied sewage sludge. The management practices associated with land application are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through land application are discussed

  12. Alumina reinforced tetragonal zirconia (TZP) composites. Final technical report, July 1, 1993--December 31, 1996

    International Nuclear Information System (INIS)

    Shetty, D.K.

    1997-01-01

    This final technical report summarizes the significant research results obtained during the period July 1, 1993 through December 31, 1996 in the DOE-supported research project entitled, open-quotes Alumina Reinforced Tetragonal Zirconia (TZP) Compositesclose quotes. The objective of the research was to develop high-strength and high-toughness ceramic composites by combining mechanisms of platelet, whisker or fiber reinforcement with transformation toughening. The approach used included reinforcement of Celia- or yttria-partially-stabilized zirconia (Ce-TZP or Y-TZP) with particulates, platelets, or continuous filaments of alumina

  13. DE-FG02-04ER63746 FinalTechnicalReport

    Energy Technology Data Exchange (ETDEWEB)

    Lidstrom, M.E.

    2009-09-05

    This is the final technical report for a project involving the study of stress response systems in the radiation-resistant bacterium, Deinococcus radiodurans. Three stresses of importance for a mixed waste treatment strain were studied, heat shock, solvent shock, and phosphate starvation. In each case, specific genes involved in the ability to survive the stress were identified using a systems biology approach, and analysis of mutants was used to understand mechanisms. This study has led to increased understanding of the ways in which a potential treatment strain could be manipulated to survive multiple stresses for treatment of mixed wastes.

  14. Distribution of hydrogen within the HDR-containment under severe accident conditions. OECD standard problem. Final comparison report

    International Nuclear Information System (INIS)

    Karwat, H.

    1992-08-01

    The present report summarizes the results of the International Standard Problem Exercise ISP-29, based on the HDR Hydrogen Distribution Experiment E11.2. Post-test analyses are compared to experimentally measured parameters, well-known to the analysis. This report has been prepared by the Institute for Reactor Dynamics and Reactor Safety of the Technical University Munich under contract with the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) which received funding for this activity from the German Ministry for Research and Technology (BMFT) under the research contract RS 792. The HDR experiment E11.2 has been performed by the Kernforschungszentrum Karlsruhe (KfK) in the frame of the project 'Projekt HDR-Sicherheitsprogramm' sponsored by the BMFT. Ten institutions from eight countries participated in the post-test analysis exercise which was focussing on the long-lasting gas distribution processes expected inside a PWR containment under severe accident conditions. The gas release experiment was coupled to a long-lasting steam release into the containment typical for an unmitigated small break loss-of-coolant accident. In lieu of pure hydrogen a gas mixture consisting of 15% hydrogen and 85% helium has been applied in order to avoid reaching flammability during the experiment. Of central importance are common overlay plots comparing calculated transients with measurements of the global pressure, the local temperature-, steam- and gas concentration distributions throughout the entire HDR containment. The comparisons indicate relatively large margins between most calculations and the experiment. Having in mind that this exercise was specified as an 'open post-test' analysis of well-known measured data the reasons for discrepancies between measurements and simulations were extensively discussed during a final workshop. It was concluded that analytical shortcomings as well as some uncertainties of experimental boundary conditions may be responsible for deviations

  15. Distribution of hydrogen within the HDR-containment under severe accident conditions. OECD standard problem. Final comparison report

    Energy Technology Data Exchange (ETDEWEB)

    Karwat, H

    1992-08-15

    The present report summarizes the results of the International Standard Problem Exercise ISP-29, based on the HDR Hydrogen Distribution Experiment E11.2. Post-test analyses are compared to experimentally measured parameters, well-known to the analysis. This report has been prepared by the Institute for Reactor Dynamics and Reactor Safety of the Technical University Munich under contract with the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) which received funding for this activity from the German Ministry for Research and Technology (BMFT) under the research contract RS 792. The HDR experiment E11.2 has been performed by the Kernforschungszentrum Karlsruhe (KfK) in the frame of the project 'Projekt HDR-Sicherheitsprogramm' sponsored by the BMFT. Ten institutions from eight countries participated in the post-test analysis exercise which was focussing on the long-lasting gas distribution processes expected inside a PWR containment under severe accident conditions. The gas release experiment was coupled to a long-lasting steam release into the containment typical for an unmitigated small break loss-of-coolant accident. In lieu of pure hydrogen a gas mixture consisting of 15% hydrogen and 85% helium has been applied in order to avoid reaching flammability during the experiment. Of central importance are common overlay plots comparing calculated transients with measurements of the global pressure, the local temperature-, steam- and gas concentration distributions throughout the entire HDR containment. The comparisons indicate relatively large margins between most calculations and the experiment. Having in mind that this exercise was specified as an 'open post-test' analysis of well-known measured data the reasons for discrepancies between measurements and simulations were extensively discussed during a final workshop. It was concluded that analytical shortcomings as well as some uncertainties of experimental boundary conditions may be responsible for deviations

  16. 78 FR 18578 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Science.gov (United States)

    2013-03-27

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell... Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces an open meeting of the Hydrogen... Avenue, Washington, DC 20585. SUPPLEMENTARY INFORMATION: Purpose of the Committee: The Hydrogen and Fuel...

  17. Methodology for assessing the safety of Hydrogen Systems: HyRAM 1.1 technical reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Groth, Katrina; Hecht, Ethan; Reynolds, John Thomas; Blaylock, Myra L.; Erin E. Carrier

    2017-03-01

    The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM is envisioned as a unifying platform combining validated, analytical models of hydrogen behavior, a stan- dardized, transparent QRA approach, and engineering models and generic data for hydrogen installations. HyRAM is being developed at Sandia National Laboratories for the U. S. De- partment of Energy to increase access to technical data about hydrogen safety and to enable the use of that data to support development and revision of national and international codes and standards. This document provides a description of the methodology and models contained in the HyRAM version 1.1. HyRAM 1.1 includes generic probabilities for hydrogen equipment fail- ures, probabilistic models for the impact of heat flux on humans and structures, and computa- tionally and experimentally validated analytical and first order models of hydrogen release and flame physics. HyRAM 1.1 integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet fires, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is a prototype software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals.

  18. Fiber Optic Hydrogen Sensor Development: Cooperative Research and Development Final Report, CRADA number CRD-05-00158

    International Nuclear Information System (INIS)

    Ringer, M.

    2010-01-01

    NREL and Nuclear Filter Technology collaborated to develop a prototype product for a hydrogen threshold sensor that was used to monitor hydrogen production in the transport of nuclear waste transport containers. This application is a core business area for Nuclear Filter Technology and will provide a basis for creating sensor products that are used in other licensed fields of use. Activities included design and construction of prototype product, product testing and debugging, and finalizing a prototype for initial field tests.

  19. Thermal design and technical economical and environmental analyses of a hydrogen fired multi-objective cogeneration system

    International Nuclear Information System (INIS)

    Durmaz, A; Yilmazoglu, M. Z.; Pasoglu, A.

    2007-01-01

    Approximately 85% of rapidly increasing world energy demand is supplied by fossil fuels. Extreme usage of fossil fuels causes serious global warming and environmental problems in form of air, soil and water pollutions. The period, in which fossil fuel reserves are decreasing, energy costs are increasing rapidly and new energy sources and technologies do not exist on the horizon, can be called as the expensive and critical energy period. Hydrogen becomes a matter of primary importance as a candidate energy source and carrier in the critical energy period and beyond to solve the energy and environmental problems radically. In this respect, the main obstacle for the use of hydrogen is the high cost of hydrogen production, which is expected to be decreased in the feature. The aim of this study is to examine how hydrogen energy will be able to be integrated with the existing energy substructure with technical and economical dimensions. In this sense, a multi objective hydrogen fired gas turbine cogeneration system is designed and optimized. Technical and economical analyses depending on the load conditions and different hydrogen production cost are carried out. It is possible that the co-generated heat is to be marketed for residence and industrial plants in the surrounding at or under market prices. The produced electricity however can only be sold to the public grid at a high unit support price which is only obtainable in case of the development of new energy technologies. This price should however be kept within the nowadays supportable energy price range. The main mechanism to be used during the design stage of the system to achieve this goal is to decrease the amortization and operational costs which lead to decrease investment and fuel costs and to increase the system load factor and co-generated heat revenues

  20. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  1. Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993 - April 15, 1997

    International Nuclear Information System (INIS)

    Ruckman, M.W.; Strongin, M.; Weismann, H.

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 μm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices

  2. FINAL REPORT - Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Donald [Hexagon Lincoln LLC, Lincoln, NE (United States)

    2017-08-04

    $575/kg H2 delivered. [Based on product pricing in 1Q2017.] Emphasis was placed on configuration of larger capacity systems within the vehicle weights and dimensions allowed on federal and state highways in the United States and other countries. These activities resulted in the design and development of integrated tube trailer systems that have increased delivery capacities by 45%. The hydrogen delivery capacity of our largest system is 845 kg, exceeding the project’s 2015 target of 700 kg H2 delivered. Emerging technologies offering improvement of the safety systems used on the equipment were investigated, with particular focus on improving the reliability and cost of the emergency venting system for fire protection. Finally, investment in our materials laboratory improved detection and characterization of hydrogen-induced damage in polymer materials, supporting the development of operational protocols to avoid damage to pressure vessel liners and valve components.

  3. Correlated charge-changing uion-atom collisions. Final Technical Report

    International Nuclear Information System (INIS)

    John Tanis

    2005-01-01

    This document comprises the final technical report for atomic collisions research supported by DOE grant No. DE-FG02-87ER13778 from September 1, 2001 through August 31, 2004. The research involved the experimental investigation of excitation and charge-changing processes occurring in ion-atom and ion-molecule collisions. Major emphases of the study were: (1) interference effects resulting from coherent electron emission in H2, (2) production of doubly vacant K-shell (hollow ion) states due to electron correlation, and (3) formation of long-lived metastable states in electron transfer processes. During the period of the grant, this research resulted in 23 publications, 12 invited presentations, and 39 contributed presentations at national and international meetings and other institutions. Brief summaries of the completed research are presented below

  4. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  5. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    International Nuclear Information System (INIS)

    Saurwein, J.

    2011-01-01

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  6. Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff`s review of Atlas Corporation`s proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs.

  7. Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

    International Nuclear Information System (INIS)

    1997-03-01

    This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff's review of Atlas Corporation's proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs

  8. Microscopic heavy-ion theory. Final technical report, June 1, 1993 - May 31, 1996

    International Nuclear Information System (INIS)

    Ernst, D.J.; Oberacker, V.E.; Umar, A.S.

    1998-01-01

    In this Final Technical Report, the authors summarize the research activities of the three Principal Investigators (Professors Ernst, Oberacker, and Umar) at Vanderbilt University since the last reporting period through the subject award expiration date (Dec. 31, 1996) under contract DE-FG05-87ER40376 with the Department of Energy. The research effort is divided between the following three areas: nuclear structure and astrophysics (microscopic nuclear structure studies and properties of exotic nuclei at HRIBF, supernovae calculations in connection with nuclear astrophysics, and nuclear viscosity studies via muon-induced fission at PSI); pion and kaon interactions with the nucleus at high energies (interaction of pions and kaons with nuclei from low energies to 1 GeV, propagation of excited hadrons in the nuclear medium as probed by pion and electron induced reactions); nuclear physics at high energies (dynamical string-parton model to study multi-particle production at RHIC, electromagnetic lepton pair production at RHIC)

  9. Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, George

    2014-10-02

    This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

  10. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  11. Bulk hydrogen analysis, using neutrons. Final report of the first research co-ordination meeting

    International Nuclear Information System (INIS)

    1997-07-01

    There are many situations when hydrogen is required to be measured in a bulk medium. For this reason neutrons are used due to their high penetrating power in dense material. In addition, the mass attenuation coefficient for neutrons in hydrogen is significantly larger than for all other elements, meaning that neutrons have a higher probability of interacting with hydrogen than with other elements in the sample matrix. This CRP was recommended for further development of the techniques and new applications in the following areas: Fast Neutron/Gamma Transmission Technique; Digital Neutron Imaging; Hydrogen Detection by Epithermal Neutrons; Microscopic Behaviour of Hydrogen in Bulk Materials

  12. Technical and economic analyses of hydrogen production via indirectly heated gasification and pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-09-01

    Technoeconomic analyses have been conducted on two processes to produce hydrogen from biomass: indirectly-heated gasification of biomass followed by steam reforming of the syngas, and biomass pyrolysis followed by steam reforming of the pyrolysis oil. The analysis of the gasification-based process was highly detailed, including a process flowsheet, material and energy balances calculated with a process simulation program, equipment cost estimation, and the determination of the necessary selling price of hydrogen. The pyrolysis-based process analysis was of a less detailed nature, as all necessary experimental data have not been obtained; this analysis is a follow-up to the preliminary economic analysis presented at the 1994 Hydrogen Program Review. A coproduct option in which pyrolysis oil is used to produce hydrogen and a commercial adhesive was also studied for economic viability. Based on feedstock availability estimates, three plant sizes were studied: 907 T/day, 272 T/day, and 27 T/day. The necessary selling price of hydrogen produced by steam reforming syngas from the Battelle Columbus Laboratories indirectly heated biomass gasifier falls within current market values for the large and medium size plants within a wide range of feedstock costs. Results show that the small scale plant does not produce hydrogen at economically competitive prices, indicating that if gasification is used as the upstream process to produce hydrogen, local refueling stations similar to current gasoline stations, would probably not be feasible.

  13. Hydrogen initiative: An integrated approach toward rational nanocatalyst design for hydrogen production. Technical Report-Year 1

    Energy Technology Data Exchange (ETDEWEB)

    Vlachos, Dionisios G. [Univ. of Delaware, Newark, DE (United States); Buttrey, Douglas J. [Univ. of Delaware, Newark, DE (United States); Lauterbach, Jochen A. [Univ. of Delaware, Newark, DE (United States)

    2007-03-29

    The overall objective of this grant is to develop a rational framework for the discovery of low cost, robust, and active nano-catalysts that will enable efficient hydrogen production. Our approach will be the first demonstration of integrated multiscale model, nano-catalyst synthesis, and nanoscale characterization assisted high throughput experimentation (HTE). We will initially demonstrate our approach with ammonia decomposition on noble metal catalysts. Our research focuses on many elements of the Hydrogen Initiative in the Focus Area of “Design of Catalysts at the Nanoscale’. It combines high-throughput screening methods with various nanostructure synthesis protocols, advanced measurements, novel in situ and ex situ characterization techniques, and multiscale theory, modeling and simulation. This project directly addresses several of the long-term goals of the DOE/BES program. In particular, new nanoscale catalytic materials will be synthesized, characterized and modeled for the production of hydrogen from ammonia and a computational framework will be developed for efficient extraction of information from experimental data and for rational design of catalysts whose impact goes well beyond the proposed hydrogen production project. In the first year of the grant, we have carried out HTE screening using a 16 parallel microreactor coupled with an FTIR analysis system. We screened nearly twenty single metals and several bimetallic catalysts as a function of temperature, catalyst loading, inlet composition, and temperature (order of 400 experiments). We have found that Ru is the best single metal catalyst and no better catalysts were found among the library of bimetallics we have created so far. Furthermore, we have investigated promoting effects (i.e., K, Cs, and Ba) of the Ru catalyst. We have found that K is the dominant promoter of increased Ru activity. Response surface experimental design has led to substantial improvements of the Ru catalyst with promotion

  14. Novel technique for coal pyrolysis and hydrogenation product analysis. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.; Boyle, J.

    1993-03-15

    A microjet reactor coupled to a VUV photoionization time-of-flight mass spectrometer has been used to obtain species measurements during high temperature pyrolysis and oxidation of a wide range of hydrocarbon compounds ranging from allene and acetylene to cyclohexane, benzene and toluene. Initial work focused on calibration of the technique, optimization of ion collection and detection and characterization of limitations. Using the optimized technique with 118 nm photoionization, intermediate species profiles were obtained for analysis of the hydrocarbon pyrolysis and oxidation mechanisms. The ``soft`` ionization, yielding predominantly molecular ions, allowed the study of reaction pathways in these high temperature systems where both sampling and detection challenges are severe. Work has focused on the pyrolysis and oxidative pyrolysis of aliphatic and aromatic hydrocarbon mixtures representative of coal pyrolysis and hydropyrolysis products. The detailed mass spectra obtained during pyrolysis and oxidation of hydrocarbon mixtures is especially important because of the complex nature of the product mixture even at short residence times and low primary reactant conversions. The combustion community has advanced detailed modeling of pyrolysis and oxidation to the C4 hydrocarbon level but in general above that size uncertainties in rate constant and thermodynamic data do not allow us to a priori predict products from mixed hydrocarbon pyrolyses using a detailed chemistry model. For pyrolysis of mixtures of coal-derived liquid fractions with a large range of compound structures and molecular weights in the hundreds of amu the modeling challenge is severe. Lumped models are possible from stable product data.

  15. Final Report: Cathode Catalysis in Hydrogen/Oxygen Fuel Cells: New Catalysts, Mechanism, and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gewirth, Andrew A. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Kenis, Paul J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemical and Biomolecular Engineering; Nuzzo, Ralph G. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Rauchfuss, Thomas B. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry

    2016-01-18

    In this research, we prosecuted a comprehensive plan of research directed at developing new catalysts and new understandings relevant to the operation of low temperature hydrogen-oxygen fuel cells. The focal point of this work was one centered on the Oxygen Reduction Reaction (ORR), the electrochemical process that most fundamentally limits the technological utility of these environmentally benign energy conversion devices. Over the period of grant support, we developed new ORR catalysts, based on Cu dimers and multimers. In this area, we developed substantial new insight into design rules required to establish better ORR materials, inspired by the three-Cu active site in laccase which has the highest ORR onset potential of any material known. We also developed new methods of characterization for the ORR on conventional (metal-based) catalysts. Finally, we developed a new platform to study the rate of proton transfer relevant to proton coupled electron transfer (PCET) reactions, of which the ORR is an exemplar. Other aspects of work involved theory and prototype catalyst testing.

  16. Final priority; technical assistance to improve state data capacity--National Technical Assistance Center to improve state capacity to accurately collect and report IDEA data. Final priority.

    Science.gov (United States)

    2013-05-20

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Technical Assistance to Improve State Data Capacity program. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2013 and later years. We take this action to focus attention on an identified national need to provide technical assistance (TA) to States to improve their capacity to meet the data collection and reporting requirements of the Individuals with Disabilities Education Act (IDEA). We intend this priority to establish a TA center to improve State capacity to accurately collect and report IDEA data (Data Center).

  17. The hydrogen resource. Productive, technical and economic analysis; La risorsa idrogeno: analisi produttiva tecnica ed economica

    Energy Technology Data Exchange (ETDEWEB)

    De Fronzo, G. [Lecce Univ., Lecce (Italy). Dipt. di Scienze Economiche, Matematico-Statistiche, Economici-Aziendali

    2000-02-01

    Diffusion of hydrogen as an energetic vector meets with a lot of obstacles that don't depend on available raw material, but on hydrogen combination with other elements. It is necessary, therefore, to separate hydrogen picking out the available different technologies to have different pure hydrogen of variable quantities. Besides, its diffusion as fuel is limited because of the great production cost compared to fuels sprung from petroleum. Hydrogen used on a large scale could have advantages on the environment and occupation, but there are economic and politic obstacles to limit its diffusion. Future of economic system, based on hydrogen as the main energetic vector, will depend on the programme that national and international qualified governing bodies will be able to do. [Italian] L'articolo analizza l'uso dell'idrogeno come risorsa dal punto di vista tecnico ed economico. Si discute la relazione con i programmi che governi nazionali sapranno mettere in campo per il suo sfruttamento.

  18. System-Cost-Optimized Smart EVSE for Residential Application: Final Technical Report including Manufacturing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Charles [Delta Products, Triangle Park, NC (United States)

    2015-05-15

    In the 2nd quarter of 2012, a program was formally initiated at Delta Products to develop smart-grid-enabled Electric Vehicle Supply Equipment (EVSE) product for residential use. The project was funded in part by the U.S. Department of Energy (DOE), under award DE-OE0000590. Delta products was the prime contractor to DOE during the three year duration of the project. In addition to Delta Products, several additional supplier-partners were engaged in this research and development (R&D) program, including Detroit Edison DTE, Mercedes Benz Research and Development North America, and kVA. This report summarizes the program and describes the key research outcomes of the program. A technical history of the project activities is provided, which describes the key steps taken in the research and the findings made at successive stages in the multi-stage work. The evolution of an EVSE prototype system is described in detail, culminating in prototypes shipped to Department of Energy Laboratories for final qualification. After the program history is reviewed, the key attributes of the resulting EVSE are described in terms of functionality, performance, and cost. The results clearly demonstrate the ability of this EVSE to meet or exceed DOE's targets for this program, including: construction of a working product-intent prototype of a smart-grid-enabled EVSE, with suitable connectivity to grid management and home-energy management systems, revenue-grade metering, and related technical functions; and cost reduction of 50% or more compared to typical market priced EVSEs at the time of DOE's funding opportunity announcement (FOA), which was released in mid 2011. In addition to meeting all the program goals, the program was completed within the original budget and timeline established at the time of the award. The summary program budget and timeline, comparing plan versus actual values, is provided for reference, along with several supporting explanatory notes. Technical

  19. Final Technical Report: "Representing Endogenous Technological Change in Climate Policy Models: General Equilibrium Approaches"

    Energy Technology Data Exchange (ETDEWEB)

    Ian Sue Wing

    2006-04-18

    The research supported by this award pursued three lines of inquiry: (1) The construction of dynamic general equilibrium models to simulate the accumulation and substitution of knowledge, which has resulted in the preparation and submission of several papers: (a) A submitted pedagogic paper which clarifies the structure and operation of computable general equilibrium (CGE) models (C.2), and a review article in press which develops a taxonomy for understanding the representation of technical change in economic and engineering models for climate policy analysis (B.3). (b) A paper which models knowledge directly as a homogeneous factor, and demonstrates that inter-sectoral reallocation of knowledge is the key margin of adjustment which enables induced technical change to lower the costs of climate policy (C.1). (c) An empirical paper which estimates the contribution of embodied knowledge to aggregate energy intensity in the U.S. (C.3), followed by a companion article which embeds these results within a CGE model to understand the degree to which autonomous energy efficiency improvement (AEEI) is attributable to technical change as opposed to sub-sectoral shifts in industrial composition (C.4) (d) Finally, ongoing theoretical work to characterize the precursors and implications of the response of innovation to emission limits (E.2). (2) Data development and simulation modeling to understand how the characteristics of discrete energy supply technologies determine their succession in response to emission limits when they are embedded within a general equilibrium framework. This work has produced two peer-reviewed articles which are currently in press (B.1 and B.2). (3) Empirical investigation of trade as an avenue for the transmission of technological change to developing countries, and its implications for leakage, which has resulted in an econometric study which is being revised for submission to a journal (E.1). As work commenced on this topic, the U.S. withdrawal

  20. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  1. CHARM COST-EFFECTIVE HIGH-EFFICIENCY ADVANCED REFORMING MODULE FINAL TECHNICAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Pollica, Darryl; Cross, James C; Sharma, Atul; Shi, Yanlong; Clawson, Lawrence; O' Brien, Chris; Gilhooly, Kara; Kim, Changsik; Quet, Pierre-Francois

    2009-09-02

    Background Creation of a hydrogen infrastructure is an important prerequisite of widespread fuel cell commercialization, especially for the automotive market. Hydrogen is an attractive fuel since it offers an opportunity to replace petroleum-based fuels, but hydrogen occurs naturally only in chemical compounds like water or hydrocarbons that must be chemically converted to produce it. While an ultimate goal is to produce hydrogen through renewable energy sources, steam methane reforming (SMR) of natural gas is currently the most economical solution to initiate the transition to a hydrogen economy. Centralized hydrogen generation using large industrial SMR plants is already in place to serve customers. Yet, because of the weight and size of cylinders needed to contain hydrogen gas or liquid, transportation of hydrogen may only be economical for short distances. Consequently, distributed natural gas reforming, which trades off the economies of scale of large plants for simplified delivery logistics, is an attractive alternative that could address immediate problems with the lack of hydrogen infrastructure.

  2. Large-scale hydrogen combustion experiments: Volume 2, Data plots: Final report

    International Nuclear Information System (INIS)

    Thompson, R.T.; Torok, R.C.; Randall, D.S.; Sullivan, J.S.; Thompson, L.B.; Haugh, J.J.

    1988-10-01

    Forty large-scale experiments to investigate the combustion behavior of hydrogen during postulated degraded core accidents were conducted in a 16 m (52 ft) diameter sphere. The performance of safety related equipment and cable also was examined. Combustion was initiated by thermal igniters in both premixed hydrogen air-steam atmospheres and during the continuous injection of hydrogen and steam. The effects of steam, igniter location, water sprays, fans and injection rates were studied. Measurements were made of gas concentrations, combustion pressures, temperatures and heat fluxes. Burn fractions and flame speeds also were determined. Near-infrared seeing cameras permitted direct observation of the hydrogen burns. Combustion pressures and temperatures in premixed atmospheres with hydrogen concentrations up to 13 vol% (steam saturated) were less than the theoretical maximum values. Multiple deflagrations were not encountered during continuous hydrogen injection with pre-activated igniters. Moderate pressure rises resulted from diffusion flames. These flames generally were found above the source. Combustion results have been compared to smaller scale experiments. Several safety related equipment items exhibited degraded performance after a number of tests. Most cable samples passed their electrical checks at the end of the test series. These experiments confirm the effectiveness of the deliberate ignition approach to controlling hydrogen. They also provide data for validating computer codes used to predict hydrogen combustion during degraded core accidents, and for assessing the performance of safety related equipment in such environments

  3. Comparative assessment of hydrogen storage and international electricity trade for a Danish energy system with wind power and hydrogen/fuel cell technologies. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Bent (Roskilde University, Energy, Environment and Climate Group, Dept. of Environmental, Social and Spatial Change (ENSPAC) (DK)); Meibom, P.; Nielsen, Lars Henrik; Karlsson, K. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Systems Analysis Dept., Roskilde (DK)); Hauge Pedersen, A. (DONG Energy, Copenhagen (DK)); Lindboe, H.H.; Bregnebaek, L. (ea Energy Analysis, Copenhagen (DK))

    2008-02-15

    This report is the final outcome of a project carried out under the Danish Energy Agency's Energy Research Programme. The aims of the project can be summarized as follows: 1) Simulation of an energy system with a large share of wind power and possibly hydrogen, including economic optimization through trade at the Nordic power pool (exchange market) and/or use of hydrogen storage. The time horizon is 50 years. 2) Formulating new scenarios for situations with and without development of viable fuel cell technologies. 3) Updating software to solve the abovementioned problems. The project has identified a range of scenarios for all parts of the energy system, including most visions of possible future developments. (BA)

  4. Bulk hydrogen analysis, using neutrons. Final report of the second research co-ordination meeting

    International Nuclear Information System (INIS)

    1998-11-01

    The aims of the Second Co-ordination Meting (RCM) of the Coordinated Research Programme (CRP) were to report on and review progress against the work programme set at the beginning of the CRP and to discuss the work plans for the second half of the programme. In many cases hydrogen is required to be measured in a bulk medium rather than merely at a surface. For this reason neutrons are used due to their high penetrating power in dense material. In addition, the mass attenuation coefficient for neutrons in hydrogen is significantly larger than for all other elements, meaning that neutrons have a higher probability of interacting with hydrogen than with other elements in the sample matrix. Neutrons have been used in the following areas: Fast Neutron Transmission, Scattering and Activation Technique; Digital Neutron Imaging; Hydrogen Detection by Epithermal Neutrons; Microscopic Behaviour of Hydrogen in Bulk Materials

  5. Vadose zone microbial community structure and activity in metal/radionuclide contaminated sediments. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Balkwill, David L.

    2002-08-17

    This final technical report describes the research carried out during the final two months of the no-cost extension ending 11/14/01. The primary goals of the project were (1) to determine the potential for transformation of Cr(VI) (oxidized, mobile) to Cr(III) (reduced, immobile) under unsaturated conditions as a function of different levels and combinations of (a) chromium, (b) nitrate (co-disposed with Cr), and (c) molasses (inexpensive bioremediation substrate), and (2) to determine population structure and activity in experimental treatments by characterization of the microbial community by signature biomarker analysis and by RT-PCR and terminal restriction fragment length polymorphism (T-RFLP) and 16S ribosomal RNA genes. It was determined early in the one-year no-cost extension period that the T-RFLP approach was problematic in regard to providing information on the identities of microorganisms in the samples examined. As a result, it could not provide the detailed information on microbial community structure that was needed to assess the effects of treatments with chromium, nitrate, and/or molasses. Therefore, we decided to obtain the desired information by amplifying (using TR-PCR, with the same primers used for T-RFLP) and cloning 16S rRNA gene sequences from the same RNA extracts that were used for T-RFLP analysis. We also decided to use a restriction enzyme digest procedure (fingerprinting procedure) to place the clones into types. The primary focus of the research carried out during this report period was twofold: (a) to complete the sequencing of the clones, and (b) to analyze the clone sequences phylogenetically in order to determine the relatedness of the bacteria detected in the samples to each other and to previously described genera and species.

  6. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    Energy Technology Data Exchange (ETDEWEB)

    VAJO, JOHN

    2014-06-12

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ≥6 wt% and ≥50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the

  7. Final Technical Report - SciDAC Cooperative Agreement: Center for Wave Interactions with Magnetohydrodynamics

    International Nuclear Information System (INIS)

    Schnack, Dalton D.

    2012-01-01

    Final technical report for research performed by Dr. Thomas G. Jenkins in collaboration with Professor Dalton D. Schnack on SciDAC Cooperative Agreement: Center for Wave Interactions with Magnetohydrodyanics, DE-FC02-06ER54899, for the period of 8/15/06 - 8/14/11. This report centers on the Slow MHD physics campaign work performed by Dr. Jenkins while at UW-Madison and then at Tech-X Corporation. To make progress on the problem of RF induced currents affect magnetic island evolution in toroidal plasmas, a set of research approaches are outlined. Three approaches can be addressed in parallel. These are: (1) Analytically prescribed additional term in Ohm's law to model the effect of localized ECCD current drive; (2) Introduce an additional evolution equation for the Ohm's law source term. Establish a RF source 'box' where information from the RF code couples to the fluid evolution; and (3) Carry out a more rigorous analytic calculation treating the additional RF terms in a closure problem. These approaches rely on the necessity of reinvigorating the computation modeling efforts of resistive and neoclassical tearing modes with present day versions of the numerical tools. For the RF community, the relevant action item is - RF ray tracing codes need to be modified so that general three-dimensional spatial information can be obtained. Further, interface efforts between the two codes require work as well as an assessment as to the numerical stability properties of the procedures to be used.

