WorldWideScience

Sample records for hydrogen energy projects

  1. Wind-To-Hydrogen Energy Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the

  2. Renewable based hydrogen energy projects in remote and island communities

    International Nuclear Information System (INIS)

    Miles, S.; Gillie, M.

    2009-01-01

    Task 18 working group of the International Energy Agency's Hydrogen Implementing Agreement has been evaluating and documenting experiences with renewable based hydrogen energy projects in remote and island communities in the United Kingdom, Canada, Norway, Iceland, Gran Canaria, Spain and New Zealand. The objective was to examine the lessons learned from existing projects and provide recommendations regarding the effective development of hydrogen systems. In order to accomplish this task, some of the drivers behind the niche markets where hydrogen systems have already been developed, or are in the development stages, were studied in order to determine how these could be expanded and modified to reach new markets. Renewable based hydrogen energy projects for remote and island communities are currently a key niche market. This paper compared various aspects of these projects and discussed the benefits, objectives and barriers facing the development of a hydrogen-based economy

  3. Fiscal 1976 Sunshine Project research report. Interim report (hydrogen energy); 1976 nendo chukan hokokushoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-11-01

    This report summarizes the Sunshine Project research interim reports on hydrogen energy of every organizations. The report includes research items, laboratories, institutes and enterprises concerned, research targets, research plans, and progress conditions. The research items are as follows. (1) Hydrogen production technology (electrolysis, high- temperature high-pressure water electrolysis, 4 kinds of thermochemical techniques, direct thermolysis). (2) Hydrogen transport and storage technology (2 kinds of solidification techniques). (3) Hydrogen use technology (combustion technology, fuel cell, solid electrolyte fuel cell, fuel cell power system, hydrogen fuel engine). (4) Hydrogen safety measures technology (disaster preventive technology for gaseous and liquid hydrogen, preventing materials from embrittlement due to hydrogen, hydrogen refining, transport and storage systems, their safety technology). (5) Hydrogen energy system (hydrogen energy system, hydrogen use subsystems, peripheral technologies). (NEDO)

  4. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  5. Japan's New Sunshine Project. 1998 Annual summary of hydrogen energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  6. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    Energy Technology Data Exchange (ETDEWEB)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The project’s research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The project’s literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a “heat mirror” that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nation’s future electricity and transportation needs that is entirely “home grown” and carbon free. As CPV enter the nation’s utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this project’s findings.

  7. FY 2000 Project of international clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the research and development project aimed at construction of the international clean energy network using hydrogen conversion (WE-NET). The projects include 12 tasks; system evaluation for, e.g., optimum scenario for introduction of hydrogen energy; experiments for hydrogen safety; study on the international cooperation for WE-NET; development of power generation technology using a 100kW cogeneration system including hydrogen-firing diesel engine; developmental research on vehicles driven by a hydrogen fuel cell system; developmental research on the basic technologies for PEFC utilizing pure hydrogen; developmental research on a 30Nm{sup 3}/hour hydrogen refueling station for vehicles; developmental research on hydrogen production technology; developmental research on hydrogen transportation and storage technology, e.g., liquid hydrogen pump; research and development of the databases of and processing technology for cryogenic materials exposed to liquid hydrogen; developmental research on hydrogen absorbing alloys for small-scale hydrogen transportation and storage systems; and study on innovative and leading technologies. (NEDO)

  8. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Science.gov (United States)

    2013-07-22

    ... DEPARTMENT OF ENERGY Notice of Availability Hydrogen Energy California's Integrated Gasification... Energy (DOE) announces the availability of the Hydrogen Energy California's Integrated Gasification... potential environmental impacts associated with the Hydrogen Energy California's (HECA) Integrated...

  9. Summary of the FY 1988 Sunshine Project results. Hydrogen energy; 1988 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Outlined herein are the results of researches on hydrogen energy as part of the FY 1988 Sunshine Project results. Researches on the techniques for producing hydrogen by electrolysis of water using a polymer electrolyte include development of power-supplying materials for electrolysis at high current density, and basic studies on the electrolysis using an OH ion conducting type polymer electrolyte. Researches on the techniques for producing hydrogen by electrolysis with hot steam include development of the materials, techniques for processing these materials, and electrolysis performance tests. Researches on the techniques for transporting hydrogen by metal hydrides include development of hydrogen-occluding alloys of high bulk density, and techniques for evaluating characteristics of metal hydrides. Researches on the techniques for storing hydrogen include those on alloy molding/processing techniques, hydrogen-storing metallic materials, and new hydrogen-storing materials. Researches on the techniques for utilizing hydrogen include those on energy conversion techniques using hydrogen-occluding alloys, and hydrogen-fueled motors. Researches on the techniques for safety-related measures include those on prevention of embrittlement of the system materials by hydrogen. (NEDO)

  10. Summary of the FY 1989 Sunshine Project results. Hydrogen energy; 1989 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-04-01

    Outlined herein are the results of researches on hydrogen energy as part of the FY 1989 Sunshine Project results. Researches on the techniques for producing hydrogen by electrolysis of water using a polymer electrolyte include those on the SPE electrolysis at high temperature and current density, and basic studies on the electrolysis using an OH ion conducting type polymer electrolyte. Researches on the techniques for producing hydrogen by electrolysis with hot steam include development of the materials, techniques for processing these materials, and electrolysis performance tests. Researches on the techniques for transporting hydrogen by metal hydrides include development of hydrogen-occluding alloys of high bulk density, and techniques for evaluating characteristics of metal hydrides. Researches on the techniques for storing hydrogen include those on hydrogen-storing metallic materials, alloy molding/processing techniques, and new hydrogen-storing materials. Researches on the techniques for utilizing hydrogen include those on energy conversion techniques using hydrogen-occluding alloys, and hydrogen-fueled motors. Researches on the techniques for safety-related measures include those on prevention of embrittlement of the system materials by hydrogen. (NEDO)

  11. Metrology for hydrogen energy applications: a project to address normative requirements

    Science.gov (United States)

    Haloua, Frédérique; Bacquart, Thomas; Arrhenius, Karine; Delobelle, Benoît; Ent, Hugo

    2018-03-01

    Hydrogen represents a clean and storable energy solution that could meet worldwide energy demands and reduce greenhouse gases emission. The joint research project (JRP) ‘Metrology for sustainable hydrogen energy applications’ addresses standardisation needs through pre- and co-normative metrology research in the fast emerging sector of hydrogen fuel that meet the requirements of the European Directive 2014/94/EU by supplementing the revision of two ISO standards that are currently too generic to enable a sustainable implementation of hydrogen. The hydrogen purity dispensed at refueling points should comply with the technical specifications of ISO 14687-2 for fuel cell electric vehicles. The rapid progress of fuel cell technology now requires revising this standard towards less constraining limits for the 13 gaseous impurities. In parallel, optimized validated analytical methods are proposed to reduce the number of analyses. The study aims also at developing and validating traceable methods to assess accurately the hydrogen mass absorbed and stored in metal hydride tanks; this is a research axis for the revision of the ISO 16111 standard to develop this safe storage technique for hydrogen. The probability of hydrogen impurity presence affecting fuel cells and analytical techniques for traceable measurements of hydrogen impurities will be assessed and new data of maximum concentrations of impurities based on degradation studies will be proposed. Novel validated methods for measuring the hydrogen mass absorbed in hydrides tanks AB, AB2 and AB5 types referenced to ISO 16111 will be determined, as the methods currently available do not provide accurate results. The outputs here will have a direct impact on the standardisation works for ISO 16111 and ISO 14687-2 revisions in the relevant working groups of ISO/TC 197 ‘Hydrogen technologies’.

  12. California Hydrogen Infrastructure Project

    Energy Technology Data Exchange (ETDEWEB)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling

  13. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  14. Japan sunshine project 1987 annual summary of Hydrogen energy R and D

    Science.gov (United States)

    1988-04-01

    This paper presents the findings of the researches on hydrogen energy in sunshine project in FY87. A duration test of the electrolyte membrane of solid polymer fabricated by bonding Pt and Ir catalyst layers was made for seven months to produce hydrogen by the electrolysis of water. The result indicates that the electrolysis will be able to be made at high current density. The sensitivity to stress corrosion cracking of stainless steel for electrolysis of water was evaluated. Since a thin film of stabilized zirconia fabricated by sintering at a temperature of 1500 C or higher is dense and conductive, it is a promising solid electrolyte. Since an inert phase to hydrogen is developed in a high-density metallic alloy for hydrogen storage produced by sintering and partially melting Mg7Zn3-Ni, it must be improved. A heating module of hydrogenated material monolithically coated on copper tube was investigated. The application of metallic alloy for hydrogen storage to the hydrogen electrode is studied. A hydrogen-fueled prime mover system circulating an inert gas is being developed. Since the low alloy steel part is extremely embrittled by heating, the intergranular face of coarse crystal affected by the cycle of welding heat is a problem.

  15. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  16. Japan's New Sunshine Project. 1998 annual summary of hydrogen energy R and D; New sunshine keikaku 1998 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  17. Summarized achievement report on the Sunshine Project in fiscal 1980 (Hydrogen energy); 1980 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-04-01

    This paper summarizes the achievement report on the Sunshine Project in fiscal 1980 for hydrogen energy research. In hydrogen manufacturing using the electrolytic process, improvements were made on membranes and electrodes. Solid electrolyte electrolysis is also under research. Researches are continued on reaction, separating operation, and device materials for the iodine system cycle in the thermo-chemical method. In the iron system cycle, a reaction experimenting equipment was fabricated on the trial basis, and tests and evaluation were performed on the material and heat balances. In the mixed system cycle, researches on the light irradiation electrolytic process were continued, whereas the light collecting rate was raised by using a lens to increase light intensity, having enhanced successfully the reaction rate to 60 to 80%. A heat diffusion column for HI decomposition and separation (hydrogen acquisition) was discussed in terms of chemical engineering. Development works are continued on metal hydrides for hydrogen transportation, and durability tests are also being performed. Same applies to hydrogen storage. A model burner was fabricated on the trial basis, and catalytic combustion was studied as development of a combustion technology that matches the requirements for safe hydrogen combustion and suppression of NOx emission. Searches were continued on catalysts and solid electrolyte materials for fuel cells. Thin film sold electrolyte fuel cells constructed by using the evaporation process are also being studied. The paper also describes measures for hydrogen safety assurance and researches on energy systems. (NEDO)

  18. Japan's Sunshine Project. 1991 Annual Summary of Hydrogen Energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    In the study of hydrogen production, tests and experiments were conducted concerning electrolysis of water in solid polymer electrolytes and electrolysis of high-temperature steam. In the study of hydrogen storage and transportation, use of metal hydrides for these purposes was tested with attention paid to CaNi{sub 5} degradation and metal element substitution in ZrMn{sub 2}. In the study of hydrogen application, electrodes in hydrogen storage alloy-aided energy conversion were investigated and hydrogen-oxygen combustion systems were experimented. In the study of hydrogen safety, a fracture in a heat affected weld and fatigue crack propagation therein were simulated, and the effect of hydrogen on the episode was investigated. Investigated in the study of a hydrogen-fired turbine were hydrogen combustion, hydrogen-fired power generation thermal efficiency, fuel cost, power generation cost, etc. (NEDO)

  19. Transitioning to a hydrogen economy in New Zealand - An EnergyScape project

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Rob; Clemens, Tony; Gardiner, Alister; Leaver, Jonathan

    2010-09-15

    The project identifies how hydrogen could become a significant contributor to New Zealand's energy system by 2050. Future transport scenarios are modeled with a changing mix of internal combustion engine (ICE), battery electric vehicles (BEV) and fuel cell vehicles (FCV) over the period between the present day and 2050. For scenarios the model takes account of the electricity generation requirements and costs, the resources used, and the renewable content of that electricity generation. With high penetration of FCV, or a mix of FCV and BEV, NZ targets for renewable electricity generation and transport related emission reductions can be achieved.

  20. Summary of achievement reports on the Sunshine Project in fiscal 1978 (Hydrogen energy); 1978 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-04-01

    This paper summarizes achievement reports on the Sunshine Project in fiscal 1978 (hydrogen energy). In hydrogen manufacturing methods, studies are described on materials of membranes and electrodes used in high temperature and pressure electrolysis. In thermo-chemical method, studies are continuing on cycles of the iron system, iodine system, and mixed system (composed by thermal, photo and electro-chemistries). For the iodine system, summary design was performed on an experimental device. For the mixed system, trial fabrication and experiments were carried out on a beam radiation type electrolytic tank that electrolyses quickly HI and Fe{sup 3+} produced in the photo-chemical reaction, and separates the products. Discussions were also given on HI decomposition (hydrogen acquisition) by means of heat diffusion. With respect to storage and transportation, development is being made on optimal metal hydrides. In combustion technologies, discussions are given on combustors and catalysts to break through the dilemma of high NOx emission and frequent occurrence of reverse ignition. For fuel cells, the paper describes developments of the materials thereof, high-temperature solid electrolyte type fuel cells and alkaline aqueous solution electrolyte type fuel cells. Regarding the non-steady hydrogen engines, the paper describes fundamental studies on non-steady jet flow behavior using shock tubes, and single cylinder engine tests. It also describes hydrogen safety assuring measures, and studies on energy systems. (NEDO)

  1. Hydrogen, energy of the future?

    International Nuclear Information System (INIS)

    Alleau, Th.

    2007-01-01

    A cheap, non-polluting energy with no greenhouse gas emissions and unlimited resources? This is towards this fantastic future that this book brings us, analyzing the complex but promising question of hydrogen. The scientific and technical aspects of production, transport, storage and distribution raised by hydrogen are thoroughly reviewed. Content: I) Energy, which solutions?: 1 - hydrogen, a future; 2 - hydrogen, a foreseeable solution?; II) Hydrogen, an energy vector: 3 - characteristics of hydrogen (physical data, quality and drawbacks); 4 - hydrogen production (from fossil fuels, from water, from biomass, bio-hydrogen generation); 5 - transport, storage and distribution of hydrogen; 6 - hydrogen cost (production, storage, transport and distribution costs); III) Fuel cells and ITER, utopias?: 7 - molecular hydrogen uses (thermal engines and fuel cells); 8 - hydrogen and fusion (hydrogen isotopes, thermonuclear reaction, ITER project, fusion and wastes); IV) Hydrogen acceptability: 9 - risk acceptability; 10 - standards and regulations; 11 - national, European and international policies about hydrogen; 12 - big demonstration projects in France and in the rest of the world; conclusion. (J.S.)

  2. Comparative assessment of hydrogen storage and international electricity trade for a Danish energy system with wind power and hydrogen/fuel cell technologies. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Bent (Roskilde University, Energy, Environment and Climate Group, Dept. of Environmental, Social and Spatial Change (ENSPAC) (DK)); Meibom, P.; Nielsen, Lars Henrik; Karlsson, K. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Systems Analysis Dept., Roskilde (DK)); Hauge Pedersen, A. (DONG Energy, Copenhagen (DK)); Lindboe, H.H.; Bregnebaek, L. (ea Energy Analysis, Copenhagen (DK))

    2008-02-15

    This report is the final outcome of a project carried out under the Danish Energy Agency's Energy Research Programme. The aims of the project can be summarized as follows: 1) Simulation of an energy system with a large share of wind power and possibly hydrogen, including economic optimization through trade at the Nordic power pool (exchange market) and/or use of hydrogen storage. The time horizon is 50 years. 2) Formulating new scenarios for situations with and without development of viable fuel cell technologies. 3) Updating software to solve the abovementioned problems. The project has identified a range of scenarios for all parts of the energy system, including most visions of possible future developments. (BA)

  3. Achievement report on research and development in the Sunshine Project in fiscal 1977. Hydrogen energy; 1977 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-04-01

    This paper summarizes achievements in the Sunshine Project related to hydrogen energy in fiscal 1977. In the electrolytic process in hydrogen manufacturing technologies, new composite materials are developed in relation with membranes and electrodes as the high temperature and pressure water decomposition method. A bench-scale water decomposition tank using organic polymer ion exchange membranes is fabricated on a trial basis and tested for studying solid electrolyte decomposition method. In hydrogen manufacturing technologies using thermo-chemical process, discussions are being given on cycles of iron systems, iodine systems and hybrid systems (mixture of thermo and photo chemistry and electrochemistry). For hydrogen transporting and storing technologies, metal hydrides most suitable for hydrogen storage are developed, and storage systems are studied. In hydrogen combustion, elucidation is made on fundamental conditions for mixed and single combustion technologies suitable for prevention of reverse ignition and suppression of NOx generation. Studies are also being made on fuel cells using aqueous solution and solid electrolytes. Studies on hydrogen fueled engines are also described. In hydrogen safety assuring technologies, discussions are being given on prevention of explosion disasters, prevention of embrittlement of materials due to hydrogen and criteria for safety assuring technologies. Descriptions are given also on studies on total hydrogen energy systems and hydrogen fueled automobiles. (NEDO)

  4. Hydrogen as an energy carrier in substituting petroleum. Demonstration project: automobiles driven by nuclear energy

    International Nuclear Information System (INIS)

    Donne, M.D.; Dorner, S.; Kessler, G.; Schretzmann, K.

    1983-01-01

    The substitution of oil in motor vehicles by means of coal upgrading is paid by a consumption of primary energy and the persistence of a high environmental impact as noise and off-gases. Alternative systems, based on electric traction by electricity from H 2 -fuel cells have a high development potential. The Karlsruhe Nuclear Center has endeavoured to demonstrate the feasibility of this traction system. In particular an assessment of the efficiency and costs of the H 2 -fuel cell for vehicle traction is given. The paper discusses the various possibilities of on-board H 2 storage. Finally the work being presently performed in Karlsruhe is briefly described. (author)

  5. Hydrogen - A new green energy

    International Nuclear Information System (INIS)

    Barnu, Franck

    2013-01-01

    A set of articles proposes an overview of the role hydrogen might have as energy in the energy transition policy, a review of different areas of research related to the hydrogen sector, and presentations of some remarkable innovations in different specific fields. Hydrogen might be an asset in energy transition because production modes (like electrolysis) result in an almost carbon-free or at least low-carbon hydrogen production. Challenges and perspectives are evoked: energy storage for intermittent energies (the MYRTE platform), the use of a hydrogen-natural mix (GRHYD program), the development of fuel cells for transport applications, and co-generation (Japan is the leader). Different French research organisations are working on different aspects and areas: the H2E program by Air Liquide, fuel cell technologies by GDF Suez, power electrolyzers and cells by Areva. Some aspects and research areas are more specifically detailed: high temperature electrolysis (higher efficiencies, synthesis of methane from hydrogen), fuel cells (using less platinum, and using ceramics for high temperatures), the perspective of solid storage solutions (hydrogen bottles in composite materials, development of 'hydrogen sponges', search for new hydrides). Innovations concern a project car, storage and production (Greenergy Box), the McPhy Energy storage system, an electric bicycle with fuel cell, easy to transport storage means by Air Liquide and Composites Aquitaine, development of energy autonomy, fuel cells for cars, electrolyzers using the Proton Exchange Membrane or PEM technology

  6. Integrated waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Armstrong, C.

    2004-01-01

    'Full text:' The BC Hydrogen Highway's, Integrated Waste Hydrogen Utilization Project (IWHUP) is a multi-faceted, synergistic collaboration that will capture waste hydrogen and promote its use through the demonstration of 'Hydrogen Economy' enabling technologies developed by Canadian companies. IWHUP involves capturing and purifying a small portion of the 600 kg/hr of by-product hydrogen vented to the atmosphere at the ERCO's electrochemical sodium chlorate plant in North Vancouver, BC. The captured hydrogen will then be compressed so it is suitable for transportation on roadways and can be used as a fuel in transportation and stationary fuel cell demonstrations. In summary, IWHUP invests in the following; Facilities to produce up to 20kg/hr of 99.999% pure 6250psig hydrogen using QuestAir's leading edge Pressure Swing Absorption technology; Ultra high-pressure transportable hydrogen storage systems developed by Dynetek Industries, Powertech Labs and Sacre-Davey Engineering; A Mobile Hydrogen Fuelling Station to create Instant Hydrogen Infrastructure for light-duty vehicles; Natural gas and hydrogen (H-CNG) blending and compression facilities by Clean Energy for fueling heavy-duty vehicles; Ten hydrogen, internal combustion engine (H-ICE), powered light duty pick-up vehicles and a specialized vehicle training, maintenance, and emissions monitoring program with BC Hydro, GVRD and the District of North Vancouver; The demonstration of Westport's H-CNG technology for heavy-duty vehicles in conjunction with local transit properties and a specialized vehicle training, maintenance, and emissions monitoring program; The demonstration of stationary fuel cell systems that will provide clean power for reducing peak-load power demands (peak shaving), grid independence and water heating; A comprehensive communications and outreach program designed to educate stakeholders, the public, regulatory bodies and emergency response teams in the local community, Supported by industry

  7. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  8. Hydrogen energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Salzano, F J; Braun, C [eds.

    1977-09-01

    The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

  9. Summarized achievement report on the Sunshine Project in fiscal 1979. Hydrogen energy; 1979 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-04-01

    This paper summarizes the achievement report on the Sunshine Project in fiscal 1979 for hydrogen energy research. In hydrogen manufacturing technologies, the paper describes improvement in membrane performance and discussions on electrode materials in high temperature and pressure electrolysis. In the thermo-chemical method, hydrolysis of iron bromide (II) in the iron system cycle was compared to three kinds of reaction patterns corresponding to phase change, and evaluation was given as the hydrogen generating reaction. In the iodine system the first stage oxidation and reduction reaction of MgO-I{sub 2} was subjected to a continued experiment by using a batch autoclave. Discussions were continued on device materials for the iodine cycle. In the light irradiation electrolytic method for the mixed cycle, the light intensity was experimented at a force 12 times greater than that of the solar beam, and a reaction rate of 80% was achieved. Raising the temperature causes the reaction rate to decline, but it can be supplemented by raising the light intensity. A heat diffusion column was found effective in HI decomposition (hydrogen acquisition). For hydrogen transportation and storage, researches are continued on metal hydrides. In hydrogen utilization technologies, combustion, fuel cells (using high temperature solid and alkaline aqueous solution electrolytes), and hydrogen engines are studied. This paper also describes studies on hydrogen safety assuring measures and energy systems. (NEDO)

  10. Canada's hydrogen energy sector

    International Nuclear Information System (INIS)

    Kimmel, T.B.

    2009-01-01

    Canada produces the most hydrogen per capita of any Organization of Economic Cooperation and Development (OECD) country. The majority of this hydrogen is produced by steam methane reforming for industrial use (predominantly oil upgrading and fertilizer production). Canada also has a world leading hydrogen and fuel cell sector. This sector is seeking new methods for making hydrogen for its future energy needs. The paper will discuss Canada's hydrogen and fuel cell sector in the context of its capabilities, its demonstration and commercialization activities and its stature on the world stage. (author)

  11. Hydrogen for small-scale energy consumers and CO2-storage. Feasibility study of a demonstration project in the Rijnmond, Netherlands

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Van der Werff, T.T.; Rooijers, F.J.

    1996-01-01

    In the future natural gas can be substituted by hydrogen. In the short term hydrogen can be produced from fossil fuels. Released CO 2 can be stored. In the long run it will be possible to produce hydrogen from renewable energy sources (solar cells and wind turbines), which can be transported to the consumer. In the study on the title subject attention is paid to different methods of hydrogen production from natural gas and from residual oils, costs and problems of hydrogen distribution, hydrogen appliances, and CO 2 storage. From the results it appears that a demonstration project to use hydrogen on a small-scale is feasible, although expensive. The costs of the reconstruction of the present natural gas distribution system to a hydrogen distribution system is higher than expected. The price of hydrogen per GJ is higher than the equal energy content of natural gas, in spite of a reduction of the energy levy. The demonstration project will be 25% cheaper per GJ hydrogen when carried out in a newly built area. A demonstration project in which hydrogen is mixed with natural gas is even a factor 2 cheaper. 17 refs., 7 appendices

  12. National hydrogen energy roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  13. Hydrogen energy for beginners

    CERN Document Server

    2013-01-01

    This book highlights the outstanding role of hydrogen in energy processes, where it is the most functional element due to its unique peculiarities that are highlighted and emphasized in the book. The first half of the book covers the great natural hydrogen processes in biology, chemistry, and physics, showing that hydrogen is a trend that can unite all natural sciences. The second half of the book is devoted to the technological hydrogen processes that are under research and development with the aim to create the infrastructure for hydrogen energetics. The book describes the main features of hydrogen that make it inalienable player in processes such as fusion, photosynthesis, and metabolism. It also covers the methods of hydrogen production and storage, highlighting at the same time the exclusive importance of nanotechnologies in those processes.

  14. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  15. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  16. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  17. Hydrogen in energy transition

    International Nuclear Information System (INIS)

    2016-02-01

    This publication proposes a rather brief overview of challenges related to the use of hydrogen as an energy vector in the fields of transports and of energy storage to valorise renewable energies. Processes (steam reforming of natural gas or bio-gas, alkaline or membrane electrolysis, biological production), installation types (centralised or decentralised), raw materials and/or energy (natural gas, water, bio-gas, electricity, light), and their respective industrial maturity are indicated. The role of hydrogen to de-carbonate different types of transports is described (complementary energy for internal combustion as well as electrical vehicles) as well as its role in the valorisation and integration of renewable energies. The main challenges faced by the hydrogen sector are identified and discussed, and actions undertaken by the ADEME are indicated

  18. Industrial view of Hydrogen Energy

    International Nuclear Information System (INIS)

    Francois Jackow

    2006-01-01

    Industrial Gases Companies have been mastering Hydrogen production, distribution, safe handling and applications for several decades for a wide range of gas applications. This unique industrial background positioned these companies to play a key role in the emerging Hydrogen Energy market, which can rely, at early stage of development, on already existing infrastructure, logistics and technical know-how. Nevertheless, it is important to acknowledge that Hydrogen Energy raised specific challenges which are not totally addressed by industrial gas activities. The main difference is obviously in the final customer profile, which differs significantly from the qualified professional our industry is used to serve. A non professional end-user, operating with Hydrogen at home or on board of his family car, has to be served with intrinsically safe and user-friendly solutions that exceed by far the industrial specifications already in place. Another significant challenge is that we will need breakthroughs both in terms of products and infrastructure, with development time frame that may require several decades. The aim of this presentation is to review how a company like Air Liquide, worldwide leader already operating more than 200 large hydrogen production sites, is approaching this new Hydrogen Energy market, all along the complete supply chain from production to end-users. Our contributions to the analysis, understanding and deployment of this new Energy market, will be illustrated by the presentation of Air Liquide internal development's as well as our participation in several national and European projects. (author)

  19. Yeager Airport Hydrogen Vehicle Test Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Williams [West Virginia University Research Corporation, Morgantown, WV (United States)

    2015-10-01

    The scope of this project was changed during the course of the project. Phase I of the project was designed to have the National Alternative Fuels Training Consortium (NAFTC), together with its partners, manage the Hydrogen Vehicle Test Project at the Yeager Airport in conjunction with the Central West Virginia Regional Airport Authority (CWVRAA) in coordination with the United States Department of Energy National Energy Technology Laboratory (U.S. DOE NETL). This program would allow testing and evaluation of the use of hydrogen vehicles in the state of West Virginia utilizing the hydrogen fueling station at Yeager Airport. The NAFTC and CWVRAA to raise awareness and foster a greater understanding of hydrogen fuel and hydrogen-powered vehicles through a targeted utilization and outreach and education effort. After initial implementation of the project, the project added, determine the source(s) of supply for hydrogen powered vehicles that could be used for the testing. After completion of this, testing was begun at Yeager Airport. During the course of the project, the station at Yeager Airport was closed and moved to Morgantown and the West Virginia University Research Corporation. The vehicles were then moved to Morgantown and a vehicle owned by the CWVRAA was purchased to complete the project at the new location. Because of a number of issues detailed in the report for DE-FE0002994 and in this report, this project did not get to evaluate the effectiveness of the vehicles as planned.

  20. Hydrogen energy technology

    International Nuclear Information System (INIS)

    Morovic, T.; Pilhar, R.; Witt, B.

    1988-01-01

    A comprehensive assessment of different energy systems from the economic point of view has to be based on data showing all relevant costs incurred and benefits drawn by the society from the use of such energy systems, i.e. internal costs and benefits visible to the energy consumer as prices paid for power supplied, as well as external costs and benefits. External costs or benefits of energy systems cover among other items employment or wage standard effects, energy-induced environmental impacts, public expenditure for pollution abatement and mitigation of risks and effects of accidents, and the user costs connected with the exploitation of reserves, which are not rated high enough to really reflect and demonstrate the factor of depletion of non-renewable energy sources, as e.g. fossil reserves. Damage to the natural and social environment induced by anthropogenous air pollutants up to about 90% counts among external costs of energy conversion and utilisation. Such damage is considered to be the main factor of external energy costs, while the external benefits of energy systems currently are rated to be relatively unsignificant. This means that an internalisation of external costs would drive up current prices of non-renewable energy sources, which in turn would boost up the economics of renewable energy sources, and the hydrogen produced with their energy. Other advantages attributed to most of the renewable energy sources and to hydrogen energy systems are better environmental compatibility, and no user costs. (orig.) [de

  1. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  2. Fiscal 1974-1975 Sunshine Project research report. Hydrogen energy research results (National laboratories and institutes); 1974, 1975 nendo suiso energy kenkyu seika hokokushu. Kokuritsu shiken kenkyusho kankei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-10-01

    This report summarizes the 21 research results on hydrogen energy promoted by 3 national laboratories and 2 national institutes. (1) Tokyo National Industrial Research Institute (TNIRI): Ca-I system, Mn system, S system and hybrid cycles, and water decomposition reaction by CO as thermochemical hydrogen production technique. (2) Osaka National Industrial Research Institute (ONIRI): Fe system, Cu system and ammonia system cycles, and high-temperature high-pressure water electrolysis. (3) Electrotechnical Laboratory: high- temperature direct thermolysis hydrogen production technique. (4) TNIRI: Mg-base and transition metal-base hydrogen solidification technique. (5) ONIRI: Ti-base and rare metal- base hydrogen solidification technique. (6) Mechanical Engineering Laboratory: hydrogen-fuel engines. (7) Electrotechnical Laboratory and ONIRI: fuel cell. (8) TNIRI: disaster preventive technology for gaseous and liquid hydrogen. (9) Chugoku National Industrial Research Institute: preventing materials from embrittlement due to hydrogen. (10) Electrotechnical Laboratory: hydrogen energy system. (NEDO)

  3. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  4. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    world. In recent years, the scope of the IAEA's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems.

  5. Hydrogen and nuclear energy

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Hancox, W.T.; Pendergast, D.R.

    1999-01-01

    The current world-wide emphasis on reducing greenhouse gas (GHG) emissions provides an opportunity to revisit how energy is produced and used, consistent with the need for human and economic growth. Both the scale of the problem and the efforts needed for its resolution are extremely large. We argue that GHG reduction strategies must include a greater penetration of electricity into areas, such as transportation, that have been the almost exclusive domain of fossil fuels. An opportunity for electricity to displace fossil fuel use is through electrolytic production of hydrogen. Nuclear power is the only large-scale commercially proven non-carbon electricity generation source, and it must play a key role. As a non-carbon power source, it can also provide the high-capacity base needed to stabilize electricity grids so that they can accommodate other non-carbon sources, namely low-capacity factor renewables such as wind and solar. Electricity can be used directly to power standalone hydrogen production facilities. In the special case of CANDU reactors, the hydrogen streams can be preprocessed to recover the trace concentrations of deuterium that can be re-oxidized to heavy water. World-wide experience shows that nuclear power can achieve high standards of public safety, environmental protection and commercially competitive economics, and must . be an integral part of future energy systems. (author)

  6. 75 FR 17397 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project, Kern County, CA...

    Science.gov (United States)

    2010-04-06

    ... regarding Class II wells under section 1425 of the Safe Drinking Water Act, DOGGR has responsibility for... is also invited to learn more about the proposed project at an informal session at this location... space left by the extracted oil is occupied by the injected CO 2 , sequestering it in the geologic...

  7. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  8. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  9. Hydrogen energy system in California

    International Nuclear Information System (INIS)

    Zweig, R.M.

    1995-01-01

    Results of experiences on the use of hydrogen as a clean burning fuel in California and results of the South Coast Air Quality Management district tests using hydrogen as a clean burning environmentally safe fuel are given. The results of Solar Hydrogen Projects in California and recent medical data documentation of human lung damage of patients living in air polluted urban areas are summarized

  10. Hydrogen Storage and Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Abhijit [Univ. of Arkansas, Little Rock, AR (United States); Biris, A. S. [Univ. of Arkansas, Little Rock, AR (United States); Mazumder, M. K. [Univ. of Arkansas, Little Rock, AR (United States); Karabacak, T. [Univ. of Arkansas, Little Rock, AR (United States); Kannarpady, Ganesh [Univ. of Arkansas, Little Rock, AR (United States); Sharma, R. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  11. Handbook of hydrogen energy

    CERN Document Server

    Sherif, SA; Stefanakos, EK; Steinfeld, Aldo

    2014-01-01

    ""This book provides an excellent overview of the hydrogen economy and a thorough and comprehensive presentation of hydrogen production and storage methods.""-Scott E. Grasman, Rochester Institute of Technology, New York, USA

  12. 2015 Plan. Project 4: electric power supply, technologies, cost and availability. Sub-project alternative energy sources: solar, eolic, shale, ocean, hydrogen, organic wastes, peat and lignite

    International Nuclear Information System (INIS)

    1993-07-01

    Several aspects of solar, eolic and ocean energy and shale, peat lignite, hydrogen and organic waste in Brazil are described, including reserves, potential, technology economy and environment. Based in data and information presented in this report, the necessity of a more detailed survey with the potential of alternative energy sources in Brazil, emphasizing the more promiser regions is also mentioned. (C.G.C.)

  13. FY 1974 report on the results of the Sunshine Project. Technology assessment of hydrogen energy technology; 1974 nendo suiso energy gijutsu no technology assessment seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-04-30

    This is aimed at studying the relation between the technology development of hydrogen energy and the society. In Chapter 1, a meaning of technology assessment was examined. When applying it to the hydrogen energy technology, the paper presented what content it has. In Chapter 2, the needs for hydrogen energy in society were made clear in comparison with the energy supply/demand structure in Japan and characteristics of hydrogen energy. In Chapter 3, the paper showed what kinds of technology are being developed to meet the needs in this society and arranged viewpoints for evaluating the effectiveness of the technology. In Chapter 4, the paper studied the positioning of hydrogen energy technology in the future society, and presented as examples more than one hydrogen energy/system plans which become the base to describe the impact of the technology on the society. If taking technology assessment as a part of the communication activities between the technology development and the society as did in this study, these system plans are something like the ring for people in each field to talk with. In Chapter 5, the study made from each aspect was arranged. (NEDO)

  14. Fiscal 1975 Sunshine Project research report. Technology assessment on hydrogen energy technology. Part 2; 1975 nendo suiso energy gijutsu no technology assessment seika hokokuksho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-31

    This research assesses the impact of development of practical hydrogen energy technology on the economy, society and environment in Japan, and proposes some effective countermeasures, the required technical development target and a promising promotion system. The example of technology assessment assuming practical technology several tens years after is hardly found. Hydrogen energy technology is in the first stage among (1) initial planning stage, (2) technical research and development stage, (3) practical technology stage and (4) service operation stage. In the first fiscal year, as the first stage of determination of the communication route between society and technology, study was made on the concrete system image of practical technology. In this fiscal year, study was made entirely on preparation of the scenario for imaging the future economy and society concretely, modifying the planning of the hydrogen energy system. Through comparison of the scenario and system, the meaning and problem of the hydrogen energy technology were clarified. (NEDO)

  15. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  16. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  17. Hydrogen: a clean energy for tomorrow?

    International Nuclear Information System (INIS)

    Artero, V.; Guillet, N.; Fruchart, D.; Fontecave, M.

    2011-01-01

    Hydrogen has a strong energetic potential. In order to exploit this potential and transform this energy into electricity, two chemical reactions could be used which do not release any greenhouse effect gas: hydrogen can be produced by water electrolysis, and then hydrogen and oxygen can be combined to produce water and release heat and electricity. Hydrogen can therefore be used to store energy. In Norway, the exceeding electricity produced by wind turbines in thus stored in fuel cells, and the energy of which is used when the wind weakens. About ten dwellings are thus supplied with only renewable energy. Similar projects are being tested in Corsica and in the Reunion Island. The main challenges for this technology are its cost, its compactness and its durability. The article gives an overview of the various concepts, apparatus and systems involved in hydrogen and energy production. Some researches are inspired by bacteria which produce hydrogen with enzymes. The objective is to elaborate better catalysts. Another explored perspective is the storage of solid hydrogen

  18. Hydrogen demonstration projects options in the Netherlands. Final report

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Van der Werff, T.T.; Rooijers, F.J.

    1996-01-01

    Based on a survey of hydrogen demonstration projects, contacts with different actors and discussions in a sounding board for the study on the title subject, it is concluded that a conference can be organized where the possibilities of setting up hydrogen demonstration projects in the Netherlands can be discussed. The following projects offer good chances to be realized in the next few years: large-scale CO 2 storage in the underground, applying enhanced gas recovery. It appears to be a relatively cheap CO 2 emission reduction measure with a large potential. It can be combined with a hydrogen mixing project with the sale of hydrogen as a so-called eco-gas to consumers. There is little interest in the other options for CO 2 storage at coal gasification and the prompt supply of 100% H 2 to small-scale consumers. Hydrogen for cogeneration, fuel cells in the industry, hydrogen in road transport and hydrogen as a storage medium are projects in which some actors are interested. Hydrogen for air transport has a large potential to which only few parties in the Netherlands can anticipate. Hydrogen demonstration projects will show important surplus value when it is supported by a hydrogen research program. Such a program can be carried out in cooperation with several other programmes of the International Energy Agency, in Japan, Germany and a number of research programs of the Netherlands Agency for Energy and the Environment (Novem). 10 figs., 4 tabs., 33 refs

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to

  20. Hydrogen: energy transition under way

    International Nuclear Information System (INIS)

    Franc, Pierre-Etienne; Mateo, Pascal

    2015-01-01

    Written by a representative of Air Liquide with the help of a free lance journalist, this book proposes an overview of the technological developments for the use of hydrogen as a clean energy with its ability to store primary energy (notably that produced by renewable sources), and its capacity of energy restitution in combination with a fuel cell with many different applications (notably mobility-related applications). The authors outline that these developments are very important in a context of energy transition. They also outline what is left to be done, notably economically and financially, for hydrogen to play its role in the energy revolution which is now under way

  1. The U.S. National Hydrogen Storage Project

    International Nuclear Information System (INIS)

    Sunita Satyapal; Carole Read; Grace Ordaz; John Petrovic; George Thomas

    2006-01-01

    Hydrogen is being considered by many countries as a potential energy carrier for vehicular applications. In the United States, hydrogen-powered vehicles must possess a driving range of greater than 300 miles in order to meet customer requirements and compete effectively with other technologies. For the overall vehicular fleet, this requires that a range of 5-13 kg of hydrogen be stored on-board. The storage of such quantities of hydrogen within vehicular weight, volume, and system cost constraints is a major scientific and technological challenge. The targets for on-board hydrogen storage were established in the U.S. through the FreedomCAR and Fuel partnership, a partnership among the U.S. Department of Energy, the U.S. Council for Automotive Research (USCAR) and major energy companies. In order to achieve these long-term targets, the Department of Energy established a National Hydrogen Storage Project to develop the areas of metal hydrides, chemical hydrogen storage, carbon-based and high-surface-area sorbent materials, and new hydrogen storage materials and concepts. The current status of vehicular hydrogen storage is reviewed and hydrogen storage research associated with the National Hydrogen Storage Project is discussed. (authors)

  2. Electrocatalysts for hydrogen energy

    CERN Document Server

    Losiewicz, Bozena

    2015-01-01

    This special topic volume deals with the development of novel solid state electrocatalysts of a high performance to enhance the rates of the hydrogen or oxygen evolution. It contains a description of various types of metals, alloys and composites which have been obtained using electrodeposition in aqueous solutions that has been identified to be a technologically feasible and economically superior technique for the production of the porous electrodes. The goal was to produce papers that would be useful to both the novice and the expert in hydrogen technologies. This volume is intended to be us

  3. Achievement report on research and development in the Sunshine Project in fiscal 1977. Surveys and studies on patent information (Hydrogen energy); 1977 nendo tokkyo joho chosa kenkyu shosa seika hokokusho, Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-01

    This paper describes achievements in fiscal 1977 of patent information surveys and studies on hydrogen energy (the Sunshine Project). In the thermo-chemical hydrogen manufacturing process, the basic cycles that have had been applied for patents started to go for searching efficient and feasible cycles such as in auxiliary reactions and catalysts, from the stage at which the efficiency of the basic cycles has not been considered so much. Developments have also been performed on devices and operating conditions. Worth mentioning in the electrolytic method is that patents on electrodes have been released. In the fields of hydrides for storage and transportation, patents on alloys for storage are the most in number. In safety assurance technologies, few patents deal with hydrogen itself, whereas further studies on liquefied hydrogen is especially desired. For hydrogen fuel cells, patent applications for phosphoric acid type fuel cells were found. There are few patents tackling squarely with hydrogen fueled engines. However, their levels of the contents were found higher than those in the previous fiscal year. Patents applied for from private corporations are concentrated on low-pollution engines using hydrogen as sub-fuel. No patents were found applied for measures to solve the dilemma of NOx generation and reverse ignition in hydrogen combustion. (NEDO)

  4. Report on achievements in research and development in Sunshine Project - Hydrogen energy. Studies on prevention of hydrogen explosion disasters (Fiscal 1974 through fiscal 1983); 1974 - 1983 nendo suiso no bakuhatsu saigai boshi no kenkyu seika hokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    Experimental studies have been performed on prevention of hydrogen explosion disasters in attempting practical use of hydrogen energy. Regarding the prevention of disasters caused by high-pressure hydrogen, elucidation was made on causes of the fire, and estimation expression was introduced on size of fire caused by ignition. Measurements were also made on explosion limit and explosion pressure of low-temperature hydrogen gas. Furthermore, a flame arrester for hydrogen was developed. In studies on prevention of explosion of liquefied hydrogen, investigations were given on physical and chemical natures of a system mixed with air and oxygen, and on explosion causing sensitivity against impact to have elucidate danger of impurities in liquefied hydrogen. An experiment verified the effectiveness of carbon dioxide or powder extinguishing agent in the case of liquefied hydrogen fire. With regard to metal hydrides, elucidation was given on their ignitability in atmosphere and danger of dust explosion. In addition, it was made clear that containers may break down due to rise in internal pressure as a result of temperature rise, whereas safety valves were discussed, and models were decided. (NEDO)

  5. The hydrogen 700 project - 700 Bar Co

    International Nuclear Information System (INIS)

    Gambone, L.; Webster, C.

