WorldWideScience

Sample records for hydrogen economy making

  1. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  2. A green hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Clark, W.W. II [Clark Communications, Beverly Hills, CA (United States). Green Hydrogen Scientific Advisory Committee; Rifkin, J. [The Foundation on Economic Trends (United States)

    2006-11-15

    This paper is the result of over a dozen scholars and practitioners who strongly felt that a hydrogen economy and hence the future is closer than some American politicians and bureaucrats state. Moreover, when seen internationally, there is strong evidence, the most recent and obvious ones are the proliferation of hybrid vehicles, that for any nation-state to be energy independent it must seek a renewable or green hydrogen future in the near term. The State of California has once again taken the lead in this effort for both an energy-independent future and one linked strongly to the hydrogen economy. Then why a hydrogen economy in the first instance? The fact is that hydrogen most likely will not be used for refueling of vehicles in the near term. The number of vehicles to make hydrogen commercially viable will not be in the mass market by almost all estimates until 2010. However, it is less than a decade away. The time frame is NOT 30-40 years as some argue. The hydrogen economy needs trained people, new ventures and public-private partnerships now. The paper points out how the concerns of today, including higher costs and technologies under development, can be turned into opportunities for both the public and private sectors. It was not too long ago that the size of a mobile phone was that of a briefcase, and then almost 10 years ago, the size of a shoe box. Today, they are not only the size of a man's wallet but also often given away free to consumers who subscribe or contract for wireless services. While hydrogen may not follow this technological commercialization exactly, it certainly will be on a parallel path. International events and local or regional security dictate that the time for a hydrogen must be close at hand. (author)

  3. A green hydrogen economy

    International Nuclear Information System (INIS)

    Clark, Woodrow W.; Rifkin, Jeremy

    2006-01-01

    This paper is the result of over a dozen scholars and practitioners who strongly felt that a hydrogen economy and hence the future is closer than some American politicians and bureaucrats state. Moreover, when seen internationally, there is strong evidence, the most recent and obvious ones are the proliferation of hybrid vehicles, that for any nation-state to be energy independent it must seek a renewable or green hydrogen future in the near term. The State of California has once again taken the lead in this effort for both an energy-independent future and one linked strongly to the hydrogen economy. Then why a hydrogen economy in the first instance? The fact is that hydrogen most likely will not be used for refueling of vehicles in the near term. The number of vehicles to make hydrogen commercially viable will not be in the mass market by almost all estimates until 2010. However, it is less than a decade away. The time frame is NOT 30-40 years as some argue. The hydrogen economy needs trained people, new ventures and public-private partnerships now. The paper points out how the concerns of today, including higher costs and technologies under development, can be turned into opportunities for both the public and private sectors. It was not too long ago that the size of a mobile phone was that of a briefcase, and then almost 10 years ago, the size of a shoe box. Today, they are not only the size of a man's wallet but also often given away free to consumers who subscribe or contract for wireless services. While hydrogen may not follow this technological commercialization exactly, it certainly will be on a parallel path. International events and local or regional security dictate that the time for a hydrogen must be close at hand

  4. The Hydrogen Economy Making the Transition to the Third Industrial Revolution and a New Energy Era

    International Nuclear Information System (INIS)

    Jeremy Rifkin

    2006-01-01

    Jeremy Rifkin is the author of the international best seller, The Hydrogen Economy, which has been translated into fourteen languages. It is the most widely read book in the world on the future of renewable energy and the hydrogen economy. In his presentation on 'The Hydrogen Economy', Mr. Rifkin takes us on an eye-opening journey into the next great commercial era in history. He envisions the dawn of a new economy powered by hydrogen that will fundamentally change the nature of our market, political and social institutions, just as coal and steam power did at the beginning of the industrial age. Rifkin observes that we are fast approaching a critical watershed for the fossil-fuel era, with potentially dire consequences for industrial civilization. Experts had been saying that we had another forty or so years of cheap available crude oil left. Now, however, some of the world's leading petroleum geologists are suggesting that global oil production could peak and begin a steep decline much sooner, as early as the second decade of the 21. century. Non-OPEC oil producing countries are already nearing their peak production, leaving most of the remaining reserves in the politically unstable Middle East. Increasing tensions between Islam and the West are likely to further threaten our access to affordable oil. In desperation, the U.S. and other nations could turn to dirtier fossil-fuels, coal, tar sand, and heavy oil, which will only worsen global warming and imperil the earth's already beleaguered ecosystems. Looming oil shortages make industrial life vulnerable to massive disruptions and possibly even collapse. While the fossil-fuel era is entering its sunset century, a new energy regime is being born that has the potential to remake civilization along radical new lines, according to Rifkin. Hydrogen is the most basic and ubiquitous element in the universe. It is the stuff of the stars and of our sun and, when properly harnessed, it is the 'forever fuel'. It never runs

  5. The Hydrogen Economy Making the Transition to the Third Industrial Revolution and a New Energy Era

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Rifkin

    2006-07-01

    Jeremy Rifkin is the author of the international best seller, The Hydrogen Economy, which has been translated into fourteen languages. It is the most widely read book in the world on the future of renewable energy and the hydrogen economy. In his presentation on 'The Hydrogen Economy', Mr. Rifkin takes us on an eye-opening journey into the next great commercial era in history. He envisions the dawn of a new economy powered by hydrogen that will fundamentally change the nature of our market, political and social institutions, just as coal and steam power did at the beginning of the industrial age. Rifkin observes that we are fast approaching a critical watershed for the fossil-fuel era, with potentially dire consequences for industrial civilization. Experts had been saying that we had another forty or so years of cheap available crude oil left. Now, however, some of the world's leading petroleum geologists are suggesting that global oil production could peak and begin a steep decline much sooner, as early as the second decade of the 21. century. Non-OPEC oil producing countries are already nearing their peak production, leaving most of the remaining reserves in the politically unstable Middle East. Increasing tensions between Islam and the West are likely to further threaten our access to affordable oil. In desperation, the U.S. and other nations could turn to dirtier fossil-fuels, coal, tar sand, and heavy oil, which will only worsen global warming and imperil the earth's already beleaguered ecosystems. Looming oil shortages make industrial life vulnerable to massive disruptions and possibly even collapse. While the fossil-fuel era is entering its sunset century, a new energy regime is being born that has the potential to remake civilization along radical new lines, according to Rifkin. Hydrogen is the most basic and ubiquitous element in the universe. It is the stuff of the stars and of our sun and, when properly harnessed, it is the &apos

  6. Hydrogen economy: a little bit more effort

    International Nuclear Information System (INIS)

    Pauron, M.

    2008-01-01

    In few years, the use of hydrogen in economy has become a credible possibility. Today, billions of euros are invested in the hydrogen industry which is strengthened by technological advances in fuel cells development and by an increasing optimism. However, additional research efforts and more financing will be necessary to make the dream of an hydrogen-based economy a reality

  7. Europe - the first hydrogen economy?

    International Nuclear Information System (INIS)

    Hart, D.

    1999-01-01

    An examination of the state of research relating to hydrogen production and utilization indicates that interest in hydrogen from major companies in Europe has increased by several orders of magnitude in recent years. Of the three major areas where a hydrogen economy could be expected to start, namely, Japan, the United States and Europe, the latter may have advantages in diversity of resources, attitudes towards environmental issues and specific fiscal and regulatory structures. Examples of ongoing research and development projects in Europe include Norway's hydrogen combustion turbine to run on hydrogen from decarbonised natural gas, a project in the Netherlands involving mixing hydrogen and methane in the natural gas grid and a variety of projects involving liquid hydrogen refuelling, hydrogen aircraft, hydrogen fuelling stations and fuel cell vehicle development. There are also ongoing projects in carbon sequestration and hydrogen production for power generation and vehicle use. The author's main contention is that the combination of natural surroundings, environmental problems and attitudes, and business and government frameworks strongly suggest that Europe may be the first to have a hydrogen-based economy. 8 refs

  8. A nuclear based hydrogen economy

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Tamm, G.; Kunze, J.

    2005-01-01

    Exhausting demands are being imposed upon the world's ability to extract and deliver oil to the nations demanding fluid fossil fuels. This paper analyzes these issues and concludes that there must be no delay in beginning the development of the 'hydrogen economy' using nuclear energy as the primary energy source to provide both the fluid fuel and electrical power required in the 21st century. Nuclear energy is the only proven technology that is abundant and available worldwide to provide the primary energy needed to produce adequate hydrogen fluid fuel supplies to replace oil. Most importantly, this energy transition can be accomplished in an economical and technically proven manner while lowering greenhouse gas emissions. Furthermore, a similar application of using wind and solar to produce hydrogen instead of electricity for the grid can pave the way for the much larger production scales of nuclear plants producing both electricity and hydrogen. (authors)

  9. Nuclear energy in the hydrogen economy

    International Nuclear Information System (INIS)

    Bertel, E.; Lee, K.S.; Nordborg, C.

    2004-01-01

    In the framework of a sustainable development, the hydrogen economy is envisaged as an alternative scenario in substitution to the fossil fuels. After a presentation of the hydrogen economy advantages, the author analyzes the nuclear energy a a possible energy source for hydrogen production since nuclear reactors can produce both the heat and electricity required for it. (A.L.B.)

  10. The solar-hydrogen economy: an analysis

    Science.gov (United States)

    Reynolds, Warren D.

    2007-09-01

    The 20th Century was the age of the Petroleum Economy while the 21st Century is certainly the age of the Solar-Hydrogen Economy. The global Solar-Hydrogen Economy that is now emerging follows a different logic. Under this new economic paradigm, new machines and methods are once again being developed while companies are restructuring. The Petroleum Economy will be briefly explored in relation to oil consumption, Hubbert's curve, and oil reserves with emphasis on the "oil crash". Concerns and criticisms about the Hydrogen Economy will be addressed by debunking some of the "hydrogen myths". There are three major driving factors for the establishment of the Solar-Hydrogen Economy, i.e. the environment, the economy with the coming "oil crash", and national security. The New Energy decentralization pathway has developed many progressive features, e.g., reducing the dependence on oil, reducing the air pollution and CO II. The technical and economic aspects of the various Solar-Hydrogen energy options and combinations will be analyzed. A proposed 24-hour/day 200 MWe solar-hydrogen power plant for the U.S. with selected energy options will be discussed. There are fast emerging Solar Hydrogen energy infrastructures in the U.S., Europe, Japan and China. Some of the major infrastructure projects in the transportation and energy sectors will be discussed. The current and projected growth in the Solar-Hydrogen Economy through 2045 will be given.

  11. Hydrogen economy and nuclear energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2004-01-01

    Global energy outlooks based on present trends, such as WETO study, give little optimism about fulfilling Kyoto commitments in controlling CO2 emissions and avoiding unwanted climate consequences. Whilst the problem of radioactive waste has a prominence in public, in spite of already adequate technical solutions of safe storage for future hundreds and thousands of years, there s generally much less concern with influence of fossil fuels on global climate. In addition to electricity production, process heat and transportation are approximately equal contributors to CO2 emission. Fossil fuels in transportation present also a local pollution problem in congested regions. Backed by extensive R and D, hydrogen economy is seen as the solution, however, often without much thought where from the hydrogen in required very large quantities may come. With welcome contributions from alternative sources, nuclear energy is the only source of energy capable of producing hydrogen in very large amounts, without parallel production of CO2. Future high temperature reactors could do this most efficiently. In view of the fact that nuclear weapon proliferation is not under control, extrapolation from the present level of nuclear power to the future level required by serious attempts to reduce global CO2 emission is a matter of justified concern. Finding the sites for many hundreds of new reactors would, alone, be a formidable problem in developed regions with high population density. What is generally less well understood and not validated is that the production of nuclear hydrogen allows the required large increases of nuclear power without the accompanied increase of proliferation risks. Unlike electricity, hydrogen can be economically shipped or transported by pipelines to places very far from the place of production. Thus, nuclear production of hydrogen can be located and concentrated at few remote, controllable sites, far from the population centers and consumption regions. At such

  12. A hydrogen economy: opportunities and challenges

    International Nuclear Information System (INIS)

    Tseng, P.; Lee, J.; Friley, P.

    2005-01-01

    A hydrogen economy, the long-term goal of many nations, can potentially confer energy security, along with environmental and economic benefits. However, the transition from a conventional petroleum-based energy system to a hydrogen economy involves many uncertainties, such as the development of efficient fuel-cell technologies, problems in hydrogen production and its distribution infrastructure, and the response of petroleum markets. This study uses the US MARKAL model to simulate the impacts of hydrogen technologies on the US energy system and to identify potential impediments to a successful transition. Preliminary findings highlight possible market barriers facing the hydrogen economy, as well as opportunities in new R and D and product markets for bioproducts. Quantitative analysis also offers insights on policy options for promoting hydrogen technologies. (author)

  13. Towards an ammonia-mediated hydrogen economy?

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Johannessen, Tue; Sørensen, Rasmus Zink

    2006-01-01

    Materialization of a hydrogen economy could provide a solution to significant global challenges, In particular. the possibility of improving the efficiency and simultaneously minimizing the environmental impact of energy conversion processes, together with the opportunity to reduce the dependency...

  14. Global environmental impacts of the hydrogen economy

    International Nuclear Information System (INIS)

    Derwent, R.; Simmonds, P.; O'Doherty, S.; Manning, A.; Collins, W.; Stevenson, D.

    2006-01-01

    Hydrogen-based energy systems appear to be an attractive proposition in providing a future replacement for the current fossil-fuel based energy systems. Hydrogen is an important, though little studied, trace component of the atmosphere. It is present at the mixing ratio of about 510 ppb currently and has important man-made and natural sources. Because hydrogen reacts with tropospheric hydroxyl radicals, emissions of hydrogen to the atmosphere perturb the distributions of methane and ozone, the second and third most important greenhouse gases after carbon dioxide. Hydrogen is therefore an indirect greenhouse gas with a global warming potential GWP of 5.8 over a 100-year time horizon. A future hydrogen economy would therefore have greenhouse consequences and would not be free from climate perturbations. If a global hydrogen economy replaced the current fossil fuel-based energy system and exhibited a leakage rate of 1%, then it would produce a climate impact of 0.6% of the current fossil fuel based system. Careful attention must be given to reduce to a minimum the leakage of hydrogen from the synthesis, storage and use of hydrogen in a future global hydrogen economy if the full climate benefits are to be realised. (author)

  15. Clean energy and the hydrogen economy.

    Science.gov (United States)

    Brandon, N P; Kurban, Z

    2017-07-28

    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  16. Hydrogen economy and polymer membranes

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Schauer, Jan

    2010-01-01

    Roč. 295, č. 1 (2010), s. 23-29 ISSN 1022-1360 R&D Projects: GA ČR GA104/09/1165; GA ČR GA203/08/0465 Institutional research plan: CEZ:AV0Z40500505 Keywords : foams * gas permeation * hydrogen Subject RIV: CD - Macromolecular Chemistry

  17. Hydrogen energy stations: along the roadside to the hydrogen economy

    International Nuclear Information System (INIS)

    Clark, W.W.; Rifkin, J.; O'Connor, T.; Swisher, J.; Lipman, T.; Rambach, G.

    2005-01-01

    Hydrogen has become more than an international topic of discussion within government and among industry. With the public announcements from the European Union and American governments and an Executive Order from the Governor of California, hydrogen has become a ''paradigm change'' targeted toward changing decades of economic and societal behaviours. The public demand for clean and green energy as well as being ''independent'' or not located in political or societal conflict areas, has become paramount. The key issues are the commitment of governments through public policies along with corporations. Above all, secondly, the advancement of hydrogen is regional as it depends upon infrastructure and fuel resources. Hence, the hydrogen economy, to which the hydrogen highway is the main component, will be regional and creative. New jobs, businesses and opportunities are already emerging. And finally, the costs for the hydrogen economy are critical. The debate as to hydrogen being 5 years away from being commercial and available in the marketplace versus needing more research and development contradicts the historical development and deployment of any new technology be it bio-science, flat panel displays, computers or mobile phones. The market drivers are government regulations and standards soon thereafter matched by market forces and mass production. Hydrogen is no different. What this paper does is describes is how the hydrogen highway is the backbone to the hydrogen economy by becoming, with the next five years, both regional and commercial through supplying stationary power to communities. Soon thereafter, within five to ten years, these same hydrogen stations will be serving hundreds and then thousands of hydrogen fuel powered vehicles. Hydrogen is the fuel for distributed energy generation and hence positively impacts the future of public and private power generators. The paradigm has already changed. (author)

  18. Symbolic convergence and the hydrogen economy

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Brossmann, Brent

    2010-01-01

    This article documents that the hydrogen economy continues to attract significant attention among politicians, the media, and some academics. We believe that an explanation lies in the way that the hydrogen economy fulfills psychological and cultural needs related to a future world where energy is abundant, cheap, and pollution-free, a 'fantasy' that manifests itself with the idea that society can continue to operate without limits imposed by population growth and the destruction of the environment. The article begins by explaining its research methodology consisting of two literature reviews, research interviews of energy experts, and the application of symbolic convergence theory, a general communications theory about the construction of rhetorical fantasies. We then identify a host of socio-technical challenges to explain why the creation of a hydrogen economy would present immense (and possibly intractable) obstacles, an argument supplemented by our research interviews. Next, we employ symbolic convergence theory to identify five prevalent fantasy themes and rhetorical visions-independence, patriotism, progress, democratization, and inevitability-in academic and public discussions in favor of the hydrogen economy. We conclude by offering implications for scholarship relating to energy policy more broadly.

  19. The hydrogen economy - an opportunity for gas

    International Nuclear Information System (INIS)

    Soederbaum, J.; Martin, G.; O'Neill, C.