  8. Volatiles combustion in fluidized beds. Final technical report, 4 September 1992--4 June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass, R.A. II; Raffensperger, C.; Hesketh, R.P.

    1996-02-29

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization are being conducted to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. A review of the work conducted under this grant is presented in this Final Technical Report. Both experimental and theoretical work have been conducted to examine the inhibition of the combustion by the fluidized bed material, sand. It has been shown that particulate phase at incipient fluidization inhibits the combustion of propane by free radical destruction at the surface of sand particles within the particulate phase. The implications of these findings is that at bed temperatures lower than the critical temperatures, gas combustion can only occur in the bubble phase or at the top surface of a bubbling fluidized bed. In modeling fluidized bed combustion this inhibition by the particulate phase should be included.

  9. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  10. Technical feasibility and financial analysis of hybrid wind-photovoltaic system with hydrogen storage for Cooma

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, B.D.; Aye, L. [Melbourne Univ., Victoria (Australia). Dept. of Civil and Environmental Engineering; Musgrave, P. [Snowy Hydro Ltd., Cooma, NSW (Australia)

    2005-01-01

    The feasibility of a stand-alone hybrid wind-photovoltaic (PV) system incorporating compressed hydrogen gas storage was studied for Cooma (Australia). Cooma has an average annual solar and wind energy availability of 1784 and 932 kWh/m{sup 2}, respectively. A system with 69 kWh{sub e}/day (load) and 483 kWh{sub e}(storage) was studied. Hydrogen is generated in electrolysers using excess electricity from the system. The system components were selected according to their availability and cost. The 'discounted cash flow' method, with the 'levelized energy cost' (LEC) as a financial indicator was used for analysis. Configurations with PV% of 100, 60, 12 and zero were analysed. The lowest LEC of AU $2.52/kWh{sub e} was found for 100% PV. The cost of hydrogen generation from 100% PV was AU $692/GJ of hydrogen. Fifty-two percent of the total project costs were due to the electrolyser. Hence, a reduction in the electrolyser cost would reduce the cost of the overall system. (Author)

  11. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  12. Final Technical Progress Report: Development of Low-Cost Suspension Heliostat; December 7, 2011 - December 6, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bender, W.

    2013-01-01

    Final technical progress report of SunShot Incubator Solaflect Energy. The project succeeded in demonstrating that the Solaflect Suspension Heliostat design is viable for large-scale CSP installations. Canting accuracy is acceptable and is continually improving as Solaflect improves its understanding of this design. Cost reduction initiatives were successful, and there are still many opportunities for further development and further cost reduction.

  13. An Approach to Developing Independent Learning and Non-Technical Skills Amongst Final Year Mining Engineering Students

    Science.gov (United States)

    Knobbs, C. G.; Grayson, D. J.

    2012-01-01

    There is mounting evidence to show that engineers need more than technical skills to succeed in industry. This paper describes a curriculum innovation in which so-called "soft" skills, specifically inter-personal and intra-personal skills, were integrated into a final year mining engineering course. The instructional approach was…

  14. Carbon and hydrogen matabolism of green algae in light and dark: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, M. [Brandeis Univ., Waltham, MA (United States), Department of Biology

    1996-12-31

    This report provides an overview of the progress made during this study. Progress is reported in chloroplast respiration, photoregulation of chloroplast respiration, reductive carboxylic acid cycle, and in oxy-hydrogen reaction all in Chlamydomonas.

  15. Evaluation of laser welding techniques for hydrogen transmission. Final report, September 1977-November 1979

    Energy Technology Data Exchange (ETDEWEB)

    Mucci, J

    1980-05-01

    This program was established to determine the feasibility of laser beam welding as a fabrication method for hydrogen transmission and is a precursor in the effort to systematically provide the technological base necessary for large-scale, economic pipeline transmission of fuel for a hydrogen energy system. The study contributes to the technology base by establishing the effect of conventional weld processes and laser beam welding on the mechanical properties of two classes of steels in an air and high pressure gaseous hydrogen environment. Screening evaluation of the tensile, low-cycle fatigue and fracture toughness properties and metallurgical analyses provide the basis for concluding that laser beam welding of AISI 304L stainless steel and ASTM A106B carbon steel can produce weldments of comparable quality to those produced by gas-tungsten arc and electron beam welding and is at least equally compatible with 13.8 MPa (2000 psig) gaseous hydrogen environment.

  16. HyPro: A Financial Tool for Simulating Hydrogen Infrastructure Development, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Brian D. James, Peter O. Schmidt, Julie Perez

    2008-12-01

    This report summarizes a multi-year Directed Technologies Inc. (DTI) project to study the build-out of hydrogen production facilities during the transition from gasoline internal combustion engine vehicle to hydrogen fuel cell vehicles. The primary objectives of the project are to develop an enhanced understanding of hydrogen production issues during the transition period (out to 2050) and to develop recommendations for the DOE on areas of further study. These objectives are achieved by conducting economic and scenario analysis to predict how industry would provide the hydrogen production, delivery and dispensing capabilities necessary to satisfy increased hydrogen demand. The primary tool used for the analysis is a custom created MatLab simulation tool entitled HyPro (short for Hydrogen Production). This report describes the calculation methodology used in HyPro, the baseline assumptions, the results of the baseline analysis and several corollary studies. The appendices of this report included a complete listing of model assumptions (capital costs, efficiencies, feedstock prices, delivery distances, etc.) and a step-by-step manual on the specific operation of the HyPro program. This study was made possible with funding from the U.S. Department of Energy (DOE).

  17. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jie; Minh, Nguyen

    2007-02-21

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  18. Scalable data management, analysis and visualization (SDAV) Institute. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States)

    2017-03-28

    The purpose of the SDAV institute is to provide tools and expertise in scientific data management, analysis, and visualization to DOE’s application scientists. Our goal is to actively work with application teams to assist them in achieving breakthrough science, and to provide technical solutions in the data management, analysis, and visualization regimes that are broadly used by the computational science community. Over the last 5 years members of our institute worked directly with application scientists and DOE leadership-class facilities to assist them by applying the best tools and technologies at our disposal. We also enhanced our tools based on input from scientists on their needs. Many of the applications we have been working with are based on connections with scientists established in previous years. However, we contacted additional scientists though our outreach activities, as well as engaging application teams running on leading DOE computing systems. Our approach is to employ an evolutionary development and deployment process: first considering the application of existing tools, followed by the customization necessary for each particular application, and then the deployment in real frameworks and infrastructures. The institute is organized into three areas, each with area leaders, who keep track of progress, engagement of application scientists, and results. The areas are: (1) Data Management, (2) Data Analysis, and (3) Visualization. Kitware has been involved in the Visualization area. This report covers Kitware’s contributions over the last 5 years (February 2012 – February 2017). For details on the work performed by the SDAV institute as a whole, please see the SDAV final report.

  19. Final Technical Report. DeepCwind Consortium Research Program. January 15, 2010 - March 31, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Dagher, Habib [Univ. of Maine, Orono, ME (United States); Viselli, Anthony [Univ. of Maine, Orono, ME (United States); Goupee, Andrew [Univ. of Maine, Orono, ME (United States); Thaler, Jeffrey [Univ. of Maine, Orono, ME (United States); Brady, Damian [Univ. of Maine, Orono, ME (United States); Browne, Peter [HDR, Inc., Omaha, NE (United States); Browning, James [Univ. of Colorado, Boulder, CO (United States); Chung, Jade [Univ. of Maine, Orono, ME (United States); Coulling, Alexander [Univ. of Maine, Orono, ME (United States); Deese, Heather [Island Institute, Rockland, ME (United States); Fowler, Matthew [Univ. of Maine, Orono, ME (United States); Holberton, Rebecca [Univ. of Maine, Orono, ME (United States); Anant, Jain [Intertek, Duluth, GA (United States); Jalbert, Dustin [Univ. of Maine, Orono, ME (United States); Johnson, Theresa [Univ. of Maine, Orono, ME (United States); Jonkman, Jason [National Renewable Energy Laboratory, Golden, CO (United States); Karlson, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kimball, Richard [Maine Maritime Academy, Castine, ME (United States); Koo, Bonjun [Technip, Paris (France); Lackner, Matthew [Univ. of Massachusetts, Amherst, MA (United States); Lambrakos, Kostas [Technip, Paris (France); Lankowski, Matthew [Univ. of Maine, Orono, ME (United States); Leopold, Adrienne [Univ. of Maine, Orono, ME (United States); Lim, Ho-Joon [Technip, Paris (France); Mangum, Linda [Univ. of Maine, Orono, ME (United States); Martin, Heather [Univ. of Maine, Orono, ME (United States); Masciola, Marco [National Renewable Energy Laboratory, Golden, CO (United States); Maynard, Melissa [Univ. of Maine, Orono, ME (United States); McCleave, James [Univ. of Maine, Orono, ME (United States); Mizrahi, Robert [New Jersey Audubon Society, Bernardsville, NJ (United States); Molta, Paul [National Renewable Energy Laboratory, Golden, CO (United States); Pershing, Andrew [Gulf of Maine Research Institute, Portland, ME (United States); Pettigrew, Neal [Univ. of Maine, Orono, ME (United States); Prowell, Ian [MMI Engineering, Oakland, CA (United States); Qua, Andrew [Kleinschmidt Associates, Pittsfield, ME (United States); Sherwood, Graham [Gulf of Maine Research Institute, Portland, ME (United States); Snape, Thomas [Univ. of Maine, Orono, ME (United States); Steneck, Robert [Univ. of Maine, Orono, ME (United States); Stewart, Gordon [Univ. of Massachusetts, Amherst, MA (United States); Stockwell, Jason [Gulf of Maine Research Institute, Portland, ME (United States); Swift, Andrew H. P. [Texas Tech Univ., Lubbock, TX (United States); Thomas, Dale [Maine Maritime Academy, Castine, ME (United States); Viselli, Elizabeth [Univ. of Maine, Orono, ME (United States); Zydlewski, Gayle [Univ. of Maine, Orono, ME (United States)

    2013-06-11

    This is the final technical report for the U.S. Department of Energy-funded program, DE-0002981: DeepCwind Consortium Research Program. The project objective was the partial validation of coupled models and optimization of materials for offshore wind structures. The United States has a great opportunity to harness an indigenous abundant renewable energy resource: offshore wind. In 2010, the National Renewable Energy Laboratory (NREL) estimated there to be over 4,000 GW of potential offshore wind energy found within 50 nautical miles of the US coastlines (Musial and Ram, 2010). The US Energy Information Administration reported the total annual US electric energy generation in 2010 was 4,120 billion kilowatt-hours (equivalent to 470 GW) (US EIA, 2011), slightly more than 10% of the potential offshore wind resource. In addition, deep water offshore wind is the dominant US ocean energy resource available comprising 75% of the total assessed ocean energy resource as compared to wave and tidal resources (Musial, 2008). Through these assessments it is clear offshore wind can be a major contributor to US energy supplies. The caveat to capturing offshore wind along many parts of the US coast is deep water. Nearly 60%, or 2,450 GW, of the estimated US offshore wind resource is located in water depths of 60 m or more (Musial and Ram, 2010). At water depths over 60 m building fixed offshore wind turbine foundations, such as those found in Europe, is likely economically infeasible (Musial et al., 2006). Therefore floating wind turbine technology is seen as the best option for extracting a majority of the US offshore wind energy resource. Volume 1 - Test Site; Volume 2 - Coupled Models; and Volume 3 - Composite Materials

  20. Demonstration of hydrogen society in Nakskov. Final report; Denmark; Demonstratorium - Brintsamfundet i Nakskov. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Bech-Madsen, J. (IRD Fuel Cell Technology, Svendborg (DK)); Krogh Jensen, J. (Baltic Sea Solutions, Bass, Holeby (DK))

    2008-02-15

    This report summarizes results from the 'Demonstration of hydrogen in Nakskov' project. The project has established a demonstration of the Hydrogen Community in Nakskov. The demonstration facility is located at the entrance to Nakskov Genbrugsplads which has a lot of visitors. At this location information boards help visitors get acquainted with the technology and the function of the plant. It is likely that the majority of the citizens of West Lolland has visited the demonstration plant. The demonstration plant includes the following elements: 1) Container buildings for control and monitoring as well as housing of the process equipment. The containers are fully equipped with electricity, water and water treatment systems, drains, ventilation, cooling and heating systems and extensive safety systems. 2) Two fully automated PEM-CHP fuel cell units of 2 kW and 7.5 kW. 3) Two PEM-electrolysers for hydrogen and oxygen production for use in fuel cells and stimulation of aerobe processes in a waste water treatment system. 4) Low pressure storage steel tanks for oxygen and hydrogen. 5) Gas distribution grid for transporting oxygen and hydrogen from the electrolysers to the storage tanks and back to the fuel cells. 6) Official Authority approvals of the total demonstration facility comprising municipal building permission. Approval of zone classification and storage of hydrogen and oxygen, by the Lolland fire chief, February 1. 2007. Environmental evaluation and Environmental Impact assesment screening of the project performed by the regional county (Storstroms Amt), November 13. 2006. Project approval of hydrogen production and fuel cell plant by the Danish Safety Technology Authority, May 2. 2007. (au)

  1. Novel catalysts for hydrogen fuel cell applications:Final report (FY03-FY05).

    Energy Technology Data Exchange (ETDEWEB)

    Thornberg, Steven Michael; Coker, Eric Nicholas; Jarek, Russell L.; Steen, William Arthur

    2005-12-01

    The goal of this project was to develop novel hydrogen-oxidation electrocatalyst materials that contain reduced platinum content compared to traditional catalysts by developing flexible synthesis techniques to fabricate supported catalyst structures, and by verifying electrochemical performance in half cells and ultimately laboratory fuel cells. Synthesis methods were developed for making small, well-defined platinum clusters using zeolite hosts, ion exchange, and controlled calcination/reduction processes. Several factors influence cluster size, and clusters below 1 nm with narrow size distribution have been prepared. To enable electrochemical application, the zeolite pores were filled with electrically-conductive carbon via infiltration with carbon precursors, polymerization/cross-linking, and pyrolysis under inert conditions. The zeolite host was then removed by acid washing, to leave a Pt/C electrocatalyst possessing quasi-zeolitic porosity and Pt clusters of well-controlled size. Plotting electrochemical activity versus pyrolysis temperature typically produces a Gaussian curve, with a peak at ca. 800 C. The poorer relative performances at low and high temperature are due to low electrical conductivity of the carbon matrix, and loss of zeolitic structure combined with Pt sintering, respectively. Cluster sizes measured via adsorption-based methods were consistently larger than those observed by TEM and EXAFS, suggesting , that a fraction of the clusters were inaccessible to the fluid phase. Detailed EXAFS analysis has been performed on selected catalysts and catalyst precursors to monitor trends in cluster size evolution, as well as oxidation states of Pt. Experiments were conducted to probe the electroactive surface area of the Pt clusters. These Pt/C materials had as much as 110 m{sup 2}/g{sub pt} electroactive surface area, an almost 30% improvement over what is commercially (mfg. by ETEK) available (86 m{sup 2}/g{sub pt}). These Pt/C materials also perform

  2. Effect of water fogs on the deliberate ignition of hydrogen. Final report

    International Nuclear Information System (INIS)

    Zalosh, R.G.; Bajpai, S.N.

    1982-11-01

    This report presents an experimental evaluation of the effects of water fog density, droplet diameter, and temperature on the lower flammable limit (LFL) of hydrogen-air-steam mixtures. The results show that the LFL for hydrogen in air at 20 0 C is only marginally higher with fog than without. Most of the nozzles tested at 20 0 C raised the hydrogen LFL from 4.0 vol % to about 4.8%, for the case of dense fogs with volume-average drop size in the range 45 to 90 microns. The lower flammable limit at 50 0 C was typically 7.2% for dense fogs with drop size in the range 25 to 50 microns. The lower flammable limit at 70 0 C was typically 7.6%. Typical fog concentrations ranged from 0.03 to 0.09 vol % at 20 0 C and decreased with increasing fog temperature. 7 figures, 4 tables

  3. High-Efficiency Nitride-Based Solid-State Lighting. Final Technical Progress Report

    International Nuclear Information System (INIS)

    Paul T. Fini; Shuji Nakamura

    2005-01-01

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 (micro)m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of ∼ 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light

  4. Technical data. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This volume includes a description of the railway to transport the coal; possible unbalance in the electrical power supply is considered in detail, as well as communications, signalling, etc. The railway will also be used to transport ashes and sludges for waste disposal. Coal fines in the coal supply will be burned to generate power. A very brief description of the coal gasification plant and its components is accompanied by a printout of the dates final engineering is to be completed. Permit applications are listed and socio-economic factors are discussed. The financing plan is discussed in some detail: basically, a loan guarantee from the Synthetic Fuels Corporation; equity provided by investment tax credit, deferred taxes, AFUDC and the sponsors; price support; and gas purchase agreement (this whole section includes several legal details.). (LTN)

  5. United States Energy Association Final Report International Partnership for the Hydrogen Economy Ministerial Conference

    Energy Technology Data Exchange (ETDEWEB)

    William L. Polen

    2006-04-05

    This report summarizes the activities of the United States Energy Association as it conducted the initial Ministerial Meeting of the International Partnership for the Hydrogen Economy in Washington, DC on November 18-21, 2003. The report summarizes the results of the meeting and subsequent support to the Office of Energy Efficiency and Renewable Energy in its role as IPHE Secretariat.

  6. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    Energy Technology Data Exchange (ETDEWEB)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The project’s research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The project’s literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a “heat mirror” that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nation’s future electricity and transportation needs that is entirely “home grown” and carbon free. As CPV enter the nation’s utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this project’s findings.

  7. Vehicle infrastructure integration proof of concept : technical description--vehicle : final report

    Science.gov (United States)

    2009-05-19

    This report provides the technical description of the VII system developed for the Cooperative Agreement VII Program between the USDOT and the VII Consortium. The basic architectural elements are summarized and detailed descriptions of the hardware a...

  8. Evaluation of the feasibility, economic impact, and effectiveness of underground nuclear power plants. Final technical report

    International Nuclear Information System (INIS)

    1978-05-01

    Information on underground nuclear power plants is presented concerning underground nuclear power plant concepts; public health impacts; technical feasibility of underground concepts; economic impacts of underground construction; and evaluation of related issues

  9. Quantitative Tools for Dissection of Hydrogen-Producing Metabolic Networks-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D.; Dismukes, G.Charles.; Rabitz, Herschel A.; Amador-Noguez, Daniel

    2012-10-19

    During this project we have pioneered the development of integrated experimental-computational technologies for the quantitative dissection of metabolism in hydrogen and biofuel producing microorganisms (i.e. C. acetobutylicum and various cyanobacteria species). The application of these new methodologies resulted in many significant advances in the understanding of the metabolic networks and metabolism of these organisms, and has provided new strategies to enhance their hydrogen or biofuel producing capabilities. As an example, using mass spectrometry, isotope tracers, and quantitative flux-modeling we mapped the metabolic network structure in C. acetobutylicum. This resulted in a comprehensive and quantitative understanding of central carbon metabolism that could not have been obtained using genomic data alone. We discovered that biofuel production in this bacterium, which only occurs during stationary phase, requires a global remodeling of central metabolism (involving large changes in metabolite concentrations and fluxes) that has the effect of redirecting resources (carbon and reducing power) from biomass production into solvent production. This new holistic, quantitative understanding of metabolism is now being used as the basis for metabolic engineering strategies to improve solvent production in this bacterium. In another example, making use of newly developed technologies for monitoring hydrogen and NAD(P)H levels in vivo, we dissected the metabolic pathways for photobiological hydrogen production by cyanobacteria Cyanothece sp. This investigation led to the identification of multiple targets for improving hydrogen production. Importantly, the quantitative tools and approaches that we have developed are broadly applicable and we are now using them to investigate other important biofuel producers, such as cellulolytic bacteria.

  10. A Systems Approach to Bio-Oil Stabilization - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C; Meyer, Terrence; Fox, Rodney; Submramaniam, Shankar; Shanks, Brent; Smith, Ryan G

    2011-12-23

    The objective of this project is to develop practical, cost effective methods for stabilizing biomass-derived fast pyrolysis oil for at least six months of storage under ambient conditions. The U.S. Department of Energy has targeted three strategies for stabilizing bio-oils: (1) reducing the oxygen content of the organic compounds comprising pyrolysis oil; (2) removal of carboxylic acid groups such that the total acid number (TAN) of the pyrolysis oil is dramatically reduced; and (3) reducing the charcoal content, which contains alkali metals known to catalyze reactions that increase the viscosity of bio-oil. Alkali and alkaline earth metals (AAEM), are known to catalyze decomposition reactions of biomass carbohydrates to produce light oxygenates that destabilize the resulting bio-oil. Methods envisioned to prevent the AAEM from reaction with the biomass carbohydrates include washing the AAEM out of the biomass with water or dilute acid or infusing an acid catalyst to passivate the AAEM. Infusion of acids into the feedstock to convert all of the AAEM to salts which are stable at pyrolysis temperatures proved to be a much more economically feasible process. Our results from pyrolyzing acid infused biomass showed increases in the yield of anhydrosugars by greater than 300% while greatly reducing the yield of light oxygenates that are known to destabilize bio-oil. Particulate matter can interfere with combustion or catalytic processing of either syngas or bio-oil. It also is thought to catalyze the polymerization of bio-oil, which increases the viscosity of bio-oil over time. High temperature bag houses, ceramic candle filters, and moving bed granular filters have been variously suggested for syngas cleaning at elevated temperatures. High temperature filtration of bio-oil vapors has also been suggested by the National Renewable Energy Laboratory although there remain technical challenges to this approach. The fast pyrolysis of biomass yields three main organic

  11. KEA-144: Final Results of the Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) Project

    Science.gov (United States)

    Notardonato, William; Fesmire, James; Swanger, Adam; Jumper, Kevin; Johnson, Wesley; Tomsik, Thomas

    2017-01-01

    GODU-LH2 system has successfully met all test objectives at the 33%, 67%, and 100% tank fill level. Complete control over the state of the fluid has been demonstrated using Integrated Refrigeration and Storage (IRAS). Almost any desired point along the H2saturation curve can essentially be "dialed in" and maintained indefinitely. System can also be used to produce densified hydrogen in large quantities to the triple point. Exploring multiple technology infusion paths. Studying implementation of IRAS technology into new LH2sphere for EM-2 at LC39B. Technical interchange also occurring with STMD, LSP, ULA, DoE, KIST, Kawasaki, Shell Oil, SpaceX, US Coast Guard, and Virgin Galactic.

  12. Final Technical Progress Report Long term risk from actinides in the environment: Modes of mobility

    International Nuclear Information System (INIS)

    Kirchner, Thomas B.

    2002-01-01

    The key source of uncertainty in assessing actinide mobility is the relative importance of transport by: (1) wind erosion, (2) water erosion, and (3) vertical migration. Each of these three processes depends on several environmental factors and they compete with one another. A scientific assessment of the long-term risks associated with actinides in surface soils depends on better quantifying each of these three modes of mobility. The objective from our EMSP study was to quantify the mobility of soil actinides by wind erosion, water erosion, and vertical migration at three semiarid sites where actinide mobility is a key technical, social and legal issue. This EMSP project was the first to evaluate all three factors at a site. The approach has been to investigate both short- and long-term issues based on field and lab studies and model comparisons. Our results demonstrate the importance of incorporating threshold responses into a modeling framework that accounts for environmental factors and natural disturbances that trigger large changes in actinide mobility. The study measured erosional losses of sediment and fallout cesium (an actinide analogue) from field plots located near WIPP in 1998. The results highlight the large effect of burning as a disturbance on contaminant transport and mobility via runoff and erosion. The results show that runoff, erosion, and actinide transport are (1) strongly site specific-differences in radionuclide transport between WIPP and Rocky Flats differed by a factor of twelve because of soil and vegetation differences, and (2) are strongly impacted by disturbances such as fire, which can increase runoff, erosion, and actinide transport by more than an order of magnitude. In addition, a laboratory experiment using soil columns was conducted to investigate the vertical transport of contaminants in sandy soils. Nine columns of soil collected from the vicinity of the WIPP site were prepared. The column consisted of a piece of PVC pipe 20 cm

  13. Final Technical Report Power through Policy: "Best Practices" for Cost-Effective Distributed Wind

    Energy Technology Data Exchange (ETDEWEB)

    Rhoads-Weaver, Heather; Gagne, Matthew; Sahl, Kurt; Orrell, Alice; Banks, Jennifer

    2012-02-28

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The project's final products include the Distributed Wind Policy Comparison Tool, found at www.windpolicytool.org, and its accompanying documentation: Distributed Wind Policy Comparison Tool Guidebook: User Instructions, Assumptions, and Case Studies. With only two initial user inputs required, the Policy Tool allows users to adjust and test a wide range of policy-related variables through a user-friendly dashboard interface with slider bars. The Policy Tool is populated with a variety of financial variables, including turbine costs, electricity rates, policies, and financial incentives; economic variables including discount and escalation rates; as well as technical variables that impact electricity production, such as turbine power curves and wind speed. The Policy Tool allows users to change many of the variables, including the policies, to gauge the expected impacts that various policy combinations could have on the cost of energy (COE), net present value (NPV), internal rate of return (IRR), and the simple payback of distributed wind projects ranging in size from 2.4 kilowatts (kW) to 100 kW. The project conducted case studies to demonstrate how the Policy Tool can provide insights into 'what if' scenarios and also allow the current status of incentives to be examined or defended when

  14. Final Technical Progress Report Long term risk from actinides in the environment: Modes of mobility

    Energy Technology Data Exchange (ETDEWEB)

    Thomas B. Kirchner

    2002-03-22

    The key source of uncertainty in assessing actinide mobility is the relative importance of transport by: (1) wind erosion, (2) water erosion, and (3) vertical migration. Each of these three processes depends on several environmental factors and they compete with one another. A scientific assessment of the long-term risks associated with actinides in surface soils depends on better quantifying each of these three modes of mobility. The objective from our EMSP study was to quantify the mobility of soil actinides by wind erosion, water erosion, and vertical migration at three semiarid sites where actinide mobility is a key technical, social and legal issue. This EMSP project was the first to evaluate all three factors at a site. The approach has been to investigate both short- and long-term issues based on field and lab studies and model comparisons. Our results demonstrate the importance of incorporating threshold responses into a modeling framework that accounts for environmental factors and natural disturbances that trigger large changes in actinide mobility. The study measured erosional losses of sediment and fallout cesium (an actinide analogue) from field plots located near WIPP in 1998. The results highlight the large effect of burning as a disturbance on contaminant transport and mobility via runoff and erosion. The results show that runoff, erosion, and actinide transport are (1) strongly site specific-differences in radionuclide transport between WIPP and Rocky Flats differed by a factor of twelve because of soil and vegetation differences, and (2) are strongly impacted by disturbances such as fire, which can increase runoff, erosion, and actinide transport by more than an order of magnitude. In addition, a laboratory experiment using soil columns was conducted to investigate the vertical transport of contaminants in sandy soils. Nine columns of soil collected from the vicinity of the WIPP site were prepared. The column consisted of a piece of PVC pipe 20 cm

  15. Syngas to Synfuels Process Development Unit Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C. [Iowa State Univ., Ames, IA (United States)

    2012-03-30

    The process described is for the gasification of 20 kg/h of biomass (switchgrass) to produce a syngas suitable for upgrading to Fischer-Tropsch (FT) liquid fuels (gas, diesel, waxes, etc.). The gas stream generated from gasification is primarily composed of carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), steam (H2O), and methane (CH4), but also includes tars, particulate matter, ammonia (NH3), hydrogen cyanide (HCN), hydrogen chloride (HCl), hydrogen sulfide ( H2S), carbonyl sulfide (COS), etc. as contaminants. The gas stream passes through an array of cleaning devices to remove the contaminants to levels suitable for FT synthesis of fuels/chemicals. These devices consist primarily of an oil scrubber (to remove tars and remaining particulates), sulfur scrubber (to remove sulfur compounds), and a wet scrubber (to remove NH3, HCl and remaining water soluble contaminants). The ammonia and oil scrubbers are absorption columns with a combination of random and structured packing materials, using water and oil as the adsorption liquids respectively. The ammonia scrubber performed very well, while operating the oil scrubber proved to be more difficult due to the nature of tar compounds. The sulfur scrubber is a packed bed absorption device with solid extrudates of adsorbent material, primarily composed of ZnO and CuO. It performed well, but over a limited amount of time due to fouling created by excess tar/particulate matter and oil aerosols. Overall gas contaminants were reduced to below 1 ppm NH3, and less than 1 ppm collective sulfur compounds.

  16. Carbon monoxide - hydrogen combustion characteristics in severe accident containment conditions. Final report

    International Nuclear Information System (INIS)

    2000-03-01

    Carbon monoxide can be produced in severe accidents from interaction of ex-vessel molten core with concrete. Depending on the particular core-melt scenario, the type of concrete and geometric factors affecting the interaction, the quantities of carbon monoxide produced can vary widely, up to several volume percent in the containment. Carbon monoxide is a combustible gas. The carbon monoxide thus produced is in addition to the hydrogen produced by metal-water reactions and by radiolysis, and represents a possibly significant contribution to the combustible gas inventory in the containment. Assessment of possible accident loads to containment thus requires knowledge of the combustion properties of both CO and H 2 in the containment atmosphere. Extensive studies have been carried out and are still continuing in the nuclear industry to assess the threat of hydrogen in a severe reactor accident. However the contribution of carbon monoxide to the combustion threat has received less attention. Assessment of scenarios involving ex-vessel interactions require additional attention to the potential contribution of carbon monoxide to combustion loads in containment, as well as the effectiveness of mitigation measures designed for hydrogen to effectively deal with particular aspects of carbon monoxide. The topic of core-concrete interactions has been extensively studied; for more complete background on the issue and on the physical/thermal-hydraulics phenomena involved, the reader is referred to Proceedings of CSNI Specialists Meetings (Ritzman, 1987; Alsmeyer, 1992) and a State-of-Art Report (European Commission, 1995). The exact amount of carbon monoxide present in a reactor pit or in various compartments (or rooms) in a containment building is specific to the type of concrete and the accident scenario considered. Generally, concrete containing limestone and sand have a high percentage of CaCO 3 . Appendix A provides an example of results of estimates of CO and CO 2

  17. Technical specification improvements to containment heat removal and emergency core cooling systems: Final report

    International Nuclear Information System (INIS)

    Sullivan, W.P.; Ha, C.; Pentzien, D.C.; Visweswaran, S.