    2004-01-01

    'Full text:' Major automotive companies, including DaimlerChrysler, Ford, Hyundai, Nissan, PSA Peugeot-Citroen, and Toyota, are co-operating in the Hydrogen 700 project at Powertech to establish a global basis for high pressure hydrogen fuel systems for vehicles. The fuel systems will store compressed hydrogen on-board at pressures up to 700 bar (10,000psi). It is anticipated that the 700 bar storage pressure will provide hydrogen powered vehicles with a range comparable to the range of petroleum-fueled vehicles. The Hydrogen 700 project has contracted world leaders in high pressure technologies to provide 700 bar fuel system components for evaluation. The data from these tests will be used as the basis for the development of relevant standards and regulations. In a development that complements the Hydrogen 700 project, Powertech Labs has established the world's first 700 bar hydrogen station for fast filling operations. This prototype station will be used to evaluate the performance of the 700 bar vehicle fuel system components. The presentation will provide an overview of the Hydrogen 700 project. Safety issues surrounding the use of compressed hydrogen gas as a vehicle fuel, as well as the use of higher storage pressures, will be reviewed. Test data involving the fire testing of vehicles containing hydrogen fuel systems will be presented. The project is intended to result in the introduction of 700 bar fuel systems in the next generation of hydrogen powered vehicles. (author)

  6. Hydrogen from solar energy

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The long-range options of energy sources are the breeding reactor, nuclear fusion, and solar energy. Concerning solar energy three systems are being developed: First the photovoltaic cells which are almost ready for industrial production, but which are still too expensive - at least today. Secondly the thermal utilization of solar radiation. Compared to these, thirdly, the photobiological and photochemical possibilities of solar energy utilization have been somewhat neglected so far. However, the photolysis of water by solar energy is a very promising option for future energy demands. This can be done by making use of the photo-synthetic splitting of water in technical facilities or with semiconductors.

  7. Final Scientifc Report - Hydrogen Education State Partnership Project

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Warren

    2012-02-03

    Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for states and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.

  8. Hydrogen Fire Spectroscopy Issues Project

    Science.gov (United States)

    Youngquist, Robert C. (Compiler)

    2014-01-01

    The detection of hydrogen fires is important to the aerospace community. The National Aeronautics and Space Administration (NASA) has devoted significant effort to the development, testing, and installation of hydrogen fire detectors based on ultraviolet, near-infrared, mid-infrared, andor far-infrared flame emission bands. Yet, there is no intensity calibrated hydrogen-air flame spectrum over this range in the literature and consequently, it can be difficult to compare the merits of different radiation-based hydrogen fire detectors.

  9. Achievement report on surveys and researches in the Sunshine Project in fiscal 1979. Surveys and researches on patent information (Hydrogen energy); 1979 nendo tokkyo joho chosa kenkyu seika hokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This paper describes surveys in fiscal 1979 on patent information related to hydrogen energy. For the hydrogen manufacturing cycle based on the thermo-chemical method, many patents are related to HI decomposition and separation. A number of technologically superior patents were found in the electrolytic method, but those applicable directly to water decomposition development in the Sunshine Project are not many. The number of patents on metal hydrides in relation with hydrogen storage and transportation has shown some increase, but no change in the qualitative aspect. In safety assurance, many proposals were seen relating to earthquakes. Patents on hydrogen fuel cells decreased in number as a whole, while half of the domestic patent applications is for alkaline electrolyte type fuel cells. In contrast in other countries, many patents are related to the second and third generation fuel cells, not to speak of the first generation, indicating that Japan is standing behind. Technologies to use hydrogen engines practically are concentrated on establishment of hydrogen storage and transportation methods and development of systems with high total energy efficiency, which are reflected in patent applications. Combustion device related problems are in NOx emission suppressing technologies and reverse ignition preventing measures, but trend is lacking in applying for patents that endorse technological progress in this respect. (NEDO)

  10. South African hydrogen infrastructure (HySA infrastructure) for fuel cells and energy storage: Overview of a projects portfolio

    CSIR Research Space (South Africa)

    Bessarabov, D

    2017-05-01

    Full Text Available The paper provides brief introduction to the National South African Program, branded HySA (Hydrogen South Africa) as well as discusses potential business cases for deployment of hydrogen and fuel cell technology in South Africa. This paper also...

  11. Energy: the solar hydrogen alternative

    Energy Technology Data Exchange (ETDEWEB)

    Bocheris, J O.M.

    1977-01-01

    The author argues that nuclear and solar energy should begin replacing conventional fossil sources as soon as possible because oil, gas and even coal supplies will be depleted within decades. A hydrogen economy would introduce major technical problems but its chief benefits are that it permits energy storage in a post fossil fuel era when electricity is expected to play a major role. It can be converted to electricity, cleanly and efficiently with fuel cells and in liquid form can be burnt as jet fuel. Hydrogen can also be burnt in internal combustion engines although less efficiently in fuel cells. However, although hydrogen is clean and efficient, technical development is still needed to reduce its cost and to cope with safety problems. The book contains a wealth of technical information and is a valuable reference on a topic of growing importance.

  12. 21st Century's energy: Hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. Nejat; Sahin, Suemer

    2008-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century

  13. 21st century's energy: hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. N.

    2007-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the Hydrogen Energy System. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st Century

  14. Achievement report on research and development in the Sunshine Project in fiscal 1979. Research hydrogen energy subsystems (Research on hydrogen fueled automobiles); 1979 nendo suiso energy subsystem no kenkyu seika hokokusho. Suiso jidosha system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This paper describes research achievements in fiscal 1979 in research on hydrogen fueled automobiles as a research on hydrogen energy subsystems. The previous fiscal year has researched heat insulation methods to reduce evaporation loss from a hydrogen tank, prototype liquid level meters, prototype feed pumps (especially material selection for sliding parts) and a flow rate control method. Fiscal 1979 performed measurements of temperatures in different parts in the tank to elucidate how the heat makes invasion. Measurements were performed for the pump on suction valve behavior, internal pump compression force, liner temperatures, and leakage amount. The status of operation was identified and a high performance pump for use in very low temperatures was developed successfully. The pump has high delivery pressure, good durability, and capability of fine adjustment in the delivery quantity. This made the direct injection system for hydrogen fuel possible. Injection of hydrogen into an engine was possible by vaporizing liquefied hydrogen and supplying it as a low temperature gas used at 0 to -40 degrees C. The system has high efficiency. Fuel feed control was possible at the same level as in the existing automobiles. The prototype direct injection system can handle stably the load in actual cars. Material for the fuel tank is an important problem in terms of weight, whose solution is urged. (NEDO)

  15. Hercules project: Contributing to the development of the hydrogen infrastructure

    International Nuclear Information System (INIS)

    Arxer, Maria del Mar; Martinez Calleja, Luis E.

    2007-01-01

    A key factor in developing a hydrogen based transport economy is to ensure the establishment of a strong and reliable hydrogen fuel supply chain, from production and distribution, to storage and finally the technology to dispense the hydrogen into the vehicle. This paper describes how the industrial gas industry and, in particular, Air Products and Carburos Metalicos (Spanish subsidiary of Air Products), is approaching the new market for hydrogen as an energy carrier and vehicle fuel. Through participations in projects aiming to create enough knowledge and an early infrastructure build-up, like The Hercules Project (a project carried out in collaboration with eight partners), we contribute to the hydrogen economy becoming a reality for the next generation. (author)

  16. Energy Accumulation by Hydrogen Technologies

    Directory of Open Access Journals (Sweden)

    Jiřina Čermáková

    2012-01-01

    Full Text Available Photovoltaic power plants as a renewable energy source have been receiving rapidly growing attention in the Czech Republic and in the other EU countries. This rapid development of photovoltaic sources is having a negative effect on the electricity power system control, because they depend on the weather conditions and provide a variable and unreliable supply of electric power. One way to reduce this effect is by accumulating electricity in hydrogen. The aim of this paper is to introduce hydrogen as a tool for regulating photovoltaic energy in island mode. A configuration has been designed for connecting households with the photovoltaic hybrid system, and a simulation model has been made in order to check the validity of this system. The simulation results provide energy flows and have been used for optimal sizing of real devices. An appropriate system can deliver energy in a stand-alone installation.

  17. Report on achievements in fiscal 1984 on surveys and studies commissioned from Sunshine Project. Surveys and studies on patent information. (Hydrogen energy); 1984 nendo tokkyo joho chosa kenkyu seika hokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    With an objective of smooth and efficient promotion of Sunshine Project, surveys were made on inventions related to Sunshine Project. This paper reports the survey result on patents applied for in 1984 in relation with hydrogen energy. With regard to manufacture of hydrogen using photo-chemical method, there is a number of patent applications that relate to methods to adjust semiconductors used as photo catalysts. Fossil fuel related patents were seen mainly in reforming fuels from methanol. In the electrolytic method related patents, those on electrodes and SPE are overwhelmingly great in number. However, researches on SPE are thought somewhat declining in activity. Regarding hydrogen transportation and storage, the trend differs now from the previous trend in which large increase had been continuing, and the number has hit the ceiling. Attention is given continually on new hydrogen absorbing alloys. With respect to hydrogen fuel cells, patent applications are still many in phosphoric acid fuel cells and molten salt fuel cells, and their systems. Applications for alkaline type fuel cell patent are also increasing. (NEDO)

  18. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  19. Hydrogen and energy utilities

    Energy Technology Data Exchange (ETDEWEB)

    Hustadt, Daniel [Vattenfall Europe Innovation GmbH (Germany)

    2010-07-01

    Renewable electricity generation plays one major role with the biggest share being wind energy. At the end of the year 2009 a wind power plant capacity of around 26 GW was installed in Germany. Several outlooks come to the conclusion that this capacity can be doubled in ten years (compare Figure 1). Additionally the German government has set a target of 26 GW installed off-shore capacity in North and Baltic Sea until 2030. At Vattenfall only a minor percentage of the electricity production comes from wind power today. This share will be increased up to 12% until 2030 following Vattenfall's strategy 'Making Electricity Clean'. This rapid development of wind power offers several opportunities but also means some challenges to Utilities. (orig.)

  20. A renewable energy based hydrogen demonstration park in Turkey. HYDEPARK

    Energy Technology Data Exchange (ETDEWEB)

    Ilhan, Niluefer; Ersoez, Atilla [TUEBITAK Marmara Research Center Energy Institute, Gebze Kocaeli (Turkey); Cubukcu, Mete [Ege Univ., Bornova, Izmir (Turkey). Solar Energy Inst.

    2010-07-01

    The main goal of this national project is to research hydrogen technologies and renewable energy applications. Solar and wind energy are utilized to obtain hydrogen via electrolysis, which can either be used in the fuel cell or stored in cylinders for further use. The management of all project work packages was carried by TUeBITAK Marmara Research Center (MRC) Energy Institute (EI) with the support of the collaborators. The aim of this paper is to present the units of the renewable energy based hydrogen demonstration park, which is in the demonstration phase now and share the experimental results. (orig.)

  1. Storing Renewable Energy in the Hydrogen Cycle.

    Science.gov (United States)

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  2. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Marc A.; Koohi-Fayegh, Seama [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2016-02-15

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  3. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  4. The Energy Efficiency of Onboard Hydrogen Storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Vestbø, Andreas Peter; Li, Qingfeng

    2007-01-01

    A number of the most common ways of storing hydrogen are reviewed in terms of energy efficiency. Distinction is made between energy losses during regeneration and during hydrogen liberation. In the latter case, the energy might have to be provided by part of the released hydrogen, and the true...

  5. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  6. Hydrogen production by solar energy. Final report of the integrated project HYSOL (2002-2004); Production d'hydrogene par energie solaire. Rapport Final du Projet Integre HYSOL (2002-2004)

    Energy Technology Data Exchange (ETDEWEB)

    Flamant, G.

    2004-07-01

    The HYSOL project aims to study three thermal processes using the solar energy at temperatures of more than 1000 C: hydrocarbons cracking, non catalytic reforming at high temperature and water decomposition by thermal-chemical cycles. This report presents the HYSOL project and the main results and gives a special part to the methane cracking. (A.L.B.)

  7. Waste hydrogen utilization project receives $12 M in federal support

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-10-01

    This article announced that $12.2 million dollars in federal funding support, over a 3 year period, will be made available to Sacre-Davey Innovations to support the development and demonstration of the Integrated Waste Hydrogen Utilization Project (IWHUP). The IWHUP is a clean energy project that will develop and demonstrate the feasibility of using hydrogen generated as a byproduct of a sodium chlorate manufacturing plant in North Vancouver. Greenhouse gas emissions and fossil fuels will be reduced by using purified hydrogen to fuel vehicles. The full hydrogen value chain will also be demonstrated by the IWHUP. This includes the supply, storage, distribution and use of hydrogen. Eight light-duty trucks running on hydrogen will be included in the demonstration, along with 4 public transit buses converted to run on a combination of compressed natural gas and hydrogen, and a fuel cell system operating on hydrogen while providing electrical power to a car wash. The newsletter article discussed the funding leveraged from various sources as well as the names of project participants. The article also mentioned that the IWHUP fuel station in North Vancouver will play a key role in sustainable transportation demonstrations during the 2010 Olympic and Paralympic Winter Games in Vancouver.

  8. Hydrogen economy and nuclear energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2004-01-01

    Global energy outlooks based on present trends, such as WETO study, give little optimism about fulfilling Kyoto commitments in controlling CO2 emissions and avoiding unwanted climate consequences. Whilst the problem of radioactive waste has a prominence in public, in spite of already adequate technical solutions of safe storage for future hundreds and thousands of years, there s generally much less concern with influence of fossil fuels on global climate. In addition to electricity production, process heat and transportation are approximately equal contributors to CO2 emission. Fossil fuels in transportation present also a local pollution problem in congested regions. Backed by extensive R and D, hydrogen economy is seen as the solution, however, often without much thought where from the hydrogen in required very large quantities may come. With welcome contributions from alternative sources, nuclear energy is the only source of energy capable of producing hydrogen in very large amounts, without parallel production of CO2. Future high temperature reactors could do this most efficiently. In view of the fact that nuclear weapon proliferation is not under control, extrapolation from the present level of nuclear power to the future level required by serious attempts to reduce global CO2 emission is a matter of justified concern. Finding the sites for many hundreds of new reactors would, alone, be a formidable problem in developed regions with high population density. What is generally less well understood and not validated is that the production of nuclear hydrogen allows the required large increases of nuclear power without the accompanied increase of proliferation risks. Unlike electricity, hydrogen can be economically shipped or transported by pipelines to places very far from the place of production. Thus, nuclear production of hydrogen can be located and concentrated at few remote, controllable sites, far from the population centers and consumption regions. At such

  9. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on hydrogen combustion technology); 1975 nendo suiso nensho gijutsu ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-01

    This research mainly aims at establishment of various conditions necessary for using hydrogen fuel. The research includes (1) properties of hydrogen-methane mixture gas, and the proposal to future R and D, (2) extraction of various problems in practical use of home or industrial combustors, and evaluation of existing technologies, (3) the environmental impact of hydrogen fuel and its reduction measures, and (4) estimation of energy structures in cities and placing of hydrogen fuel in 2000. Detailed study items are as follows. In (1), general and proper combustion characteristics of and combustion technology for hydrogen- methane mixture system. In (2), problems for every use of various gas equipment, application of various gas equipment to hydrogen, peripheral technologies, conversion from natural gas, problems of heating furnaces and hydrogen burners, combustion safety/control equipment for various combustors, water content recovery combustion system, hydrogen embrittlement, and sealing. In (3), NO{sub x} generation in hydrogen combustion and its reduction measures. In (4), problems in introduction of a hydrogen-electric power energy system to an assumed model city in 2000. (NEDO)

  10. Towards a framework for evaluation of renewable energy storage projects: A study case of hydrogen and fuel cells in Denmark

    DEFF Research Database (Denmark)

    Tambo, Torben; Enevoldsen, Peter

    2015-01-01

    worldwide, and market potentials are projected as immense. RES is complicated, and projects persistently fail to present operational scale of operations except for a few “classical” storage technologies: Variants of lead-acid batteries and pumped hydro-power reservoirs. Most RES projects are relying...... trajectories as done today. The papers findings contribute to improved assessment of RES technologies by emphasizing risk reduction and operational viability....

  11. Nuclear energy in the hydrogen economy

    International Nuclear Information System (INIS)

    Bertel, E.; Lee, K.S.; Nordborg, C.

    2004-01-01

    In the framework of a sustainable development, the hydrogen economy is envisaged as an alternative scenario in substitution to the fossil fuels. After a presentation of the hydrogen economy advantages, the author analyzes the nuclear energy a a possible energy source for hydrogen production since nuclear reactors can produce both the heat and electricity required for it. (A.L.B.)

  12. Hydrogen fueling stations in Japan hydrogen and fuel cell demonstration project

    International Nuclear Information System (INIS)

    Koseki, K.; Tomuro, J.; Sato, H.; Maruyama, S.

    2004-01-01

    A new national demonstration project of fuel cell vehicles, which is called Japan Hydrogen and Fuel Cell Demonstration Project (JHFC Project), has started in FY2002 on a four-year plan. In this new project, ten hydrogen fueling stations have been constructed in Tokyo and Kanagawa area in FY2002-2003. The ten stations adopt the following different types of fuel and fueling methods: LPG reforming, methanol reforming, naphtha reforming, desulfurized-gasoline reforming, kerosene reforming, natural gas reforming, water electrolysis, liquid hydrogen, by-product hydrogen, and commercially available cylinder hydrogen. Approximately fifty fuel cell passenger cars and a fuel cell bus are running on public roads using these stations. In addition, two hydrogen stations will be constructed in FY2004 in Aichi prefecture where The 2005 World Exposition (EXPO 2005) will be held. The stations will service eight fuel cell buses used as pick-up buses for visitors. We, Engineering Advancement Association of Japan (ENAA), are commissioned to construct and operate a total of twelve stations by Ministry of Economy Trade and Industry (METI). We are executing to demonstrate or identify the energy-saving effect, reduction of the environmental footprint, and issues for facilitating the acceptance of hydrogen stations on the basis of the data obtained from the operation of the stations. (author)

  13. Characterizations of Hydrogen Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Energetics Inc

    2003-04-01

    In 1996, Dr. Ed Skolnik of Energetics, Incorporated, began a series of visits to the locations of various projects that were part of the DOE Hydrogen Program. The site visits/evaluations were initiated to help the DOE Program Management, which had limited time and limited travel budgets, to get a detailed snapshot of each project. The evaluations were soon found to have other uses as well: they provided reviewers on the annual Hydrogen Program Peer Review Team with an in-depth look at a project--something that is lacking in a short presentation--and also provided a means for hydrogen stakeholders to learn about the R&D that the Hydrogen Program is sponsoring. The visits were conducted under several different contract mechanisms, at project locations specified by DOE Headquarters Program Management, Golden Field Office Contract Managers, or Energetics, Inc., or through discussion by some or all of the above. The methodology for these site-visit-evaluations changed slightly over the years, but was fundamentally as follows: Contact the Principal Investigator (PI) and arrange a time for the visit; Conduct a literature review. This would include a review of the last two or three years of Annual Operating Plan submittals, monthly reports, the paper submitted with the last two or three Annual Peer Review, published reviewers' consensus comments from the past few years, publications in journals, and journal publications on the same or similar topics by other researchers; Send the PI a list of questions/topics about a week ahead of time, which we would discuss during the visit. The types of questions vary depending on the project, but include some detailed technical questions that delve into some fundamental scientific and engineering issues, and also include some economic and goal-oriented topics; Conduct the site-visit itself including--Presentations by the PI and/or his staff. This would be formal in some cases, informal in others, and merely a &apos

  14. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  15. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  16. Andromede project: Surface analysis and modification with probes from hydrogen to nano-particles in the MeV energy range

    International Nuclear Information System (INIS)

    Eller, Michael J.; Cottereau, Evelyne; Rasser, Bernard; Verzeroli, Elodie; Agnus, Benoit; Gaubert, Gabriel; Donzel, Xavier; Delobbe, Anne; Della-Negra, Serge

    2015-01-01

    The Andromede project is the center of a multi-disciplinary team which will build a new instrument for surface modification and analysis using the impact of probes from hydrogen to nano-particles (Au 400 +4 ) in the MeV range. For this new instrument a series of atomic, polyatomic, molecular and nano-particle ion beams will be delivered using two ion sources in tandem, a liquid metal ion source and an electron cyclotron resonance source. The delivered ion beams will be accelerated to high energy with a 4 MeV van de Graaff type accelerator. By using a suite of probes in the MeV energy range, ion beam analysis techniques, MeV atomic and cluster secondary ion mass spectrometry can all be performed in one location. A key feature of the instrument is its ability to produce an intense beam for injection into the accelerator. The commissioning of the two sources shows that intense beams from atomic ions to nano-particles can be delivered for subsequent acceleration. The calculations and measurements for the two sources are presented.

  17. Hydrogen energy stations: along the roadside to the hydrogen economy

    International Nuclear Information System (INIS)

    Clark, W.W.; Rifkin, J.; O'Connor, T.; Swisher, J.; Lipman, T.; Rambach, G.

    2005-01-01

    Hydrogen has become more than an international topic of discussion within government and among industry. With the public announcements from the European Union and American governments and an Executive Order from the Governor of California, hydrogen has become a ''paradigm change'' targeted toward changing decades of economic and societal behaviours. The public demand for clean and green energy as well as being ''independent'' or not located in political or societal conflict areas, has become paramount. The key issues are the commitment of governments through public policies along with corporations. Above all, secondly, the advancement of hydrogen is regional as it depends upon infrastructure and fuel resources. Hence, the hydrogen economy, to which the hydrogen highway is the main component, will be regional and creative. New jobs, businesses and opportunities are already emerging. And finally, the costs for the hydrogen economy are critical. The debate as to hydrogen being 5 years away from being commercial and available in the marketplace versus needing more research and development contradicts the historical development and deployment of any new technology be it bio-science, flat panel displays, computers or mobile phones. The market drivers are government regulations and standards soon thereafter matched by market forces and mass production. Hydrogen is no different. What this paper does is describes is how the hydrogen highway is the backbone to the hydrogen economy by becoming, with the next five years, both regional and commercial through supplying stationary power to communities. Soon thereafter, within five to ten years, these same hydrogen stations will be serving hundreds and then thousands of hydrogen fuel powered vehicles. Hydrogen is the fuel for distributed energy generation and hence positively impacts the future of public and private power generators. The paradigm has already changed. (author)

  18. Stuart Energy's experiences in developing 'Hydrogen Energy Station' infrastructure

    International Nuclear Information System (INIS)

    Crilly, B.

    2004-01-01

    'Full text:' With over 50 years experience, Stuart Energy is the global leader in the development, manufacture and integration of multi-use hydrogen infrastructure products that use the Company's proprietary IMET hydrogen generation water electrolysis technology. Stuart Energy offers its customers the power of hydrogen through its integrated Hydrogen Energy Station (HES) that provides clean, secure and distributed hydrogen. The HES can be comprised of five modules: hydrogen generation, compression, storage, fuel dispensing and / or power generation. This paper discusses Stuart Energy's involvement with over 10 stations installed in recent years throughout North America, Asia and Europe while examining the economic and environmental benefits of these systems. (author)

  19. Life cycle assessment of hydrogen energy pattern

    International Nuclear Information System (INIS)

    Aissani, Lynda; Bourgois, Jacques; Rousseaux, Patrick; Jabouille, Florent; Loget, Sebastien; Perier Camby, Laurent; Sessiecq, Philippe

    2007-01-01

    In the last decades transportation sector is a priority for environmental research. Indeed, it is the most impacting sector because it involves greenhouse emissions and fossil resources exhaustion. The Group of 'Ecole des Mines' (GEM), in France, carries out studies concerning clean and renewable energies for this sector with the 'H2-PAC' project. The GEM with four teams performs studies concerning energy systems for transportation sector and more particularly the hydrogen system. The four teams of the GEM work each one on a process of this system. More precisely, the team of Albi studies biomass gasification in order to produce synthesis gas. The team of Nantes studies purification of this gas to obtain pure hydrogen and hydrogen storage on activated carbon. The team of Paris studies fuel cell use and especially Polymer Exchange Membrane Fuel Cell. Finally, the team of St Etienne evaluates this system along its life cycle from an environmental point of view. This paper presents this environmental evaluation witch is realized according to Life Cycle Assessment (LCA) methodology. (authors)

  20. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  1. Integrating hydrogen into Canada's energy future

    International Nuclear Information System (INIS)

    Rivard, P.

    2006-01-01

    This presentation outlines the steps in integrating of hydrogen into Canada's energy future. Canada's hydrogen and fuel cell investment is primarily driven by two government commitments - climate change commitments and innovation leadership commitments. Canada's leading hydrogen and fuel cell industry is viewed as a long-term player in meeting the above commitments. A hydrogen and fuel cell national strategy is being jointly developed to create 'Win-Wins' with industry

  2. Energy scenarios for hydrogen production in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J. L.

    2009-10-01

    The hydrogen is a clean and very efficient fuel, its combustion does not produce gases of greenhouse effect, ozone precursors and residual acids. Also the hydrogen produced by friendly energy sources with the environment like nuclear energy could help to solve the global problems that it confronts the energy at present time. Presently work fuel cycles of hydrogen production technologies in Mexico are judged, by means of a structured methodology in the concept of sustainable development in its social, economic and environmental dimensions. The methodology is divided in three scenarios: base, Outlook 2030 and capture of CO 2 . The first scenario makes reference to cycles analysis in a current context for Mexico, the second taking in account the demand projections reported by the IAEA in its report Outlook and the third scenario, capture of CO 2 , the technologies are analyzed supposing a reduction in capture costs of 75%. Each scenario also has four cases (base, social, environmental and economic) by means of which the cycles are analyzed in the dimensions of sustainable development. For scenarios base and capture, results show that combination nuclear energy- reformed of gas it is the best alternative for cases base and economic. For social case, the evaluated better technology is the hydraulics, and for environmental case, the best option is represented by the regenerative thermochemistry cycles. The scenario Outlook 2030 show a favorable tendency of growth of renewable sources, being the aeolian energy the best technology evaluated in the cases base and environmental, the hydraulics technology in the social case and in the economic case the reformed of natural gas that uses nuclear heat. (Author)

  3. Position Of Hydrogen Energy In Latvian Economics

    International Nuclear Information System (INIS)

    Vanags, M.; Kleperis, J.

    2007-01-01

    Full text: World energy resources are based on fossil fuels mostly (coal, oil, gas) which don't regenerate and will be run low after 30-80 years. Therefore it is necessary to elaborate alternative energy sources today. Also Latvia's energy balance is based mostly on the burning of fossil fuels and importing it from neighbor countries. One from much outstanding alternative energy sources is hydrogen. Hydrogen itself is a very important and most common element in the universe. Only hydrogen obtained from water and burnt in fuel cell back to water will be the renewed and sustainable fuel. There are hundred years old history of hydrogen related researches in Latvia, and there are researchers nowadays here trying to incorporate Latvia in the Hydrogen Society. The power supply in Latvia is based on local resources - water, wind, biogas (partly from waste), wood, peat, and on imported resources (natural gas, natural liquid gas, oil products (including heavy black oil) and coal. Total demand for electricity in Latvia only partly (63% in 2002) is covered with that produced on the site. If energy for heating in Latvia is produced from fossil fuels mostly (natural gas and heavy oil), than more than half of electricity produced in Latvia are based on local renewable resources. The water resources for the production of electricity in Latvia are almost exhausted - there are 3 large HEPS on Daugava River and more than 100 small HEPS on different rivers all over the Latvia. The building of small power stations in Latvia was accelerated very much after introduction of 'double tariff' for electricity from renewable, but from 2003 this time is over. Unfortunately directly power stations on small rivers made very big ecological distress on country side and no more expansion is welcome. The landfill gas in Latvia is a new resource and would result in additional capacity of 50 MW energy. Nowadays two projects started to realize for gas extraction from Getlini (Riga) and Grobina (Liepaja

  4. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Carl-Jochen Winter

    2006-01-01

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  5. Clean energy and the hydrogen economy.

    Science.gov (United States)

    Brandon, N P; Kurban, Z

    2017-07-28

    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  6. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  7. Hydrogen based global renewable energy network

    Energy Technology Data Exchange (ETDEWEB)

    Akai, Makoto [Mechanical Engineering Laboratory, AIST, MITI, Namiki, Tsukuba (Japan)

    1993-12-31

    In the last quarter of this century, global environmental problem has emerged as a major scientific, political and social issue. Specific Problems include: depletion of ozone layer by chlorofluorocarbons (CFCs), acid rain, destruction of tropical forests and desertification, pollution of the sea and global wanning due to the greenhouse effect by carbon dioxide and others. Among these problems, particular attention of the world has been focused on the global warming because it has direct linkage to energy consumption which our economic development depends on so far. On the other hand, the future program of The Sunshine Project for alternative energy technology R&D, The Moonlight Project for energy conservation technology R&D, and The Global Environmental Technology Program for environmental problem mitigating technology R&D which are Japan`s national projects being promoted by their Agency of Industrial Science and Technology (AIST) in the Ministry of International Trade and Industry have been reexamined in view of recent changes in the situations surrounding new energy technology. In this regard, The New Sunshine Program will be established by integrating these three activities to accelerate R&D in the field of energy and environmental technologies. In the reexamination, additional stress has been laid on the contribution to solving global environmental problem through development of clean renewable energies which constitute a major part of the {open_quotes}New Earth 21{close_quotes}, a comprehensive, long-term and international cooperative program proposed by MITI. The present paper discusses the results of feasibility study on hydrogen energy system leading to the concept of WE-NET following a brief summary on R&D status on solar and wind energy in Japan.

  8. A manual of recommended practices for hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, W.; Leach, S. [W. Hoagland and Associates, Boulder, CO (United States)

    1997-12-31

    Technologies for the production, distribution, and use of hydrogen are rapidly maturing and the number and size of demonstration programs designed to showcase emerging hydrogen energy systems is expanding. The success of these programs is key to hydrogen commercialization. Currently there is no comprehensive set of widely-accepted codes or standards covering the installation and operation of hydrogen energy systems. This lack of codes or standards is a major obstacle to future hydrogen demonstrations in obtaining the requisite licenses, permits, insurance, and public acceptance. In a project begun in late 1996 to address this problem, W. Hoagland and Associates has been developing a Manual of Recommended Practices for Hydrogen Systems intended to serve as an interim document for the design and operation of hydrogen demonstration projects. It will also serve as a starting point for some of the needed standard-setting processes. The Manual will include design guidelines for hydrogen procedures, case studies of experience at existing hydrogen demonstration projects, a bibliography of information sources, and a compilation of suppliers of hydrogen equipment and hardware. Following extensive professional review, final publication will occur later in 1997. The primary goal is to develop a draft document in the shortest possible time frame. To accomplish this, the input and guidance of technology developers, industrial organizations, government R and D and regulatory organizations and others will be sought to define the organization and content of the draft Manual, gather and evaluate available information, develop a draft document, coordinate reviews and revisions, and develop recommendations for publication, distribution, and update of the final document. The workshop, Development of a Manual of Recommended Practices for Hydrogen Energy Systems, conducted on March 11, 1997 in Alexandria, Virginia, was a first step.

  9. Battleground Energy Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Daniel [USDOE Gulf Coast Clean Energy Application Center, Woodlands, TX (United States)

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  10. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  11. Making energy projects happen

    International Nuclear Information System (INIS)

    Gilliland, S.F.; Utt, W.P.; Neff, N.T.

    1988-01-01

    In today's business environment, control of energy cost is a major challenge for businesses, institutions, and governmental agencies. New technologies are available to reduce energy costs through cogeneration, cheaper fuels, or other means. Often it is not possible for a Plant Owner to undertake such a project, regardless of how desirable it may be. The authors of this paper show that by applying the principles of Project Structuring and developing a comprehensive project team, the desired reduction in energy costs can be achieved. Various examples are cited, and guidelines are given for an Owner to use

  12. Achievement report on research and development in the Sunshine Project in fiscal 1978. Research on hydrogen energy subsystems (research on hydrogen fueled automobile systems); 1978 nendo suiso energy subsystem no kenkyu seika hokokusho. Suiso jidosha system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    This paper describes the result of discussions on hydrogen fueled automobiles in fiscal 1978. Hydrogen fueled automobiles have a difficulty in developing methods for transporting hydrogen, whereas the liquefied hydrogen method and the metal hydride method are being studied in parallel at the present. It is also necessary to solve such basic problems as the method for supplying hydrogen to engines, the injection method, and countermeasures for abnormal combustion. Safety assurance is also important. Very little information is available presently on methods for storing hydrogen inside a car and supplying thereof, which are required for evaluating utilization of liquefied hydrogen to automobiles. Demonstrative surveys and researches are required to acquire basic materials for hydrogen feeding methods in broader meaning including storage and control. Therefore, fiscal 1977 has begun trial fabrication of experimental liquefied hydrogen tanks, and preliminary and experimental researches on types and materials for feed pumps. Fiscal 1978 has moved forward improvements in prototype tank performance (heat insulation method to reduce evaporation loss), trial fabrication of liquid level meters, trial fabrication of feed pumps (especially selection of materials for the sliding parts), and researches on flow rate control methods. Drawings for modification and experiment of the liquefied hydrogen tanks were prepared, and the promising candidates were selected for material combination in pump sliding parts. Durability tests are continuing thereon. Flow rate control was also discussed. (NEDO)

  13. Proceedings of the DOE chemical/hydrogen energy systems contractor review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    This volume contains 45 papers as well as overviews of the two main project areas: the NASA Hydrogen Energy Storage Technology Project and Brookhaven National Laboratory's program on Electrolysis-Based Hydrogen Storage Systems. Forty-six project summaries are included. Individual papers were processed for inclusion in the Energy Data Base.

  14. Hydrogen energy from renewable resources

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To asses the economic viability of an integrated energy production system, a multi-stage cash flow analysis framework is utilized. This framework relies on standard cash flow models using an electronic spreadsheet program (Lotus 1-2-3) as the modeling environment. The purpose of the program is to evaluate the life-cycle economics of the various component technologies using common assumptions about the economic and financial environment in which these would operate. A schematic diagram of the multi-stage model is shown in the entire integrated production system. The details of the financial model are explained below. In its most complex form, the integrated system consists of three production stages. The first is the production of electricity. At this first stage, the model can and does accommodate any type of production technology, e.g., wind energy conversion systems, solar thermal devices, and geothermal electricity. The second stage of the model is the production of hydrogen using a specific assumed production methodology. In this case, it is a high-temperature electrolysis facility using production and economic characteristics data provided by the Florida Solar Energy Center. The third stage of the model represents the production of methanol assuming a biomass gasifier technology with operating and economic characteristics data based on studied by Fluor and Southern California Edison. At each stage of the model, there are three components: a data input portion that is used to define the techno-economic characteristics of the technology; the cash flow analysis based on financial assumptions; and an output summary section that reports the economic characteristics of the technology

  15. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    Science.gov (United States)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  16. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (General research on hydrogen energy subsystems); 1975 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso riyo subsystem no sogoteki kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-01

    This report is composed of the part 1 'General research on hydrogen energy subsystems' and the part 2 'Outline of researches on every use pattern of hydrogen'. The part 1 outlines the fiscal 1975 activity and result, the latest research situation, the latest domestic and overseas R and D situations, some extracted problems, and the future research issues. The part 2 summarizes the research results of every committee with the following themes: (1) Hydrogen combustion technology (combustion characteristics and technology of hydrogen-methane mixture, home and industrial combustors, study on hydrogen energy system), (2) Fuel cell, (3) Automobile engine (merits and demerits of automobile hydrogen engine, problems and their possible solutions on hydrogen engine, urgent research issues), (4) Aircraft engine (prospect for hydrogen use in air transport in Japan, study on various systems around airports in hydrogen use, technical study on aircraft using hydrogen fuel), (5) Gas turbine, and (6) Chemical use of hydrogen. (NEDO)

  17. Achievement report on research and development in the Sunshine Project in fiscal 1977. Studies on hydrogen energy total systems and the safety assuring technologies thereon (Studies on hydrogen energy total systems); 1977 nendo suiso energy total system to sono hoan gijutsu ni kansuru kenkyu seika hokokusho. Suiso energy total system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-01

    A numerical model was prepared to express fields and size of hydrogen energy introduction in Japan's energy systems in the future. Dividing Japan into 13 weather sections, one to two energy bases (import and secondary production bases in coastal areas) were assumed on each section. Secondary energies produced in these energy bases are transported to intermediate bases, from which the energies are distributed into cities and consumed. For the purpose of simplification, final consumption departments are hypothesized to exist in these intermediate bases. Parameters that characterize the flows on networks in the processes of supply, distribution, production, storage, transportation and utilization are divided largely into energy efficiency and cost of the processes. The amount of energy demand in each final consumption department was defined as an amount to maximize the expected effects as a result of having satisfied the demand. The result of trial calculations revealed that, as long as the hydrogen to be introduced is limited to hydrogen produced via electrolysis using thermally generated power, the hydrogen introduction into the future energy systems is difficult in terms of economic performance. (NEDO)

  18. Public understanding of hydrogen energy: A theoretical approach

    International Nuclear Information System (INIS)

    Sherry-Brennan, Fionnguala; Devine-Wright, Hannah; Devine-Wright, Patrick

    2010-01-01

    The aim of this paper was to investigate public understanding of hydrogen energy using a particular social-psychological theory, namely, the theory of social representations to explore how processes of understanding generated lay knowledge of hydrogen energy. Using a free association method for data collection and multidimensional scaling for analysis, the results enabled the identification of themes in the data such as energy, environment, community, science, and technology, and people and place, around which understanding was based. Processes of representation, such as anchoring to pre-existing knowledge, were seen as essential in guiding understanding. The results indicated that there were diverse influences involved in understanding and, although risk perception of hydrogen was acknowledged, community concerns were seen to override any negative effect of focussing on risk. The role of emotion in decision-making was highlighted as positive emotional responses to the Promoting Unst's Renewable Energy (PURE), a local hydrogen storage project, resulted in hydrogen energy generally being positively evaluated despite acknowledged risks posed by hydrogen such as its explosiveness and flammability. Recommendations for policy include recognising that the combination of expert and lay knowledge plays an important role in public acceptance or rejection of hydrogen energy.

  19. Public understanding of hydrogen energy. A theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Sherry-Brennan, Fionnguala; Devine-Wright, Hannah; Devine-Wright, Patrick [Manchester Architecture Research Centre (MARC), University of Manchester, Humanities Bridgeford Street, Oxford Road, Manchester M13 9PL (United Kingdom)

    2010-10-15

    The aim of this paper was to investigate public understanding of hydrogen energy using a particular social-psychological theory, namely, the theory of social representations to explore how processes of understanding generated lay knowledge of hydrogen energy. Using a free association method for data collection and multidimensional scaling for analysis, the results enabled the identification of themes in the data such as energy, environment, community, science, and technology, and people and place, around which understanding was based. Processes of representation, such as anchoring to pre-existing knowledge, were seen as essential in guiding understanding. The results indicated that there were diverse influences involved in understanding and, although risk perception of hydrogen was acknowledged, community concerns were seen to override any negative effect of focussing on risk. The role of emotion in decision-making was highlighted as positive emotional responses to the Promoting Unst's Renewable Energy (PURE), a local hydrogen storage project, resulted in hydrogen energy generally being positively evaluated despite acknowledged risks posed by hydrogen such as its explosiveness and flammability. Recommendations for policy include recognising that the combination of expert and lay knowledge plays an important role in public acceptance or rejection of hydrogen energy. (author)

  20. Public understanding of hydrogen energy: A theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Sherry-Brennan, Fionnguala, E-mail: fionnguala@manchester.ac.u [Manchester Architecture Research Centre (MARC), University of Manchester, Humanities Bridgeford Street, Oxford Road, Manchester M13 9PL (United Kingdom); Devine-Wright, Hannah; Devine-Wright, Patrick [Manchester Architecture Research Centre (MARC), University of Manchester, Humanities Bridgeford Street, Oxford Road, Manchester M13 9PL (United Kingdom)

    2010-10-15

    The aim of this paper was to investigate public understanding of hydrogen energy using a particular social-psychological theory, namely, the theory of social representations to explore how processes of understanding generated lay knowledge of hydrogen energy. Using a free association method for data collection and multidimensional scaling for analysis, the results enabled the identification of themes in the data such as energy, environment, community, science, and technology, and people and place, around which understanding was based. Processes of representation, such as anchoring to pre-existing knowledge, were seen as essential in guiding understanding. The results indicated that there were diverse influences involved in understanding and, although risk perception of hydrogen was acknowledged, community concerns were seen to override any negative effect of focussing on risk. The role of emotion in decision-making was highlighted as positive emotional responses to the Promoting Unst's Renewable Energy (PURE), a local hydrogen storage project, resulted in hydrogen energy generally being positively evaluated despite acknowledged risks posed by hydrogen such as its explosiveness and flammability. Recommendations for policy include recognising that the combination of expert and lay knowledge plays an important role in public acceptance or rejection of hydrogen energy.

  1. Hydrogen, energy vector of the future?

    International Nuclear Information System (INIS)

    Perrin, J.; Deschamps, J.F.

    2004-01-01

    In the framework of a sustainable development with a reduction of the greenhouse gases emissions, the hydrogen seems a good solution because its combustion produces only water. From the today hydrogen industrial market, the authors examine the technological challenges and stakes of the hydrogen-energy. They detail the hydrogen production, distribution and storage and compare with the petrol and the natural gas. Then they explain the fuel cells specificity and realize a classification of the energy efficiency of many associations production-storage-distribution-use. a scenario of transition is proposed. (A.L.B.)

  2. Sustainable Energy (SUSEN) project

    International Nuclear Information System (INIS)

    Richter, Jiri

    2012-01-01

    Research Centre Rez and University of West Bohemia started preparatory work on the 'Sustainable Energy' project, financed from EU structural funds. The goals and expected results of the project, its organization, estimated costs, time schedule and current status are described. (orig.)