    2003-01-01

    Natural gas could play a pivotal role in any transition to a hydrogen economy-that is one of the findings of the recently-released National Hydrogen Study, commissioned by the Commonwealth Department of Industry, Tourism and Resources, and undertaken by the consulting firms ACIL Tasman and Parsons Brinckerhoff. The key benefits of hydrogen include zero emissions at the point of combustion (water is the main by-product) and its abundance Hydrogen can be produced from a range of primary energy sources including gas and coal, or through the electrolysis of water. Depending on the process used to manufacture hydrogen (especially the extent to which any associated carbon can be captured and sequestered), life-cycle emissions associated with its production and use can be reduced or entirely eliminated

  20. Wind in the future hydrogen economy

    International Nuclear Information System (INIS)

    Andres, P.

    2006-01-01

    Converting to a hydrogen economy will only be sustainable and have a positive impact on the environment if the fuel source for the hydrogen production is from a renewable or GHG free fuel source. Wind energy is of particular interest as a potential energy source for hydrogen production. It is modular, abundant and competitive and is far from fully exploited around the globe. Transmission constraints are however the current bottle neck to fully exploiting this resource. Producing electrolytic hydrogen from wind energy in transmission constraint areas will allow for better utilization of the available wind energy and transmission resources. The type of hydrogen storage and transportation option chosen and the size of the facilities will be the crucial factors in determining the relative cost competitiveness of a wind / hydrogen facility verses traditional hydrogen production from fossil fuels. With fossil fuel prices at record highs and the traditional demand for hydrogen growing (oil refining, ammonia production) and the fact that the world has entered a GHG constraint era the need to explore large scale wind / hydrogen production facilities has never been more urgent. (author)

  1. Hydrogen energy economy: More than utopia

    International Nuclear Information System (INIS)

    Weber, R.

    1992-01-01

    Under the pressure of increasing climate changes in the last years the attitude towards hydrogen technology has changed. Germany has taken a leading position in hydrogen research. Above all there is not only government-sponsored research but also industrial research. It is even assumed that an energy economy on the basis of solar energy as well as of hydrogen is technically possible. If the fact that the total power of all cars in the FRG amounts to 200.000 MW - twice as much as all power stations - is taken into consideration it should be possible to produce in large-scale production decentralized solar or hydrogen energy converters at similar kilowatt rates. (BWI) [de

  2. Rate-making in economies in transition

    International Nuclear Information System (INIS)

    Horvath, R.S.

    1996-01-01

    Eastern European economies in transition have unique needs which may be best served by considering how other economies around the world are making the transition to market-based economies. In particular, the recent Mexican experience may provide some lessons learned. Mexico has recently established for the first time a regulatory body with the power to regulate natural gas in certain ways. This paper outlines how the Mexican experience may be an appropriate jumping-off point for Eastern European economies in transition as they develop their own regulatory structure and rate-making. The paper concludes with an update on the recent experience in the U.S. to push the development of a market economy for natural gas further than it ever has before

  3. Designing a gradual transition to a hydrogen economy in Spain

    Science.gov (United States)

    Brey, J. J.; Brey, R.; Carazo, A. F.; Contreras, I.; Hernández-Díaz, A. G.; Gallardo, V.

    The lack of sustainability of the current Spanish energy system makes it necessary to study the adoption of alternative energy models. One of these is what is known as the hydrogen economy. In this paper, we aim to plan, for the case of Spain, an initial phase for transition to this energy model making use of the potential offered by each Spanish region. Specifically, the target pursued is to satisfy at least 15% of energy demand for transport by 2010 through renewable sources. We plan to attain this target gradually, establishing intermediate stages consisting of supplying 5 and 10% of the energy demand for transport by 2006 and 2008, respectively. The results obtained allow us to determine, for each region, the hydrogen production and consumption, the renewable energy sources used to obtain hydrogen and the transport requirements between regions.

  4. An integrated approach to hydrogen economy in Sicilian islands

    Energy Technology Data Exchange (ETDEWEB)

    Matera, Fabio V.; Sapienza, C.; Andaloro, L.; Dispensa, G.; Ferraro, M.; Antonucci, V. [Italian National Research Council, Institute of Advanced Energy Technologies ' ' Nicola Giordano' ' , salita S. Lucia sopra Contesse, 5, Messina 98126 (Italy)

    2009-08-15

    CNR-ITAE is developing several hydrogen and fuel cell demonstration and research projects, each intended to be part of a larger strategy for hydrogen communities settling in small Sicilian islands. These projects involve vehicle design, hydrogen production from renewable energy sources and methane, as well as implementation strategies to develop a hydrogen and renewable energy economy. These zero emission lightweight vehicles feature regenerative braking and advanced power electronics to increase efficiency. Moreover, to achieve a very easy-to-use technology, a very simple interface between driver and the system is under development, including fault-recovery strategies and GPS positioning for car-rental fleets. Also marine applications have been included, with tests on PEFC applied on passenger ships and luxury yacht as power system for on-board loads. In marine application, it is under study also an electrolysis hydrogen generator system using seawater as hydrogen carrier. For stationary and automotive applications, the project includes a hydrogen refuelling station powered by renewable energy (wind or/and solar) and test on fuel processors fed with methane, in order to make the power generation self-sufficient, as well as to test the technology and increase public awareness toward clean energy sources. (author)

  5. Relative efficiency of hydrogen technologies for the hydrogen economy : a fuzzy AHP/DEA hybrid model approach

    International Nuclear Information System (INIS)

    Lee, S.

    2009-01-01

    As a provider of national energy security, the Korean Institute of Energy Research is seeking to establish a long term strategic technology roadmap for a hydrogen-based economy. This paper addressed 5 criteria regarding the strategy, notably economic impact, commercial potential, inner capacity, technical spinoff, and development cost. The fuzzy AHP and DEA hybrid model were used in a two-stage multi-criteria decision making approach to evaluate the relative efficiency of hydrogen technologies for the hydrogen economy. The fuzzy analytic hierarchy process reflects the uncertainty of human thoughts with interval values instead of clear-cut numbers. It therefore allocates the relative importance of 4 criteria, notably economic impact, commercial potential, inner capacity and technical spin-off. The relative efficiency of hydrogen technologies for the hydrogen economy can be measured via data envelopment analysis. It was concluded that the scientific decision making approach can be used effectively to allocate research and development resources and activities

  6. Relative efficiency of hydrogen technologies for the hydrogen economy : a fuzzy AHP/DEA hybrid model approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of). Energy Policy Research Division; Mogi, G. [Tokyo Univ., (Japan). Dept. of Technology Management for Innovation, Graduate School of Engineering; Kim, J. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of)

    2009-07-01

    As a provider of national energy security, the Korean Institute of Energy Research is seeking to establish a long term strategic technology roadmap for a hydrogen-based economy. This paper addressed 5 criteria regarding the strategy, notably economic impact, commercial potential, inner capacity, technical spinoff, and development cost. The fuzzy AHP and DEA hybrid model were used in a two-stage multi-criteria decision making approach to evaluate the relative efficiency of hydrogen technologies for the hydrogen economy. The fuzzy analytic hierarchy process reflects the uncertainty of human thoughts with interval values instead of clear-cut numbers. It therefore allocates the relative importance of 4 criteria, notably economic impact, commercial potential, inner capacity and technical spin-off. The relative efficiency of hydrogen technologies for the hydrogen economy can be measured via data envelopment analysis. It was concluded that the scientific decision making approach can be used effectively to allocate research and development resources and activities.

  7. Hydrogen: Its Future Role in the Nation's Energy Economy.

    Science.gov (United States)

    Winsche, W E; Hoffman, K C; Salzano, F J

    1973-06-29

    In examining the potential role of hydrogen in the energy economy of the future, we take an optimistic view. All the technology required for implementation is feasible but a great deal of development and refinement is necessary. A pessimistic approach would obviously discourage further thinking about an important and perhaps the most reasonable alternative for the future. We have considered a limited number of alternative energy systems involving hydrogen and have shown that hydrogen could be a viable secondary source of energy derived from nuclear power; for the immediate future, hydrogen could be derived from coal. A hydrogen supply system could have greater flexibility and be competitive with a more conventional all-electric delivery system. Technological improvements could make hydrogen as an energy source an economic reality. The systems examined in this article show how hydrogen can serve as a general-purpose fuel for residential and automotive applications. Aside from being a source of heat and motive power, hydrogen could also supply the electrical needs of the household via fuel cells (19), turbines, or conventional "total energy systems." The total cost of energy to a residence supplied with hydrogen fuel depends on the ratio of the requirements for direct fuel use to the requirements for electrical use. A greater direct use of hydrogen as a fuel without conversion to electricity reduces the overall cost of energy supplied to the household because of the greater expense of electrical transmission and distribution. Hydrogen fuel is especially attractive for use in domestic residential applications where the bulk of the energy requirement is for thermal energy. Although a considerable amount of research is required before any hydrogen energy delivery system can be implemented, the necessary developments are within the capability of present-day technology and the system could be made attractive economically .Techniques for producing hydrogen from water by

  8. Nunavut : Canada's emerging hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Goodings, C.R. [Nunavut Environmental Ltd., Bowen Island, BC (Canada)

    2000-05-01

    This power point presentation highlighted the opportunity for developing a hydrogen economy in Nunavut given the new political, social, economical and geographical conditions. The population of Nunavut territory consists of 85 per cent Inuit who have been given provincial like control over the 1.9 million sq km land claim. One of the challenge facing the government is to lessen Nunavut's dependence on imported oil for all energy needs. Average energy costs are currently 70 cents per kWh. The government subsidizes 75 per cent of all Nunavut's energy costs. The author claims that an energy system based on hydrogen is the key to developing Nunavut's power since it would create local employment and keep energy dollars in the community. For example, the Cambridge Bay Wind/Hydrogen Pilot Project was initiated to make use of hydrogen produced by wind power for electric power generation and for fuel for taxis. The system could be equally effective in Baker Lake which currently has three 720 W diesel generating units providing a maximum load of 1,127 kW. The average wind speed in the area is 7.6 m/s at a height of 25 meters. A simple graph illustrating the control strategy for wind-hydrogen fuel cell system was also included with this presentation. 29 figs.

  9. Carbon strategy and management in the hydrogen economy

    International Nuclear Information System (INIS)

    Snyder, C.

    2006-01-01

    Greenhouse gas (carbon) emission reduction related to the beneficial use of hydrogen is an important aspect in the development and public acceptance of a greater role for hydrogen in the economy. This presentation is an overview of potential effects of the evolving regulatory framework for carbon emissions management in Canada on hydrogen infrastructure development and compare it with activities in other jurisdictions

  10. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs

    Energy Technology Data Exchange (ETDEWEB)

    Committee on Alternatives and Strategies for Future Hydrogen Production and Use

    2004-08-31

    The announcement of a hydrogen fuel initiative in the President’s 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation’s long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation’s future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.

  11. Roles Prioritization of Hydrogen Production Technologies for Promoting Hydrogen Economy in the Current State of China

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Gao, Suzhao; Tan, Shiyu

    2015-01-01

    Hydrogen production technologies play an important role in the hydrogen economy of China. However, the roles of different technologies played in promoting the development of hydrogen economy are different. The role prioritization of various hydrogen production technologies is of vital importance...... information. The prioritization results by using the proposed method demonstrated that the technologies of coal gasification with CO2 capture and storage and hydropower-based water electrolysis were regarded as the two most important hydrogen production pathways for promoting the development of hydrogen...... for the stakeholders/decision-makers to plan the development of hydrogen economy in China and to allocate the finite R&D budget reasonably. In this study, DPSIR framework was firstly used to identify the key factors concerning the priorities of various hydrogen production technologies; then, a fuzzy group decision...

  12. The hydrogen economy- A debate on the merits

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2007-01-01

    Full Text Available stream_source_info van Vuuren_2007.pdf.txt stream_content_type text/plain stream_size 5193 Content-Encoding UTF-8 stream_name van Vuuren_2007.pdf.txt Content-Type text/plain; charset=UTF-8 The Hydrogen Economy A Debate... cheapest alternative. • The Hydrogen Economy or its alternative will only really take off when cheap coal production begins to peak Slide 10 © CSIR 2006 www.csir.co.za Global Warming • The risk is real, but the debate...

  13. Role of a natural gas utility in the hydrogen economy

    International Nuclear Information System (INIS)

    Bayko, J.

    2004-01-01

    'Full text:' Enbridge Gas Distribution is the largest natural gas distribution company in Canada at about 1.7 million residential, commercial and industrial customers. Enbridge will speak to the role of a natural gas utility in the hydrogen economy, and outline the benefits of hydrogen production from natural gas reformation for both stationary and mobile applications. Hydrocarbon reformation will act at least as a bridge until a more fully developed hydrogen economy infrastructure is developed. Reformation allows immediate leveraging of the reliability of vast existing natural gas distribution systems, and a reduced need for on-site hydrogen storage. Natural gas powered fuel cells provide improved emissions over traditional internal combustion engines, and in the stationary market provide smarter use of resources through the higher efficiencies of cogeneration (the capture and use of otherwise waste heat). (author)

  14. Making sense of the green economy

    OpenAIRE

    Caprotti, F; Bailey, I

    2014-01-01

    © 2014 Swedish Society for Anthropology and Geography. This special issue editorial explores potential research interfaces between human geography and the rapidly unfolding concept and practices of the "green economy". The article outlines a range of critical issues about the green economy that are particularly pertinent and suited to geographical analysis. The first concerns questions around the construction of the green economy concept and critical questioning of current, largely hegemonic ...

  15. Is hydrogen economy dead and buried?

    International Nuclear Information System (INIS)

    Bento, N.

    2010-01-01

    This article focuses on hydrogen technology and fuel cells, in particular on their mobile applications. The difficulty in introducing hydrogen and fuel cells onto the market stems from the fact that these technologies do not constitute incremental innovation, such as biofuels or hybrid cars, but a real technological breakthrough. Currently, auto-makers are more active in the promotion of such technology than oil companies. As well as this, manufacturers of fuel cells are trying to accelerate their entry onto the market, in order to limit their period of losses. Finally, public R and D programs continue, and public-private partnerships are being established with a view to financing facilities in California, Japan and Germany. (authors)

  16. Develop Improved Materials to Support the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael C. Martin

    2012-07-18

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects with near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.

  17. A hydrogen economy - an answer to future energy problems

    International Nuclear Information System (INIS)

    Seifritz, W.

    1975-01-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems. (Auth.)

  18. Nuclear energy - basis for hydrogen economy

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    The development of human civilization in general as well as that of every country in particular is in direct relation to the assurance of a cost effective energy balance encompassing all industrial spheres and everyday activities. Unfortunately, the uncontrolled utilization of Earth's energy resources is already causing irreversible damage to various components of the eco-system of the Earth. Nuclear energy used for electricity and hydrogen production has the biggest technological potential for solving of the main energy outstanding issues of the new century: increasing of energy dependence; global warming. Because of good market position the political basis is assured for fast development of new generation nuclear reactors and fuel cycles which can satisfy vigorously increasing needs of affordable and clean energy. Political conditions are created for adequate participation of nuclear energy in the future global energy mix. They must give chance to the nuclear industry to take adequate part in the new energy generation capacity.(author)

  19. Decentralized and direct solar hydrogen production: Towards a hydrogen economy in MENA region

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, Farid; Khalfallah, Mohamed; Ouchene, Majid

    2010-09-15

    Hydrogen has certainly some advantages in spite of its high cost and low efficiency when compared to other energy vectors. Solar energy is an abundant, clean and renewable source of energy, currently competing with fossil fuel for water heating without subsidy. Photo-electrochemical, thermo-chemicals and photo-biological processes for hydrogen production processes have been demonstrated. These decentralised hydrogen production processes using directly solar energy do not require expensive hydrogen infrastructure for packaging and delivery in the short and medium terms. MENA region could certainly be considered a key area for a new start to a global deployment of hydrogen economy.

  20. New road map to hydrogen economy in Japan

    International Nuclear Information System (INIS)

    Fukuda, K.