    1988-07-01

    This report presents the results of an analysis for technical specification improvements to the emergency core cooling systems (ECCS) and containment heat removal systems (EPRI Research Project 2142-3). The objective of this project is to further develop a reliability- and risk-based methodology to provide improvements by considering groups of surveillance test intervals and allowed out-of-service times jointly. This was done for the technical specifications for the ECCS, containment heat removal equipment, and supporting systems of a boiling water reactor plant. The project (1) developed a methodology for optimizing groups of surveillance test intervals and allowed out-of-service times jointly, (2) applied the methodology in a case study of a specific operating plant, Hatch-2, and (3) evaluated benefits of the application. The results of the case study demonstrate that beneficial technical specification improvements can be realized with application of the methodology. By tightening a small group of sensitive surveillance test intervals (STIs) and allowed out-of-service times (AOTs), a larger group of less sensitive STIs and AOTs can be extended resulting in an overall plant operating cost improvement without reducing the plant safety. The reliability- and risk-based methodology and results from this project can be effectively applied for technical specification improvements at other operating plants

  18. Final Technical Close out Report University Research Program in Robotics for Environmental Restoration and Waste Management

    International Nuclear Information System (INIS)

    James S. Tulenko; Carl Crane

    2004-01-01

    The report covers the 2003-04 contract period, with a retrospective of the 11 years for the contract, from 1993 to 2004. This includes personnel, technical publications and reports, plus research laboratories employed. Specific information is given in eight research areas, reporting on all technology developed and/or deployed by the University of Florida

  19. Technical procedures for land use, Deaf Smith County site, Texas: Environmental Field Program: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    This volume contains Technical Procedures pursuant to the Land Use Site Study Plan including land use data acquisition, land use/land cover map compilation, verification of land use/land cover map accuracy, and land use/land cover data analysis. 22 refs., 5 figs

  20. Hy-NOW. Evaluation of methods and technologies for the production of hydrogen based on biomass. Final Report

    International Nuclear Information System (INIS)

    Zech, Konstantin; Grasemann, Elias; Oehmichen, Katja

    2014-01-01

    The conversion of biomass is considered an important option for supplying the future mobility sector with sustainable hydrogen. In this study, various processes and technologies are evaluated that are suitable for a biomass-based production of hydrogen. This includes thermochemical processes such as the gasification of biomass in fixed bed, fluidized bed and entrained-flow gasification and the reforming of secondary bioenergy carriers (e.g. biogas), as well as biochemical processes such as the fermentation of biomass to hydrogen, and the photolysis of water. Following a fundamental prescreening of the processes, three of them are identified as the most promising options for a short or medium-term realization within a demonstration plant. Plant and supply concepts for these processes are defined and analyzed in detail. Two of the concepts are based on allothermal fluidized bed gasification (concepts 1 and 2) and the third one on steam reforming of biogas (concept 3). The hydrogen production capacity amounts to 9 MWH2 (270 kg H2 /h) with concept 1, 3 MW H2 (90 kg H2 /h) with concept 2 and 6 MW H2 (180 kg H2 /h) with concept 3. The hydrogen production and supply concepts are analyzed based on their technical, economic and environmental performance as well as on the availability of the raw materials (biomass) required. For each of the concepts assessed, the availability of feedstock is sufficient to allow for the realization of demonstration plants. Significant parts of the existing biomass potentials, however, are used for other applications already. Hence, thorough examination of potential demonstration sites is crucial, giving due consideration to regional or local raw material availabilities Overall, there are advantages for gasification-based concepts as far as feedstocks are concerned. The technical assessment shows disadvantages for the fermentation-based plant concept in the net efficiency of the hydrogen production, i.e. the conversion efficiency from biomass

  1. Final Report: Characterization of Hydrogen Adsorption in Carbon-Based Materials by NMR

    International Nuclear Information System (INIS)

    Wu, Yue; Kleinhammes, Alfred

    2011-01-01

    In support of DOE/EERE's Fuel Cell Technologies Program Hydrogen Sorption Center of Excellence (HSCoE), UNC conducted Nuclear Magnetic Resonance (NMR) measurements that contributed spectroscopic information as well as quantitative analysis of adsorption processes. While NMR based Langmuir isotherms produce reliable H2 capacity measurements, the most astute contribution to the center is provided by information on dihydrogen adsorption on the scale of nanometers, including the molecular dynamics of hydrogen in micropores, and the diffusion of dihydrogen between macro and micro pores. A new method to assess the pore width using H2 as probe of the pore geometry was developed and is based on the variation of the observed chemical shift of adsorbed dihydrogen as function of H2 pressure. Adsorbents designed and synthesized by the Center were assessed for their H2 capacity, the binding energy of the adsorption site, their pore structure and their ability to release H2. Feedback to the materials groups was provided to improve the materials properties. To enable in situ NMR measurements as a function of H2 pressure and temperature, a unique, specialized NMR system was designed and built. Pressure can be varied between 10-4 and 107 Pa while the temperature can be controlled between 77K and room temperature. In addition to the 1H investigation of the H2 adsorption process, NMR was implemented to measure the atomic content of substituted elements, e.g. boron in boron substituted graphitic material as well as to determine the local environment and symmetry of these substituted nuclei. The primary findings by UNC are the following: (1) Boron substituted for carbon in graphitic material in the planar BC3 configuration enhances the binding energy for adsorbed hydrogen; (2) Arrested kinetics of H2 was observed below 130K in the same boron substituted carbon samples that combine enhanced binding energy with micropore structure; (3) Hydrogen storage material made from activated PEEK

  2. Final Report: Characterization of Hydrogen Adsorption in Carbon-Based Materials by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue; Kleinhammes, Alfred

    2011-07-11

    In support of DOE/EERE's Fuel Cell Technologies Program Hydrogen Sorption Center of Excellence (HSCoE), UNC conducted Nuclear Magnetic Resonance (NMR) measurements that contributed spectroscopic information as well as quantitative analysis of adsorption processes. While NMR based Langmuir isotherms produce reliable H2 capacity measurements, the most astute contribution to the center is provided by information on dihydrogen adsorption on the scale of nanometers, including the molecular dynamics of hydrogen in micropores, and the diffusion of dihydrogen between macro and micro pores. A new method to assess the pore width using H2 as probe of the pore geometry was developed and is based on the variation of the observed chemical shift of adsorbed dihydrogen as function of H2 pressure. Adsorbents designed and synthesized by the Center were assessed for their H2 capacity, the binding energy of the adsorption site, their pore structure and their ability to release H2. Feedback to the materials groups was provided to improve the materials’ properties. To enable in situ NMR measurements as a function of H2 pressure and temperature, a unique, specialized NMR system was designed and built. Pressure can be varied between 10-4 and 107 Pa while the temperature can be controlled between 77K and room temperature. In addition to the 1H investigation of the H2 adsorption process, NMR was implemented to measure the atomic content of substituted elements, e.g. boron in boron substituted graphitic material as well as to determine the local environment and symmetry of these substituted nuclei. The primary findings by UNC are the following: • Boron substituted for carbon in graphitic material in the planar BC3 configuration enhances the binding energy for adsorbed hydrogen. • Arrested kinetics of H2 was observed below 130K in the same boron substituted carbon samples that combine enhanced binding energy with micropore structure. • Hydrogen storage material made from

  3. Materials for high-temperature hydrogen fluorine environments. Final report, June 1976-December 1978

    International Nuclear Information System (INIS)

    Holcombe, C.E. Jr.; Kovach, L.

    1981-03-01

    A determination has been made of the stability of 35 materials under high-temperature, fluorine rich, hydrogen fluoride torch testing. Refractory materials tested included 4 borides, 3 carbides, 3 nitrides, 12 oxides, 1 oxynitride, 1 sulfide, 10 metals, and carbon (10 types). Three materials distinctly performed better than nickel: lanthanum hexaboride, calcium hexaboride, and lanthanum silicon oxynitride. Of these, lanthanum hexaboride is the best candidate tested since it has an estimated upper use temperature > 1726 K, which is above the melting point and more than 300 K above the upper use temperature of nickel

  4. Materials for high-temperature hydrogen fluorine environments. Final report, June 1976-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Holcombe, C.E. Jr.; Kovach, L.

    1981-03-01

    A determination has been made of the stability of 35 materials under high-temperature, fluorine rich, hydrogen fluoride torch testing. Refractory materials tested included 4 borides, 3 carbides, 3 nitrides, 12 oxides, 1 oxynitride, 1 sulfide, 10 metals, and carbon (10 types). Three materials distinctly performed better than nickel: lanthanum hexaboride, calcium hexaboride, and lanthanum silicon oxynitride. Of these, lanthanum hexaboride is the best candidate tested since it has an estimated upper use temperature > 1726 K, which is above the melting point and more than 300 K above the upper use temperature of nickel.

  5. Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report

    International Nuclear Information System (INIS)

    1994-05-01

    This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used

  6. Final disposal of radioactive wastes. Site selection criteria. Technical and economical factors

    International Nuclear Information System (INIS)

    Granero, J.J.

    1984-01-01

    General considerations, geological and socioeconomical criteria for final disposal of radioactive wastes in geological formations are treated. More attention is given to the final disposal of high level radioactive wastes and different solutions searched abroad which seems of interest for Spain. (author)

  7. External Tank Liquid Hydrogen (LH2) Prepress Regression Analysis Independent Review Technical Consultation Report

    Science.gov (United States)

    Parsons, Vickie s.

    2009-01-01

    The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.

  8. Final Scientific/Technical Report for award DE-FC--07-00AL67053

    International Nuclear Information System (INIS)

    Dixon, Cathy

    2005-01-01

    The project ''Creating an Educational Consortium to Support the Recruitment and Retention of Expertise for the Nuclear Weapons Complex'' was also known as the Advanced Fuel Cycle Initiative (AFCI) University Fellowship Program. Since its inception, the Advanced Fuel Cycle Initiative program and its predecessor, the Advanced Accelerator Applications (AAA) program, have engaged university researchers and students in the sciences necessary to answer technical questions related to reducing high-level waste volumes, optimizing the economics and performance of Yucca Mountain, reducing the technical need for a second repository, reducing the long-term inventories of plutonium in spent fuel, and enabling the proliferation-resistant recovery of the energy contained in spent fuel. The Advanced Fuel Cycle University Fellowship Program is intended to support top students across the nation in a variety of disciplines that will be required to support transmutation research and technology development in the coming decades

  9. Final Technical Report: "Achieving Regional Energy Efficiency Potential in the Southeast”

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Mandy [Southeast Energy Efficiency Alliance (SEEA), Atlanta, GA (United States)

    2018-03-07

    The overall objective of this award was to facilitate sharing of DOE resources and best practices as well as provide technical assistance to key stakeholders to support greater compliance with energy efficiency standards and increased energy savings. The outcomes of this award include greater awareness among key stakeholders on energy efficiency topics, increased deployment and utilization of DOE resources, and effective policies and programs to support energy efficiency in the Southeast.

  10. National Alliance for Advanced Biofuels and Bio-Products Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, Jose A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baxter, Ivan [US Dept. of Agriculture (USDA)., Washington, DC (United States); Brown, Judith [Univ. of Arizona, Tucson, AZ (United States); Carleton, Michael [Matrix Genetics, Seattle, WA (United States); Cattolico, Rose Anne [Univ. of Washington, Seattle, WA (United States); Taraka, Dale [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Detter, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devarenne, Timothy P. [Texas Agrilife Research, College Station, TX (United States); Dutcher, Susan K. [Washington Univ., St. Louis, MO (United States); Fox, David T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodenough, Ursula [Washington Univ., St. Louis, MO (United States); Jaworski, Jan [Donald Danforth Plant Science Center, St. Louis, MO (United States); Kramer, David [Michigan State Univ., East Lansing, MI (United States); Lipton, Mary S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCormick, Margaret [Matrix Genetics, Seattle, WA (United States); Merchant, Sabeeha [Univ. of California, Los Angeles, CA (United States); Molnar, Istvan [Univ. of Arizona, Tucson, AZ (United States); Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pellegrini, Matteo [Univ. of California, Los Angeles, CA (United States); Polle, Juergen [City Univ. (CUNY), NY (United States). Brooklyn College; Sabarsky, Martin [Cellana, Inc., San Diego, CA (United States); Sayre, Richard T. [New Mexico Consortium, Los Alamos, NM (United States); Starkenburg,, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stormo, Gary [Washington Univ., St. Louis, MO (United States); Twary, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unkefer, Clifford J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unkefer, Pat J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yuan, Joshua S. [Texas Agrilife Research, College Station, TX (United States); Arnold, Bob [Univ. of Arizona, Tucson, AZ (United States); Bai, Xuemei [Cellana, Inc., San Diego, CA (United States); Boeing, Wiebke [New Mexico State Univ., Las Cruces, NM (United States); Brown, Lois [Texas Agrilife Research, College Station, TX (United States); Gujarathi, Ninad [Reliance Industries Limited, Mumbai (India); Huesemann, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lammers, Pete [New Mexico State Univ., Las Cruces, NM (United States); Laur, Paul [Eldorado Biofuels, Santa Fe, NM (United States); Khandan, Nirmala [New Mexico State Univ., Las Cruces, NM (United States); Parsons, Ronald [Solix BioSystems, Fort Collins, CO (United States); Samocha, Tzachi [Texas Agrilife Research, College Station, TX (United States); Thomasson, Alex [Texas Agrilife Research, College Station, TX (United States); Unc, Adrian [New Mexico State Univ., Las Cruces, NM (United States); Waller, Pete [Univ. of Arizona, Tucson, AZ (United States); Bonner, James [Clarkson Univ., Potsdam, NY (United States); Coons, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernando, Sandun [Texas Agrilife Research, College Station, TX (United States); Goodall, Brian [Valicor Renewables, Dexter, MI (United States); Kadam, Kiran [Valicor Renewables, Dexter, MI (United States); Lacey, Ronald [Texas Agrilife Research, College Station, TX (United States); Wei, Liu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marrone, Babs [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nikolov, Zivko [Texas Agrilife Research, College Station, TX (United States); Trewyn, Brian [Colorado School of Mines, Golden, CO (United States); Albrecht, Karl [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Capareda, Sergio [Texas Agrilife Research, College Station, TX (United States); Cheny, Scott [Diversified Energy, Gilbert, AZ (United States); Deng, Shuguang [New Mexico State Univ., Las Cruces, NM (United States); Elliott, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cesar, Granda [Terrabon, LLC, Bryan, TX (United States); Hallen, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lupton, Steven [UOP Honeywell Co, LLC, Des Plaines, IL (United States); Lynch, Sharry [UOP Honeywell Co, LLC, Des Plaines, IL (United States); Marchese, Anthony [Colorado State Univ., Fort Collins, CO (United States); Nieweg, Jennifer [Albemarle Catilin, Ames, IA (United States); Ogden, Kimberly [Univ. of Arizona, Tucson, AZ (United States); Oyler, James [Genifuel, Salt Lake City, UT (United States); Reardon, Ken [Colorado State Univ., Fort Collins, CO (United States); Roberts, William [North Carolina State Univ., Raleigh, NC (United States); Sams, David [Albemarle Catilin, Ames, IA (United States); Schaub, Tanner [New Mexico State Univ., Las Cruces, NM (United States); Silks, Pete [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Archibeque, Shawn [Colorado State Univ., Fort Collins, CO (United States); Foster, James [Texas Agrilife Research, College Station, TX (United States); Gaitlan, Delbert [Texas Agrilife Research, College Station, TX (United States); Lawrence, Addison [Texas Agrilife Research, College Station, TX (United States); Lodge-Ivey, Shanna [New Mexico State Univ., Las Cruces, NM (United States); Wickersham, Tyron [Texas Agrilife Research, College Station, TX (United States); Blowers, Paul [Univ. of Arizona, Tucson, AZ (United States); Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Downes, C. Meghan [New Mexico State Univ., Las Cruces, NM (United States); Dunlop, Eric [Pan Pacific Technologies Pty. Ltd., Adelaide (Australia); Frank, Edward [Argonne National Lab. (ANL), Argonne, IL (United States); Handler, Robert [Michigan Technological Univ., Houghton, MI (United States); Newby, Deborah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pienkos, Philip [National Renewable Energy Lab. (NREL), Golden, CO (United States); Richardson, James [Texas Agrilife Research, College Station, TX (United States); Seider, Warren [Univ. of Pennsylvania, Philadelphia, PA (United States); Shonnard, David [Michigan Technological Univ., Houghton, MI (United States); Skaggs, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    The main objective of NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. The approach was to address technology development across the entire value chain of algal biofuels production, from selection of strains to cultivation, harvesting, extraction, fuel conversion, and agricultural coproduct production. Sustainable practices and financial feasibility assessments ununderscored the approach and drove the technology development.

  11. Technical procedures for ecology: Environmental field program, Deaf Smith County Site, Texas: Final draft

    International Nuclear Information System (INIS)

    1987-08-01

    This volume contains Technical Procedures pursuant to the Land Use Site Study Plan including walkover surveys for threatened, endangered, or candidate species; vegetation classification and mapping; reclamation planning; wetland and floodplain determination and characterization of playas; wildlife habitat mapping methods; mammal sampling; bird survey methods; reptile and amphibian survey methods; preexisting environmental; stress and disturbance studies methods; voucher specimens for plants; and voucher specimens to wildlife. 9 refs., 5 figs., 1 tab

  12. Development of a Foam OTEC System. Final technical report for Fiscal Year 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Research on Development of a Foam OTEC System, as carried out at Carnegie-Mellon University from October 1, 1978 through September 30, 1979, is described. To a brief section summarizing highlights of research results are appended 12 technical reports which detail specific sections of the program. The work described is continuing and a proposal is currently being submitted to provide support in fiscal 1980.

  13. International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Neil E.; Busch, Jason; Kimball, Richard

    2011-10-29

    This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us

  14. Final Technical Report - SciDAC Cooperative Agreement: Center for Extended Magnetohydrodynamic Modeling/ Transport and Dynamics in Torodial Fusion System

    International Nuclear Information System (INIS)

    Schanck, Dalton D.

    2010-01-01

    Final technical report for research performed by Professor Dalton D. Schnack on SciDAC Cooperative Agreement: Center for Extended MHD Modeling, DE-FC02-06ER54870, for the period 7/1/06 to 2/15/08. Principal results for this period are: 1. Development of a model for computational modeling for the primitive form of the extended MMD equations. This was reported as Phys. Plasmas 13, 058103 (2006). 2. Comparison between the NIMROD and M3D codes for simulation of the nonlinear sawtooth crash in the CDXU tokamak. This was reported in Phys. Plasmas 14, 056105 (2006). 3. Demonstration of 2-fluid and gyroviscous stabilization of interchange modes using computational extended MHD models. This was reported in Phys. Rev. Letters 101, 085005 (2008). Each of these publications is attached as an Appendix of this report. They should be consulted for technical details.

  15. Final Technical Report: Tandem and Bimetallic Catalysts for Oxidative Dehydrogenation of Light Hydrocarbon with Renewable Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Omar, Mahdi [Purdue Univ., West Lafayette, IN (United States)

    2017-01-06

    An estimated 490 million metric tons of lignocellulosic biomass is available annually from U.S. agriculture and forestry. With continuing concerns over greenhouse gas emission, the development of efficient catalytic processes for conversion of biomass derived compounds is an important area of research. Since carbohydrates and polyols are rich in oxygen, approximately one oxygen atom per carbon, removal of hydroxyl groups via deoxygenation is needed. The necessary hydrogen required for hydrodeoxygenation (HDO) would either come from reforming biomass itself or from steam reforming of natural gas. Both processes contribute to global CO2 emission. The hope is that eventually renewable sources such as wind and solar for hydrogen production will become more viable and economic in the future. In the meantime, unconventional natural gas production in North America has boomed. As a result, light hydrocarbons present an opportunity when coupled with biomass derived oxygenates to generate valuable products from both streams without co-production of carbon dioxide. This concept is the focus of our current funding period. The objective of the project requires coupling two different types of catalysis, HDO and dehydrogenation. Our hypothesis was formulated around our success in establishing oxorhenium catalysts for polyol HDO reactions and known literature precedence for the use of iridium hydrides in alkane dehydrogenation. To examine our hypothesis we set out to investigate the reaction chemistry of binuclear complexes of oxorhenium and iridium hydride.

  16. Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests

    Energy Technology Data Exchange (ETDEWEB)

    Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O' Malley, K.; Ruiz, A.

    2012-09-01

    Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

  17. Testing a technical-scale counterflow compact heat exchanger for the separation of uranium hexafluoride from hydrogen

    International Nuclear Information System (INIS)

    Hornberger, P.; Seidel, D.; Steinhaus, H.

    1981-07-01

    When enriching the light uranium isotope U-235 according to the separation nozzle method, UF 6 and light auxiliary gas (H 2 ) must be separated from each other at the head as well as at the shoulder of the cascade. After pre-separation at a special separation nozzle stage, fine separation is planned by means of a low-temperature separator made as a compact heat exchanger. This report describes first testing under process conditions of a representative section of the separator blocks intended for technical-scale operation. It is proved that the rated loading capacity is attained while the residual UF 6 concentration contained in the escaping hydrogen can be lowered down to values less than 1 ppm. It is further shown that the requirement of constant pressure drop at the separator, which is decisive for the smooth interplay of preseparator stage and low-temperature separator, can be imposed by direct control of the supply of the refrigerating medium through the variable to be kept constant. A concept of control is proposed for industrial application necessitating the operation of several low-temperature separators staggered in terms of time. This concept allows the relatively simple optimum utilization of the separator capacity even under variable operating conditions. (orig.) [de

  18. Final Technical Report for GO15052 Intematix: Combinatorial Synthesis and High Throughput Screening of Effective Catalysts for Chemical Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Melman, Jonathan [Intematix Corporation, Fremont, CA (United States)

    2017-02-22

    The objectives of this project are: to discover cost-effective catalysts for release of hydrogen from chemical hydrogen storage systems; and to discover cost-effective catalysts for the regeneration of spent chemical hydrogen storage materials.

  19. Energy policy conference on the technical-economical stakes of hydrogen as future energy vector; Conference de politique energetique sur les enjeux technico-economiques de l'hydrogene comme vecteur energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    This document is the report of the conference meeting jointly organized by the French general plan commission and the general direction of energy and raw materials on the technical-economical stakes of hydrogen as future energy source, and in particular of hydrogen fuel-cells for cogeneration and vehicle applications: 1 - presentation of the general context: status of the hydrogen industry, French R and D and industrial actors, international status; 2 - competition or association with fossil fuels: which opportunities for hydrogen, recall of the 2020 and 2050 energy prospects, impact of hydrogen on climate change, energy efficiency reference of vehicles, CO{sub 2} emissions 'from the well to the wheel' for the different energy sources, perspectives of hydrogen fuels; 3 - main results of the study carried out by the CEREN on the prospects of stationary fuel cells in France: description of the study, concrete case of a 500 beds hospital, economic and environmental conclusions. The transparencies corresponding to the 3 points above are attached to the report. (J.S.)

  20. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sinskey, Anthony J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Worden, Robert Mark [Michigan State Univ., East Lansing, MI (United States); Brigham, Christopher [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lu, Jingnan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Quimby, John Westlake [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Gai, Claudia [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Speth, Daan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Elliott, Sean [Boston Univ., MA (United States); Fei, John Qiang [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bernardi, Amanda [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Li, Sophia [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Grunwald, Stephan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Grousseau, Estelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Maiti, Soumen [Michigan State Univ., East Lansing, MI (United States); Liu, Chole [Michigan State Univ., East Lansing, MI (United States)

    2013-12-16

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide

  1. The SocioEconomic Analysis of Repository Siting (SEARS): Technical description: Final draft

    International Nuclear Information System (INIS)

    1984-11-01

    Socioeconomic impacts must be assessed both for the near term and for the future. One means of addressing the need for the assessment of such impacts has been through the development of the computerized socioeconomic assessment model called the SocioEconomic Analysis of Repository Siting (SEARS) model. The SEARS model was developed for the Battelle Project Management Division. It was refined and adapted from state-of-the-art computerized projection models and thoroughly validated and is now available for use in projecting the likely socioeconomic impacts of a repository facility. This Technical Description is one of six major products that describe the SEARS modeling system. 61 refs., 11 figs., 9 tabs

  2. Technical analysis of US Army Weapons Systems and related advanced technologies of military interest. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-06-14

    This report summarizes the activities and accomplishments of an US Army technology security project designed to identify and develop effective policy guidelines for militarily critical technologies in specific Army systems and in broad generic technology areas of military interest, Individual systems analyses are documented in separate Weapons Systems Technical Assessments (WSTAs) and the general generic technology areas are evaluated in the Advanced Technology Assessment Reports (ATARs), However, specific details of these assessments are not addressed here, only recommendations regarding aspects of the defined approach, methodology, and format are provided and discussed.

  3. Tectonic history of the terrestrial planets. Final technical report, 1 October 1976-30 September 1989

    International Nuclear Information System (INIS)

    Solomon, S.C.

    1990-02-01

    It is impossible in a single brief summary to convey the full range of research results that have come from this project over the last 13 years. The sweep of subjects covered ranges widely over the broad areas of the thermal and tectonic evolution of the terrestrial planets. A full list of all publications supported by this grant is presented. The list includes 48 published journal articles, 2 papers currently in press, 3 chapters of books, 4 M.I.T. theses, 1 technical report, and 107 published abstracts and extended abstracts. All of these publications were submitted separately to NASA at the time of publication or submission

  4. Final Technical Report of the project "Controlling Quantum Information by Quantum Correlations"

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Davide [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-17

    The report describes hypotheses, aims, methods and results of the project 20170675PRD2, “Controlling Quantum Information by Quantum Correlations”, which has been run from July 31, 2017 to January 7, 2018. The technical work has been performed by Director’s Fellow Davide Girolami of the T-4 Division, Physics of Condensed Matter and Complex Systems, under the supervision of Wojciech Zurek (T-4), Lukasz Cincio (T-4), and Marcus Daniels (CCS-7). The project ended as Davide Girolami has been converted to J. R. Oppenheimer Fellow to work on the project 20180702PRD1, “Optimal Control of Quantum Machines”, started on January 8, 2018.

  5. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    Vierow, Karen; Aldemir, Tunc

    2009-01-01

    The project entitled, 'Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors', was conducted as a DOE NERI project collaboration between Texas A and M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  6. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen; Aldemir, Tunc

    2009-09-10

    The project entitled, “Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors”, was conducted as a DOE NERI project collaboration between Texas A&M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  7. Breakthrough Design and Implementation of Many-Body Theories. Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    Hirata, So

    2012-01-01

    This report discusses the following highlights of the project: (1) grid-based Hartree-Fock equation solver; (2) explicitly correlated coupled-cluster and perturbation methods; (3) anharmonic vibrational frequencies and vibrationally averaged NMR and structural parameters of FHF; (4) anharmonic vibrational frequencies and vibrationally averaged structures of hydrocarbon combustion species; (5) anharmonic vibrational analysis of the guanine-cytosine base pair; (6) the nature of the Born-Oppenheimer approximation; (7) Polymers and solids Brillouin-zone downsampling - the modulo MP2 method; (8) explicitly correlated MP2 for extended systems; (9) fast correlated method for molecular crystals - solid formic acid; and (10) fast correlated method for molecular crystals - solid hydrogen fluoride.

  8. Novel catalysts for upgrading coal-derived liquids. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.T.; Savage, P.E.; Briggs, D.E.

    1995-03-31

    Research described in this report was aimed at synthesizing and evaluating supported Mo oxynitrides and oxycarbides for the selective removal of nitrogen, sulfur and oxygen from model and authentic coal-derived liquids. The Al{sub 2}O{sub 3}-supported oxynitrides and oxycarbides were synthesized via the temperature programmed reaction of supported molybdenum oxides or hydrogen bronzes with NH{sub 3} or an equimolar mixture of CH{sub 4} and H{sub 2}. Phase constituents and composition were determined by X-ray diffraction, CHN analysis, and neutron activation analysis. Oxygen chemisorption was used to probe the surface structure of the catalysts. The reaction rate data was collected using specially designed micro-batch reactors. The Al{sub 2}O{sub 3}-supported Mo oxynitrides and oxycarbides were competitively active for quinoline hydrodenitrogenation (HDN), benzothiophene hydrodesulfurization (HDS) and benzofuran hydrodeoxygenation (HDO). In fact, the HDN and HDO specific reaction rates for several of the oxynitrides and oxycarbides were higher than those of a commercial Ni-Mo/Al{sub 2}O{sub 3} hydrotreatment catalyst. Furthermore, the product distributions indicated that the oxynitrides and oxycarbides were more hydrogen efficient than the sulfide catalysts. For HDN and HDS the catalytic activity was a strong inverse function of the Mo loading. In contrast, the benzofuran hydrodeoxygenation (HDO) activities did not appear to be affected by the Mo loading but were affected by the heating rate employed during nitridation or carburization. This observation suggested that HDN and HDS occurred on the same active sites while HDO was catalyzed by a different type of site.

  9. Harnessing Light: Capitalizing on Optical Science Trends and Challenges for Future Research. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Svedberg, Erik

    2014-02-06

    The committee has during the earlier period finalized their work on the report, Optics and Photonics: Essential Technologies for Our Nation (2013) . The report did undergo review and initial editorial processing. The NRC released a pre-publication report on August 13, 2012. A final report is now available. The study director has been able to practice his skills in running a national academies committee. From a research perspective the grant has generated a report with recommendations to the government. The work itself is the meetings where the committee convened to hear presenters and to discuss the status of optics and photonics as well as writing the report.

  10. Technical program plan for the transitioning, decommissioning, and final disposition focus area

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Hundreds of aging nuclear materials processing facilities within the Department of Energy`s (DOE) Weapons Complex are now being shut down and deactivated. These facilities, situated throughout the United States, will require a monumental effort to clean up safely and with minimal environmental insult. Current cleanup technologies tend to be labor intensive and expensive, they produce an unacceptably large volume of waste, and they expose workers to radioactive and other hazardous substances. This document describes an emerging program designed to develop and demonstrate new technical approaches to the decontamination and decommissioning (D&D) program for DOE`s nuclear materials processing facilities. Sponsored by the DOE Office of Technology Development within the Office of Environmental Restoration and Waste Management (EM), the program seeks to integrate the strengths of DOE`s technical, managerial, and systems engineering capabilities with those of industry, universities, and other government agencies. Once developed, these technologies will help to provide US industry with a competitive edge in the worldwide market that exists for improved environmental restoration and D&D services.