  3. Status of the Korean nuclear hydrogen production project

    International Nuclear Information System (INIS)

    Jonghwa, Chang; Won-Jae, Lee

    2010-01-01

    The rapid climate changes and the heavy reliance on imported fuel in Korea have motivated interest in the hydrogen economy. The Korean government has set up a long-term vision for transition to the hydrogen economy. To meet the expected demand of hydrogen as a fuel, hydrogen production using nuclear energy was also discussed. Recently the Korean Atomic Energy Committee has approved nuclear hydrogen production development and demonstration which will lead to commercialisation in late 2030's. An extensive research and development programme for the production of hydrogen using nuclear power has been underway since 2004 in Korea. During the first three years, a technological area was identified for the economic and efficient production of hydrogen using a VHTR. A pre-conceptual design of the commercial nuclear hydrogen production plant was also performed. As a result, the key technology area in the core design, the hydrogen production process, the coupling between reactor and chemical side, and the coated fuel were identified. During last three years, research activities have been focused on the key technology areas. A nuclear hydrogen production demonstration plant (NHDD) consisting of a 200 MWth capacity VHTR and five trains of water-splitting plants was proposed for demonstration of the performance and the economics of nuclear hydrogen. The computer tools for the VHTR and the water-splitting process were created and validated to some extent. The TRISO-coated particle fuel was fabricated and qualified. The properties of high temperature materials, including nuclear graphite, were studied. The sulphur-iodine thermochemical process was proved on a 3 litre/ hour scale. A small gas loop with practical pressure and temperature with the secondary sulphur acid loop was successfully built and commissioned. The results of the first phase research increased the confidence in the nuclear hydrogen technology. From 2009, the government decided to support further key technology

  4. Achievement report on research and development in the Sunshine Project in fiscal 1976. Surveys and researches on patent information (Hydrogen energy); 1976 nendo tokkyo joho chosa kenkyu seika hokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper describes surveys on patent information about hydrogen energy. For the thermo-chemical hydrogen manufacturing method, considerable number of experiments have been carried out, and discussions have been given on possibility of establishing the cyclic performance. However, in the patent aspect, many of them are the discussions on desk. The electrolytic hydrogen manufacturing method is considered to have reached the limit of improvements, whereas no new patent applications have been filed on electrodes and diaphragms. The number of patent applications on storage and transportation of hydrogen is largest in those for hydrogen storing alloys. However, patent applications having contents worth discussing are relatively few. What is common to patents related to safety assurance is that the object is not necessarily focused on hydrogen, but in many cases relevant to combustible gases in general. In the hydrogen fuel cells, a tendency can be observed of using higher temperatures and pressures, such as in the one using phosphoric acid as electrolyte the operation temperature of 135 degrees C or higher. Amount of platinum added into electrodes is decreasing. Few patents are found that tackle squarely with hydrogen fueled engines. An invention is desired on a new engine using hydrogen as fuel. No patents can be found that have contents responding to the current problems to which the hydrogen combustion study is facing now. Solution is expected on the hydrogen flame dilemma of NOx generation and reverse ignition. (NEDO)

  5. 18th world hydrogen energy conference 2010. Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    This CD-ROM contains lectures, power points slides and posters presented on the 18th World Hydrogen Energy Conference. The topics of the conference are: (A). Fuel Cell Basics: 1. Electrochemistry of PEM Fuell Cells; 2. PEM/HT-PEM Fuel Cells: Electrolytes, Stack Components; 3. Direct Fuel Cells; 4. High-Temperature Fuel Cells; 5. Advanced Modelling (B). Existing and Emerging Markets: 1. Off-Grid Power Supply and Premium Power Generation; 2. Space and Aeronautic Applications; 3. APUs for LDV, Trucks, Ships and Airplanes; 4. Portable Applications and Light Traction. (C). Stationary Applications: 1. High-Temperature Fuel Cells; 2. Fuell Cells for Buildings. (D). Transportation Applications: 1. Fuel-Cell Power Trains; 3. Hydrogen Internal Combustion Engines; 4. Systems Analysis and Well-to-Wheel Studies; 5. Demonstration Projects, Costs and Market Introduction; 6 Electrification in Transportation Systems. (E). Fuel Infrastructures: 1. Hydrogen Distribution Technologies; 2. Hydrogen Deployment; 3. Fuel Provision for Early Market Applications. (G). Hydrogen Production Technologies: 1a. Photobiological Hydrogen Production; 1b. Fermentative Hydrogen Production; 1c. The HYVOLUTION Project. (H). Thermochemical Cycles: 3a. Hydrogen from Renewable Electricity; 3b. High-Temperature Electrolysis; 3c Alcaline Electrolysis; 3d PEM Electrolysis; 4a Reforming and Gasification-Fossil Energy Carriers; 4b Reforming and Gasification-Biomass; 5. Hydrogen-Separation Membranes; 6. Hydrogen Systems Assessment;.7. Photocatalysis (I). Storages: 1. Physical Hydrogen Storage; 2a. Metal Hydrides; 2b. Complex Hydrides; 3. Adsorption Technologies; (J). Strategic Analyses: 1. Research + Development Target and Priorities; 2. Life-Cycle Assessment and Economic Impact; 3. Socio-Economic Studies; 4. Education and Public Awareness; 5. Market Introduction; 7. Regional Activities; 8. The Zero Regio Project. (K). Safety Issues: 1. Vehicle and Infrastructural Safety; 2. Regulations, Codes, Standards and Test

  6. 18th world hydrogen energy conference 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This CD-ROM contains lectures, power points slides and posters presented on the 18th World Hydrogen Energy Conference. The topics of the conference are: (A). Fuel Cell Basics: 1. Electrochemistry of PEM Fuell Cells; 2. PEM/HT-PEM Fuel Cells: Electrolytes, Stack Components; 3. Direct Fuel Cells; 4. High-Temperature Fuel Cells; 5. Advanced Modelling (B). Existing and Emerging Markets: 1. Off-Grid Power Supply and Premium Power Generation; 2. Space and Aeronautic Applications; 3. APUs for LDV, Trucks, Ships and Airplanes; 4. Portable Applications and Light Traction. (C). Stationary Applications: 1. High-Temperature Fuel Cells; 2. Fuell Cells for Buildings. (D). Transportation Applications: 1. Fuel-Cell Power Trains; 3. Hydrogen Internal Combustion Engines; 4. Systems Analysis and Well-to-Wheel Studies; 5. Demonstration Projects, Costs and Market Introduction; 6 Electrification in Transportation Systems. (E). Fuel Infrastructures: 1. Hydrogen Distribution Technologies; 2. Hydrogen Deployment; 3. Fuel Provision for Early Market Applications. (G). Hydrogen Production Technologies: 1a. Photobiological Hydrogen Production; 1b. Fermentative Hydrogen Production; 1c. The HYVOLUTION Project. (H). Thermochemical Cycles: 3a. Hydrogen from Renewable Electricity; 3b. High-Temperature Electrolysis; 3c Alcaline Electrolysis; 3d PEM Electrolysis; 4a Reforming and Gasification-Fossil Energy Carriers; 4b Reforming and Gasification-Biomass; 5. Hydrogen-Separation Membranes; 6. Hydrogen Systems Assessment;.7. Photocatalysis (I). Storages: 1. Physical Hydrogen Storage; 2a. Metal Hydrides; 2b. Complex Hydrides; 3. Adsorption Technologies; (J). Strategic Analyses: 1. Research + Development Target and Priorities; 2. Life-Cycle Assessment and Economic Impact; 3. Socio-Economic Studies; 4. Education and Public Awareness; 5. Market Introduction; 7. Regional Activities; 8. The Zero Regio Project. (K). Safety Issues: 1. Vehicle and Infrastructural Safety; 2. Regulations, Codes, Standards and Test

  7. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  8. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  9. Hydrogen-based electrochemical energy storage

    Science.gov (United States)

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  10. Energy conversion using hydrogen PEM fuel cells

    International Nuclear Information System (INIS)

    Stoenescu, D.; Patularu, L.; Culcer, M.; Lazar, R.; Mirica, D.; Varlam, M.; Carcadea, E.; Stefanescu, I.

    2004-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (naphthalene, natural gas, methanol, coal, biomass), solar cells power, etc. It can be burned or chemically reacted having a high yield of energy conversion and is a non-polluted fuel. This paper presents the results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system consisting in a catalytic methane reforming plant for hydrogen production and three synthesis gas purification units in order to get pure hydrogen with a CO level lower than 10 ppm that finally feeds a hydrogen fuel stock. (authors)

  11. Energy Systems With Renewable Hydrogen Compared to Direct Use of Renewable Energy in Austria

    International Nuclear Information System (INIS)

    Gerfried Jungmeier; Kurt Konighofer; Josef Spitzer; R Haas; A Ajanovic

    2006-01-01

    The current Austrian energy system has a renewable energy share of 20% - 11% hydropower and 9 % biomass - of total primary energy consumption. Whereas a possible future introduction of renewable hydrogen must be seen in the context of current energy policies in Austria e.g. increase of energy efficiency and use of renewable energy, reduction of greenhouse gas emissions. The aim of the research project is a life cycle based comparison of energy systems with renewable hydrogen from hydropower, wind, photovoltaic and biomass compared to the direct use of renewable energy for combined heat and power applications and transportation services. In particular this paper focuses on the main question, if renewable energy should be used directly or indirectly via renewable hydrogen. The assessment is based on a life cycle approach to analyse the energy efficiency, the material demand, the greenhouse gas emissions and economic aspects e.g. energy costs and some qualitative aspects e.g. energy service. The overall comparison of the considered energy systems for transportation service and combined heat and electricity application shows, that renewable hydrogen might be beneficial mainly for transportation services, if the electric vehicle will not be further developed to a feasibly wide-spread application for transportation service in future. For combined heat and electricity production there is no advantage of renewable hydrogen versus the direct use of renewable energy. Conclusions for Austria are therefore: 1) renewable hydrogen is an interesting energy carrier and might play an important role in a future sustainable Austrian energy system; 2) renewable hydrogen applications look most promising in the transportation sector; 3) renewable hydrogen applications will be of low importance for combined heat and electricity applications, as existing technologies for direct use of renewable energy for heat and electricity are well developed and very efficient; 4) In a future '100

  12. Summarized achievement report on research and development in the Sunshine Project in fiscal 1979. Research on hydrogen energy total systems; 1979 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This paper describes discussions on future possibility of introducing hydrogen, by adding the latest data acquired in fiscal 1979 into a hydrogen energy total system calculation model. The critical cost of hydrogen is higher always than other secondary energies up to about 2030. Since it is a presupposition that hydrogen manufacturing is technologically feasible only by using the electrolytic manufacturing process, the hydrogen cost changes with the critical cost of electric power. Thereafter, if a hydrogen manufacturing process of mixed type utilizing heat from a high temperature gas reactor (HTGR) is introduced, the cost will be reduced. However, introduction of HTGR is governed by the nuclear power plan such as HTGR technology development, rather than simply by the economic performance. Value factors showing qualitative advantage of hydrogen have been assigned to different demand sectors, whereas acceptable economic performance may emerge from this effect from about 2010 in sectors having large value factors (such as 2.8 in aircraft fuels). Hydrogen contribution would be about 2.1% in 2020 and 5.5% in 2030 of the whole energy demand. (NEDO)

  13. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  14. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.-M.

    1993-01-01

    The cost of hydrogen from water electrolysis is estimated, assuming that the electricity was produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the sectors of power generation, heat and transportation are calculated, based on a state-of-the-art technology and a more advanced technology expected to represent the state by the year 2010. The cost of hydrogen utilization (without energy taxes) is higher than the current price of fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen will not gain a significant market share in either of the cases discussed. (Author)

  15. Achievement report on research and development in the Sunshine Project in fiscal 1978. Studies on a hydrogen energy total system; 1978 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    Analysis was made on timing, patterns and scales of introducing hydrogen energy into the Japan's total energy system, and case studies were made on transfer of the comprehensive systems that can be realized in the years of 1985, 2000 and 2025. The basic conception for the analytic method employed a method to analyze and present theoretically the conditions in which prerequisites or results of the estimation can be established, rather than intending elucidation of the estimation itself. An energy model was used for the theoretical means thereof. The objective function to be optimized was assumed to maximize (estimate over the planned period of time) the total effectiveness of the hydrogen energy system converted into the present value being given appropriate discount. The economic performance measures for different secondary energies working as the comparison measures are the limiting production cost of each energy. A consideration was given to the point that the electrolytic hydrogen cannot compete with that made by using the thermo-chemical method (if developed successfully) using heat from high-temperature gas reactor if the fossil fuel price rises sharply. Considerations are also required in replaceability of hydrogen energy with other energies, and hydrogen utilization in petroleum refining. (NEDO)

  16. Energy Levels of Hydrogen and Deuterium

    Science.gov (United States)

    SRD 142 NIST Energy Levels of Hydrogen and Deuterium (Web, free access)   This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  17. Energy Storage Project

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  18. Achievement report on research and development in the Sunshine Project in fiscal 1980. Research on a hydrogen energy total system; 1980 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This paper describes research on a hydrogen energy total system. Fiscal 1980 has surveyed R/D technologies in the sectors anticipated to have large possibility of introducing hydrogen in Japan's energy systems in the future (ammonia/methanol industries, automobiles and aircraft fuel), and discussed the possibility of the introduction. The value factors (VF) applied to them are 1.7 for the ammonia industry, 1.1 to 1.6 for the methanol industry, 1.4 for gasoline as automobile and jet fuel, and 2.8 for jet fuel. Whether hydrogen would be introduced in all of these sectors depends on conditions of introducing hydrogen utilizing HTGR heat, and the VF of hydrogen against competing energies. Therefore, case studies were performed by using these factors as the parameters. If the VF is fixed and HTGR introduction speed is accelerated, introduction of hydrogen will be accelerated in the fields of chemical materials, air conditioning and process heat. On the other hand, the introduction will decrease in the automobile and aircraft fuel fields. If the methanol VF is made smaller, hydrogen introduction will be decelerated in the chemical industry field (methanol), and that in the air conditioning, automobiles and aircraft fuel fields will be accelerated. (NEDO)

  19. Producing hydrogen from coke-oven gas: the Solmer project. [PSA process

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, G; Vidal, J

    1984-05-01

    After presenting the energy situation at the Solmer plant, where coke-oven gas is produced to excess, the authors examine the technical and economic possibilities of utilizing this gas for hydrogen extraction. They describe a project (based on the PSA process) for producing some 65 t/d of hydrogen and present the technical features of the scheme. An evaluation of the energy and financial costs of producing the hydrogen confirms the competitive status of the process.

  20. Hydrogen energy economy: More than utopia

    International Nuclear Information System (INIS)

    Weber, R.

    1992-01-01

    Under the pressure of increasing climate changes in the last years the attitude towards hydrogen technology has changed. Germany has taken a leading position in hydrogen research. Above all there is not only government-sponsored research but also industrial research. It is even assumed that an energy economy on the basis of solar energy as well as of hydrogen is technically possible. If the fact that the total power of all cars in the FRG amounts to 200.000 MW - twice as much as all power stations - is taken into consideration it should be possible to produce in large-scale production decentralized solar or hydrogen energy converters at similar kilowatt rates. (BWI) [de

  1. Energy projections 1979

    International Nuclear Information System (INIS)

    1979-01-01

    The projections, prepared by Department of Energy officials, examine possible UK energy demand and supply prospects to the end of the century. They are based on certain broad long term assumptions about economic growth, technical improvements and movements in energy prices. The projections are intended to provide a broad quantitative framework for the consideration of possible energy futures and policy choices. Two cases are considered. In the first, the UK economy is assumed to grow at about 3 per cent to the end of the century and, in the second, at a lower level of about 2 per cent per annum. In both it is assumed that world oil prices will rise significantly above present levels (reaching some 30 dollars a barrel in terms of 1977 prices for Saudi Arabian marker crude by the end of the century). After incorporation of allowances for energy conservation which approximate to a reduction of some 20 per cent in demand, total primary fuel requirements in the year 2000 are estimated in the range 445 to 510 million tonnes of coal equivalent (mtce), representing an average rate of growth of 0.9 to 1.5 per cent a year. Potential indigenous energy supply by the end of the century is estimated in the range 390 to 410 mtce. This includes a possible installed nuclear capacity of up to 40 Gigawatts, approximately a fourfold increase on capacity already installed or under construction, and indigenous coal production of up to 155 million tonnes a year. The projections highlight the UK's prospective emergence during the later part of the century from a period from 1980 of energy surplus and the increasing roles which energy conservation, nuclear power and coal will be called upon to play as oil becomes scarcer and more expensive in the international market and as indigenous oil and gas production declines. (author)

  2. Transportable Hydrogen Research Plant Based on Renewable Energy

    International Nuclear Information System (INIS)

    Mikel Fernandez; Carlos Madina; Asier Gil de Muro; Jose Angel Alzolab; Iker Marino; Javier Garcia-Tejedor; Juan Carlos Mugica; Inaki Azkkrate; Jose Angel Alzola

    2006-01-01

    Efficiency and cost are nowadays the most important barriers for the penetration of systems based on hydrogen and renewable energies. According to this background, TECNALIA Corporation has started in 2004 the HIDROTEC project: 'Hydrogen Technologies for Renewable Energy Applications'. The ultimate aim of this project is the implementation of a multipurpose demonstration and research plant in order to explore diverse options for sustainable energetic solutions based on hydrogen. The plant is conceived as an independent system that can be easily transported and assembled. Research and demonstration activities can thus be carried out at very different locations, including commercial renewable facilities. Modularity and scalability have also been taken into account for an optimised exploitation. (authors)

  3. The hydrogen: a clean and durable energy; L'hydrogene: une energie propre et durable

    Energy Technology Data Exchange (ETDEWEB)

    Alleau, Th. [Association Francaise de l' Hydrogene (France); Nejat Veziroglu, T. [Clean Energy Research Institute, University of Miami (United States); Lequeux, G. [Commission europeenne, DG de la Recherche, Bruxelles (Belgium)

    2000-07-01

    All the scientific experts agree, the hydrogen will be the energy vector of the future. During this conference day on the hydrogen, the authors recalled the actual economic context of the energy policy with the importance of the environmental policy and the decrease of the fossil fuels. The research programs and the attitudes of the France and the other countries facing the hydrogen are also discussed, showing the great interest for this clean and durable energy. They underline the importance of an appropriate government policy, necessary to develop the technology of the hydrogen production, storage and use. (A.L.B.)

  4. Hydrogen energy - the end of the beginning

    International Nuclear Information System (INIS)

    Stuart, A. K.

    1997-01-01

    Financial barriers to the widespread use of hydrogen energy were the principal messages contained in this banquet address. These barriers include the cost for the hydrogen, cost for the supply infrastructure and the cost of developing and building the special vehicles and appliances to use hydrogen. Some hopeful signs that hydrogen energy is emerging include Ballard's buses, early fuel cell private vehicle refueling station and remote energy systems which will be commercialized within the next ten years. The optimism is based on the effects of deregulation of the electric utility industry in the US now spreading to Canada and other countries, the appearance of effective direct hydrogen fuel cell vehicles under strong industrial sponsorship, and the near-term availability of electrolysis for hydrogen production at a fraction of present capital cost. Each of these reasons for optimism were elaborated in some detail. However, the main force behind the hydrogen solution for transportation is the environmental benefit, i.e. the potential of some one billion automobiles around the world running on an environmentally benign fuel, and the potential effect of that fact on global warming. The likely effects of continuing as before is no longer considered a viable option even by the greatest of skeptics of greenhouse gas emissions, a fact that will make the demand for 'clean' vehicles progressively more pressing with the passage of time. By increasing the hydrogen-to-carbon ratio in upgrading heavy hydrocarbons, the petroleum industry itself is showing the way to factor global warming issues into process choices. By going one step further and obtaining the hydrogen from non-fossil sources, the environmental benefits will be multiplied several fold

  5. Estonian energy forest project

    International Nuclear Information System (INIS)

    Koppel, A.; Kirt, E.; Kull, K.; Lasn, R.; Noormets, A.; Roostalu, H.; Ross, J.; Ross, V.; Sulev, M.

    1994-04-01

    In February 1993 an agreement of Swedish-Estonian scientific co-operation on energy forest was signed. In may five energy forest plantations (altogether 2 ha) were established in Estonia with Swedish selected clones of Salix viminalis and Salix dasyclados. The research within this project is carried out within three main directions. The studies of basic ecophysiological processes and radiation regime of willow canopy will be carried out in Toravere. The production ecology studies, comparison of the productivity of multiple clones on different soil types is based on the plantations as vegetation filter for wastewater purification is studied on the basis of plantations in Vaeike-Maarja and Valga (author)

  6. Hydrogen, an energy carrier with a future

    International Nuclear Information System (INIS)

    Zimmer, K.H.

    1975-01-01

    The inefficient use, associated with pollutants, of the fossil energy carriers coal, crude oil and natural gas, will deplete resources, if the energy demand increases exponentially, in the not-too-distant future. That is the reason why the hydrogen-energy concept gains in importance. This requires drastic changes in structure in a lot of technological fields. This task is only to be mastered if there is cooperation between all special fields, in order to facilitate the economical production, distribution and utilization of hydrogen. (orig.) [de

  7. Hydrogen: an energy vector for the future?

    International Nuclear Information System (INIS)

    His, St.

    2004-01-01

    Used today in various industrial sectors including refining and chemicals, hydrogen is often presented as a promising energy vector for the transport sector. However, its balance sheet presents disadvantages as well as advantages. For instance, some of its physical characteristics are not very well adapted to transport use and hydrogen does not exist in pure form. Hydrogen technologies can offer satisfactory environmental performance in certain respects, but remain handicapped by costs too high for large-scale development. A great deal of research will be required to develop mass transport application. (author)

  8. Hydrogen: an energy vector for the future?

    Energy Technology Data Exchange (ETDEWEB)

    His, St

    2004-07-01

    Used today in various industrial sectors including refining and chemicals, hydrogen is often presented as a promising energy vector for the transport sector. However, its balance sheet presents disadvantages as well as advantages. For instance, some of its physical characteristics are not very well adapted to transport use and hydrogen does not exist in pure form. Hydrogen technologies can offer satisfactory environmental performance in certain respects, but remain handicapped by costs too high for large-scale development. A great deal of research will be required to develop mass transport application. (author)

  9. Formic Acid as a Hydrogen Energy Carrier

    KAUST Repository

    Eppinger, Jö rg; Huang, Kuo-Wei

    2016-01-01

    The high volumetric capacity (S3 g H-2/L) and its low toxicity and flammability under ambient conditions make formic acid a promising hydrogen energy carrier. Particularly, in the past decade, significant advancements have been achieved in catalyst development for selective hydrogen generation from formic acid. This Perspective highlights the advantages of this approach with discussions focused on potential applications in the transportation sector together with analysis of technical requirements, limitations, and costs.

  10. Formic Acid as a Hydrogen Energy Carrier

    KAUST Repository

    Eppinger, Jorg

    2016-12-15

    The high volumetric capacity (S3 g H-2/L) and its low toxicity and flammability under ambient conditions make formic acid a promising hydrogen energy carrier. Particularly, in the past decade, significant advancements have been achieved in catalyst development for selective hydrogen generation from formic acid. This Perspective highlights the advantages of this approach with discussions focused on potential applications in the transportation sector together with analysis of technical requirements, limitations, and costs.

  11. Renewable energy project development

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J.

    1996-12-31

    The author presents this paper with three main thrusts. The first is to discuss the implementation of renewable energy options in China, the second is to identify the key project development steps necessary to implement such programs, and finally is to develop recommendations in the form of key issues which must be addressed in developing such a program, and key technical assistance needs which must be addressed to make such a program practical.

  12. Very High Energy Neutron Scattering from Hydrogen

    International Nuclear Information System (INIS)

    Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I

    2010-01-01

    The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.

  13. Regional hydrogen roadmap. Project development framework for the Sahara Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Benhamou, Khalid [Sahara Wind Inc., Rabat (Morocco); Arbaoui, Abdelaziz [Ecole National Superieure des Arts et Metiers ENSAM Meknes (Morocco); Loudiyi, Khalid [Al Akhawayn Univ. (Morocco); Ould Mustapha, Sidi Mohamed [Nouakchott Univ. (Mauritania). Faculte des Sciences et Techniques

    2010-07-01

    The trade winds that blow along the Atlantic coast from Morocco to Senegal represent one of the the largest and most productive wind potentials available on earth. Because of the erratic nature of winds however, wind electricity cannot be integrated locally on any significant scale, unless mechanisms are developed for storing these intermittent renewable energies. Developing distributed wind energy solutions feeding into smaller electricity markets are essential for solving energy access issues and enabling the development of a local, viable renewable energy industry. These may be critical to address the region's economic challenges currently under pressure from Sub-Saharan migrant populations. Windelectrolysis for the production of hydrogen can be used in grid stabilization, as power storage, fuel or chemical feedstock in specific industries. The objective of the NATO SfP 'Sahara Trade Winds to Hydrogen' project is to support the region's universities through an applied research framework in partnership with industries where electrolysis applications are relevant. By powering two university campuses in Morocco and Mauritania with small grid connected wind turbines and 30 kW electrolyzers generating hydrogen for power back-up as part of ''green campus concepts'' we demonstrated that wind-electrolysis for the production of hydrogen could absorb larger quantities of cheap generated wind electricity in order to maximize renewable energy uptakes within the regions weaker grid infrastructures. Creating synergies with local industries to tap into a widely available renewable energy source opens new possibilities for end users such as utilities or mining industries when processing raw minerals, whose exports generates key incomes in regions most exposed to desertification and climate change issue. Initiated by Sahara Wind Inc. a company from the private sector, along with the Al Akhawayn University, the Ecole Nationale Superieure

  14. DOE Energy Challenge Project

    Energy Technology Data Exchange (ETDEWEB)

    Frank Murray; Michael Schaepe

    2009-04-24

    Project Objectives: 1. Promote energy efficiency concepts in undergraduate and graduate education. 2. Stimulate and interest in pulp and paper industrial processes, which promote and encourage activities in the area of manufacturing design efficiency. 3. Attract both industrial and media attention. Background and executive Summary: In 1997, the Institute of Paper Science and Technology in conjunction with the U.S. Department of Energy developed a university design competition with an orientation to the Forest Products Industry. This university design competition is in direct alignment with DOE’s interests in instilling in undergraduate education the concepts of developing energy efficient processes, minimizing waste, and providing environmental benefits and in maintaining and enhancing the economic competitiveness of the U.S. forest products industry in a global environment. The primary focus of the competition is projects, which are aligned with the existing DOE Agenda 2020 program for the industry and the lines of research being established with the colleges comprising the Pulp and Paper Education and Research Alliance (PPERA). The six design competitions were held annually for the period 1999 through 2004.

  15. Final Technical Report: Hydrogen Energy in Engineering Education (H2E3)

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, Peter A.; Cashman, Eileen; Lipman, Timothy; Engel, Richard A.

    2011-09-15

    Schatz Energy Research Center's Hydrogen Energy in Engineering Education curriculum development project delivered hydrogen energy and fuel cell learning experiences to over 1,000 undergraduate engineering students at five California universities, provided follow-on internships for students at a fuel cell company; and developed commercializable hydrogen teaching tools including a fuel cell test station and a fuel cell/electrolyzer experiment kit. Monitoring and evaluation tracked student learning and faculty and student opinions of the curriculum, showing that use of the curriculum did advance student comprehension of hydrogen fundamentals. The project web site (hydrogencurriculum.org) provides more information.

  16. Hybrid Hydrogen and Mechanical Distributed Energy Storage

    Directory of Open Access Journals (Sweden)

    Stefano Ubertini

    2017-12-01

    Full Text Available Effective energy storage technologies represent one of the key elements to solving the growing challenges of electrical energy supply of the 21st century. Several energy storage systems are available, from ones that are technologically mature to others still at a research stage. Each technology has its inherent limitations that make its use economically or practically feasible only for specific applications. The present paper aims at integrating hydrogen generation into compressed air energy storage systems to avoid natural gas combustion or thermal energy storage. A proper design of such a hybrid storage system could provide high roundtrip efficiencies together with enhanced flexibility thanks to the possibility of providing additional energy outputs (heat, cooling, and hydrogen as a fuel, in a distributed energy storage framework. Such a system could be directly connected to the power grid at the distribution level to reduce power and energy intermittence problems related to renewable energy generation. Similarly, it could be located close to the user (e.g., office buildings, commercial centers, industrial plants, hospitals, etc.. Finally, it could be integrated in decentralized energy generation systems to reduce the peak electricity demand charges and energy costs, to increase power generation efficiency, to enhance the security of electrical energy supply, and to facilitate the market penetration of small renewable energy systems. Different configurations have been investigated (simple hybrid storage system, regenerate system, multistage system demonstrating the compressed air and hydrogen storage systems effectiveness in improving energy source flexibility and efficiency, and possibly in reducing the costs of energy supply. Round-trip efficiency up to 65% can be easily reached. The analysis is conducted through a mixed theoretical-numerical approach, which allows the definition of the most relevant physical parameters affecting the system

  17. Project Maghreb - Europe: Solar Production of Hydrogen. Phase I: Feasibility and opportunity study of the project; Projet Maghreb - Europe: Production d'hydrogene solaire. Phase I: Etude d'opportunite et de faisabilite du projet

    Energy Technology Data Exchange (ETDEWEB)

    Mahmah, Bouziane; Belhamel, Maiouf; Chader, Samira; M' Raoui, Abdelhamid; Harouadi, Farid; Etievant, Claude; Lechevalier, Steve; Cherigui, Abdel-Nasser

    2007-07-01

    During the 16th World Hydrogen Energy Conference which held on June 13-16, 2006, in Lyon (France), an important project appeared, the Maghreb-Europe Project for production and export of solar hydrogen, proposed in the Algiers Declaration of the hydrogen of origin renewable and directed by the researchers efforts of the Renewable Energies Development Center of Algiers (CDER) and members of the European company of Hydrogen Technologies (CETH). The present introductory communication exposes a scientific study on the appropriateness and the feasibility of the Project, as well as the objectives, missions and the fundamental elements for a scientific and technique accompaniment of this important project. (auth)

  18. Green energy and hydrogen research at University of Waterloo

    International Nuclear Information System (INIS)

    Fowler, M.

    2006-01-01

    This paper summarises Green Energy and Hydrogen Research at the University of Waterloo in Canada. Green energy includes solar, wind, bio fuels, hydrogen economy and conventional energy sources with carbon dioxide sequestration

  19. Hydrogen energy network start-up scenario

    International Nuclear Information System (INIS)

    Weingartner, S.; Ellerbrock, H.

    1994-01-01

    Hydrogen is widely discussed as future fuel and energy storage medium either to replace conventional fuels for automobiles, aircrafts and ships or to avoid the necessity of bulky battery systems for electricity storage, especially in connection with solar power systems. These discussions however started more than 25 years ago and up to now hydrogen has failed to achieve a major break-through towards wider application as energy storage medium in civil markets. The main reason is that other fuels are cheaper and very well implemented in our daily life. A study has been performed at Deutsche Aerospace in order to evaluate the boundary conditions, either political or economical, which would give hydrogen the necessary push, i.e. advantage over conventional fuels. The main goal of this study was to identify critical influence factors and specific start-up scenarios which would allow an economical and practically realistic use of hydrogen as fuel and energy medium in certain niche markets outside the space industry. Method and major results of this study are presented in detail in the paper. Certain niche markets could be identified, where with little initial governmental support, either by funding, tax laws or legislation, hydrogen can compete with conventional fuels. This however requires a scenario where a lot of small actions have to be taken by a high variety of institutions and industries which today are not interconnected with each other, i.e. it requires a new cooperative and proactive network between e.g. energy utilities, car industries, those who have a sound experience with hydrogen (space industry, chemical industry) and last, but certainly not the least, the government. Based on the developed scenario precise recommendations are drawn as conclusions

  20. Financing wind energy projects

    International Nuclear Information System (INIS)

    Blom, P.

    1996-01-01

    Triodos Bank has more than 10 years of experience with developing and financing wind projects in the Netherlands. Over 50 Megawatt has been installed with direct involvement of the bank. The experience is both as a bank and as a venture capital fund. In this contribution the perspective will be more from a venture capital point of view than as a bank. The bank's activities in the wind energy sector started in 1986 by forming a joint venture with an engineering bureau, experienced i wind energy but not yet in developing wind projects. From 1989 onwards the joint venture started to build wind farms, both as a private company and in a joint venture with utilities. The European Investment Bank became involved with a long-term debt finance facility (15 years, fixed interest loan). The main difficulties were long-term commitments from landowners (Dike authorities) and utilities with regard to power contracts. The development got really stuck when utilities refused to pay a fair price anymore. Also, site development became more and more difficult. Even the poor technical performance improved drastically and did not frighten developers and banks too much. (author)

  1. Nuclear energy - basis for hydrogen economy

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    The development of human civilization in general as well as that of every country in particular is in direct relation to the assurance of a cost effective energy balance encompassing all industrial spheres and everyday activities. Unfortunately, the uncontrolled utilization of Earth's energy resources is already causing irreversible damage to various components of the eco-system of the Earth. Nuclear energy used for electricity and hydrogen production has the biggest technological potential for solving of the main energy outstanding issues of the new century: increasing of energy dependence; global warming. Because of good market position the political basis is assured for fast development of new generation nuclear reactors and fuel cycles which can satisfy vigorously increasing needs of affordable and clean energy. Political conditions are created for adequate participation of nuclear energy in the future global energy mix. They must give chance to the nuclear industry to take adequate part in the new energy generation capacity.(author)

  2. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  3. Test plan for hydrogen getters project

    International Nuclear Information System (INIS)

    Mroz, G.; Weinrach, J.

    1998-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (poison) the effectiveness of the hydrogen getter. The results of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP

  4. Draft test plan for hydrogen getters project

    International Nuclear Information System (INIS)

    Mroz, G.; Weinrach, J.

    1998-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (poison) the effectiveness of the hydrogen getter. The results of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP

  5. Economic Dispatch of Hydrogen Systems in Energy Spot Markets

    DEFF Research Database (Denmark)

    You, Shi; Nørgård, Per Bromand

    2015-01-01

    of energy spot markets. The generic hydrogen system is comprised of an electrolysis for hydrogen production, a hydrogen storage tank and a fuel cell system for cogeneration of electricity and heat. A case study is presented with information from practical hydrogen systems and the Nordic energy markets...

  6. Nordic hydrogen energy foresight - challenges of managing the interactive process

    DEFF Research Database (Denmark)

    Eerola, A.; Loikkanen, T.; Koljonen, T.

    2005-01-01

    The paper discusses the managerial challenges of the Nordic Hydrogen Energy Foresight, a joint effort of the five Nordic countries (Denmark, Finland, Iceland, Norway, Sweden). Interaction between research, industry and government, and combination ofjudgmental and formal procedures, were essential...... of the project in the light of a dynamic model ofshared knowledge creation. In particular, the ways in which the design and the methodological tools facilitated the process and its management are discussed. Some suggestions for forthcoming foresight exercises are also presented....

  7. First high energy hydrogen cluster beams

    International Nuclear Information System (INIS)

    Gaillard, M.J.; Genre, R.; Hadinger, G.; Martin, J.

    1993-03-01

    The hydrogen cluster accelerator of the Institut de Physique Nucleaire de Lyon (IPN Lyon) has been upgraded by adding a Variable Energy Post-accelerator of RFQ type (VERFQ). This operation has been performed in the frame of a collaboration between KfK Karlsruhe, IAP Frankfurt and IPN Lyon. The facility has been designed to deliver beams of mass selected Hn + clusters, n chosen between 3 and 49, in the energy range 65-100 keV/u. For the first time, hydrogen clusters have been accelerated at energies as high as 2 MeV. This facility opens new fields for experiments which will greatly benefit from a velocity range never available until now for such exotic projectiles. (author) 13 refs.; 1 fig

  8. Hydrogen energy and sustainability: overview and the role for nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2008-01-01

    This paper discusses the role of nuclear power in hydrogen energy and sustainability. Hydrogen economy is based on hydrogen production, packaging (compression, liquefaction, hydrides), distribution (pipelines, road, rail, ship), storage (pressure and cryogenic containers), transfer and finally hydrogen use

  9. U.S. Department of Energy Hydrogen Storage Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  10. Kinetics with deactivation of methylcyclohexane dehydrogenation for hydrogen energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Maria, G; Marin, A; Wyss, C; Mueller, S; Newson, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The methylcyclohexane dehydrogenation step to recycle toluene and release hydrogen is being studied as part of a hydrogen energy storage project. The reaction is performed catalytically in a fixed bed reactor, and the efficiency of this step significantly determines overall system economics. The fresh catalyst kinetics and the deactivation of the catalyst by coke play an important role in the process analysis. The main reaction kinetics were determined from isothermal experiments using a parameter sensitivity analysis for model discrimination. An activation energy for the main reaction of 220{+-}11 kJ/mol was obtained from a two-parameter model. From non-isothermal deactivation in PC-controlled integral reactors, an activation energy for deactivation of 160 kJ/mol was estimated. A model for catalyst coke content of 3-17 weight% was compared with experimental data. (author) 3 figs., 6 refs.

  11. Hydrogen fueling demonstration projects using compact PSA purification

    International Nuclear Information System (INIS)

    Ng, E.; Smith, T.

    2004-01-01

    'Full text:' Hydrogen fueling demonstration projects are critical to the success of hydrogen as an automotive fuel by building public awareness and demonstrating the technology required to produce, store, and dispense hydrogen. Over 75 of these demonstration projects have been undertaken or are in the planning stages world-wide, sponsored by both the public and private sectors. Each of these projects represents a unique combination of sponsors, participants, geographic location, and hydrogen production pathway. QuestAir Technologies Inc., as the industry leader in compact pressure swing adsorption equipment for purifying hydrogen, has participated in four hydrogen fueling demonstration projects with a variety of partners and in North America and Japan. QuestAir's experiences as a participant in the planning, construction, and commissioning of these demonstration projects will be presented in this paper. The unique challenges of each project and the critical success factors that must to be considered for successful deployment of high-profile, international, and multi-vendor collaborations will also be discussed. The paper will also provide insights on the requirements for hydrogen fueling demonstration projects in the future. (author)

  12. Demonstration of Hydrogen Energy Network and Fuel Cells in Residential Homes

    International Nuclear Information System (INIS)

    Hirohisa Aki; Tetsuhiko Maeda; Itaru Tamura; Akeshi Kegasa; Yoshiro Ishikawa; Ichiro Sugimoto; Itaru Ishii

    2006-01-01

    The authors proposed the setting up of an energy interchange system by establishing energy networks of electricity, hot water, and hydrogen in residential homes. In such networks, some homes are equipped with fuel cell stacks, fuel processors, hydrogen storage devices, and large storage tanks for hot water. The energy network enables the flexible operation of the fuel cell stacks and fuel processors. A demonstration project has been planned in existing residential homes to evaluate the proposal. The demonstration will be presented in a small apartment building. The building will be renovated and will be equipped with a hydrogen production facility, a hydrogen interchange pipe, and fuel cell stacks with a heat recovery device. The energy flow process from hydrogen production to consumption in the homes will be demonstrated. This paper presents the proposed energy interchange system and demonstration project. (authors)

  13. Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schucan, T. [Paul Scherrer Inst., Villigen PSI (Switzerland)

    1999-12-31

    Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich

  14. Fiscal 1996 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development was performed for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. Under subtask 1, the whole WE-NET project was subjected to evaluation, which included coordination between the respective tasks. Under subtask 2, information exchange and research cooperation were carried out with research institutes overseas. Under subtask 3, a conceptual design was prepared of a total system using ammonia as the medium for hydrogen transportation, accident data were collected and screened, and safety measures and evaluation techniques were developed and improved. Under subtask 4, the hot press method and the electroless plating method were selected as better electrode bonding methods. Under subtask 5, hydrogen liquefaction cycle processes, liquid hydrogen tankers, storage facilities, etc., were studied. Under subtasks 6-9, furthermore, investigations were conducted about low-temperature substance technology, hydrogen energy, hydrogen combustion turbine, etc. (NEDO)

  15. Hydrogen energy for the transportation sector in China

    International Nuclear Information System (INIS)

    Zong Qiangmao

    2006-01-01

    Hydrogen is a promising energy carrier for providing a clean, reliable and affordable energy supply. This paper provides a blueprint for the hydrogen energy in the transportation sector in the future of China. This paper is divided into three parts. The first part answers this question: why is China interested in hydrogen energy? The second part describes the possibility of a hydrogen fuel cell engine and a hydrogen internal-combustion engine in the transportation in China in the near future. The final part describes the production of hydrogen in China. (author)

  16. Use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Axente, Damian

    2006-01-01

    Full text: The potentials of three hydrogen production processes under development for the industrial production of hydrogen using nuclear energy, namely the advanced electrolysis the steam reforming, the sulfur-iodine water splitting cycle, are compared and evaluated in this paper. Water electrolysis and steam reforming of methane are proven and used extensively today for the production of hydrogen. The overall thermal efficiency of the electrolysis includes the efficiency of the electrical power generation and of the electrolysis itself. The electrolysis process efficiency is about 75 % and of electrical power generation is only about 30 %, the overall thermal efficiency for H 2 generation being about 25 %. Steam reforming process consists of reacting methane (or natural gas) and steam in a chemical reactor at 800-900 deg. C, with a thermal efficiency of about 70 %. In a reforming process, with heat supplied by nuclear reactor, the heat must be supplied by a secondary loop from the nuclear side and be transferred to the methane/steam mixture, via a heat exchanger type reactor. The sulfur-iodine cycle, a thermochemical water splitting, is of particular interest because it produces hydrogen efficiently with no CO 2 as byproduct. If heated with a nuclear source it could prove to be an ideal environmental solution to hydrogen production. Steam reforming remains the cheapest hydrogen production method based on the latest estimates, even when implemented with nuclear reactor. The S-I cycle offers a close second solution and the electrolysis is the most expensive of the options for industrial H 2 production. The nuclear plant could power electrolysis operations right away; steam reforming with nuclear power is a little bit further off into the future, the first operation with nuclear facility is expected to have place in Japan in 2008. The S-I cycle implementation is still over the horizon, it will be more than 10 years until we will see that cycle in full scale

  17. Hydrogen research and development in Hawaii: Hawaii natural energy institute's hydrogen from renewable resources research program

    International Nuclear Information System (INIS)

    McKinley, K.R.; Rocheleau, R.E.; Takahashi, P.K.; Jensen, C.M.

    1993-01-01

    Hawaii, an energy-vulnerable state, has launched a Renewable Resources Research Program, focusing on hydrogen production and storage; the main tasks of this effort are: photoelectrochemical production of hydrogen through the use of coated silicon electrodes; solar conversion and the production of hydrogen with cyanobacteria; improved hydrogen storage through the use of nonclassical poly-hydride metal complexes. 10 refs

  18. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  19. Great Plains Wind Energy Transmission Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task

  20. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  1. Solar Hydrogen Fuel Cell Projects at Brooklyn Tech

    Science.gov (United States)

    Fedotov, Alex; Farah, Shadia; Farley, Daithi; Ghani, Naureen; Kuo, Emmy; Aponte, Cecielo; Abrescia, Leo; Kwan, Laiyee; Khan, Ussamah; Khizner, Felix; Yam, Anthony; Sakeeb, Khan; Grey, Daniel; Anika, Zarin; Issa, Fouad; Boussayoud, Chayama; Abdeldayem, Mahmoud; Zhang, Alvin; Chen, Kelin; Chan, Kameron Chuen; Roytman, Viktor; Yee, Michael

    2010-01-01

    This article describes the projects on solar hydrogen powered vehicles using water as fuel conducted by teams at Brooklyn Technical High School. Their investigations into the pure and applied chemical thermodynamics of hydrogen fuel cells and bio-inspired devices have been consolidated in a new and emerging sub-discipline that they define as solar…

  2. Achievements of European projects on membrane reactor for hydrogen production

    NARCIS (Netherlands)

    di Marcoberardino, G.; Binotti, M.; Manzolini, G.; Viviente, J.L.; Arratibel Plazaola, A.; Roses, L.; Gallucci, F.

    2017-01-01

    Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects

  3. HYDROGEN ENERGY: TERCEIRA ISLAND DEMONSTRATION FACILITY

    Directory of Open Access Journals (Sweden)

    MARIO ALVES

    2008-07-01

    Full Text Available The present paper gives a general perspective of the efforts going on at Terceira Island in Azores, Portugal, concerning the implementation of an Hydrogen Economy demonstration campus. The major motivation for such a geographical location choice was the abundance of renewable resources like wind, sea waves and geothermal enthalpy, which are of fundamental importance for the demonstration of renewable hydrogen economy sustainability. Three main campus will be implemented: one at Cume Hill, where the majority of renewable hydrogen production will take place using the wind as the primary energy source, a second one at Angra do Heroismo Industrial park, where a cogen electrical – heat power station will be installed, mainly to feed a Municipal Solid Waste processing plant and a third one, the Praia da Vitoria Hydrogenopolis, where several final consumer demonstrators will be installed both for public awareness and intensive study of economic sustainability and optimization. Some of these units are already under construction, particularly the renewable hydrogen generation facilities.

  4. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  5. The energy efficiency of onboard hydrogen storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng; Bjerrum, Niels

    2010-01-01

    Global warming resulting from the use of fossil fuels is threatening the environment and energy efficiency is one of the most important ways to reduce this threat. Industry, transport and buildings are all high energy-using sectors in the world and even in the most technologically optimistic...... perspectives energy use is projected to increase in the next 50 years. How and when energy is used determines society's ability to create long-term sustainable energy systems. This is why this book, focusing on energy efficiency in these sectors and from different perspectives, is sharp and also important...

  6. Analysis of economic and infrastructure issues associated with hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Summers, W.A.; Gorensek, M.B.; Danko, E.; Schultz, K.R.; Richards, M.B.; Brown, L.C.