    2004-01-01

    Reducing carbon dioxide emission and enhancing energy security are the most critical energy issues for construction of future energy systems. The hydrogen energy system is widely accepted as one of the most promising system options for solving such problems. Ministry of Economy, Trade and Industry(METI) of Japanese Government made public its revised introduction scenario of fuel cell vehicles(FCVs) and stationary fuel cells with a time frame of 2005 to 2030 in March, 2004. The original scenario was published in August, 2001 with the time frame of 2005 to 2020. The revised scenario could substantially be considered as New Road Map to Hydrogen Economy in Japan. In this paper the revised scenario will be introduced together with supporting data provided by the author. (author)

  1. The National Center For Hydrogen And Fuel Cells. Jump-starting the hydrogen economy through research

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Varlam, Mihai; Carcadea, Elena

    2010-01-01

    Full text: The research, design and implementation of hydrogen-based economy must consider each of the segments of the hydrogen energy system - production, supply, storage, conversion. The National Center for Hydrogen and Fuel Cells has the experience, expertise, facilities and instrumentation necessary to have a key role in developing any aspect of hydrogen-based economy, aiming to integrate technologies for producing and using hydrogen as an 'energy vector'. This paper presents a simulation of the applied 'learning curve' concept, NCHFC being the key element of R and D in the field in comparing the costs involved. It also presents the short and medium term research program of NCHFC, the main research and development directions being specified. (authors)

  2. IEA Hydrogen Implementing Agreement's Second Generation R and D and the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Beck, N.; Garcia-Conde, A. G.; Riis, T. U.; Luzzi, A.; Valladares, M. R. de

    2005-07-01

    Since its creation by the International Energy Agency in the late 1970's, the IEA Hydrogen Implementing Agreement (HIA) has been at the forefront of collaborative international hydrogen research and development (R and D) (http://www.ieahia.org. ) The collective body of HIA hydrogen R and D will contribute to definition of the hydrogen economy. The five-year [2004-2009) mission of the IEA HIA is to advance the adoption of a Hydrogen Economy through strategic implementation of collaborative R and D and outreach programs that address key issues and barriers. The three goals for the Second Generation HIA are: Advancement of science and technology via pre-commercial collaborative RD and D programs; Assessment of market environment, including the non-energy sector; and Implementation of outreach program, aimed at community acceptance and support. The HIA launched its Second Generation of hydrogen R and D in the latter part of 2004. The HIA's anniversary report: In Pursuit of the Future: 25 Years of IEA Research towards the realization of Hydrogen Energy Systems (http://ieahia.org/pdfs/IEA_AnniversaryReport_HIA.pdf) chronicles its contributions to hydrogen R and D. As the hydrogen economy takes shape, the HIA is pleased to share highlights of its R and D history together with progress on planned activities and its six current annexes, listed below: Task 15 Photobiological Production of Hydrogen Task 16 Hydrogen from Carbon-Containing Materials Task 17 Solid and Liquid Storage Task 18 Integrated Systems Evaluation Task 19 Safety Task 20 Hydrogen from Waterphotolysis Planned successor annexes in storage and photobiological hydrogen production will also be discussed, along with a task on high temperature hydrogen production that is now in the definition phase. Over 250 experts from the sixteen member HIA countries and the European Union contribute to this portfolio of cutting edge hydrogen R and D and analysis activities. Several other countries are expected to

  3. 'Telling it as it is': typical failings in studies of lay opinion about a Hydrogen Economy

    International Nuclear Information System (INIS)

    Miriam Ricci; Paul Bellaby; Rob Flynn

    2006-01-01

    Realizing a future hydrogen economy is an enormous challenge for scientists, industry and institutional actors. Even if they succeed, acceptance or rejection of changes to current practice by the public could make or break the project. Fortunately there are now several studies on public awareness and perception of hydrogen energy and the technologies associated with it. Our paper presents a brief review of their findings and attempts a critique of their methods and conceptualizations. A future hydrogen economy would be a 'complex socio-technical system' not just a technology. This concept calls for appropriate methodologies, especially the need for improved qualitative research into public awareness and understanding of such complex issues as energy, and the development of a conceptual framework for gauging public attitudes to what might lie in the future. The paper concludes with an overview of fieldwork on these topics conducted by the authors with stakeholders and members of the public in three distinct areas of the UK. (authors)

  4. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  5. Making Central Banks Serve The Real Economy

    Directory of Open Access Journals (Sweden)

    Suleika Reiners

    2013-10-01

    Full Text Available The challenge is to redirect central bank money into the real economy and to the needs of society. If new money is issued to expand the productive capacity, there is no reason for inflation. Long-term financing could become available at an affordable price. Central bank money must not replace a sound tax system and the distribution of income and wealth, but complement them. The remaining task, apart from the financing of real needs, is the prevention of speculative asset price inflation. For this, central banks and regulators should install debt brakes for the financial sector. Furthermore, independent monetary policy calls for capital account management. It enables national central banks to find space for the conduct of their own policies in an interdependent global economy. Coordination between central banks and governments might increase as policies combine monetary, fiscal and regulatory facets. The future role of central banks should particularly lie in their insights regarding capital flows and leverage cycles and in their ability to create and withdraw money, depend­ing on economic conditions.

  6. Fuel cell commercialization: The key to a hydrogen economy

    Science.gov (United States)

    Zegers, P.

    With the current level of global oil production, oil reserves will be sufficient for 40 years. However, due to the fact that the global GDP will have increased by a factor seven in 2050, oil reserves are likely to be exhausted in a much shorter time period. The EU and car industry aim at a reduction of the consumption of oil, at energy savings (with a key role for fuel cells) and an increased use of hydrogen from natural gas and, possibly, coal, in the medium term. The discovery of huge methane resources as methane hydrates (20 times those of oil, gas and coal together) in oceans at 1000-3000 m depth could be of major importance. In the long term, the EU aims at a renewable energy-based energy supply. The European Hydrogen and Fuel Cell Technology Platform is expected to play a major role in bringing about a hydrogen economy. The availability of commercial fuel cells is here a prerequisite. However, after many years of research, fuel cells have not yet been commercialized. If they will not succeed to enter the market within 5 years there is a real danger that activities aiming at a hydrogen society will peter out. In a hydrogen strategy, high priority should therefore be given to actions which will bring about fuel cell commercialization within 5 years. They should include the identification of fuel cell types and (niche) markets which are most favorable for a rapid market introduction. These actions should include focused short-term RTD aiming at cost reduction and increased reliability.

  7. Transition towards a hydrogen economy: infrastructures and technical change

    International Nuclear Information System (INIS)

    Bento, Nuno

    2010-01-01

    The double constraint of climate change and increasing scarcity of oil requires that we consider alternative energies for the medium term. This thesis focuses on the development of a hydrogen economy, which is conditional on the existence of an infrastructure for the distribution of the new fuel and the readiness of fuel cells. The main idea is that the state can play a central role in both infrastructure implementation and preparation of fuel cells technology. The thesis begins with a techno-economic analysis of the hydrogen-energy chain, which highlights the difficulty of setting up the infrastructure. The study of the development of electricity and gas networks in the past provides the empirical basis supporting the hypothesis that government can play an important role to consolidate the diffusion of socio-technical networks. In addition, private projects of stations may be justified by early-move benefits, although their financial viability depends on the demand for hydrogen which is in turn dependent on the performance of the fuel cell vehicle. The introduction of radical innovations, such as fuel cell, has been made more difficult by the domination of conventional technologies. This assertion is particularly true in the transport sector which was progressively locked into fossil fuels by a process of technological and institutional co-evolution driven by increasing returns of scale. Hence, fuel cells may primarily diffuse through the accumulation of niches where the innovation is closer to commercialization. These niches may be located in portable applications segment. Investments in research and demonstration are still necessary in order to reduce costs and increase performances of fuel cells. Using a simple model of multi-technological diffusion, we analyze the competition between the hydrogen fuel cell vehicle and the plug-in hybrid car for the automotive market. We show that an early entry of the latter may block the arrival of hydrogen in the market

  8. Hydrogen storage for mixed wind-nuclear power plants in the context of a hydrogen economy

    International Nuclear Information System (INIS)

    Taljan, Gregor; Fowler, Michael; Canizares, Claudio; Verbic, Gregor

    2008-01-01

    A novel methodology for the economic evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new aspects such as residual heat and oxygen utilization is applied in this work. This analysis is completed in the context of a hydrogen economy and competitive electricity markets. The simulation of the operation of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity, the selling of excess hydrogen and oxygen, and the selling of heat are optimized to maximize profit to the energy producer. The simulation is performed in two phases: in a pre-dispatch phase, the system model is optimized to obtain optimal hydrogen charge levels for the given operational horizons. In the second phase, a real-time dispatch is carried out on an hourly basis to optimize the operation of the system as to maximize profits, following the hydrogen storage levels of the pre-dispatch phase. Based on the operation planning and dispatch results, an economic evaluation is performed to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return and net present values for a realistic scenario. The results of the present studies demonstrate the feasibility of a hydrogen storage and production system with oxygen and heat utilization for existent nuclear and wind power generation facilities. (author)

  9. Analysis of the holistic impact of the Hydrogen Economy on the coal industry

    Science.gov (United States)

    Lusk, Shannon Perry

    As gas prices soar and energy demand continues to grow amidst increasingly stringent environmental regulations and an assortment of global pressures, implementing alternative energy sources while considering their linked economic, environmental and societal impacts becomes a more pressing matter. The Hydrogen Economy has been proposed as an answer to meeting the increasing energy demand for electric power generation and transportation in an environmentally benign way. Based on current hydrogen technology development, the most practical feedstock to fuel the Hydrogen Economy may prove to be coal via hydrogen production at FutureGen plants. The planned growth of the currently conceived Hydrogen Economy will cause dramatic impacts, some good and some bad, on the economy, the environment, and society, which are interlinked. The goal of this research is to provide tools to inform public policy makers in sorting out policy options related to coal and the Hydrogen Economy. This study examines the impact of a transition to a Hydrogen Economy on the coal industry by creating FutureGen penetration models, forecasting coal MFA's which clearly provide the impact on coal production and associated environmental impacts, and finally formulating a goal programming model that seeks the maximum benefit to society while analyzing the trade-offs between environmental, social, and economical concerns related to coal and the Hydrogen Economy.

  10. Hydrogen, a bridge between mobility and distributed generation. Some consideration towards the hydrogen economy

    International Nuclear Information System (INIS)

    Valentino Romeri

    2006-01-01

    In this paper were analysed the most recent energy initiatives started by some national and international institution, with particular focus on hydrogen and fuel cell. It were also overviewed the national road-maps towards the hydrogen economy. In 2004, based on the most authoritative available data regarding future FCVs penetration it was observed that, if vehicle power-generation system fuel cell based becomes more sophisticated, the role of the vehicles within the power grid might change. Fuel Cell Vehicle (FVC) could become a new power-generation source, supplying electricity to home and to the grid. Also, it was defined the dimension of this new kind of power generation source in different areas and it was compared with the related power grid installed generation capacity and it was found that this new source could be a multiple of the foreseeable installed capacity in year 2030. In the present work it was revised the analysis with the most recent scenarios and it was found that the results do not change significantly. Unfortunately this kind of analysis is still not considered in the energy debate or in the road-maps towards the hydrogen economy. (author)

  11. THEN: COE-INES international workshop on 'toward hydrogen economy; what nuclear can contribute and how'. Proposal and presentations

    International Nuclear Information System (INIS)

    2005-01-01

    The workshop of the title was held on topics; hydrogen system, nuclear and non-nuclear hydrogen production, hydrogen storage and transportation, fuel-cells, hydrogen energy management, hydrogen economy and all subjects related on hydrogen system, consisted of 4 panels by 15 panelists and a comprehensive discussion session. (J.P.N.)

  12. System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, M.; Sandor, D.

    2008-06-01

    From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

  13. Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature

    International Nuclear Information System (INIS)

    McDowall, William; Eames, Malcolm

    2006-01-01

    Scenarios, roadmaps and similar foresight methods are used to cope with uncertainty in areas with long planning horizons, such as energy policy, and research into the future of hydrogen energy is no exception. Such studies can play an important role in the development of shared visions of the future: creating powerful expectations of the potential of emerging technologies and mobilising resources necessary for their realisation. This paper reviews the hydrogen futures literature, using a six-fold typology to map the state of the art of scenario construction. The paper then explores the expectations embodied in the literature, through the 'answers' it provides to questions about the future of hydrogen. What are the drivers, barriers and challenges facing the development of a hydrogen economy? What are the key technological building blocks required? In what kinds of futures does hydrogen become important? What does a hydrogen economy look like, how and when does it evolve, and what does it achieve? The literature describes a diverse range of possible futures, from decentralised systems based upon small-scale renewables, through to centralised systems reliant on nuclear energy or carbon-sequestration. There is a broad consensus that the hydrogen economy emerges only slowly, if at all, under 'Business as Usual' scenarios. Rapid transitions to hydrogen occur only under conditions of strong governmental support combined with, or as a result of, major 'discontinuities' such as shifts in society's environmental values, 'game changing' technological breakthroughs, or rapid increases in the oil price or speed and intensity of climate change

  14. A hydrogen economy and its impact on the world as we know it

    International Nuclear Information System (INIS)

    Blanchette, Stephen

    2008-01-01

    An assortment of governmental, technological, environmental, and economic factors has combined to spur renewed interest in alternatives to petroleum, and especially in hydrogen. While there is no clear consensus on the viability of the technology, governments and corporations alike have vigorous hydrogen research programs. The result is that hydrogen may stand on the verge of becoming a true successor to oil. A transition from oil to hydrogen would alter familiar global economic and political structures in profound ways. The ramifications will influence developed and developing nations, oil importers, and exporters alike. New alliances among governments, corporations, and other groups may challenge existing notions of governance. Although a hydrogen-based economy may be decades away, the vision for it requires near- and mid-term thinking to manage the transition smoothly. Further, hydrogen is only a metaphor; any change from the current oil economy will entail dramatic changes to the global status quo that must be planned for now

  15. The Brazilian strategy for the hydrogen economy; A estrategia brasileira para economia do hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Maiana Brito de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica; Neves Junior, Newton Pimenta

    2008-07-01

    This paper examines the Brazilian strategy in the development of technology related to hydrogen and the fuel cell systems. The Brazilian program and road map in the area are analyzed: the Program on Science, Technology and Innovation for the Hydrogen Economy - Pro H2, former Brazilian Program of the Fuel Cell Systems-ProCaC which was created in 2002 by the Ministry of Science, Technology - MCT, and the Road map for Structuring of the Hydrogen Economy in Brazil, which was created in 2004 by the Ministry of Mines and Energy - MME. (author)

  16. The hydrogen economy for a sustainable future and the potential contribution of nuclear power

    International Nuclear Information System (INIS)

    Hardy, C.

    2003-01-01

    The Hydrogen Economy encompasses the production of hydrogen using a wide range of energy sources, its storage and distribution as an economic and universal energy carrier, and its end use by industry and individuals with negligible emission of pollutants and greenhouse gases. Hydrogen is an energy carrier not a primary energy source, just like electricity is an energy carrier. The advantages of hydrogen as a means of storage and distribution of energy, and the methods of production of hydrogen, are reviewed. Energy sources for hydrogen production include fossil fuels, renewables, hydropower and nuclear power. Hydrogen has many applications in industry, for residential use and for transport by air, land and sea. Fuel cells are showing great promise for conversion of hydrogen into electricity and their development and current status are discussed. Non-energy uses of hydrogen and the safety aspects of hydrogen are also considered. It is concluded that the Hydrogen Economy, especially if coupled to renewable and nuclear energy sources, is a technically viable and economic way of achieving greater energy diversity and security and a sustainable future in this century

  17. Environmental and Health Benefits and Risks of a Global Hydrogen Economy

    Science.gov (United States)

    Dubey, M.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.

    2003-12-01

    Rapid development in hydrogen fuel-cell technologies will create a strong impetus for a massive hydrogen supply and distribution infrastructure in the coming decades. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. Stratospheric ozone depletion would increase exposure to harmful ultraviolet radiation and increased risk to melanoma. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) is the principal source of uncertainty in our assessment. We propose global monitoring of hydrogen and its deuterium content to define a baseline and track its budget to responsibly prepare for a global hydrogen economy.

  18. Perspectives of a hydrogen-based energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Czakainski, M.

    1989-06-01

    In view of the depletion of fossil fuel resources, and of their environmental effects, research is going on worldwide to find alternative energy sources. Hydrogen has been raising high hopes in recent years and has made a career as a candidate substitute for fossil fuels. There is hydropower or solar energy for electrolytic production of hydrogen which by a catalytic, environmentally friendly process is re-convertable into water. Experimental facilities exist for testing the hydrogen technology, but it is too early now to give any prognosis on the data of technical maturity and commercial feasibility of the technology. The et team invited some experts for a discussion on the pros and cons of hydrogen technology, and on questions such as siting of installations, infrastructure, and economics. (orig./UA).

  19. Frontiers, Opportunities and Challenges for a Hydrogen Economy

    Science.gov (United States)

    Turner, John

    2015-03-01

    Energy carriers are the staple for powering the society we live in. Coal, oil, natural gas, gasoline and diesel all carry energy in chemical bonds, used in almost all areas of our civilization. But these carriers have a limited-use lifetime on this planet. They are finite, contribute to climate change and carry significant geopolitical issues. If mankind is to maintain and grow our societies, new energy carriers must be developed and deployed into our energy infrastructure. Hydrogen is the simplest of all the energy carriers and when refined from water using renewable energies like solar and wind, represents a sustainable energy carrier, viable for millennia to come. This talk with discuss the challenges for sustainable production of hydrogen, along with the promise and possible pathways for implementing hydrogen into our energy infrastructure.

  20. A singular facility scientific technological to promote the hydrogen economy

    International Nuclear Information System (INIS)

    Montes, M.

    2010-01-01

    Declining fossil fuel reserves raises concerns about new energy resources that will lead to energy systems based on distributed generation and active distribution systems that require new energy storage systems. Hydrogen is a good candidate to operate as storage and as energy carrier that still needs scientific and technological breakthroughs to facilitate their integration into this new energy culture. Spain has supported numerous public-private cooperative efforts that have culminated in the creation of the National Center for Hydrogen Technology Experiment and Fuel Cells. (Author)

  1. Reaping Environmental Benefits of a Global Hydrogen Economy: How Large, Fow Soon, and at What Risks?

    Science.gov (United States)

    Dubey, M. K.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.

    2004-12-01

    The Western world has taken an aggressive posture to transition to a global hydrogen economy. While numerous technical challenges need to be addressed to achieve this it is timely to examine the environmental benefits and risks of this transition. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the leak rates in global hydrogen infrastructure and the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) are principal sources of uncertainty in our assessment.

  2. Assessment of primary impacts of a hydrogen economy in New Zealand using UniSyD

    International Nuclear Information System (INIS)

    Leaver, Jonathan D.; Gillingham, Kenneth T.; Leaver, Luke H.T.

    2009-01-01

    Small economies such as New Zealand risk significant economic hardship without careful evaluation of alternatives to petroleum-based transportation due to the adverse effects of climate change and depleting international oil reserves. This paper uses an integrated multi-regional multi-fleet system dynamics model of New Zealand's energy economy to assess the primary impacts of alternative vehicle fleet technologies. Results suggest that hydrogen fuelled HICEs and FCVs may offer significantly greater economic savings than BEVs due to a much lower capital cost. Under our Base Case, 65% of the light fleet are HICEs and FCVs and 5% BEVs. Excluding hydrogen vehicles from the vehicle fleet can result in an average annual cost of US$562 per vehicle between 2015 and 2050. Co-production of hydrogen and electricity using coal gasification with carbon capture and storage is the dominant long term hydrogen production technology. (author)

  3. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    Science.gov (United States)

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-09-01

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  4. Perspectives for generation companies and the emerging hydrogen economy

    International Nuclear Information System (INIS)

    Cowan, N.