  11. Final Scientific/Technical Report Solar America Initiative: Solar Outreach and Communications

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, Jane M

    2011-09-10

    The purpose of the Solar America Initiative: Solar Outreach and Communications grant was to promote better communications among stakeholders; address infrastructure barriers to solar energy; and coordinate with industry, the U.S. Department of Energy, national laboratories, states, cities and counties. The Interstate Renewable Energy Council (IREC), a non-profit organization formed in 1982, approached this grant project by establishing a wide range of communication and outreach activities including newsletters, workshops, webinars, model practices and publications; by advancing easy and fair hook-up rules to the utility grid; and by upgrading training based on industry competency standards. The Connecting to the Grid project and the Solar Codes and Standards Public Hearings project offered communication coupled with technical assistance to overcome interconnection, net metering and other regulatory and program barriers. The Workforce Development Project tackled building a strong workforce through quality training and competency assessment programs. IREC's web site, the semi-monthly state and stakeholder newsletter and the metrics report resulted in better communications among stakeholders. Workshops and phone seminars offered technical assistance and kept stakeholders up-to-date on key issues. All of these activities resulted in implementing sustainable solutions to institutional and market barriers to solar energy and getting the right information to the right people.

  12. Technical program plan for the transitioning, decommissioning, and final disposition focus area

    International Nuclear Information System (INIS)

    1994-01-01

    Hundreds of aging nuclear materials processing facilities within the Department of Energy's (DOE) Weapons Complex are now being shut down and deactivated. These facilities, situated throughout the United States, will require a monumental effort to clean up safely and with minimal environmental insult. Current cleanup technologies tend to be labor intensive and expensive, they produce an unacceptably large volume of waste, and they expose workers to radioactive and other hazardous substances. This document describes an emerging program designed to develop and demonstrate new technical approaches to the decontamination and decommissioning (D ampersand D) program for DOE's nuclear materials processing facilities. Sponsored by the DOE Office of Technology Development within the Office of Environmental Restoration and Waste Management (EM), the program seeks to integrate the strengths of DOE's technical, managerial, and systems engineering capabilities with those of industry, universities, and other government agencies. Once developed, these technologies will help to provide US industry with a competitive edge in the worldwide market that exists for improved environmental restoration and D ampersand D services

  13. Final report of the UMTRA independent technical review of TAC audit programs

    International Nuclear Information System (INIS)

    1994-10-01

    This report details the findings of an Independent Technical Review (ITR) of practices and procedures for the Uranium Mill Tailings Remedial Action (UMTRA) Project audit program. The audit program is conducted by Jacobs Engineering Group Inc., the Technical Assistance Contractor (TAC) for the UMTRA Project. The purpose of the ITR was to ensure that the TAC audit program is effective and is conducted efficiently. The ITR was conducted from May 16-20, 1994. A review team observed audit practices in the field, reviewed the TAC audit program's documentation, and discussed the program with TAC staff and management. The format of this report has been developed around EPA guidelines; they comprise most of the major section headings. Each section begins by identifying the criteria that the TAC program is measured against, then describing the approach used by the ITR team to measure each TAC audit program against the criteria. An assessment of each type of audit is then summarized for each component in the following order: Radiological audit summary; Health and safety audit summary; Environmental audit summary; Quality assurance audit summary

  14. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  15. Ion anomalous transport and feedback control. Final technical report, September 1, 1987 - August 31, 1997

    International Nuclear Information System (INIS)

    Sen, A.K.

    1998-01-01

    This final report is comprised of the following six progress reports: Ion Temperature Gradient Instability and Anomalous Transport, July 1989; Ion Temperature Gradient Instability and Anomalous Transport, August 1991; Ion Temperature Gradient Instability and Anomalous Transport, July 1993; Ion Anomalous Transport and Feedback Control, May 1994; Ion Anomalous Transport and Feedback Control, April 1995; and Ion Anomalous Transport and Feedback Control, December 1997

  16. Development & Optimization of Materials and Processes for a Cost Effective Photoelectrochemical Hydrogen Production System. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, Eric W

    2011-01-17

    The overall project objective was to apply high throughput experimentation and combinatorial methods together with novel syntheses to discover and optimize efficient, practical, and economically sustainable materials for photoelectrochemical production of bulk hydrogen from water. Automated electrochemical synthesis and photoelectrochemical screening systems were designed and constructed and used to study a variety of new photoelectrocatalytic materials. We evaluated photocatalytic performance in the dark and under illumination with or without applied bias in a high-throughput manner and did detailed evaluation on many materials. Significant attention was given to -Fe2O3 based semiconductor materials and thin films with different dopants were synthesized by co-electrodeposition techniques. Approximately 30 dopants including Al, Zn, Cu, Ni, Co, Cr, Mo, Ti, Pt, etc. were investigated. Hematite thin films doped with Al, Ti, Pt, Cr, and Mo exhibited significant improvements in efficiency for photoelectrochemical water splitting compared with undoped hematite. In several cases we collaborated with theorists who used density functional theory to help explain performance trends and suggest new materials. The best materials were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visual spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS). The photoelectrocatalytic performance of the thin films was evaluated and their incident photon

  17. Programs of Study as a State Policy Mandate: A Longitudinal Study of the South Carolina Personal Pathways to Success Initiative. Final Technical Report: Major Findings and Implications

    Science.gov (United States)

    Hammond, Cathy; Drew, Sam F.; Withington, Cairen; Griffith, Cathy; Swiger, Caroline M.; Mobley, Catherine; Sharp, Julia L.; Stringfield, Samuel C.; Stipanovic, Natalie; Daugherty, Lindsay

    2013-01-01

    This is the final technical report from the National Research Center for Career and Technical Education's (NRCCTE's) five-year longitudinal study of South Carolina's Personal Pathway to Success initiative, which was authorized by the state's Education and Economic Development Act (EEDA) in 2005. NRCCTE-affiliated researchers at the National…

  18. Technical specifications for the provision of heat and steam sources for INPP and Visaginas. Final report

    International Nuclear Information System (INIS)

    2003-01-01

    In October 1999, the National Energy Strategy was approved by the Lithuanian Parliament. The National Energy Strategy included the decision to close Unit-1 of INPP before 2005. Later is has been decided to close Unit 2 before the end of 2009 as well. The closure and decommissioning will have heavy impact on the heat supply for the city of Visaginas. Unit 1 and Unit 2 of INPP supplies hot water and steam to INPP for process purposes and for space heating of residential and commercial buildings. When Unit 1 is permanently shut down, reliable heat and steam sources independent of the power plants own heat and steam generation facilities are required for safety reasons in the event of shutdown of the remaining unit for maintenance or in an emergency. These steam and heat sources must be operational before single unit operation is envisaged. Provision of a reliable independent heat and steam source is therefore urgent. After both reactors are shut down permanently, a steam source will be needed at the plant for radioactive waste storage and disposal. INPP and DEA has performed a feasibility study for the provision of a reliable heat source for Ignalina Nuclear Power Plant and Visaginas, and the modernisation of Visaginas district heating system. The objective of this project is to prepare technical specifications for the provision of new heat and steam sources for INPP and Visaginas, and for rehabilitation of the heat transmission pipeline between INPP, the back-up boiler station and Visaginas City. The results of the study are presented in detail in the reports and technical specifications: 1. Transient analysis for Visaginas DH system, 2. Non-destructive testing of boiler stations, pump stations and transmission lines, 3. Conceptual design, 4. Technical specifications, Package 1 to 6. The study has suggested: 1. Construction of new steam boiler station, 2. Construction of new heat only boiler station, 3. Renovation of existing back-up heat only boiler station, 4

  19. Mark III LOCA-related hydrodynamic load definition. Generic technical activity B-10. Final report

    International Nuclear Information System (INIS)

    Fields, M.B.; Kudrick, J.A.

    1984-08-01

    This report, prepared by the staff of the Office of Nuclear Reactor Regulation and its consultants at the Brookhaven National Laboratory, provides a discussion of LOCA-related suppression pool hydrodynamic loads in boiling water reactor (BWR) facilities with the Mark III pressure-suppression containment design. Its issuance completes NRC Generic Technical Activity B-10, Behavior of BWR Mark III Containment. On the basis of certain large-scale tests conducted between 1973 and 1979, the General Electric Company developed LOCA-related hydrodynamic load definitions for use in the design of the standard Mark III containment. The staff and its consultants have reviewed these load definitions and their bases and conclude that, with a few specified changes, the proposed load definitions provide conservative loading conditions. The staff approved acceptance criteria for LOCA-related hydrodynamic loads are provided in an appendix

  20. 7th BOC Priestley Conference. Final technical report, May 1, 1994--April 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The 1994 BOC Priestly Conference was held at Bucknell University in Lewisburg, PA, from June 24 through June 27, 1994. This conference, managed by the American Chemical Society (ACS), was a joint celebration with the Royal Society of Chemistry (RSC) commemorating Joseph Priestley`s arrival in the US and his discovery of oxygen. There were 120 attendees. The basic theme of the conference was Oxidants and Oxidation in the Earth`s Atmosphere, with a keynote lecture on the history of ozone. A distinguished group of US and international atmospheric chemists addressed the issues dominating current research and policy agendas. Topics crucial to the atmospheric chemistry of global change and local and regional air pollution were discussed. The program for the conference included four technical sessions on the following topics: Oxidative fate of atmospheric pollutants; Photochemical smog and ozone; Stratospheric ozone; and, Global tropospheric ozone.

  1. Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Rubiolo, Pablo R. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Conway, Lawarence E. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Oriani, Luca [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Lahoda, Edward J. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; DeSilva, Greg [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Hu, Min H. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Hartz, Josh [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Bachrach, Uriel [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Smith, Larry [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Dudek, Daniel F. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Toman, Gary J. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Feng, Dandong [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hejzlar, Pavel [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kazimi, Mujid S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-03-31

    This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a standard 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (~600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output.

  2. Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    Rubiolo, Pablo R.; Conway, Lawarence E.; Oriani, Luca; Lahoda, Edward J.; DeSilva, Greg; Hu, Min H.; Hartz, Josh; Bachrach, Uriel; Smith, Larry; Dudek, Daniel F.; Toman, Gary J.; Feng, Dandong; Hejzlar, Pavel; Kazimi, Mujid S.

    2006-01-01

    This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a ''standard'' 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (∼600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output

  3. Volatile production during preignition heating. Final technical report, 15 September 1980-30 September 1982

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, A.; Chou, H.; Flusberg, A.; Neoh, K.; Orozco, N.; Stickler, D.

    1983-10-01

    Pulverized coal particles, in a flowing inert nitrogen stream, have been heated by high power Carbon Dioxide Laser. The consequence of such an irradiation have proved to be both novel and surprising as a result of the rapid quenching of primary coal products. It ahs been found that the gas phase yield from such heating (typically, temperatures in excess of 1400 K at rates approx. 2 x 10/sup 5/ K/s) is very small (< 0.2 percent of coal carbon and hydrogen). Analysis of the solid residue has shown the presence of fine lacy particulate chains of material of 0.1 ..mu..m diameter, which appears to be soluble in tetrahydrofuran. The yields of solute were significantly much higher than for raw coals. Molecular weight of the solute material was high, being in the range of 600 to 3000. The above and substantiating evidence point to a new mechanism of high heating rate pyrolysis in which only tar-like materials are produced as primary products from the coal. It is hypothesized that gas phase products are primarily the result of secondary reactions of these primary products in the hot gas environments usually employed by other heating techniques.

  4. The chirped-pulse free-electron laser: Final technical report, September 1987--October 1988

    International Nuclear Information System (INIS)

    Moore, G.T.

    1989-01-01

    This is the final report of a theoretical and numerical investigation into the operation of pulsed free-electron lasers in which the electron energy depends on the time of injection into the wiggler. Such energy ''chirping'' over each of a train of electron micropulses injected into an FEL oscillator is expected to give rise to a laser pulse inside the optical resonator with a chirped carrier frequency ω/sub s/(/tau/). 8 refs., 7 figs

  5. 1993-1994 Final technical report for establishing the SECME Model in the District of Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Vickers, R.G.

    1995-12-31

    This is the final report for a program to establish the SECME Model in the District of Columbia. This program has seen the development of a partnership between the District of Columbia Public Schools, the University of the District of Columbia, the Department of Energy, and SECME. This partnership has demonstrated positive achievement in mathematics and science education and learning in students within the District of Columbia.

  6. 'Advancement of KHPS to DOE TRL 7/8' Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Adonizio, Mary Ann [Verdant Power Inc., New York, NY (United States); Corren, Dean [Verdant Power Inc., New York, NY (United States); Smith, Ron [Verdant Power Inc., New York, NY (United States); Colby, Jonathan [Verdant Power Inc., New York, NY (United States); Hernandez, Aaron [Verdant Power Inc., New York, NY (United States)

    2016-04-08

    Final Report describing activities performed under the 'Advancement of the KHPS to DOE TRL 7/8' project, including the development of critical component test protocols, testing and analysis of the Gen5 KHPS main shaft seal, and continuing compliance work on approved operational environmental monitoring plans in anticipation of KHPS turbine installation at Verdant Power's Roosevelt Island Tidal Energy (RITE) Project site in New York, NY.

  7. The Institute for Sustained Performance, Energy, and Resilience, University of North Carolina, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Robert [Univ. of North Carolina, Chapel Hill, NC (United States)

    2018-01-20

    This is the final report for the UNC component of the SciDAD Institute for Sustained Performance, Energy, and Resilience. In this report, we describe activities on the SUPER project at RENCI at the University of North Carolina at Chapel Hill. While we focus particularly on UNC, we touch on project-wide activities as well as, on interactions with, and impacts on, other projects.

  8. 1993-1994 Final technical report for establishing the SECME Model in the District of Columbia

    International Nuclear Information System (INIS)

    Vickers, R.G.

    1995-01-01

    This is the final report for a program to establish the SECME Model in the District of Columbia. This program has seen the development of a partnership between the District of Columbia Public Schools, the University of the District of Columbia, the Department of Energy, and SECME. This partnership has demonstrated positive achievement in mathematics and science education and learning in students within the District of Columbia

  9. Regular Recycling of Wood Ash to Prevent Waste Production (RecAsh). Technical Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars E-mail: lars.t.andersson@skogsstyreslen.se

    2007-03-15

    At present, the extraction of harvest residues is predicted to increase in Sweden and Finland. As an effect of the intensified harvesting, the export of nutrients and acid buffering substances from the growth site is also increased. Wood ash could be used to compensate forest soils for such losses. Most wood fuel ash is today often deposited in landfills. If the wood ash is recycled, wood energy is produced without any significant waste production. Ash recycling would therefore contribute to decreasing the production of waste, and to maintaining the chemical quality of forest waters and biological productivity of forest soils in the long term. The project has developed, analysed and demonstrated two regular ash-recycling systems. It has also distributed knowledge gathered about motives for ash recycling as well as technical and administrative solutions through a range of media (handbooks, workshops, field demonstrations, reports, web page and information videos). Hopefully, the project will contribute to decreasing waste problems related to bio-energy production in the EU at large. The project has been organised as a separate structure at the beneficiary and divided in four geographically defined subprojects, one in Finland and three in Sweden (Central Sweden, Northern Sweden, and South-western Sweden). The work in each subproject has been lead by a subproject leader. Each subproject has organised a regional reference group. A project steering committee has been established consisting of senior officials from all concerned partners. The project had nine main tasks with the following main expected deliverables and output: 1. Development of two complete full-scale ash-recycling systems; 2. Production of handbooks of the ash recycling system; 3. Ash classification study to support national actions for recommendations; 4. Organise regional demonstrations of various technical options for ash treatment and spreading; 5. Organise national seminars and demonstrations of

  10. Final Technical Report for "High Energy Physics at The University of Iowa"

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, Usha; Meurice, Yannick; Nachtman, Jane; Onel, Yasar; Reno, Mary

    2013-07-31

    Particle Physics explores the very fundamental building blocks of our universe: the nature of forces, of space and time. By exploring very energetic collisions of sub-nuclear particles with sophisticated detectors at the colliding beam accelerators (as well as others), experimental particle physicists have established the current theory known as the Standard Model (SM), one of the several theoretical postulates to explain our everyday world. It explains all phenomena known up to a very small fraction of a second after the Big Bang to a high precision; the Higgs boson, discovered recently, was the last of the particle predicted by the SM. However, many other phenomena, like existence of dark energy, dark matter, absence of anti-matter, the parameters in the SM, neutrino masses etc. are not explained by the SM. So, in order to find out what lies beyond the SM, i.e., what conditions at the earliest fractions of the first second of the universe gave rise to the SM, we constructed the Large Hadron Collider (LHC) at CERN after the Tevatron collider at Fermi National Accelerator Laboratory. Each of these projects helped us push the boundary further with new insights as we explore a yet higher energy regime. The experiments are extremely complex, and as we push the boundaries of our existing knowledge, it also requires pushing the boundaries of our technical knowhow. So, not only do we pursue humankind’s most basic intellectual pursuit of knowledge, we help develop technology that benefits today’s highly technical society. Our trained Ph.D. students become experts at fast computing, manipulation of large data volumes and databases, developing cloud computing, fast electronics, advanced detector developments, and complex interfaces in several of these areas. Many of the Particle physics Ph.D.s build their careers at various technology and computing facilities, even financial institutions use some of their skills of simulation and statistical prowess. Additionally, last

  11. Isotopic and trace element characteristics of rhyolites from the Valles Caldera, New Mexico. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Self, S.; Sykes, M.L. [Hawaii Univ., Honolulu, HI (United States). Dept. of Geology and Geophysics; Wolff, J.A. [Texas Univ., Arlington, TX (United States). Dept. of Geology; Skuba, C.E. [McMaster Univ., Hamilton, ON (Canada). Dept. of Geology

    1991-09-01

    This report is a summary of work supported by DOE grant No. DE-FGO5-87ER13795 that was completed or is still in progress. The stated purpose of this grant was to collect geochemical information (trace element, radiogenic isotope and stable oxygen and hydrogen isotope) on samples from core holes VC-I and VC-2a in the Valles caldera in order to establish a consistent detailed intracaldera stratigraphy and relate this to extracaldera volcanic rock units of the Jemez Mountains. Careful stratigraphic control of the intracaldera units is necessary to evaluate models of caldera formation, ignimbrite deposition, and resurgence. Combined stable and radiogenic isotope and trace element data will also provide major insights to petrogenesis of the Bandelier magma system. The composition of non-hydrothermally altered samples from outflow units of the Bandelier Tuff and related volcanics must be known to assess isotopic variations of intracaldera ignimbrite samples. On detailed examination of the VC-2a core samples, it became apparent that hydrothermal alteration is so extensive that no geochemical information useful for stratigraphic fingerprinting or petrogenesis could be obtained, and that correlation with other intracaldera units and extracaldera units must be made on the basis of stratigraphic position and gross lithologic characteristics. Accordingly, we emphasize geochemical data from the extracaldera Bandelier Tuffs and related units which will be useful for comparison with proposed drill hole VC-4 and for any future studies of the region. The stable isotope, radiogenic isotope and trace element data obtained from this project, combined with existing major and trace element data for volcanic rocks from this area, provide an extensive data base essential to future Continental Scientific Drilling Program projects in the Jemez Mountains of New Mexico.

  12. Nuclear interactions of high energy heavy ions and applications in astrophysics. Final technical report

    International Nuclear Information System (INIS)

    Wefel, J.P.; Guzik, T.G.

    1998-01-01

    Projectile fragmentation experiments have been conducted at the LBL Bevalac accelerator, utilizing both the B40 and the HISS facilities, to produce a dataset of 36 beam/energy combinations covering projectiles from 4 He to 58 Ni and various energies from 170--2100 MeV/nucleon. While some runs were subject to beam instabilities, magnet problems or low statistics, there remains a large dataset which is still being analyzed. The results will be used to investigate the physics of the intermediate energy fragmentation process and will find application in the astrophysics of cosmic ray propagation in the galaxy. An overview of the science goals and rationale is followed by presentation of the experimental techniques and apparatus that has been employed. Data analysis, including both detector subsystem and accelerator calibration, is discussed with emphasis on the unique features of the dataset and the analysis problems being addressed. Results from the experiments are presented throughout to illustrate the status of the analysis, e.g., momentum distribution widths. Total, Elemental and Isotopic cross sections from various beam/energy combinations are presented, including the first data on 32 S fragmentation and the complete isotopic fragmentation cross sections for 28 Si interacting in both Carbon and Hydrogen targets. The new results are compared to any existing data and to formulae used to predict unmeasured cross sections. The size and complexity of the dataset and the required detail of the analysis precluded finishing the full analysis under the subject grant. Plans for additional analysis are presented, and these will be carried out in coming years as time and resources permit

  13. Next-Gen3: Sequencing, Modeling, and Advanced Biofuels - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Zengler, Karsten [Univ. of California, San Diego, CA (United States). Dept. of Pediatrics; Palsson, Bernhard [Univ. of California, San Diego, CA (United States). Dept. of Bioengineering; Lewis, Nathan [Univ. of California, San Diego, CA (United States). Dept. of Pediatrics

    2017-12-27

    Successful, scalable implementation of biofuels is dependent on the efficient and near complete utilization of diverse biomass sources. One approach is to utilize the large recalcitrant biomass fraction (or any organic waste stream) through the thermochemical conversion of organic compounds to syngas, a mixture of carbon monoxide (CO), carbon dioxide (CO2), and hydrogen (H2), which can subsequently be metabolized by acetogenic microorganisms to produce next-gen biofuels. The goal of this proposal was to advance the development of the acetogen Clostridium ljungdahlii as a chassis organism for next-gen biofuel production from cheap, renewable sources and to detail the interconnectivity of metabolism, energy conservation, and regulation of acetogens using next-gen sequencing and next-gen modeling. To achieve this goal we determined optimization of carbon and energy utilization through differential translational efficiency in C. ljungdahlii. Furthermore, we reconstructed a next-generation model of all major cellular processes, such as macromolecular synthesis and transcriptional regulation and deployed this model to predicting proteome allocation, overflow metabolism, and metal requirements in this model acetogen. In addition we explored the evolutionary significance of tRNA operon structure using the next-gen model and determined the optimal operon structure for bioproduction. Our study substantially enhanced the knowledgebaase for chemolithoautotrophs and their potential for advanced biofuel production. It provides next-generation modeling capability, offer innovative tools for genome-scale engineering, and provide novel methods to utilize next-generation models for the design of tunable systems that produce commodity chemicals from inexpensive sources.

  14. DOE Chair of Excellence in Environmental Disciplines-Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Kurunganty, Sastry; Loran, Roberto; Roque-Malherbe, Rolando; Hijazi, Yazan; Nieto, Santander; Gomez, Will A.; Duconge, Jose; Cotto, María del C.; Muniz, Carlos; Diaz, Francisco J.; Neira, Carlos F.; Marquez, Francisco; Del Valle, W.; Thommes, M.

    2014-02-19

    The report Massie Chair of Excellence Program at Universidad del Turabo, contract DE-FG02-95EW12610, during the period of 9/29/1995 to 9/29/2011. The initial program aims included development of academic programs in the Environmental Sciences and Engineering, and Research and Development focused initially on environmentally friendly processes and later revised also include: renewable energy and international cooperation. From 1995 -2005, the Program at UT lead the establishment of the new undergraduate program in electrical engineering at the School of Engineering (SoE), worked on requirements to achieve ABET accreditation of the SoE B.S. Mechanical Engineering and B.S. Electrical Engineering programs, mentored junior faculty, taught undergraduate courses in electrical engineering, and revised the electrical engineering curriculum. Engineering undergraduate laboratories were designed and developed. The following research sub-project was developed: Research and development of new perovskite-alumina hydrogen permeable asymmetrical nanostructured membranes for hydrogen purification, and extremely high specific surface area silica materials for hydrogen storage in the form of ammonia, Dr. Rolando Roque-Malherbe Subproject PI, Dr. Santander Nieto and Mr. Will Gómez Research Assistants. In 2006, the Massie Chair of Excellence Program was transferred to the National Nuclear Security Agency, NNSA and DNN. DoE required a revised proposal aligned with the priorities of the Administration. The revised approved program aims included: (1) Research (2) Student Development: promote the development of minority undergraduate and graduate students through research teams, internships, conferences, new courses; and, (3) Support: (a) Research administration and (b) Dissemination through international conferences, the UT Distinguished Lecturer Series in STEM fields and at the annual Universidad del Turabo (UT) Researchers Conference. Research included: Sub-Project 1: Synthesis and

  15. Gastroenterology-Urology Devices; Manual Gastroenterology-Urology Surgical Instruments and Accessories. Final rule; technical amendment.

    Science.gov (United States)

    2017-03-01

    The Food and Drug Administration (FDA) is amending the identification of manual gastroenterology-urology surgical instruments and accessories to reflect that the device does not include specialized surgical instrumentation for use with urogyencologic surgical mesh specifically intended for use as an aid in the insertion, placement, fixation, or anchoring of surgical mesh during urogynecologic procedures ("specialized surgical instrumentation for use with urogynecologic surgical mesh"). These amendments are being made to reflect changes made in the recently issued final reclassification order for specialized surgical instrumentation for use with urogynecologic surgical mesh.

  16. Final technical report for DE-SC00012633 AToM (Advanced Tokamak Modeling)

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Christopher [Univ. of California, San Diego, CA (United States); Orlov, Dmitri [Univ. of California, San Diego, CA (United States); Izzo, Valerie [Univ. of California, San Diego, CA (United States)

    2018-02-05

    This final report for the AToM project documents contributions from University of California, San Diego researchers over the period of 9/1/2014 – 8/31/2017. The primary focus of these efforts was on performing validation studies of core tokamak transport models using the OMFIT framework, including development of OMFIT workflow scripts. Additional work was performed to develop tools for use of the nonlinear magnetohydrodynamics code NIMROD in OMFIT, and its use in the study of runaway electron dynamics in tokamak disruptions.

  17. Medium-energy nuclear physics research. Final technical progress report, May 1, 1971-November 30, 1981

    International Nuclear Information System (INIS)

    Willard, H.B.

    1981-01-01

    Final results are summarized for this program with the primary emphasis on measurement of ten independent parameters for proton-proton elastic scattering at 800 MeV and four independent such parameters at 650 MeV. Inelastic proton-proton reactions have also been measured at 800 MeV. Proton-deuteron elastic scattering cross sections and polarization analyzing powers have been obtained at 800 MeV. Proton-nucleus total and total reaction cross sections were measured at 700 MeV for a number of nuclei. Major instrumentation was designed and constructed to carry out this program

  18. Hollow ceramic block: containment of water for thermal storage in passive solar design. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Winship, C.T.

    1983-12-27

    The project activity has been the development of designs, material compositions and production procedures to manufacture hollow ceramic blocks which contain water (or other heat absorptive liquids). The blocks are designed to serve, in plurality, a dual purpose: as an unobtrusive and efficient thermal storage element, and as a durable and aesthetically appealing surface for floors and walls of passive solar building interiors. Throughout the grant period, numerous ceramic formulas have been tested for their workabilty, thermal properties, maturing temperatures and color. Blocks have been designed to have structural integrity, and textured surfaces. Methods of slip-casting and extrusion have been developed for manufacturing of the blocks. The thermal storage capacity of the water-loaded block has been demonstrated to be 2.25 times greater than that of brick and 2.03 times greater than that of concrete (taking an average of commonly used materials). Although this represents a technical advance in thermal storage, the decorative effects provided by application of the blocks lend them a more significant advantage by reducing constraints on interior design in passive solar architecture.

  19. Final Scientific/Technical Report for Program Title: Solar Powered Dewvaporation Desalination System

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Shashidhar [Polestar Technologies Inc., Needham Heights, MA (United States)

    2017-03-24

    Desalination technologies have been used increasingly throughout the world to produce the drinking water from the brackish ground and sea water for the past few decades. Among the commercially available desalination technologies, reverse osmosis (RO) and multi-stage flash distillation are the most widely used technologies globally. However, these technologies are difficult to be directly integrated with green energies without converting them to electricity. Dewvaporation, a desalination process, uses saturated steam as a carrier-gas to evaporate water from saline feeds and form pure condensate. It has the major technical benefit of reusing energy, released from vapor condensation, multiple times. The current proposal has been planned to address this issue. In Phase I, we have successfully demonstrated the feasibility of a new plasmonic nanoparticle based approach through fabrication and evaluation of a solar powered water vapor generation module. The water vapor generation module allows generation of high temperature plasmon on a fiber bundle end, where strong water and plasmon interaction occurs generating water vapor. Plasmon enhanced water evaporation has been realized on plasmonic nanoparticle immobilized substrate with an energy conversion efficiency of over 50%.

  20. STTR Phase 1 Final Technical Report for Project Entitled "Developing a Mobile Torrefaction Machine"

    Energy Technology Data Exchange (ETDEWEB)

    James, Joseph J. [President, ATP

    2014-03-11

    The goal of this project, sponsored by Agri-Tech Producers, LLC (ATP), the small business grantee, was to determine if the torrefaction technology, developed by North Carolina State University (NCSU), which ATP has licensed, could be feasibly deployed in a mobile unit. The study adds to the area investigated, by having ATP’s STTR Phase I team give thoughtful consideration to how to use NCSU’s technology in a mobile unit. The findings by ATP’s team were that NCSU’s technology would best perform in units 30’ by 80’ (See Spec Sheet for the Torre-Tech 5.0 Unit in the Appendix) and the technical effectiveness and economic feasibility investigation suggested that such units were not easily, efficiently or safely utilized in a forest or farm setting. (Note rendering of possible mobile system in the Appendix) Therefore, the findings by ATP’s team were that NCSU’s technology could not feasibly be deployed as a mobile unit.

  1. Regional analysis of potential energy production from agricultural wastes: technical and economic study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Have, H

    1981-01-01

    The possibilities for utilization of agricultural wastes for energy production are analyzed in two Danish counties, Ringkoebing and Vestsjaelland, which have different agricultural production patterns. The quantitative analysis shows that the major waste products, surplus straw, waste wood and animal waste, in total with present technique can cover about 28% of the demand for heat energy (mostly space heating) in both counties. The potential coverage from straw, wood and animal waste is about 3, 3 and 22% in Ringkoebing and 18, 2 and 8% in Vestsjaelland respectively. A technical analysis indicates that direct combustion is the most favorable conversion method for straw and wood while biological conversion at present is best suited for animal waste. An economic analysis based on costs of collection, storage, transport and conversion of wastes and costs of corresponding oil and oil conversion were made. From a community point of view only straw and wood are found to be competitive to the expensive gas fuel oil when burned in automatically stoked furnaces. From a heating station point of view waste utilization is more attractive because of the sales tax on oil products. Here straw and wood are competitive fuels to both gas and heavy fuel oil in all the analyzed systems except from the small manually stoked furnaces. Animal waste seems to be competitive only when replacing gas fuel oil in medium size (500 kW) well utilized aerobic fermenters.

  2. An innovative fuel design concept for improved light water reactor performance and safety. Final technical report

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Connell, R.G.