    2004-01-01

    Consideration is being given to the large-scale transition of the world's energy system from one based on carbon fuels to one based on the use of hydrogen as the carrier. This transition is necessitated by the declining resource base of conventional oil and gas, air quality concerns, and the threat of global climate change linked to greenhouse gas emissions. Since hydrogen can be produced from water using non-carbon primary energy sources, it is the ideal sustainable fuel. The options for producing the hydrogen include renewables (e.g. solar and wind), fossil fuels with carbon sequestration, and nuclear energy. A comprehensive study has been initiated to define economically feasible concepts and to determine estimates of efficiency and cost for hydrogen production using next generation nuclear reactors. A unique aspect of the study is the assessment of the integration of a nuclear plant, a hydrogen production process and the broader infrastructure requirements. Hydrogen infrastructure issues directly related to nuclear hydrogen production are being addressed, and the projected cost, value and end-use market for hydrogen will be determined. The infrastructure issues are critical, since the combined cost of storing, transporting, distributing, and retailing the hydrogen product could well exceed the cost of hydrogen production measured at the plant gate. The results are expected to be useful in establishing the potential role that nuclear hydrogen can play in the future hydrogen economy. Approximately half of the three-year study has been completed. Results to date indicate that nuclear produced hydrogen can be competitive with hydrogen produced from natural gas for use at oil refineries or ammonia plants, indicating a potential early market opportunity for large-scale centralized hydrogen production. Extension of the hydrogen infrastructure from these large industrial users to distributed hydrogen users such as refueling stations and fuel cell generators could

  7. Developing Government Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  8. MedHySol: Future federator project of massive production of solar hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mahmah, Bouziane; Harouadi, Farid; Chader, Samira; Belhamel, Maiouf; M' Raoui, Abdelhamid; Abdeladim, Kamel [CDER, BP 62, Route de l' Observatoire, Bouzareah, Alger (Algeria); Benmoussa, H. [LESEI, Universite de Batna, Batna (Algeria); Cherigui, Adel Nasser [Universite Joseph Fourier Grenoble I, BP 87, Saint-Martin-D' Heres 38400 (France); Etievant, Claude [CETH, Innov' valley Entreprises, 91460 Marcoussis (France)

    2009-06-15

    Mediterranean Hydrogen Solar (MedHySol) is a federator project for development of a massive hydrogen production starting from solar energy and its exportation within a framework of a Euro-Maghrebian Cooperation project for industrial and energetic needs in the Mediterranean basin. The proposal of this project is included in the Algiers Declaration's on Hydrogen from Renewable Origin following the organization of the first international workshop on hydrogen which was held in 2005. Algeria is the privileged site to receive the MedHySol platform. The objective of the first step of the project is to realize a technological platform allowing the evaluation of emergent technologies of hydrogen production from solar energy with a significant size (10-100 kW) and to maintain the development of energetic rupture technologies. The second step of the project is to implement the most effective and less expensive technologies to pilot great projects (1-1000 MW). In this article we present the potentialities and the feasibility of MedHySol, as well as the fundamental elements for a scientific and technical supervision of this great project. (author)

  9. Economic assessment of a waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Wang, L.; Zhou, H.; Zhou, W.; Wu, J.; Wang, Q.

    1993-01-01

    This paper reports the economic assessment on an hybrid hydrogen recovery, purification, storage, transportation and application project (HRPSTA) set for a system including a nitrogenous fertilizer plant and a float glass factory. A pretreatment unit and metal hydride containers are used to recover and purify the hydrogen from the purge gas of the ammonia fertilizer plant and to transport and use the hydrogen on the tin bath in the float glass factory. Cost analysis and cash flow statements are presented, and financial value and rate of return are calculated. The project is shown to be technologically and financially feasible. 1 fig., 4 tabs., 4 refs

  10. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on hydrogen gas turbine); 1975 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso gas turbine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-31

    This research aims at establishment of the meaning of using hydrogen as gas turbine fuel in the hydrogen energy system and various conditions for hydrogen gas turbines, and approaches to the feasibility study and R and D of hydrogen gas turbines in the future. In fiscal 1975, researches were made on (1) feasibility study on hydrogen-oxygen gas turbine, (2) establishment of various conditions for technical, social and economic realization of hydrogen gas turbines in the total energy system, and (3) study on technical troubles to be solved for realization of hydrogen gas turbines. For the above researches, study was made on hydrogen combustion based on the hydrogen combustion test result of gas mixture including hydrogen, and on the feasibility of aphodid cycle. In addition, study on the applicability of hydrogen-oxygen gas turbines, comparative study on hydrogen-oxygen gas turbine, MHD power generation and fuel cell, and the future prospect of hydrogen gas turbines for ships were made to place this hydrogen gas turbine. (NEDO)

  11. Hydrogen production through photovoltaic processes: Italian ENEA and other research projects

    International Nuclear Information System (INIS)

    Barra, L.; Coiante, D.

    1992-01-01

    Brief arguments favouring greater emphasis by government R ampersand D strategies on commercialization efforts to further develop hydrogen production processes involving the use of renewable energy sources are presented. These include the worsening global greenhouse effect problems due to the intensified use of fossil fuels and recent technological advances being made in photovoltaic energy conversion. A world-wide review is then made of on-going research programs in hydrogen production through the use of hydroelectric and solar energy sources. This review provides outlines of project objectives, schedules and financing schemes. Attention is given to the commercialization programs and strategies of ENEA (Italian Commission for New Technologies, Energy and the Environment)

  12. Project financing renewable energy schemes

    International Nuclear Information System (INIS)

    Brandler, A.

    1993-01-01

    The viability of many Renewable Energy projects is critically dependent upon the ability of these projects to secure the necessary financing on acceptable terms. The principal objective of the study was to provide an overview to project developers of project financing techniques and the conditions under which project finance for Renewable Energy schemes could be raised, focussing on the potential sources of finance, the typical project financing structures that could be utilised for Renewable Energy schemes and the risk/return and security requirements of lenders, investors and other potential sources of financing. A second objective is to describe the appropriate strategy and tactics for developers to adopt in approaching the financing markets for such projects. (author)

  13. Aims and first assessments of the French hydrogen pathways project HyFrance3

    Energy Technology Data Exchange (ETDEWEB)

    Le Duigou, Alain [CEA/DEN/DANS/I-Tese, Gif-sur-Yvette (France); Quemere, Marie-Marguerite [EDF R et D, Moret sur Loing (France). Dept. EPI; Marion, Pierre [IFP, Rueil Malmaison (FR)] (and others)

    2010-07-01

    The HyFrance Group was originally formed in France to support the European project HyWays, by providing (former projects HyFrance1 and HyFrance2) the French data and possible hydrogen pathways according to national specificities. HyFrance3 is a new project that focuses on the economic competitiveness of different steps of the hydrogen chain, from the production to end usage, at the time horizon of 2030 in France. The project is coordinated by CEA with the other partners being: ADEME (co-funding), AFH2, CNRS, IFP, Air Liquide, EdF, GdF Suez, TOTAL, ALPHEA. The project is divided into 4 sub-projects, that address present and future French hydrogen industrial markets for chemical and refinery uses, the analysis of the interplay between wind energy production and storage of hydrogen for different automotive requirements (refuelling stations, BtL plants, H2/NG mix), massive hydrogen storage to balance various offer and demand characteristics, and the supply network (pipeline option competitiveness vs. trucked in supply) to distribute hydrogen in a French region for automotive applications. Technical and economical issues, as well as GHG emissions, are addressed. (orig.)

  14. WE-NET Hydrogen Energy Symposium proceedings; WE-NET suiso energy symposium koen yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-24

    The research and development of WE-NET (World Energy Network) was started in 1993 as a NEDO (New Energy and Industrial Technology Development Organization) project in the New Sunshine Program of Agency of Industrial Science and Technology, Ministry of International Trade and Industry, and aims to contribute to the improvement of global environment and to ease the difficult energy supply/demand situation. The ultimate goal of WE-NET is the construction of a global-scale clean energy network in which hydrogen will be produced from renewable energies such as water and sunshine for distribution to energy consuming locations. Experts are invited to the Symposium from the United States, Germany, and Canada. Information is collected from the participants on hydrogen energy technology development in the three countries, the result of the Phase I program of WE-NET is presented to hydrogen energy scientists in Japan, and views and opinions on the project are collected from them. Accommodated in the above-named publication are 30 essays and three special lectures delivered at the Symposium. (NEDO)

  15. The NEED (National Energy Education Development) Project

    Science.gov (United States)

    Hogan, D.; Spruill, M.

    2012-04-01

    The NEED (National Energy Education Development) Project is a non-profit organization which provides a wide range of K-12 curriculum on energy education topics. The curriculum is specific for primary, elementary, intermediate and secondary levels with age appropriate activities and reading levels. The NEED Project covers a wide range of topics from wind energy, nuclear energy, solar energy, hydropower, hydrogen, fossil fuels, energy conservation, energy efficiency and much more. One of the major strengths of this organization is its Teacher Advisory Board. The curriculum is routinely revised and updated by master classroom teachers who use the lessons and serve on the advisory board. This ensures it is of the highest quality and a useful resource. The NEED Project through a variety of sponsors including businesses, utility companies and government agencies conducts hundreds of teacher professional development workshops each year throughout the United States and have even done some workshops internationally. These workshops are run by trained NEED facilitators. At the workshops, teachers gain background understanding of the energy topics and have time to complete the hands on activities which make up the curriculum. The teachers are then sent a kit of equipment after successfully completing the workshop. This allows them to teach the curriculum and have their students perform the hands on labs and activities in the classroom. The NEED Project is the largest provider of energy education related curriculum in the United States. Their efforts are educating teachers about energy topics and in turn educating students in the hope of developing citizens who are energy literate. Many of the hands on activities used to teach about various energy sources will be described and demonstrated.

  16. Hydrogen in the making: how an energy company organises under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Koefoed, Anne Louise

    2011-07-01

    This thesis combines an analytical interest in innovation process studies with an empirical interest in clean energy development. My work concentrates on innovation processes from initiation to realisation in a company setting focusing on hydrogen as an energy carrier. A Norwegian energy company, Norsk Hydro, is used as a case to explore the intraorganisational processes involved in business building. This is relevant to the research question - how hydrogen energy takes on reality and relevance for business activity? Further, a concrete hydrogen demonstration project involving research and development of a new technology combination, in collaboration with partners, has also been studied.(Author)

  17. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed

  18. Test Plan for Hydrogen Getters Project - Phase II

    International Nuclear Information System (INIS)

    Mroz, G.

    1999-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (''poison'') the effectiveness of the hydrogen getter. The result of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP. Phase II for the Hydrogen Getters Project will focus on four primary objectives: Conduct measurements of the relative permeability of hydrogen and chlorinated VOCs through Tedlar (and possibly other candidate packaging materials) Test alternative getter systems as alternatives to semi-permeable packaging materials. Candidates include DEB/Pd/Al2O3 and DEB/Cu-Pd/C. Develop, test, and deploy kinetic optimization model Perform drum-scale test experiments to demonstrate getter effectiveness

  19. Prospects for hydrogen in the German energy system

    International Nuclear Information System (INIS)

    Hake, J.-F.; Linssen, J.; Walbeck, M.

    2006-01-01

    The focus of the paper concerns the current discussion on the contribution of the hydrogen economy to a 'sustainable energy system'. It considers whether advantages for the environmental situation and energy carrier supply can be expected from the already visible future characteristics of hydrogen as a new secondary energy carrier. Possible production paths for hydrogen from hydrocarbon-based, renewable or carbon-reduced/-free primary energy carriers are evaluated with respect to primary energy use and CO 2 emissions from the fuel cycle. Hydrogen has to be packaged by compression or liquefaction, transported by surface vehicles or pipelines, stored and transferred to the end user. Whether generated by electrolysis or by reforming, and even if produced locally at filling stations, the gaseous or liquid hydrogen has to undergo these market processes before it can be used by the customer. In order to provide an idea of possible markets with special emphasis on the German energy sector, a technical systems analysis of possible hydrogen applications is performed for the stationary, mobile and portable sector. Furthermore, different 'business as usual' scenarios are analysed for Germany, Europe and the World concerning end energy use in different sectors. The very small assumed penetration of hydrogen in the analysed scenarios up to the year 2050 indicates that the hydrogen economy is a long-term option. With reference to the assumed supply paths and analysed application possibilities, hydrogen can be an option for clean energy use if hydrogen can be produced with carbon-reduced or -free primary energy carriers like renewable energy or biomass. However, the energetic use of hydrogen competes with the direct use of clean primary energy and/or with the use of electric energy based on renewable primary energy. As a substitution product for other secondary energy carriers hydrogen is therefore under pressure of costs and/or must have advantages in comparison to the use of

  20. Hydrogen engine performance analysis project. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

    1980-01-01

    Progress in a 3 year research program to evaluate the performance and emission characteristics of hydrogen-fueled internal combustion engines is reported. Fifteen hydrogen engine configurations will be subjected to performance and emissions characterization tests. During the first two years, baseline data for throttled and unthrottled, carburetted and timed hydrogen induction, Pre IVC hydrogen-fueled engine configurations, with and without exhaust gas recirculation (EGR) and water injection, were obtained. These data, along with descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained, are given. Analyses of other hydrogen-engine project data are also presented and compared with the results of the present effort. The unthrottled engine vis-a-vis the throttled engine is found, in general, to exhibit higher brake thermal efficiency. The unthrottled engine also yields lower NO/sub x/ emissions, which were found to be a strong function of fuel-air equivalence ratio. (LCL)

  1. Fiscal 2000 strategic surveys for respective technical fields. Hydrogen-based energy working group (Analysis of project results relating to hydrogen technology); 2000 nendo bun'yabetsu senryaku chosa hokokusho. Suisokei energy WG (Suiso kanren gijutsu ni kakawaru jigyo seika tou bunseki chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Attention is focused on the molten carbonate fuel cell (MCFC) technology which has enjoyed the largest number of industrial property applications out of hydrogen-related technologies under development by NEDO (New Energy and Industrial Technology Development Organization). The patent application is utilized as a tool for analysis, and endeavors are made to systematize and then analyze the correlations between the tasks to discharge and the results of studies in the process of MCFC development. Findings are described below. It is quite difficult to specify the technology involved by the study of patent abstracts. Since an applicant for patent is inclined to describe the application so that it will cover an extensive scope (or, so that the patent will be taken in a broad sense), it takes much time for researchers other than the applicant to specify the field of technological studies where the application originates. Such being the case, it cannot be easily determined whether or not a patent applied for by a private-sector corporation has its origin in a NEDO-implemented project. In addition, it is found that there is not necessarily a correlationship between the importance of a research and development goal and the number of patents generated. (NEDO)

  2. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  3. Overview of new energy projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Developing new energy is one of the main pillars of Japan`s energy policy. NEDO is pressing ahead with the further development of new energy sources and the introduction and diffusion of new energy technologies as a core. NEDO is carrying out the following development. For the utilization of clean and abundant solar energy, the photovoltaic power generation, and the practical application of solar thermal systems are promoted. Japan, located in the Pacific Rim volcanic zone, is blessed with massive reserves of geothermal energy resources, and work is being conducted to develop technologies for promoting geothermal energy utilization. As its resources are widely dispersed and abundant, coal is an attractive energy source. However, coal needs to be made more environmentally friendly. NEDO is conducting the development of coal conversion technologies, i.e., liquefaction and gasification technologies. Fuel cell is one of the energy storage technologies. Hydrogen and alcohol are themes as clean alternative energy sources. Furthermore, biomass and wind energy conversion system are also being investigated. To promote the development of geothermal resources, NEDO is carrying out geothermal development promotion surveys. To secure stable supplies of coal for Japan, NEDO is conducting geological surveys in countries where it is difficult for private companies to conduct business. Promotion of international cooperation is also presented.

  4. Fiscal 1995 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research and development was performed for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. Under subtask 1, besides investigation of a pilot plant of phase 2, the WE-NET image as a whole was studied. Under subtask 2, technical information was exchanged at an international symposium and a long-term vision of the international network was discussed. Under subtask 3, for the evaluation of the effect of hydrogen energy introduction on the global level, national level, and city level, simulation models were discussed and improved. Under subtask 4, tests and studies were made concerning electrode bonding methods. Under subtask 5, the Neon Brayton cycle process was surveyed and studied as a hydrogen liquefaction cycle. Under subtasks 6-9, furthermore, surveys and studies were made about techniques relating to low-temperature substances, hydrogen energy, hydrogen combustion turbines, and so forth. (NEDO)

  5. PROJECT APPROACH TO ENERGY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Інга Борисівна СЕМКО

    2016-02-01

    Full Text Available Project management is widely used around the world as a tool to improve business performance. Correct implementation of the program of implementation of energy efficiency is accompanied by the adoption of an appropriate legislative framework, support programs, the approval of market-based instruments. Currently, it is paying enough attention to the effective application of market-based instruments, although most of the activities in the field of energy efficiency from the economic side are quite profitable. The authors suggested the use of the methodology of project management to the management of energy-saving measures, new approaches to the place and role of project management in the hierarchy of guidance. As a result, this innovation can improve the competitiveness of enterprises. The conclusions that the energy-saving project management allows you to get the best results for their implementation by reducing the time, resources, risk reduction.

  6. Financing of Renewable Energy Projects

    International Nuclear Information System (INIS)

    Santizo, Rodolfo; Berganza, Jose

    2000-01-01

    The paper describes the role of the Banco Centroamericano de Integracion Economica in financing renewable energy projects in Central America. Also decribes the different financing modes to the goverment and private sectors

  7. Project finance for alternative energy

    International Nuclear Information System (INIS)

    Mills, S.J.

    1993-01-01

    This paper is intended to provide general advice to sponsors of renewable energy projects who expect to raise project-based financing from commercial banks to fund the development of their projects. It will set out, for the benefit of such sponsors, how bankers typically approach the analysis of these undertakings and in particular the risk areas on which they concentrate. By doing so it should assist sponsors to maximise their prospects of raising bank finance. (author)

  8. Fiscal 2000 collection of manuscripts for technology development committee on hydrogen energy and the like; 2000 nendo suiso energy nado kanren gijutsu kaihatsu iinkai yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-07

    The subjects listed in the collection are (1) the research and development of international clean energy system technology utilizing hydrogen (WE-NET - World Energy Network), including the outline of the project as a whole; research on system evaluation; research and development of safety measures; development of technologies for liquid hydrogen transportation and storage; research on low-temperature materials; development of hydrogen supply station and hydrogen-driven automobile system; development of supply station for hydrogen produced by electrolysis of water; development of hydrogen fuel system; development of hydrogen production technology; development of hydrogen absorbing alloys for dispersed hydrogen transportation and storage; development of polymer electrolyte fuel cell fed with pure hydrogen; and the development of power generation technology, (2) the development of closed type high-efficiency turbine technology capable of carbon dioxide recovery, and (3) the development of frontier technology of carburation using sensible heat in coke oven gas. (NEDO)

  9. Economic assessment of a waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Zhou, H.; Wang, L.; Zhou, W.; Wu, J.; Wang, Q.

    1993-01-01

    This article reports an economic assessment on a hydride hydrogen recovery, purification, storage, transportation and application project (HRPSTA) set for a system including a nitrogenous fertilizer plant and a float glass factory. In this project, a pretreatment unit and metal hydride containers are used to recover and purify the hydrogen from the purge gas of the ammonia fertilizer plant and to transport and use the hydrogen in the tin bath in the float glass factory. Detailed economic assessment, cost analysis and a cash flow statement are presented, and financial net present value (NPV), as well as intrinsic rate of return (IRR), is calculated. The results shows that this project, which is feasible technologically, is profitable economically. (Author)

  10. Design of a photovoltaic-hydrogen-fuel cell energy system

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, P A; Chamberlin, C E [Humboldt State Univ., Arcata, CA (US). Dept. of Environmental Resources Engineering

    1991-01-01

    The design of a stand-alone renewable energy system using hydrogen (H{sub 2}) as the energy storage medium and a fuel cell as the regeneration technology is reported. The system being installed at the Humboldt State University Telonicher Marine Laboratory consists of a 9.2 kW photovoltaic (PV) array coupled to a high pressure, bipolar alkaline electrolyser. The array powers the Laboratory's air compressor system whenever possible; excess power is shunted to the electrolyser for hydrogen and oxygen (O{sub 2}) production. When the array cannot provide sufficient power, stored hydrogen and oxygen are furnished to a proton exchange membrane fuel cell which, smoothly and without interruption, supplies the load. In reporting the design, details of component selection, sizing, and integration, control system logic and implementation, and safety considerations are discussed. Plans for a monitoring network to chronicle system performance are presented, questions that will be addressed through the monitoring program are included, and the present status of the project is reported. (Author).

  11. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  12. Achievement report on research and development in the Sunshine Project in fiscal 1977. Studies on hydrogen energy total systems and the safety assuring technologies thereon (Studies on preparing criteria for the safety assuring technologies for hydrogen energy total systems); 1977 nendo suiso energy total system to sono hoan gijutsu ni kansuru kenkyu seika hokokusho. Suiso energy total system no hoan gijutsu kijun no sakusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-01

    Studies have been made on preparing criteria for the safety assuring technologies for hydrogen energy total systems. The outline of the technological guideline for hydrogen manufacturing processes in the high temperature and pressure water decomposition method is the same as that in the normal pressure water decomposition method. However, its high temperature and pressure environment can cause new safety problems. Considerations should be given on, for example, material problems in structural materials and insulation materials including electrodes and membranes, introduction of gas-liquid separation and pressure balancing devices, problems in electrolyte circulation, and safety problems that may occur because of generation of hydrogen and oxygen under high temperature and pressure conditions. This paper summarizes these matters by surveying literature data. In order to provide basic information to prepare criteria for safety assuring technologies for the gaseous hydrogen liquefaction process, surveys and studies were made based on different items of technological information and experimental study results. Safety assuring technologies were discussed on metal hydrides (promising means for storing hydrogen). Powder is used to enhance hydrogen absorbing performance, whereas the metal hydrides are pulverized as a result of repetition of absorption and discharge of hydrogen. This paper describes also metal dust explosion disaster and its risk of occurrence. (NEDO)

  13. Financing of wind energy projects

    International Nuclear Information System (INIS)

    Harland, S.

    1991-01-01

    This paper looks at what banks need to know to enable them to consider a wind energy project. The major experiences of banks in financing wind energy have been in the US where governmentally inspired long term sales contracts (PURPA Contracts) have given a security to sponsors and banks not available elsewhere. (Author)

  14. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1990-09-01

    Section headings are: (1) Social and economic problems of the 21 st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO 2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO 2 sink through enhanced reforestation. (Quittner)

  15. A global survey of hydrogen energy research, development and policy

    International Nuclear Information System (INIS)

    Solomon, Barry D.; Banerjee, Abhijit

    2006-01-01

    Several factors have led to growing interest in a hydrogen energy economy, especially for transportation. A successful transition to a major role for hydrogen will require much greater cost-effectiveness, fueling infrastructure, consumer acceptance, and a strategy for its basis in renewable energy feedstocks. Despite modest attention to the need for a sustainable hydrogen energy system in several countries, in most cases in the short to mid term hydrogen will be produced from fossil fuels. This paper surveys the global status of hydrogen energy research and development (R and D) and public policy, along with the likely energy mix for making it. The current state of hydrogen energy R and D among auto, energy and fuel-cell companies is also briefly reviewed. Just two major auto companies and two nations have specific targets and timetables for hydrogen fuel cells or vehicle production, although the EU also has an aggressive, less specific strategy. Iceland and Brazil are the only nations where renewable energy feedstocks are envisioned as the major or sole future source of hydrogen. None of these plans, however, are very certain. Thus, serious questions about the sustainability of a hydrogen economy can be raised

  16. World energy projections to 2030

    International Nuclear Information System (INIS)

    Criqui, P.; Kouvaritakis, N.

    2000-01-01

    This paper provides a description of the international energy projections elaborated with the POLES energy model for the purpose of analysing, in other papers of this issue, the impacts of technological change at world level and to 2030. Section 2 describes the key exogenous hypotheses on population and economic growth used for this projection, as well as the main resulting changes for the world energy system and in terms of CO 2 emissions. In Section 3 the dynamics of the energy systems are further analysed for four main world regions, while Section 4 is dedicated to the identification of the key uncertainties and of their possible impacts on future energy development. Finally, the last section presents the key messages of this outlook, which shows a rapidly growing world economy and energy consumption with increasing oil and gas prices, although this last feature remains subject to uncertainties on resource endowment estimates. (orig.)

  17. New perspectives on renewable energy systems based on hydrogen

    International Nuclear Information System (INIS)

    Bose, T. K.; Agbossou, K.; Benard, P.; St-Arnaud, J-M.

    1999-01-01

    Current hydrocarbon-based energy systems, current energy consumption and the push towards the utilization of renewable energy sources, fuelled by global warming and the need to reduce atmospheric pollution are discussed. The consequences of climatic change and the obligation of Annex B countries to reduce their greenhouse gas emissions in terms of the Kyoto Protocols are reviewed. The role that renewable energy sources such as hydrogen, solar and wind energy could play in avoiding the most catastrophic consequences of rapidly growing energy consumption and atmospheric pollution in the face of diminishing conventional fossil fuel resources are examined. The focus is on hydrogen energy as a means of storing and transporting primary energy. Some favorable characteristics of hydrogen is its abundance, the fact that it can be produced utilizing renewable or non-renewable sources, and the further fact that its combustion produces three times more energy per unit of mass than oil, and six times more than coal. The technology of converting hydrogen into energy, storing energy in the form of hydrogen, and its utilization, for example in the stabilization of wind energy by way of electrolytic conversion to hydrogen, are described. Development at Hydro-Quebec's Institute of Research of a hydrogen-based autonomous wind energy system to produce electricity is also discussed. 2 tabs., 11 refs

  18. Fiscal 1975 Sunshine Project research report. Research on safety technology for hydrogen energy systems; 1975 nendo suiso energy system ni okeru hoan gijutsu ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-05-01

    Important notices and problems on the safety for hydrogen gas were analyzed. Analysis was made on hydrogen gas property, flammability, explosivility, bio-toxicity, equipment, storage, transport, leakage, fire, technology and education for safety management, and quality and analysis of products. Study was also made on the relation between the above items and every domestic or overseas standard. Important notices and problems on the safety for liquid hydrogen were analyzed. Analysis was made on liquid hydrogen property, liquefaction and refining equipment, transport, storage, materials concerned, bio-toxicity, leakage, fire fighting technique, and safety management. Among them, such problems are pointed out from the viewpoint of accident prevention, as O-P conversion, refining of hydrogen gas for liquefaction, selection of structural materials, hydrogen embrittlement, layout of various equipment and devices, explosion-proof electric devices, and leakage detection. Research on effective fire fighting and fire preventive measures against hydrogen leakage and diffusion from tanks or piping are also in demand. (NEDO)

  19. Hydrogen Technology and Energy Curriculum (HyTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Barbara

    2013-02-28

    The Lawrence Hall of Science of the University of California, Berkeley has collaborated with scientists and engineers, a local transit agency, school districts, and a commercial curriculum publisher to develop, field-test nationally, and publish a two-week curriculum module on hydrogen and fuel cells for high school science. Key partners in this project are the Schatz Energy Research Center (SERC) of Humboldt State University, the Alameda-Contra Costa Transit District (AC Transit), FilmSight Productions, Lab-Aids, Inc., and 32 teachers and 2,370 students in field-test classrooms in California, Connecticut, Ohio, New York, South Carolina, and Washington. Field-test teachers received two to three days of professional development before teaching the curriculum and providing feedback used for revision of the curriculum. The curriculum, titled Investigating Alternative Energy: Hydrogen and Fuel Cells and published by Lab-Aids, Inc., includes a teachers guide (with lesson plans, resources, and student handout pages), two interactive computer animations, a video, a website, and a laboratory materials kit. The project has been disseminated to over 950 teachers through awareness workshops at state, regional, and national science teacher conferences.

  20. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-01-01

    The limited resource and environmental impacts of fossil fuels are becoming more and more serious problems in the world. Consequently, hydrogen is in the limelight as a future alternative energy due to its clean combustion and inexhaustibility and a transition from the traditional fossil fuel system to a hydrogen-based energy system is under considerations. Several countries are already gearing the industries to the hydrogen economy to cope with the limitations of the current fossil fuels. Unfortunately, hydrogen has to be chemically separated from the hydrogen compounds in nature such as water by using some energy sources. In this paper, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S

  1. Abstracts of the 1. National congress of hydrogen and sustainable energy sources

    International Nuclear Information System (INIS)

    2005-01-01

    The First Argentine National Congress of Hydrogen and Sustainable Energy Sources was organized by the Instituto of Sustainable Energy and Development CNEA, in San Carlos de Bariloche, between the 8th and 10th of June of 2005. In this event 88 papers were presented in the following sessions, on these subjects: 1.-Hydrogen-Materials Interaction. 2.-Materials Damage. 3.-Production and Purification. 4.-Storage and Transportation. 5.-Fuel Cells. 6.-Prototypes and Demonstration Plants. 7.-Eolic Energy. 8.-Solar Energy. 9.-Biomass. 10.-Small Hydroelectric Plants. 11.-Other Activities. 12.-Hybrid Fuels. 13.- Reforming, Materials, Catalysis, Processes. 14.-Projections and Energy Prospective

  2. HyLights: Preparation of the Large-Scale Demonstration Projects on Hydrogen for Transport in Europe

    International Nuclear Information System (INIS)

    Ulrich Bunger; Volker Blandow; Volker Jaensch; Harm Jeeninga; Cristina Morte Gomez

    2006-01-01

    The strategically important project HyLights has been launched by the European Commission in preparation of the large scale demonstration projects in transition to hydrogen as a fuel and long-term renewable energy carrier. HyLights, monitors concluded/ongoing demonstration projects and assists the planning of the next demonstration project phase, putting a clear focus on hydrogen in transport. HyLights is a coordination action that comprises 5 tasks to: 1) develop an assessment framework for concluded/ongoing demonstration projects, 2) analyse individual projects and establish a project database, 3) carry out a gaps analysis and prepare a requirement profile for the next stage projects, 4) assess and identify necessary financial and legal steps in preparation of the new projects, and 5) develop a European Initiative for the Growth of Hydrogen for Transport (EIGHT). (authors)

  3. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    Science.gov (United States)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  4. About connection between atomic and hydrogen energy power

    International Nuclear Information System (INIS)

    Avdeeva, M.Zh.; Vecher, A.A.; Pan'kov, V.V.

    2008-01-01

    Possible interaction between atomic and hydrogen energy power has been discussed. The analysis of the result held shows that the electrical energy produced by the atomic reactor during the of-load hours can be involved into the process of obtaining hydrogen by electrolysis. In order to optimize the transportation and storage of hydrogen it is proposed to convert it into ammonia. The direct uses of ammonia as a fuel into the internal combustion engine and fuel cells are examined. (authors)

  5. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on hydrogen engine for aircraft); 1975 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Kokukiyo suiso engine ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-05-01

    This report summarizes the research results on (1) the prospect of an aviation system based on hydrogen energy, (2) the total system of aircraft based on hydrogen energy, and (3) the performance, structure and specifications of airplanes and engines using synthetic fuel such as hydrogen. In (1), study was made on air transport energy, and prediction was made on the demand of liquid hydrogen assuming conversion of petroleum fuel into hydrogen fuel in the future. In (2), the supply system of liquid hydrogen is essential in conversion of current aircraft fuel into liquid hydrogen. Such supply system over the world is also necessary in conversion into liquid hydrogen for both domestic and international airlines. In (3), in order to discuss the feasibility of liquid hydrogen fuel aircraft, the merit of such aircraft as compared with current aircraft using JP fuel, and whether designing a new airframe or modifying existing airframes, study was made conceptually on the size and capacity of airframe by statistical treatment and analysis of previous conceptual designs. (NEDO)

  6. Conference on hydrogen-energy in France and Germany

    International Nuclear Information System (INIS)

    Bodineau, Luc; Menzen, Georg; Arnold, Peter Erich; Mauberger, Pascal; Roentzsch, Lars; Poggi, Philippe; Gervais, Thierry; Schneider, Guenther; Colomar, David; Buenger, Ulrich; Nieder, Babette; Zimmer, Rene; Jeanne, Fabrice; Le Grand, Jean-Francois

    2014-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on hydrogen-energy in France and Germany. In the framework of this French-German exchange of experience, about 200 participants exchanged views on the different perspectives for use of hydrogen, in particular in transportation and energy storage applications. The technical production, transport and storage means were addressed too, as well as the technological models and the conditions for a large-scale industrial deployment. The economic prospects of hydrogen-energy in tomorrow's energy mix were also considered during the conference. This document brings together the available presentations (slides) made during this event: 1 - Hydrogen energy and Fuel Cells in France Today, and prospective (Luc Bodineau); 2 - The situation of energy Policy in Germany and the challenges for the Hydrogen Technology (Georg Menzen); 3 - Unlocking the Hydrogen Potential for Transport and Industry (Peter Erich Arnold); 4 - Hydrogen, a new energy for our planet - Hydrogen storage possibilities: example of solid storage (Pascal Mauberger); 5 - Innovative Materials and Manufacturing Technologies for H 2 Production and H 2 Storage (Lars Roentzsch); 6 - Scientific development and industrial strategy: experience feedback from the Myrte platform and energy transition-related perspectives (Philippe Poggi, Thierry Gervais); 7 - 'Power to Gas' - Important partner for renewables with big impact potential (Guenther Schneider) 8 - Developing a Hydrogen Infrastructure for Transport in France and Germany - A Comparison (David Colomar, Ulrich Buenger); 9 - H 2 and Fuel-Cells as Key Technologies for the Transition to Renewable energies - The example of Herten (Babette Nieder); 10 - Social acceptance of hydrogen mobility in Germany (Rene Zimmer); 11 - Hydrogen - A development opportunity for regions? (Fabrice Jeanne)

  7. Forestry and biomass energy projects

    DEFF Research Database (Denmark)

    Swisher, J.N.

    1994-01-01

    This paper presents a comprehensive and consistent methodology to account for the costs and net carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both...... biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone...... is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction. The methodology allows consistent comparisons of the costs and quantities of carbon stored in different types of projects and/or national programs, facilitating the inclusion of forestry and biomass...

  8. Use of regenerative energy sources and hydrogen technology 2006. Proceedings

    International Nuclear Information System (INIS)

    Lehmann, J.; Luschtinetz, T.

    2006-01-01

    This volume contains 25 contributions, which were held on the 13th symposium ''Use of regenerative energy sources and hydrogen technology'' in Stralsund (Germany). Separate documentation items analysing 16 of the contributions have been prepared for the ENERGY database

  9. Is there room for hydrogen in energy transition?

    International Nuclear Information System (INIS)

    Beeker, Etienne

    2014-08-01

    As Germany decided to use hydrogen to store huge quantities of renewable energies, this report aims at assessing the opportunities associated with hydrogen in the context of energy transition. The author addresses the various techniques and technologies of hydrogen production, and proposes a prospective economic analysis of these processes: steam reforming, alkaline electrolysis, polymer electrolyte membrane (PEM) electrolysis, and other processes still at R and D level. He gives an overview of existing and potential uses of hydrogen in industry, in energy storage (power-to-gas, power-to-power, methanation) and in mobility (hydrogen-mobility could be a response to hydrocarbon shortage, but the cost is still very high, and issues like hydrogen distribution must be addressed), and also evokes their emergence potential

  10. Project finance for renewable energy

    International Nuclear Information System (INIS)

    Mills, S.J.; Taylor, M.

    1994-01-01

    This paper is intended to provide general advice to sponsors of renewable energy projects who expect to raise project-based financing from commercial banks to fund the development of their projects. It sets out, for the benefit of such sponsors, how bankers typically approach the analysis of these undertakings and in particular the risk areas on which they concentrate. By doing so it should assist sponsors to maximize their prospects of raising bank finance. The watchword for sponsors approaching banks must be ''Be Prepared'' . (author)

  11. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    Energy Technology Data Exchange (ETDEWEB)

    TIAX, LLC

    2005-05-04

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational

  12. Solar hydrogen project - Thermochemical process design

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Ng, L.F.; Rao, M.S.M.; Wu, S.F.; Zoschak, R.J.

    1984-08-01

    The thermochemical decomposition of water using solar energy offers an elegant way of combining solar and chemical technologies to produce a high quality fuel. The DOE has sponsored Foster Wheeler to develop a process design for a solar water-splitting process based on the sulfuric acid/iodine cycle. The study has centered around the design of a sulfuric acid decomposition reactor and the central receiver. Materials' properties impose severe constraints upon the design of decomposition reactor. In this paper, the constraints imposed on the design are specified and a reactor and receiver design is presented together with a preliminary design of the balance of plant.

  13. French perspectives for production of hydrogen using nuclear energy

    International Nuclear Information System (INIS)

    Vitart, Xavier; Yvon, Pascal; Carles, Philippe; Naour, Francois Le

    2009-01-01

    The demand for hydrogen, driven by classical applications such as fertilizers or oil refining a well as new applications (synthetic fuels, fuel cells ... ) is growing significantly. Presently, most of the hydrogen produced in the world uses methane or another fossil feedstock, which is not a sustainable option, given the limited fossil resources and need to reduce CO 2 emissions. This stimulates the need to develop alternative processes of production which do not suffer from these drawbacks. Water decomposition combined with nuclear energy appears to be an attractive option. Low temperature electrolysis, even if it is used currently for limited amounts is a mature technology which can be generalized in the near future. However, this technology, which requires about 4 kWh of electricity per Nm 3 of hydrogen produced, is energy intensive and presents a low efficiency. Therefore the French Atomic Energy Commission (CEA) launched an extensive research and development program in 2001 in order to investigate advanced processes which could use directly the nuclear heat and present better economic potential. In the frame of this program, high temperature steam electrolysis along with several thermochemical cycles has been extensively studied. HTSE offers the advantage of reducing the electrical energy needed by substituting thermal energy, which promises to be cheaper. The need for electricity is also greatly reduced for the leading thermochemical cycles, the iodine-sulfur and the hybrid sulfur cycles, but they require high temperatures and hence coupling to a gas cooled reactor. Therefore interest is also paid to other processes such as the copper-chlorine cycle which operates at lower temperatures and could be coupled to other generation IV nuclear systems. The technical development of these processes involved acquisition of basic thermodynamic data, optimization of flowsheets, design and test of components and lab scale experiments in the kW range. This will demonstrate

  14. A new type of hydrogen generator-HHEG (high-compressed hydrogen energy generator)

    International Nuclear Information System (INIS)

    Harada, H.; Tojima, K.; Takeda, M.; Nakazawa, T.

    2004-01-01

    'Full text:' We have developed a new type of hydrogen generator named HHEG (High-compressed Hydrogen Energy Generator). HHEG can produce 35 MPa high-compressed hydrogen for fuel cell vehicle without any mechanical compressor. HHEG is a kind of PEM(proton exchange membrane)electrolysis. It was well known that compressed hydrogen could be generated by water electrolysis. However, the conventional electrolysis could not generate 35 MPa or higher pressure that is required for fuel cell vehicle, because electrolysis cell stack is destroyed in such high pressure. In HHEG, the cell stack is put in high-pressure vessel and the pressure difference of oxygen and hydrogen that is generated by the cell stack is always kept at nearly zero by an automatic compensator invented by Mitsubishi Corporation. The cell stack of HHEG is not so special one, but it is not broken under such high pressure, because the automatic compensator always offsets the force acting on the cell stack. Hydrogen for fuel cell vehicle must be produce by no emission energy such as solar and atomic power. These energies are available as electricity. So, water electrolysis is the only way of producing hydrogen fuel. Hydrogen fuel is also 35 MPa high-compressed hydrogen and will become 70 MPa in near future. But conventional mechanical compressor is not useful for such high pressure hydrogen fuel, because of the short lifetime and high power consumption. Construction of hydrogen station network is indispensable in order to come into wide use of fuel cell vehicles. For such network contraction, an on-site type hydrogen generator is required. HHEG can satisfy above these requirements. So we can conclude that HHEG is the only way of realizing the hydrogen economy. (author)

  15. Energy conversion, storage and transportation by means of hydrogen

    International Nuclear Information System (INIS)

    Friedlmeier, G; Mateos, P; Bolcich, J.C.

    1988-01-01

    Data concerning the present consumption of energy indicate that the industrialized countries (representing 25% of the world's population) consume almost 75% of the world's energy production, while the need for energy aimed at maintaining the growth of non-industrialized countries increases day after day. Since estimations indicate that the fossil reverses will exhaust within frightening terms, the production of hydrogen from fossil fuels and, fundamentally, from renewable sources constitute a response to future energy demand. The production of hydrogen from water is performed by four different methods: direct thermal, thermochemical, electrolysis and photolysis. Finally, different ways of storaging and using hydrogen are proposed. (Author)

  16. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    Science.gov (United States)

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Grasman

    2011-12-31

    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan

  18. Financing energy projects in Africa

    International Nuclear Information System (INIS)

    Godier, Kevin; Marks, Jon

    1999-12-01

    Contains Executive Summary and Chapters on: Overview of financing trends in Africa; Multilateral support - Bedrock of Africa's first generation energy projects; ECA insurance and financing; Bilateral development finance; Offshore commercial bank lending; Local commercial bank finance; Capital markets; Legal ramifications ; Risk factors; Conclusions. (Author)

  19. Wind energy projects: Some reservations

    International Nuclear Information System (INIS)

    Veldkamp, H.F.; Goezinne, F.

    1991-01-01

    Among people directly involved in wind energy great optimism about the use of windpumps is not uncommon. Projects show that often this is not justified. Why do windpump projects fail? Errors seen by the authors are: 1. Windpumps are installed only because policy makers or researchers want it and not because there is a need felt for them by the users; 2. There is too much attention for the technical side and not for other, more important problems; 3. Experimental (and hence unreliable) windpumps are used in projects; and 4. Too much weight is attached to small, long term economic advantages, which do not count in reality. Although the windmill has its place, it should be recognized that in many cases wind energy is not a good option. 15 refs

  20. Hydrogen - the energy source of the future

    International Nuclear Information System (INIS)

    Aakervik, Anne-Lise

    2001-01-01

    The use of hydrogen is an excellent way of reducing the emission of greenhouse gases. It causes no emission when used in fuel cells. Iceland has set itself the goal of becoming the world's first hydrogen society without emission of carbon dioxide and other greenhouse gases. In the USA, California has decided to concentrate on cars that do not pollute. Hydrogen power is then an interesting alternative. Germany, Japan and the USA are all concentrating on hydrogen. The world production of hydrogen is 50 million tons, 90 per cent of which is made from fossil material, 4 per cent by electrolysis of water. The largest consumers of hydrogen are the petroleum industry and the fertilizer industry. The sale of hydrogen in the refining industry has increased recently and is expected to rise substantially when the fuel cell technology is commercialized. At present, storage of hydrogen is the major problem. Gas storage at atmospheric pressure is inconvenient because of the large volumes required. Alternatives are storage as compressed gas under high pressure, liquid gas at low temperature, storage in metal hydrides or carbon materials, or chemically bound in methanol or ammonia

  1. Risoe energy report 3. Hydrogen and its competitors

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H; Feidenhans' l, R; Soenderberg Petersen, L [eds.