    2004-01-01

    'Full text:' Canadian and global power generation supply is evolving towards inclusion of emerging types of technologies for electricity production. Although much of Canadian electricity supply will continue to be derived from traditional sources in the foreseeable future the band for capital cost competitiveness is narrowing between the once clear-cut technological winners and emerging generation technologies creating opportunity for new technologies to commercialize in the market. OPG has been active in the development and commercialization of stationary high temperature fuel cells for several years. The major activity has been a partnering initiative to engineer and implement Solid Oxide Fuel Cell (SOFC) demonstration installations. The relationship with SOFC developer Siemens-Westinghouse out of Pittsburgh has allowed OPG to maintain an ongoing involvement in the emerging fuel cell industry, while exploring the broader implications of this technology for the power industry business model. OPG is part of the 'Hydrogen Village Partnership'. The Hydrogen Village will demonstrate and deploy various hydrogen production, storage and delivery techniques as well as applications of hydrogen such as fuel cells for stationary, transportation (mobile) and portable applications. OPG maintains an active role in the demonstration of emerging technologies for a number of reasons: 1) advancing commercialization of emerging generation technologies, 2) 'hands-on' participation in the deployment of such technology in order to gather and apply market knowledge 3) Involvement in developing technology as a part of commitment to sustainable development. (author)

  5. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    International Nuclear Information System (INIS)

    Tolley, George S.; Jones, Donald W.; Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-01-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, 'Overall Employment in a Hydrogen Economy', requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment (types) in the United States. As required by Section 1820, the present report considers: (1) Replacement effects of new goods and services; (2) International competition; (3) Workforce training requirements; (4) Multiple possible fuel cycles, including usage of raw materials; (5) Rates of market penetration of technologies; (6) Regional variations based on geography; and (7) Specific recommendations of the study Both the Administration's National Energy Policy and the Department's Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America's future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  6. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-07-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  7. Hydrogen storage - are we making progress?

    International Nuclear Information System (INIS)

    Blair, L.; Milliken, J.; Satyapal, S.

    2004-01-01

    'Full text:' The efficient storage of hydrogen in compact, lightweight systems that allow greater than 300-mile range has been identified as one of the major technical challenges facing the practical commercialization of fuel cell power systems for light-duty vehicles. Following the hydrogen vision announced by President Bush in his 2003 State of the Union address, the U.S. Department of Energy issued a Grand Challenge, soliciting ideas from universities, national laboratories, and industry. DOE's National Hydrogen Storage Project, an aggressive and innovative research program focused on materials R and D, will be launched in Fiscal Year 2005. An intensive effort is also underway in the private sector, both in the U.S. and abroad, to meet the challenging on-board hydrogen storage requirements. A historical perspective of hydrogen storage research and development will be provided and the current DOE technical targets for hydrogen storage systems will be discussed. The state-of-the-art in hydrogen storage will be summarized and recent progress assessed. Finally future research directions and areas of technical emphasis will be described. (author)

  8. Power to gas. The final breakthrough for the hydrogen economy?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler-Goldstein, Raphael [Germany Trade and Invest (GTAI), Paris (France); Rastetter, Aline [Alphea Hydrogene, Forbach (France)

    2013-04-01

    In Germany more than 20% of the energy mix is made up of renewable energy and its share is rapidly increasing. The federal government expects renewables to account for 35% of Germany's electricity consumption by 2020, 50% by 2030 and 80% by 2050. According to the German Energy Agency, multi-billion euro investments in energy storage are expected by 2020 in order to reach these goals. The growth of this fluctuating energy supply has created demand for innovative storage options in Germany and it is accelerating the development of technologies in this field. Along with batteries and smart grids, hydrogen is expected to be one of the lead technologies. 2010 a commercialization roadmap for wind hydrogen was set up by the two northern federal states of Hamburg and Schleswig-Holstein with the goal of utilizing surplus wind power for the electrolytic production of hydrogen. With the creation of the 'performing energy initiative', 2011, Brandenburg and Lower Saxony joined this undertaking. The aim of this initiative is to set up demonstration projects in order to develop and optimize wind-hydrogen hybrid systems and prepare their commercialization for the time after 2020. Beside the conversion of hydrogen into electricity and fuel for cars, further markets like raw material for the chemical, petrochemical, metallurgy and food industry are going to be addressed. Considering the fact there are over 40 caves currently used for natural gas storage with a total volume of 23.5 billion cubic meters and 400 000 km gas grid available in Germany, the German Technical and Scientific Association for Gas and Water sees opportunities for hydrogen to be fed into the existing natural gas grid network. The name of this concept is power-to-gas. According to the current DVGW-Standards natural gas in Germany can contain up to 5% hydrogen. The GERG, European Group on the Gas Research sees potential to increase this amount up to 6% to 20%. Power-to-gas could serve both for fuel and for the

  9. Nevada`s role in the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Vaeth, T. [Dept. of Energy, Las Vegas, NV (United States)

    1997-12-31

    The paper discusses the promise of hydrogen and its possible applications, barriers to its development, the role that the Nevada Test Site could play if it were made more available to public and private institutions for research, and the ``clean city`` concept being developed jointly with California, Utah, and Nevada. This concept would create a ``clean corridor`` along the route from Salt Lake City through Reno to Sacramento, Los Angeles, Las Vegas, and back to Salt Lake City.

  10. The hydrogen energy economy: its long-term role in greenhouse gas reduction

    Energy Technology Data Exchange (ETDEWEB)

    Geoff Dutton; Abigail Bristow; Matthew Page; Charlotte Kelly; Jim Watson; Alison Tetteh [CCLRC Rutherford Appleton Laboratory, Didcot (United Kingdom). Energy Research Unit (ERU)

    2005-01-15

    The potential contribution and viability of the hydrogen energy economy towards reducing UK carbon dioxide emissions in the time horizon to 2050 has been assessed using a quantitative model of the UK energy system in the context of a set of diverse socio-economic scenarios. It is argued that different sets of prevailing circumstances are likely to result in very different opportunities for hydrogen and hence very different transition pathways and ultimate penetration levels. The decision on whether to strategically encourage a transition to the hydrogen economy and the ultimate environmental benefits of such a transformation will depend on the outcome of a number of important political and social decisions. These include the acceptability of large scale carbon dioxide sequestration (hydrogen derived from fossil fuels), decisions about land-use (hydrogen from biomass), a possible doubling (or more) of the current electricity production capacity with a high penetration of renewable electricity (hydrogen from electrolysis of water), and/or the public acceptability of a large scale nuclear renaissance (hydrogen from electrolysis of water or from thermo-chemical cycles). Any rapid transition to a fully developed hydrogen economy would require a contribution from at least some and possibly all of these sources. Such a transition could result in a marked decrease in carbon dioxide emissions over the long term, but might even result in increased emissions within the shorter term (due to the initial use of hydrogen derived from fossil fuels without carbon dioxide sequestration or from the bulk grid electricity supply resulting in increased load factors and lifetimes of old fossil-fired power plant to meet the increased overall demand). 47 refs., 45 figs., 19 tabs., 3 apps.

  11. Effects of a transition to a hydrogen economy on employment in the United States Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-07-01

    DOE's Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress estimates the employment effects of a transformation of the U.S. economy to the use of hydrogen in the 2020 to 2050 timeframe. This report fulfills requirements of section 1820 of the Energy Policy Act of 2005.

  12. United States Energy Association Final Report International Partnership for the Hydrogen Economy Ministerial Conference

    Energy Technology Data Exchange (ETDEWEB)

    William L. Polen

    2006-04-05

    This report summarizes the activities of the United States Energy Association as it conducted the initial Ministerial Meeting of the International Partnership for the Hydrogen Economy in Washington, DC on November 18-21, 2003. The report summarizes the results of the meeting and subsequent support to the Office of Energy Efficiency and Renewable Energy in its role as IPHE Secretariat.

  13. System-level energy efficiency is the greatest barrier to development of the hydrogen economy

    International Nuclear Information System (INIS)

    Page, Shannon; Krumdieck, Susan

    2009-01-01

    Current energy research investment policy in New Zealand is based on assumed benefits of transitioning to hydrogen as a transport fuel and as storage for electricity from renewable resources. The hydrogen economy concept, as set out in recent commissioned research investment policy advice documents, includes a range of hydrogen energy supply and consumption chains for transport and residential energy services. The benefits of research and development investments in these advice documents were not fully analyzed by cost or improvements in energy efficiency or green house gas emissions reduction. This paper sets out a straightforward method to quantify the system-level efficiency of these energy chains. The method was applied to transportation and stationary heat and power, with hydrogen generated from wind energy, natural gas and coal. The system-level efficiencies for the hydrogen chains were compared to direct use of conventionally generated electricity, and with internal combustion engines operating on gas- or coal-derived fuel. The hydrogen energy chains were shown to provide little or no system-level efficiency improvement over conventional technology. The current research investment policy is aimed at enabling a hydrogen economy without considering the dramatic loss of efficiency that would result from using this energy carrier.

  14. A hydrogen economy: an answer to future energy problems. [Overview of 1974 THEME Conference

    Energy Technology Data Exchange (ETDEWEB)

    Seifritz, W [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1975-06-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems.

  15. The hydrogen economy urgently needs environmentally sustainable hydroelectricity

    International Nuclear Information System (INIS)

    Goodland, R.

    1995-01-01

    Only two sources of energy were said to have the capacity to bridge the transition to fully sustainable and renewable energy, namely natural gas and hydro. The argument was made that because of this advantage, both forms will have to be promoted fast, since the transition to sustainable energy is urgent. In so far as natural gas supplies are concerned, it was estimated that they will last for perhaps the next 50 years, whereas hydroelectric potential is practically unlimited. Developing nations could vastly accelerate their development, reduce poverty and approach sustainability by exporting hydro to industrial countries. Similarly, industrial nations switching from fossil fuels to hydrogen could move up the environmental ranking, and significantly help alleviating global pollution and climate risks. Environmental ranking of new energy sources, world reservoirs of hydroelectric power, environmental and social ranking of hydro sites, the environmental impacts of hydro projects, and the concept of environmental sustainability in hydro reservoirs, were summarized. Greater acceptance of the need for sustainable development by the hydro industry was urged, along with more care in selecting hydro development sites with sustainability as a prime objective. 23 refs., 6 figs

  16. What governs the transition to a sustainable hydrogen economy? Articulating the relationship between technologies and political institutions

    International Nuclear Information System (INIS)

    Hisschemoeller, Matthijs; Bode, Ries; Kerkhof, Marleen van de

    2006-01-01

    There is a lack of integrated knowledge on the transition to a sustainable energy system. The paper focuses on the relationship between technologies and institutions in the field of hydrogen from the perspective of political theory. The paper unfolds four paradigms of governance: 'Governance by policy networking', Governance by government', 'Governance by corporate business', and 'Governance by challenge', and looks into the major line of argument in support of these paradigms and into their possible bias with respect to hydrogen options. Each of these paradigms reveals an institutional bias in that it articulates specific opportunities for collaboration and competition in order to stimulate the transition to a sustainable hydrogen economy. The paper makes the observation that there is a compelling need to reframe fashionable discourse such as the necessary shift from government to governance or from government to market. Instead, specific questions with respect to the impact of guiding policy frameworks on innovation will highlight that neither 'neutral' nor 'optimal' frameworks for policy making exist, where competing hydrogen options are at stake. The identification of paradigms of governance maybe considered a methodological device for (participator) policy analysis

  17. Hydrogen storage materials and method of making by dry homogenation

    Science.gov (United States)

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  18. Making the economy work for youth | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2013-08-06

    Aug 6, 2013 ... English · Français ... For economies to be more inclusive for youth, it's important to create training ... With IDRC support, Lemos and his team have led projects that demonstrated the value of using open models to ... This relative disadvantage is evident despite notable advances in educational levels and ...

  19. Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    Directory of Open Access Journals (Sweden)

    Y.-H. Percival Zhang

    2011-01-01

    Full Text Available The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology—cell-free synthetic pathway biotransformation (SyPaB. Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms or catalysts cannot complete, for example, C6H10O5 (aq + 7 H2O (l à 12 H2 (g + 6 CO2 (g (PLoS One 2007, 2:e456. Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from proton exchange membrane fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.

  20. Making Ends Meet: Insufficiency and Work-Family Coordination in the New Economy

    Science.gov (United States)

    Edgell, Penny; Ammons, Samantha K.; Dahlin, Eric C.

    2012-01-01

    The "New Economy" features 24/7 employment, varied work schedules, job insecurity, and lower benefits and wages, which lead to disparities in experiences of security and sufficiency. This study investigates sufficiency concerns in the New Economy; who is having trouble making ends meet? Sufficiency concerns are subjective perceptions that work is…

  1. A dynamic general equilibrium analysis on fostering a hydrogen economy in Korea

    International Nuclear Information System (INIS)

    Bae, Jeong Hwan; Cho, Gyeong-Lyeob

    2010-01-01

    Hydrogen is anticipated to become one of the major alternative energy technologies for a sustainable energy system. This study analyzes the dynamic economic impacts of building a hydrogen economy in Korea employing a dynamic Computable General Equilibrium (CGE) model. As a frontier technology, hydrogen is featured as having a slow diffusion rate due to option value, positive externality, resistance of old technology, and complementary vintages. Without government intervention, hydrogen-derived energy will supply up to 6.5% of final energy demand by 2040. Simulation outcomes show that as price subsidy rates increase by 10%, 20%, and 30%, hydrogen demand will increase by 9.2%, 15.2%, and 37.7%, respectively, of final energy demand by 2040. The output of the transportation sector will increase significantly, while demands for oil and electricity will decline. Demands for coal and LNG will experience little change. Household consumption will decline because of the increase of income taxes. Overall GDP will increase because of the increase in exports and investments. CO 2 emission will decline for medium and high subsidy rate cases, but increase for low subsidy cases. Ultimately, subsidy policy on hydrogen will not be an effective measure for mitigating CO 2 emission in Korea when considering dynamic general equilibrium effects. (author)

  2. Solar Hydrogen Energy Systems Science and Technology for the Hydrogen Economy

    CERN Document Server

    Zini, Gabriele

    2012-01-01

    It is just a matter of time when fossil fuels will become unavailable or uneconomical to retrieve. On top of that, their environmental impact is already too severe. Renewable energy sources can be considered as the most important substitute to fossil energy, since they are inexhaustible and have a very low, if none, impact on the environment. Still, their unevenness and unpredictability are drawbacks that must be dealt with in order to guarantee a reliable and steady energy supply to the final user. Hydrogen can be the answer to these problems. This book presents the readers with the modeling, functioning and implementation of solar hydrogen energy systems, which efficiently combine different technologies to convert, store and use renewable energy. Sources like solar photovoltaic or wind, technologies like electrolysis, fuel cells, traditional and advanced hydrogen storage are discussed and evaluated together with system management and output performance. Examples are also given to show how these systems are ...

  3. Hawaii hydrogen energy economy: production and distribution of hydrogen and oxygen in the district of north Kohala, the Big Island of Hawaii: a global prototype

    International Nuclear Information System (INIS)

    Russel, G.

    1993-01-01

    This paper shows how a community which is totally oil dependent can be transformed into a hydrogen fuel based economy by using the concept of setting hydrogen zones, with the use of off-peak hydro-electrical power and renewable energies. An existing hydro-electric plant in Hawaii could serve as a local prototype. 2 figs

  4. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy

    Science.gov (United States)

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.

    2009-04-01

    "Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations

  5. Potential Applications of Friction Stir Welding to the Hydrogen Economy. Hydrogen Regional Infrastructure Program In Pennsylvania, Materials Task

    Energy Technology Data Exchange (ETDEWEB)

    Brendlinger, Jennifer [Concurrent Technologies Corporation, Johnstown, PA (United States)

    2009-07-17

    Friction Stir Welding (FSW) is a solid-state welding technique developed by The Welding Institute (TWI) of Cambridge, UK in the early 1990’s. The process uses a non-consumable rotating tool to develop frictional heat and plastically deform workpieces to be joined, resulting in a solid-state weld on the trailing side of the advancing tool. Since the materials to be joined are not melted, FSW results in a finer grain structure and therefore enhanced properties, relative to fusion welds. And unlike fusion welding, a relatively small number of key process parameters exist for FSW: tool rotational speed, linear weld velocity and force perpendicular to the joining surface. FSW is more energy efficient than fusion welding and can be accomplished in one or two passes, versus many more passes required of fusion welding thicker workpieces. Reduced post-weld workpiece distortion is another factor that helps to reduce the cost of FSW relative to fusion welding. Two primary areas have been identified for potential impact on the hydrogen economy: FSW of metallic pipes for hydrogen transmission and FSW of aluminum pressure vessels for hydrogen storage. Both areas have been under active development and are explored in this paper.

  6. Making Choices about Hydrogen : Transport Issues for Developing ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    30 sept. 2008 ... Couverture du livre Making Choices about Hydrogen : Transport Issues for Developing Countries ... International Water Resources Association, in close collaboration with IDRC, is holding a webinar titled “Climate change and adaptive water management: Innovative solutions from the Global South”.

  7. Is carbon lock-in blocking investments in the hydrogen economy? A survey of actors' strategies

    International Nuclear Information System (INIS)

    Bento, Nuno

    2010-01-01

    The difficulty of introducing hydrogen and fuel cells in the market stems from the fact that they are not an evolutionary innovation such as biofuels or hybrid cars. Instead they create a disruption in technological utilization. The domination of oil technologies sets a socio-economical context favoring actors involved in the current paradigm, and gives less opportunity to alternative fuels to develop and challenge the status quo. If this hypothesis is correct, then companies interested in the hydrogen economy would not become active because of an unstable context or contradictory interests concerning the replacement of the present system. A review of actions and announcements of main actors shows that technology readiness and the absence of infrastructure are the major justifications to delay investments. Some measures are discussed, which could be deployed in order to reduce uncertainties, such as regulation of carbon emissions from cars, technological subvention, and partnerships for infrastructure implementation.

  8. An investment-led approach to analysing the hydrogen energy economy in the UK

    International Nuclear Information System (INIS)

    Houghton, T.; Cruden, A.