    1995-07-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. The purpose of this research was to explore a technique for extending fuel performance by thermally bonding LWR fuel with a non-alkaline liquid metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide (UO 2 ) fuel pellets enclosed in a zirconium alloy cylindrical clad. The space between the pellets and the clad is filled by an inert gas. Due to the thermal conductivity of the gas, the gas space thermally insulates the fuel pellets from the reactor coolant outside the fuel rod, elevating the fuel temperatures. Filling the gap between the fuel and clad with a high conductivity liquid metal thermally bonds the fuel to the cladding, and eliminates the large temperature change across the gap, while preserving the expansion and pellet loading capabilities. The resultant lower fuel temperature directly impacts fuel performance limit margins and also core transient performance. The application of liquid bonding techniques to LWR fuel was explored for the purposes of increasing LWR fuel performance and safety. A modified version of the ESCORE fuel performance code (ESBOND) has been developed under the program to analyze the in-reactor performance of the liquid metal bonded fuel. An assessment of the technical feasibility of this concept for LWR fuel is presented, including the results of research into materials compatibility testing and the predicted lifetime performance of Liquid Metal Bonded LWR fuel

  3. National Solar Radiation Data Base, Vol. 2 - Final Technical Report (1961-1990)

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, E. L.; Marion, W.; Myers, D.; Rymes, M.; Wilcox, S.

    1995-01-01

    This technical report explains the procedures used during the 4-year production of the National Solar Radiation Data Base (NSRDB) (1961-1990). It is the second volume in a two-volume report on the NSRDB. The first volume, User's Guide-National Solar Radiation Data Base, provides the information needed to use the data base products. Volume 2 concentrates on results from the R&D required to producea solar radiation data base that would represent a significant update of a previous data base (SOLMET). More than 90% of the data in the NSRDB were estimated using a model--the Meteorological/Statistical (METSTAT) model. Much of Volume 2 concerns the METSTAT model and the sources of its input data. In addition, it contains results of comparisons of the NSRBD with the previous SOLMET data base.Results of the model evaluations and data base comparisons favor the use of NSRDB data over SOLMET data to select optimum sites and estimate performance for solar energy systems. The report noted that to improve data on solar radiation, 'measured' data need to become the mainstav of future data bases.

  4. Final Technical Report: Thermoelectric-Enhanced Cookstove Add-on (TECA) for Clean Biomass Cookstoves

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, David [RTI International, Research Triangle Park, NC (United States)

    2015-09-29

    This program seeks to demonstrate a solution to enhance existing biomass cookstove performance through the use of RTI’s Thermoelectric Enhanced Cookstove Add-on (TECA) device. The self-powered TECA device captures a portion of heat from the stove and converts it to electricity through a thermoelectric (TE) device to power a blower. Colorado State University and Envirofit International are partners to support the air injection design and commercialization to enhance combustion in the stove and reduce emissions. Relevance: By demonstrating a proof of concept of the approach with the Envirofit M-5000 stove and TECA device, we hope to apply this technology to existing stoves that are already in use and reduce emissions for stoves that have already found user acceptance to provide a true health benefit. Challenges: The technical challenges include achieving Tier 4 emissions from a biomass stove and for such a stove to operate reliably in the harsh field environment. Additional challenges include the fact that it is difficult to develop a cost effective solution and insure adoption and proper use in the field. Outcomes: In this program we have demonstrated PM emissions at 82 mg/MJd, a 70% reduction as compared to baseline stove operation. We have also developed a stove optimization approach that reduces the number of costly experiments. We have evaluated component-level reliability and will be testing the stove prototype in the field for performance and reliability.

  5. Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum

    Energy Technology Data Exchange (ETDEWEB)

    Walton, W.C.; Voorhees, M.L.; Prickett, T.A.

    1980-05-23

    This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive.

  6. Final Technical Report: "New Tools for Physics with Low-energy Antimatter"

    Energy Technology Data Exchange (ETDEWEB)

    Surko, Clifford M. [U. C. San Diego

    2013-10-02

    The objective of this research is to develop new tools to manipulate antimatter plasmas and to tailor them for specific scientific and technical uses. The work has two specific objectives. One is establishing the limits for positron accumulation and confinement in the form of single-component plasmas in Penning-Malmberg traps. This technique underpins a wealth of antimatter applications. A second objective is to develop an understanding of the limits for formation of cold, bright positron beams. The research done in this grant focused on particular facets of these goals. One focus was extracting tailored beams from a high-field Penning-Malmberg trap from the magnetic field to form new kinds of high-quality electrostatic beams. A second goal was to develop the technology for colder trap-based beams using a cryogenically cooled buffer gas. A third objective was to conduct the basic plasma research to develop a new high-capacity multicell trap (MCT) for research with antimatter. Progress is reported here in all three areas. While the goal of this research is to develop new tools for manipulating positrons (i.e., the antiparticles of electrons), much of the work was done with test electron plasmas for increased data rate. Some of the techniques developed in the course of this work are also relevant to the manipulation and use of antiprotons.

  7. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1996-01-01

    Much of the US Department of Energy's (DOE's) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL's main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers

  8. Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum

    International Nuclear Information System (INIS)

    Walton, W.C.; Voorhees, M.L.; Prickett, T.A.

    1980-01-01

    This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive

  9. Technical assistance for an evaluation of international schemes to promote biomass sustainability. Final report

    International Nuclear Information System (INIS)

    Londo, M.

    2009-12-01

    In this technical assistance report to the title subject report is given of Task 1: Review of GREEN-X assumptions on biomass availability and costs; Task 2: Impacts of sustainability criteria on biomass availability and costs; Task 3: Applicability of existing certification schemes; Task 4: Identification of feasible verification options; and Task 5: summary, integration. The key objective of Task 1 is to validate the present and future availability (up to 2020) and costs of biomass energy in the EU 27. The GREEN-X model forecasts the deployment of renewable energy systems under various scenarios in terms of supporting policy instruments, the availability of resources and generation technologies and energy, technology and resource price developments. Objective of task 2 is to assess to what extent the sustainability criteria as specified in the Renewable Energy Directive (RED (EP/EC 2009)) affect availability and costs of biofuels. The objective of task 3 is to assess to what extent national and international certification schemes (existing and under development) would be applicable for safeguarding the sustainability criteria as mentioned in the Renewable Energy Sources (RES) directive. The objective of Task 4 is to identify and analyse feasible options to verify compliance with biomass sustainability criteria, in the case of forest biomass.

  10. Research in Hydrogen Passivation of Defects and Impurities in Silicon: Final Report, 2 May 2000-2 July 2003

    International Nuclear Information System (INIS)

    Ashok, S.

    2004-01-01

    This subcontract report describes hydrogenating Si samples by different methods such as low-energy implantation, electron cyclotron resonance (ECR) plasma, and thermal diffusion. The samples were provided through NREL. The experimental work, carried out at Penn State, involved the study of hydrogen interaction with defects, trapping, migration, and formation of complexes. The principal vehicle for the latter study was ion implantation, and the intent to understand mechanisms of defect passivation and activation by hydrogen. NREL implemented a study of hydrogen passivation of impurities and defects in silicon solar cells. The work included theoretical and experimental components performed at different universities. The theoretical studies consisted of the calculation of the structure and parameters related to hydrogen diffusion and interactions of hydrogen with transition-metal impurities in silicon. Experimental studies involved measurements of hydrogen and hydrogen-impurity complexes, and diffusion properties of various species of hydrogen in Si. The experimental work at Penn State included introduction of hydrogen in a variety of PV Si by ECR plasma, low-energy ion implantation, and thermal diffusion. The specific tasks were the evaluation of hydrogen interaction with defects engineered by ion implantation; defect passivation, activation, and migration in hydrogenated Si under thermal anneal; and electrical activity of hydrogen-impurity complexes. Electrical characterization entailed I-V and C-V measurements, spreading resistance, and deep-level transient spectroscopy (DLTS)

  11. Final Technical Report Project: Low-Energy Photonuclear Studies at HIGS and Lund

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Gerald [George Washington Univ., Washington, DC (United States)

    2017-06-15

    electric and magnetic polarizabilities of the nucleon, and we will ultimately extend these studies to the investigation of the spin polarizabilities. To accomplish these objectives, a liquid hydrogen/deuterium/helium cryotarget has been constructed at HIGS, and an array of NaI detectors has been commissioned for Compton studies.

  12. Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555

    Energy Technology Data Exchange (ETDEWEB)

    Bowman-James, Kristin [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemistry

    2017-04-13

    the pyrazine π system. Additionally appendages capable of influencing solvation effects can be introduced, and a number of other potential applications can be realized in areas such as soft materials chemistry, catalysis, sensing, and proton switches, the latter for binding and release of targeted guests. These findings provide a better foundation for understanding the selective binding of anions by targeted placement of hydrogen binding sites, and the strengths and weaknesses of various functional groups, that will allow for more the design of more effective anion sequestering agents. Our design strategy also used simple, cost-effective building blocks for host synthesis to allow for scale-up should real-world applications be forthcoming.

  13. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-30

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  14. Safety-technical characteristics of biomass, coal and straw. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Rautalin, A.

    1995-12-31

    Safety-technical factors related to spontaneous ignition and dust explosions of biomasses were investigated. Parametres of dust explosions and effect of inertisation on the maximum pressure (pmax) and the maximum rate of pressure rise (Kstmax) were studied at elevated initial pressure (1-9 bar). The level of inertisation required to prevent dust explosions totally was determined at different initial pressures. The sensitivity of fuels to spontaneous ignition and the effect of pressure on the sensitivity to and temperature of spontaneous ignition were studied on a pressurised dynamic self-ignition equipment. The effect of inertisation on the self-ignition temperature and alternatives of preventing spontaneous ignition by effective inertisation in the pressure ranges of 1 and 25 bar were investigated. As an example of application, results obtained with the laboratory test equipment were extrapolated to bin sizes used in practice. As a factor contributing to spontaneous ignition, the flowability of different fuels in bins and lock-hoppers (stagnant fuel layers are especially sensitive to spontaneous ignition) in continuous flow and in flow stopped for a storage time of 1 hour was also studied. Walker`s rotating ring shear equipment and Jenike`s linear shear equipment based on shearing the fuel were used in the flowability measurements. The effect of fuel temperature (22 deg C, 40 deg C) on flowability was determined for forest residue chips. Dynamic friction coefficients between fuels and handling equipment were determined for stainless steel and rusty metal surface. As an example of application, results obtained with laboratory test equipment were extrapolated to a bin size of 21 m{sup 3} by calculating the size of the minimum discharge opening required by mass flow of different coals and forest residue chips and the minimum angle of repose of the conical part for a bin of stainless steel

  15. Technical program plan for the transitioning, decommissioning, and final disposition focus area

    International Nuclear Information System (INIS)

    1994-01-01

    The end of the Cold War and the decision to reduce the size of the nuclear weapons production complex have created a need for DOE to deactivate, decontaminate, and decommission (D ampersand D) a large number of aging, surplus facilities. The nature and magnitude of the facility D ampersand D problems require EM to facilitate the development and application of technologies that will address these problems quickly and cost-effectively. The needed technologies can best be provided by integrating the strengths of DOE's national laboratories with those of industry, universities, and other government agencies. To help focus and direct these activities toward achieving DOE's goals, the EM Office of Technology Development (OTD) devised the strategic concept of an Integrated Demonstration (ID), which involves selecting, demonstrating, testing, and evaluating an integrated set of technologies tailored to provide a complete solution to specific EM problems, such as those posed by D ampersand D. The ID approach allows optimal use of DOE's resources by avoiding duplication of effort and ensuring rapid demonstration of applicable technologies. Many technologies, including both the commercially mature and the innovative, are combined and evaluated for a cradle-to-grave solution to specific EM problems in areas such as D ampersand D. The process will involve transforming an existing problem condition to a desired end state, recycling waste materials generated, wherever feasible, and minimizing requirements for waste disposal. The D ampersand D ID Strategic Plan has been prepared by a Technical Support Group (TSG) assembled from various sites within the DOE Complex and intended to identify cross-cutting problem areas amenable to applications of the D ampersand D ID concept and to develop specific ID proposals for these problem areas

  16. Microalgae as a source of liquid fuels. Final technical report. [200 references

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R.; Goebel, R.P.; Weissman, J.C.; Augenstein, D.C.

    1982-05-15

    The economics of liquid-fuels production from microalgae was evaluated. A detailed review of published economic analyses of microalgae biomass production revealed wide variations in the published costs, which ranged from several dollars per pound for existing commercial health-food production in the Far East, to less than .05/lb costs projected for microalgae biomass for fuel conversion. As little design information or specific cost data has been published, a credible cost estimate required the conceptual engineering design and cost estimating of microalgae to liquid-fuels processes. Two systems were analyzed, shallow (2 to 3'') covered ponds and deeper (1 ft) open ponds. Only the latter was selected for an in-depth analysis due to the many technical shortcomings of the former approach. Based on the cost analysis of a very simple and low cost process, the most optimistic costs extrapolated were about $60/barrel. These were based on many optimistic assumptions. Additional, more detailed, engieering and cost analyses would be useful. However, the major emphasis in future work in this area should be on demonstrating the basic premises on which this design was based: high productivity and oil content of microalgae strains that can dominate in open ponds and which can be harvested by a simple bioflocculation process. Several specific basic research needs were identified: (1) Fundamentals of species selection and control in open pond systems. Effects of environmental variables on species dominance is of particular interest. (2) Mechanisms of algae bioflocculation. (3) Photosynthetic pathways and efficiency under conditions of high lipid production. (4) Effects of non-steady state operating conditions, particularly pH (CO/sub 2/ availability), on productivity. 18 figures, 47 tables.

  17. Improving measurement quality assurance for photon irradiations at Department of Energy facilities. Final technical report

    International Nuclear Information System (INIS)

    1996-01-01

    For radiation-instrument calibration to be generally acceptable throughout the US, direct or indirect traceability to a primary standard is required. In most instances, one of the primary standards established at NIST is employed for this purpose. The Department of Energy Laboratory Accreditation Program (DOELAP) is an example of a program employing dosimetry based on the NIST primary photon-, beta particle- and neutron-dosimetry standards. The NIST primary dosimetry standards for bremsstrahlung were first established in the 1950s. They have been updated since then on several occasions. In the 1970s, Technical Committee 85 of the International Standards Organization (ISO) started its work on establishing sets of internationally acceptable, well-characterized photon beams for the calibration of radiation-protection instruments. It is the intent of this paper to make a detailed comparison between the current NIST and the most up-to-date ISO techniques. At present, 41 bremsstrahlung techniques are specified in ISO 4037 while NIST supports a total of 32 techniques. Given the existing equivalences, it makes sense to try to extend the NIST techniques to cover more of the ISO Narrow Spectrum and High Air-Kerma Rate Series. These extensions will also allow the possibility for use of ISO beam techniques in future revisions of the DOELAP standard, which has been suggested by DOE. To this end, NIST was funded by DOE to procure material and make adaptations to the existing NIST x-ray calibration ranges to allow NIST to have the capability of producing all the ISO bremsstrahlung techniques. The following sections describe the steps that were taken to achieve this

  18. Safety-technical characteristics of biomass, coal and straw. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C; Rautalin, A

    1996-12-31

    Safety-technical factors related to spontaneous ignition and dust explosions of biomasses were investigated. Parametres of dust explosions and effect of inertisation on the maximum pressure (pmax) and the maximum rate of pressure rise (Kstmax) were studied at elevated initial pressure (1-9 bar). The level of inertisation required to prevent dust explosions totally was determined at different initial pressures. The sensitivity of fuels to spontaneous ignition and the effect of pressure on the sensitivity to and temperature of spontaneous ignition were studied on a pressurised dynamic self-ignition equipment. The effect of inertisation on the self-ignition temperature and alternatives of preventing spontaneous ignition by effective inertisation in the pressure ranges of 1 and 25 bar were investigated. As an example of application, results obtained with the laboratory test equipment were extrapolated to bin sizes used in practice. As a factor contributing to spontaneous ignition, the flowability of different fuels in bins and lock-hoppers (stagnant fuel layers are especially sensitive to spontaneous ignition) in continuous flow and in flow stopped for a storage time of 1 hour was also studied. Walker`s rotating ring shear equipment and Jenike`s linear shear equipment based on shearing the fuel were used in the flowability measurements. The effect of fuel temperature (22 deg C, 40 deg C) on flowability was determined for forest residue chips. Dynamic friction coefficients between fuels and handling equipment were determined for stainless steel and rusty metal surface. As an example of application, results obtained with laboratory test equipment were extrapolated to a bin size of 21 m{sup 3} by calculating the size of the minimum discharge opening required by mass flow of different coals and forest residue chips and the minimum angle of repose of the conical part for a bin of stainless steel

  19. Final Technical Report - Advanced Optical Sensors to Minimize Energy Consumption in Polymer Extrusion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Susan J. Foulk

    2012-07-24

    Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systems are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and

  20. Technical Report (Final): Development of Solid State Reagents for Preparing Radiolabeled Imaging Agents

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, George W

    2011-05-20

    The goal of this research was on the development of new, rapid, and efficient synthetic methods for incorporating short-lived radionuclides into agents of use in measuring dynamic processes. The initial project period (Year 1) was focused on the preparation of stable, solid state precursors that could be used to efficiently incorporate short-lived radioisotopes into small molecules of use in biological applications (environmental, plant, and animal). The investigation included development and evaluation of new methods for preparing carbon-carbon and carbon-halogen bonds for use in constructing the substrates to be radiolabeled. The second phase (Year 2) was focused on developing isotope incorporation techniques using the stable, boronated polymeric precursors. The final phase (Year 3), was focused on the preparation of specific radiolabeled agents and evaluation of their biodistribution using micro-PET and micro-SPECT. In addition, we began the development of a new series of polymeric borane reagents based on polyethylene glycol backbones.

  1. Technical area status report for low-level mixed waste final waste forms

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Huebner, T.L.; Ross, W.; Nakaoka, R.; Schumacher, R.; Cunnane, J.; Singh, D.; Darnell, R.; Greenhalgh, W.

    1993-08-01

    This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available

  2. Final Scientific/Technical Report Carbon Capture and Storage Training Northwest - CCSTNW

    Energy Technology Data Exchange (ETDEWEB)

    Workman, James

    2013-09-30

    This report details the activities of the Carbon Capture and Storage Training Northwest (CCSTNW) program 2009 to 2013. The CCSTNW created, implemented, and provided Carbon Capture and Storage (CCS) training over the period of the program. With the assistance of an expert advisory board, CCSTNW created curriculum and conducted three short courses, more than three lectures, two symposiums, and a final conference. The program was conducted in five phases; 1) organization, gap analysis, and form advisory board; 2) develop list serves, website, and tech alerts; 3) training needs survey; 4) conduct lectures, courses, symposiums, and a conference; 5) evaluation surveys and course evaluations. This program was conducted jointly by Environmental Outreach and Stewardship Alliance (dba. Northwest Environmental Training Center – NWETC) and Pacific Northwest National Laboratories (PNNL).

  3. DOE SBIR Phase II Final Technical Report - Assessing Climate Change Effects on Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, Cameron [Vertum Partners LP, Los Angeles, CA (United States); Capps, Scott [Vertum Partners LP, Los Angeles, CA (United States)

    2014-11-05

    Specialized Vertum Partners software tools were prototyped, tested and commercialized to allow wind energy stakeholders to assess the uncertainties of climate change on wind power production and distribution. This project resulted in three commercially proven products and a marketing tool. The first was a Weather Research and Forecasting Model (WRF) based resource evaluation system. The second was a web-based service providing global 10m wind data from multiple sources to wind industry subscription customers. The third product addressed the needs of our utility clients looking at climate change effects on electricity distribution. For this we collaborated on the Santa Ana Wildfire Threat Index (SAWTi), which was released publicly last quarter. Finally to promote these products and educate potential users we released “Gust or Bust”, a graphic-novel styled marketing publication.

  4. Sensor guided control and navigation with intelligent machines. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Bijoy K.

    2001-03-26

    This item constitutes the final report on ''Visionics: An integrated approach to analysis and design of intelligent machines.'' The report discusses dynamical systems approach to problems in robust control of possibly time-varying linear systems, problems in vision and visually guided control, and, finally, applications of these control techniques to intelligent navigation with a mobile platform. Robust design of a controller for a time-varying system essentially deals with the problem of synthesizing a controller that can adapt to sudden changes in the parameters of the plant and can maintain stability. The approach presented is to design a compensator that simultaneously stabilizes each and every possible mode of the plant as the parameters undergo sudden and unexpected changes. Such changes can in fact be detected by a visual sensor and, hence, visually guided control problems are studied as a natural consequence. The problem here is to detect parameters of the plant and maintain st ability in the closed loop using a ccd camera as a sensor. The main result discussed in the report is the role of perspective systems theory that was developed in order to analyze such a detection and control problem. The robust control algorithms and the visually guided control algorithms are applied in the context of a PUMA 560 robot arm control where the goal is to visually locate a moving part on a mobile turntable. Such problems are of paramount importance in manufacturing with a certain lack of structure. Sensor guided control problems are extended to problems in robot navigation using a NOMADIC mobile platform with a ccd and a laser range finder as sensors. The localization and map building problems are studied with the objective of navigation in an unstructured terrain.

  5. Recovery Act: Alpena Biorefinery and Alpena Biorefinery Lignin Separation Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Retsina, Theodora [American Process Inc., Atlanta, GA (United States)

    2016-12-19

    The Alpena Biorefinery (AB) was constructed in Alpena, Michigan, at the Decorative Panels International hardboard manufacturing facility. The goal of the AB was to demonstrate a modular, technically successful, and financially viable process of making cellulosic ethanol from woody biomass extract at wood processing facilities. At full capacity, the AB can produce 894,200 gallons per year of cellulosic ethanol and 696,000 gallons per year of aqueous potassium acetate, using extract from northern hardwood and aspen woodchips feedstock. The project objectives and the value proposition of AB promote the national goals of energy independence, greenhouse gas reduction, and green job creation and retention. A successful outcome of the Alpena Biorefinery project has been commercial sales of the first ever cellulosic ethanol RINS generated from woody biomass in the US, under the EPA’s Renewable Fuels Standard Program. We believe that American Process is also likely the first company in the world to produce commercial quantities of cellulosic ethanol from mixed forest residue. Life Cycle Analysis performed by Michigan Institute of Technology found that the entire life cycle greenhouse gas emissions from the plant’s cellulosic ethanol were only 25 percent that of petroleum-based gasoline. They found the potassium acetate runway de-icer coproduct generates up to 45 percent less greenhouse gases than the production of conventional potassium acetate. The Alpena Biorefinery project created 31 permanent jobs for direct employees and helped retain 200 jobs associated with the existing Decorative Panels International facility, by increasing its economic viability through significant savings in waste water treatment costs. The AB project has been declared a Michigan Center of Energy Excellence and was awarded a $4 million State of Michigan grant. The project also received New Market Tax Credit financing for locating in an economically distressed community. All other equity funds

  6. Exascale Virtualized and Programmable Distributed Cyber Resource Control: Final Scientific Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, S.J.Ben [Univ. of California, Davis, CA (United States); Lauer, Gregory S. [Raytheon BBN Technologies, Minneapolis, MN (United States)

    2016-09-30

    file transfers within a single domain. Adding support for IP traffic changes the nature of the RSA problem: instead of choosing to accept or deny each request for network support, IP traffic is inherently elastic and thus lends itself to a bandwidth maximization formulation. We developed a number of algorithms that could be easily deployed within existing and new FlexGrid networks, leading to networks that better support scientific collaboration. Cross-domain RSA research is essential to support large-scale FlexGrid networks, since configuration information is generally not shared or coordinated across domains. The results presented here are in their early stages. They are technically feasible and practical, but still require coordination among organizations and equipment owners and a higher-layer framework for managing network requests.

  7. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks

  8. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Laura [Lockheed Martin, Manassas, VA (United States); Smith, Paul [John Halkyard and Associates: Glosten Associates, Houston, TX (United States); Rizea, Steven [Makai Ocean Engineering, Waimanalo, HI (United States); Van Ryzin, Joe [Makai Ocean Engineering, Waimanalo, HI (United States); Morgan, Charles [Planning Solutions, Inc., Vancouver, WA (United States); Noland, Gary [G. Noland and Associates, Inc., Pleasanton, CA (United States); Pavlosky, Rick [Lockheed Martin, Manassas, VA (United States); Thomas, Michael [Lockheed Martin, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates: Glosten Associates, Houston, TX (United States)

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  9. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig W

    2012-11-16

    others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

  10. Phase 1 Final Technical Report - MgB2 Synthesis: Pushing to High Field Performance

    International Nuclear Information System (INIS)

    Bhatia, Mohit; McIntyre, Peter

    2009-01-01

    crystalline boron results in the formation of parasitic phases such as MgB4, MgB7, etc. Such parasitic phases are a primary element of the connectivity problem, in which even though a sample powder may contain grains of high-quality MgB2, adjacent grains are surrounded by intergrowths of parasitic phases so that current trans-port is badly degraded. The best results to date have been obtained using boron powder produced long ago for a rocket propellant development project. The synthesis process was complex and is now largely lost, and the manufacturing equipment has long since been scrapped. The last batch of the powder has been used during recent years to support MgB2 R and D at several labs, but supplies are dwindling. ATC has identified a first application of its plasma torch to synthesize phase-pure amorphous boron flake using a rapid-quench splat technique. Inexpensive technical-grade boron would be purified of contaminants, then dispersed as an aerosol in inert gas and passed through the plasma torch to melt it into a spray. The spray would be splat-condensed on a rotating drum to form pure amorphous flake. The process would begin with technical-grade boron powder, having good stoichiometric purity, nanoscale particles, but significant contamination of MgO and crystalline boron. We used wet chemistry to remove B2O3 completely and reduced the MgO impurity, and analyzed the particle size distribution using a Coulter counter and the phase composition using X-ray diffrac-tion (XRD). The next step will be to build an rf plasma torch with a recirculating single-component aerosol feed and the cooled splat drum and collector, and undertake process devel-opment for amorphous boron powder. This revised goal has two benefits. First, it is an easier technology than our ultimate goal of a multi-component laminar flow torch. We have been counseled by those experienced in plasma torch technology that our ultimate goal will require a torch that should be feasible but has never been

  11. [Superferric Super Collider R and D Collaboration]: Final technical report: Volume 1

    International Nuclear Information System (INIS)

    Huson, F.R.

    1987-07-01

    The idea of using a superferric magnet for a large accelerator such as the SSC arises from three considerations: Low Current. If the field is dominated by the iron, then the current is minimized. Forces and stored energy are lower by an order of magnitude than coil dominated magnets. Persistent currents and field errors due to coil placement are negligible; Simple and Reliable. Since the current is low and the number of turns is 8, the magnets are much simpler to construct and easier to operate. Reliability should be very good; and Inexpensive. The dominant cost of a superconducting magnet is the superconductor. The total cost of superconductor is directly proportional to the ampere-turns. Superferric magnets have 1/4 or less total pounds of superconductor than the 5 or 6.5 T magnets. This report describes a design of a superferric magnet that satisfies the three previous conditions. The first section of the report discusses a lattice that is designed for this magnet. The body of the report discusses the design, construction, assembly and installation of the magnets. The cryogenic section describes a complete system including cooldown, warm-up, steady state and quenches. The power supply is described with the quench detection and response system. Finally, the instrumentation is discussed

  12. Use on non-conjugate prior distributions in compound failure models. Final technical report

    International Nuclear Information System (INIS)

    Shultis, J.K.; Johnson, D.E.; Milliken, G.A.; Eckhoff, N.D.

    1981-12-01

    Several theoretical and computational techniques are presented for compound failure models in which the failure rate or failure probability for a class of components is considered to be a random variable. Both the failure-on-demand and failure-rate situation are considered. Ten different prior families are presented for describing the variation or uncertainty of the failure parameter. Methods considered for estimating values for the prior parameters from a given set of failure data are (1) matching data moments to those of the prior distribution, (2) matching data moments to those of the compound marginal distribution, and (3) the marginal maximum likelihood method. Numerical methods for computing the parameter estimators for all ten prior families are presented, as well as methods for obtaining estimates of the variances and covariance of the parameter estimators, it is shown that various confidence, probability, and tolerance intervals can be evaluated. Finally, to test the resulting failure models against the given failure data, generalized chi-squage and Kolmogorov-Smirnov goodness-of-fit tests are proposed together with a test to eliminate outliers from the failure data. Computer codes based on the results presented here have been prepared and are presented in a companion report

  13. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, Amitava [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2017-04-06

    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study these processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.

  14. Final Technical Report: Imaging a Dry Storage Cask with Cosmic Ray Muons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haori; Hayward, Jason; Can, Liao; Liu, Zhengzhi

    2018-03-31

    The goal of this project is to build a scaled prototype system for monitoring used nuclear fuel (UNF) dry storage casks (DSCs) through cosmic ray muon imaging. Such a system will have the capability of verifying the content inside a DSC without opening it. Because of the growth of the nuclear power industry in the U.S. and the policy decision to ban reprocessing of commercial UNF, the used fuel inventory at commercial reactor sites has been increasing. Currently, UNF needs to be moved to independent spent fuel storage installations (ISFSIs), as its inventory approaches the limit on capacity of on-site wet storage. Thereafter, the fuel will be placed in shipping containers to be transferred to a final disposal site. The ISFSIs were initially licensed as temporary facilities for ~20-yr periods. Given the cancellation of the Yucca mountain project and no clear path forward, extended dry-cask storage (~100 yr.) at ISFSIs is very likely. From the point of view of nuclear material protection, accountability and control technologies (MPACT) campaign, it is important to ensure that special nuclear material (SNM) in UNF is not stolen or diverted from civilian facilities for other use during the extended storage.

  15. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, Kenneth [Impact Technologies LLC, Tulsa, OK (United States); Woskov, Paul [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Einstein, Herbert [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Livesay, Bill [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2014-12-30

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be

  16. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15

    help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Results from these efforts are helping to inform Hawaiian utilities continue to Transform infrastructure, Incorporate renewable considerations and priorities into new processes/procedures, and Demonstrate the technical effectiveness and feasibility of new technologies to shape our pathways forward. Lessons learned and experience captured as part of this effort will hopefully provide practical guidance for others embarking on major legacy infrastructure transformations and renewable integration projects.