    2004-10-01

    Interest in the hydrogen economy has grown rapidly in recent years. Countries with long traditions of activity in hydrogen research and development have now been joined by a large number of newcomers. The main reason for this surge of interest is that the hydrogen economy may be an answer to the two main challenges facing the world in the years to come: climate change and the need for security of energy supplies. Both these challenges require the development of new, highly-efficient energy technologies that are either carbon-neutral or low emitting technologies. Another reason for the growing interest in hydrogen is the strong need for alternative fuels, especially in the transport sector. Alternative fuels could serve as links between the power system and the transport sector, to facilitate the uptake of emerging technologies and increase the flexibility and robustness of the energy system as a whole. This Risoe Energy Report provides a perspective on energy issues at global, regional and national levels. The following pages provide a critical examination of the hydrogen economy and its alternatives. The report explains the current R and D situation addresses the challenges facing the large-scale use of hydrogen, and makes some predictions for the future. The current and future role of hydrogen in energy systems is explored at Danish, European and global levels. The report discusses the technologies for producing, storing and converting hydrogen, the role of hydrogen in the transport sector and in portable electronics, hydrogen infrastructure and distribution systems, and environmental and safety aspects of the hydrogen economy. (BA)

  2. Derivatives in energy project finance

    International Nuclear Information System (INIS)

    Spencer, Lloyd

    1999-01-01

    This chapter focuses on risk management of merchant power generation projects and describes project finance as balancing risk and reward over time. The historical background to risk management is traced, and the case for derivatives in energy project finance is put forward with the hedging of forward output, and forwards and power purchase agreements discussed. Current and prospective usage, and the implementation issues of market liquidity, margin calls, letters of credit, derivative counterparty credit risk, and accounting policy are considered. A detailed example of a gas-fired plant in the US is presented with details given of the distribution of project earnings before tax. Oil field operating cashflows are examined, with reserved flow models, leverage effects, and price hedging addressed

  3. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd; Eichman, Joshua

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  4. The potential impact of hydrogen energy use on the atmosphere

    Science.gov (United States)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  5. Energy Strategic Planning & Sufficiency Project

    Energy Technology Data Exchange (ETDEWEB)

    Retziaff, Greg

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follows: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  6. OTEC to hydrogen fuel cells - A solar energy breakthrough

    Science.gov (United States)

    Roney, J. R.

    Recent advances in fuel cell technology and development are discussed, which will enhance the Ocean Thermal Energy Conversion (OTEC)-hydrogen-fuel cell mode of energy utilization. Hydrogen obtained from the ocean solar thermal resources can either be liquified or converted to ammonia, thus providing a convenient mode of transport, similar to that of liquid petroleum. The hydrogen fuel cell can convert hydrogen to electric power at a wide range of scale, feeding either centralized or distributed systems. Although this system of hydrogen energy production and delivery has been examined with respect to the U.S.A., the international market, and especially developing countries, may represent the greatest opportunity for these future generating units.

  7. Final Project Closeout Report for Sprint Hydrogen Fuel Cell (HFC) Deployment Project in California, Gulf Coast and Eastern Seaboard Markets

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, Kevin [Sprint, Reston, VA (United States); Bradley, Dwayne [Burns & McDonnell, Kansas City, MO (United States)

    2015-09-01

    Sprint is one of the telecommunications industry leaders in the deployment of hydrogen fuel cell (HFC) systems to provide backup power for their mission critical wireless network facilities. With several hundred fuel cells commissioned in California, states in the gulf coast region, and along the upper eastern seaboard. A strong incentive for advancing the integration of fuel cells into the Sprint network came through the award of a Department of Energy (DOE) grant focused on Market Transformation activities for project (EE0000486). This grant was funded by the 2009 American Recovery and Reinvestment Act (ARRA). The funding provided by DOE ($7.295M) was allocated to support the installation of 260 new HFC systems, equipped with an on-site refillable Medium Pressure Hydrogen Storage Solution (MPHSS), as well as for the conversion of 21 low pressure hydrogen systems to the MPHSS, in hopes of reducing barriers to market acceptance.

  8. The US Department of Energy hydrogen baseline survey: assessing knowledge and opinions about hydrogen technology

    International Nuclear Information System (INIS)

    Christy Cooper; Tykey Truett; R L Schmoyer

    2006-01-01

    To design and maintain its education program, the United States Department of Energy (DOE) Hydrogen Program conducted a statistically-valid national survey to measure knowledge and opinions of hydrogen among key target audiences. The Hydrogen Baseline Knowledge Survey provides a reference for designing the DOE hydrogen education strategy and will be used in comparisons with future surveys to measure changes in knowledge and opinions over time. The survey sampled four U.S. populations: (1) public; (2) students; (3) state and local government officials; and (4) potential large-scale hydrogen end-users in three business categories. Questions measured technical understanding of hydrogen and opinions about hydrogen safety. Other questions assessed visions of the likelihood of future hydrogen applications and sources of energy information. Several important findings were discovered, including a striking lack of technical understanding across all survey groups, as well as a strong correlation between technical knowledge and opinions about safety: those who demonstrated an understanding of hydrogen technologies expressed the least fear of its safe use. (authors)

  9. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    1990-09-01

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  10. Meeting report - Which role for hydrogen in the energy system?

    International Nuclear Information System (INIS)

    Dupre La Tour, Stephane; Raimondo, E.

    2015-01-01

    Before giving some general information about the activities of the SFEN, about some events regarding the energy sector, and about meetings to come, a contribution is proposed on the role of hydrogen in the energy system. The author recalls the industrial methods used to produce hydrogen (water electrolysis, reforming of fossil fuels), indicates the main applications (fuel cells, power-to-gas, industrial applications, fuel for transport). He discusses the potential of hydrogen as a good energy vector for the future. Required technical advances are identified, as well as potential industrial applications. The competitiveness of the different hydrogen production technologies is discussed, and the different uses are more precisely described and discussed (principle of fuel cell, French researches on hybrid vehicle, application to heavy vehicles, perspectives for air transport). Other technological issues are briefly addressed: direct injection of hydrogen in gas distribution network or production of synthetic methane, combined hydrolysis of CO 2 and H 2 O, hydrogen storage. After having outlined some remaining questions about the exploitation of hydrogen as energy vector, the author proposes some guidelines for the future: development of tools to analyse the competitiveness of hydrogen uses, improvement of existing technologies in terms of performance and costs, development of breakthrough technologies

  11. Energy Storage and Distributed Energy Generation Project, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  12. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell

    International Nuclear Information System (INIS)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal–oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  13. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  14. Hydrogen: an energy carrier of the future

    Energy Technology Data Exchange (ETDEWEB)

    Hamerak, K

    1977-02-01

    Some advantages and fields of application of hydrogen are outlined in the introduction. Hydrogen production by conventional water electrolysis, by the thermochemical iron-chlorine cycle process, and by a new water electrolysis method still in the laboratory stage are dealt with in which the electrolysis voltage is considerably reduced by the action of solar UV light on an anode consisting of p-conducting material.

  15. Activities of electric utilities in alternative energy projects

    International Nuclear Information System (INIS)

    Silva, D.B. da; Reis Neto, J.L. dos

    1990-01-01

    Since oil crisis, in 1973 and 1979, some electrical utilities in Brazil begun investments in alternative projects for example production of electrolytic hydrogen, peats with energetics goals, steam from electric boiler, and methanol from wood gasification. With oil substitution goals, these projects have not success actually, after attenuated the crisis. However, the results acquired is experience for the development of the brazilian energy patterns. (author)

  16. Early forest fire detection using low-energy hydrogen sensors

    Directory of Open Access Journals (Sweden)

    K. Nörthemann

    2013-11-01

    Full Text Available Most huge forest fires start in partial combustion. In the beginning of a smouldering fire, emission of hydrogen in low concentration occurs. Therefore, hydrogen can be used to detect forest fires before open flames are visible and high temperatures are generated. We have developed a hydrogen sensor comprising of a metal/solid electrolyte/insulator/semiconductor (MEIS structure which allows an economical production. Due to the low energy consumption, an autarkic working unit in the forest was established. In this contribution, first experiments are shown demonstrating the possibility to detect forest fires at a very early stage using the hydrogen sensor.

  17. Research at the service of energy transition - Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    Bodineau, Luc; Antoine, Loic; Tonnet, Nicolas; Theobald, Olivier; Tappero, Denis

    2018-03-01

    This brochure brings together 22 hydrogen-energy and fuel cell projects selected and supported by the French agency of environment and energy management (Ademe) since 2012 through its call for research projects TITEC (industrial tests and transfers in real conditions) and Sustainable Energy: 1 - BHYKE: electric-hydrogen bike experiment; 2 - CHYMENE: innovative hydrogen compressor for mobile applications; 3 - COMBIPOL 3: bipolar plates assembly technology and gasketing process for PEMFC; 4 - CRONOS: high temperature SOFC for domestic micro-cogeneration; 5 - EPILOG: natural gas fuel cell on the way to commercialization; 6 - EXALAME: polyfunctional catalytic complexes for membranes-electrodes assembly without Nafion for PEMFC; 7 - HYCABIOME: H 2 and CO 2 conversion by biological methanation; 8 - HYLOAD: hydrogen-fueled airport vehicle experiment with on-site supply chain; 9 - HYSPSC: Pressurized hydrogen without Compressor; 10 - HYWAY: hydrogen mobility cluster demonstrator (electric-powered Kangoo cars fleet with range extender) at Lyon and Grenoble; 11 - MHYEL: Pre-industrialization of composite hybrid Membranes for PEM electrolyzer; 12 - NAVHYBUS: Design and experimentation of an electric-hydrogen river shuttle for passengers transportation at Nantes; 13 - PACMONT: fuel cells integration and adaptation for high mountain and polar applications; 14 - PREMHYOME: fabrication process of hybrid membranes for PEMFC; 15 - PRODIG: lifetime prediction and warranty for fuel cell systems; 16 - REHYDRO: fuel cell integration in the circular economy principle; 17 - SPHYNX and Co: optimizing renewable energy integration and self-consumption in buildings; 18 - THEMIS: design and experimentation of an autonomous on-site power supply system; 19 - VABHYOGAZ: biogas valorization through renewable hydrogen generation, design and experimentation of a 5 Nm 3 /h demonstrator at a waste disposal site; 20 - VALORPAC: Integration and experimentation of a high-temperature SOFC system that use

  18. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tafticht, T.; Agbossou, K. [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  19. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    T Tafticht; K Agbossou

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  20. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    Tafticht, T.; Agbossou, K.

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  1. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    T Tafticht; K Agbossou [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  2. Hydrogen from nuclear energy and the impact on climate change

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Poehnell, T.G.

    2001-01-01

    The two major candidates for hydrogen production include nuclear power and other renewable energy sources. However, hydrogen produced by steam reforming of natural gas offers little advantage in total cycle greenhouse gas (GHG) emissions over hybrid internal combustion engine (ICE) technology. Only nuclear power offers the possibility of cutting GHG emissions significantly and to economically provide electricity for traditional applications and by producing hydrogen for its widespread use in the transportation sector. Using nuclear energy to produce hydrogen for transportation fuel, doubles or triples nuclear's capacity to reduce GHG emissions. An analysis at the Atomic Energy of Canada shows that a combination of hydrogen fuel and nuclear energy can stabilize GHG emissions and climate change for a wide range of the latest scenarios presented by the Intergovernmental Panel on Climate Change. The technology for replacing hydrocarbon fuels with non-polluting hydrogen exists with nuclear power, electrolysis and fuel cells, using electric power grids for distribution. It was emphasized that a move toward total emissions-free transportation will be a move towards solving the negative effects of climate change. This paper illustrated the trends between global economic and atmospheric carbon dioxide concentrations. Low carbon dioxide emission energy alternatives were discussed along with the sources of hydrogen and the full cycle assessment results in reduced emissions. It was shown that deploying 20 CANDU NPPs (of 690 MW (e) net each) would fuel 13 million vehicles with the effect of levelling of carbon dioxide emissions from transportation between 2020 to 2030. 13 refs., 2 tabs., 3 figs

  3. A renewable energy and hydrogen scenario for northern Europe

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2008-01-01

    renewable energy supply system is demonstrated with the use of the seasonal reservoir-based hydrocomponents in the northern parts of the region. The outcome of the competition between biofuels and hydrogen in the transportation sector is dependent on the development of viable fuel cells and on efficient......A scenario based entirely on renewable energy with possible use of hydrogen as an energy carrier is constructed for a group of North European countries. Temporal simulation of the demand-supply matching is carried out for various system configurations. The role of hydrogen technologies for energy...... of energy trade between the countries, due to the different endowments of different countries with particular renewable energy sources, and to the particular benefit that intermittent energy sources, such as wind and solar, can derive from exchange of power. The establishment of a smoothly functioning...

  4. Optical and thermal energy discharge from tritiated solid hydrogen

    International Nuclear Information System (INIS)

    Magnotta, F.; Mapoles, E.R.; Collins, G.W.; Souers, P.C.

    1991-01-01

    The authors are investigating mechanisms of energy storage and release in tritiated solid hydrogens, by a variety of techniques including ESR, NMR and thermal and optical emission. The nuclear decay of a triton in solid hydrogen initiates the conversion of nuclear energy into stored chemical energy by producing unpaired hydrogen atoms which are trapped within the molecular lattice. The ability to store large quantities of atoms in this manner has been demonstrated and can serve as a basis for new forms of high energy density materials. This paper presents preliminary results of a study of the optical emission from solid hydrogen containing tritium over the visible and near infrared (NIR) spectral regions. Specifically, they have studied optical emission from DT and T 2 using CCD, silicon diode and germanium diode arrays. 8 refs., 6 figs

  5. Hydrogen role in a carbon-free energy mix

    International Nuclear Information System (INIS)

    2014-02-01

    Among the energy storage technologies under development today, there is today an increasing interest towards the hydrogen-based ones. Hydrogen generation allows to store electricity, while its combustion can supply electrical, mechanical or heat energy. The French Atomic Energy Commission (CEA) started to work on hydrogen technologies at the end of the 1990's in order to reinforce its economical interest. The development of these technologies is one of the 34 French industrial programs presented in September 2013 by the French Minister of productive recovery. This paper aims at identifying the hydrogen stakes in a carbon-free energy mix and at highlighting the remaining technological challenges to be met before reaching an industrial development level

  6. Photoproduction of hydrogen - A potential system of solar energy bioconversion

    Energy Technology Data Exchange (ETDEWEB)

    Das, V S.R.

    1979-10-01

    The photoproduction of hydrogen from water utilizing the photosynthetic capacity of green plants is discussed as a possible means of solar energy conversion. Advantages of the biological production of H/sub 2/ over various physical and chemical processes are pointed out, and the system used for the production of hydrogen by biological agents, which comprises the photosynthetic electron transport chain, ferredoxin and hydrogenase, is examined in detail. The various types of biological hydrogen production systems in bacteria, algae, symbiotic systems and isolated chloroplast-ferredoxin-hydrogenase systems are reviewed. The limitations and the scope for further improvement of the promising symbiotic Azolli-Anabena azollae and chloroplast-ferredoxin-hydrogenase are discussed, and it is concluded that future research should concern itself with the identification of the environmental conditions that would maximize solar energy conversion efficiency, the elimination of the oxygen inhibition of biological hydrogen production, and the definition of the metabolic state for the maximal production of hydrogen.

  7. Introduction of hydrogen in the Norwegian energy system. NorWays - Regional model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Fidje, Audun; Espegren, Kari Aamodt

    2008-12-15

    The overall aim of the NorWays project has been to provide decision support for the introduction of hydrogen as an energy carrier in the Norwegian energy system. The NorWays project is a research project funded by the Research Council of Norway. An important task has been to develop alternative scenarios and identifying market segments and regions of the Norwegian energy system where hydrogen may play a significant role. The main scenarios in the project have been: Reference: Based on the assumptions of World Energy Outlook with no new transport technologies; HyWays: Basic assumptions with technology costs (H{sub 2}) based on results from the HyWays project; No tax: No taxes on transport energy ('revenue neutral'); CO{sub 2} reduction: Reduced CO{sub 2} emissions by 75% in 2050. Three regional models have been developed and used to analyse the introduction of hydrogen as energy carrier in competition with other alternatives such as natural gas, electricity, district heating and bio fuels.The focus of the analysis has been on the transportation sector. (Author)

  8. Proceedings of the 14. world hydrogen energy conference 2002 : The hydrogen planet. CD-ROM ed.

    Energy Technology Data Exchange (ETDEWEB)

    Venter, R.D.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene; Veziroglu, N. [International Association for Hydrogen Energy, Coral Gables, FL (United States)] (eds.)

    2002-07-01

    Hydrogen has often been named as the ultimate fuel because it can be generated from a variety of renewable and non-renewable fuels and its direct conversion to electricity in fuel cells is efficient and results in no emissions other than water vapour. The opportunities and issues associated with the use of hydrogen as the energy carrier of the future were presented at this conference which addressed all aspects of hydrogen and fuel cell development including hydrogen production, storage, hydrogen-fuelled internal combustion engines, hydrogen infrastructure, economics, and the environment. Hydrogen is currently used as a chemical feedstock and a space fuel, but it is receiving considerable attention for bring renewable energy into the transportation and power generation sectors with little or no environmental impact at the point of end use. Canada leads the way in innovative ideas for a hydrogen infrastructure, one of the most challenging tasks for the transportation sector along with hydrogen storage. Major vehicle manufacturers have announced that they will have hydrogen-fueled cars and buses on the market beginning in 2003 and 2004. Solid oxide fuel cells will be used for generating electricity with efficiencies of 70 per cent, and proton exchange membrane (PEM) and other fuel cells are being tested for residential power supply with efficiencies of 85 per cent. The conference included an industrial exposition which demonstrated the latest developments in hydrogen and fuel cell research. More than 300 papers were presented at various oral and poster sessions, of which 172 papers have been indexed separately for inclusion in the database.

  9. 76 FR 22719 - Cape Wind Energy Project

    Science.gov (United States)

    2011-04-22

    ... Energy Project AGENCY: Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE), Interior..., or disapprove a Construction and Operations Plan (COP) for the Cape Wind Energy Project located on..., easements, or rights-of-way for renewable energy projects on the OCS. The Secretary delegated that authority...

  10. Hydrogen: Its Future Role in the Nation's Energy Economy.

    Science.gov (United States)

    Winsche, W E; Hoffman, K C; Salzano, F J

    1973-06-29

    In examining the potential role of hydrogen in the energy economy of the future, we take an optimistic view. All the technology required for implementation is feasible but a great deal of development and refinement is necessary. A pessimistic approach would obviously discourage further thinking about an important and perhaps the most reasonable alternative for the future. We have considered a limited number of alternative energy systems involving hydrogen and have shown that hydrogen could be a viable secondary source of energy derived from nuclear power; for the immediate future, hydrogen could be derived from coal. A hydrogen supply system could have greater flexibility and be competitive with a more conventional all-electric delivery system. Technological improvements could make hydrogen as an energy source an economic reality. The systems examined in this article show how hydrogen can serve as a general-purpose fuel for residential and automotive applications. Aside from being a source of heat and motive power, hydrogen could also supply the electrical needs of the household via fuel cells (19), turbines, or conventional "total energy systems." The total cost of energy to a residence supplied with hydrogen fuel depends on the ratio of the requirements for direct fuel use to the requirements for electrical use. A greater direct use of hydrogen as a fuel without conversion to electricity reduces the overall cost of energy supplied to the household because of the greater expense of electrical transmission and distribution. Hydrogen fuel is especially attractive for use in domestic residential applications where the bulk of the energy requirement is for thermal energy. Although a considerable amount of research is required before any hydrogen energy delivery system can be implemented, the necessary developments are within the capability of present-day technology and the system could be made attractive economically .Techniques for producing hydrogen from water by

  11. A local energy market for electricity and hydrogen

    DEFF Research Database (Denmark)

    Xiao, Yunpeng; Wang, Xifan; Pinson, Pierre

    2017-01-01

    The proliferation of distributed energy resources entails efficient market mechanisms in distribution-level networks. This paper establishes a local energy market (LEM) framework in which electricity and hydrogen are traded. Players in the LEM consist of renewable distributed generators (DGs......), loads, hydrogen vehicles (HVs), and a hydrogen storage system (HSS) operated by a HSS agent (HSSA). An iterative LEM clearing method is proposed based on the merit order principle. Players submit offers/bids with consideration of their own preferences and profiles according to the utility functions...

  12. Development and characterization of a solar-hydrogen energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Vejar, S.; Gonzalez, E.; Perez, M.; Gamboa, S.A.

    2009-01-01

    'Full text': The details of the development of a PV-hydrogen hybrid energy system are presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operates as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW of power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1 kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet, and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations have been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  13. Development of a solar-hydrogen hybrid energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Gamboa, S.A.; Vejar, Set; Campos, J.

    2009-01-01

    Full text: The details of the development of a PV-hydrogen hybrid energy system is presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operate as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations has been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  14. Role of nuclear produced hydrogen for global environment and energy

    International Nuclear Information System (INIS)

    Tashimo, M.; Kurosawa, A.; Ikeda, K.

    2004-01-01

    Sustainability on economical growth, energy supply and environment are major issues for the 21. century. Within this context, one of the promising concepts is the possibility of nuclear-produced hydrogen. In this study, the effect of nuclear-produced hydrogen on the environment is discussed, based on the output of the computer code 'Grape', which simulates the effects of the energy, environment and economy in 21. century. Five cases are assumed in this study. The first case is 'Business as usual by Internal Combustion Engine (ICE)', the second 'CO 2 limited to 550 ppm by ICE', the third 'CO 2 limited to 550 ppm by Hybrid Car', the fourth 'CO 2 limited to 550 ppm by Fuel Cell Vehicle (FCV) with Hydrogen produced by conventional Steam Methane Reforming (SMR)' and the fifth 'CO 2 limited to 550 ppm by FCV with Nuclear Produced-Hydrogen'. The energy used for transportation is at present about 25% of the total energy consumption in the world and is expected to be the same in the future, if there is no improvement of energy efficiency for transportation. On this point, the hybrid car shows the much better efficiency, about 2 times better than traditional internal combustion engines. Fuel Cell powered Vehicles are expected to be a key to resolving the combined issue of the environment and energy in this century. The nuclear-produced hydrogen is a better solution than conventional hydrogen production method using steam methane reforming. (author)

  15. U.S. Department of Energy Hydrogen and Fuel Cells Program 2011 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Satypal, S.

    2011-09-01

    This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the FY 2011 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 9-13, 2011 in Arlington, Virginia

  16. Hydrogen as an energy carrier. 2. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Winter, C.J.; Nitsch, J.

    1991-01-01

    This book deals with the possibilities of an energetic utilisation of hydrogen. This energy carrier can be produced from the unlimited energy sources - solar energy, wind energy and hydropower - and from nuclear energy. It is also capable of one day supplementing or superseding the fossil energy carriers oil, coal and gas. What is special about the book is that it goes beyond a mere physical/technical description to discuss the economic and political aspects and ecological effects and requirements that are an essential part of sound energy planning today. Thus, the authors and editors outline the step-by-step development of a hydrogen economy, mainly based on solar energy, providing a solution to both the pollution problems caused by the use of fossil energy carriers and the energy requirements of the third world. (orig.) With 197 figs., 71 tabs

  17. Solar Hydrogen Energy Systems Science and Technology for the Hydrogen Economy

    CERN Document Server

    Zini, Gabriele

    2012-01-01

    It is just a matter of time when fossil fuels will become unavailable or uneconomical to retrieve. On top of that, their environmental impact is already too severe. Renewable energy sources can be considered as the most important substitute to fossil energy, since they are inexhaustible and have a very low, if none, impact on the environment. Still, their unevenness and unpredictability are drawbacks that must be dealt with in order to guarantee a reliable and steady energy supply to the final user. Hydrogen can be the answer to these problems. This book presents the readers with the modeling, functioning and implementation of solar hydrogen energy systems, which efficiently combine different technologies to convert, store and use renewable energy. Sources like solar photovoltaic or wind, technologies like electrolysis, fuel cells, traditional and advanced hydrogen storage are discussed and evaluated together with system management and output performance. Examples are also given to show how these systems are ...

  18. Hydrogen and the materials of a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  19. U.S. Department of Energy Hydrogen and Fuel Cells Program: 2017 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Neil A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-18

    The fiscal year 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June June 5-9, 2017, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.

  20. Hydrogen evolution from water using solid carbon and light energy

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, T; Sakata, T

    1979-11-15

    Hydrogen is produced from water vapour and solid carbon when mixed powders of TiO2, RuO2 and active carbon exposed to water vapor at room temperature, or up to 80 C, are illuminated. At 80 C, the rate of CO and COat2 formation increased. Therefore solar energy would be useful here as a combination of light energy and heat energy. Oxygen produced on the surface of the photocatalyst has a strong oxidising effect on the carbon. It is suggested that this process could be used for coal gasification and hydrogen production from water, accompanied by storage of solar energy.

  1. Hydrogen energy strategies and global stability and unrest

    International Nuclear Information System (INIS)

    Midilli, A.; Dincer, I.; Rosen, M.A.

    2004-01-01

    This paper focuses on hydrogen energy strategies and global stability and unrest. In order to investigate the strategic relationship between these concepts, two empirical relations that describe the effects of fossil fuels on global stability and global unrest are developed. These relations incorporate predicted utilization ratios for hydrogen energy from non-fossil fuels, and are used to investigate whether hydrogen utilization can reduce the negative global effects related to fossil fuel use, eliminate or reduce the possibilities of global energy conflicts, and contribute to achieving world stability. It is determined that, if utilization of hydrogen from non-fossil fuels increases, for a fixed usage of petroleum, coal and natural gas, the level of global unrest decreases. However, if the utilization ratio of hydrogen energy from non-fossil fuels is lower than 100%, the level of global stability decreases as the symptoms of global unrest increase. It is suggested that, to reduce the causes of global unrest and increase the likelihood of global stability in the future, hydrogen energy should be widely and efficiently used, as one component of plans for sustainable development. (author)

  2. Technology selection for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Siti Alimah; Erlan Dewita

    2008-01-01

    The NPP can either be used to produce electricity, or as heat source for non-electric applications (cogeneration). High Temperature Reactor (HTR) with high outlet coolant temperature around 900~1000 o C, is a reactor type potential for cogeneration purposes such as hydrogen production and other chemical industry processes that need high heat. Considering the national energy policy that a balanced arrangement of renewable and unrenewable natural resources has to be made to keep environmental conservation for the sake of society prosperity in the future, hydrogen gas production using nuclear heat is an appropriate choice. Hydrogen gas is a new energy which is environmentally friendly that it is a prospecting alternative energy source in the future. Within the study, a comparison of three processes of hydrogen gas production covering electrolysis, steam reforming and sulfur-iodine cycle, have been conducted. The parameters that considered are the production cost, capital cost and energy cost, technological status, the independence of fossil fuel, the environmental friendly aspect, as well as the efficiency and the independence of corrosion-resistance material. The study result showed that hydrogen gas production by steam reforming is a better process compared to electrolysis and sulfur-iodine process. Therefore, steam reforming process can be a good choice for hydrogen gas production using nuclear energy in Indonesia. (author)

  3. Hydrogen as an energy carrier. Final report; Wasserstoff als Energietraeger. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rebholz, H. [ed.

    1998-12-01

    This final report of the Special Field of Research 270 (SFB 270) documents the work and results of the four promotion phases from 1989 to 1998, presented in reports on 15 part-projects. From its inception, SFB 270, which bears the title ''Hydrogen as an Energy Carrier'', has been dedicated to two fields of work: in Project Area A to the production of hydrogen (7 part-projects) and in Project Area B to the transport and storage of hydrogen (8 part-projects). The scientific results of the part-projects have also been presented in detail in the progress reports and interim reports of 1991, 1994 and 1997. Some of them have also been presented at the colloquiums of SFB 270. Twelve part-projects have been abstracted individually for the ENERGY database. [German] Der vorliegende Abschlussbericht des Sonderforschungsbereichs 270 dokumentiert die Arbeiten und Ergebnisse der vier Foerderungsphasen von 1989 bis 1998. Sie sind in den Berichten von 15 Teilprojekten wiedergegeben. Der Sonderforschungsbereich 270 'Wasserstoff als Energietraeger' hat sich von Anfang an zwei Aufgabengebieten gewidmet: Im Projektbereich A der Herstellung von Wasserstoff (7 Teilprojekte) und im Projektbereich B dem Transport und der Speicherung von Wasserstoff (8 Teilprojekte). Wissenschaftliche Ergebnisse der Teilprojekte sind ausfuehrlich auch in den Arbeits- und Ergebnisberichten 1991, 1994 und 1997 wiedergegeben. Sie wurden auch, in Teilen, in entsprechenden Kolloquien des SFB 270 praesentiert. Fuer die Datenbank ENERGY wurden 12 Teilprojekte separat aufgenommen. (orig.)

  4. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  5. Towards sustainable energy systems: The related role of hydrogen

    International Nuclear Information System (INIS)

    Hennicke, Peter; Fischedick, Manfred

    2006-01-01

    The role of hydrogen in long run sustainable energy scenarios for the world and for the case of Germany is analysed, based on key criteria for sustainable energy systems. The possible range of hydrogen within long-term energy scenarios is broad and uncertain depending on assumptions on used primary energy, technology mix, rate of energy efficiency increase and costs degression ('learning effects'). In any case, sustainable energy strategies must give energy efficiency highest priority combined with an accelerated market introduction of renewables ('integrated strategy'). Under these conditions hydrogen will play a major role not before 2030 using natural gas as a bridge to renewable hydrogen. Against the background of an ambitious CO 2 -reduction goal which is under discussion in Germany the potentials for efficiency increase, the necessary structural change of the power plant system (corresponding to the decision to phase out nuclear energy, the transformation of the transportation sector and the market implementation order of renewable energies ('following efficiency guidelines first for electricity generation purposes, than for heat generation and than for the transportation sector')) are analysed based on latest sustainable energy scenarios

  6. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems.

    Science.gov (United States)

    Hatzell, Marta C; Ivanov, Ivan; Cusick, Roland D; Zhu, Xiuping; Logan, Bruce E

    2014-01-28

    Currently, there is an enormous amount of energy available from salinity gradients, which could be used for clean hydrogen production. Through the use of a favorable oxygen reduction reaction (ORR) cathode, the projected electrical energy generated by a single pass ammonium bicarbonate reverse electrodialysis (RED) system approached 78 W h m(-3). However, if RED is operated with the less favorable (higher overpotential) hydrogen evolution electrode and hydrogen gas is harvested, the energy recovered increases by as much ~1.5× to 118 W h m(-3). Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 W h m(-3) or ~1/3 of that produced through direct hydrogen generation.

  7. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems

    KAUST Repository

    Hatzell, Marta C.; Ivanov, Ivan; D. Cusick, Roland; Zhu, Xiuping; Logan, Bruce E.

    2014-01-01

    Currently, there is an enormous amount of energy available from salinity gradients, which could be used for clean hydrogen production. Through the use of a favorable oxygen reduction reaction (ORR) cathode, the projected electrical energy generated by a single pass ammonium bicarbonate reverse electrodialysis (RED) system approached 78 W h m-3. However, if RED is operated with the less favorable (higher overpotential) hydrogen evolution electrode and hydrogen gas is harvested, the energy recovered increases by as much ∼1.5× to 118 W h m-3. Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 W h m-3 or ∼1/3 of that produced through direct hydrogen generation.

  8. Environmental impacts of wind-energy projects

    National Research Council Canada - National Science Library

    Committee on Environmental Impacts of Wind Energy Projects; National Research Council; Division on Earth and Life Studies; National Research Council

    2007-01-01

    .... Environmental Impacts of Wind-Energy Projects offers an analysis of the environmental benefits and drawbacks of wind energy, along with an evaluation guide to aid decision-making about projects...

  9. Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

    2010-06-01

    The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

  10. Communicating solutions for a greener world - a case study of the Bellona Foundation's communication process within the hydrogen project

    International Nuclear Information System (INIS)

    Loene, Cecilie

    2001-01-01

    The world is facing increasing energy and global climate change problems. Facing future depletion of fossil fuels and the threat of increased temperatures on earth due to air pollution from the burning of fossil fuels, there is a need for a clean alternative. The Norwegian environmental organization The Bellona Foundation believes that hydrogen as an energy carrier coupled with hydrogen technology is the solution and the only road to a 0-emissions society-a hydrogen society. Under the slogan, ''From Talking to Walking the Hy-way,'' Bellona is through their Hydrogen Project working to achieve this green society. In a case study of Bellona's Hydrogen Project, this thesis aims to examine how Bellona communicates with the intended target groups within this project and how the organization perceives the communication process. As the slogan suggests, in order for the Hydrogen Project to be completely successful, Bellona has to not only inform people about the hydrogen solution but also convince them and get them to begin implementing hydrogen technology. This is conducted through a communication process. The communication process includes both internal and external activities and is divided into four stages: translation, strategy, channels and feedback. Through contrasting the communication process with science communication models, the need for an interactive, multi-directional approach that makes problematic the receiver and recognizes the receiver as an active participant in addition to adhering to the correlation between message and context of the receiver. The case study aims to look at how Bellona conducts and perceives the different stages in the communication process and find out whether Bellona recognizes these features in or adheres to these factors within the Hydrogen Project. (Author)

  11. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    Clean forms of energy are needed to support sustainable global economic growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision for moving toward a hydrogen economy - a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. In February 2003, President George W. Bush announced a new Hydrogen Fuel Initiative to achieve this vision. To realize this vision, the U.S. must develop and demonstrate advanced technologies for hydrogen production, delivery, storage, conversion, and applications. Toward this end, the DOE has worked with public and private organizations to develop a National Hydrogen Energy Technology Road-map. The Road-map identifies the technological research, development, and demonstration steps required to make a successful transition to a hydrogen economy. One of the advantages of hydrogen is that it can utilize a variety of feedstocks and a variety of production technologies. Feedstock options include fossil resources such as coal, natural gas, and oil, and non-fossil resources such as biomass and water. Production technologies include thermochemical, biological, electrolytic and photolytic processes. Energy needed for these processes can be supplied through fossil, renewable, or nuclear sources. Hydrogen can be produced in large central facilities and distributed to its point of use or it can be produced in a distributed manner in small volumes at the point of use such as a refueling station or stationary power facility. In the shorter term, distributed production will play an important role in initiating the use of hydrogen due to its lower capital investment. In the longer term, it is likely that centralized

  12. Evaluating the perspectives for hydrogen energy uptake in communities: Success criteria and their application

    International Nuclear Information System (INIS)

    Shaw, Suzanne; Mazzucchelli, Paola

    2010-01-01

    In recent years, a number of initiatives have been supported in Europe in the hydrogen energy sector. Communities can play an important role in the adoption process of these emerging technologies: supporting pre-commercial deployment, building public acceptance, and promoting innovation clusters, all of which lay the foundations for more widespread and sustained technology deployment. Participation by communities is hinged on the perceived contribution of technology adoption to community socio-economic and energy related goals, such as, climate change mitigation, air quality improvement, creation of new industries and businesses, exploitation of abundant renewable resources, and meeting growing energy needs. Hydrogen uptake in communities therefore stands to benefit development of the hydrogen energy sector and the communities themselves. This paper presents a methodology for evaluating the potential for successful large-scale hydrogen and fuel cell technology adoption-beyond demonstration projects-within defined community frameworks. This methodology can be a valuable tool, for community decision-makers and industry stakeholders alike, to evaluate and identify opportunities for large-scale hydrogen technology adoption. Results of applying the methodology are presented for three community types: islands, cities and regions. The work in this paper reflects work done within the frame of the European Commission-funded 'Roads2HyCom' project, Work Package 3.

  13. Hydrogen Storage Experiments for an Undergraduate Laboratory Course--Clean Energy: Hydrogen/Fuel Cells

    Science.gov (United States)

    Bailey, Alla; Andrews, Lisa; Khot, Ameya; Rubin, Lea; Young, Jun; Allston, Thomas D.; Takacs, Gerald A.

    2015-01-01

    Global interest in both renewable energies and reduction in emission levels has placed increasing attention on hydrogen-based fuel cells that avoid harm to the environment by releasing only water as a byproduct. Therefore, there is a critical need for education and workforce development in clean energy technologies. A new undergraduate laboratory…

  14. Assessment of the potential future market in Sweden for hydrogen as an energy carrier

    Science.gov (United States)

    Carleson, G.

    Future hydrogen markets for the period 1980-2025 are projected, the probable range of hydrogen production costs for various manufacturing methods is estimated, and expected market shares in competition with alternative energy carriers are evaluated. A general scenario for economic and industrial development in Sweden for the given period was evaluated, showing the average increase in gross national product to become 1.6% per year. Three different energy scenarios were then developed: alternatives were based on nuclear energy, renewable indigenous energy sources, and the present energy situation with free access to imported natural or synthetic fuels. An analysis was made within each scenario of the competitiveness of hydrogen on both the demand and the supply of the following sectors: chemical industry, steel industry, peak power production, residential and commercial heating, and transportation. Costs were calculated for the production, storage and transmission of hydrogen according to technically feasible methods and were compared to those of alternative energy carriers. Health, environmental and societal implications were also considered. The market penetration of hydrogen in each sector was estimated, and the required investment capital was shown to be less than 4% of the national gross investment sum.

  15. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  16. Analysis of Project Finance | Energy Analysis | NREL

    Science.gov (United States)

    Analysis of Project Finance Analysis of Project Finance NREL analysis helps potential renewable energy developers and investors gain insights into the complex world of project finance. Renewable energy project finance is complex, requiring knowledge of federal tax credits, state-level incentives, renewable

  17. Advanced Energy Projects: FY 1993, Research summaries

    International Nuclear Information System (INIS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included

  18. Advanced Energy Projects: FY 1993, Research summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  19. Hydrogen production through nuclear energy, a sustainable scenario in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J.L.

    2007-01-01

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  20. Perspectives of a hydrogen-based energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Czakainski, M.

    1989-06-01

    In view of the depletion of fossil fuel resources, and of their environmental effects, research is going on worldwide to find alternative energy sources. Hydrogen has been raising high hopes in recent years and has made a career as a candidate substitute for fossil fuels. There is hydropower or solar energy for electrolytic production of hydrogen which by a catalytic, environmentally friendly process is re-convertable into water. Experimental facilities exist for testing the hydrogen technology, but it is too early now to give any prognosis on the data of technical maturity and commercial feasibility of the technology. The et team invited some experts for a discussion on the pros and cons of hydrogen technology, and on questions such as siting of installations, infrastructure, and economics. (orig./UA).

  1. Current Renewable Energy Technologies and Future Projections

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  2. CALLA ENERGY BIOMASS COFIRING PROJECT

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1

  3. Some practical progress of hydrogen energy in China

    International Nuclear Information System (INIS)

    Deyou, B.

    1995-01-01

    Research and development of hydrogen energy in China was described. Recent progress included hydrogen production with a two reactor method that consumes less than 3.0/KWh/Nm 3 . Development of a Hydrogen Hydride Rechargeable Battery (HHRB) was summarized. More than 1,000,000 AA type HHRB batteries were produced in 1994. A 150-200 AH battery for use in electric vehicles has also been manufactured, and research into proton exchange membrane fuel cells (PEMFCs) was continuing. 6 refs., 2 figs

  4. The Utilization of Solar Energy by Way of Hydrogen Production

    International Nuclear Information System (INIS)

    Broda, E.

    1977-01-01

    It is suggested to produce hydrogen gas by photolytic splitting of water, and to feed it into a hydrogen economy. One approach to obtain good yields in photolysis consist in the application of asymmetric membranes that release the different, reactive, primary products of the photochemical reaction on opposite sides of the membranes so that a back reaction is prevented. Through this solar-chemical option a very large part of the energy needs of mankind could be covered in the long run. (author)

  5. Hydrogen energy and fuel cells. A vision of our future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document presents the possibilities of energy systems based on the hydrogen, in the world and more specially in Europe in the context of an environmental and energy strategy. It proposes then the necessary structures and actions to implement at a commercial feasibility. (A.L.B.)

  6. Hydrogen energy and fuel cells. A vision of our future

    International Nuclear Information System (INIS)

    2003-01-01

    This document presents the possibilities of energy systems based on the hydrogen, in the world and more specially in Europe in the context of an environmental and energy strategy. It proposes then the necessary structures and actions to implement at a commercial feasibility. (A.L.B.)

  7. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    The study of low energy ionization of atomic hydrogen has undergone a rapid ... Three distinct theories for describing low energy ionization can now .... clear evidence that the backward peak for ΘЅѕ = 180° is due to positron-nucleus scat-.

  8. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  9. Comparative study of hydrogen and methanol as energy carriers

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Anna

    1998-06-01

    This report has been written with the purpose to compare hydrogen and methanol, with gasoline, as energy carriers for new energy systems in the future. This energy system must satisfy the demands for sustainable development. The report focuses on motor vehicle applications. A few different criteria has been developed to help form the characterisation method. The criteria proposed in this thesis are developed for an environmental comparison mainly based on emissions from combustion. The criteria concerns the following areas: Renewable resources, The ozone layer, The greenhouse effect, The acidification, and Toxic substances. In many ways, hydrogen may seem as a very good alternative compared with gasoline and diesel oil. Combustion of hydrogen in air results in water and small amounts of oxides of nitrogen. In this report, hydrogen produced from renewable resources is investigated. This is necessary to fulfill the demands for sustainable development. Today, however, steam reforming of fossil fuels represent 99% of the hydrogen production market. Problem areas connected with hydrogen use are for instance storage and distribution. Methanol has many advantages, while comparing methanol and gasoline, like lower emissions of nitrogen oxides and hydrocarbons, limited emissions of carbon dioxide and no sulphur content. Methanol can be produced from many different resources, for example natural gas, naphtha, oil, coal or peat, and biomass. To meet demands for sustainable production, methanol has to be produced from biomass Examination paper. 32 refs, 20 figs, 13 tabs

  10. Hydrogen Energy by Means of Proton Conductors

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    If we dare to take serious what we know today about climate issues the challenges to our energy systems are immense. If we really chose - also in practice - to phase out the fossil fuels major changes to the way we handle energy are required. The renewable energy resources are by far sufficient, ...

  11. Hydrogen energy in changing environmental scenario: Indian context

    International Nuclear Information System (INIS)

    Leo Hudson, M. Sterlin; Dubey, P.K.; Pukazhselvan, D.; Pandey, Sunil Kumar; Singh, Rajesh Kumar; Raghubanshi, Himanshu; Shahi, Rohit R.; Srivastava, O.N.