    2009-01-01

    The authors propose an alternative, investment-led approach to analysing the potential for the development of hydrogen energy in the UK. The UK economy is relatively sensitive to movements in world fossil fuels markets since the energy sector contributes at least 5% of UK GDP and represents an asset pool of at least pound 230 billion. Much of the ongoing research to assess possible scenarios for the development of alternatives to existing energy systems, including hydrogen energy, in the UK is built around the cost-optimising MARKAL model. The authors believe that this approach offers an incomplete picture of hydrogen energy deployment since it ignores the mechanisms dictating the flow of commercial capital to the sector and they suggest an alternative model based on the risk-adjusted value proposition. Initial analysis shows that valuation differentials already exist between companies in the fossil fuel, utilities and fuel cell sectors and that this might be exploited to the advantage of investors thus affecting the speed of development in hydrogen energy. It should be noted that the following represents work in progress and the authors intend to publish an extended analysis in due course. (author)

  9. The hydrogen economy: a threat or an opportunity for lead-acid batteries?

    Science.gov (United States)

    Rand, D. A. J.; Dell, R. M.

    There is mounting concern over the sustainability of global energy supplies. Among the key drivers are: (i) global warming, ocean surface acidification and air pollution, which imply the need to control and reduce anthropogenic emissions of greenhouse gases, especially emissions from transportation and thermal power stations; (ii) the diminishing reserves of oil and natural gas; (iii) the need for energy security adapted to each country, such as decreasing the dependence on fossil fuel imports (in particular, the vulnerability to volatile oil prices) from regions where there is political or economic instability; (iv) the expected growth in world population with the ever-increasing aspiration for an improved standard-of-living for all, especially in developing and poor nations. Hydrogen is being promoted world-wide as a total panacea for energy problems. As a versatile carrier for storing and transporting energy from any one of a myriad of sources to an electricity generator, it is argued that hydrogen will eventually replace, or at least greatly reduce, the reliance on fossil fuels. Not unexpectedly, the building of a 'hydrogen economy' presents great scientific and technological challenges in production, delivery, storage, conversion, and end-use. In addition, there are many policy, regulatory, economic, financial, investment, environmental and safety questions to be addressed. Notwithstanding these obstacles, it is indeed plausible that hydrogen will become increasingly deployed and will compete with traditional systems of energy storage and supply. Moreover, the case for hydrogen will be greatly strengthened if fuel cells, which are the key enabling technology, become more reliable, more durable, and less expensive. This paper examines the prospects for hydrogen as a universal energy-provider and considers the impact that its introduction might have on the present deployment of lead-acid batteries in mobile, stationary and road transportation applications.

  10. Economy

    OpenAIRE

    Haring, Ben

    2009-01-01

    The economy of ancient Egypt is a difficult area of study due to the lack of preservation of much data (especially quantitative data); it is also a controversial subject on which widely divergent views have been expressed. It is certain, however, that the principal production and revenues of Egyptian society as a whole and of its individual members was agrarian, and as such, dependent on the yearly rising and receding of the Nile. Most agricultural producers were probably self-sufficient tena...

  11. Reconnecting the technology characterisation of the hydrogen economy to contexts of consumption

    International Nuclear Information System (INIS)

    Hodson, Mike; Marvin, Simon

    2006-01-01

    This paper addresses a partial but powerful view of the hydrogen economy known as 'technology characterisation' (TC). TC offers particular representations of the supply of hydrogen technologies through 'measuring' the 'state of the art'. This view is seen as an important means of generating political and policy support for technological developments through outlining technical 'possibilities' and 'options' in relation to 'costs'. Through drawing on 10 TC documents a series of practices and issues are outlined. These documents are subjected to critical interrogation as a means of saying not how TC should be applied but in outlining how it often is applied. Our analysis of these documents claims that TC conceives of technological change through a process of narrowly framing understanding of what 'relevant' costs and technological possibilities are. We claim, through this critique, that this dominant way of narrowly characterising technological change in terms of the supply of technology would benefit from an appreciation of alternative 'ways of seeing' the development of hydrogen technologies, particularly in relation to 'contexts' of their appropriation, consumption and development. We suggest that this can be done through the development of two alternative ways of seeing: a Large Technical Systems approach which addresses wider systemic considerations, and localised 'niche' developments in nurtured spaces of reflexive social learning. Through subjecting the practices of a dominant way of seeing technological development-TC-to critique this opens up the possibilities for TC practitioners to reflect on the strengths and shortcomings of their own practices. This, in addition to outlining ways of seeing the appropriation and innovation of hydrogen technologies in specific contexts, through an LTS and niche approach, offers the potential for a dialogue between the supply and the contextualised appropriation of hydrogen technologies and thus for engaging disconnected

  12. Generation IV nuclear energy systems and hydrogen economy. New progress in the energy field in the 21st century

    International Nuclear Information System (INIS)

    Zang Mingchang

    2004-01-01

    The concept of hydrogen economy was initiated by the United States and other developed countries in the turn of the century to mitigate anxiety of national security due to growing dependence on foreign sources of energy and impacts on air quality and the potential effects of greenhouse gas emissions. Hydrogen economy integrates the primary energy used to produce hydrogen as a future energy carrier, hydrogen technologies including production, delivery and storage, and various fuel cells for transportation and stationary applications. A new hydrogen-based energy system would created as an important solution in the 21st century, flexible, affordable, safe, domestically produced, used in all sectors of the economy and in all regions of the country, if all the R and D plans and the demonstration come to be successful in 20-30 years. Among options of primary energy. Generation IV nuclear energy under development is particularly well suited to hydrogen production, offering the competitive position of large-scale hydrogen production with near-zero emissions. (author)

  13. Women workers and the politics of claims-making in a globalizing economy

    OpenAIRE

    Kabeer, Naila

    2015-01-01

    The paper analyses the evolving politics of claims-making by women workers in the Global South in the context of a globalized economy. It addresses the following questions. What kinds of claims are prioritized in relation to women workers? Who is making these claims? To whom are they addressed? What strategies are pursued to advance these claims? Which claims are heard and acted on - and which go unheard? The paper considers three categories of women workers: those working in global value cha...

  14. Fuel Cell Development for NASA's Human Exploration Program: Benchmarking with "The Hydrogen Economy"

    Science.gov (United States)

    Scott, John H.

    2007-01-01

    The theoretically high efficiency and low temperature operation of hydrogen-oxygen fuel cells has motivated them to be the subject of much study since their invention in the 19th Century, but their relatively high life cycle costs kept them as a "solution in search of a problem" for many years. The first problem for which fuel cells presented a truly cost effective solution was that of providing a power source for NASA's human spaceflight vehicles in the 1960 s. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. This development program continues to place its highest priorities on requirements for minimum system mass and maximum durability and reliability. These priorities drive fuel cell power plant design decisions at all levels, even that of catalyst support. However, since the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of commercial applications. This investment is bringing about notable advances in fuel cell technology, but, as these development efforts place their highest priority on requirements for minimum life cycle cost and field safety, these advances are yielding design solutions quite different at almost every level from those needed for spacecraft applications. This environment thus presents both opportunities and challenges for NASA's Human Exploration Program

  15. Panel discussion: Building Canadian companies and capabilities in the transition to the hydrogen economy

    International Nuclear Information System (INIS)

    Beck, N.

    2004-01-01

    'Full text:' Moderated by Nick Beck from Natural Resources Canada, this panel discussion will be prefaced by a keynote address by Dr. Arthur Carty, Canada's National Science Advisor and former President of the National Research Council of Canada, who will discuss technology commercialization in Canada and how the Government of Canada and industry collaborate to achieve their respective priorities. This session will illustrate innovative government and industry partnerships from early research and development to project demonstration, and adoption into the market-place. Panelists from across the Canadian hydrogen and fuel cell innovation spectrum will provide an overview of their respective company's partnerships with the Government of Canada and speak to how these alliances have helped their company to pioneer new technology, move technology from the lab to the marketplace, and/or become more competitive. Opportunities and challenges that companies have faced in their partnerships with government will be shared with the audience. The Panel Members are: Mr. Stephen Kukucha, Mr. Chris Reid, Mr. Robb Thompson, Mr. Pierre Rivard, Mr. John Shen, Mr. R. Randall MacEwen, Mr. Jonathan Wilkinson. Companies will also be showcasing their contribution in advancing Canada's and the world's transition to the hydrogen economy. (author)

  16. Bridging the European Wind Energy Market and a Future Renewable Hydrogen-Inclusive Economy. A Dynamic Techno-economic Assessment

    International Nuclear Information System (INIS)

    Shaw, S.; Peteves, S.D.

    2006-01-01

    The study establishes the link between the growing wind market and the emerging hydrogen market of the European Union, in a so-called 'wind-hydrogen strategy'. It considers specifically the diversion of wind electricity, as a wind power control mechanism in high wind penetration situations, for the production of renewable electrolytic hydrogen - a potentially important component of a renewable hydrogen-inclusive economy. The analysis examines the long-term competitiveness of a wind-hydrogen strategy via cost-benefit assessment. It indicates the duration and extent to which (financial) support, if any, would need to be provided in support of such a strategy, and the influence over time of certain key factors on the outcome

  17. Business management practices in the power industry: Decision making in a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.H. [Fieldstone Private Capital Group, New York, NY (United States); Rosel, V. [Fieldstone Private Capital Group, Prague (Czechoslovakia)

    1995-12-01

    Management of a free market power industry, or managing the transition from a planned economy to a free market one, is driven by a fundamental economic premise - it is unrealistic (and economically unsound) to try to shelter end users (manufacturers or otherwise) from the true cost of energy: (i) energy prices are a function of fuel inputs (ii) fuel inputs are world priced (iii) end users must pay prices based on true costs Trying to counter any of these dictates will cause economic inefficiencies and misallocations. Managers of energy production in a free market economy must therefore learn to acquire data, and learn to extrapolate. As information is never complete, or perfect, managers must learn to consider contingencies, alternatives and options. In a free market economy, the decision to build a power facility is not controlled simply by the recognition of a perceived need for more power in an area. Because survival in a free market economy requires making a profit, as part for the decision process managers must: (i) talk to their customers to determine power needs into the future (ii) talk to their input suppliers, and arrange contracts (iii) make sure that there is a spread between cost and revenue As stated this is a simple recipe, but is difficult in practice. To perform any forecasting, managers must acquire control over cost, so as to have a base from which to judge the continued profitability or potential profitability, of any current activity or future ventures. It should be noted that planning for the future is difficult at any time but even more so when moving through an era where in the entire economy is undergoing systemic changes. Historic customer base, and historic supply arrangements, may not mean much. Therefore, managers must keep acquiring information, and updating forecasts.

  18. THEN-2: The 2nd COE-INES international workshop on 'toward hydrogen economy; what nuclear can contribute and how'. Proposal and presentations

    International Nuclear Information System (INIS)

    2006-01-01

    The workshop of the title was held on topics; nuclear hydrogen system in cooperation with other non-nuclear energy systems related with hydrogen production, storage and transportation, and synthesized fuel productions, hydrogen energy management and economy, consisted of 3 keynote lectures and 4 topical sessions by 15 presenters and a panel discussion session. (J.P.N.)

  19. Basic Research Needs for the Hydrogen Economy. Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage and Use, May 13-15, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Dresselhaus, M; Crabtree, G; Buchanan, M; Mallouk, T; Mets, L; Taylor, K; Jena, P; DiSalvo, F; Zawodzinski, T; Kung, H; Anderson, I S; Britt, P; Curtiss, L; Keller, J; Kumar, R; Kwok, W; Taylor, J; Allgood, J; Campbell, B; Talamini, K

    2004-02-01

    The coupled challenges of a doubling in the world's energy needs by the year 2050 and the increasing demands for ''clean'' energy sources that do not add more carbon dioxide and other pollutants to the environment have resulted in increased attention worldwide to the possibilities of a ''hydrogen economy'' as a long-term solution for a secure energy future.

  20. The hydrogen value chain: applying the automotive role model of the hydrogen economy in the aerospace sector to increase performance and reduce costs

    Science.gov (United States)

    Frischauf, Norbert; Acosta-Iborra, Beatriz; Harskamp, Frederik; Moretto, Pietro; Malkow, Thomas; Honselaar, Michel; Steen, Marc; Hovland, Scott; Hufenbach, Bernhard; Schautz, Max; Wittig, Manfred; Soucek, Alexander

    2013-07-01

    Hydrogen will assume a key role in Europe's effort to adopt its energy dependent society to satisfy its needs without releasing vast amounts of greenhouse gases. The paradigm shift is so paramount that one speaks of the "Hydrogen Economy", as the energy in this new and ecological type of economy is to be distributed by hydrogen. However, H2 is not a primary energy source but rather an energy carrier, a means of storing, transporting and distributing energy, which has to be generated by other means. Various H2 storage methods are possible; however industries' favourite is the storage of gaseous hydrogen in high pressure tanks. The biggest promoter of this storage methodology is the automotive industry, which is currently preparing for the generation change from the fossil fuel internal combustion engines to hydrogen based fuel cells. The current roadmaps foresee a market roll-out by 2015, when the hydrogen supply infrastructure is expected to have reached a critical mass. The hydrogen economy is about to take off as being demonstrated by various national mobility strategies, which foresee several millions of electric cars driving on the road in 2020. Fuel cell cars are only one type of "electric car", battery electric as well as hybrid cars - all featuring electric drive trains - are the others. Which type of technology is chosen for a specific application depends primarily on the involved energy storage and power requirements. These considerations are very similar to the ones in the aerospace sector, which had introduced the fuel cell already in the 1960s. The automotive sector followed only recently, but has succeeded in moving forward the technology to a level, where the aerospace sector is starting considering to spin-in terrestrial hydrogen technologies into its technology portfolio. Target areas are again high power/high energy applications like aviation, manned spaceflight and exploration missions, as well as future generation high power telecommunication

  1. Hydrogen Economy Model for Nearly Net-Zero Cities with Exergy Rationale and Energy-Water Nexus

    Directory of Open Access Journals (Sweden)

    Birol Kılkış

    2018-05-01

    Full Text Available The energy base of urban settlements requires greater integration of renewable energy sources. This study presents a “hydrogen city” model with two cycles at the district and building levels. The main cycle comprises of hydrogen gas production, hydrogen storage, and a hydrogen distribution network. The electrolysis of water is based on surplus power from wind turbines and third-generation solar photovoltaic thermal panels. Hydrogen is then used in central fuel cells to meet the power demand of urban infrastructure. Hydrogen-enriched biogas that is generated from city wastes supplements this approach. The second cycle is the hydrogen flow in each low-exergy building that is connected to the hydrogen distribution network to supply domestic fuel cells. Make-up water for fuel cells includes treated wastewater to complete an energy-water nexus. The analyses are supported by exergy-based evaluation metrics. The Rational Exergy Management Efficiency of the hydrogen city model can reach 0.80, which is above the value of conventional district energy systems, and represents related advantages for CO2 emission reductions. The option of incorporating low-enthalpy geothermal energy resources at about 80 °C to support the model is evaluated. The hydrogen city model is applied to a new settlement area with an expected 200,000 inhabitants to find that the proposed model can enable a nearly net-zero exergy district status. The results have implications for settlements using hydrogen energy towards meeting net-zero targets.

  2. South Africa's opportunity to maximise the role of nuclear power in a global hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Greyvenstein, R. [Pebble Bed Modular Reactor (PBMR) (Pty) Ltd. (South Africa)], E-mail: renee.greyvenstein@pbmr.co.za; Correia, M. [Pebble Bed Modular Reactor (PBMR) (Pty) Ltd. (South Africa)], E-mail: michael.correia@pbmr.co.za; Kriel, W. [Pebble Bed Modular Reactor (PBMR) (Pty) Ltd. (South Africa)], E-mail: willem.kriel@pbmr.us

    2008-11-15

    Global concern for increased energy demand, increased cost of natural gas and petroleum, energy security and environmental degradation are leading to heightened interest in using nuclear energy and hydrogen to leverage existing hydrocarbon reserves. The wasteful use of hydrocarbons can be minimised by using nuclear as a source of energy and water as a source of hydrogen. Virtually all hydrogen today is produced from fossil fuels, which give rise to CO{sub 2} emissions. Hydrogen can be cleanly produced from water (without CO{sub 2} pollution) by using nuclear energy to generate the required electricity and/or process heat to split the water molecule. Once the clean hydrogen has been produced, it can be used as feedstock to fuel cell technologies, or in the nearer term as feedstock to a coal-to-liquids process to produce cleaner synthetic liquid fuels. Clean liquid fuels from coal - using hydrogen generated from nuclear energy - is an intermediate step for using hydrogen to reduce pollution in the transport sector; simultaneously addressing energy security concerns. Several promising water-splitting technologies have been identified. Thermo-chemical water-splitting and high-temperature steam electrolysis technologies require process temperatures in the range of 850 deg. C and higher for the efficient production of hydrogen. The pebble bed modular reactor (PBMR), under development in South Africa, is ideally suited to generate both high-temperature process heat and electricity for the production of hydrogen. This paper will discuss South Africa's opportunity to maximise the use of its nuclear technology and national resources in a global hydrogen economy.