  17. Knowledge Boosting Curriculum for New Wind Industry Professionals Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Ruth H; Rogers, Anthony L

    2012-12-18

    DNV Renewables (USA) Inc. (DNV KEMA) received a grant from the U.S. Department of Energy (DOE) to develop the curriculum for a series of short courses intended to address Topic Area 5 Workforce Development, one of the focus areas to achieve the goals outlined in 20% Wind by 2030: Increasing Wind Energy's Contribution to Electricity Supply. The aim of the curriculum development project was to provide material for instructors to use in a training program to help professionals transition into careers in wind energy. Under this grant DNV KEMA established a knowledge boosting program for the wind energy industry with the following objectives: 1. Develop technical training curricula and teaching materials for six key topic areas that can be implemented in a flexible format by a knowledgeable instructor. The topic areas form a foundation that can be leveraged for subsequent, more detailed learning modules (not developed in this program). 2. Develop an implementation guidance document to accompany the curricula outlining key learning objectives, implementation methods, and guidance for utilizing the curricula. This curriculum is intended to provide experienced trainers course material that can be used to provide course participants with a basic background in wind energy and wind project development. The curriculum addresses all aspects of developing a wind project, that when implemented can be put to use immediately, making the participant an asset to U.S. wind industry employers. The curriculum is comprised of six short modules, together equivalent in level of content to a one-semester college-level course. The student who completes all six modules should be able to understand on a basic level what is required to develop a wind project, speak with a reasonable level of confidence about such topics as wind resource assessment, energy assessment, turbine technology and project economics, and contribute to the analysis and review of project information. The content of

  18. Fundamental studies of the chemical vapor deposition of diamond. Final technical report, April 1, 1988--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Nix, W.D.

    1995-05-01

    We submit here a final technical report for the research program entitled: Fundamental Studies of the Chemical Vapor Deposition of Diamond, DOE Grant No. DE-FG05-88ER45345-M006. This research program was initiated in 1988 under the direction of the late Professor David A. Stevenson and was renewed in 1992. Unfortunately, at the end of 1992, just as the last phase of this work was getting underway, Professor Stevenson learned that he had developed mesothelioma, a form of cancer based on asbestos. Professor Stevenson died from that disease in February of 1994. Professor William D. Nix, the Chairman of the Materials Science department at Stanford was named the Principal Investigator. Professor Nix has assembled this final technical report. Much of the work of this grant was conducted by Mr. Paul Dennig, a graduate student who will receive his Ph.D. degree from Stanford in a few months. His research findings are described in the chapters of this report and in the papers published over the past few years. The main discovery of this work was that surface topology plays a crucial role in the nucleation of diamond on silicon. Dennig and his collaborators demonstrated this by showing that diamond nucleates preferentially at the tips of asperities on a silicon surface rather than in the re-entrant comers at the base of such asperities. Some of the possible reasons for this effect are described in this report. The published papers listed on the next page of this report also describe this research. Interested persons can obtain copies of these papers from Professor Nix at Stanford. A full account of all of the research results obtained in this work is given in the regular chapters that follow this brief introduction. In addition, interested readers will want to consult Mr. Dennig`s Ph.D. dissertation when it is made available later this year.

  19. Enzymology of acetone-butanol-isopropanol formation. Final technical report, June 1, 1985--July 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiann-Shin

    1998-03-01

    Several species of anaerobic bacteria within the genus Clostridium produce acetone, n-butanol, and isopropanol (solvents), which are important industrial chemicals and fuel additives. Commercial production of solvents by the clostridia is a classical example of largescale chemical production by bacterial fermentation. Although the fermentation has been in use for decades, it still faces problems that include strain degeneration, a relatively low final product concentration due to butanol toxicity, and a need to fine-tune the growth conditions to achieve a high yield. The long-term goal of this project was to understand the fundamental properties of bacterial solvent production for the purpose of achieving a positive control on the metabolic switch leading to solvent production and on the proportion of useful products formed as well as of developing strategies for preventing the degeneration of producing strains. The objectives for the project included those approved in 1985 for the initial project period and those approved in 1988, 1991, and 1994 when the project was renewed. The objectives for the entire project period may be summarized as (1) To purify and characterize the enzymes that are specifically required for the formation of acetone, butanol, and isopropanol by the clostridia, (2) To clone and characterize the genes that encode enzymes or regulatory proteins for the production of solvents, and the emphasis was to determine the control mechanism for the transcription of the solvent-production genes, (3) To characterize the onset of solvent production and the intra- and extra-cellular parameters surrounding the metabolic switch to solvent production, and (4) To determine the genetic identity of the strains of solvent-producing clostridia that are currently in use by investigators around the world.

  20. Advanced wind turbine near-term product development. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-01-01

    In 1990 the US Department of Energy initiated the Advanced Wind Turbine (AWT) Program to assist the growth of a viable wind energy industry in the US. This program, which has been managed through the National Renewable Energy Laboratory (NREL) in Golden, Colorado, has been divided into three phases: (1) conceptual design studies, (2) near-term product development, and (3) next-generation product development. The goals of the second phase were to bring into production wind turbines which would meet the cost goal of $0.05 kWh at a site with a mean (Rayleigh) windspeed of 5.8 m/s (13 mph) and a vertical wind shear exponent of 0.14. These machines were to allow a US-based industry to compete domestically with other sources of energy and to provide internationally competitive products. Information is given in the report on design values of peak loads and of fatigue spectra and the results of the design process are summarized in a table. Measured response is compared with the results from mathematical modeling using the ADAMS code and is discussed. Detailed information is presented on the estimated costs of maintenance and on spare parts requirements. A failure modes and effects analysis was carried out and resulted in approximately 50 design changes including the identification of ten previously unidentified failure modes. The performance results of both prototypes are examined and adjusted for air density and for correlation between the anemometer site and the turbine location. The anticipated energy production at the reference site specified by NREL is used to calculate the final cost of energy using the formulas indicated in the Statement of Work. The value obtained is $0.0514/kWh in January 1994 dollars. 71 figs., 30 tabs.

  1. Friction of self-lubricating surfaces by ion beam techniques. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.S.; Rai, A.K.

    1992-05-01

    UES, Inc. conducted a research and development program designed to establish conditions for ion implantation/mixing of suitable additives into the surfaces of bulk ceramics and metals for obtaining self-lubricating low friction and wear characteristics. The substrates considered were ZrO{sub 2}, Al{sub 2}O{sub 3}, Si{sub 3}N{sub 4}, steel and Ni-base superalloy. The lubricant additives chosen were BaF{sub 2}/CaF{sub 2}Ag, MoS{sub 2}, WS{sub 2}and B{sub 2}O{sub 3}. The initial tasks of the program were to synthesis these lubricant compounds by co-implantation of constituent elements if sufficient beams of desired elements were obtained. The final tasks were to investigate high energy (MeV) ion mixing of deposited coatings as well as to investigate ion beam assisted deposition using low energy ion beams. It was shown that MoS{sub 2} can be synthesized by co-implantation of Mo{sup +} and S{sup +} in ceramic materials with appropriate choice of energies to obtain nearly overlapping depth profiles. The sliding life of DC magnetron sputtered MoS{sub 2} films of thicknesses {approximately}7500{Angstrom} on ceramic materials such as sapphire, Si{sub 3}N{sub 4} and ZrO{sub 3} were improved by ten to thousand fold after 2 Mev Ag{sup +} ion mixing. Ion beam assisted deposition (IBAD) and ion beam mixing were utilized to fabricate self-lubricating coatings of CaF{sub 2}/Ag and BaF/CaF{sub 2}/Ag composites.

  2. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, Dawei

    1996-01-01

    This project seeks to advance the fundamental understanding of the physico-chemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. Central to this research is the use of synthetic microsize particles of pyrite as model microelectrodes to investigate the semiconductor electrochemistry of pyrite. The research focuses on: (a) the synthesis of microsize particles of pyrite in aqueous solution at room temperature, (b) the formation of iron sulfide complex, the precursor of FeS or FeS{sub 2}, and (c) the relationship between the semiconductor properties of pyrite and its interfacial electrochemical behavior in the dissolution process. In Chapter 2, 3 and 4, a suitable protocol for preparing microsize particles of pyrite in aqueous solution is given, and the essential roles of the precursors elemental sulfur and ``FeS`` in pyrite formation are investigated. In Chapter 5, the formation of iron sulfide complex prior to the precipitation of FeS or FeS{sub 2} is investigated using a fast kinetics technique based on a stopped-flow spectrophotometer. The stoichiometry of the iron sulfide complex is determined, and the rate and formation constants are also evaluated. Chapter 6 provides a summary of the semiconductor properties of pyrite relevant to the present study. In Chapters 7 and 8, the effects of the semiconductor properties on pyrite dissolution are investigated experimentally and the mechanism of pyrite dissolution in acidic aqueous solution is examined. Finally, a summary of the conclusions from this study and suggestions for future research are presented in Chapter 9.

  3. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    International Nuclear Information System (INIS)

    Okrent, D.

    1997-01-01

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, with the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident

  4. Improved methods for water shutoff. Final technical progress report, October 1, 1997--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Seright, R.S.; Liang, J.T.; Schrader, R.; Hagstrom, J. II; Liu, J.; Wavrik, K.

    1998-10-01

    In the United States, more than 20 billion barrels of salt water are produced each year during oilfield operations. A tremendous economic incentive exists to reduce water production if that can be accomplished without significantly sacrificing hydrocarbon production. This three-year research project had three objectives. The first objective was to identify chemical blocking agents that will (a) during placement, flow readily through fractures without penetrating significantly into porous rock and with screening out or developing excessive pressure gradients and (b) at a predictable and controllable time, become immobile and resistant breakdown upon exposure to moderate to high pressure gradients. The second objective was to identify schemes that optimize placement of the above blocking agents. The third objective was to explain why gels and other chemical blocking agents reduce permeability to one phase (e.g., water) more than that to another phase (e.g., oil or gas). The authors also wanted to identify conditions that maximize this phenomenon. This project consisted of three tasks, each of which addressed one of the above objectives. This report describes work performed during the third and final period of the project. During this three-year project, they: (1) Developed a procedure and software for sizing gelant treatments in hydraulically fractured production wells; (2) Developed a method (based on interwell tracer results) to determine the potential for applying gel treatments in naturally fractured reservoirs; (3) Characterized gel properties during extrusion through fractures; (4) Developed a method to predict gel placement in naturally fractured reservoirs; (5) Made progress in elucidating the mechanism for why some gels can reduce permeability to water more than that to oil; (6) Demonstrated the limitations of using water/oil ratio diagnostic plots to distinguish between channeling and coning; and (7) Proposed a philosophy for diagnosing and attacking water

  5. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liukang [LI-COR Inc., Lincoln, NE (United States); McDermitt, Dayle [LI-COR Inc., Lincoln, NE (United States); Anderson, Tyler [LI-COR Inc., Lincoln, NE (United States); Riensche, Brad [LI-COR Inc., Lincoln, NE (United States); Komissarov, Anatoly [LI-COR Inc., Lincoln, NE (United States); Howe, Julie [LI-COR Inc., Lincoln, NE (United States)

    2012-02-01

    utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR's Experimental Research Station (LERS). Deployment at the LERS site will test the instrument's robustness in a real-world situation.

  6. Solar 2 Green Energy, Arts & Education Center. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Jamie C; Collins, Christopher J

    2011-07-18

    was provided to assist with the ongoing design work of Solar 2, including architecture, engineering and the development of construction specifications. The work performed during the project period brought this process as far along as it could go pending the raising of funds to begin construction of the building. Once those funds are secured, we will finalize any additional details needed before beginning the bidding process and then moving into construction. DOE's funding was extremely valuable in helping Solar One determine the feasibility of a net-zero construction on the site and allowed for the design to project to meet the high standards necessary for LEED Platinum status.

  7. DE-FG02-08ER64658 (OASIS) - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sharman, Jonathan

    2013-09-05

    Project OASIS (Operation of Advanced Structures, Interfaces and Sub-components for MEAs) was a 12 month project that ran from 1st September 2008 to 31st August 2009, and was managed by the Department of Energy Office of Science, Chicago Office, as Award No DE-FG02-08ER64658, with Johnson Matthey Fuel Cells Inc. as the sole contractor. The project was completed on schedule, with technical successes (details below) and payment of the full grant award made by DOE. The aim of the project was the development of membrane electrode assemblies (MEAs) for H2/air polymer electrolyte membrane (PEM) fuel cells that would give higher performance under hot/dry and dry operating conditions, ideally with no loss of performance under wet conditions. Reducing or eliminating the need for humidifying the incoming gases will allow significant system cost and size reduction for many fuel cell applications including automotive, stationary and back-up power, and portable systems. Portable systems are also of particular interest in military markets. In previous work Johnson Matthey Fuel Cells had developed very stable, corrosion-resistant catalysts suitable for resisting degradation by carbon corrosion in particular. These materials were applied within the OASIS project as they are considered necessary for systems such as automotive where multiple start-stop events are experienced. These catalysts were contrasted with more conventional materials in the design of catalyst layers and novel microporous layers (MPLs) and gas diffusion layer (GDL) combinations were also explored. Early on in the work it was shown how much more aggressive high temperature operation is than dry operation. At the same humidity, tests at 110?C caused much more dehydration than tests at 80?C and the high temperature condition was much more revealing of improvements made to MEA design. Alloy catalysts were introduced and compared with Pt catalysts with a range of particle sizes. It was apparent that the larger

  8. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, Michael A.

    2005-12-21

    standard dies by at least 50%. Dies provided by an AST customer, made of plain carbon 1045 steel and used for pellet manufacturing outperformed the standard dies by more than 100%. Concrete crusher liner wear plates provided by an EHT customer and made of 1045 steel, had the same surface hardness as the plates made of more expensive, pre-hardened high alloy HARDOX-500 material supplied by a Swedish company and used currently by the EHT customer. The 1045 material intensively quenched wear plates are currently in the field. Concrete block molding machine wear plates provided by an IQT customer and made of 8620 steel were processed at the AST production IQ system using a 40% reduced carburization cycle. An effective case depth in the intensively quenched wear plates was the same as in the standard, oil quenched parts. Base keys provided by an EHT customer and made of 8620 steel were processed using a 40% reduced carburization cycle. The intensively quenched parts showed the same performance as standard parts. IQT introduced the IQ process in heat treat practices of three commercial heat-treating shops: Akron Steel Treating Co., Summit Heat Treating Co. and Euclid Heat Treating Co. CWRU conducted a material characterization study for a variety of steels to develop a database to support changing/modification of recognized standards for quenching steel parts. IQT conducted a series of IQ workshops, published seven technical papers and participated in ASM Heat Treating Society conference and exposition and in Furnace North America Show. IQT designed and built a fully automated new IQ system installed at the Center for Intensive Quenching. This system includes the following major components: a stand-alone 1,900-gallon IQ water system, a 24'' x 24'' atmosphere pit furnace, and an automated load transfer mechanism. IQT established a ''Center for Intensive Quenching'' at the AST facilities. The 4,000 square feet Center includes the following

  9. Final Technical Report of project: "Contactless Real-Time Monitoring of Paper Mechanical Behavior During Papermaking"

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel Lafond; Paul Ridgway; Ted Jackson; Rick Russo; Ken Telschow; Vance Deason; Yves Berthelot; David Griggs; Xinya Zhang; Gary Baum

    2005-08-30

    The early precursors of laser ultrasonics on paper were Prof. Y. Berthelot from the Georgia Institute of Technology/Mechanical Engineering department, and Prof. P. Brodeur from the Institute of Paper Science and Technology, both located in Atlanta, Georgia. The first Ph.D. thesis that shed quite some light on the topic, but also left some questions unanswered, was completed by Mont A. Johnson in 1996. Mont Johnson was Prof. Berthelot's student at Georgia Tech. In 1997 P. Brodeur proposed a project involving himself, Y. Berthelot, Dr. Ken Telschow and Mr. Vance Deason from INL, Honeywell-Measurex and Dr. Rick Russo from LBNL. The first time the proposal was not accepted and P. Brodeur decided to re-propose it without the involvement from LBNL. Rick Russo proposed a separate project on the same topic on his side. Both proposals were finally accepted and work started in the fall of 1997 on the two projects. Early on, the biggest challenge was to find an optical detection method which could detect laser-induced displacements of the web surface that are of the order of .1 micron in the ultrasonic range. This was to be done while the web was having an out-of-plane amplitude of motion in the mm range due to web flutter; while moving at 10 m/s to 30 m/s in the plane of the web, on the paper machine. Both teams grappled with the same problems and tried similar methods in some cases, but came up with two similar but different solutions one year later. The IPST, GT, INL team found that an interferometer made by Lasson Technologies Inc. using the photo-induced electro-motive force in Gallium Arsenide was able to detect ultrasonic waves up to 12-15 m/s. It also developed in house an interferometer using the Two-Wave Mixing effect in photorefractive crystals that showed good promises for on-line applications, and experimented with a scanning mirror to reduce motion-induced texture noise from the web and improve signal to noise ratio. On its side, LBNL had the idea to

  10. Final Scientific/ Technical Report. Playas Grid Reliability and Distributed Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Van [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Weinkauf, Don [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Khan, Mushtaq [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Helgeson, Wes [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Weedeward, Kevin [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); LeClerc, Corey [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Fuierer, Paul [New Mexico Institute Of Mining And Technology, Socorro, NM (United States)

    2012-06-30

    grid to characterize the impact of new devices and approaches (e.g., distributed generation and load management) on the local distribution system as well as the grid at large. In addition to the above stated objectives, the research also focused on three critical challenges facing renewable distributed energy platforms: 1) hydrogen from biomass, 2) improved catalyst support systems for electrolysis membranes and fuel cell systems, and 3) improved manufacturing methodologies of low cost photovoltaics. The following sections describe activities performed during this project. The various tasks were focused on establishing Playas as a “…theoretical and experimental test bed…” through which components of a modern/smart grid could be characterized. On a broader scale, project efforts were aimed at development of tools and gathering of experience/expertise that would accelerate progress toward implementation of a modern grid.

  11. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. L. [Texas AgriLife Research, College Station, TX (United States); Roelke, Daniel [Texas AgriLife Research, College Station, TX (United States); Brooks, Bryan [Texas AgriLife Research, College Station, TX (United States); Grover, James [Texas AgriLife Research, College Station, TX (United States)

    2010-10-11

    blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.

  12. Pyrite Iron Sulfide Solar Cells Made from Solution Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Law, Matt [Univ. of California, Irvine, CA (United States)

    2017-03-21

    This document summarizes research done under the SunShot Next Generation PV II project entitled, “Pyrite Iron Sulfide Solar Cells Made from Solution,” award number DE-EE0005324, at the University of California, Irvine, from 9/1/11 thru 11/30/16. The project goal was to develop iron pyrite (cubic FeS2) as an absorber layer for solution-processible p-n heterojunction solar cells with a pathway to >20% power conversion efficiency. Project milestones centered around seven main Tasks: (1) make device-quality pyrite thin-films from solar ink; (2) develop an ohmic bottom contact with suitable low resistivity; (3) produce a p-n heterojunction with VOC > 400 mV; (4) make a solar cell with >5% power conversion efficiency; (5) use alloying to increase the pyrite band gap to ~1.2-1.4 eV; (6) produce a p-n heterojunction with VOC > 500 mV; and finally (7) make a solar cell with >10% power conversion efficiency. In response to project findings, the Tasks were amended midway through the project to focus particular effort on passivating the surface of pyrite in order to eliminate excessively-strong surface band bending believed to be responsible for the low VOC of pyrite diodes. Major project achievements include: (1) development and detailed characterization of several new solution syntheses of high-quality thin-film pyrite, including two “molecular ink” routes; (2) demonstration of Mo/MoS2 bilayers as good ohmic bottom contacts to pyrite films; (3) fabrication of pyrite diodes with a glass/Mo/MoS2/pyrite/ZnS/ZnO/AZO layer sequence that show VOC values >400 mV and as high as 610 mV at ~1 sun illumination, although these high VOC values ultimately proved irreproducible; (4) established that ZnS is a promising n-type junction partner for pyrite; (5) used density functional theory to show that the band gap of pyrite can be increased from ~1.0 to a more optimal 1.2-1.3 eV by alloying with oxygen; (6) through extensive measurements of ultrahigh

  13. DECREASE Final Technical Report: Development of a Commercial Ready Enzyme Application System for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Teter, Sarah A

    2012-04-18

    Conversion of biomass to sugars plays a central in reducing our dependence on petroleum, as it allows production of a wide range of biobased fuels and chemicals, through fermentation of those sugars. The DECREASE project delivers an effective enzyme cocktail for this conversion, enabling reduced costs for producing advanced biofuels such as cellulosic ethanol. Benefits to the public contributed by growth of the advanced biofuels industry include job creation, economic growth, and energy security. The DECREASE primary project objective was to develop a two-fold improved enzyme cocktail, relative to an advanced cocktail (CZP00005) that had been developed previously (from 2000- 2007). While the final milestone was delivery of all enzyme components as an experimental mixture, a secondary objective was to deploy an improved cocktail within 3 years following the close of the project. In February 2012, Novozymes launched Cellic CTec3, a multi-enzyme cocktail derived in part from components developed under DECREASE. The externally validated performance of CTec3 and an additional component under project benchmarking conditions indicated a 1.8-fold dose reduction in enzyme dose required for 90% conversion (based on all available glucose and xylose sources) of NREL dilute acid pretreated PCS, relative to the starting advanced enzyme cocktail. While the ability to achieve 90% conversion is impressive, targeting such high levels of biomass digestion is likely not the most cost effective strategy. Novozymes techno economic modeling showed that for NREL's dilute acid pretreated corn stover (PCS), 80% target conversion enables a lower total production cost for cellulosic ethanol than for 90% conversion, and this was also found to be the case when cost assumptions were based on the NREL 2002 Design Report. A 1.8X dose-reduction was observed for 80% conversion in the small scale (50 g) DECREASE benchmark assay for CTec3 and an additional component. An upscaled experiment (in 0

  14. Evaluation of effects of phenol recovery on biooxidation and tertiary treatment of SRC-I wastewater. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.W.; Watt, J.C.; Cowan, W.F.; Schuyler, S.E.

    1983-09-01

    Addition of phenol recovery to the wastewater treatment scheme in the Baseline Design for the SRC-I Demonstration Plant was evaluated as a major post-Baseline effort. Phenol recovery affects many downstream processes, but this study was designed to assess primarily its effects on biooxidation and subsequent tertiary treatment. Two parallel treatment schemes were set up, one to treat dephenolated wastewaters and the other for processed nondephenolated wastewaters, a simulation of the Baseline Design. The study focused on comparisons of five areas: effluent quality; system stability; the need for continuous, high-dose powdered activated carbon (PAC) augmentation to the bioreactor; minimum bioreactor hydraulic residence time (HRT); and tertiary treatment requirements. The results show that phenol recovery improves the quality of the bioreactor effluent in terms of residual organics and color. With phenol recovery, PAC augmentation is not required; without phenol recovery, PAC is needed to produce a comparable effluent. Dephenolization also enhances the stability of biooxidation, and reduces the minimum HRT required. With tertiary treatment, both schemes can meet the effluent concentrations published in the SRC-I Final Envivornmental Impact Statement, as well as the anticipated effluent limits. However, phenol recovery does provide a wider safety margin and could eliminate the need for some of the tertiary treatment steps. Based solely on the technical merits observed in this study, phenol recovery is recommended. The final selection should, however, also consider economic tradeoffs and results of other studies such as toxicology testing of the effluents. 34 references, 30 figures and 26 tables.

  15. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich

  16. Final Technical Report for Project 'Improving the Simulation of Arctic Clouds in CCSM3 (SGER Award)'

    International Nuclear Information System (INIS)

    Vavrus, Stephen J.

    2008-01-01

    climate model. J. Climate, 21, 5673-5687.). The article also provides a novel synthesis of surface- and satellite-based Arctic cloud observations that show how much the new freezedry parameterization improves the simulated cloud amount in high latitudes (Fig. 3). Freezedry has been incorporated into the CCSM3.5 version, in which it successfully limits the excessive polar clouds, and may be used in CCSM4. Material from this work is also appearing in a synthesis article on future Arctic cloud changes (Vavrus, D. Waliser, J. Francis, and A. Schweiger, 'Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4', accepted in Climate Dynamics) and was used in a collaborative paper on Arctic cloud-sea ice coupling (Schweiger, A., R. Lindsay, S. Vavrus, and J. Francis, 2008: Relationships between Arctic sea ice and clouds during autumn. J. Climate, 21, 4799-4810.). This research was presented at the 2007 CCSM Annual Workshop, as well as the CCSM's 2007 Atmospheric Model Working Group and Polar Working Group Meetings. The findings were also shown at the 2007 Climate Change Prediction Program's Science Team Meeting. In addition, I served as an instructor at the International Arctic Research Center's (IARC) Summer School on Arctic Climate Modeling in Fairbanks this summer, where I presented on the challenges and techniques used in simulating polar clouds. I also contributed to the development of a new Arctic System Model by attending a workshop in Colorado this summer on this fledgling project. Finally, an outreach activity for the general public has been the development of an interactive web site ( ) that displays Arctic cloud amount in the CMIP3 climate model archive under present and future scenarios. This site allows users to make polar and global maps of a variety of climate variables to investigate the individual and ensemble-mean GCM response to greenhouse warming and the extent to which models adequately represent Arctic

  17. Final Technical Report for NSF/DOE partnership grant ER54905; 2006-2009

    International Nuclear Information System (INIS)

    Stenzel, Reiner; Urrutia, J. Manuel

    2009-01-01

    emissions are only observed in whistler spheromaks and FRCs but not in mirrors or asymmetric configurations lacking magnetic null lines. The collisionless electron energization in a toroidal null line usually produces non-Maxwellian distributions. Off the null axis electrons gain more perpendicular than parallel energy. Distributions with T # perpendicular# > T # parallel# lead to whistler instabilities which have been observed. A whistler spheromak is a source of high-frequency whistler emissions. These are usually small amplitude whistlers propagating in a complicated background magnetic field. The waves are emitted from a moving source. High frequency whistlers propagate faster than the spheromak, thus partly move ahead of it and partly in the reverse direction. In test wave experiments wave growth opposite to the direction of the hot electron flow has been observed, confirming that Doppler-shifted cyclotron resonance instabilities account for the emission process. Propagating whistler mirrors produce no significant instabilities except when they interact with other fields which exhibit null lines. For example, a whistler mirror has been launched against a stationary FRC, resulting in strong FRC heating and whistler instabilities. In the whistler mirror configuration the antenna near-zone field produces a toroidal null line outside the coil which can also become a source for whistler emissions. Finally, nonlinear EMHD research has been extended to initially unmagnetized plasmas where a new nonlinear skin depth has been discovered. When a small-amplitude oscillating magnetic field is applied to a plasma the field penetration is governed by the skin depth, collisional or collisionless depending on frequency, collision frequency and plasma frequency. However, when the magnetic field increases the electrons become magnetized and the field penetration occurs in the whistler mode if the cyclotron frequency exceeds the oscillating frequency. This phenomenon has been observed. A

  18. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    International Nuclear Information System (INIS)

    McDeavitt, Sean M.

    2011-01-01

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500 C to 600 C) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: (1) Hot working fabrication using mechanical alloying and extrusion - Design, fabricate, and assemble extrusion equipment - Extrusion database on DU metal - Extrusion database on U-10Zr alloys - Extrusion database on U-20xx-10Zr alloys - Evaluation and testing of tube sheath metals (2) Low-temperature sintering of U alloys - Design, fabricate, and assemble equipment - Sintering database on DU metal - Sintering database on U-10Zr alloys - Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research and Development (FCR and D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the

  19. Final comparison report on ISP-35: Nupec hydrogen mixing and distribution test (Test M-7-1)

    International Nuclear Information System (INIS)

    1994-12-01

    This final comparison report summarizes the results of the OECD/CSNI sponsored ISP-35 exercise which was based on NUPEC's Hydrogen Mixing and Distribution Test M-7-1. 12 organizations from 10 different countries took part in the exercise. For the ISP-35 test, a steam/light gas (helium) mixture was released into the lower region of a simplified model of a PWR containment. At the same time, the dome cooling spray was also activated. the transient time histories for gas temperature and concentrations were recorded for each of the 25 compartments of the model containment. The wall temperatures as well as the dome pressure were also recorded. The ISP-35 participants simulated the test conditions and attempted to predict the time histories using their accident analysis codes. Results of these analyses are presented, and comparisons are made between the experimental data and the calculated data. In general, predictions for pressure, helium concentration and gas distribution patterns were achieved with acceptable accuracy

  20. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  1. Final technical report

    International Nuclear Information System (INIS)

    Lin, Chii-Dong

    1999-01-01

    The goal of this research is to develop new novel methods for studying correlated motion of atomic systems. This involves new formulations of the theoretical approaches, the performance of numerical calculations, and the detailed comparison with available experiment. Different theoretical methods have been developed for different classes of problems. The basis of our theoretical method is the hyperspherical approach. We have studied in general three-body systems and restricted four-body systems, and examined the qualitative properties such as the visualization of the wavefunctions which then allows us to do classifications, and then develop accurate theoretical methods for performing calculations to predict results that can be compared to experiments

  2. FINAL TECHNICAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Fargione, Joseph

    2012-02-24

    The United States has abundant wind resources, such that only about 3% of the resource would need to be developed to achieve the goal of producing 20% of electricity in the United States by 2030. Inappropriately sited wind development may result in conflicts with wildlife that can delay or derail development projects, increase projects costs, and may degrade important conservation values. The most cost-effective approach to reducing such conflicts is through landscape-scale siting early in project development. To support landscape scale siting that avoids sensitive areas for wildlife, we compiled a database on species distributions, wind resource, disturbed areas, and land ownership. This database can be viewed and obtained via http://wind.tnc.org/awwi. Wind project developers can use this web tool to identify potentially sensitive areas and areas that are already disturbed and are therefore likely to be less sensitive to additional impacts from wind development. The United States goal of producing 20% of its electricity from wind energy by the year 2030 would require 241 GW of terrestrial nameplate capacity. We analyzed whether this goal could be met by using lands that are already disturbed, which would minimize impacts to wildlife. Our research shows that over 14 times the DOE goal could be produced on lands that are already disturbed (primarily cropland and oil and gas fields), after taking into account wind resource availability and areas that would be precluded from wind development because of existing urban development or because of development restrictions. This work was published in the peer reviewed science journal PLoS ONE (a free online journal) and can be viewed here: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0017566. Even projects that are sited appropriately may have some impacts on wildlife habitat that can be offset with offsite compensatory mitigation. We demonstrate one approach to mapping and quantifying mitigation costs, using the state of Kansas as a case study. Our approach considers a range of conservation targets (species and habitat) and calculates mitigation costs based on actual costs of the conservation actions (protection and restoration) that would be needed to fully offset impacts. This work was published in the peer reviewed science journal PLoS ONE (a free online journal) and can be viewed here: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0026698.