    2009-01-01

    This paper deals with how the Hydrogen Energy may play a crucial role in taking care of the environmental scenario/climate change. The R and D efforts, at the Hydrogen Energy Center, Banaras Hindu University have been described and discussed to elucidate that hydrogen is the best option for taking care of the environmental/climate changes. All three important ingredients for hydrogen economy, i.e., production, storage and application of hydrogen have been dealt with. As regards hydrogen production, solar routes consisting of photoelectrochemical electrolysis of water have been described and discussed. Nanostructured TiO 2 films used as photoanodes have been synthesized through hydrolysis of Ti[OCH(CH 3 ) 2 ] 4 . Modular designs of TiO 2 photoelectrode-based PEC cells have been fabricated to get high hydrogen production rate (∝10.35 lh -1 m -2 ). However, hydrogen storage is a key issue in the success and realization of hydrogen technology and economy. Metal hydrides are the promising candidates due to their safety advantage with high volume efficient storage capacity for on-board applications. As regards storage, we have discussed the storage of hydrogen in intermetallics as well as lightweight complex hydride systems. For intermetallic systems, we have dealt with material tailoring of LaNi 5 through Fe substitution. The La(Ni l-x Fe x ) 5 (x = 0.16) has been found to yield a high storage capacity of ∝2.40 wt%. We have also discussed how CNT admixing helps to improve the hydrogen desorption rate of NaAlH 4 . CNT (8 mol%) admixed NaAlH 4 is found to be optimum for faster desorption (∝3.3 wt% H 2 within 2 h). From an applications point of view, we have focused on the use of hydrogen (stored in intermetallic La-Ni-Fe system) as fuel for Internal Combustion (IC) engine-based vehicular transport, particularly two and three-wheelers. It is shown that hydrogen used as a fuel is the most effective alternative fuel for circumventing climate change. (author)

  12. Fiscal 1994 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Research and development was made for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. In this fiscal year, surveys were conducted of the status of research and development in each of the fields, and research was started on element technologies in some of the fields. Under subtask 1, surveys and studies were started for pilot plant phase 2. Under subtask 2, an international symposium was held for the enhancement of technical information exchange. Under subtask 3, a liquid hydrogen system conceptual design was prepared for the estimation of facility cost, etc. Under subtask 4, small experimental cells were fabricated for evaluating electrode bonding methods. Under subtask 5, studies were made about the processes of the helium Brayton cycle and hydrogen Claude cycle for the development of a large-scale hydrogen liquefaction plant. Under subtasks 6-9, furthermore, surveys and studies were conducted about low-temperature substance technology, hydrogen energy, hydrogen combustion turbines, and so forth. (NEDO)

  13. Survey report on energy transportation systems which use hydrogen-occluding alloys; Suiso kyuzo gokin wo riyoshita energy yuso system chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-18

    Surveyed are systems which use hydrogen-occluding alloys for, e.g., storing and transporting hydrogen. This project is aimed at development of, and extraction of technical problems involved in, the concept of hydrogen energy transportation cycles for producing hydrogen in overseas countries by electrolysis using clean energy of hydraulic energy which are relatively cheap there; transporting hydrogen stored in a hydrogen-occluding alloy by sea to Japan; and converting it into electrical power to be delivered and used there. The surveyed items include current state of development/utilization of hydraulic power resources in overseas countries; pigeonholing the technical issues involved in the hydrogen transportation cycles, detailed studies thereon, and selection of the transportation cycles; current state of research, development and application of hydrogen-occluding alloys for various purposes; extraction of the elementary techniques for the techniques and systems for the hydrogen transportation systems which use hydrogen-occluding alloys; research themes of the future hydrogen-occluding alloys and the application techniques therefor, and research and development thereof; and legislative measures and safety. (NEDO)

  14. Hydrogen, fuel cells and renewable energy integration in islands

    International Nuclear Information System (INIS)

    Bauen, A.; Hart, D.; Foradini, F.; Hart, D.

    2002-01-01

    Remote areas such as islands rely on costly and highly polluting diesel and heavy fuel oil for their electricity supply. This paper explored the opportunities for exploiting economically and environmentally viable renewable energy sources, in particular hydrogen storage, on such islands. In particular, this study focused on addressing the challenge of matching energy supply with demand and with technical issues regarding weak grids that are hindered with high steady state voltage levels and voltage fluctuations. The main technical characteristics of integrated renewable energy and hydrogen systems were determined by modelling a case study for the island of El Hierro (Canary Islands). The paper referred to the challenges regarding the technical and economic viability of such systems and their contribution to the economic development of remote communities. It was noted that energy storage plays an important role in addressing supply and demand issues by offering a way to control voltage and using surplus electricity at times of low load. Electrical energy can be stored in the form of potential or chemical energy. New decentralized generation technologies have also played a role in improving the energy efficiency of renewable energy sources. The feasibility of using hydrogen for energy storage was examined with particular reference to fuel-cell based energy supply in isolated island communities. 4 refs., 5 figs

  15. A hydrogen economy - an answer to future energy problems

    International Nuclear Information System (INIS)

    Seifritz, W.

    1975-01-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems. (Auth.)

  16. Hydrogen energy and fuel cells. A vision of our future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  17. Hydrogen energy and fuel cells. A vision of our future

    International Nuclear Information System (INIS)

    2003-01-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  18. Project Profile: Hydrogen Fuel Cell Mobile Lighting Tower (HFCML)

    Science.gov (United States)

    McLaughlin, Russell

    2013-01-01

    NASA is committed to finding innovative solutions that improve the operational performance of ground support equipment while providing environment and cost benefits, as well. Through the Hydrogen Fuel Cell Mobile Lighting Tower (HFCML) project, NASA gained operational exposure to a novel application of high efficiency technologies. Traditionally, outdoor lighting and auxiliary power at security gates, launch viewing sites, fallback areas, outage support, and special events is provided by diesel generators with metal halide lights. Diesel generators inherently contribute to C02, NOx, particulate emissions, and are very noisy. In 2010, engineers from NASA's Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) introduced KSC operations to a novel technology for outdoor lighting needs. Developed by a team led by Sandia National Laboratory (SNL), the technology pairs a 5kW hydrogen fuel cell with robust high efficiency plasma lights in a towable trailer. Increased efficiency, in both the fuel cell power source and lighting load, yields longer run times between fueling operations while providing greater auxiliary power. Because of the unit's quiet operation and no exhaust fumes, it is capable of being used indoors and in emergency situations, and meets the needs of all other operational roles for metal halide/diesel generators. The only discharge is some water and warm air. Environmental benefits include elimination of diesel particulate emissions and estimated 73% greenhouse gas emissions savings when the hydrogen source is natural gas (per GREET model). As the technology matures the costs could become competitive for the fuel cell units which are approximately 5 times diesel units. Initial operational . concerns included the hydrogen storage tanks and valves, lightning safety/grounding, and required operating and refueling procedures. TEERM facilitated technical information exchange (design drawings, technical standards, and operations

  19. Assessment of MHR-based hydrogen energy systems

    International Nuclear Information System (INIS)

    Richards, Matthew; Shenoy, Arkal; Schultz, Kenneth; Brown, Lloyd; Besenbruch, Gottfried; Handa, Norihiko; Das, Jadu

    2004-01-01

    Process heat from a high-temperature nuclear reactor can be used to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850degC to 950degC can drive the sulfur-iodine (SI) thermochemical process to produce hydrogen with high efficiency. The SI process produces highly pure hydrogen and oxygen, with formation, decomposition, regeneration, and recycle of the intermediate chemical reagents and low-temperature heat as the only waste product. Electricity can also be used directly to split water, using conventional, low-temperature electrolysis (LTE). Hydrogen can also be produced with hybrid processes that use both process heat and electricity to generate hydrogen. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. This process is of interest because the efficiency of electrolysis increases with temperature. Because of its high-temperature capability, advanced of development relative to other high-temperature reactor concepts, and passive-safety features, the Modular Helium Reactor (MHR) is well suited for producing hydrogen using nuclear energy. In this paper we investigate concepts for coupling the MHR to the SI process, LTE, and HTE. These concepts are referred to as the H2-MHR. (author)

  20. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  1. In vitro hydrogen production--using energy from the sun.

    Science.gov (United States)

    Krassen, Henning; Ott, Sascha; Heberle, Joachim

    2011-01-07

    Using solar energy to produce molecular hydrogen is a promising way to supply the civilization with clean energy. Nature provides the key components to collect solar energy as well as to reduce protons, scientists have developed mimics of these enzymatic centers and also found new ways to catalyze the same reactions. This perspective article surveys the different components and in particular the various coupling possibilities of a light sensitizer and catalyst. Pros and cons are discussed.

  2. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    Science.gov (United States)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  3. Antiproton-hydrogen scattering at low-eV energies

    International Nuclear Information System (INIS)

    Morgan Jr., D.L.

    1993-01-01

    In the scattering of negative particles other than the electron by atoms at lab-frame energies around 10 eV, an elastic process termed 'brickwall scattering' might lead to a high probability for scattering angles around 180deg. For an antiproton slowing in hydrogen, this backward scattering would result in the loss of nearly all of its energy in a single collision, since it and a hydrogen atom have nearly the same mass. Such energy loss would have a significant effect on the energy distribution of antiprotons at energies where capture by the protons of hydrogen is possible and might, thereby, affect the capture rate and the distribution of capture states. In the semiclassical treatment of the problem with an adiabatic potential energy, brickwall scattering is indeed present, and with a substantial cross section. However, this model appears to underestimate inelastic processes. Based on calculations for negative muons on hydrogen atoms, these processes appear to occur for about the same impact parameters as brickwall scattering and thus substantially reduce its effect. (orig.)

  4. Preface: photosynthesis and hydrogen energy research for sustainability.

    Science.gov (United States)

    Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2017-09-01

    Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO 2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference "Photosynthesis Research for Sustainability-2016", that was held in Pushchino (Russia), during June 19-25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.

  5. Collecting Solar Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  6. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  7. Hydrogen production as a promising nuclear energy application

    International Nuclear Information System (INIS)

    Vanek, V.

    2003-01-01

    Hydrogen production from nuclear is a field of application which eventually can outweigh power production by nuclear power plants. There are two feasible routes of hydrogen production. The one uses heat to obtain hydrogen from natural gas through steam reforming of methane. This is an highly energy-consuming process requiring temperatures up to 900 deg C and producing carbon dioxide as a by-product. The other method includes direct thermochemical processes to obtain hydrogen, using sulfuric acid for instance. Sulfuric acid is decomposed thermally by the reaction: H 2 SO 4 -> H 2 O = SO 2 + (1/2) O 2 , followed by the processes I 2 + SO 2 + 2H O -> 2HI + H 2 SO 4 and 2HI -> H 2 + I 2 . The use of nuclear for this purpose is currently examined in Japan and in the US. (P.A.)

  8. Renewable energy for hydrogen production and sustainable urban mobility

    International Nuclear Information System (INIS)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V.; Matteucci, F.; Breedveld, L.

    2010-01-01

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO 2 -free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  9. Renewable energy for hydrogen production and sustainable urban mobility

    Energy Technology Data Exchange (ETDEWEB)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V. [Istituto di Tecnologie avanzate per l' Energia ' ' Nicola Giordano' ' Salita S, Lucia sopra Contesse, 5, 98126 Messina (Italy); Matteucci, F. [TRE SpA Tozzi Renewable Energy, Via Zuccherificio, 10, 48100 Mezzano (RA) (Italy); Breedveld, L. [2B Via della Chiesa Campocroce, 4, 31021 Mogliano Veneto (TV) (Italy)

    2010-09-15

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO{sub 2}-free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  10. Correlation energy generating potentials for molecular hydrogen

    International Nuclear Information System (INIS)

    Sharma, B.S.; Thakkar, A.J.

    1985-01-01

    A variety of local correlation energy functionals are currently in use. All of them depend, to some extent, on modeling the correlation energy of a homogeneous electron fluid. Since atomic and molecular charge densities are neither uniform nor slowly varying, it is important to attempt to use known high accuracy wave functions to learn about correlation energy functionals appropriate to such systems. We have extended the definition of the correlation energy generating potentials V/sub c/ introduced by Ros. A charge density response to correlation has been allowed for by inclusion of an electron--nuclear component V/sup e/n/sub c/ in addition to the electron--electron component V/sup e/e/sub c/. Two different definitions of V/sup e/n/sub c/ are given. We present the first calculations of V/sub c/ for a molecular system: H 2 . The results show that V/sup e/n/sub c/, in either definition, is by no means negligible. Moreover, V/sup e/e/sub c/ and both forms of V/sup e/n/sub c/ show significant nonlocal dependence on the charge density. Calculations with ten different model correlation energy functionals show that none of them is particularly sensitive to the charge density. However, they are quite sensitive to the parametrization of the electron fluid correlation energy. The schemes which include self-interaction corrections (SIC) are found to be superior to those of Kohn--Sham type. The correlation energy generating potentials implied by the SIC type and empirical correlation energy functionals are found to correspond roughly to averages of one of the accurate potentials

  11. Hydrogen energy - Abundant, efficient, clean: A debate over the energy-system-of-change

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Carl-Jochen [International Association for Hydrogen Energy (IAHE), c/o ENERGON Carl-Jochen Winter e.K., Obere St.-Leonhardstr. 9, 88662 Ueberlingen (Germany)

    2009-07-15

    Both secondary energies, electricity and hydrogen, have much in common: they are technology driven; both are produced from any available primary energy; once produced both are environmentally and climatically clean over the entire length of their respective conversion chains, from production to utilization; they are electrochemically interchangeable via electrolyses and fuel cells; both rely on each other, e.g., when electrolyzers and liquefiers need electricity or when electricity-providing low temperature fuel cells need hydrogen; in cases of secondary energy transport over longer distances they compete with each other; in combined fossil fuel cycles both hydrogen and electricity are produced in parallel exergetically highly efficiently; hydrogen in addition to electricity helps exergizing the energy system and, thus, maximizing the available technical work. There are dissimilarities, too: electricity transports information, hydrogen does not; hydrogen stores and transports energy, electricity does not (in macroeconomic terms). The most obvious dissimilarity is their market presence, both in capacities and in availability: Electricity is globally ubiquitous (almost), whilst hydrogen energy is still used in only selected industrial areas and in much smaller capacities. The article describes in 15 chapters, 33 figures, 3 tables, and 2 Annexes the up-and-coming hydrogen energy economy, its environmental and climatic relevance, its exergizing influence on the energy system, its effect on decarbonizing fossil fueled power plants, the introduction of the novel non-heat-engine-related electrochemical energy converter fuel cell in portable electronics, in stationary and mobile applications. Hydrogen guarantees environmentally and climatically clean transportation on land, in air and space, and at sea. Hydrogen facilitates the electrification of vehicles with practically no range limits. (author)

  12. Potential of hydrogen production from wind energy in Pakistan

    International Nuclear Information System (INIS)

    Uqaili, M. A.; Harijan, K.; Memon, M.

    2007-01-01

    The transport sector consumes about 34% of the total commercial energy consumption in Pakistan. About 97% of fuel used in this sector is oil and the remaining 3% is CNG and electricity. The indigenous reserves of oil and gas are limited and the country is heavily dependent on the import of oil. The oil import bill is serious strain on the country's economy. The production, transportation and consumption of fossil fuels also degrade the environment. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply in the transport sector. Sindh, the second largest province of Pakistan, has about 250 km long coastline. The estimated average annual wind speed at 50 m height at almost all sites is about 6-7 m/s, indicating that Sindh has the potential to effectively utilize wind energy source for power generation and hydrogen production. A system consisting of wind turbines coupled with electrolyzers is a promising design to produce hydrogen. This paper presents an assessment of the potential of hydrogen production from wind energy in the coastal area of Sindh, Pakistan. The estimated technical potential of wind power is 386 TWh per year. If the wind electricity is used to power electrolyzers, 347.4 TWh hydrogen can be produced annually, which is about 1.2 times the total energy consumption in the transport sector of Pakistan in 2005. The substitution of oil with renewable hydrogen is essential to increase energy independence, improve domestic economies, and reduce greenhouse gas and other harmful emissions

  13. Tanadgusix Foundation Hydrogen / Plug In Electric Vehicle Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Martin [TDX Power Inc., Anchorage, AK (United States)

    2013-09-27

    TDX Foundation undertook this project in an effort to evaluate alternative transportation options and their application in the community of Saint Paul, Alaska an isolated island community in the Bering Sea. Both hydrogen and electric vehicle technology was evaluated for technical and economic feasibility. Hydrogen technology was found to be cost prohibitive. TDX demonstrated the implementation of various types of electric vehicles on St. Paul Island, including side-by-side all terrain vehicles, a Chevrolet Volt (sedan), and a Ford Transit Connect (small van). Results show that electric vehicles are a promising solution for transportation needs on St. Paul Island. Limited battery range and high charging time requirements result in decreased usability, even on a small, isolated island. These limitations were minimized by the installation of enhanced charging stations for the car and van. In collaboration with the University of Alaska Fairbanks (UAF), TDX was able to identify suitable technologies and demonstrate their applicability in the rural Alaskan environment. TDX and UAF partnered to engage and educate the entire community of Saint Paul – fom school children to elders – through presentation of research, findings, demonstrations, first hand operation of alternative fuel vehicles.

  14. Risø energy report 3. Hydrogen and its competitors

    DEFF Research Database (Denmark)

    Larsen, Hans Hvidtfeldt; Sønderberg Petersen, Leif

    2004-01-01

    Interest in the hydrogen economy has grown rapidly in recent years. Those countries with long traditions of activity in hydrogen research and development have now been joined by a large number of newcomers. The main reason for this surge of interest isthat the hydrogen economy may be an answer to...... and international organisations including the European Union, the International Energy Agency and the United Nations...... to the two main challenges facing the world in the years to come: climate change and the need for security of energy supplies. Both these challenges require the development of new, highly-efficient energytechnologies that are either carbon-neutral or low emitting technologies. Alternative fuels could serve...

  15. Hydrogen like energy and materials for fuel cells

    International Nuclear Information System (INIS)

    Fernandez V, S. M.

    2010-01-01

    The researches on the production, storage and the use of hydrogen like fuel or energy carrying are carried out in several laboratories around the world. In the Instituto Nacional de Investigaciones Nucleares (ININ), from the year of 1993 they are carried out researches about the synthesis of electro-catalysts materials than can serve in the hydrogen production starting from the electrolysis of the water, or in fuel cells, as well as of semiconductor materials for the photo-electrolysis of the water. Recently, in collaboration with other Departments of the ININ, the hydrogen production has been approached starting from fruit and vegetable wastes, with the purpose of evaluating the possibility that this residuals can be utilized for the energy obtaining and that they are not only garbage that causes problems of environmental pollution, generate toxic gases and pollute the soil with the organic acids that take place during their fermentation. (Author)

  16. Landfill Gas Energy Project Development Handbook

    Science.gov (United States)

    View handbook that provides an overview of LFG energy project development guidance and presents the technological, economic and regulatory considerations that affect the feasibility and success of these projects.

  17. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  18. Autonomous hydrogen power plants with renewable energy sources

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.; Shpil'rajn, Eh.Eh.; Izosimov, D.B.; Tumanov, V.L.

    2006-01-01

    One studies the principles to design independent hydrogen power plants (IHPP) operating on renewable energy sources and the approaches to design a pilot IHP plant. One worded tasks of mathematical simulation and of calculations to substantiate the optimal configuration of the mentioned plants depending on the ambient conditions of operation and on peculiar features of a consumer [ru

  19. Economic and ordinal benefits of Hydrogen Energy Technology

    International Nuclear Information System (INIS)

    Giannantoni, C.; Zoli, M.

    2009-01-01

    A method for assessing economic, environmental and energy investments is particularly suited for hydrogen technologies, because it makes it possible to calculate business returns, negative externalities and, above all, the economic benefits to the citizens: the monetizable positive externalities and the ordinal benefits, i.e. those which cannot be reduced to a simple monetary value. [it

  20. Quantum yield and translational energy of hydrogen atoms

    Indian Academy of Sciences (India)

    TECS

    erage kinetic energy of H atoms calculated from Doppler profiles was found to be ET(lab) = (50 ± 3) kJ/mol. The ... in this wavelength range H atoms are produced by ... tral hydrogen. 1,9 ... a spectral window of molecular oxygen, solar radia-.

  1. Alternative Energetics DC Microgrid With Hydrogen Energy Storage System

    Directory of Open Access Journals (Sweden)

    Zaļeskis Genadijs

    2016-12-01

    Full Text Available This paper is related to an alternative energetics microgrid with a wind generator and a hydrogen energy storage system. The main aim of this research is the development of solutions for effective use of the wind generators in alternative energetics devices, at the same time providing uninterrupted power supply of the critical loads. In this research, it was accepted that the alternative energetics microgrid operates in an autonomous mode and the connection to the conventional power grid is not used. In the case when wind speed is low, the necessary power is provided by the energy storage system, which includes a fuel cell and a tank with stored hydrogen. The theoretical analysis of the storage system operation is made. The possible usage time of the stored hydrogen depends on the available amount of hydrogen and the consumption of the hydrogen by the fuel cell. The consumption, in turn, depends on used fuel cell power. The experimental results suggest that if the wind generator can provide only a part of the needed power, the abiding power can be provided by the fuel cell. In this case, a load filter is necessary to decrease the fuel cell current pulsations.

  2. Renewable Energy and Hydrogen System Concepts for Remote Communities in the West Nordic Region

    Energy Technology Data Exchange (ETDEWEB)

    Ulleberg, Oeystein; Moerkved, Andreas

    2008-02-25

    In 2003 the Nordic Council of Ministers granted the funding for the first of several studies on renewable energy and hydrogen (RE/H2) energy systems for remote communities in the West Nordic region. The objective with this report is to summarize the main findings from Phase II and III of the West Nordic project. The island Nolsoy, Faroe Islands, was selected as a case study. The main conclusion is that it makes sense to design a wind/diesel-system with thermal storage, both from a techno-economical and environmental point of view. Such systems can have close to 100% local utilization of the wind energy, and can cover up to 75% of the total annual electricity demand and 35% of the annual heat demand at a cost of energy around 0.07 - 0.09 euro/kWh. The introduction of a hydrogen system is technically feasible, but doubles the overall investment costs

  3. Management of projects for energy efficiency

    Directory of Open Access Journals (Sweden)

    Vuković Miodrag M.

    2014-01-01

    Full Text Available In an effort to lower operating costs and improve competitiveness, many organizations today are preparing projects in the field of energy saving. On the other hand, companies that provide energy services and implement these projects, need to build competences in this area to well manage the projects which are subject to energy savings and by this to justify the confidence of investors. This paper presents research that shows the most important factors for the development of local capacity in project management in the field of energy efficiency.

  4. Energy taxation policy in the European Union: the hydrogen case

    International Nuclear Information System (INIS)

    Chernyavs'ka, L.; Gulli, F.; Lanfranconi, C.

    2006-01-01

    The paper proceeds as follows. Section 2 describes the state of art of the taxation policy on hydrogen in EU Countries. Section 3 describes the methodology used in this paper. Section 4 compares the external costs of the different motor fuel cycles. Section 5 deals with the problem of energy taxation describing a proposal for European energy tax harmonisation based on the internalisation of external costs. Finally, section 6 resumes the main results of the analysis

  5. Hydrogen energy and fuel cells. Strategic Roadmap

    International Nuclear Information System (INIS)

    Moran, Pascal; Gernot, Eric; Masset, Franck; Pierre, Helene; Hody, Stephane; Julien, Marianne; Bouchard, Patrick; Lima, Alexandre; Aubree, Marc; Declerck, Bernard; Jehan, Michel; Mulard, Philippe; Le Breton, Daniel; Grouset, Didier; Lucoq, Samuel; Maio, Patrick; Lanoix, Jean-Christophe; Tisserand, Perrine; Beuzit, Pierre; Junker, Michel; Meslin, Frederic; Derive, Claude; Altman, Matthias; Vandenborre, Hugo; Pastor, Jean-Marc; Biasotto, Jerome; SOLBES, Frederic; Lucchese, Paul; Le Duigou, Alain; Lamy, Claude; Petit, Florent; Rojey, Alexandre; Strang, Axel; Frois, Bernard; Clement, Daniel; Filmon, Karine; Antoine, Loic; Bodineau, Luc; Gioria, Michel; Barbier, Cecile

    2011-04-01

    Since 2010, the ADEME (The French Environment and Energy Management Agency) has been managing four programmes within the scope of 'Future Investments'. Groups of experts from research from various industrial fields, research organisms and research programming and financing agencies are responsible, within the scope of collective works, for producing strategic road-maps. These are used to launch Calls for Expressions of Interest (CEI). The purpose of these road-maps is to: - highlight the industrial, technological, environmental and societal issues; - draw up coherent, shared visions of technologies and the socio-technical system in question; - identify the technological, organisational and socio-economic locks to be overcome; - associate time-based objectives with the priority research topics in terms of technological availability and deployment; - prioritise needs of the industrial research, research demonstrator, pre-industrial experimentation and technology test platform, which then act as a basis for: - drawing up CEIs; - programming research within the ADEME and other institutions such as the French National Research Agency (ANR), the French national strategic committee for energy research (Comite strategique national sur la recherche energie) or the French national alliance for the coordination of energy research (ANCRE). These research and experimentation priorities originate from the junction of the visions and locks, and they also take into account French capacities in the fields of research and industry. Road-maps can also refer to exemplary experiments conducted abroad and make recommendations in terms of industrial policy. This road-map shall be regularly updated. In order to draw up this road-map, the ADEME consulted with a group of experts from major private contractors, a contaminated wasteland developer, stakeholders involved in pollution control and public research and finally the ADEME

  6. Positron scattering by atomic hydrogen at intermediate energies

    International Nuclear Information System (INIS)

    Higgins, K.; Burke, P.G.; Walters, H.R.J.

    1990-01-01

    Results of an accurate calculation based upon the intermediate energy R-matrix theory are reported for elastic scattering of positrons by atomic hydrogen. T-matrix elements for both low and intermediate energy scattering are evaluated for the S e , P o , D e and F o partial wave symmetries. The low-energy elastic phaseshifts are found to be in good agreement with previous accurate variational calculations. Using an optical potential approach to include the effect of the higher partial waves, elastic and total cross sections are presented for energies ranging from near threshold to 3.7 Rydbergs. (author)

  7. Wave power integration with a renewable hydrogen energy system. Paper no. IGEC-1-085

    International Nuclear Information System (INIS)

    St. Germain, L.; Wild, P.; Rowe, A.

    2005-01-01

    In British Columbia, approximately 90% of the electricity generated comes from hydroelectric facilities while another abundant and renewable resource, ocean wave energy, is not being utilized at all. Technologies exist that can capture and convert wave energy but there are few studies examining systemic integration of wave energy devices. This work examines the potential to use wave energy as an input into a hydrogen-based renewable energy system. A model of an oscillating water column (OWC) was developed as a module within TRNSYS where it can be coupled to other existing hydrogen-specific components such as an electrolyser, storage device, and fuel cell. The OWC model accounts for device geometry, dynamics, and generator efficiency. For this particular study, wave profiles generated from hourly average data for a location on the west coast of Vancouver Island are used as a resource input. An analysis of the potential to utilise wave energy is carried out with an emphasis on overall system efficiency and resulting device scaling. The results of the integration of wave energy with other renewable energy inputs into a hydrogen-based system are used to make recommendations regarding technical feasibility of wave power projects on Vancouver Island. (author)

  8. Environmental impacts of wind-energy projects

    National Research Council Canada - National Science Library

    Committee on Environmental Impacts of Wind Energy Projects, National Research Council

    2007-01-01

    .... Although the use of wind energy to generate electricity is increasing rapidly in the United States, government guidance to help communities and developers evaluate and plan proposed wind-energy projects is lacking...

  9. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on peripheral technologies around hydrogen); 1975 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso no shuhen gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-01

    This report summarizes the fiscal 1975 research result on peripheral and seed technologies for hydrogen energy systems. Chapter 1 'Evaluation method for thermochemical techniques' reports critical study on qualitative evaluation method, estimation method for thermal efficiencies, and trial cost calculation example. Chapter 2 'Current state and problems of water electrolysis and hybrid technique composed of electrolysis and thermochemical technique' reports general survey on current water electrolysis and new technologies under development to clarify possible electrolytic voltage drop, from the practical viewpoint. Chapter 3 'Use of a high- temperature gas cooling reactor for hydrogen production' reports survey on the current and future reactors, and characteristics of such nuclear reactors, from the viewpoint that study on thermochemical technique is dependent on use of a high-temperature gas cooling reactor. Chapter 4 'Hydrogen transport and storage technology using organic compounds including oxygen' reports that acetone-isopropanol system is better for hydrogen storage. Chapter 5 'Water electrolysis using photo-semiconducting electrode' reports the additional survey. (NEDO)

  10. Investigating the Chemical Reactivity for Hydrogen in Siliciclastic Sediments: two Work Packages of the H2STORE Project

    Science.gov (United States)

    De Lucia, M.; Pilz, P.

    2014-12-01

    The H2STORE ("Hydrogen to Store") collaborative project, funded by the German government, investigates the feasibility of industrial-scale hydrogen storage from excess wind energy in siliciclastic depleted gas and oil reservoirs or suitable saline aquifers. In particular, two work packages (geochemical experiments and modelling) hosted at the German Research Centre for Geosciences (GFZ) focus on the possible impact of hydrogen on formation fluids and on the mineralogical, geochemical and petrophysical properties of reservoirs and caprocks. Laboratory experiments expose core samples from several potential reservoirs to pure hydrogen or hydrogen mixtures under site-specific conditions (temperatures up to 200 °C and pressure up to 300 bar). The resulting qualitative and, whereas possible, quantitative data are expected to ameliorate the precision of predictive geochemical and reactive transport modelling, which is also performed within the project. The combination of experiments and models will improve the knowledge about: (1) solubility model and mixing rule for of hydrogen and its gas mixtures in high saline formation fluids; (2) hydrogen reactivity in a broad spectrum of P-T conditions; (3) thermodynamics and kinetics of mineral dissolution or precipitation reactions and redox processes. It is known that under specific P-T conditions reactions between hydrogen and anorganic rock components such as carbonates can occur. However these conditions have never been precisely defined to date. A precise estimation of the hydrogen impact on reservoir behavior of different siliciclastic rock types is crucial for site selection and optimization of storage depth. Enhancing the overall understanding of such systems will benefit the operational reliability, the ecological tolerance, and the economic efficiency of future energy storing plants, crucial aspects for public acceptance and for industrial investors.

  11. Hydrogen-antihydrogen interactions at low energies

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Carr, J.M.; Zeman, V.

    1999-01-01

    The main cause of loss of trapped AH is due to collisions with H 2 and He. As a first step towards treating these reactions we are studying the interaction of AH with H. We have carried out variational calculations to determine an upper bound to the smallest internuclear distance at which the light particles are still bound to the nuclei. We are currently in the process of taking into account the motion of the nuclei. This will enable us to calculate cross-sections for low energy H-AH scattering

  12. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  13. Application of hydrogen isotopes and metal hydrides in future energy source

    Energy Technology Data Exchange (ETDEWEB)

    Guoqiang, Jiang [Sichuan Inst. of Materials and Technology, Chengdu, SC (China)

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China`s energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed.

  14. Application of hydrogen isotopes and metal hydrides in future energy source

    International Nuclear Information System (INIS)

    Jiang Guoqiang

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China's energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed

  15. Wind energy-hydrogen storage hybrid power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wenjei Yang; Orhan Aydin [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    2001-07-01

    In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyse the de-ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high-pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water-cooled burner to produce a very high-quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. (author)

  16. Hydrogen is an energy source for hydrothermal vent symbioses.

    Science.gov (United States)

    Petersen, Jillian M; Zielinski, Frank U; Pape, Thomas; Seifert, Richard; Moraru, Cristina; Amann, Rudolf; Hourdez, Stephane; Girguis, Peter R; Wankel, Scott D; Barbe, Valerie; Pelletier, Eric; Fink, Dennis; Borowski, Christian; Bach, Wolfgang; Dubilier, Nicole

    2011-08-10

    The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.

  17. Smooth feeding-in of wind energy via hydrogen

    International Nuclear Information System (INIS)

    Lehmann, J.; Sponholz, C.; Luschtinetz, O.U.T.; Miege, A.; Sandlass, H.

    2006-01-01

    For the northern part of Germany the harvest of wind energy became characteristic. 1,018 GW have been installed by 2004. A higher electricity production with re-powered wind parks on shore and new off shore parks is planned. The estimated production could reach 50 GW by 2020. On the other hand, more than 20 30 % discontinuous electricity related to the demand could bring instabilities of the net. Unfortunately the demand in North-Germany is a relatively small one and the net is weak. There are three possibilities to protect the net: 1. Reconstruction of the net, especially net extension 2. Improvement of the prognosis of wind and electricity consumption as well 3. A net management, which shuts up wind parks during less demand periods Point 2 and 3 are related with the stand by of back-up power, power delivered by conventional power stations or storage power stations (for example storage by water pumping). The proposal is as follows: Wind parks should be connected with a loop from electrolysis, gas storage and reconversion of hydrogen into electricity. In this way a park will be able to feed electricity into the net according to the actual demand and controlled by the demand. Going into detail a wind farm can run according to four scenarios. The first one is the conventional wind park, which causes the problems mentioned above. The electrical energy output follows the natural wind yield and the grid has to be adapted to the wind power feed-in. One solution for a temporal decoupling of wind yield and electricity output is a combination of windmills with a storage loop as shown in scenario II and IV. The system of scenario II de-couples the fluctuating input (wind) and the constant output (electricity). The advantage of this system is that the electrical output is constant and independent of the actual wind speed. For this reason this wind park acts as a constant power plant within the grid. Scenario Ill, the grid adapted feed-in, extends the former scenario with a

  18. Energy distribution and transfer in flowing hydrogen microwave plasmas

    International Nuclear Information System (INIS)

    Chapman, R.A.

    1987-01-01

    This thesis is an experimental investigation of the physical and chemical properties of a hydrogen discharge in a flowing microwave plasma system. The plasma system is the mechanisms utilized in an electrothermal propulsion concept to convert electromagnetic energy into the kinetic energy of flowing hydrogen gas. The plasmas are generated inside a 20-cm ID resonant cavity at a driving frequency of 2.45 GHz. The flowing gas is contained in a coaxially positioned 22-mm ID quartz discharge tube. The physical and chemical properties are examined for absorbed powers of 20-100 W, pressures of 0.5-10 torr, and flow rates of 0-10,000 μ-moles/sec. A calorimetry system enclosing the plasma system to accurately measure the energy inputs and outputs has been developed. The rate of energy that is transferred to the hydrogen gas as it flows through the plasma system is determined as a function of absorbed power, pressure, and flow rate to +/-1.8 W from an energy balance around the system. The percentage of power that is transferred to the gas is found to increase with increasing flow rate, decrease with increasing pressure, and to be independent of absorbed power

  19. Hydrogen generator characteristics for storage of renewably-generated energy

    International Nuclear Information System (INIS)

    Kotowicz, Janusz; Bartela, Łukasz; Węcel, Daniel; Dubiel, Klaudia

    2017-01-01

    The paper presents a methodology for determining the efficiency of a hydrogen generator taking the power requirements of its auxiliary systems into account. Authors present results of laboratory experiments conducted on a hydrogen generator containing a PEM water electrolyzer for a wide range of device loads. On the basis of measurements, the efficiency characteristics of electrolyzers were determined, including that of an entire hydrogen generator using a monitored power supply for its auxiliary devices. Based on the results of the experimental tests, the authors have proposed generalized characteristics of hydrogen generator efficiency. These characteristics were used for analyses of a Power-to-Gas system cooperating with a 40 MW wind farm with a known yearly power distribution. It was assumed that nightly-produced hydrogen is injected into the natural gas transmission system. An algorithm for determining the thermodynamic and economic characteristics of a Power-to-Gas installation is proposed. These characteristics were determined as a function of the degree of storage of the energy produced in a Renewable Energy Sources (RES) installation, defined as the ratio of the amount of electricity directed to storage to the annual amount of electricity generated in the RES installation. Depending on the degree of storage, several quantities were determined. - Highlights: • The efficiency characteristics of PEM electrolyzer are determined. • Generalized characteristics of hydrogen generator efficiency are proposed. • Method of choice of electrolyser nominal power for Power-to-Gas system was proposed. • Development of Power-to-Gas systems requires implementation of support mechanisms.

  20. Moonlight project promotes energy-saving technology

    Science.gov (United States)

    Ishihara, A.

    1986-01-01

    In promoting energy saving, development of energy conservation technologies aimed at raising energy efficiency in the fields of energy conversion, its transportation, its storage, and its consumption is considered, along with enactment of legal actions urging rational use of energies and implementation of an enlightenment campaign for energy conservation to play a crucial role. Under the Moonlight Project, technical development is at present being centered around the following six pillars: (1) large scale energy saving technology; (2) pioneering and fundamental energy saving technology; (3) international cooperative research project; (4) research and survey of energy saving technology; (5) energy saving technology development by private industry; and (6) promotion of energy saving through standardization. Heat pumps, magnetohydrodynamic generators and fuel cells are discussed.

  1. Photobiological production of hydrogen: a solar energy conversion option

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Lien, S.; Seibert, M.

    1979-01-01

    This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

  2. A comparison of hydrogen with alternate energy forms from coal and nuclear energy

    International Nuclear Information System (INIS)

    Cox, K.E.

    1976-01-01

    Alternate energy forms that can be produced from coal and nuclear energy have been analyzed on efficiency, economic and end-use grounds. These forms include hydrogen, methane, electricity, and EVA-ADAM, a 'chemical heat pipe' approach to energy transmission. The EVA-ADAM system for nuclear heat appears to be economically competitive with the other energy carriers except over very large distances. The cost of hydrogen derived from coal is approximately equal to that of methane derived from the same source when compared on an equal BTU basis. Thermochemically derived hydrogen from nuclear energy shows a break-even range with hydrogen derived from coal at coal costs of from Pound33 to 80/ton depending on the cost of nuclear heat. Electricity and electrolytically derived hydrogen are the most expensive energy carriers and electricity's use should be limited to applications involving work rather than heat. Continued work in thermochemical hydrogen production schemes should be supported as an energy option for the future. (author)

  3. Renewable energy projects in the Dominican Republic

    Energy Technology Data Exchange (ETDEWEB)

    Viani, B.

    1997-12-01

    This paper describes a US/Dominican Republic program to develop renewable energy projects in the country. The objective is to demonstrate the commercial viability of renewable energy generation projects, primarily small-scale wind and hydropower. Preliminary studies are completed for three micro-hydro projects with a total capacity of 262 kWe, and two small wind power projects for water pumping. In addition wind resource assessment is ongoing, and professional training and technical assistance to potential investors is ongoing. Projects goals include not less than ten small firms actively involved in installation of such systems by September 1998.

  4. Quarterly status of Department of Energy projects

    International Nuclear Information System (INIS)

    1982-01-01

    This Quarterly Status of Department of Energy Projects is prepared by the Office of project and Facilities Management, MA-30. The report is designed to provide Department of Energy (DOE) management officials with a summary of the important baseline data that exists in the DOE project data base. This data base is maintained chiefly from periodic field management reports required by DOE Order 5700.4. Since most of the current estimates in this report are from field project managers, they do not necessarily have full Headquarters approval. The current budget data sheet estimates that appear in the report are considered appropriate for reporting external to the Department and reflect the President's FY 1983 Budget to Congress. Moneys allocated and estimated costs, and the construction status are tabulated for projects under the subject categories of: conservation and renewable energy; defense programs; environmental protection, safety and emergency preparedness; energy research; defense programs; nuclear energy; and management and administration

  5. Status of photoelectrochemical production of hydrogen and electrical energy

    Science.gov (United States)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.

  6. Neighborhood Energy/Economic Development project

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Energy costs impact low income communities more than anyone else. Low income residents pay a larger percentage of their incomes for energy costs. In addition, they generally have far less discretionary energy use to eliminate in response to increasing energy prices. Furthermore, with less discretionary income, home energy efficiency improvements are often too expensive. Small neighborhood businesses are in the same situation. Improved efficiency in the use of energy can improve this situation by reducing energy costs for residents and local businesses. More importantly, energy management programs can increase the demand for local goods and services and lead to the creation of new job training and employment opportunities. In this way, neighborhood based energy efficiency programs can support community economic development. The present project, undertaken with the support of the Urban Consortium Energy Task Force, was intended to serve as a demonstration of energy/economic programming at the neighborhood level. The San Francisco Neighborhood Energy/Economic Development (NEED) project was designed to be a visible demonstration of bringing the economic development benefits of energy management home to low-income community members who need it most. To begin, a Community Advisory Committee was established to guide the design of the programs to best meet needs of the community. Subsequently three neighborhood energy/economic development programs were developed: The small business energy assistance program; The youth training and weatherization program; and, The energy review of proposed housing development projects.

  7. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  8. Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping

    Energy Technology Data Exchange (ETDEWEB)

    Jie Liu

    2011-02-01

    The DOE Hydrogen Sorption Center of Excellence (HSCoE) was formed in 2005 to develop materials for hydrogen storage systems to be used in light-duty vehicles. The HSCoE and two related centers of excellence were created as follow-on activities to the DOE Office of Energy Efficiency and Renewable Energy’s (EERE’s) Hydrogen Storage Grand Challenge Solicitation issued in FY 2003. The Hydrogen Sorption Center of Excellence (HSCoE) focuses on developing high-capacity sorbents with the goal to operate at temperatures and pressures approaching ambient and be efficiently and quickly charged in the tank with minimal energy requirements and penalties to the hydrogen fuel infrastructure. The work was directed at overcoming barriers to achieving DOE system goals and identifying pathways to meet the hydrogen storage system targets. To ensure that the development activities were performed as efficiently as possible, the HSCoE formed complementary, focused development clusters based on the following four sorption-based hydrogen storage mechanisms: 1. Physisorption on high specific surface area and nominally single element materials 2. Enhanced H2 binding in Substituted/heterogeneous materials 3. Strong and/or multiple H2 binding from coordinated but electronically unsatruated metal centers 4. Weak Chemisorption/Spillover. As a member of the team, our group at Duke studied the synthesis of various carbon-based materials, including carbon nanotubes and microporous carbon materials with controlled porosity. We worked closely with other team members to study the effect of pore size on the binding energy of hydrogen to the carbon –based materials. Our initial project focus was on the synthesis and purification of small diameter, single-walled carbon nanotubes (SWNTs) with well-controlled diameters for the study of their hydrogen storage properties as a function of diameters. We developed a chemical vapor deposition method that synthesized gram quantities of carbon nanotubes with

  9. Evaluation tool for selection and optimisation of hydrogen demonstration projects. Application to a decentralized renewable hydrogen system

    International Nuclear Information System (INIS)

    Bracht, M.; De Groot, A.; Gregoire Padro, C.E.; Schucan, T.H.; Skolnik, E.

    1998-06-01

    As part of the International Energy Agency Hydrogen Implementing Agreement, an evaluation tool to assist in the design, operation and optimisation of hydrogen demonstration facilities is under development. Using commercially available flowsheet simulation software (ASPEN- Plus) as the integrating platform, this tool is designed to provide system developers with a comprehensive data base or library of component models and an integrating platform through which these models may be linked. By combining several energy system components a conceptual design of a integrated hydrogen energy system can be made. As a part of the tool and connected to the library are design guidelines which can help finding the optimal configuration in the design process. The component categories considered include: production, storage, transport, distribution and end use. Many component models have already been included in the initial test platform. The use of the tool will be illustrated by presenting the results of a specific sample system that has been designed and assessed with use of the tool. The system considered is a decentralized renewable hydrogen system in which the hydrogen is produced by biomass gasification or pyrolysis, the produced hydrogen is transported through a pipeline or with a tank truck. The storage options that are considered are liquid hydrogen and compressed gas. The hydrogen is dispensed through a refueling station. Several options for integration are conceivable; i.e. storage of the hydrogen can take place centrally or district heat of a gasification unit can be used to generate electricity for liquefaction, etc. With use of the tool several configurations with different components and various integration options have been examined. Both the results of the modeling effort and an assessment of the evaluation tool will be presented. 5 refs

  10. Regenesys utility scale energy storage. Project summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed.

  11. Regenesys utility scale energy storage. Project summary

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed

  12. Energy storage applications of activated carbons: supercapacitors and hydrogen storage

    OpenAIRE

    Sevilla Solís, Marta; Mokaya, Robert

    2014-01-01

    Porous carbons have several advantageous properties with respect to their use in energy applications that require constrained space such as in electrode materials for supercapacitors and as solid state hydrogen stores. The attractive properties of porous carbons include, ready abundance, chemical and thermal stability, ease of processability and low framework density. Activated carbons, which are perhaps the most explored class of porous carbons, have been traditionally employed as catalyst s...