  3. The marriage of car sharing and hydrogen economy: A possible solution to the main problems of urban living

    Energy Technology Data Exchange (ETDEWEB)

    Kriston, Akos; Inzelt, Gyoergy [Department of Physical Chemistry, Institute of Chemistry, Eoetvoes Lorand University, 1117 Budapest, Pazmany Peter setany 1/A (Hungary); Szabo, Tamas [Department of Applied Analysis and Computational Mathematics, Institute of Mathematics, Eoetvoes Lorand University, 1117 Budapest, Pazmany Peter setany 1/C (Hungary)

    2010-12-15

    The hydrogen economy is seeking its killer application, which can break down the 'chicken and egg problem', i.e., no hydrogen powered car can be sold if it cannot be refueled, and nobody will invest to a hydrogen refueling station if no one has a hydrogen powered vehicle. The applications like material handling, backup-power, and small stationary combined heat and power (CHP) engines are the most promising candidates, which may show financial return in 3-5 years. The replacement of fossil fuel with hydrogen in the automotive industry offers a substantial reduction of the harmful environmental effects, however, it is still the most challenging because of the absence of the hydrogen infrastructure, the price and the lifetime of the fuel cell (FC) engine and the unsuitable regulations, as well. In this work a new possible market was identified and analyzed in different points of view. This market segment is a car-sharing system operating with small urban vehicles, which not only can solve some environmental problems (e.g., air pollution and CO{sub 2} emission), but also helps to reduce congestion, secure energy supply and ease its distribution. First, a sensitivity analysis was done and the key performance indicators of the system were determined. The financial return of a hydrogen-based car-sharing system was examined carefully as a function of the rated power of the fuel cell power train, the way of hydrogen supply, the cost of the hydrogen and the size of the car fleet. Finally, a possible hydrogen-based car-sharing service was designed and optimized to the downtown of Budapest, Hungary. A sustainable system was proposed, which can satisfy the needs of the business (i.e., profitability) and the environment. (author)

  4. The marriage of car sharing and hydrogen economy: A possible solution to the main problems of urban living

    International Nuclear Information System (INIS)

    Kriston, Akos; Inzelt, Gyoergy; Szabo, Tamas

    2010-01-01

    The hydrogen economy is seeking its killer application, which can break down the 'chicken and egg problem', i.e., no hydrogen powered car can be sold if it cannot be refueled, and nobody will invest to a hydrogen refueling station if no one has a hydrogen powered vehicle. The applications like material handling, backup-power, and small stationary combined heat and power (CHP) engines are the most promising candidates, which may show financial return in 3-5 years. The replacement of fossil fuel with hydrogen in the automotive industry offers a substantial reduction of the harmful environmental effects, however, it is still the most challenging because of the absence of the hydrogen infrastructure, the price and the lifetime of the fuel cell (FC) engine and the unsuitable regulations, as well. In this work a new possible market was identified and analyzed in different points of view. This market segment is a car-sharing system operating with small urban vehicles, which not only can solve some environmental problems (e.g., air pollution and CO 2 emission), but also helps to reduce congestion, secure energy supply and ease its distribution. First, a sensitivity analysis was done and the key performance indicators of the system were determined. The financial return of a hydrogen-based car-sharing system was examined carefully as a function of the rated power of the fuel cell power train, the way of hydrogen supply, the cost of the hydrogen and the size of the car fleet. Finally, a possible hydrogen-based car-sharing service was designed and optimized to the downtown of Budapest, Hungary. A sustainable system was proposed, which can satisfy the needs of the business (i.e., profitability) and the environment. (author)

  5. Emission scenarios for a global hydrogen economy and the consequences for global air pollution

    NARCIS (Netherlands)

    van Ruijven, B.J.; Lamarque, J.F.; van Vuuren, D.P.; Kram, T.; Eerens, H.

    2011-01-01

    Hydrogen is named as possible energy carrier for future energy systems. However, the impact of large-scale hydrogen use on the atmosphere is uncertain. Application of hydrogen in clean fuel cells reduces emissions of air pollutants, but emissions from hydrogen production and leakages of molecular

  6. Integrative CO2 Capture and Hydrogenation to Methanol with Reusable Catalyst and Amine: Toward a Carbon Neutral Methanol Economy.

    Science.gov (United States)

    Kar, Sayan; Sen, Raktim; Goeppert, Alain; Prakash, G K Surya

    2018-02-07

    Herein we report an efficient and recyclable system for tandem CO 2 capture and hydrogenation to methanol. After capture in an aqueous amine solution, CO 2 is hydrogenated in high yield to CH 3 OH (>90%) in a biphasic 2-MTHF/water system, which also allows for easy separation and recycling of the amine and catalyst for multiple reaction cycles. Between cycles, the produced methanol can be conveniently removed in vacuo. Employing this strategy, catalyst Ru-MACHO-BH and polyamine PEHA were recycled three times with 87% of the methanol producibility of the first cycle retained, along with 95% of catalyst activity after four cycles. CO 2 from dilute sources such as air can also be converted to CH 3 OH using this route. We postulate that the CO 2 capture and hydrogenation to methanol system presented here could be an important step toward the implementation of the carbon neutral methanol economy concept.

  7. Making choices about hydrogen: Transport issues for developing ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    12.6 Malaysian government hydrogen fuel-cell research, development and ...... Policies, promises and practices: The application of hydrogen fuel cells in the transport ... This contrasts with the internal combustion engine, whose principles were ..... through annual registration fees and taxes on motor vehicles and motor fuel.

  8. IAEA Activities on Application of Nuclear Techniques in Development and Characterization of Materials for Hydrogen Economy

    International Nuclear Information System (INIS)

    Salame, P.; Zeman, A.; Mulhauser, F.

    2011-01-01

    Hydrogen and fuel cells can greatly contribute to a more sustainable less carbon-dependent global energy system. An effective and safe method for storage of hydrogen in solid materials is one of the greatest technologically challenging barriers of widespread introduction of hydrogen in global energy systems. However, aspects related to the development of effective materials for hydrogen storage and fuel cells are facing considerable technological challenges. To reach these goals, research efforts using a combination of advanced modeling, synthesis methods and characterization tools are required. Nuclear methods can play an effective role in the development and characterization of materials for hydrogen storage. Therefore, the IAEA initiated a coordinated research project to promote the application of nuclear techniques for investigation and characterization of new/improved materials relevant to hydrogen and fuel cell technologies. This paper gives an overview of the IAEA activities in this subject. (author)

  9. Impact of H{sub 2} emissions of a global hydrogen economy on the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Grooss, Jens-Uwe; Feck, Thomas; Vogel, Baerbel; Riese, Martin [Forschungszentrum Juelich (Germany)

    2010-07-01

    ''Green'' hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H{sub 2}) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H{sub 2} that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H{sub 2} can occur along the whole hydrogen process chain which increase the tropospheric H{sub 2} burden. The impact of these emissions is investigated. Figure 1 is a sketch that clarifies the path way and impact of hydrogen in the stratosphere. The air follows the Brewer-Dobson circulation in which air enters the stratosphere through the tropical tropopause, ascends then to the upper stratosphere and finally descends in polar latitudes within a typical transport time frame of 4 to 8 years. (orig.)

  10. Making Choices about Hydrogen: Transport Issues for Developing ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    30 sept. 2008 ... This timely book examines how developing countries can factor in competing arguments about the impending arrival of practical hydrogen fuel cell technology as they explore options for future policies.

  11. Second generation biofuels, an accelerator of the transition toward an economy driven by energy drawn from hydrogen

    International Nuclear Information System (INIS)

    Delabroy, O.

    2013-01-01

    The growth of the bio economy, especially in transportation, involves developing a bio-fuel industry. First generation bio-fuels were produced from plant sugars like starch or from plant oils. Second generation bio fuels use as raw materials the whole plant and especially agricultural and forestry wastes which extend the resource considerably and limit the competition between food use and fuel use. Second generation bio-fuels can be made with not only biological methods but also biomass-to-liquid processes borrowed from thermochemistry. Players in this field, including 'Air Liquide' company, are drawing up a technical and economic road-map for competitiveness in this emerging branch of industry. Since the thermochemical approach for gasifying a biomass also yields large quantities of hydrogen, the industrialization of this branch and concomitant production of bio-hydrogen at competitive prices provide leverage for accelerating the transition toward using H 2 for transportation

  12. NSERC's research and industrial community: a growing force of discovery, people and innovation shaping tomorrow's hydrogen economy

    International Nuclear Information System (INIS)

    Therrien, R.

    2009-01-01

    'Full text': As Canada's largest university research-funding agency, the Natural Sciences and Engineering Research Council of Canada (NSERC) supports the training of some 26,500 university students and postdoctoral fellows, funds the research efforts of more than 11,800 university and college professors and stimulates academic-industry research and development (R and D) partnerships involving over 1,400 companies each year. In the hydrogen and fuel cell arena, NSERC has sponsored cutting edge research for over two decades. During that time, the level of activity has intensified significantly - from a mere handful of projects in the early 1980s and 1990s, to more than 150 grants and scholarships in 2008. Since 2002, NSERC's annual support has tripled from about $2.9 million to over $9 million. More than half of that investment is earmarked for university-industry projects involving over 40 fuel cell and hydrogen business interests. NSERC supports hydrogen advances through its Discovery Grants for basic research, Research Partnerships Programs' grants for research and knowledge transfer involving companies, and scholarships and fellowships for skills development. All of these initiatives provide advanced training for students at the post-graduate level, resulting in job-ready professionals who will help shape tomorrow's hydrogen economy. In 2007, NSERC doubled its funding for strategic research partnerships in the area of sustainable energy systems, including hydrogen-related R and D. These public-private partnerships permit companies to capitalize, at minimal cost, on university innovations and training. In addition to supporting project-specific partnerships, the new funds enabled the creation of several national networks that unite industrial and research interests engaged in fuel cell advancement on the one hand, and in hydrogen technologies on the other. The partnership opportunities that exist at NSERC will be briefly described and examples of successful

  13. Activities of UNIDO-ICHET: On a Mission to Convert the World to Hydrogen Economy

    International Nuclear Information System (INIS)

    Barbir, Frano; Veziroglu, T. Nejat; Ture, Engin; Dziedzic, Gregory

    2006-01-01

    United Nations Industrial Development Organization - International Centre for Hydrogen Energy Technologies (UNIDO-ICHET) is an autonomous technological institution within the auspices of UNIDO, located in Istanbul Turkey. UNIDO-ICHET''s mission is to act as a bridge between developed and developing countries in spanning the gap between research and development organizations, innovative enterprises and the market-place, by stimulating appropriate applications of hydrogen energy technologies and the hydrogen energy related industrial development throughout the world in general, and in the developing countries in particular. The activities of UNIDO-ICHET include initiation of demonstration and pilot projects worldwide, establishment of a database on hydrogen energy technology and R and D activities, applied research and development, testing services, and education and training. UNIDO-ICHET is also assisting developing countries in adopting their Hydrogen Road-maps, by working with local governments, universities and industries, with other international organizations having similar mission, and with the leading technology and energy companies. (authors)

  14. Final Technical Report for GO17004 Regulatory Logic: Codes and Standards for the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nakarado, Gary L. [Regulatory Logic LLC, Golden, CO (United States)

    2017-02-22

    The objectives of this project are to: develop a robust supporting research and development program to provide critical hydrogen behavior data and a detailed understanding of hydrogen combustion and safety across a range of scenarios, needed to establish setback distances in building codes and minimize the overall data gaps in code development; support and facilitate the completion of technical specifications by the International Organization for Standardization (ISO) for gaseous hydrogen refueling (TS 20012) and standards for on-board liquid (ISO 13985) and gaseous or gaseous blend (ISO 15869) hydrogen storage by 2007; support and facilitate the effort, led by the NFPA, to complete the draft Hydrogen Technologies Code (NFPA 2) by 2008; with experimental data and input from Technology Validation Program element activities, support and facilitate the completion of standards for bulk hydrogen storage (e.g., NFPA 55) by 2008; facilitate the adoption of the most recently available model codes (e.g., from the International Code Council [ICC]) in key regions; complete preliminary research and development on hydrogen release scenarios to support the establishment of setback distances in building codes and provide a sound basis for model code development and adoption; support and facilitate the development of Global Technical Regulations (GTRs) by 2010 for hydrogen vehicle systems under the United Nations Economic Commission for Europe, World Forum for Harmonization of Vehicle Regulations and Working Party on Pollution and Energy Program (ECE-WP29/GRPE); and to Support and facilitate the completion by 2012 of necessary codes and standards needed for the early commercialization and market entry of hydrogen energy technologies.

  15. Air pollution and climate-forcing impacts of a global hydrogen economy.

    Science.gov (United States)

    Schultz, Martin G; Diehl, Thomas; Brasseur, Guy P; Zittel, Werner

    2003-10-24

    If today's surface traffic fleet were powered entirely by hydrogen fuel cell technology, anthropogenic emissions of the ozone precursors nitrogen oxide (NOx) and carbon monoxide could be reduced by up to 50%, leading to significant improvements in air quality throughout the Northern Hemisphere. Model simulations of such a scenario predict a decrease in global OH and an increased lifetime of methane, caused primarily by the reduction of the NOx emissions. The sign of the change in climate forcing caused by carbon dioxide and methane depends on the technology used to generate the molecular hydrogen. A possible rise in atmospheric hydrogen concentrations is unlikely to cause significant perturbations of the climate system.

  16. Renewable Hydrogen Carrier - Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    Science.gov (United States)

    2011-01-31

    combinations have been investigated for the production of hydrogen from biomass carbohydrate. Chemical catalysis approaches include pyrolysis [19...temperature. High fructose corn syrup, low-cost sucrose replacement, is made by stabilized glucose isomerase, which can work at ~60 °C for even about two...gasoline, vegetable oil vs. biodiesel, corn kernels vs. ethanol [31,109]. Given a price of $0.18/kg carbohydrate (i.e., $10.6/GJ) [2,44], the hydrogen

  17. Feasibility study for the transition towards a hydrogen economy: A case study in Brazil

    International Nuclear Information System (INIS)

    Sacramento, E.M. do; Carvalho, Paulo C.M.; Lima, L.C. de; Veziroglu, T.N.

    2013-01-01

    Fossil fuels use has caused serious environmental impacts worldwide, mainly related with the greenhouse effect intensification. One strategy to mitigate such impacts is the use of hydrogen in combustion processes. Additionally, hydrogen can be utilized as an energy vector for storage purposes and is also classified as a fuel of the future, due to the low emission of pollutants into the atmosphere. The present paper shows results of a computational simulation carried out for the state of Ceará, Brazil, considering scenarios for the use of electrolytic hydrogen obtained with the use of photovoltaic (PV) modules and wind energy converters, as a substitute of fluid fossil fuels. -- Highlights: •The State of Ceará is already exploiting commercially wind and solar energy. •The system proposes the production of hydrogen from wind and solar energy. •The electrolytic hydrogen as a substitute for the utilization of fossil fluid fuels. •The hydrogen insertion into energy matrix will contributes to pollution mitigation. •Socioeconomic, technical, and environmental parameters were calculated

  18. Collaboration under the International Partnership for the Hydrogen Economy (IPHE) and the Carbon Sequestration Leadership Forum (CSLF)

    Energy Technology Data Exchange (ETDEWEB)

    Neff, H.J. [Forschungszentrum Juelich (Germany)

    2005-06-01

    The objectives and achievements of the International Partnership for the Hydrogen Economy (IPHE) and the Carbon Sequestration Leadership Forum (CSLF) will be described. Both are agreements between governments and aim at identifying and promoting potential areas of bilateral and multilateral collaboration on new and advanced energy technologies. The IPHE has analysed priorities for international collaboration in research, development, demonstration and utilisation of hydrogen equipment in five areas: hydrogen production, fuel cells, hydrogen storage, codes and standards, socio-economic research. A report on such options is available and a series of IPHE conferences and workshops will pave the way to concrete collaboration projects. The CSLF is focused on development of improved cost-effective technologies for the cost-efficient capture and safe, long-term storage of carbon dioxide (CO{sub 2}) for fossil power plants. The mission of the CSLF is to facilitate the development and deployment of such technologies via collaborative efforts that address key technical issues, as well as economic, and environmental challenges. The CSLF also promotes awareness and champion legal, regulatory, financial, and institutional environments conducive to such technologies. The CSLF has worked out a Technology Roadmap as a guide for the CSLF and its Members that describes possible routes to future CO2 capture, transport and storage needs. Included are modules on the current status of these technologies, ongoing activities in CO{sub 2} capture, transport and storage, and identification of technology gaps and non-technology needs that should be addressed over the next decade. The Technology Roadmap indicates areas where the CSLF can add value through international collaborative effort. Both, hydrogen technologies and CO2 sequestration, are closely connected and will serve an overall strategic framework with clean fossil fuels as a key element of a sustainable energy portfolio

  19. Making the case for direct hydrogen storage in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  20. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  1. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  2. Method of making a hydrogen transport membrane, and article

    Science.gov (United States)

    Schwartz, Joseph M.; Corpus, Joseph M.; Lim, Hankwon

    2015-07-21

    The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry.

  3. AN INTEGRATED ASSESSMENT OF THE IMPACTS OF HYDROGEN ECONOMY ON TRANSPORTATION, ENERGY USE, AND AIR EMISSIONS

    Science.gov (United States)

    This paper presents an analysis of the potential energy, economic and environmental implications of hydrogen fuel cell vehicle (H2-FCV) penetration into the U.S. light duty vehicle fleet. The approach, which uses the U.S. EPA MARKet ALlocation technology database and model, allow...

  4. What governs the transition to a hydrogen economy? Articulating the relationship between technologies and political institutions

    NARCIS (Netherlands)

    Hisschemoller, M.; Bode, M.G.A.; van de Kerkhof, M.F.

    2006-01-01

    There is a lack of integrated knowledge on the transition to a sustainable energy system. The paper focuses on the relationship between technologies and institutions in the field of hydrogen from the perspective of political theory. The paper unfolds four paradigms of governance: 'Governance by

  5. Hydrogen Fuel Cell Vehicle Fuel Economy Testing at the U.S. EPA National Vehicle and Fuel Emissions Laboratory (SAE Paper 2004-01-2900)

    Science.gov (United States)

    The introduction of hydrogen fuel cell vehicles and their new technology has created the need for development of new fuel economy test procedures and safety procedures during testing. The United States Environmental Protection Agency-National Vehicle Fuels and Emissions Laborato...

  6. Transitioning to a hydrogen economy in New Zealand - An EnergyScape project

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Rob; Clemens, Tony; Gardiner, Alister; Leaver, Jonathan

    2010-09-15

    The project identifies how hydrogen could become a significant contributor to New Zealand's energy system by 2050. Future transport scenarios are modeled with a changing mix of internal combustion engine (ICE), battery electric vehicles (BEV) and fuel cell vehicles (FCV) over the period between the present day and 2050. For scenarios the model takes account of the electricity generation requirements and costs, the resources used, and the renewable content of that electricity generation. With high penetration of FCV, or a mix of FCV and BEV, NZ targets for renewable electricity generation and transport related emission reductions can be achieved.