  3. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Simon Silver

    2009-05-28

    The work done with DOE support during this 15 year period was extensive and successful. It is best summarized by the list of 58 publications (below) which reported progress made with DOE support. These are from the grant period and a few more recent reporting on grant research. Mostly these are primary research reports in reviewed journals. There are also, however, many summary reviews in review journals and in scientific monographs, as they also are key places for reporting research progress. What we did during this grant period (and much longer) was to characterize genetic determinants for bacterial resistances to additional toxic heavy metals of DOE concern, through starting with phenotypic properties of the resistant bacteria to DNA sequence determination and characterization of the genes involved. Over the years (and as shown in the list of publications), the toxic metal-forming elements we have studied included Ag, As, Cd, Cr, and Hg. In each case, we started with basically nothing (or very little) known, progressed through quite detailed understanding, until other laboratory groups also became strongly involved in related studies. More recently, with DOE support, we were the first laboratory group in the world to identify genes for bacterial resistance to silver salts (sil genes) and the closely related silver-and-copper resistance genes cus. This was initially reported in detail in Gupta et al. (1999; see publications list below). We also identified the first toxic metal 'gene island' (multiple transcripts and perhaps 25 genes each in need of detailed study) which encodes the subunits of arsenite oxidase (which we called aso; Silver and Phung, 2005; but most other researchers have subsequently settled on aox for the gene mnemonic). Both of these systems were firsts. Now a few years later, a search on GenBank shows that each is now represented by gene families with more than a dozen examples that have been identified and sequenced. Most of the additional representative systems are from total bacterial genomes without specific gene characterization.

  4. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sara Bergan, Executive Director; Brendan Jordan, Program Manager; Subcontractors as listed on the report.

    2007-06-06

    The following report contributes to our knowledge of how to economically produce wildlife-friendly grass mixtures for future fuel feedstocks in the northern plains. It investigates northern-adapted cultivars; management and harvest regimes that are good for yields, soils and wildlife; comparative analysis of monocultures and simple mixtures of native grasses; economic implications of growing grasses for fuel feedstocks in specific locations in the northern plains; and conversion options for turning the grasses into useful chemicals and fuels. The core results of this study suggest the following; Native grasses, even simple grass mixtures, can be produced profitably in the northern plains as far west as the 100th meridian with yields ranging from 2 to 6 tons per acre; Northern adapted cultivars may yield less in good years, but have much greater long-term sustainable yield potential than higher-yielding southern varieties; Grasses require very little inputs and stop economically responding to N applications above 56kg/hectare; Harvesting after a killing frost may reduce the yield available in that given year but will increase overall yields averaged throughout multiple years; Harvesting after a killing frost or even in early spring reduces the level of ash and undesirable molecules like K which cause adverse reactions in pyrolysis processing. Grasses can be managed for biomass harvest and maintain or improve overall soil-health and carbon sequestration benefits of idled grassland; The carbon sequestration activity of the grasses seems to follow the above ground health of the biomass. In other words plots where the above ground biomass is regularly removed can continue to sequester carbon at the rate of 2 tons/acre/year if the stand health is strong and yielding significant amounts of biomass; Managing grasses for feedstock quality in a biomass system requires some of the same management strategies as managing for wildlife benefit. We believe that biomass development can be done in such a way that also maximizes or improves upon conservation and other environmental goals (in some cases even when compared to idled land); Switchgrass and big bluestem work well together in simple mixture plots where big bluestem fills in around the switchgrass which alone grows in bunches and leaves patches of bare soil open and susceptible to erosion; Longer-term studies in the northern plains may also find that every other year harvest schemes produce as much biomass averaged over the years as annual harvests; Grasses can be grown for between $23 and $54/ton in the northern plains at production rates between 3 and 5 tons/acre; Land costs, yields, and harvest frequency are the largest determining factors in the farm scale economics. Without any land rent offset or incentive for production, and with annual harvesting, grass production is likely to be around $35/ton in the northern plains (farm gate); Average transportation costs range from $3 to $10/ton delivered to the plant gate. Average distance from the plant is the biggest factor - $3/ton at 10 miles, $10/ton at 50 miles; There is a substantial penalty paid on a per unit of energy produced basis when one converts grasses to bio-oil, but the bio-oil can then compete in higher priced fuel markets whereas grasses alone compete directly with relatively cheap coal; Bio oil or modified bio-oil (without the HA or other chemical fraction) is a suitable fuel for boiler and combustion turbines that would otherwise use residual fuel oil or number 2 diesel; Ensyn has already commercialized the use of HA in smokey flavorants for the food industry but that market is rather small. HA, however, is also found to be a suitable replacement for the much larger US market for ethanolamines and ethalyne oxides that are used as dispersants; Unless crude oil prices rise, the highest and best use of grass based bio-oil is primarily as a direct fuel. As prices rise, HA, phenol and other chemical fractions may become more attractive; Although we were able to create available glucose from the AHG fraction in the bio-oil it proved recalcitrant to fermentation by yeast. Although fermentation results were much more positive with wood based bio-oil sugars, ethanol does not appear to be a likely product from grass based bio-oil; and A package of policy recommendations has been developed with roughly 75 key stakeholders from throughout the region that would support the transition to greater development of advanced biofuels and products in the region, as well as a strong role for native grass agriculture to support those industries.

  5. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Whitelegge, JP; Faull, KF

    2005-06-01

    Two primary technologies have been employed for analysis and measurement of the Synechocystis proteome. (1) 2D-gel electrophoresis. Currently one of the most reliable options in quantitative proteomics, typical 2D-gel experiments use isoelectric focusing (IEF) in the first dimension. In the case of membrane proteins, detergents must be added to maintain their solubility though only neutral/zwitterionic surfactants are compatible with the IEF process. We have optimized 2D gel separations for Synechocystis proteins extracted and separated into soluble and membrane subfractions. The resolution and coverage of integral membrane proteins is only marginally satisfactory and alternatives to the first dimension are being considered. Size-exclusion chromatography under non-denaturing conditions was one option that was explored but resolution was insufficient for subfractionation of the membrane-bound proteome. A more highly resolving technique, the ''Blue-native gel'' has proven excellent for Synechocystis and we plan to set up this technology in the near future. Proteins with altered expression are being identified through standard LCMSMS technologies. The analysis of PSI, PSII and SDH deficient mutants is completed, establishing the comparative aspect of the project for integration with the ultrastructural and metabolomic experiments at ASU. We are also looking forward to receiving ftsZ and VIPP1 interruption mutants to explore the effects on the proteome of cell enlargement and disruption of thylakoid biogenesis, respectively. (2) 2D liquid chromatography with mass spectrometry of intact proteins. Early experiments with total membrane protein extracts of Synechocystis showed that the spatial resolution of the reverse-phase separation used in front of the mass spectrometer limited detection to the one hundred or so most abundant proteins. The intact mass tags (IMTs) measured in this experiment represent the first of these measurements that will ultimately define the entire proteome. While some of the IMTs were matched to masses calculated from translations of genomic open-reading frames allowing reasonably confident identification of about half of them (hypothetical IMTs), we are currently validating identifications using a combination of peptide mass fingerprinting after cyanogen bromide cleavage and LC-MSMS after trypsin, of protein in fractions collected during LC-MS+. In order to gain more complete proteome coverage we are applying a liquid separation in front of the LC-MS+ experiment. Size-exclusion chromatography is the first separation technology to be employed, yielding immediate benefits, while still not satisfactory for overall resolution of complexes. Total membranes were solubilized with dodecyl maltoside (1.5%) and separated on deactivated silica (G 4000 SW). LC-MS+ analysis of less-retained chlorophyll-containing fractions, using reverse-phase and size-exclusion technologies, yielded intact protein mass spectra of the two large photosystem I subunits PsaA and PsaB as well as many other IMTs (Figures 1 & 2). These integral membrane proteins have eleven transmembrane helices and, at 81 and 83 kDa, represented one of the most significant challenges to the intact protein molecular weight approach. The identities of the proteins were confirmed by peptide mass fingerprinting and while there is good general agreement between measured and calculated masses it is noted that modest post-translational modifications are necessary to account for the measured molecular weights of the intact proteins. Whether these discrepancies are due to genuine post-translational modifications or DNA sequence errors remains to be determined. The data have been published allowing us to claim to be the first to have completed high-resolution electrospray-ionization mass spectrometry of the core subunits of Photosystem II, Photosystem I and the cytochrome b{sub 6}f complex providing effective proof-of-principle for application of the intact mass approach to the integral membrane proteome. Significantly, we reported greater integral membrane proteome coverage than a colleague studying thylakoids of Arabidopsis illustrating the benefits of the technique over sequential organic extraction of membrane proteins and 1D-gel analysis. The homogeneity of the PsaA and PsaB protein mass spectra attest to the quality of material grown at ASU and the viability of extraction and work up of the material after transport to UCLA.

  6. Final Technical Report

    International Development Research Centre (IDRC) Digital Library (Canada)

    Tommy Ngai

    2014-03-31

    Mar 31, 2014 ... framework, based on the Kirkpatrick model (Kirkpatrick, D.L. ..... organizations provide education and training services in water and sanitation. .... Although this resulted in slightly more complicated administrative processes, the new structure ..... water and sanitation supplies in rural sub-Saharan Africa.

  7. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lian [West Virginia Univ., Morgantown, WV (United States)

    2017-03-08

    Our BES supported program integrates molecular beam epitaxy growth with in situ atomic scale imaging using scanning tunneling microscopy/spectroscopy and atomic force microscopy. Aided by density functional theory calculations, we explore enhanced functionalities emerging from the interplay of strain, proximity, and spin-orbit interactions in heterostructures of wide band gap semiconductors, graphene, and Dirac materials, focusing on three thrusts: 1) doping wide bandgap semiconductors and graphene; 2) graphene nanoribbons and graphene-semiconductor heterostructures; and 3) Dirac materials. Our findings and discoveries have led to the publication of one book chapter and twenty-three refereed journal articles, including several in high impact journals such as Nature Communications, Physical Review Letters, and Nano Letters. Highlights of each thrust are provided in the report.

  8. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Rasure, John, et. al.

    2008-03-07

    Through past DOE funding, the MIND Research network has funded a national consortium effort that used multi-modal neuroimaging, genetics, and clinical assessment of subjects to study schizophrenia in both first episode and persistently ill patients. Although active recruitment of research participants is complete, this consortium remains active and productive in terms of analysis of this unique multi-modal data collected on over 320 subjects.

  9. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Judy D. Wall

    2009-02-27

    Bioremediation of radionuclides and metals in the subsurface necessitate an understanding of the metabolic capacities and interactions of the anaerobic microorganisms that are found there, including members of the sulfate-reducing bacteria (SRB). Genetic investigation into the pathway of reductant flow to U(VI) in the SRB belonging to the genus Desulfovibrio has been the focus of this project. In Dv. desulfuricans strain G20, we confirmed the importance of the tetraheme cytochrome c3 by disruption of the gene encoding that cytochrome, cycA, and demonstrated a decrease in the ability of the mutant (I2) to reduce U(VI). We found that the cytochrome c3 was necessary for electrons from pyruvate to reach sulfate or fumarate as terminal electron acceptors. It was not needed for electrons from lactate to reach sulfate, from which we infer that a different pathway is used for the electrons from these two substrates. Cyrstal structure of the tetraheme cytochrome c3 was obtained and site-directed mutations of the protein indicated a binding site for metals at heme 4 of the structure. Kinetic studies for oxidation of reduced cytochrome c3 with U(VI) or molybdate revealed a preference for U(VI) as a substrate. Evidence for a role for sodium gradients in the energetic scheme for this soil organism was obtained.

  10. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Ives; Eric Montgomery; Zhigang Pan; Blake Riddick; Donald Feldman; Lou Falce

    2012-09-25

    This program applied reservoir cathode technology to increase the lifetime of cesiated tungsten photocathodes. Cesiated tungsten photocathodes provide a quantum efficiency of approximately 0.08% when cesium is initially applied to the surface. During operation, however, the cesium evaporates from the surface, resulting in a gradual decrease in quantum efficiency. After 4-6 hours of operation, the efficiency drop to below useful levels, requiring recoating on the emission surface. This program developed a cathode geometry where cesium could be continuously diffused to the surface at a rate matching the evaporation rate. This results in constant current emission until the cesium in the reservoir is depleted. Measurements of the evaporation rate indicated that the reservoir should provide cesium for more than 30,000 hours of continuous operation. This is orders of magnitude longer operation then previously available. Experiments also demonstrated that the photocathode could be rejuvenated following contamination from a vacuum leak. Recoating of the emission surface demonstrated that the initial quantum efficiency could be recovered.

  11. SHIELDS Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania Koleva [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-03

    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. “space weather”, remains a big space physics challenge. A new capability was developed at Los Alamos National Laboratory (LANL) to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. This framework simulates the dynamics of the Surface Charging Environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. In addition to using physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites were developed. An order of magnitude improvement in the accuracy in the simulation of the spacecraft surface charging environment was thus obtained. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code and to evaluate anomalies' relation to SCE dynamics. Such diagnostics is critically important when performing forensic analyses of space-system failures.

  12. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Griffith

    2007-01-01

    In this project we provide an example of how to develop multi-tiered models to go across levels of biological organization to provide a framework for relating results of studies of low doses of ionizing radiation. This framework allows us to better understand how to extrapolate laboratory results to policy decisions, and to identify future studies that will increase confidence in policy decisions. In our application of the conceptual Model we were able to move across multiple levels of biological assessment for rodents going from molecular to organism level for in vitro and in vivo endpoints and to relate these to human in vivo organism level effects. We used the rich literature on the effects of ionizing radiation on the developing brain in our models. The focus of this report is on disrupted neuronal migration due to radiation exposure and the structural and functional implications of these early biological effects. The cellular mechanisms resulting in pathogenesis are most likely due to a combination of the three mechanisms mentioned. For the purposes of a computational model, quantitative studies of low dose radiation effects on migration of neuronal progenitor cells in the cerebral mantle of experimental animals were used. In this project we were able to show now results from studies of low doses of radiation can be used in a multidimensional framework to construct linked models of neurodevelopment using molecular, cellular, tissue, and organ level studies conducted both in vitro and in vivo in rodents. These models could also be linked to behavioral endpoints in rodents which can be compared to available results in humans. The available data supported modeling to 10 cGy with limited data available at 5 cGy. We observed gradual but non-linear changes as the doses decreased. For neurodevelopment it appears that the slope of the dose response decreases from 25 cGy to 10 cGy. Future studies of neurodevelopment should be able to better define the dose response in this range.

  13. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacquelyn Yanch

    2006-05-22

    This project involved the development of a method for in vivo prompt gamma neutron activation analysis for the investigation of Boron-10 distribution in a rabbit knee. The overall objective of this work was a robust approach for rapid screening of new {sup 10}B-labelled compounds to determine their suitability for use in the treatment of rheumatoid arthritis via Boron Neutron Capture Synovectomy (BNCS). For BNCS it is essential to obtain a compound showing high uptake levels in the synovium and long residence time in the joints. Previously the in vivo uptake behavior of potential compounds was evaluated in the arthritic knee joints of rabbits via extensive dissection studies. These studies are very labor-intensive and involve sacrificing large numbers of animals. An in vivo {sup 10}B screening approach was developed to provide initial evaluation of potential compounds. Only those compounds showing positive uptake and retention characteristics will be evaluated further via dissection studies. No further studies will be performed with compounds showing rapid clearance and/or low synovial uptake. Two approaches to in vivo screening were investigated using both simulation methods and experimentation. Both make use of neutron beams generated at the MIT Research Reactor. The first, Transmission Computed Tomography (TCT) was developed and tested but was eventually rejected due to very limited spatial resolution using existing reactor beams. The second, in vivo prompt gamma neutron activation analysis (IVPGNAA) was much more promising. IVPGNAA was developed using computer simulation and physical measurement coupled with image reconstruction techniques. The method was tested in arthritic New Zealand rabbits previously injected intra-articularly with three boron labeled compounds and shown to be effective in providing information regarding uptake level and residence time of {sup 10}B in the joint.

  14. Final Technical Report

    International Nuclear Information System (INIS)

    Diedhiou, Papa Madiallacke

    2010-01-01

    The established training programme, covering three months is structured over 2 main components: 1. Induced mutagenesis for the genetic improvement of Jatropha; 2. Genotyping using molecular markers in order to link phenotypic diversity to genotype.

  15. FINAL TECHNICAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Loren F. Goodrich

    2011-05-31

    NIST has played a key role in many of the one-on-one, domestic, and international interlaboratory comparisons of measurements on superconductors. The history of interlaboratory comparisons of measurements on superconductors tells us that careful measurement methods are needed to obtain consistent results. Inconsistent results can lead to many problems including: a mistrust of the results of others, unfair advantages in commerce, and erroneous feedback in the optimization of conductor performance. NIST has experience in many interlaboratory comparisons; a long-term commitment to measurement accuracy; and independent, third-party laboratory status. The principal investigator's direct involvement in the measurements and daily supervision of sample mounting is the unique situation that has allowed important discoveries and evolution of our capabilities over the last 30 years. The principal investigator's research and metrology has helped to improve the accuracy of critical-current (I{sub c}) measurements in laboratories throughout the world. As conductors continue to improve and design limits are tested, the continuation of the long-term commitment to measurement accuracy could be vitally important to the success of new conductor development programs. It is extremely important to the U.S. wire manufacturers to get accurate (high certainty) I{sub c} measurements in order to optimize conductor performance. The optimization requires the adjustment of several fabrication parameters (such as reaction time, reaction temperature, conductor design, doping, diffusion barrier, Cu to non-Cu ratio, and twist pitch) based on the I{sub c} measurement of the conductor. If the I{sub c} measurements are made with high variability, it may be unclear whether or not the parameters are being adjusted in the optimal direction or whether or not the conductor meets the target specification. Our metrology is vital to the U.S. wire manufacturers in the highly competitive international arena and to meet the aggressive performance goals. The latest high-performance Nb{sub 3}Sn wires are being designed with higher current densities, larger effective filament diameter, less Cu stabilizer, and, in some cases, larger wire diameters than ever before. In addition, some of the conductor designs and heat treatments cause the residual resistivity ratio (RRR, ratio of room temperature resistivity to the resistivity at 20 K) of the stabilizer to be less than 20. These parameters are pushing the conductors towards less intrinsic stability, into a region we call marginally stable. These parameters also create a whole series of challenges for routine I{sub c} testing on short-samples, even when tested with the sample immersed in liquid helium. High-current, variable-temperature I{sub c} measurements are even more difficult than those made in liquid helium because the sample is only cooled by flowing helium gas. Providing accurate I{sub c} results under these conditions requires a complex system that provide adequate cooling as well as uniform sample temperature. We have been make variable-temperature measurements for about 15 years, but we started to design the first high-current (at least 500 A), variable-temperature, variable-strain apparatus in late 2006. Our first critical-current measurements as a function of strain, temperature, and magnetic field, I{sub c}(B,T,{var_epsilon}), in a new single, unified apparatus (full matrix characterization) were made in the summer of 2008. This is the only such facility in the U.S. and it has some unique components that are not duplicated anywhere in the world. The compounding of all three variables (H, T, {var_epsilon}) makes an already labor and time intensive characterization very formidable; however, the results cannot be generated any other way and are needed to answer key questions about strain and temperature safety margins and about the reliability of using scaling laws based on small data sets to predict performance. In the future, this new apparatus will allow NIST to create a database on strands that would benefit U.S. superconductor wire manufacturers, national research laboratories, and programs using superconductor strands such as HEP and International Thermonuclear Experimental Reactor (ITER).

  16. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Jerry; Giese, Scott R; Beckermann, Christoph; Combi, Joan; Yavorsky, James; Cannon, Fred

    2009-09-30

    The Center for Advanced Biobased was created with funding supplied by the Department of Energy to study biobased alternatives to petroleum based materials used in the manufacture of foundry sand binders. The project was successful in developing two new biobased polymers that are based on renewable agricultural materials or abundant naturally occurring organic materials. The technology has the potential of replacing large amounts of chemicals produced from oil with environmentally friendly alternatives.

  17. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    de Szoeke, Simon P. [Oregon State Univ., Corvallis, OR (United States)

    2018-03-02

    The investigator and DOE-supported student [1] retrieved vertical air velocity and microphysical fall velocity retrieval for VOCALS and CAP-MBL homogeneous clouds. [2] Calculated in-cloud and cloud top dissipation calculation and diurnal cycle computed for VOCALS. [3] Compared CAP-MBL Doppler cloud radar scenes with (Remillard et al. 2012) automated classification.

  18. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Finlayson-Pitts, Barbara J.

    2014-04-13

    DOE has funded our work in three areas: (1) reactions of sea salt aerosols to form photochemically labile halogen gases that help to drive tropospheric chemistry; (2) oxidation of organics at interfaces and formation of SOA driven by oxides of nitrogen photochemistry; and (3) nucleation and growth of new particles in the troposphere from reactions of methanesulfonic acid with amines.

  19. Final Technical Report

    International Nuclear Information System (INIS)

    Dennis L.; Eggleston

    2005-01-01

    The purpose of this grant was to experimentally investigate asymmetry-induced radial transport in a non-neutral (Penning-Malmberg) plasma trap. These traps provide an excellent platform for transport studies since the plasmas are generally well confined. One can then study transport in a controlled manner: the plasma is perturbed and the resulting transport measured. The focus of this research is the transport produced by applied asymmetric electric fields. The main results of our research concern (1) the theory of asymmetry-induced transport, (2) an absolute comparison of theory predictions with experimental results, (3) the amplitude scaling of the transport, (4) the frequency dependence of the transport, (5) the development of techniques to determine the relative contribution of mobility and diffusion to the transport, and (6) measuring the effect of small axial magnetic variations on the transport

  20. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, Douglas C.; Restani, Marco, Ph.D

    2009-12-28

    The Center of Excellence for Hazardous Materials Management award was used to establish the organization and initiate investigations of hazardous waste issues along the U.S.-Mexico border. Scientific investigations conducted during the execution of this grant contributed significant data and established new sampling protocols to the dimension, frequency and severity of hazardous materials (e.g., heavy metals) along the U.S.-Mexico border. Additionally, new protocols and assessments with distinct Homeland Security implications were embedded thus establishing a baseline that will be significant for related investigations in the future.

  1. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    John M. Davis

    2005-03-31

    The forest products industry consumes large amounts of energy. Understanding how genetic variation in trees actually controls the characteristics of wood, the major raw material utilized by the industry, is an opportunity for energy savings. For companies that are vertically integrated (i.e., have both tree production and processing operations), energy savings can accrue for both production and processing. Tree production demands nitrogen fertilizers, the manufacture of which is highly energy intensive. Wood processing for paper product manufacturing requires digestion and bleaching, both of which are more efficient when the lignin content of wood is reduced. This project identified genes involved in utilization of nitrogen from fertilizer, and the coupling of nitrogen demand to lignin content, establishing a framework for reducing tree nitrogen demand per unit carbon gained. This creates opportunities for genetic manipulation of trees for greater energy efficiency.

  2. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng-Po [GE Global Research, Niskayuna, New York (United States); Andarawis, Emad [GE Global Research, Niskayuna, New York (United States); Shaddock, David [GE Global Research, Niskayuna, New York (United States); Yin, Liang [GE Global Research, Niskayuna, New York (United States); Ghandi, Reza [GE Global Research, Niskayuna, New York (United States); Srikrishnan, Kashyap [GE Global Research, Niskayuna, New York (United States); Saia, Richard [GE Global Research, Niskayuna, New York (United States); Patil, Amita [GE Global Research, Niskayuna, New York (United States); Fang, Kun [Auburn Univ., AL (United States); Shen, Zhenzhen [Auburn Univ., AL (United States)

    2013-09-09

    The development and demonstration in this digital telemetry project has brought SiC-based high temperature electronics to a new level of complexity and integration with the active electronic devices and the packaging materials operating at 300°C for greater than 2000 hours. Our highest level of integration is a 6x6mm die with 474 transistors with the most complex functionality to date. Advances were made in the area of device modeling and fabrication, circuit simulation and design, device testing, and packaging. The technologies developed here would help enable sensor systems in enhanced geothermal systems, as well as other applications with high temperature requirements.

  3. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, Timothy S. [Idaho State University

    2013-09-10

    The biochemistry of bacterial proteins involved in redox transformations of metals and minerals is, without dispute, an important area of research. Nevertheless, most studies on bacterial metal transformation have focused not on biochemistry but on genetics and genomics. The objective of this research is to better understand the role of conformation change in electron transfer from cytochromes to minerals, a process that underpins respiratory metal reduction by bacteria in nature and in bioremediation strategies, including reductive immobilization of radioactive contaminants. Our DOE-funded work is specifically focused on answering long-standing questions about the biochemical behavior of these very interesting proteins, and our findings thus far have already made impacts in the fields of environmental microbiology and biogeochemistry. Among the key findings from the project are 1) Successful large-scale production of biomass for protein isolation; 2) Purification of several c-type cytochromes for biochemical study; 3) Characterization of these proteins using spectrophotometric and electrochemical techniques; 4) Examination of protein conformational change and redox activity towards metal oxides using a small mass cytochrome c from Acidiphilium cryptum; 5) Proteomic characterization of A. cryptum biofilms; 6) Training of 2 undergraduate research assistants; 7) Publications and several meeting presentations.

  4. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, Walter David [Oregon State Univ., Corvallis, OR (United States)

    2016-08-27

    This report describes the research carried out under this grant for the period from 1997 to 2014. This work has been previously described in annual progress reports and renewal applications. As a result of this project, ~100 papers were published in open refereed journals and 107 invited talks were given by the PI. The research subjects covered by this project included the synthesis and characterization of super-heavy nuclei, the critical study of the reaction mechanisms used in these synthesis reactions, the mechanism(s) of intermediate energy and relativistic nuclear collisions, the study of reactions induced by radioactive nuclear beams, and general properties of the heaviest elements.

  5. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Spivey, James J. [Louisiana State Univ., Baton Rouge, LA (United States)

    2016-02-02

    The research summarized here has the goal of developing a fundamental understanding of how catalysts work. These materials are demonstrably essential to our daily life, from the cars we drive to the clothes we wear. Our Center advances the science behind how we prepare, analyze, and describe catalysts. This has been identified by one of the documents guiding Federal research objectives (Directing Matter and Energy: Five Challenges for Science and the Imagination): “Major challenges in heterogeneous catalysis are to more clearly define the nature of the active sites, to engineer at the molecular level catalysis with designed properties in three dimensions, and to create new catalysts for new transformations.” This directly addresses this objective.

  6. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.; Long, S.; Li, Binsheng; Lamke, A.J.

    1994-07-01

    The overall goal of the contract is to provide general support and advice to the DOE, Office of Fossil Energy (DOE/EF) on the opportunities for coal and Clean Coal Technology trade in the Asia-Pacific region. The report which follows is divided into six subsections, each pertaining to separate subtasks the U.S. Department of Energy requested. Subtask A includes two reports, one which outlines important coal and clean coal technology news events which occurred during the second half of 1993, and another which outlines the potential for Clean Coal Technology in the Asia-Pacific Region. Subtask B and the first paper in Subtask C contain advisories and briefing papers that present and explain the coal, electricity and Clean Coal Technology situation in China. The second paper in Subtask C is an overview of the coal supply, demand and trade situation in the Asian region with coal projections to the year 2010. Subtask D is an overview of meetings with Asian energy and policy representatives which were carried out to (1) gather key information relevant to this contract, and (2) examine areas for closer cooperation on important coal/CCT-related energy issues. The tasks listed in the contract proposal as Subtasks E and F are summarized in respective sections of this report. Subtask E specifies the activities carried out under the APEC Experts` Group on Clean Coal Technologies, and Subtask F explains the work done by the Coal Project in building contacts and working relationships with key energy and technology planners in China (including The State Science and Technology Commission, the Ministry of Electric Power and Tsinghua University, and the State Planning Commission). The Subtask E section also includes activities to develop and strengthen the role of the APEC Experts Group on Clean Coal Activities.

  7. AIMES Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States)

    2017-01-31

    Many important advances in science and engineering are due to large-scale distributed computing. Notwithstanding this reliance, we are still learning how to design and deploy large-scale production Distributed Computing Infrastructures (DCI). The AIMES project was conceived against this backdrop, following on the heels of a comprehensive survey of scienti c distributed applications [1]. The survey established, arguably for the rst time, the relationship between infrastructure and scienti c distributed applications. It examined well known contributors to the complexity associated with infrastructure, such as inconsistent internal and external interfaces, and demonstrated the correlation with application brittleness. It discussed how infrastructure complexity reinforces the challenges inherent in developing distributed applications.

  8. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jack Brenizer

    2011-05-16

    The Consortium of Big-10 University Research and Training Reactors was by design a strategic partnership of seven leading institutions. We received the support of both our industry and DOE laboratory partners. Investiments in reactor, laboratory and program infrastructure, allowed us to lead the national effort to expand and improve the education of engineers in nuclear science and engineering, to provide outreach and education to pre-college educators and students and to become a key resource of ideas and trained personnel for our U.S. industrial and DOE laboratory collaborators.

  9. Improved Hydrogen Gas Getters for TRU Waste Transuranic and Mixed Waste Focus Area - Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Mark Lee

    2002-04-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission (NRC) limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB. It has the needed binding rate and capacity, but some of the chemical species that might be present in the containers could interfere with its ability to remove hydrogen. This project is focused upon developing a protective polymeric membrane coating for the DEB getter material, which comes in the form of small, irregularly shaped particles. This report summarizes the experimental results of the second phase of the development of the materials.

  10. Hydrogen selective membrane for the natural gas system. Development of CO{sub 2}-selective biogas membrane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vestboe, A.P.

    2012-02-15

    The project started as a literature study and technology development project for a hydrogen selective membrane for the natural gas system. The introduction of hydrogen (for example produced from wind turbines by surplus electricity) in the gas system makes it possible to store energy which can be selectively used with high energy conversion in fuel cells directly located at the end users. In order to make this possible, it is necessary to have a separating unit that can selectively remove hydrogen from the gas mixture and deliver it as fuel to the electrical generator (a fuel cell). In the project, several existing technologies were evaluated with regard to the application in view. It was concluded that while other technologies are ripe, they are costly in energy and unsuitable for the relatively low capacity application that are in question close to the end users. Membrane technology was evaluated to be the most suitable, although the technology is still under development in many cases. In the project it was found that metallic membranes in the form of palladium coated stainless discs would answer the needs for the high purity needed. Laboratory development yielded discs that could separate hydrogen from natural gas, however, the flux was low compared to the needs of the application. It was found that at least 2 bar pressure difference of hydrogen would be needed to get a high enough flux. The way to achieve this pressure would necessitate a compressor which would consume an energy amount high enough to invalidate the concept. When concluding on the results and the study it was found that the direction of the project could be changed towards developing CO{sub 2}-selective membranes with the goal of developing membrane technology that could upgrade biogas by removing CO{sub 2}. The laboratory equipment and setup that were developed in the first part of the project could be used directly in this second part of the project. In this second part of the project it was

  11. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-12-01

    carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.''