  13. Integrated energy systems for hydrogen and electricity supply

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Univ. of Central Florida, Cocoa, FL (United States). Florida Solar Energy Center; Manikowski, A.; Noland, G. [Procyon Power Systems Inc., Alameda, CA (United States)

    2002-07-01

    The United States will soon need an increase in electric generating capacity along with an increase in the distribution capacity of the electricity grid. The cost and time required to build additional electrical distribution and transmission systems can be avoided by using distributed power generation. This paper examines the development of an integrated stand-alone energy system that can produce hydrogen, electricity and heat. The concept is based on integrated operation of a thermocatalytic pyrolysis (TCP) reactor and a solid oxide fuel cell (SOFC). The benefits include high overall energy efficiency, the production of high quality hydrogen (90 to 95 per cent free of carbon oxides), low emissions, and fuel flexibility. Experimental data is presented regarding the thermocatalytic pyrolysis of methane compared with an iron-based catalyst (which is sulfur resistant) and gasification of the resulting carbon with steam and carbon dioxide. With distributed generation, additional electrical generating capacity can be added in small increments distributed over the grid. An integrated energy system will be applicable to any type of hydrocarbon fuel, such as natural gas, liquid propane gas, gasoline, kerosene, jet fuel, diesel fuel and sulfurous residual oils. The suitable range of operating parameters needed to decoke a catalyst bed using steam and carbon dioxide as a degasifying agent was also determined. The Fe-catalyst was efficient in both methane pyrolysis and steam/CO{sub 2} gasification of carbon. It was shown that the TCP and SOFC complement each other in may ways. With the IES, high quality hydrogen is delivered to the end user. IES can also operate as either a hydrogen production unit or as an electrical power generator. The energy efficiency of the IES is estimated at 45-55 per cent. 6 refs., 8 figs.

  14. Overview of Light Hydrogen-Based Low Energy Nuclear Reactions

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading.

  15. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  16. Renewable energy carriers: Hydrogen or liquid air/nitrogen?

    International Nuclear Information System (INIS)

    Li Yongliang; Chen Haisheng; Zhang Xinjing; Tan Chunqing; Ding Yulong

    2010-01-01

    The world's energy demand is met mainly by the fossil fuels today. The use of such fuels, however, causes serious environmental issues, including global warming, ozone layer depletion and acid rains. A sustainable solution to the issues is to replace the fossil fuels with renewable ones. Implementing such a solution, however, requires overcoming a number of technological barriers including low energy density, intermittent supply and mobility of the renewable energy sources. A potential approach to overcoming these barriers is to use an appropriate energy carrier, which can store, transport and distribute energy. The work to be reported in this paper aims to assess and compare a chemical energy carrier, hydrogen, with a physical energy carrier, liquid air/nitrogen, and discuss potential applications of the physical carrier. The ocean energy is used as an example of the renewable energy sources in the work. The assessment and comparison are carried out in terms of the overall efficiency, including production, storage/transportation and energy extraction. The environmental impact, waste heat recovery and safety issues are also considered. It is found that the physical energy carrier may be a better alternative to the chemical energy carrier under some circumstances, particularly when there are waste heat sources.

  17. Renewable Energy Project Development Assistance (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-07-01

    This fact sheet provides information on the Tribes selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  18. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

  19. France [National and regional programmes on the production of hydrogen using nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    Consumption of primary energy in France amounted to 278 Mtoe in 2005, with an average increase of 1.3%/a between 1990 and 2005. The breakdown of primary energy is 42% nuclear energy, 33% oil, 15% natural gas, 6% renewables and 4% coal. France is comparatively poor in domestic energy resources. French coal production, which was still around 40 million t/a at the end of the 1970s, was terminated in 2004. Also, domestic natural gas contributes not more than 2% of France's primary energy production. With the general objectives being to control energy demand, diversify sources of energy, increase research into energy, and provide methods of transporting and storing energy, the French energy policy has given priority to the development of a national energy supply with a strong focus on nuclear energy and renewable energies. These energies are seen to provide a reliable long term supply without GHG emissions and to ensure stable electricity prices. The first nuclear power plants built in France were gas cooled reactors and the country also participated in the OECD Dragon project. Today France is the world's second largest producer of nuclear energy (after the USA) with an electricity share of 78%. France operates 58 nuclear power stations with a total capacity of 63.2 GW. One Gen- III reactor (EPR) is currently under construction. Since nuclear energy is not always fully used, interest is growing in using excess nuclear electricity, apart from export, for hydrogen production to regulate the electricity production.

  20. Advanced energy projects: FY 1987 research summaries

    International Nuclear Information System (INIS)

    1987-09-01

    This report contains brief summaries of all projects active in the Division of Advanced Energy Projects during Fiscal Year 1987 (October 1, 1986-September 30, 1987). The intent of this compilation is to provide a convenient means for quickly acquainting an interested reader with the program in Advanced Energy Projects. More detailed information on research activities in a particular project may be obtained by contacting directly the principal investigator. Some projects will have reached the end of their contract periods by the time this book appears, and will, therefore, no longer be active. Those cases in which work was completed in FY '87 are indicated by the footnote: Project completed. The annual funding level of each project is shown

  1. From solar energy to hydrogen via magnesium: a challenging approach

    International Nuclear Information System (INIS)

    Abdel-Aal, H.K.

    2006-01-01

    In the proposed scheme, solar energy is used first to vaporize a dynamic stream of sea water flowing along an inclined Preferential Salt Separator (P S S). Magnesium chloride salts - soluble in seawater - will separate as end products. Once obtained, anhydrous magnesium chloride is to be electrolysed to produce magnesium metal, a reliable source of stored energy. When shipped to remote locations, it is used as electrode to construct a 'galvanic - electrolytic' cell, in which water is electrolysed producing hydrogen as end product. Small scale experimental results are presented. Reference to the work reported by Pacheco is made. (authors)

  2. U.S. Department of Energy Hydrogen and Fuel Cells Program, 2013 Annual Merit Review and Peer Evaluation Report (Book)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-10-01

    The fiscal year (FY) 2013 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from May 13-16, 2013, at the Crystal City Marriott and Crystal Gateway Marriott in Arlington, Virginia. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE).

  3. The rural energy alternatives project

    International Nuclear Information System (INIS)

    Hoffstatter, L.; Panetti, C.; DeWein, M.

    1993-01-01

    A cooperative survey by the New York State Energy Office (SEO) and Office of Rural Affairs (ORA) identified hundreds of residences without utility electric power due to excessive line extension costs. SEO selected several of these residences for feasibility studies which compared site specific options for electricity generation, including existing fossil fuel generator(s), generator/battery sets, photovoltaic (PV) hybrid and micro-hydroelectric systems as well as utility provided electric service. Comprehensive reports included examination of a range of energy conservation measures. Alternatives to present fossil fuel systems were assessed for domestic hot water, refrigeration, and water pumping. Results included electric load data, solar and hydroelectric potential, life cycle cost estimates for electricity, and estimated system sizing information based on energy cost considerations. In addition to providing useful information to individual homeowners, these studies served as the basis for cooperative efforts to install and monitor stand-alone prototype PV hybrid systems

  4. Diffractive Photon Dissociation in a High Pressure Hydrogen Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Gregory Roy [Rockefeller Univ., New York, NY (United States)

    1983-11-01

    We have performed an experiment at the Tagged Photon Facility of Fermilab to study the diffraction dissociation of high energy photons on hydrogen y + p -+ x + p in the region 0.02 < $\\mid t \\mid$ < 0.1 $(GeV/c)^2$, $M_x$ $^2/s$ < 0.1. In this process, incident photons whose energies range from 70 to 140 GeV transform coherently to massive hadronic states in the mass range M < 5 GeV/c 2 • x We measure the inclusive differential cross section$\\frac{d^20}{dt dM_x ^2}$) The behavior of this cross section, especially when compared to the corresponding cross sections for the diffraction dissociation of incident hadrons (pions, kaons, and protons), reveals some fundamental characteristics of photon hadronic interactions. We use the Recoil Technique to determine the missing mass, $M_x$, and the square of the 4-momentum transfer, t. The recoil detector, TREAD, is a cylindrical time projection chamber filled with high pressure hydrogen gas which serves both as the target and as the drift medium for the ionization track created by recoil protons. The ionization drifts up to 75 cm in a high axial electric field. Concentric sense wires mounted on endplates sample different parts of the track, yielding the polar angle of the recoil. The energy of the recoil is determined by stopping the proton in scintillation counters located inside the high pressure vessel....

  5. Some aspects of hydrogen as a long-term energy carrier

    International Nuclear Information System (INIS)

    Quakernaat, J.; De Jong, K.P.; Van Wechem, H.M.H.; Okken, P.A.; Lako, P.; Ybema, J.R.

    1994-11-01

    Hydrogen as a secondary energy carrier received extensive and worldwide attention some ten to fifteen years ago. The developments in the energy market since then have reduced the interest in hydrogen. However, the increased concern for the environment and new technical options have brought hydrogen to the centre of attention once again. These considerations led to the organization of the National Hydrogen Seminar, held on 19 November 1993 at ECN, Petten, Netherlands. Eight experts in the field of hydrogen illustrated the possibilities and prospects of the production, storage and use of hydrogen as an energy carrier. In this report three of these contributions are presented, for which separate abstracts have been prepared. The first paper is on hydrogen in a global long-term perspective, in the second paper carbon is considered as a hydrogen carrier or as a disappearing skeleton, and in the third paper attention is paid to the cost effective integration of hydrogen in energy systems with CO 2 constraints

  6. World energy projection system: Model documentation

    Science.gov (United States)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  7. World energy projection system: Model documentation

    International Nuclear Information System (INIS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) (Figure 1). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES) provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report

  8. Social assessment of energy projects. How?

    International Nuclear Information System (INIS)

    Munksgaard, J.; Larsen, A.

    1997-08-01

    This is the final report of the project: Social assessment of Energy Projects. The aim of the project is to improve the basis of working out social assessments of energy projects in practice. The report raises the question: How should social assessments of energy projects be made? A social assessment is using a national perspective, i.e. it accounts the effects of the project for individuals and institutions in Denmark. The assessment is based on economics which means that effects generated by the project are valuated in DKK - as far as possible. The aim of the social assessment is to support a more effective use of the resources in Denmark. A social assessment should include an analysis of the distributional effects. The analysis can be made as an account including a social cash flow analysis. The distribution analysis will illustrate the gains and losses for the different groups of individuals affected carrying out the project. In that way the analysis will show who potentially will support the project and who will be against the project. (EG) EFP-92. 37 refs

  9. Hydrogen Energy Coordinating Committee annual report: Summary of DOE hydrogen programs for FY 1991

    International Nuclear Information System (INIS)

    1991-07-01

    The HECC was established over 13 years ago to ensure that the many varied aspects of hydrogen technology within the Department are coordinated. Each year the committee brings together technical representative within the Department to coordinate activities, share research results and discuss future priorities and directions. This FY 1990 summary is the thirteenth consecutive yearly report. It provides an overview of the hydrogen-related programs of the DOE offices represented in the HECC for the fiscal year. For the purposes of this report, the research projects within each division have been organized into two categories: Fuels-related Research and Non-fuels-related Research. An historical summary of the hydrogen budgets of the several divisions is given. Total DOE funding in FY 1990 was $6.8 million for fuels-related research and $32.9 million for non-fuels-related research. The individual program elements are described in the body of this report, and more specific program information can be found in the Technology Summary Forms in Appendix A

  10. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  11. World Energy Projection System model documentation

    International Nuclear Information System (INIS)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA

  12. World Energy Projection System model documentation

    Energy Technology Data Exchange (ETDEWEB)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  13. Hydrogen and renewable energy sources integrated system for greenhouse heating

    Directory of Open Access Journals (Sweden)

    Ileana Blanco

    2013-09-01

    Full Text Available A research is under development at the Department of Agro- Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic and hydrogen, integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules, which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.

  14. Energy and exergy analyses of electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, M A [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical Engineering

    1995-07-01

    The thermodynamic performance is investigated of a water-electrolysis process for producing hydrogen, based on current-technology equipment. Both energy and exergy analyses are used. Three cases are considered in which the principal driving energy inputs are (i) electricity, (ii) the high-temperature heat used to generate the electricity, and (iii) the heat source used to produce the high-temperature heat. The nature of the heat source (e.g.) fossil fuel, nuclear fuel, solar energy, (etc.) is left as general as possible. The analyses indicate that, when the main driving input is the hypothetical heat source, the principal thermodynamic losses are associated with water splitting, electricity generation and heat production; the losses are mainly due to the irreversibilities associated with converting a heat source to heat, and heat transfer across large temperature differences. The losses associated with the waste heat in used cooling water, because of its low quality, are not as significant as energy analysis indicates. (Author)

  15. Hydrogen Energy Storage: Grid and Transportation Services (Technical Report)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    Proceedings of an expert workshop convened by the U.S. Department of Energy and Industry Canada, and hosted by the National Renewable Energy Laboratory and the California Air Resources Board, May 14-15, 2014, in Sacramento, California, to address the topic of hydrogen energy storage (HES). HES systems provide multiple opportunities to increase the resilience and improve the economics of energy sup supply systems underlying the electric grid, gas pipeline systems, and transportation fuels. This is especially the case when considering particular social goals and market drivers, such as reducing carbon emissions, increasing reliability of supply, and reducing consumption of conventional petroleum fuels. This report compiles feedback collected during the workshop, which focused on policy and regulatory issues related to HES systems. Report sections include an introduction to HES pathways, market demand, and the "smart gas" concept; an overview of the workshop structure; and summary results from panel presentations and breakout groups.

  16. Factors influencing the societal acceptance of new energy technologies. Meta-analysis of recent European projects

    Energy Technology Data Exchange (ETDEWEB)

    Poti, B.; Difiore, M. [Consiglio Nazionale delle Ricerche, Rome (Italy); Brohmann, B.; Daniels, A.; Fritsche, U.; Huenecke, K. [Oeko-Institut, Darmstadt (Germany); Heiskanen, E. [National Consumer Research Centre, Helsinki (Finland); Raven, R.P.J.M.; Mourik, R.; Feenstra, C.F.J.; Willemse, R. [ECN Policy Studies, Petten (Netherlands); Hodson, M. [Centre for Sustainable Urban and Regional Futures SURF, University of Salford, Manchester (United Kingdom); Alcantud Torrent, A.; Schaefer, B. [Ecoinstitut Barcelona, Barcelona (Spain); Farkas, B.; Fucsko, J. [Hungarian Environmental Economics Centre MAKK, Budapest (Hungary); Jolivet, E. [IAE Toulouse, Toulouse (France); Maack, M.H.; Matschoss, K. [Icelandic New Energy INE, Reykjavik (Iceland); Oniszk-Poplawska, A. [Institute for Renewable Energy IEO, Warszawa (Poland); Prasad, G. [Energy Research Centre ERC, University of Cape Town, Cape Town (South Africa)

    2008-03-15

    Within this report an analysis is made of 27 case studies of historical and recent new energy technologies in different European regions and South Africa. The analysis focuses on the societal acceptance in these projects in order to identify determinants of success and failure. A wide diversity of technologies is discussed including hydrogen, CO2 capture and storage, biomass, solar and wind energy technologies.

  17. 12. symposium for the use of regenerative energy sources and hydrogen technology. Proceedings

    International Nuclear Information System (INIS)

    Lehmann, J.

    2005-01-01

    Topics of the conference were: renewable energy sources, wind energy, wood fueled space and water heating systems, SOFC fuel cell, storage of wind energy in the form of hydrogen, geothermal energy, usage of waste heat in low-temperature Rankine cycle engines, emissions trading, energy policy, solar hydrogen economy. (uke)

  18. Technical project of complex fast cycle heat treatment of hydrogenous coal preparation

    OpenAIRE

    Moiseev, V. A.; Andrienko, V. G.; Pileckij, V. G.; Urvancev, A. I.; Gvozdyakov, Dmitry Vasilievich; Gubin, Vladimir Evgenievich; Matveev, Aleksandr Sergeevich; Savostiyanova, Ludmila Viktorovna

    2015-01-01

    Problems of heat-treated milled hydrogenous coal preparation site creation in leading fast cycle heat treatment complex were considered. Conditions for effective use of electrostatic methods of heat-treated milled hydrogenous coal preparation were set. Technical project of heat treatment of milled hydrogenous coal preparation site was developed including coupling of working equipment complex on fast heat treatment and experimental samples of equipment being designed for manufacturing. It was ...

  19. Guidelines for Home Energy Professionals Project (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Guidelines for Home Energy Professionals is a collaboration between the U.S. Department of Energy (DOE) and a wide range of home energy performance industry professionals. The Guidelines project, managed by the National Renewable Energy Laboratory (NREL) for DOE, addresses the need for a highly-skilled weatherization workforce equipped to complete consistent, high-quality home energy upgrades for single-family homes, multifamily homes, and manufactured housing. In doing so, it helps increase energy efficiency in housing, which can mitigate climate change, one of the major challenges of the 21st century.

  20. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate (1) high-temperature-superconductor (HTS) magnet coils, (2) cold copper RF cavities, and (3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant). The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects

  1. Viability of Hydrogen Pathways that Enhance Energy Security: A Comparison of China and Denmark

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Andreasen, Kristian Peter; Sovacool, Benjamin

    2014-01-01

    When designed and built properly, hydrogen energy systems can enhance energy security through technological diversification and minimizing dependence on foreign imports of energy fuels. However, hydrogen can be produced from different feedstocks according to separate pathways, and these different...... pathways create particular consequences on a nation's overall energy security. The objective of this study is to investigate the superiorities and inferiorities of hydrogen pathways from the perspective of China and Denmark, and to determine which pathways best contribute to national energy security...

  2. Energy–exergy and economic analyses of a hybrid solar–hydrogen renewable energy system in Ankara, Turkey

    International Nuclear Information System (INIS)

    Ozden, Ender; Tari, Ilker

    2016-01-01

    Highlights: • Uninterrupted energy in an emergency blackout situation. • System modeling of a solar–hydrogen based hybrid renewable energy system. • A comprehensive thermodynamical analysis. • Levelized cost of electricity analysis for a project lifetime of 25 years. - Abstract: A hybrid (Solar–Hydrogen) stand-alone renewable energy system that consists of photovoltaic panels (PV), Proton Exchange Membrane (PEM) fuel cells, PEM based electrolyzers and hydrogen storage is investigated by developing a complete model of the system using TRNSYS. The PV panels are mounted on a tiltable platform to improve the performance of the system by monthly adjustments of the tilt angle. The total area of the PV panels is 300 m 2 , the PEM fuel cell capacity is 5 kW, and the hydrogen storage is at 55 bars pressure and with 45 m 3 capacity. The main goal of this study is to verify that the system meets the electrical power demand of the emergency room without experiencing a shortage for a complete year in an emergency blackout situation. For this purpose, after modeling the system, energy and exergy analyses for the hydrogen cycle of the system for a complete year are performed, and the energy and exergy efficiencies are found as 4.06% and 4.25%, respectively. Furthermore, an economic analysis is performed for a project lifetime of 25 years based on Levelized Cost of Electricity (LCE), and the LCE is calculated as 0.626 $/kWh.

  3. U.S. Department of Energy Hydrogen and Fuel Cells Program 2012 Annual Merit Review and Peer Evaluation Report: May 14-18, 2012, Arlington, VA

    Energy Technology Data Exchange (ETDEWEB)

    2012-09-01

    This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the fiscal year (FY) 2012 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 14-18, 2012, in Arlington, VA.

  4. Development of a novel market forecasting tool and its application to hydrogen energy production in Scotland

    International Nuclear Information System (INIS)

    Houghton, T.; Cruden, A.

    2010-01-01

    The authors propose a novel model for forecasting the deployment of hydrogen energy systems based on a company value maximisation algorithm, designed to assist governments and other industry players in decision-making and the development of appropriate policy instruments. Current cost-minimisation approaches, such as MARKAL, have limitations particularly where price arbitrage between energy streams exists. A theoretical relationship between market sector valuations and investment activity is developed and the model is subsequently applied to the Scottish hydrogen energy market. Through the utilisation of net present value, revenue and profitability based valuations, the impact of investing in hydrogen energy infrastructure projects on three key market competitors is considered. It is shown that the three methods for calculating the value impact render different results suggesting that the use of a single method to assess forecast development scenarios, whether cost or value-based methods, may be misleading and that the holistic approach proposed is more realistic. The archivable value of this paper is to demonstrate the impact that investor expectations can have on investment decisions, a facet not captured in traditional methods of forecasting. (author)

  5. Hydrogen desorption reactions of Li-N-H hydrogen storage system: Estimation of activation free energy

    International Nuclear Information System (INIS)

    Matsumoto, Mitsuru; Haga, Tetsuya; Kawai, Yasuaki; Kojima, Yoshitsugu

    2007-01-01

    The dehydrogenation reactions of the mixtures of lithium amide (LiNH 2 ) and lithium hydride (LiH) were studied under an Ar atmosphere by means of temperature programmed desorption (TPD) technique. The dehydrogenation reaction of the LiNH 2 /LiH mixture was accelerated by addition of 1 mol% Ti(III) species (k = 3.1 x 10 -4 s -1 at 493 K), and prolonged ball-milling time (16 h) further enhanced reaction rate (k = 1.1 x 10 -3 s -1 at 493 K). For the hydrogen desorption reaction of Ti(III) doped samples, the activation energies estimated by Kissinger plot (95 kJ mol -1 ) and Arrhenius plot (110 kJ mol -1 ) were in reasonable agreement. The LiNH 2 /LiH mixture without Ti(III) species, exhibited slower hydrogen desorption process and the kinetic traces deviated from single exponential behavior. The results indicated the Ti(III) additives change the hydrogen desorption reaction mechanism of the LiNH 2 /LiH mixture

  6. On the use of hydrogen in confined spaces: Results from the internal project InsHyde

    NARCIS (Netherlands)

    Venetsanos, A.G.; Adams, P.; Azkarate, I.; Bengaouer, A.; Brett, L.; Carcassi, M.N.; Engebø, A.; Gallego, E.; Gavrikov, A.I.; Hansen, O.R.; Hawksworth, S.; Jordan, T.; Kessler, A.; Kumar, S.; Molkov, V.; Nilsen, S.; Reinecke, E.; Stöcklin, M.; Schmidtchen, U.; Teodorczyk, A.; Tigreat, D.; Versloot, N.H.A.

    2011-01-01

    The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally, InsHyde

  7. Feasibility study on recovering hydrogen energy from industrial wastewater

    International Nuclear Information System (INIS)

    Ming Der Bai; Chia-Jung Hsiao

    2006-01-01

    Three wastewater obtained from different industries were evaluated for the feasibility of hydrogen fermentation. Because of the various components of the wastewater, the characteristics of the hydrogen accumulation were different. Several stages with different hydrogen producing rate were observed during the batch hydrogen fermentation of each wastewater. The obvious hydrogen consumption was observed in the last phase of hydrogen fermentation of the wastewater from the winery. It is similar to the reported hydrogen fermentation characteristic of starch. The wastewater coming from the fructose manufactory has the greatest hydrogen potential nearly 150 L-H 2 /kg-COD. The wastewater from food industry has the lower hydrogen potential of 65 L-H 2 /kg-COD. Some of its compounds were not suitable for hydrogen production. The lowest hydrogen potential was observed in the fermentation of the wastewater from the winery, because hydrogen consumption affects the hydrogen recovery from the wastewater from winery. (authors)

  8. Feasibility study on recovering hydrogen energy from industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ming Der Bai; Chia-Jung Hsiao [Energy and Resource Laboratories, Industrial Technology Research Institute, 195, sec. 4 Chung Hsing Rd., Chutung, Hsinchu, Taiwan, 301 R.O.C. (China)

    2006-07-01

    Three wastewater obtained from different industries were evaluated for the feasibility of hydrogen fermentation. Because of the various components of the wastewater, the characteristics of the hydrogen accumulation were different. Several stages with different hydrogen producing rate were observed during the batch hydrogen fermentation of each wastewater. The obvious hydrogen consumption was observed in the last phase of hydrogen fermentation of the wastewater from the winery. It is similar to the reported hydrogen fermentation characteristic of starch. The wastewater coming from the fructose manufactory has the greatest hydrogen potential nearly 150 L-H{sub 2}/kg-COD. The wastewater from food industry has the lower hydrogen potential of 65 L-H{sub 2}/kg-COD. Some of its compounds were not suitable for hydrogen production. The lowest hydrogen potential was observed in the fermentation of the wastewater from the winery, because hydrogen consumption affects the hydrogen recovery from the wastewater from winery. (authors)

  9. Hydrogen and fuel cell research: Institute for Integrated Energy Systems (IESVic)

    International Nuclear Information System (INIS)

    Pitt, L.

    2006-01-01

    Vision: IESVic's mission is to chart feasible paths to sustainable energy. Current research areas of investigation: 1. Energy system analysis 2. Computational fuel cell engineering; Fuel cell parameter measurement; Microscale fuel cells 3. Hydrogen dispersion studies for safety codes 4. Active magnetic refrigeration for hydrogen liquifaction and heat transfer in metal hydrides 5. Hydrogen and fuel cell system integration (author)

  10. Driftless Area Initiative Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Angie [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Bertjens, Steve [Natural Resources Conservation Service, Madison, WI (United States); Lieurance, Mike [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Berguson, Bill [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.; Buchman, Dan [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  11. The CERN polarized atomic hydrogen beam target project

    International Nuclear Information System (INIS)

    Kubischta, W.; Dick, L.

    1990-01-01

    The UA6-experiment at the CERN p bar p Colider is at present using an unpolarized hydrogen cluster target with a thickness up to 5.10 14 atoms/cm 2 . It is planned to replace this target by a polarized atomic hydrogen beam target with a thickness up to about 10 13 atoms/cm 2 . This paper discusses basic requirements and results of atom optical calculations

  12. The US department of energy's research and development plans for the use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Henderson, A.D.; Pickard, P.S.; Park, C.V.; Kotek, J.F.

    2004-01-01

    The potential of hydrogen as a transportation fuel and for stationary power applications has generated significant interest in the United States. President George W. Bush has set the transition to a 'hydrogen economy' as one of the Administration's highest priorities. A key element of an environmentally-conscious transition to hydrogen is the development of hydrogen production technologies that do not emit greenhouse gases or other air pollutants. The Administration is investing in the development of several technologies, including hydrogen production through the use of renewable fuels, fossil fuels with carbon sequestration, and nuclear energy. The US Department of Energy's Office of Nuclear Energy, Science and Technology initiated the Nuclear Hydrogen Initiative to develop hydrogen production cycles that use nuclear energy. The Nuclear Hydrogen Initiative has completed a Nuclear Hydrogen R and D Plan to identify candidate technologies, assess their viability, and define the R and D required to enable the demonstration of nuclear hydrogen production by 2016. This paper gives a brief overview of the Nuclear Hydrogen Initiative, describes the purposes of the Nuclear Hydrogen R and D Plan, explains the methodology followed to prepared the plan, presents the results, and discusses the path forward for the US programme to develop technologies which use nuclear energy to produce hydrogen. (author)

  13. U.S. Department of Energy Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Report: June 6-10, 2016, Washington, DC

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Neil

    2016-10-01

    The fiscal year 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 6-10, 2015, in Washington, D.C.. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.

  14. U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Report: June 8-12, 2015, Arlington, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Neil

    2015-10-01

    The fiscal year 2015 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 8-12, 2015, in Arlington, Virginia. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.

  15. Scenarios for total utilisation of hydrogen as an energy carrier in the future Danish energy system. Final report; Scenarier for samlet udnyttelse af brint som energibaerer i Danmarks fremtidige energisystem. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Petersen, A; Engberg Pedersen, T; Joergensen, K [and others

    2001-04-01

    This is the final report from a project performed for the Danish Energy Agency under its Hydrogen Programme. The project, which within the project group goes by the abbreviated title 'Hydrogen as an energy carrier', constructs and analyses different total energy scenarios for introducing hydrogen as an energy carrier, as energy storage medium and as a fuel in the future Danish energy system. The primary aim of the project is to study ways of handling the large deficits and surpluses of electricity from wind energy expected in the future Danish energy system. System-wide aspects of the choice of hydrogen production technologies, distribution methods, infrastructure requirements and conversion technologies are studied. Particularly, the possibility of using in the future the existing Danish natural gas distribution grid for carrying hydrogen will be assessed. For the year 2030, two scenarios are constructed: One using hydrogen primarily in the transportation sector, the other using it as a storage option for the centralised power plants still in operation by this year. For the year 2050, where the existing fossil power plants are expected to have been phased out completely, the scenarios for two possible developments are investigated: Either, there is a complete decentralisation of the use of hydrogen, converting and storing electricity surpluses into hydrogen in individual buildings, for later use in vehicles or regeneration of power and heat. Or, some centralised infrastructure is retained, such as hydrogen cavern stores and a network of vehicle hydrogen filling stations. The analysis is used to identify the components in an implementation strategy, for the most interesting scenarios, including a time sequence of necessary decisions and technology readiness. The report is in Danish, because it is part of the dissemination effort of the Hydrogen Committee, directed at the Danish population in general and the Danish professional community in particular. (au)

  16. Scenarios for total utilisation of hydrogen as an energy carrier in the future Danish energy system. Final report; Scenarier for samlet udnyttelse af brint som energibaerer i Danmarks fremtidige energisystem. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Petersen, A.; Engberg Pedersen, T.; Joergensen, K. (and others)

    2001-04-01

    This is the final report from a project performed for the Danish Energy Agency under its Hydrogen Programme. The project, which within the project group goes by the abbreviated title 'Hydrogen as an energy carrier', constructs and analyses different total energy scenarios for introducing hydrogen as an energy carrier, as energy storage medium and as a fuel in the future Danish energy system. The primary aim of the project is to study ways of handling the large deficits and surpluses of electricity from wind energy expected in the future Danish energy system. System-wide aspects of the choice of hydrogen production technologies, distribution methods, infrastructure requirements and conversion technologies are studied. Particularly, the possibility of using in the future the existing Danish natural gas distribution grid for carrying hydrogen will be assessed. For the year 2030, two scenarios are constructed: One using hydrogen primarily in the transportation sector, the other using it as a storage option for the centralised power plants still in operation by this year. For the year 2050, where the existing fossil power plants are expected to have been phased out completely, the scenarios for two possible developments are investigated: Either, there is a complete decentralisation of the use of hydrogen, converting and storing electricity surpluses into hydrogen in individual buildings, for later use in vehicles or regeneration of power and heat. Or, some centralised infrastructure is retained, such as hydrogen cavern stores and a network of vehicle hydrogen filling stations. The analysis is used to identify the components in an implementation strategy, for the most interesting scenarios, including a time sequence of necessary decisions and technology readiness. The report is in Danish, because it is part of the dissemination effort of the Hydrogen Committee, directed at the Danish population in general and the Danish professional community in particular. (au)

  17. Ponnequin Wind Energy Project Weld County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The purpose of this environmental assessment (EA) is to provide the U.S. Department of Energy (DOE) and the public with information on potential environmental impacts associated with the development of the Ponnequin Wind Energy Project in Colorado. This EA and public comments received on it will be used in DOE`s deliberations on whether to release funding for the project. This document provides a detailed description of the proposed project and an assessment of potential impacts associated with its construction and operations. Resources and conditions considered in the analysis include streams; wetlands; floodplains; water quality; soils; vegetation; air quality; socioeconomic conditions; energy resources; noise; transportation; cultural resources; visual and land use resources; public health and safety; wildlife; threatened, endangered, and candidate species; and cumulative impacts. The analysis found that the project would have minimal impacts on these resources and conditions, and would not create impacts that exceed the significance criteria defined in this document. 90 refs., 5 figs.

  18. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  19. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  20. Sensitivity to temperature of nuclear energy generation by hydrogen burning

    International Nuclear Information System (INIS)

    Mitalas, R.

    1981-01-01

    The sensitivity to temperature of nuclear energy generation by hydrogen burning is discussed. The complexity of the sensitivity is due to the different equilibration time-scales of the constituents of the p-p chain and CN cycle and the dependence of their abundances and time-scales on temperature. The time-scale of the temperature perturbation, compared to the equilibrium time-scale of a constituent, determines whether the constituent is in equilibrium and affects the sensitivity. The temperature sensitivity of the p-p chain for different values of hydrogen abundance, when different constituents come into equilibrium is presented, as well as its variation with 3 He abundance. The temperature sensitivity is drastically different from n 11 , the temperature sensitivity of the proton-proton reaction, unless the time-scale of temperature perturbation is long enough for 3 He to remain in equilibrium. Even in this case the sensitivity of the p-p chain differs significantly from n 11 , unless the temperature is so low that PP II and PP III chains can be neglected. The variation of the sensitivity of CN energy generation is small for different time-scales of temperature variation, because the temperature sensitivities of individual reactions are so similar. The combined sensitivity to temperature of energy generation by hydrogen burning is presented and shown to have a maximum of 16.4 at T 6 = 24.5. For T 6 > 25 the temperature sensitivity is given by the sensitivity of 14 N + p reaction. (author)

  1. Community energy case studies: Alderney 5 energy project, Dartmouth, NS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-05-15

    In 2007, the Halifax Regional Municipality (HRM) approved the Alderney 5 energy project, an energy-efficiency retrofit of five municipal buildings on the Dartmouth, Nova Scotia, waterfront. The buildings concerned are: the Alderney landing complex, the Alderney gate office, the library, the Dartmouth ferry terminal and the old Dartmouth city hall building. The project has five major components: a mini-district-energy system of heating and cooling pipes that will connect all buildings to one central energy centre in Alderney gate; new gas conversion and high-efficiency boilers; new lighting; new seawater cooling; and an advanced coaxial energy storage system, saving $350,000 per year in energy costs. Construction, started in 2008, was funded through an innovative public private partnership between the Halifax Regional Municipality (HRM: $1 million), the federal government's technology early action measures program, and a company called High Performance Energy Systems.

  2. Financing green energy projects in Malaysia

    International Nuclear Information System (INIS)

    Eddynor Manshor; Yvonne Lunsong; Norhayati Kamaruddin

    2000-01-01

    Kyoto Protocol is the first global commitment to reduce greenhouse gas (GHG) emissions. Malaysia, which signed the Protocol on 12 March 1999, must also take steps to address the climate change concerns. The use of renewable energy sources is seen as a feasible way to address the issue. Despite their environment-friendliness, these sources of energy are grossly under-utilised even though Malaysia is amply endowed with renewable energies, particularly biomass and solar. As a unique domestic resource, recurring energy savings from energy efficiency could also qualify as renewable energy. At present, the contribution of renewable energy in the country's energy mix is very small compared to its large potential. The Malaysian Government recognizes the potential of this form of energy. As part of its fuel diversification policy, the government plans to expand the four-fuel strategy to include renewable energy as the fifth fuel. Due to all year constant sunshine and vast oil palm cultivation, both solar and palm oil residues are identified as the most promising green energy option. Efforts are underway to embark on programs to demonstrate and evaluate the viability of these emerging green technologies. A few organizations are given grants to undertake pre-feasibility studies of pre-commercialization demonstration projects. When approved, viable projects could also qualify for technical and financial assistance from foreign partners. However, grants are limited and under World Trade Organization rules such subsidies should not exceed 30 percent in most cases. Commercialization of green energy projects must therefore involve full participation of private developers and financial institutions. Yet, virtually no attempt is made to promote financing of such projects in Malaysia. In most cases, financial institutions are not aware of the economic potential of these unique and under exploited sources. This paper will discuss problems in financing green energy projects and then

  3. Plasma screening effects on the energies of hydrogen atom

    International Nuclear Information System (INIS)

    Soylu, A.

    2012-01-01

    A more general exponential cosine screened Coulomb potential is used for the first time to investigate the screening effects on the hydrogen atom in plasmas. This potential is examined for four different cases that correspond to four different type potentials when the different parameters are used in the potential within the framework of the well-known asymptotic iteration method. By solving the corresponding the radial Schrödinger equation with the screened and exponential cosine screened Coulomb potentials and comparing the obtained energy eigenvalues with the results of other studies, the applicability of the method to this kind of plasma physics problem is shown. The energy values of more general exponential cosine screened Coulomb potential are presented for various parameters in the potential. One of the advantages of the present potential is that it exhibits stronger screening effect than that of the exponential cosine screened Coulomb potential and it is also reduced to screened Coulomb and exponential cosine screened Coulomb as well as Coulomb potentials for special values of parameters. The parameters in the potential would be useful to model screening effects which cause an increase or decrease in the energy values of hydrogen atom in both Debye and quantum plasmas and in this manner this potential would be useful for the investigations of the atomic structure and collisions in plasmas.

  4. Biological conversion of hydrogen to electricity for energy storage

    International Nuclear Information System (INIS)

    Karamanev, Dimitre; Pupkevich, Victor; Penev, Kalin; Glibin, Vassili; Gohil, Jay; Vajihinejad, Vahid

    2017-01-01

    Energy storage is currently one of the most significant problems associated with mass-scale usage of renewable (i.e. wind and solar) power sources. The use of hydrogen as an energy storage medium is very promising, but is hampered by the lack of commercially available hydrogen-to-electricity (H2e) converters. Here we are presenting the first commercially viable, biologically based technology for H2e conversion named the BioGenerator. It is a microbial fuel cell based on electron consumption resulting from the respiration of chemolithoautotrophic microorganisms. The results obtained during the scale-up study of the BioGenerator showed a maximum specific current of 1.35 A/cm 2 , maximum power density of 1800 W/m 2 and stable electricity generation over a period spanning longer than four years. The largest unit studied so far has a volume of 600 L and a power output of 0.3 kW. - Highlights: • A commercially viable biological convertor of H 2 to electricity (BioGenerator) is proposed. • It has a short-term commercial potential and its economic analysis is quite promising. • The BioGenerator is the first commercially viable bio-technology for energy storage. • It is a power generation technology of which has a negative CO 2 emission.

  5. Rydberg phases of Hydrogen and low energy nuclear reactions

    Science.gov (United States)

    Olafsson, Sveinn; Holmlid, Leif

    2016-03-01

    For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.

  6. Early Forest Fire Detection Using Low Energy Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Jürgen Müller

    2016-08-01

    Full Text Available The North-east German Lowlands is a region with one of the highest forest fire risks in Europe. In order to keep damage levels as low as possible, it is important to have an effective early warning system. Such a system is being developed on the basis of a hydrogen sensor, which makes it possible to detect a smouldering forest fire before the development of open flames. The prototype hydrogen sensor produced at the Humboldt University Berlin has a metal/ solid electrolyte/insulator/ semiconductor (MEIS structure, which allows cost-effective production. Due to the low energy consumption, an autarchic working unit could be installed in the forest. Field trials have shown that it is possible to identify a forest fire in its early stages when hydrogen concentrations are still low. A significant change in the signal due to a fire was measured at a distance of about 100m. In view of the potential impacts of climate change, the innovative pre-ignition warning system is an important early diagnosis and monitoring module for the protection of the forests.

  7. The Energy Economics of Financial Structuring for Renewable Energy Projects

    Science.gov (United States)

    Rana, Vishwajeet

    2011-12-01

    This dissertation focuses on the various financial structuring options for the renewable energy sector. The projects in this sector are capital-intensive to build but have relatively low operating costs in the long run when compared to traditional energy resources. The large initial capital requirements tend to discourage investors. To encourage renewable investments the government needs to provide financial incentives. Since these projects ultimately generate returns, the government's monetary incentives go to the sponsors and tax equity investors who build and operate such projects and invest capital in them. These incentives are usually in the form of ITCs, PTCs and accelerated depreciation benefits. Also, in some parts of the world, carbon credits are another form of incentive for the sponsors and equity investors to invest in such turnkey projects. The relative importance of these various considerations, however, differs from sponsor to sponsor, investor to investor and from project to project. This study focuses mainly on the US market, the federal tax benefits and incentives provided by the government. This study focuses on the energy economics that are used for project decision-making and parties involved in the transaction as: Project Developer/Sponsor, Tax equity investor, Debt investor, Energy buyer and Tax regulator. The study fulfils the knowledge gap in the decision making process that takes advantage of tax monetization in traditional after-tax analysis for renewable energy projects if the sponsors do not have the tax capacity to realize the total benefits of the project. A case-study for a wind farm, using newly emerging financial structures, validates the hypothesis that these renewable energy sources can meet energy industry economic criteria. The case study also helps to validate the following hypotheses: a) The greater a sponsor's tax appetite, the tower the sponsor's equity dilution. b) The use of leverage increases the cost of equity financing

  8. Project management for economical nuclear energy

    International Nuclear Information System (INIS)

    Majerle, P.P.

    2005-01-01

    The price of electricity is significantly influenced by the cost of the initial generation asset. The cost of the initial nuclear generation asset is significantly influenced by the design and construction duration. Negative variations in the cost and duration of actual design and construction have historically impacted the early relative economics of nuclear power generation. Successful management of plant design information will mitigate the risks of the design and construction of future nuclear plants. Information management tools that can model the integrated delivery of large complex projects enable the project owners to accurately evaluate project progress, as well as the economic impact of regulatory, political, or market activities not anticipated in the project execution plan. Significant differences exist in the electrical energy markets, project delivery models, and fuel availability between continents and countries. However, each market and project delivery model is challenged by the need to produce economical electrical energy. The information management system presented in this paper provides a means to capture in a single integrated computerized database the design information developed during plant design, procurement, and construction and to allow this information to be updated and retrieved in real time by all project participants. Utilization of the information management system described herein will enable diverse project teams to rapidly and reliably input, share, and retrieve power plant information, thereby supporting project management's goal to make good on its commitment to the economic promise of tomorrow's nuclear electrical power generation by achieving cost-effective construction. (authors)

  9. Education in Sustainable Energy by European Projects

    Science.gov (United States)

    Stanescu, Corina; Stefureac, Crina

    2010-05-01

    Our schools have been involved in several European projects having with the primary objective of educating the young generation to find ways for saving energy and for using the renewable energy. Small changes in our behaviour can lead to significant energy savings and a major reduction in emissions. In our presentation we will refer to three of them: - The Comenius 1 project "Energy in the Consumers' Hands" tried to improve the quality of education for democratic citizenship in all participant schools by creating a model of curricula concerning the integrative teaching of democratic citizenship using the topic approaches based on key concept - energy as important element of the community welfare. The students studied on the following topics: • Sources of energy • The clean use of fossil based resources; • The rational use of energyEnergy and the environment - The project "Solar Schools Forum" (SSF) focuses on environmental education in schools, in particular addressing the topics of Renewable Energy (RE) and Energy Efficiency (EE). The youth need to become more aware of energy-related problems, and how they can change their own lifestyles to limit environmental damage caused by the daily use of energy. As the decision-makers of tomorrow we need to empower them to make the right choices. The SSF is aimed at improving knowledge about RE and EE among children and young people, using a fun approach and aimed at generating greater enthusiasm for clean energy. The youth will also be encouraged to help raise awareness and so act as multipliers in their own communities, starting with their families and friends. As a result of this project we involved in developing and implementing an optional course for high school students within the Solar Schools Forum project. The optional course entitled "Sustainable energy and the environment" had a great deal of success, proof of this success being the fact that it is still taught even today, three years after its

  10. Support of future lighthouse projects and beyond. Managing the transition to hydrogen for transport

    International Nuclear Information System (INIS)

    Ros, M.E.; Jeeninga, H.; Godfroij, P.