  7. The Phoenix Project: Shifting to a solar hydrogen economy by 2020

    International Nuclear Information System (INIS)

    Braun, H.

    2008-01-01

    The most serious energy, economic and environmental problems are related to the use of fossil and nuclear fuels, which are rapidly diminishing and highly polluting, and many distinguished atmospheric chemists, including Dr. James Hanson at NASA, Dr. Steven Chu, the director of Lawrence Livermore Laboratory, and Professor Ralph Cicerone, president of the National Academy of Sciences have documented that climate changes are now occurring much faster than predicted just a few years ago. The methane hydrates in the oceans and the permafrost in vast areas of the Arctic regions of Siberia, Alaska and Canada are now starting to rapidly melt, and given this could release 50 to 100 times more carbon into the atmosphere than is now generated from the burning of fossil fuels, humanity is rapidly approaching an exponential 'tipping point' of no return. Given this sense of urgency, Hanson and others have warned that fossil fuels need to be phased-out by 2020 if irreversible damage to the earth's climate and food production systems is to be avoided. The Phoenix Project plan seeks to do exactly that by mass-producing wind-powered hydrogen production systems and simply modifying all the existing vehicles and power plants to use the hydrogen made from the sun, wind and water

  8. THE PHOENIX PROJECT: SHIFTING TO A SOLAR HYDROGEN ECONOMY BY 2020

    Directory of Open Access Journals (Sweden)

    HARRY BRAUN

    2008-07-01

    Full Text Available The most serious energy, economic and environmental problems are related to the use of fossil and nuclear fuels, which are rapidly diminishing and highly polluting, and many distinguished atmospheric chemists, including Dr. James Hanson at NASA, Dr. Steven Chu, the director of Lawrence Livermore Laboratory, and Professor Ralph Cicerone, president of the National Academy of Sciences have documented that climate changes are now occurring much faster than predicted just a few years ago. The methane hydrates in the oceans and the permafrost in vast areas of the Artic regions of Siberia, Alaska and Canada are now starting to rapidly melt, and given this could release 50 to 100 times more carbon into the atmosphere than is now generated from the burning of fossil fuels, humanity is rapidly approaching an exponential “tipping point” of no return. Given this sense of urgency, Hanson and others have warned that fossil fuels need to be phased-out by 2020 if irreversible damage to the earth’s climate and food production systems is to be avoided. The Phoenix Project plan seeks to do exactly that by mass-producing wind-powered hydrogen production systems and simply modifying all the existing vehicles and power plants to use the hydrogen made from the sun, wind and water.

  9. Making sense of the global economy: 10 resources for health promoters.

    Science.gov (United States)

    Mohindra, K S; Labonté, Ronald

    2010-09-01

    Population health is shaped by more than local or national influences-the global matters. Health promotion practitioners and researchers increasingly are challenged to engage with upstream factors related to the global economy, such as global prescriptions for national macroeconomic policies, debt relief and international trade. This paper identifies 10 books (A Brief History of Neoliberalism, Bad Samaritans: The Myth of Free Trade and the Secret History of Capitalism, The World is Not Flat: Inequality and Injustice in Our Global Economy, Globalization and its Discontents, The Debt Threat: How Debt is Destroying the Developing World, Global Woman: Nannies, Maids, and Sex Workers in the New Economy, A Race Against Time, Globalization and Health: An Introduction, Global Public Goods for Health: Health Economics and Public Health Perspectives, Trade and Health: Seeking Common Ground) and several key reports that we found to be particularly useful for understanding the global economy's effects on people's health. We draw attention to issues helpful in understanding the present global financial crisis.

  10. Use of modern information technologies for making budgetary sectors of the economy more energy-efficient

    Science.gov (United States)

    Klimenko, A. V.; Bobryakov, A. V.

    2010-12-01

    A strategy of administrative management and technological control of heat consumption and energy conservation processes in budgetary sectors of the economy is described together with a system of integrated indicators for estimating the efficiency of these processes and the main results obtained from putting the strategy in use in the system of the Russian Federal Agency for Education are presented.

  11. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    Science.gov (United States)

    Scott, John H.

    2005-01-01

    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  12. ''Green'' path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim Z. [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922 (United States); Veziroglu, T. Nejat [Clean Energy Research Institute, University of Miami, Coral Gables, FL 33124 (United States)

    2008-12-15

    While the dominant role of hydrogen in a sustainable energy future is widely accepted, the strategies for the transition from fossil-based to hydrogen economy are still actively debated. This paper emphasizes the role of carbon-neutral technologies and fuels during the transition period. To satisfy the world's growing appetite for energy and keep our planet healthy, at least 10 TW (or terawatt) of carbon-free power has to be produced by mid-century. Three prominent options discussed in the literature include: decarbonization of fossil energy, nuclear energy and renewable energy sources. These options are analyzed in this paper with a special emphasis on the role of hydrogen as a carbon-free energy carrier. In particular, the authors compare various fossil decarbonization strategies and evaluate the potential of nuclear and renewable energy resources to meet the 10 TW target. An overview of state-of-the-art technologies for production of carbon-free energy carriers and transportation fuels, and the assessment of their commercial potential is provided. It is shown that neither of these three options alone could provide 10 TW of carbon-neutral power without major changes in the existing infrastructure, and/or technological breakthroughs in many areas, and/or a considerable environmental risk. The authors propose a scenario for the transition from current fossil-based to hydrogen economy that includes two key elements: (i) changing the fossil decarbonization strategy from one based on CO{sub 2} sequestration to one that involves sequestration and/or utilization of solid carbon, and (ii) producing carbon-neutral synthetic fuels from bio-carbon and hydrogen generated from water using carbon-free sources (nuclear, solar, wind, geothermal). This strategy would allow taking advantage of the existing fuel infrastructure without an adverse environmental impact, and it would secure a smooth carbon-neutral transition from fossil-based to future hydrogen economy. (author)

  13. Global status of hydrogen research

    Energy Technology Data Exchange (ETDEWEB)

    Lakeman, J.B.; Browning, D.J.

    2001-07-01

    This report surveys the global status of hydrogen research and identifies technological barriers to the implementation of a global hydrogen economy. It is concluded that there will be a 30 year transition phase to the full implementation of the hydrogen economy. In this period, hydrogen will be largely produced by the reformation of hydrocarbons, particularly methane. It will be necessary to ensure that any carbonaceous oxides (and other unwanted species) formed as by-products will be trapped and not released into the atmosphere. Following the transition phase, hydrogen should be largely produced from renewable energy sources using some form of water cracking, largely electrolysis. Target performances and costs are identified for key technologies. The status of hydrogen research in the UK is reviews and it is concluded that the UK does not have a strategy for the adoption of the hydrogen economy, nor does it have a coherent and co-ordinated research and development strategy addressing barriers to the hydrogen economy. Despite this fact, because of the long transition phase, it is still possible for the UK to formulate a coherent strategy and make a significant contribution to the global implementation of the hydrogen economy, as there are still unresolved technology issues. The report concludes with a number of recommendations. (Author)

  14. Ning Wang, Making a Market Economy; Yan Sun, Corruption and Market in Contemporary China

    OpenAIRE

    Guiheux, Gilles

    2008-01-01

    These two works shed light on the conditions under which, in the course of the last 25 years, the command economy has been dismantled and gradually replaced by a market system in China . Yan Sun, a professor of political science, is interested in corruption from a double perspective, both at the macro and the micro level. Ning Wang, a neo-institutionalist economist, asks how, thanks to the reforms, a region (Jingzhou, south of Hubei ) has been converted to pisciculture. Corruption is a crucia...

  15. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  16. Assessment of hydrogen fuel cell applications using fuzzy multiple-criteria decision making method

    International Nuclear Information System (INIS)

    Chang, Pao-Long; Hsu, Chiung-Wen; Lin, Chiu-Yue

    2012-01-01

    Highlights: ► This study uses the fuzzy MCDM method to assess hydrogen fuel cell applications. ► We evaluate seven different hydrogen fuel cell applications based on 14 criteria. ► Results show that fuel cell backup power systems should be chosen for development in Taiwan. -- Abstract: Assessment is an essential process in framing government policy. It is critical to select the appropriate targets to meet the needs of national development. This study aimed to develop an assessment model for evaluating hydrogen fuel cell applications and thus provide a screening tool for decision makers. This model operates by selecting evaluation criteria, determining criteria weights, and assessing the performance of hydrogen fuel cell applications for each criterion. The fuzzy multiple-criteria decision making method was used to select the criteria and the preferred hydrogen fuel cell products based on information collected from a group of experts. Survey questionnaires were distributed to collect opinions from experts in different fields. After the survey, the criteria weights and a ranking of alternatives were obtained. The study first defined the evaluation criteria in terms of the stakeholders, so that comprehensive influence criteria could be identified. These criteria were then classified as environmental, technological, economic, or social to indicate the purpose of each criterion in the assessment process. The selected criteria included 14 indicators, such as energy efficiency and CO 2 emissions, as well as seven hydrogen fuel cell applications, such as forklifts and backup power systems. The results show that fuel cell backup power systems rank the highest, followed by household fuel cell electric-heat composite systems. The model provides a screening tool for decision makers to select hydrogen-related applications.

  17. What is required to make hydrogen a real energy carrier option?

    Energy Technology Data Exchange (ETDEWEB)

    Braeuninger, S.; Schindler, G.; Schwab, E.; Weck, A. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    The driver for the introduction of hydrogen as mobile energy-carrier is regulatory measures to avoid the CO{sub 2} emissions which are related to the current fossil carbon based situation. H{sub 2} is a large volume chemical product with an annual production of about 45 million tons, most of which currently is also derived from fossil sources. The German transport sector consumes 2,6.10{sup 12} MJ/a which in terms of energy is equivalent to nearly 50% of the current world hydrogen production. There is the proposal to start the ''hydrogen economy'' with ''excess H{sub 2}'' which is believed to be available as inadvertently occurring byproduct of chemical processes. A potential {proportional_to}2 million tons is estimated for this ''excess H{sub 2}'' in Europe; the proposal however does not take into account, that current uses of this H{sub 2} would have to be substituted. Therefore, an overall gain for the environment cannot be expected. Therefore, a sustainable hydrogen based energy scenario has to rely on new sources. Besides Biomass gasification which in terms of technology would resemble the conventional fossil based hydrogen production, the only other viable carbon-free hydrogen source is water, which has to be split into its constituting elements. The current paper is restricted to the latter path, the feasibility of the biomass approach needs to be discussed elsewhere. If hypothetically the above mentioned energy for the German transport sector would be provided by H{sub 2} from water electrolysis an electricity input of 4.10{sup 12} MJ would be needed. This number exceeds the currently installed German wind turbine capacity by a factor of 6 and even by a factor of 36, if the weather-based {proportional_to}16% year-round on-stream factor for onshore plants is taken into account. (orig.)

  18. Using renewables and the co-production of hydrogen and electricity from CCS-equipped IGCC facilities, as a stepping stone towards the early development of a hydrogen economy

    International Nuclear Information System (INIS)

    Haeseldonckx, Dries; D'haeseleer, William

    2010-01-01

    In this paper, specific cases for the interaction between the future electricity-generation mix and a newly-developing hydrogen-production infrastructure is modelled with the model E-simulate. Namely, flexible integrated-gasification combined-cycle units (IGCC) are capable of producing both electricity and hydrogen in different ratios. When these units are part of the electricity-generation mix and when they are not operating at full load, they could be used to produce a certain amount of hydrogen, avoiding the costly installation of new IGCC units for hydrogen production. The same goes for the massive introduction of renewable energies (especially wind), possibly generating excess electricity from time to time, which could then perhaps be used to produce hydrogen electrolytically. However, although contra-intuitive, the interaction between both 'systems' turns out to be almost negligible. Firstly, it is shown that it is more beneficial to use IGCC facilities to produce hydrogen with, rather than (excess) wind-generated electricity due to the necessary electrolyser investment costs. But even flexible IGCC facilities do not seem to contribute substantially to the early development of a hydrogen economy. Namely, in most scenarios - which are combinations of a wide range of fuel prices and carbon taxes - one primary-energy carrier (natural gas or coal) seems to be dominant, pushing the other, and the corresponding technologies such as reformers or IGCCs, out of the market. (author)

  19. Antimatter Economy

    Science.gov (United States)

    Hansen, Norm

    2004-05-01

    The Antimatter Economy will bring every country into the 21st century without destroying our environment and turn the Star Trek dream into reality by using antimatter from comets. At the April 2002 joint meeting of the American Physical Society and American Astronomical Society, I announced that comets were composed of antimatter, there were 109 antimatter elements, and the Periodic Table of Elements had been updated to include the antimatter elements. When matter and antimatter come together, energy is produce according to Einstein's equation of mass times the speed of light squared or E = mc2. Antimatter energy creates incredible opportunities for humanity. People in spacecraft will travel to the moon in hours, planets in days, and stars in weeks. Antimatter power will replace fossil plants and produce hydrogen from off-peak electrical power. Hydrogen will supplant gas in cars, trucks, and other vehicles. The billions of ton of coal, billions of barrels of oil, and trillions of cubic feet of natural gas will be used to make trillions of dollars of products to bring countries into the 21st century. Within this millennium, the Worlds Gross National Product will increase from 30 trillion to 3,000 trillion plus 1,500 trillion from space commercialization bringing the Total Gross National Product to 4,500 trillion. Millions of businesses and billions of jobs will be created. However, the real benefits will come from taking billions of people out of poverty and empowering them to pursue their dreams of life, liberty and pursuit of happiness. Please visit www.AntimatterEnergy.com.

  20. A national vision of America's transition to a hydrogen economy. To 2030 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-02-01

    This document outlines a vision for America’s energy future -- a more secure nation powered by clean, abundant hydrogen. This vision can be realized if the Nation works together to fully understand hydrogen’s potential, to develop and deploy hydrogen technologies, and to produce and deliver hydrogen energy in an affordable, safe, and convenient manner.

  1. COUNTRIES VERSUS CORPORATIONS AND ECONOMIES VERSUS BUSINESSES...WHAT MAKES THE GLOBAL MECHANSIM WORK BETTER?

    Directory of Open Access Journals (Sweden)

    BODISLAV DUMITRU ALEXANDRU

    2012-09-01

    Full Text Available This research paper is a nexus of solutions brought in theory and real life situations in the frameworks ofcorporate governance, state governance and public administration. The approach on this paper was done by puttingtogether a 360 degree focus on real life situations that create the formal and informal mechanism that make the worldgo round and round, be it the through the rigorous eye of the private sector or the public sector.The first part of the paper slices the economic decision making pie in two halves, the global mechanismthrough the business’s vantage point and the global mechanism through the economy’s vantage point.

  2. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  3. A political economy analysis of decision-making on natural disaster preparedness in Kenya.

    Science.gov (United States)

    Rono-Bett, Karen C

    2018-01-01

    Most deaths from natural disasters occur in low- or middle-income countries; among them, countries in the Horn of Africa - where Kenya lies. Between September 2015 and September 2016, 23.4 million people in this region faced food insecurity because of the 2015 El Niño, characterised by floods and droughts. The importance of effective government decision-making on preparedness and response are critical to saving lives during such disasters. But this decision-making process occurs in a political context which is marred by uncertainty with other factors at play. Yet, good practice requires making investments on a 'no-regrets' basis. This article looks at the factors influencing Kenya's decision-making process for natural disasters, the preparedness for the 2015 El Niño as a case study. I explored what stakeholders understand by 'no-regrets investments' and its application. I assessed financial allocations by government and donors to disaster preparedness. Based on key informant interviews, focus group discussions and financial analyses, this article presents evidence at national and subnational levels. The findings indicate that in making decisions relating to preparedness, the government seeks information primarily from sources it trusts - other government departments, its communities and the media. With no existing legal frameworks guiding Kenya's disaster preparedness, the coordination of preparedness is not strong. It appears that there is a lack of political will to prioritise these frameworks. The no-regrets approach is applied predominantly by non-state actors. Because there have been 'non-events' in the past, government has become overcautious in committing resources on a no-regrets basis. Government allocation to preparedness exceeds donor funding by almost tenfold.

  4. A political economy analysis of decision-making on natural disaster preparedness in Kenya

    Directory of Open Access Journals (Sweden)

    Karen C. Rono-Bett

    2018-04-01

    Full Text Available Most deaths from natural disasters occur in low- or middle-income countries; among them, countries in the Horn of Africa – where Kenya lies. Between September 2015 and September 2016, 23.4 million people in this region faced food insecurity because of the 2015 El Niño, characterised by floods and droughts. The importance of effective government decision-making on preparedness and response are critical to saving lives during such disasters. But this decision-making process occurs in a political context which is marred by uncertainty with other factors at play. Yet, good practice requires making investments on a ‘no-regrets’ basis. This article looks at the factors influencing Kenya’s decision-making process for natural disasters, the preparedness for the 2015 El Niño as a case study. I explored what stakeholders understand by ‘no-regrets investments’ and its application. I assessed financial allocations by government and donors to disaster preparedness. Based on key informant interviews, focus group discussions and financial analyses, this article presents evidence at national and subnational levels. The findings indicate that in making decisions relating to preparedness, the government seeks information primarily from sources it trusts – other government departments, its communities and the media. With no existing legal frameworks guiding Kenya’s disaster preparedness, the coordination of preparedness is not strong. It appears that there is a lack of political will to prioritise these frameworks. The no-regrets approach is applied predominantly by non-state actors. Because there have been ‘non-events’ in the past, government has become overcautious in committing resources on a no-regrets basis. Government allocation to preparedness exceeds donor funding by almost tenfold.

  5. The Pashtun behavior economy an analysis of decision making in tribal society

    OpenAIRE

    Holton, Jeremy W.

    2011-01-01

    Approved for public release; distribution is unlimited. Little scholarship exists regarding the ways members of conflict societies think about the economic decisions they face, and what information they value as relevant to those decisions. The literature of the emerging field of behavior economics suggest that in uncertain environments, considerable weight may be given to identity and culture factors to make decisions that will affect personal safety, income prospects and self-fulfillment...