  12. Flow in porous media, phase behavior and ultralow interfacial tensions: mechanisms of enhanced petroleum recovery. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, H.T.; Scriven, L.E.

    1982-01-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The 1982 outputs of the interdisciplinary team of investigators were again ideas, instruments, techniques, data, understanding and skilled people: forty-one scientific and engineering papers in leading journals; four pioneering Ph.D. theses; numerous presentations to scientific and technical meetings, and to industrial, governmental and university laboratories; vigorous program of research visits to and from Minnesota; and two outstanding Ph.D.'s to research positions in the petroleum industry, one to a university faculty position, one to research leadership in a governmental institute. This report summarizes the 1982 papers and theses and features sixteen major accomplishments of the program during that year. Abstracts of all forty-five publications in the permanent literature are appended. Further details of information transfer and personnel exchange with industrial, governmental and university laboratories appear in 1982 Quarterly Reports available from the Department of Energy and are not reproduced here. The Minnesota program continues in 1983, notwithstanding earlier uncertainty about the DOE funding which finally materialized and is the bulk of support. Supplemental grants-in-aid from nine companies in the petroleum industry are important, as are the limited University and departmental contributions. 839 references, 172 figures, 29 tables.

  13. Medium energy measurements of N-N parameters. Final technical report, April 1, 1994--September 30, 1996

    International Nuclear Information System (INIS)

    Ambrose, D.; Betts, W.; Coffey, P.; Glass, G.; McDonough, J.; Riley, P.; Tang, J.L.

    1998-08-01

    This document is a final technical report describing the accomplishments of the medium/high energy nuclear physics research program at the University of Texas at Austin. The research program had four main thrusts, only one of which can be considered as measurements of N-N parameters: (1) finishing the data analyses associated with recent LAMPF and TRIUMPF N-N experiments, whose overall purpose has been the determination of the nucleon-nucleon amplitudes, both for isospin 0 and 1 at medium energies; (2) continuing work on BNL E871, a search for rare decay modes of the K L ; (3) work on the RHIC-STAR project, an experiment to create and study a quark gluon plasma and nuclear matter at high energy density; (4) beginning a new AGS experiment (E896) which will search for the lowest mass state of the predicted strange di-baryons, the Ho, and other exotic states of nuclear matter through nucleus-nucleus collisions

  14. Hydrogen production by renewable energies. Final report of the integrated research program 4.1; Production d'hydrogene par des energies renouvelables. Rapport final du programme de recherche integree 4.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this PRI is to study and to develop methods of hydrogen production based on the renewable energies, without greenhouse gases emission in order to implement clean processes in the framework of a sustainable development. Two approaches are proposed. The first one uses microorganisms in condition of hydrogen production (micro-algae). The second one is based on the bio-mimetism approaches aiming to reproduce artificially the biological mechanisms of the photosynthesis leading to water decomposition. (A.L.B.)

  15. DGEMP/CGP energy policy lecture cycle - technical and economical stakes of hydrogen as an energy carrier

    International Nuclear Information System (INIS)

    Alleau, T.; Freund, E.; Coiffard, J.

    2002-01-01

    Hydrogen is attracting a lot a interest from energy specialists, in particular because supply safety issues are back on the agendas. One of the most promising applications seems to be the 'combustible cells', which changes hydrogen into electricity and heat in various applications: 'mobile', as an alternative to electric cells, for instance in telephones or lap-top computers, 'stationary' for producing electricity and heat, including small and medium voltage, and 'transport' with a high number of light vehicle and even bus prototypes. (authors)

  16. Results of a technical analysis of the Hubble Space Telescope nickel-cadmium and nickel-hydrogen batteries

    Science.gov (United States)

    Manzo, Michelle A.

    1991-01-01

    The Hubble Space Telescope (HST) Program Office requested the expertise of the NASA Aerospace Flight Battery Systems Steering Committee (NAFBSSC) in the conduct of an independent assessment of the HST's battery system to assist in their decision of whether to fly nickel-cadmium or nickel-hydrogen batteries on the telescope. In response, a subcommittee to the NAFBSSC was organized with membership comprised of experts with background in the nickel-cadmium/nickel-hydrogen secondary battery/power systems areas. The work and recommendations of that subcommittee are presented.

  17. Role of vanadium carbide traps in reducing the hydrogen embrittlement susceptibility of high strength alloy steels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, G.L.; Duquette, D.J.

    1998-08-01

    High strength alloy steels typically used for gun steel were investigated to determine their susceptibility to hydrogen embrittlement. Although AISI grade 4340 was quite susceptible to hydrogen embrittlement, ASTM A723 steel, which has identical mechanical properties but slightly different chemistries, was not susceptible to hydrogen embrittlement when exposed to the same conditions. The degree of embrittlement was determined by conducting notched tensile testing on uncharged and cathodically charged specimens. Chemical composition was modified to isolate the effect of alloying elements on hydrogen embrittlement susceptibility. Two steels-Modified A723 (C increased from 0.32% to 0.40%) and Modified 4340 (V increased from 0 to O.12%) were tested. X-ray diffraction identified the presence of vanadium carbide, V{sub 4}C{sub 3}, in A-23 steels, and subsequent hydrogen extraction studies evaluated the trapping effect of vanadium carbide. Based on these tests, it was determined that adding vanadium carbide to 4340 significantly decreased hydrogen embrittlement susceptibility because vanadium carbide traps ties up diffusible hydrogen. The effectiveness of these traps is examined and discussed in this paper.

  18. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  19. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling: Technical progress report

    International Nuclear Information System (INIS)

    Kim, K.

    1986-01-01

    A detailed experimental study successfully demonstrates the acceleration of frozen hydrogen pellets by means of a fuseless two-stage electromagnetic railgun system. This system consists of a pneumatic hydrogen pellet injector, which freezes and pneumatically pre-accelerates (with high-pressure helium as the propellant gas) cylindrical 1.6-mm-dia by 2.15-mm-long hydrogen pellets, and a 60-cm-long, 1.6-mm-dia circular-bore electromagnetic railgun. The pellet is introduced into the railgun by means of a coupling piece, and a plasma-arc armature is created from the propellant gas by means of a very unique, fuseless, arc-initiation scheme. Railgun-accelerated hydrogen pellet velocities in excess of 1.6 km/s are achieved from pneumatically accelerated injection velocities of 800 m/s. Streak-camera and current-probe data show that the plasma-arc armature moves at a velocity proportional to the railgun current, I. Insight to this I-dependence is gained through the use of streak photography and current probes for varying bore geometries and gas pressures

  20. Rate inhibition of steam gasification of adsorbed hydrogen. Technical progress report, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.J.

    1995-04-01

    Work during the fifth quarter of the grant period has involved both gasification experiments in steam and hydrogen and continued development of the reaction apparatus and analytical methods. Most of the latter work has focused on mass spectrometric analysis of the effluent gases to obtain better response factors and to reduce background signals resulting from impurities in the reacting gas stream.

  1. Control of hydrogen sulfide emission from geothermal power plants. Volume III. Final report: demonstration plant equipment descriptions, test plan, and operating instructions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, F.C.; Harvey, W.W.; Warren, R.B.

    1977-01-01

    The elements of the final, detailed design of the demonstration plant for the copper sulfate process for the removal of hydrogen sulfide from geothermal steam are summarized. Descriptions are given of all items of equipment in sufficient detail that they can serve as purchase specifications. The process and mechanical design criteria which were used to develop the specifications, and the process descriptions and material and energy balance bases to which the design criteria were applied are included. (MHR)

  2. A study of hydrogen effects on fracture behavior of radioactive waste storage tanks. Final report, October 1992-September 1994

    International Nuclear Information System (INIS)

    Murty, K.L.; Elleman, T.S.

    1994-01-01

    The processing of high-level radioactive wastes now stored at Hanford and Savannah River Laboratories will continue over many years and it will be necessary for some of the liquids to remain in the tanks until well into the next century. Continued tank integrity is therefore an issue of prime importance and it will be necessary to understand any processes which could lead to tank failure. Hydrogen embrittlement resulting from absorption of radiolytic hydrogen could alter tank fracture behavior and be an issue in evaluating the effect of stresses on the tanks from rapid chemical oxidation-reduction reactions. The intense radiation fields in some of the tanks could be a factor in increasing the hydrogen permeation rates through protective oxide films on the alloy surface and be an additional factor in contributing to embrittlement. The project was initiated in October 1992 for a two year period to evaluate hydrogen uptake in low carbon steels that are representative of storage tanks. Steel specimens were exposed to high gamma radiation fields to generate radiolytic hydrogen and to potentially alter the protective surface films to increase hydrogen uptake. Direct measurements of hydrogen uptake were made using tritium as a tracer and fracture studies were undertaken to determine any alloy embrittlement. The rates of hydrogen uptake were noted to be extremely low in the experimental steels. Gamma radiation did not reveal any significant changes in the mechanical and fracture characteristics following exposures as long as a month. It is highly desirable to investigate further the tritium diffusion under stress in a cracked body where stress-assisted diffusion is expected to enhance these rates. More importantly, since welds are the weakest locations in the steel structures, the mechanical and fracture tests should be performed on welds exposed to tritium with and without stressed crack-fronts

  3. Hydrogen permeation resistant heat pipe for bi-modal reactors. Final report, October 1, 1994--September 30, 1995

    International Nuclear Information System (INIS)

    North, M.T.; Anderson, W.G.

    1995-01-01

    The principal objective of this program was to demonstrate technology that will make a sodium heat pipe tolerant of hydrogen permeation for a bimodal space reactor application. Special focus was placed on techniques which enhance the permeation of hydrogen out of the heat pipe. Specific objectives include: define the detailed requirements for the bimodal reactor application; design and fabricate a prototype heat pipe tolerant of hydrogen permeation; and test the prototype heat pipe and demonstrate that hydrogen which permeates into the heat pipe is removed or reduced to acceptable levels. The results of the program were fully successful. Analyses were performed on two different heat pipe designs and an experimental heat pipe was fabricated and tested. A model of the experimental heat pipe was developed to predict the enhancement in the hydrogen permeation rate out of the heat pipe. A significant improvement in the rate at which hydrogen permeates out of a heat pipe was predicted for the use of the special condenser geometry developed here. Agreement between the model and the experimental results was qualitatively good. Inclusion of the additional effects of fluid flow in the heat pipe are recommended for future work

  4. Revision of the European Ecolabel Criteria for Personal, Notebook and Tablet Computers TECHNICAL REPORT Summary of the final criteria proposals

    OpenAIRE

    DODD NICHOLAS; VIDAL ABARCA GARRIDO CANDELA; WOLF Oliver; GRAULICH Kathrin; BUNKE Dirk; GROSS Rita; LIU Ran; MANHART Andreas; PRAKASH Siddharth

    2015-01-01

    This technical report provide the background information for the revision of the EU Ecolabel criteria for Personal and Notebook Computers. The study has been carried out by the Joint Research Centre with technical support from the Oeko-Institut. The work has been developed for the European Commission's Directorate General for the Environment. The main purpose of this report is to provide a summary of the technical background and rationale for each criterion proposal. This document is compl...

  5. Hydrogen storage - are we making progress?

    International Nuclear Information System (INIS)

    Blair, L.; Milliken, J.; Satyapal, S.

    2004-01-01

    'Full text:' The efficient storage of hydrogen in compact, lightweight systems that allow greater than 300-mile range has been identified as one of the major technical challenges facing the practical commercialization of fuel cell power systems for light-duty vehicles. Following the hydrogen vision announced by President Bush in his 2003 State of the Union address, the U.S. Department of Energy issued a Grand Challenge, soliciting ideas from universities, national laboratories, and industry. DOE's National Hydrogen Storage Project, an aggressive and innovative research program focused on materials R and D, will be launched in Fiscal Year 2005. An intensive effort is also underway in the private sector, both in the U.S. and abroad, to meet the challenging on-board hydrogen storage requirements. A historical perspective of hydrogen storage research and development will be provided and the current DOE technical targets for hydrogen storage systems will be discussed. The state-of-the-art in hydrogen storage will be summarized and recent progress assessed. Finally future research directions and areas of technical emphasis will be described. (author)

  6. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling. Technical progress report

    International Nuclear Information System (INIS)

    Kim, K.K.

    1986-01-01

    Using a tungsten-needle arc initiator in conjunction with Paschen curves characteristics hydrogen pellets have been accelerated with a two-stage electromagnetic railgun system. This scheme produced velocities on the order of 1.6 km/s. The effects on performance of the bore size have been studied. Questions of pretriggering, misfiring, plasma-arc stalling, railgun geometry, and railgun currents have been addressed. 1 tab

  7. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling: Technical progress report

    International Nuclear Information System (INIS)

    Kim, Kyekyoon.

    1987-12-01

    This paper discusses the use of a railgun accelerator to inject hydrogen pellets into a magnetic fusion reactor for refueling purposes. Specific studies in this paper include: 1.5 mm-diameter two-stage fuseless plasma-arc-driven electromagnetic railgun, construction and testing of a 3.2 mm-diameter two-stage railgun and a theoretical analysis of the behavior of a railgun plasma-arc armature inside a railgun

  8. California Hydrogen Infrastructure Project

    Energy Technology Data Exchange (ETDEWEB)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling

  9. Final Project Closeout Report for Sprint Hydrogen Fuel Cell (HFC) Deployment Project in California, Gulf Coast and Eastern Seaboard Markets

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, Kevin [Sprint, Reston, VA (United States); Bradley, Dwayne [Burns & McDonnell, Kansas City, MO (United States)

    2015-09-01

    Sprint is one of the telecommunications industry leaders in the deployment of hydrogen fuel cell (HFC) systems to provide backup power for their mission critical wireless network facilities. With several hundred fuel cells commissioned in California, states in the gulf coast region, and along the upper eastern seaboard. A strong incentive for advancing the integration of fuel cells into the Sprint network came through the award of a Department of Energy (DOE) grant focused on Market Transformation activities for project (EE0000486). This grant was funded by the 2009 American Recovery and Reinvestment Act (ARRA). The funding provided by DOE ($7.295M) was allocated to support the installation of 260 new HFC systems, equipped with an on-site refillable Medium Pressure Hydrogen Storage Solution (MPHSS), as well as for the conversion of 21 low pressure hydrogen systems to the MPHSS, in hopes of reducing barriers to market acceptance.

  10. Models and criteria for prediction of Deflagration-to-Detonation Transition (DDT) in hydrogen-air-steam systems under severe accident conditions. Final report

    International Nuclear Information System (INIS)

    Klein, R.; Rehm, W.

    1999-01-01

    The European Commission in Brussels supported a joint project on Deflagration-to-Detonation Transition (DDT) studies for hydrogen safety within the framework programme on nuclear fission safety. The project was initiated by the Forschungszentrum Juelich based on the results of a pilot project. The following main project was coordinated by the Freie Universitaet Berlin involving seven european partners. The partners came from universities, research centers and industry, as follows: FU-Berlin, RWTH-Aachen, CNRS-Marseille, IPSN-Saclay, FZ-Juelich, FZ-Karlsruhe, and NNC-Knutsford, which worked closely together. The working period was two years (1997-1998). The aim of the project was to develop models and criteria for prediction of deflagration-to-detonation transition (DDT) in hydrogen-air-steam systems under severe accident conditions. The results obtained are documented in this final report, which was finished in 1999. The report consists of seven chapters, concerning: - Introduction - Experimental Investigations - Modelling and Numerics - Validation - Mitigation - Further Deliverables - Summary and Conclusion. The final report presents special experimental, theoretical, and computational aspects of the complex DDT phenomena for hydrogen safety studies, and it should be a solid basis for end user applications and further developments. (orig.)

  11. [Review comments on the Draft DOE Area Recommendation Report for the Crystalline Repository Project]: Final technical report

    International Nuclear Information System (INIS)

    Dutch, S.I.; Stiegliltz, R.D.

    1986-03-01

    Research performed under the grant primarily involved review and comment on the Draft Area Recommendations Report (DARR). However, because data and ''recommendations'' included in the DARR are unquestionably tied to years of research and dozens of technical reports and documents, i.e., Screening Methodologies, Regional characterization Reports, etc., it is essential that consultants to the Menominee Tribe review all the relevant DOE documents, working papers, etc. Given the short period provided for technical comment and limited funds available to the Tribe, a well designed and thorough technical review was (and is) without question impossible. What review and comment that did occur on a geotechnical level is included in this report

  12. IEA Wind Task 23, offshore wind technology and deployment. Subtask 1: Experience with critical deployment issues. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lemming, J

    2010-10-15

    The final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports: Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). The Subtask 1 report included here provides background information and objectives of Task 23. It specifically discusses ecological issues and regulation, electrical system integration and offshore wind, external conditions, and key conclusions for Subtask 1. A comprehensive approach to planning is needed that integrates impacts on ecology, the effects of electrical infrastructure, and the layout of wind farms. Governments, which usually finance ecological research, should disclose results for wide dissemination as they become available. As example the workshop held suggested that documents covering the issues like offshore wind energy legislation, Guidelines for EIAs and SEAs and best practices need to be produced and distributed on a regular basis, as ecological research progresses and experience from the planning and operation of existing wind farms emerges. Research should help strike the balance between optimum regulation and the need to get projects up and running. Such research is needed to increase understanding of offshore wind metrology and its impact on electrical power fluctuations. More work is needed to develop special grid code and standards for offshore. The transient behavior of large cable installations (switching / harmonic/ Behavior and modeling of large HV cable systems) must be better understood. Connection and control systems must be developed for large offshore wind farms. Work is needed to develop the technical architecture of offshore wind grid systems. Public access to measurements (e.g., turbine power output, meteorological masts, buoys) is important, especially for model validation. Determining wake effects is currently the most important challenge in wind engineering. Emphasis should be put into

  13. Hazards assessment and technical actions due to the production of pressured hydrogen within a pilot photovoltaic-electrolyser-fuel cell power system for agricultural equipment

    Directory of Open Access Journals (Sweden)

    Simone Pascuzzi

    2016-06-01

    Full Text Available A pilot power system formed by photovoltaic panels, alkaline electrolyser and fuel cell stacks was designed and set up to supply the heating system of an experimental greenhouse. The aim of this paper is to analyse the main safety aspects of this power system connected to the management of the pressured hydrogen, such as the explosion limits of the mixture hydrogen-oxygen, the extension of the danger zone, the protection pressure vessels and the system to make unreactive the plant. The electrolyser unit is the core of this plant and from the safety point of view has been equipped with devices able to highlight the malfunctions before they cause damages. Alarm situations are highlighted and the production process is cut off in safe conditions in the event that the operational parameters have an abnormal deviation from the design values. Also the entire power system has been designed so that any failure to its components does not compromise the workers’ safety even if the risk analysis is in progress because technical operations are being carried out for enhancing the plant functionality, making it more suitable to the designed task of supplying electrically the greenhouse heating system during cold periods. Some experimental data pertinent to the solar radiation and the corresponding hydrogen production rate are also reported. At present it does not exist a well-established safety reference protocol to design the reliability of these types of power plants and then the assumed safety measures even if related to the achieved pilot installation, can represent an original base of reference to set up guidelines for designing the safety of power plants in the future available for agricultural purposes.

  14. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  15. Assessment of technical risks and R and D requirements for a magnetic confinement fusion fuel system. Final report

    International Nuclear Information System (INIS)

    DeFreece, D.A.

    1983-11-01

    This report documents a specific use and results of a novel technique for assessing the technical risks associated with the hardware development of a possible future commercial fusion power plant fuel system. Technical risk is defined as the risk that a particular technology or component which is currently under development will not achieve a set of required technical specifications. A technical risk assessment is the quantification of this risk. This Technical Risk Assessment (TRA) methodology was applied to a deuterium-tritium fuel system for a magnetic-confinement fusion power plant. The fuel system is defined to support a generic commercial reactor with at least two viable options for each critical subsystem. Each subsystem option is defined in detail including nominal performance requirements and subsystem interfaces. Subsystem experts were canvassed to obtain values for past, present and future technical performance parameters for each of the subsystem options. These forecasts are presented as probabilities of achieving given levels of performance in specific time periods for assumed funding scenarios. Several funding scenarios were examined to discern whether performance limitations are caused by funding or technology. A computerized Fuel System simulation is described which uses these subsystem performance parameter forecasts as inputs

  16. Demonstrating the Feasibility of Molten Aluminum for Destroying Polymeric Encapsulants in SNF-Bearing Metallographic Mounts. Final Technical Report

    International Nuclear Information System (INIS)

    Dan Stout; Scott Ploger

    2004-01-01

    DOE-owned spent nuclear fuel (SNF) rods have been cross sectioned and mounted for metallography throughout the history of nuclear reactors. Many hundreds of these ''met mounts'' have accumulated in storage across the DOE complex. However, because of potential hydrogen generation from radiolysis of the polymeric encapsulants, the met mounts are problematic for eventual disposal in a geologic repository

  17. State child health; revisions to the regulations implementing the State Children's Health Insurance Program. Interim final rule with comment period; revisions, delay of effective date, and technical amendments to final rule.

    Science.gov (United States)

    2001-06-25

    Title XXI authorizes the State Children's Health Insurance Program (SCHIP) to assist State efforts to initiate and expand the provision of child health assistance to uninsured, low-income children. On January 11, 2001 we published a final rule in the Federal Register to implement SCHIP that has not gone into effect. This interim final rule further delays the effective date, revises certain provisions and solicits public comment, and makes technical corrections and clarifications to the January 2001 final rule based on further review of the comments received and applicable law. Only the provisions set forth in this document have changed. All other provisions set forth in the January 2001 final rule will be implemented without change.

  18. GPHS-RTGs in support of the Cassini RTG Program. Addendum to the final technical report, May 1--December 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This Addendum to the Cassini GPHS-RTG Program Final Technical Progress Report describes activities performed during the period 1 May 1998 through 31 December 1998, including effort reflecting contract modification M058. These activities include Earth Gravity Assist (EGA) reentry and related analyses which are detailed in Part A, and effort related to the installation of CAGO equipment within Lockheed Martin`s Building 100 facility in Valley Forge, PA, which is detailed in Part B.

  19. Health care fraud and abuse data collection program: technical revisions to Healthcare Integrity and Protection Data Bank data collection activities. Final rule.

    Science.gov (United States)

    2004-09-21

    The rule finalizes technical changes to the Healthcare Integrity and Protection Data Bank (HIPDB) data collection reporting requirements by clarifying the types of personal numeric identifiers that may be reported to the data bank in connection with adverse actions. The rule clarifies that in lieu of a Social Security Number (SSN), an individual taxpayer identification number (ITIN) may be reported to the data bank when, in those limited situations, an individual does not have an SSN.

  20. GPHS-RTGs in support of the Cassini RTG Program. Addendum to the final technical report, May 1-December 31, 1998

    International Nuclear Information System (INIS)

    1998-12-01

    This Addendum to the Cassini GPHS-RTG Program Final Technical Progress Report describes activities performed during the period 1 May 1998 through 31 December 1998, including effort reflecting contract modification M058. These activities include Earth Gravity Assist (EGA) reentry and related analyses which are detailed in Part A, and effort related to the installation of CAGO equipment within Lockheed Martin's Building 100 facility in Valley Forge, PA, which is detailed in Part B

  1. Review of technical issues related to the failure of Rosemount pressure transmitters due to fill oil loss. Final report

    International Nuclear Information System (INIS)

    James, R.W.; Gaertner, J.P.; Burns, E.T.; Horn, A.; Lee, L.K.

    1994-08-01

    Rosemount pressure transmitters are extensively used in both safety and non-safety applications in US nuclear power plants. They are used to measure pressure, flow, and water level. Rosemount pressure transmitter models 1151, 1152, 1153A, 1153, and 1154 use a fill oil to hydraulically transmit process pressure exerted on outer isolating diaphragms to internal diaphragms. The resulting deflection of the internal diaphragms changes the distance between them and a central diaphragm separating the transmitter interior into two volumes. The change in distance is measured as a change in electrical capacitance between the isolating diaphragms and the central diaphragm and can be related to differential pressure. The fill oil also functions as a dielectric. It has been well established that this fill oil can potentially leak over time, decreasing transmitter accuracy and increasing transmitter response time. Ultimately, the transmitter can fail. An extensive effort has been expended by the nuclear power industry collectively to analyze this issue and develop technically sound and reasonable requirements to mitigate the effects of oil loss in Rosemount pressure transmitters. Despite this, technical concerns have still been raised regarding the technical validity of the past analyses of this problem and its scope. In May 1993, the NRC created an internal group to comprehensively review the Rosemount issue and the NRC's action in addressing it to ensure that all available technical information has been considered. Because this issue remains of active technical interest and because the past work on this subject has been done by many different groups and organizations, EPRI has prepared this report to thoroughly document the current technical understanding of this issue, to perform additional analysis, and to identify any appropriate additional technical research activities regarding oil loss in Rosemount pressure transmitters

  2. Technical basis for hydrogen-water chemistry: Laboratory studies of water chemistry effects on SCC [stress-corrosion-cracking

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Soppet, W.K.

    1986-10-01

    The influence of different impurities, viz., oxyacids and several chloride salts, on the stress-corrosion-cracking (SCC) of sensitized Type 304 stainless steel (SS) was investigated in constant-extension-rate-tensile (CERT) tests in 289 0 C water at a low dissolved-oxygen concentration ( 0 C in low-oxygen environments with and without sulfate at low concentrations. In these experiments, the crack growth behavior of the materials was correlated with the type and concentration of the impurities and the electrochemical potentials of Type 304 SS and platinum electrodes in the simulated hydrogen-water chemistry environments. The information suggests that better characterization of water quality, through measurement of the concentrations of individual species (SO 4 2- , NO 3 - , Cu 2+ , etc.) coupled with measurements of the corrosion and redox potentials at high temperatures will provide a viable means to monitor and ultimately improve the performance of BWR system materials

  3. Technical procedures for utilities and solid waste: Environmental Field Program, Deaf Smith County site, Texas: Final draft

    International Nuclear Information System (INIS)

    1987-08-01

    The evaluation of environmental issues and concerns and the addressing of statutory requirements are fundamental parts in the characterization of the site in Deaf Smith County, Texas for the US Department of Energy's Salt Repository Project (SRP). To ensure that the environmental field program comprehensively addresses the issues and requirements of the project, a site study plan (SSP) has been prepared for Utilities and Solid Waste considerations. This technical procedure (TP) has been developed to implement the field program described in the Utilities and Solid Waste Site Study Plan. The purpose and scope of the Utilities and Solid Waste Technical Procedure is to develop and implement a data collection procedure to fulfill the data base needs of the Utilities and Solid Waste SSP. The procedure describes a method of obtaining, assessing and verifying the capabilities of the regional service utilities and disposal contractors. This data base can be used to identify a preferred service source for the engineering contractor. The technical procedure was produced under the guidelines established in Technical Administrative Procedure No. 1.0, Preparation, Review and Approval of Technical Procedures

  4. The Use of Vaporous Hydrogen Peroxide for Building Decontamination Final Report CRADA No. TC-2053-02

    Energy Technology Data Exchange (ETDEWEB)

    Verce, M. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwartz, L. I. [Strategic Technology Enterprises, Inc., Mentor, OH (United States)

    2017-09-08

    This was a collaborative effort between LLNL and STE to investigate the use of vaporized hydrogen peroxide (VHP®) to decontaminate spore-contaminated heating, ventilation, and cooling (HV AC) systems in a trailer sized room. LLNL's effort under this CRADA was funded by DOE's Chemical and Biological National Security Program (CBNP), which later became part of Department of Homeland Security in 2004.

  5. Anisotropic intermolecular interactions and rotational ordering in hydrogen containing solids. Final report, January 1, 1972--June 30, 1978

    International Nuclear Information System (INIS)

    White, D.

    1978-01-01

    Thermodynamic properties, order-disorder phenomena, optical, electric and magnetic properties of hydrogen-containing molecular solids have been investigated. A summary of the findings of this 6 year research program is presented here. The approach in these studies was (a) thermodynamic and transport studies extending to very low temperatures, (b) pulsed NMR studies for determination of structural parameters important to spin-lattice relaxation, and (c) pulsed laser studies for the investigation of excitations and energy transfer mechanisms in solids

  6. Hydrogen Storage and Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Abhijit [Univ. of Arkansas, Little Rock, AR (United States); Biris, A. S. [Univ. of Arkansas, Little Rock, AR (United States); Mazumder, M. K. [Univ. of Arkansas, Little Rock, AR (United States); Karabacak, T. [Univ. of Arkansas, Little Rock, AR (United States); Kannarpady, Ganesh [Univ. of Arkansas, Little Rock, AR (United States); Sharma, R. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  7. CHRISGAS Project. WP13: Ancillary and Novel Processes. Final Report: Separation of Hydrogen with Membranes Combined with Water Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Hervas, J. M.; Marono, M.; Barreiro, M. M.

    2011-05-13

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology has been investigated under the scope of the VI FP CHRISGAS project, which started in September 2004 and had a duration of five and a half years. The Division of Combustion and Gasification of CIEMAT participated in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the project regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification, the separation of H2 with selective membranes and the combination of both processes in one by means of a catalytic membrane reactor. (Author) 20 refs.

  8. CHRISGAS Project. WP13: Ancillary and Novel Processes. Final Report: Separation of Hydrogen with Membranes Combined with Water Gas Shift Reaction

    International Nuclear Information System (INIS)

    Sanchez-Hervas, J. M.; Marono, M.; Barreiro, M. M.

    2011-01-01

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology has been investigated under the scope of the VI FP CHRISGAS project, which started in September 2004 and had a duration of five and a half years. The Division of Combustion and Gasification of CIEMAT participated in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the project regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification, the separation of H2 with selective membranes and the combination of both processes in one by means of a catalytic membrane reactor. (Author) 20 refs.

  9. Technical procedures for water resources: Volume 4, Deaf Smith County site, Texas: Environmental Field Program: Final draft

    International Nuclear Information System (INIS)

    1987-08-01

    This volume contains Technical Procedures pursuant to the water Resources Site Study Plan: including Collection, Preservation, and Shipment of Ground-Water Samples; Inventory Current Water Use and Estimating Projected Water Use; Estimation of Precipitation Depth, Duration, Frequence; Estimation of Probable Maximum Precipitation; Calculation of Floodplains

  10. Research in Fiber Optics: Implications for Fiber Optics in Vocational-Technical Education. Final Report 1984-85.

    Science.gov (United States)

    Bergen County Vocational-Technical High School, Hackensack, NJ.

    This project was conducted to determine the vocationa