    2007-06-01

    Large scale demonstration projects as the 'Lighthouse projects' are an important step towards commercialisation. However, costs for disruptive technologies such as hydrogen, are high in the first phase of market introduction. Therefore, policy support is needed to facilitate the introduction of hydrogen. But, how can the government support and stimulate (early) market introduction and use of hydrogen in the transportation sector? What kind of policy instruments are needed in what phase of the introduction trajectory? And what are the current instruments in the EU and US? Can these affect the introduction of hydrogen in transport? Generally, the hydrogen chain can be stimulated by providing an investment subsidy, production subsidy, tax exemptions and a (production or sales) obligation. Technology specific configurations of these support mechanisms for the diverse technologies in the hydrogen chain have to be taken into account. Besides that the support measures have to act upon each other for every technology development stage. A comparison of the EU and US policies shows differences in the approach of bringing the hydrogen vehicles to the market. The amount of support differs. The US funds RD and D 50% and stimulates the market by obligating sales (ZEV obligation) and procurement, while the EU funds R and D 50%, demonstration 35% and is now looking into large scale demonstration projects, after which the commercial market introduction of hydrogen vehicles is envisaged

  11. Support of future lighthouse projects and beyond. Managing the transition to hydrogen for transport

    Energy Technology Data Exchange (ETDEWEB)

    Ros, M.E.; Jeeninga, H.; Godfroij, P. [ECN Policy Studies, Petten (Netherlands)

    2007-06-15

    Large scale demonstration projects as the 'Lighthouse projects' are an important step towards commercialisation. However, costs for disruptive technologies such as hydrogen, are high in the first phase of market introduction. Therefore, policy support is needed to facilitate the introduction of hydrogen. But, how can the government support and stimulate (early) market introduction and use of hydrogen in the transportation sector? What kind of policy instruments are needed in what phase of the introduction trajectory? And what are the current instruments in the EU and US? Can these affect the introduction of hydrogen in transport? Generally, the hydrogen chain can be stimulated by providing an investment subsidy, production subsidy, tax exemptions and a (production or sales) obligation. Technology specific configurations of these support mechanisms for the diverse technologies in the hydrogen chain have to be taken into account. Besides that the support measures have to act upon each other for every technology development stage. A comparison of the EU and US policies shows differences in the approach of bringing the hydrogen vehicles to the market. The amount of support differs. The US funds RD and D 50% and stimulates the market by obligating sales (ZEV obligation) and procurement, while the EU funds R and D 50%, demonstration 35% and is now looking into large scale demonstration projects, after which the commercial market introduction of hydrogen vehicles is envisaged.

  12. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 2. Research study on promotion of international cooperation (standardization of hydrogen energy technology); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 2. Kokusai kyoryoku suishin no tame no chosa kento (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the basic study on standardization of hydrogen energy technology, and the research study on ISO/TC197 in fiscal 1996. As a part of the WE-NET project, the subtask 2 aims at preparation of standards necessary for practical use and promotion. Developmental states in every field of hydrogen energy technologies, current states of domestic/overseas related standards and laws, and needs and issues of standardization were surveyed. In particular, the needs and issues were clarified in relation to existing standards and laws from the viewpoint of specific hydrogen property. ISO/TC197 was established in 1989 for standardization of the systems and equipment for production, storage, transport, measurement and utilization of hydrogen energy. Four working groups are in action for the supply system and tank of liquid hydrogen fuel for automobiles, the container and ship for complex transport of liquid hydrogen, the specifications of hydrogen products for energy, and the hydrogen supply facility for airports. The draft international standards were proposed to the international conference in 1996. 16 refs., 21 figs., 41 tabs.

  13. Applications of Nuclear Energy to Oil Sands and Hydrogen Production

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.; Kuran, S.

    2011-01-01

    Many novel and needed applications of nuclear energy arise in today's energy-hungry, economically challenged world, and in solving tomorrow's search for a globally carbon-constrained and sustainable energy supply. Not only can nuclear power produce low cost electricity, it can provide co-generation of process heat, desalinated water, and hydrogen with negligible greenhouse gas emissions. In each of these new applications, nuclear energy is competing against, or displacing conventional and established use of natural gas or coal in thermal power plants and boilers. Therefore, there must be a compelling case, in terms of supply certainty, stability, safety, security, and acceptability. In addition, a synergistic relation must exist or be created with the existing power and energy markets, the use of windpower, and the needs for low-cost supply with negligible greenhouse gas emissions and carbon 'footprint'. The development of Canada's oil sands resource depends on a substantial energy input for extraction and upgrading. So far, this input has been supplied by natural gas, a resource that (a) is a premium fuel; (b) has constrained availability; and (c) produces significant CO 2 emissions. For the oil sands extraction process, natural gas is the current energy source used to generate the steam for in-situ heating, the power to drive the separation equipment, and the hydrogen for varying degrees of upgrading before piping. Nothwithstanding the current imbalance between supply and demand for gas within North America, the very demand of the oil sands for prodigious amounts of natural gas has itself the potential to force higher prices and create supply constraints for natural gas. Rooted in the energy equivalence of oil and gas, there is a long-established link between American gas prices whereby one bbl of oil is worth 7 GJ of natural gas. Temporary supply/demand imbalances apart, only cheap oil can maintain cheap gas. Only the improbability of cheap oil will maintain low

  14. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    Science.gov (United States)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  15. Focus on energy conservation: a project list

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    The Urban Land Institute (ULI) has prepared the following list of outstanding energy conserving projects for the US Department of Energy. As requested by the Department, the list includes descriptions of land developments and individual buildings suggested by members of ULI and by other sources. The projects have been selected to exemplify the major energy saving techniques in use today, with emphasis on those strategies most significant for people engaged in the business of land development. To make the list a useful reference for developers and public officials, ULI has attempted to cover energy conservation in the broadest sense from overall site planning to the functioning of individual building components. Focusing too closely on the myriad types of hardware available has been avoided and examples of the basic considerations important to energy-conscious planning and design are provided. Details on some heating, ventilation and air conditioning systems are provided in order to acquaint readers with major innovations in the field.

  16. Rail transportation by hydrogen vs. electrification - Case study for Ontario, Canada, II: Energy supply and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Marin, G.D.; Naterer, G.F.; Gabriel, K. [University of Ontario Institute of Technology, Faculty of Engineering and Applied Sciences, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-06-15

    Locomotives offer an efficient mode of transportation when compared to buses, personal vehicles or airplanes for mass transportation over frequent intercity distances. For example, a Bombardier Regina EMU train with 272 seats and a load factor of 53% will consume under 0.07 kWh/passenger-km, which is typically much lower than corresponding values for other transportation modes in similar circumstances. European countries have invested significantly over the years in train electrification. Environmentally friendly methods of transferring power to the wheels are direct electrification and hydrogen fuel cells. Various methods to produce hydrogen for utilization with fuel cell train operation are examined in this paper. This companion paper of a 2-paper set examines the overall impact of energy supply (hydrogen vs. electricity) and distribution on rail transportation, specifically in terms of costs and overall GHG emissions for a case study of GO transit along the Lakeshore corridor in Toronto. Although electrification of train services simplifies some aspects of the operation, when considered over the Lakeshore corridor alone, electrified trains lose their flexibility to serve cities outside the Lakeshore corridor. Hydrogen fuelled trains can provide a smoother transition and interoperability by operating the same routes and stations served by diesel trains today, without being limited to the Lakeshore corridor. This paper evaluates technological, operational and economic aspects of the electrification of the Lakeshore corridor, versus hydrogen train operation, including infrastructure requirements to provide service to a substantial ridership increase projected for the years 2015-2031. Various methods of hydrogen production and distribution are presented and analysed, in order to evaluate the overall life cycle of GHG emissions and costs for various train alternatives. (author)

  17. Use of regenerative energy sources and hydrogen technology. Proceedings; Nutzung regenerativer Energiequellen und Wasserstofftechnik 2008. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Luschtinetz, Thomas; Lehmann, Jochen (eds.)

    2008-07-01

    Within the 15th symposium 'Use of regenerative energy sources and hydrogen technology' at 6th to 8th November, 2008, in Stralsund (Federal Republic of Germany), the following lectures were held: (1) Processing of mine gas by means of membrane technology (T. Brinkmann, W. Clemens, A. Dengel, B. Hoting); (2) Energy storage in salt caverns / developments and concrete projects for adiabatic compressed air and for hydrogen storage (F. Crotogino, S. Huebner); (3) Application of an ORC plant in the area of a hybrid wind-hydrogen-plant (J. Eliasz, K. Rychlik); (4) Wind Farm Cluster Management Sysem (A.J. Gesino, C.A. Quintero Marrone, R. Mackensen, M. Wolff, B. Lange, K. Rohrig); (5) Results of a field test of a combination of a wood boiler and Stirling engine (B. Gross); (6) NANOSTIR - Optimisation of solid fuel operated Stirling CHP units by means of nano technological coatings (B. Gross); (7) Fundamental investigations of long-term behaviour / damage behaviour of big PEM stacks (September 2005 - October 2007) (M. Hinz, O. Luschtinetz, J. Lehmann); (8) HyFLEET:CUTE project: Results from the biggest hydrogen bus project in the world (T. Kampet); (9) Comparison of new chains of distribution for biogas and natural gas (M. Klamp); (10) Generation of hydrogen from formic acid at ambient temperature and its use in a H2/O2 fuel cell (B. Loges, A. Boddien, H. Junge, M. Beller); (11) PE membranes out of biological materials (E. Mendieta); (12) Offshore wind power affects generation, network and consumption (A. Miege, J. Lehmann, T. Luschtinetz, C. Sponholz, F. Gamallo); (13) Comparative investigations at fixed and tracking PV systems (R. Mueller, A. Rackwitz); (14) Energetic utilisation of biomass - boundary conditions, state of the art and perspectives (M. Nelles, D. Banemann, N. Engler, A. Schuech); (15) Supply networks - a new method of analysis for an optimized use of regenerative energy (R. Nieberle, A. Simroth); (16) Steam - vapour hybrid power plant supplied with

  18. Law project relative to the energy markets

    International Nuclear Information System (INIS)

    2002-01-01

    This document presents the law project relative to the energy markets. It aims to open the french gas market to the competition and defines the gas utilities obligations. The first part presents the main topics of the law: the natural gas distribution access, the natural gas sector regulation, the gas utilities, the natural gas transport and distribution, the underground storage, the control and penalties. The second part details the commission works concerning this law project. (A.L.B.)

  19. Energizing Engineering Students with Hydrogen Fuel Cell Project

    Science.gov (United States)

    Cannell, Nori; Zavaleta, Dan

    2010-01-01

    At Desert Vista High School, near Phoenix, Arizona, Perkins Innovation Grant funding is being used to fund a program that is helping to prepare students for careers in engineering by giving them hands-on experience in areas like hydrogen generation and fuel cell utilization. As one enters Dan Zavaleta's automotive and engineering classroom and lab…

  20. European Hydrogen Energy Road-map (HyWays) - First Results from Simulation, Stakeholder Discussion and Evaluation

    International Nuclear Information System (INIS)

    Reinhold Wurster; Ulrich Bunger; Jean-Marc Agator; Martin Wietschel; Harm Jeeninga

    2006-01-01

    HyWays is an integrated project, co-funded by research institutes, industry, national agencies and by the European Commission under the 6. Framework Programme. HyWays aims to develop a validated and well accepted Road-map for the introduction of hydrogen in the European energy system. The main characteristic of this Road-map is that it reflects real life conditions by taking into account not only technological but also country specific institutional, geographic and socio/economic barriers and opportunities. Both stationary and mobile applications are addressed, including possible synergies ('spill over effects') between these applications. HyWays will systematically describe the future steps to be taken for large-scale introduction of hydrogen as an energy carrier in the power market and transport sector and as a storage medium for renewable energy. An Action Plan for the support of the introduction of hydrogen technologies will be derived from this Road-map. (authors)

  1. Stabilization of Wind Energy Conversion System with Hydrogen Generator by Using EDLC Energy Storage System

    Science.gov (United States)

    Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa

    The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.

  2. Project finance and international energy development

    International Nuclear Information System (INIS)

    Pollio, G.

    1998-01-01

    This paper explores the preference for and the features unique to project finance, one of the favoured vehicles for funding energy development. Our main focus is on the interests of project sponsors, commercial banks and host governments. Inclusion of the latter reflects the fact host governments are often leading participants in primary energy and energy-related projects; more recently, they have come to use limited recourse structures to finance local infrastructure development. Traditional analyses, whilst providing useful insights into the interests of leading project participants, are incapable of isolation a single motive or set of motives that can comprehensively account for all of the features common to this form of debt. Within an options-theoretic framework, most of these ambiguities are resolved. Risk management, long recognised as one of the primary reasons for choosing project finance over rival debt structures, is affirmed as a key explanatory factor. One the other hand, options pricing theory provides a radically different perspective on how to project finance contributes to the realisation of these objectives. (author)

  3. Regional energy projects in the Eurasian Area

    Directory of Open Access Journals (Sweden)

    Vesić Dobrica

    2012-03-01

    Full Text Available The Eurasian area has a very rich energy reserves, and is characterized by a complex network of relationships between major suppliers and consumers. The central place in this area has Russia as a country richest in energy resources in Eurasia. Beside her, the European Union is the largest economic and political grouping in the world, and a huge consumer of energy. The dynamic development of Chinese economy requires more energy imports by China. Dependence of the European Union and China on imported energy is high and will grow in the future. Russia is the world's dominant natural gas producer and one of the two largest oil producers in the world. Russia is the largest natural gas supplier of the EU and a significant oil and natural gas supplier of China. Energy projects in Eurasia are the result of the need to strengthen the stability of energy supplies, efforts to diversify sources of supply, and the geographic redistribution of Russian oil and gas exports. Although the interests of the main actors often do not agree, the reasons of energy security affect the development of joint energy projects.

  4. FY 1974 report on the results of the Sunshine Project. Investigational research on safety technology in the hydrogen energy system; 1974 nendo suiso erergy system ni okeru hoan gijutsu ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-01

    In this study, samples were surveyed and collected of the present regulations and standard, disaster accident, basic literature, etc. concerning the safety of hydrogen in Japan and abroad. Further, according to the necessity, these collected data were translated. The data to be examined/collected are those in and after 1950, and the data except the above-mentioned are collected if those are thought to be important. As to the condition of hydrogen to be examined/surveyed, those under all conditions from gas (normal pressure) to liquid and solidified hydrogen. The data for survey were classified into law/standard, corporate standard, samples of disaster accident, and general literature. The general literature was classified into general physical property, material relation, fire/explosion, and harmfulness/environment. The number of the disasters collected is 81, from which 3 in relation to suffocation and handicap were excluded. The rest is related to fire/explosion and burst. Most accidents occurred at plant or on corporate side, however, it is worthy of note that accidents occurred during the charge of buttery and with advertising balloon or balloon. (NEDO)

  5. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO2/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H2 generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g−1 at 0.5 A g−1 and 287 F g−1 at 1 A g−1 are obtained with TiO2/Ni(OH)2 nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application. PMID:23248745

  6. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor.

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO(2)/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H(2) generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g(-1) at 0.5 A g(-1) and 287 F g(-1) at 1 A g(-1) are obtained with TiO(2)/Ni(OH)(2) nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application.

  7. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  8. Cosmic Visions Dark Energy: Small Projects Portfolio

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Kyle; Frieman, Josh; Heitmann, Katrin; Jain, Bhuvnesh; Kahn, Steve; Mandelbaum, Rachel; Perlmutter, Saul; Slosar, Anže

    2018-02-20

    Understanding cosmic acceleration is one of the key science drivers for astrophysics and high-energy physics in the coming decade (2014 P5 Report). With the Large Synoptic Survey Telescope (LSST) and the Dark Energy Spectroscopic Instrument (DESI) and other new facilities beginning operations soon, we are entering an exciting phase during which we expect an order of magnitude improvement in constraints on dark energy and the physics of the accelerating Universe. This is a key moment for a matching Small Projects portfolio that can (1) greatly enhance the science reach of these flagship projects, (2) have immediate scientific impact, and (3) lay the groundwork for the next stages of the Cosmic Frontier Dark Energy program. In this White Paper, we outline a balanced portfolio that can accomplish these goals through a combination of observational, experimental, and theory and simulation efforts.

  9. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  10. Project of Atomic Energy Technology Record

    International Nuclear Information System (INIS)

    Song, K. C.; Ko, Y. C.; Kwon, K. C.

    2012-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records whole process, from the background to the performance, of each category in all fields of nuclear science technology which have been researched and developed at KAERI. This project includes development of Data And Documents Advanced at KAERI. This project includes development of Data And Documents Advanced Management System(DADAMS) to collect, organize and preserve various records occurred in each research and development process. In addition, it means the whole records related to nuclear science technology for the past, present and future. This report summarizes research contents and results of 'Project of Atomic Energy Technology Record'. Section 2 summarizes the theoretical background, the current status of records management in KAERI and the overview of this project. And Section 3 to 6 summarize contents and results performed in this project. Section 3 is about the process of sectoral technology record, Section 4 summarizes the process of Information Strategy Master Plan(ISMP), Section 5 summarizes the development of Data And Documents Advanced Management System(DADAMS) and Section 6 summarizes the process of collecting, organizing and digitalizing of records

  11. Development of hydrogen market: the outlook for demand, wing energy production, mass storage and distribution to vehicles in the regions

    International Nuclear Information System (INIS)

    Le Duigou, A.; Quemere, M.M.; Marion, P.; Decarre, S.; Sinegre, L.; Nadau, L.; Pierre, H.; Menanteau, Ph.; Rastetter, A.; Cuni, A.; Barbier, F.; Mulard, Ph.; Alleau, Th.; Antoine, L.

    2011-01-01

    The HyFrance3 project has provided a national framework for reflection, debate and strategic exchange between major public and industrial research players, namely for their hydrogen technology arms in France (Air Liquide, Total Refining and Marketing, EDF R and D, GDF SUEZ, CNRS-LEPII Energies Nouvelles, AFH2, ALPHEA, ADEME (co-financing and partner) and the CEA (coordinator). This project focuses on studying the landscape, trends and economic competitiveness of some links in the hydrogen chain, for industrial and energy applications, over a period referred to as 'short term' (2020-2030). Four study subjects were tackled: the prospective demand for hydrogen in industry (analysis of the current situation and outlook for 2030, in particular for refining based on two scenarios on mobility), production of hydrogen for transport uses from wind-produced electricity, mass storage that would have to be set up in the Rhone Alpes and PACA regions, to balance supply that is subject to deliberate (maintenance) or involuntary interruptions, and the distribution of hydrogen in the region, for automobile use (gas station network in the Rhone Alpes and PACA regions) by 2050 (with end period all-in costs between 0.4 eur/kg and 0.6 eur/kg, as a function of the price of energy and the distance from the storage site). (authors)

  12. Nature conservation guidelines for renewable energy projects

    International Nuclear Information System (INIS)

    1994-01-01

    English Nature commissions this report in order to identify the likely nature conservation implications of renewable energy developments and for wind farm proposals in particular, to give guidance on siting criteria to minimise the nature conservation impact. The report is intended to be of use to developers, local planning authority staff and other interested parties in considering a renewable energy project. In consequence, the report concentrates on planning and nature conservation matters and outlines technical issues where relevant. (UK)

  13. The Phoenix Project: Shifting to a solar hydrogen economy by 2020

    International Nuclear Information System (INIS)

    Braun, H.

    2008-01-01

    The most serious energy, economic and environmental problems are related to the use of fossil and nuclear fuels, which are rapidly diminishing and highly polluting, and many distinguished atmospheric chemists, including Dr. James Hanson at NASA, Dr. Steven Chu, the director of Lawrence Livermore Laboratory, and Professor Ralph Cicerone, president of the National Academy of Sciences have documented that climate changes are now occurring much faster than predicted just a few years ago. The methane hydrates in the oceans and the permafrost in vast areas of the Arctic regions of Siberia, Alaska and Canada are now starting to rapidly melt, and given this could release 50 to 100 times more carbon into the atmosphere than is now generated from the burning of fossil fuels, humanity is rapidly approaching an exponential 'tipping point' of no return. Given this sense of urgency, Hanson and others have warned that fossil fuels need to be phased-out by 2020 if irreversible damage to the earth's climate and food production systems is to be avoided. The Phoenix Project plan seeks to do exactly that by mass-producing wind-powered hydrogen production systems and simply modifying all the existing vehicles and power plants to use the hydrogen made from the sun, wind and water

  14. THE PHOENIX PROJECT: SHIFTING TO A SOLAR HYDROGEN ECONOMY BY 2020

    Directory of Open Access Journals (Sweden)

    HARRY BRAUN

    2008-07-01

    Full Text Available The most serious energy, economic and environmental problems are related to the use of fossil and nuclear fuels, which are rapidly diminishing and highly polluting, and many distinguished atmospheric chemists, including Dr. James Hanson at NASA, Dr. Steven Chu, the director of Lawrence Livermore Laboratory, and Professor Ralph Cicerone, president of the National Academy of Sciences have documented that climate changes are now occurring much faster than predicted just a few years ago. The methane hydrates in the oceans and the permafrost in vast areas of the Artic regions of Siberia, Alaska and Canada are now starting to rapidly melt, and given this could release 50 to 100 times more carbon into the atmosphere than is now generated from the burning of fossil fuels, humanity is rapidly approaching an exponential “tipping point” of no return. Given this sense of urgency, Hanson and others have warned that fossil fuels need to be phased-out by 2020 if irreversible damage to the earth’s climate and food production systems is to be avoided. The Phoenix Project plan seeks to do exactly that by mass-producing wind-powered hydrogen production systems and simply modifying all the existing vehicles and power plants to use the hydrogen made from the sun, wind and water.

  15. The project 'nuclear long-distance energy'

    International Nuclear Information System (INIS)

    Harth, R.

    1976-01-01

    The Kernforschungsanlage Juelich is intensively involved in research work with the aim of developing new technological skills for the future supply of energy and to lead the way in industry. In the forefront are a rational utilisation of primary energy and a better adjustment of the energy available, to fulfil requirements. In addition, the supply from nuclear power plants was analysed and a new energy supply system was achieved. It offers the possibility of giving nuclear-produced power to a large proportion of consumers fulfilling their heat and electricity needs, in which the accessible degrees of utilisation lie between 49% and 67%. The project 'nuclear long distance energy' is the theme of a report included in the Congress on Rational Utilisation of Energy, held from 20th to 23rd. september 1976 in Berlin. (orig.) [de

  16. Survey and research on patent and information. Survey of standard terms (Hydrogen energy); Kijun yogo chosa tokkyo joho chosa kenkyu. Suiso energy (kento shiryo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Collected in this glossary are terms for use in the development of hydrogen energy technologies. This glossary has been compiled, in view of the current situation where terms are used without standardization or distinction in various recent reports and publications relating to the development of hydrogen energy technologies, to prevent confusion and to help enhance research and development under the Sunshine Program. This is a 3-year endeavor that was started in 1979, undertaken by a committee consisting mainly of men of learning and experience representing organizations associated with the Sunshine Program. The terms are collected from research achievement reports and other materials covering the period of fiscal 1974-1979 relating to hydrogen energy projects under the Sunshine Program. Approximately 200 terms were picked up in the first fiscal year, and 85 in the second fiscal year. Attached to each of the Japanese terms are the pronunciation, a corresponding English term, and a brief explanation in the Japanese language. (NEDO)

  17. H2 at Scale: Benefitting our Future Energy System - Update for the Hydrogen Technical Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2016-12-06

    Hydrogen is a flexible, clean energy carrying intermediate that enables aggressive market penetration of renewables while deeply decarbonizing our energy system. H2 at Scale is a concept that supports the electricity grid by utilizing energy without other demands at any given time and also supports transportation and industry by providing low-priced hydrogen to them. This presentation is an update to the Hydrogen Technical Advisory Committee (HTAC).

  18. Project of CO{sub 2} fixation and utilization using catalytic hydrogenation reaction for coping with the global environment issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Discussions were given on a carbon dioxide fixing and utilizing project utilizing hydrogenating reaction by means of a catalytic method. In the discussions, development was made on such foundation technologies as CO2 separation by using Cardo type CO2 membrane, a technology to synthesize methanol through hydrogen addition by means of the catalytic method, and an electrolytic technology of membrane-electrode mixed type, as well as a methanol synthesis bench test of 50 kg/d scale. In order to develop this result into specific applications, demonstration tests are required that use methanol synthesizing pilot plants of 4 t/d and 80 t/d capacities. In addition, for the electric power to produce a huge amount of hydrogen, development is necessary on a solar energy utilizing technology of large scale and low cost. Furthermore, from the economic and social viewpoints, the achievements of this project are regarded to depend on understanding of the necessity of a policy of putting a large number of methanol fuel cell automobiles into use, and dealing with the global warming problem. Energy required to change CO2 into useful chemical substance requires five times as much energy as has been produced, hence prevention of the global warming through this channel is difficult. (NEDO)

  19. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    Science.gov (United States)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  20. The potential role of hydrogen energy in India and Western Europe

    NARCIS (Netherlands)

    van Ruijven, B.J.; Lakshmikanth, H.D.; van Vuuren, D.P.; de Vries, B.

    2008-01-01

    We used the TIMER energy model to explore the potential role of hydrogen in the energy systems of India and Western Europe, looking at the impacts on its main incentives: climate policy, energy security and urban air pollution. We found that hydrogen will not play a major role in both regions

  1. Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems

    Science.gov (United States)

    Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.

    2015-02-01

    The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.

  2. The INNOHYP-CA Project: producing Hydrogen by innovative high-temperature processes

    International Nuclear Information System (INIS)

    Giaconia, A.; Giorgiantoni, G.; Liberatore, R.; Tarquini, P.; Vignolini, M.

    2008-01-01

    The Project, financed under the 6. Framework Programme, has selected a member of innovative high-temperature processes that seem promising for large-scale production of Hydrogen. ENEA has contributed to the analysis of the status of national and regional projects in the European countries and to the definition of guidelines for the future development of these technologies [it

  3. Hydrogen gains further momentum

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    As first industrial production projects should become a reality in the next few years, hydrogen as a source of energy will find important applications with mobility, which momentum is rapid and irresistible. Next steps will be the (large capacity) storage of hydrogen associated to power-to-gas systems and the generalization of renewable energies. This document presents 5 articles, which themes are: Description and explanation of the process of hydrogen production; Presentation of the H2V project for the construction, in Normandy, of the first operational industrial hydrogen production plant using electric power 100 pc generated by renewable energies; The conversion of electric power from renewable energies through hydrogen storage and fuel cells for buildings applications (Sylfen project); The development of a reversible fuel cell at Mines-Paris Tech University, that will be adapted to the storage of renewable electric power; Hydrogen as a lever for the development of zero-emission vehicles, from trucks to cars and bicycles

  4. The potential role of hydrogen energy in India and Western Europe

    International Nuclear Information System (INIS)

    Ruijven, Bas van; Hari, Lakshmikanth; Vuuren, Detlef P. van; Vries, Bert de

    2008-01-01

    We used the TIMER energy model to explore the potential role of hydrogen in the energy systems of India and Western Europe, looking at the impacts on its main incentives: climate policy, energy security and urban air pollution. We found that hydrogen will not play a major role in both regions without considerable cost reductions, mainly in fuel cell technology. Also, energy taxation policy is essential for hydrogen penetration and India's lower energy taxes limit India's capacity to favour hydrogen. Once available to the (European) energy system, hydrogen can decrease the cost of CO 2 emission reduction by increasing the potential for carbon capture technology. However, climate policy alone is insufficient to speed up the transition. Hydrogen diversifies energy imports; especially for Europe it decreases oil imports, while increasing imports of coal and natural gas. For India, it provides an opportunity to decrease oil imports and use indigenous coal resources in the transport sector. Hydrogen improves urban air quality by shifting emissions from urban transport to hydrogen production facilities. However, for total net emissions we found a sensitive trade-off between lower emissions at end-use (in transport) and higher emissions from hydrogen production, depending on local policy for hydrogen production facilities

  5. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    Science.gov (United States)

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-09-01

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  6. Final Report. Montpelier District Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Jessie [City of Montpelier Vermont, Montpelier, VT (United States). Dept. of Public Works; Motyka, Kurt [City of Montpelier Vermont, Montpelier, VT (United States). Dept. of Public Works; Aja, Joe [State of Vermont, Montpelier, VT (United States). Dept. of Buildings and General Services; Garabedian, Harold T. [Energy & Environmental Analytics, Montpelier, VT (United States)

    2015-03-30

    The City of Montpelier, in collaboration with the State of Vermont, developed a central heat plant fueled with locally harvested wood-chips and a thermal energy distribution system. The project provides renewable energy to heat a complex of state buildings and a mix of commercial, private and municipal buildings in downtown Montpelier. The State of Vermont operates the central heat plant and the system to heat the connected state buildings. The City of Montpelier accepts energy from the central heat plant and operates a thermal utility to heat buildings in downtown Montpelier which elected to take heat from the system.

  7. Project for a renewable energy research centre

    Directory of Open Access Journals (Sweden)

    Andrea Giachetta

    2011-04-01

    Full Text Available In Liguria, where sustainable approaches to the design, construction and management of buildings enjoy scant currency, the idea of a company from Milan (FERA s.r.l. setting up a research centre for studies into renewable energy resources, could well open up very interesting development opportunities.The project includes: environmental rehabilitation (restoration projects; strategies for the protection of water resources and waste management systems; passive and active solar systems (solar thermal and experiments with thermodynamic solar energy; hyperinsulation systems, passive cooling of buildings; use of natural materials; bio-climatic use of vegetation. The author describes the project content within the context of the multidisciplinary work that has gone into it.

  8. Hydrogen-induced delayed cracking: 1. Strain energy effects on hydrogen solubility

    International Nuclear Information System (INIS)

    Puls, M.P.

    1978-08-01

    Based on Li, Oriani and Darken's derivation of the chemical potential of a solute in a stressed solid and Eshelby's method for obtaining the strain energy of solids containing coherent inhomogeneous inclusions, we have carried out a detailed theoretical analysis of the factors governing hydrogen solubility in stressed and unstressed zirconium and its alloys. Specifically, the analysis demonstrates the strong influence hydride self-stresses may have on the terminal solid solubility of hydrogen in zirconium. The self-energy arises due to the misfit strains between matrix and precipitate. We have calculated the total molal self-strain energy of some commonly observed δ and γ-hydride shapes and orientations. The magnitude of this energy is substantial. Thus for γ-hydride plates lying on basal planes, it is 4912 J/mol, while for γ-hydride needles with the needle axis parallel to the directions of the α-zirconium matrix, it is 2662 J/mol. This self-strain energy causes a shift in the terminal solid solubility. For example, at 77 o C, assuming fully constrained basal plane δ-hydride plates, the terminal solid solubility is increased 5.4 times over the stress-free case. We have also calculated the effect of external stress on the terminal solid solubility. This is governed by the interaction energy arising from the interaction of the applied stresses with the precipitate's misfit strain components. The interaction energy has been calculated for δ and γ-hydride plates and needles, taking full account of the anisotropy of the misfit. The interaction energy is negative for tensile applied stresses and, as a result of the anisotropic misfit, is texture-dependent. Its magnitude is small for most applied stresses but can achieve values of the order of the self-strain energy in the plastic zone of a plane-strain crack. We have also carried out a careful analysis of the solubility data of Kearns and Erickson and Hardie. This analysis is based partly on the theoretical

  9. Hydrogen and Biofuels - A Modeling Analysis of Competing Energy Carriers for Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Guel, Timur; Kypreos, Socrates; Barreto, Leonardo

    2007-07-01

    This paper deals with the prospects of hydrogen and biofuels as energy carriers in the Western European transportation sector. The assessment is done by combining the US hydrogen analysis H2A models for the design of hydrogen production and delivery chains, and the Western European Hydrogen Markal Model EHM with a detailed representation of biofuels, and the European electricity and transportation sector. The paper derives policy recommendations to support the market penetration of hydrogen and biofuels, and investigates learning interactions between the different energy carriers. (auth)

  10. New England Wind Energy Education Project (NEWEEP)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

    2012-04-25

    Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with and participation in Wind Powering America (WPA) state Wind Working Group meetings and WPA's annual All-States Summit, and (e) through the networks of project collaborators. Sustainable Energy Advantage, LLC (lead) and the National Renewable Energy Laboratory will staff the project, directed by an independent Steering Committee composed of a collaborative regional and national network of organizations. Major Participants - the Steering Committee: In addition to the applicants, the initial collaborators committing

  11. Hydrogen as a clean energy option; Option Wasserstoff als sauberer Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Newi, G. [Consulectra Unternehmensberatung GmbH, Hamburg (Germany)

    1998-06-01

    Many visionary action programmes are based on the conviction that hydrogen produced from renewable, environmentally sustainable resources is the chemical energy carrier of the future. In Hamburg there have been various pilot projects over the past ten years which deal explicitly with problems of infrastructure relating to the integration of renewable energy sources in the existing energy supply. One such example is the fuel cell block heating station in Hamburg Behrenfeld which has been supplying residential buildings for some time now. Another is a practice-oriented pilot project involving a hydrogen-fuelled PAFC with 220 kW thermal and 200 kW electrical power output. The hydrogen is supplied by a 60 m-3 LH{sub 2} tank, the first of its kind to be approved by the authorities and accepted by the public. [Deutsch] Viele visionaere Aktionsprogramme sehen aus dauerhaft umweltvertraeglichen Quellen erzeugten Wasserstoff als chemischen Energietraeger der Zukunft. In Hamburg gibt es seit rd. 10 Jahren verschiedene Pilotprojekte, die sich insbesondere mit Fragen der Infrastruktur zur Integration erneuerbarer Energiequellen in die bestehende Energieversorgung befassen. Ein Beispiel ist das in Hamburg-Behrenfeld seit einiger Zeit betriebene Brennstoffzellen-Blockheizkraftwerk zur Versorgung von Wohngebaeuden. Als praxisbezogenes Pilotprojekt wird u.a. eine H{sub 2}-versorgte PAFC mit 220 kW thermischer und 200 kW elektrischer Leistung betrieben. Die Wasserstoffversorgung aus einem oberirdischen 60 m{sup 3} LH{sub 2}-Tank wurde erstmals in dieser Anwendungsform behoerdlich genehmigt und von der Oeffentlichkeit akzeptiert. (orig./MSK)

  12. Energy scenarios for hydrogen production in Mexico; Escenarios energeticos para la produccion de hidrogeno en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ortega V, E.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)], e-mail: iqoren@gmail.com

    2009-10-15

    The hydrogen is a clean and very efficient fuel, its combustion does not produce gases of greenhouse effect, ozone precursors and residual acids. Also the hydrogen produced by friendly energy sources with the environment like nuclear energy could help to solve the global problems that it confronts the energy at present time. Presently work fuel cycles of hydrogen production technologies in Mexico are judged, by means of a structured methodology in the concept of sustainable development in its social, economic and environmental dimensions. The methodology is divided in three scenarios: base, Outlook 2030 and capture of CO{sub 2}. The first scenario makes reference to cycles analysis in a current context for Mexico, the second taking in account the demand projections reported by the IAEA in its report Outlook and the third scenario, capture of CO{sub 2}, the technologies are analyzed supposing a reduction in capture costs of 75%. Each scenario also has four cases (base, social, environmental and economic) by means of which the cycles are analyzed in the dimensions of sustainable development. For scenarios base and capture, results show that combination nuclear energy- reformed of gas it is the best alternative for cases base and economic. For social case, the evaluated better technology is the hydraulics, and for environmental case, the best option is represented by the regenerative thermochemistry cycles. The scenario Outlook 2030 show a favorable tendency of growth of renewable sources, being the aeolian energy the best technology evaluated in the cases base and environmental, the hydraulics technology in the social case and in the economic case the reformed of natural gas that uses nuclear heat. (Author)

  13. Caribbean alternative energy programme project proposals

    International Nuclear Information System (INIS)

    1978-03-01

    This is the third report to follow the Project Group Meeting on ALTERNATIVE ENERGY RESOURCES, Barbados, September, 1977. It consists of summaries of projects proposals identified at the Meeting. The first two reports have been previously circulated. The first CSC(77)AER-1 covers the background, proceedings and recommendations resulting from the meeting as well as containing a brief outline of the project proposals. The country papers and technical papers that were presented at the meeting or served as background material, form the second report, CSC(77)AER-2. Copies of the first two reports can be obtained on request to the Commonwealth Science Council. Projects with potential for making significant progress in the short term have been marked with an asterisk

  14. Hot rock energy projects : Australian context

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, B.A.; Malavazos, M. [Society of Petroleum Engineers, Richardson, TX (United States); Hill, A.J.; Coda, J. [Primary Industries and Resources South Australia, Adelaide (Australia)]|[Australian Geothermal Energy Group, Adelaide (Australia); Budd, A.R.; Holgate, F.L. [Australian Geothermal Energy Group, Adelaide (Australia)]|[Geoscience Australia, Adelaide (Australia)

    2008-10-15

    The Australia Geothermal Energy Group is an alliance of companies, government agencies and research organizations with an interest in promoting geothermal energy use. Hot rocks (HR) geothermal energy is a valued addition to the portfolio of safe, secure and competitive energy supplies because it offers the potential of inexhaustible geothermal heat energy with zero emissions. Australia's vast HR resources have attracted global interest and government support for HR projects, which call upon integrated expertise from the petroleum minerals and power industries. Funding from the Australian government is aimed at reducing critical, sector-wide uncertainties and equates to nearly 25 per cent of the cost of the private sector's field efforts to date. A national HR resource assessment and a road-map for the commercialization of Australian HR plays will be published in 2008 to help in the decision making process by portfolio managers. The challenges and prospects for HR projects in Australia were presented. It has been estimated that converting only 1 per cent of Australia's crustal energy from depths of 5 km and 150 degrees C to electricity would supply 26,000 years of Australia's 2005 primary power use. The factors that distinguish Australian HR resources include abundant radioactive granites and areas of recent volcanic activity; and, Australia is converging with Indonesia on a plate scale resulting in common, naturally occurring subhorizontally fractured basement rocks that are susceptible to hydraulic fracture stimulation. Most projects are focused on HR to develop enhanced or engineered geothermal systems (EGS) to fuel binary power plants. Approximately 80 percent of these projects are located in South Australia. 14 refs., 3 tabs., 3 figs.

  15. Very low-energy hydrogen-antihydrogen scattering

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Chamberlain, C.W.

    2003-01-01

    In view of current interest in the trapping of antihydrogen (H-bar) atoms at very low temperatures, we have carried out a calculation of s-wave hydrogen-antihydrogen scattering at very low energies, using the Kohn variational method, taking into account rearrangement scattering into the three channels that contain positronium in its ground state and lie closest to threshold. We find that our values for the elastic cross section are in good agreement with the values obtained by Jonsell et al. [2001 Phys. Rev. A 64 052712] using a distorted wave approximation. However, our values for the total rearrangement cross section are much larger than their values and we predict that cooling of H-bar by cold H would be considerably less efficient than was found to be the case by Jonsell et al.. (author)

  16. S.1269: This Act may be cited as the Renewable Hydrogen Energy Research and Development Act of 1991, introduced in the Senate of the United States, One Hundred Second Congress, First Session, June 11, 1991

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The bill would require the Secretary of Energy to expedite the development of hydrogen derived from renewable energy sources as an alternative energy system for residential, industrial, utility, and motor vehicle use. The purposes of this bill are to reduce the US dependence on imported oil; accelerate the development of renewable hydrogen; accelerate research and development programs on components of a renewable hydrogen energy system; reduce emissions of greenhouse gases, acid rain, precursors to smog, and other air pollution; and establish industry and government cost shared projects to speed the development of renewable hydrogen energy systems

  17. Pilot project of atomic energy technology record

    International Nuclear Information System (INIS)

    Song, K. C.; Kim, Y. I.; Kim, Y. G.

    2011-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records in each category as a whole summary from the background to the performance at all fields of nuclear science technology which researched and developed at KAERI. This project includes Data and Document Management System(DDMS) that will be the system to collect, organize and preserve various records occurred in each research and development process. To achieve these goals, many problems should be solved to establish technology records process, such as issues about investigation status of technology records in KAERI, understanding and collection records, set-up project system and selection target field, definition standards and range of target records. This is a research report on the arrangement of research contents and results about pilot project which records whole nuclear technology researched and developed at KAERI in each category. Section 2 summarizes the overview of this pilot project and the current status of technology records in domestic and overseas, and from Section 3 to Section 6 summarize contents and results which performed in this project. Section 3 summarizes making TOC(Table of Content) and technology records, Section 4 summarizes sectoral templates, Section 5 summarizes writing detailed plan of technology records, and Section 6 summarizes Standard Document Numbering System(SDNS). Conclusions of this report are described in Section 7

  18. Hydrogen-Based Energy Conservation System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA and many others often rely on delivery of cryogenic hydrogen to meet their facility needs. NASA's Stennis Space Center is one of the largest users of hydrogen,...

  19. INFORMATION TECHNOLOGIES IN MANAGEMENT OF ENERGY SAVING PROJECTS

    Directory of Open Access Journals (Sweden)

    Дмитро Валерійович МАРГАСОВ

    2015-06-01

    Full Text Available The information technology structure is considered of energy saving projects. The project management diagram of energy saving projects is developed, using GIS, ICS, BIM and other control and visual systems.

  20. Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen

    Science.gov (United States)

    Heaps, M. G.; Furman, D. R.; Green, A. E. S.

    1975-01-01

    A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.

  1. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  2. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  3. Energy Strategic Planning & Self-Sufficiency Project

    Energy Technology Data Exchange (ETDEWEB)

    Greg Retzlaff

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follow: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  4. Critical success factors for renewable energy projects

    International Nuclear Information System (INIS)

    1995-01-01

    This project highlighted best practice in the planning and assessment of proposals with the aim of: encouraging more successful renewable energy projects and proposals; lowering financial and other barriers; and stimulating a climate for success. Based on the analysis of a number of case studies, data was collected through a series of extensive interviews to identify why certain schemes were considered successful, what might have been done differently and which factors were considered important when entering a market. The Critical Success Factors can be broken down into five groups: Universal CSFs; CSFs for funding bodies; CSFs for managing agencies; CSFs for niche markets; CSFs for individual technologies. (author)

  5. Data on inelastic processes in low-energy potassium-hydrogen and rubidium-hydrogen collisions

    Science.gov (United States)

    Yakovleva, S. A.; Barklem, P. S.; Belyaev, A. K.

    2018-01-01

    Two sets of rate coefficients for low-energy inelastic potassium-hydrogen and rubidium-hydrogen collisions were computed for each collisional system based on two model electronic structure calculations, performed by the quantum asymptotic semi-empirical and the quantum asymptotic linear combinations of atomic orbitals (LCAO) approaches, followed by quantum multichannel calculations for the non-adiabatic nuclear dynamics. The rate coefficients for the charge transfer (mutual neutralization, ion-pair formation), excitation and de-excitation processes are calculated for all transitions between the five lowest lying covalent states and the ionic states for each collisional system for the temperature range 1000-10 000 K. The processes involving higher lying states have extremely low rate coefficients and, hence, are neglected. The two model calculations both single out the same partial processes as having large and moderate rate coefficients. The largest rate coefficients correspond to the mutual neutralization processes into the K(5s 2S) and Rb(4d 2D) final states and at temperature 6000 K have values exceeding 3 × 10-8 cm3 s-1 and 4 × 10-8 cm3 s-1, respectively. It is shown that both the semi-empirical and the LCAO approaches perform equally well on average and that both sets of atomic data have roughly the same accuracy. The processes with large and moderate rate coefficients are likely to be important for non-LTE modelling in atmospheres of F, G and K-stars, especially metal-poor stars.

  6. Heat of solution and site energies of hydrogen in disordered transition-metal alloys

    International Nuclear Information System (INIS)

    Brouwer, R.C.; Griessen, R.

    1989-01-01

    Site energies, long-range effective hydrogen-hydrogen interactions, and the enthalpy of solution in transition-metal alloys are calculated by means of an embedded-cluster model. The energy of a hydrogen atom is assumed to be predominantly determined by the first shell of neighboring metal atoms. The semiempirical local band-structure model is used to calculate the energy of the hydrogen atoms in the cluster, taking into account local deviations from the average lattice constant. The increase in the solubility limit and the weak dependence of the enthalpy of solution on hydrogen concentration in disordered alloys are discussed. Calculated site