  6. Green economy in Norway. What is a Green economy and what will make it possible?; Groenn oekonomi i Norge. Hva er det og hvordan faa det til?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report was commissioned by the Confederation of Vocational Unions (YS) and WWF-Norway. The report's purpose is to develop an analytical framework to discuss and assess what the green economy is or may be in a Norwegian context, to use the framework to provide an overall assessment of the extent to which Norway and different sectors today can be said to be 'green' and, finally, to outline the conditions, strategies and opportunities for investment in the development of the green economy in Norway.(auth)

  7. Make low-carbon and resilient investments: A leverage to renovate economy in crisis

    International Nuclear Information System (INIS)

    Cassen, Christophe

    2015-01-01

    Adequate financial flows are urgently needed in the near future to support mitigation and adaption efforts in order to meet the 2 °C stabilisation target and to prevent developing countries from locking in carbon intensive development pathways. Climate finance can play a significant role in mainstreaming climate challenges into sectoral policies and decision making at the global and local levels albeit the adverse contexts of economic crisis, common public debt (most OECD countries), environmental urgency and current climate negotiations. This includes the development of financial mechanisms supported by established institutions, public and private interests. It is therefore imperative that international negotiations should provide a framework to climate finance initiatives.

  8. Does climate policy make the EU economy more resilient to oil price rises? A CGE analysis

    International Nuclear Information System (INIS)

    Maisonnave, Hélène; Pycroft, Jonathan; Saveyn, Bert; Ciscar, Juan-Carlos

    2012-01-01

    The European Union has committed itself to reduce greenhouse gas (GHG) emissions by 20% in 2020 compared with 1990 levels. This paper investigates whether this policy has an additional benefit in terms of economic resilience by protecting the EU from the macroeconomic consequences due to an oil price rise. We use the GEM-E3 computable general equilibrium model to analyse the results of three scenarios. The first one refers to the impact of an increase in the oil price. The second scenario analyses the European climate policy and the third scenario analyses the oil price rise when the European climate policy is implemented. Unilateral EU climate policy implies a cost on the EU of around 1.0% of GDP. An oil price rise in the presence of EU climate policy does imply an additional cost on the EU of 1.5% of GDP (making a total loss of 2.5% of GDP), but this is less than the 2.2% of GDP that the EU would lose from the oil price rise in the absence of climate policy. This is evidence that even unilateral climate policy does offer some economic protection for the EU.

  9. IMPORTANCE OF MAKING STRATEGIC DECISIONS IN COUNTRIES IN TRANSITION AND CONNECTION WITH THE ENVIRONMENT AND SUSTAINABLE ECONOMY GENERALLY SPEAKING

    Directory of Open Access Journals (Sweden)

    SLOBODAN POPOVIĆ

    2016-04-01

    Full Text Available The accession of a number of transition countries of the EU, such as the Republic of Serbia, essentially means the adoption of strategic decisions at the state level in the context of wider EU decision. The authors based their observations on the EU 2020 strategy, which is essentially defined as: smart, sustainable and inclusive growth. The EU has adopted the basic principles of 2010, with the main objective to economic growth throughout the EU based on knowledge, but with respect for the principles of environmental protection, increasing employment, and increase in other basic principles of economics of the company to the state. You could say that the entire system such observations cohesion productivity growth economies of EU member states and social cohesion and socially responsible behavior. This approach was incurred because there is a need of constant adjustment economies member changes at the global level. Notwithstanding the universal adaptation of all EU member states, however, one part remained reserved for a special adjustment of each member country (it depends on the specific characteristics of each country to adapt in accordance with national goals adopted by any government of a Member State specifically for your country, through national development plans, plans of adjustment and reform plans. The consequences of the Great Depression are highly visible and in early 2016, particularly in terms of rising unemployment, rising unemployment especially of young people in all old EU member states. The responsibility for this state of affairs is not only the governments of member states, but responsibility must be sought from the representatives of big business, trade unions, associations, non-governmental organizations and all other stakeholders who have imposed in the decision-making processes, and in a crisis to minimize its impact, because it does not response. At the end of the aforementioned macro effects should be seen in the

  10. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  11. Modern technology electrolysis for power application. II. The impact of the energy market on the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    LaRoche, U [Brown Boveri AG, Baden, Switzerland; Bidard, R

    1979-01-01

    This paper considers the effects of the energy market on the use of hydrogen as a fuel and discusses various schemes of supplanting fossil fuels. Different fossil fuel substitution models in various parts of the western community result in rather different timing of market penetration needs and possibilities. This requires a consideration of the time span needed to implement different technologies in the choice of hydrogen production methods.

  12. Embedding the Circular Economy in Investment Decision-making for Capital Assets – A Business Case Framework

    NARCIS (Netherlands)

    Korse, M.; Ruitenburg, Richard Jacob; Toxopeus, Marten E.; Braaksma, Anne Johannes Jan

    2016-01-01

    Industry shows an increasing interest in the circular economy. However, circularity for physical capital assets is still ill-defined and existing models are complex and information dependent hindering implementation. This paper addresses these gaps by operationalizing circular economy principles and

  13. Symposium on hydrogen technology and fuel cells - opportunities for the economy; Symposium Wassertechnologie und Brennstoffzellen - Chancen fuer die Wirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This volume contains 17 contributions on fuel cell technology and on the infrastructure required for hydrogen production and supply, in the form of abstracts and short reports. [German] Dieser Band enthaelt 17 Beitraege zum Themenkreis Brennstoffzellentechnologie und die dazu erforderliche Infrastruktur fuer die Wasserstofferzeugung und -versorgung in Form von Kurzfassungen und Vortragsfolien.

  14. Brazilian program on science, technology and innovation for hydrogen economy - ProH{sub 2}; Programa brasileiro de ciencia, tecnologia e inovacao para a economia do hidrogenio - ProH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Duarte Filho, Adriano

    2006-07-01

    This paper presents in a generic way the Brazilian Program of Science, Technology and Innovation for the economy of hydrogen - ProH{sub 2}, comprehending the following global objectives: consolidation of a brazilian technology of the fuel cell and hydrogen production from renewable energies, in particular the ethanol; technological and scientific innovation resulting in the cost reduction according to the brazilian reality; obtention of stationary power modules with the greatest possible nationalization index; clean and distributed energy generation.

  15. A grey-based group decision-making methodology for the selection of hydrogen technologiess in Life Cycle Sustainability perspective

    DEFF Research Database (Denmark)

    Manzardo, Alessandro; Ren, Jingzheng; Mazzi, Anna

    2012-01-01

    The objective of this research is to develop a grey-based group decision-making methodology for the selection of the best renewable energy technology (including hydrogen) using a life cycle sustainability perspective. The traditional grey relational analysis has been modified to better address...... the issue of uncertainty. The proposed methodology allows multi-person to participate in the decision-making process and to give linguistic evaluation on the weights of the criteria and the performance of the alternative technologies. In this paper, twelve hydrogen production technologies have been assessed...... using the proposed methodology, electrolysis of water technology by hydropower has been considered to be the best technology for hydrogen production according to the decision-making group....

  16. Hydrogen emissions and their effects on the arctic ozone losses. Risk analysis of a global hydrogen economy; Wasserstoff-Emissionen und ihre Auswirkungen auf den arktischen Ozonverlust. Risikoanalyse einer globalen Wasserstoffwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Feck, Thomas

    2009-07-01

    Hydrogen (H{sub 2}) could be used as one of the major components in our future energy supply in an effort to avoid greenhouse gas emissions. ''Green'' hydrogen in particular, which is produced from renewable energy sources, should significantly reduce emissions that damage the climate. Despite this basically environmentally-friendly property, however, the complex chain of interactions of hydrogen with other compounds means that the implications for the atmosphere must be analysed in detail. For example, H{sub 2} emissions, which could increase the tropospheric H{sub 2} inventory, can be released throughout the complete hydrogen process chain. H{sub 2} enters the stratosphere via the tropical tropopause and is oxidised there to form water vapour (H{sub 2}O). This extra water vapour causes increased radiation in the infrared region of the electromagnetic spectrum and thus causes the stratosphere to cool down. Both the increase in H{sub 2}O and the resulting cooling down of the stratosphere encourage the formation of polar stratospheric clouds (PSC) and liquid sulphate aerosols, which facilitate the production of reactive chlorine, which in turn currently leads to dramatic ozone depletion in the polar stratosphere. In the future, H{sub 2} emissions from a global hydrogen economy could therefore encourage stratospheric ozone depletion in the polar regions and thus inhibit the ozone layer in recovering from the damage caused by chlorofluorocarbons (CFCs). In addition to estimating possible influences on the trace gas composition of the stratosphere, one of the main aims of this thesis is to evaluate the risk associated with increased polar ozone depletion caused by additional H{sub 2} emissions. Studies reported on here have shown that even if around 90% of today's fossil primary energy input was to be replaced by hydrogen and if around 9.5% of the gas was to escape in a ''worst-case'' scenario, the additional ozone loss for unchanged CFC loading in the stratosphere

  17. Hydrogen emissions and their effects on the arctic ozone losses. Risk analysis of a global hydrogen economy; Wasserstoff-Emissionen und ihre Auswirkungen auf den arktischen Ozonverlust. Risikoanalyse einer globalen Wasserstoffwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Feck, Thomas

    2009-07-01

    Hydrogen (H{sub 2}) could be used as one of the major components in our future energy supply in an effort to avoid greenhouse gas emissions. ''Green'' hydrogen in particular, which is produced from renewable energy sources, should significantly reduce emissions that damage the climate. Despite this basically environmentally-friendly property, however, the complex chain of interactions of hydrogen with other compounds means that the implications for the atmosphere must be analysed in detail. For example, H{sub 2} emissions, which could increase the tropospheric H{sub 2} inventory, can be released throughout the complete hydrogen process chain. H{sub 2} enters the stratosphere via the tropical tropopause and is oxidised there to form water vapour (H{sub 2}O). This extra water vapour causes increased radiation in the infrared region of the electromagnetic spectrum and thus causes the stratosphere to cool down. Both the increase in H{sub 2}O and the resulting cooling down of the stratosphere encourage the formation of polar stratospheric clouds (PSC) and liquid sulphate aerosols, which facilitate the production of reactive chlorine, which in turn currently leads to dramatic ozone depletion in the polar stratosphere. In the future, H{sub 2} emissions from a global hydrogen economy could therefore encourage stratospheric ozone depletion in the polar regions and thus inhibit the ozone layer in recovering from the damage caused by chlorofluorocarbons (CFCs). In addition to estimating possible influences on the trace gas composition of the stratosphere, one of the main aims of this thesis is to evaluate the risk associated with increased polar ozone depletion caused by additional H{sub 2} emissions. Studies reported on here have shown that even if around 90% of today's fossil primary energy input was to be replaced by hydrogen and if around 9.5% of the gas was to escape in a ''worst-case'' scenario, the additional ozone loss for

  18. Fuzzy Multi-actor Multi-criteria Decision Making for Sustainability Assessment of biomass-based technologies for hydrogen production

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Fedele, Andrea; Mason, Marco

    2013-01-01

    The purpose of this paper is to develop a sustainability assessment method to rank the prior sequence of biomass-based technologies for hydrogen production. A novel fuzzy Multi-actor Multi-criteria Decision Making method which allows multiple groups of decision-makers to use linguistic variables...

  19. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  20. An overview of hydrogen storage materials: Making a case for metal organic frameworks

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2013-04-01

    Full Text Available hydrogen needs to be stored in a safe and compact manner by combining the gas with other materials either chemically or physically. Hydrogen storage is therefore an extremely active area of research worldwide with many different materials being examined...

  1. Hydrogen in the making: how an energy company organises under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Koefoed, Anne Louise

    2011-07-01

    This thesis combines an analytical interest in innovation process studies with an empirical interest in clean energy development. My work concentrates on innovation processes from initiation to realisation in a company setting focusing on hydrogen as an energy carrier. A Norwegian energy company, Norsk Hydro, is used as a case to explore the intraorganisational processes involved in business building. This is relevant to the research question - how hydrogen energy takes on reality and relevance for business activity? Further, a concrete hydrogen demonstration project involving research and development of a new technology combination, in collaboration with partners, has also been studied.(Author)

  2. Handbook of hydrogen energy

    CERN Document Server

    Sherif, SA; Stefanakos, EK; Steinfeld, Aldo

    2014-01-01

    ""This book provides an excellent overview of the hydrogen economy and a thorough and comprehensive presentation of hydrogen production and storage methods.""-Scott E. Grasman, Rochester Institute of Technology, New York, USA

  3. Iron ore catalysts for methane decomposition to make CO x free hydrogen and carbon nano material

    KAUST Repository

    Zhou, Lu; Enakonda, Linga Reddy; Li, Sheng; Gary, Daniel; Del-Gallo, Pascal; Mennemann, Christina; Basset, Jean-Marie

    2018-01-01

    In this work, for the first time, iron ores with 91.7%–96.2% FeO, 1.3%–2.3% AlO, 1.2%–4.5% SiO, 1.3%–3.9% NaO, were studied directly as bulk catalysts for methane decomposition. By hydrogen pre-reduction at 850 °C, FeO species on iron ores were

  4. Reforming the Multilateral Decision-making Mechanism of the WTO: What is the Role of Emerging Economies?

    Directory of Open Access Journals (Sweden)

    Amos Saurombe

    2013-12-01

    Full Text Available The paper focuses on the future of global economic governance in the light of the current state of multilateral trade negotiations. The aim is to analyse identified key historical issues at the heart of the decision-making system of the World Trade Organization (WTO. The current and ongoing Doha Round of trade negotiations and the multilateral system reflect inequalities that still prevail in the global trade architecture. Is there a need for a paradigm shift? The paper will provide recommendations on how reform of the multilateral decision-making structures should focus on promoting the interests of developing countries that have historically been marginalised. Developing countries, like those making up BRICS, stand ready to contribute to the construction of a new international architecture, to bring the voices of the south together on global issues and to deepen their ties in various areas.

  5. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  6. Cascading of Biomass. 13 Solutions for a Sustainable Bio-based Economy. Making Better Choices for Use of Biomass Residues, By-products and Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Odegard, I.; Croezen, H.; Bergsma, G.

    2012-08-15

    Smarter and more efficient use of biomass, referred to as cascading, can lead to an almost 30% reduction in European greenhouse gas emissions by 2030 compared with 2010. As the title study makes clear, cascading of woody biomass, agricultural and industrial residues and other waste can make a significant contribution to a greening of the economy. With the thirteen options quantitatively examined annual emissions of between 330 and 400 Mt CO2 can be avoided by making more efficient use of the same volume of biomass as well as by other means. 75% of the potential CO2 gains can be achieved with just four options: (1) bio-ethanol from straw, for use as a chemical feedstock; (2) biogas from manure; (3) biorefining of grass; and (4) optimisation of paper recycling. Some of the options make multiple use of residues, with biomass being used to produce bioplastics that, after several rounds of recycling, are converted to heat and power at the end of their life, for example. In other cases higher-grade applications are envisaged: more efficient use of recyclable paper and wood waste, in both economic and ecological terms, using them as raw materials for new paper and chipboard rather than as an energy source. Finally, by using smart technologies biomass can be converted to multiple products.

  7. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  8. Growing a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Basu, N.; Pryor, R.J.

    1997-09-01

    This report presents a microsimulation model of a transition economy. Transition is defined as the process of moving from a state-enterprise economy to a market economy. The emphasis is on growing a market economy starting from basic microprinciples. The model described in this report extends and modifies the capabilities of Aspen, a new agent-based model that is being developed at Sandia National Laboratories on a massively parallel Paragon computer. Aspen is significantly different from traditional models of the economy. Aspen`s emphasis on disequilibrium growth paths, its analysis based on evolution and emergent behavior rather than on a mechanistic view of society, and its use of learning algorithms to simulate the behavior of some agents rather than an assumption of perfect rationality make this model well-suited for analyzing economic variables of interest from transition economies. Preliminary results from several runs of the model are included.

  9. Collaborative Economy

    DEFF Research Database (Denmark)

    collaborative economy and tourism Dianne Dredge and Szilvia Gyimóthy PART I - Theoretical explorations 2.Definitions and mapping the landscape in the collaborative economy Szilvia Gyimóthy and Dianne Dredge 3.Business models of the collaborative economy Szilvia Gyimóthy 4.Responsibility and care...... in the collaborative economy Dianne Dredge 5.Networked cultures in the collaborative economy Szilvia Gyimóthy 6.Policy and regulatory perspectives in the collaborative economy Dianne Dredge PART II - Disruptions, innovations and transformations 7.Regulating innovation in the collaborative economy: An examination...... localities of tourism Greg Richards 11.Collaborative economy and destination marketing organizations: A systems approach Jonathan Day 12.Working within the Collaborative Tourist Economy: The complex crafting of work and meaning Jane Widtfeldt Meged and Mathilde Dissing Christensen PART - III Encounters...

  10. Decision making on the Breeder reactor in Britain and the United States: problems and solutions in the plutonium economy

    International Nuclear Information System (INIS)

    Rydell, R.J.

    1980-01-01

    One objective of this study is to develop a framework of analysis that is useful for investigating the conditions shaping the respective roles of science and politics in decision making on technology policy. The analytical framework used focuses upon the interactive R and D process and specifies the factors affecting change in and of that process. The distinguishing feature of this new analytical framework is its utility for investigating how participants in and R and D process go about defining and solving a growing variety of problems that they encounter as the costs, impacts, and stakes of technological change become more readily apparent. The framework is then applied to a particularly complex and politically controversial technology, the nuclear breeder reactor. Britain and the United States, the original pioneers of technology utilizing plutonium to produce electricity, were singled out in order to test the utility of the analytical framework for the comparative study of the R and D decision-making process. Although the study does not purport to have exhausted all possible interpretations of this complex subject, the results of the study suggest that the interactive R and D process represents an improvement over conventional modes of conceptualizing how R and D policies are formulated and changed. Efforts to resolve major national and international problems relating to science and technology will ultimately succeed only to the extent that these efforts are grounded in a deeper understanding of the conditions affecting how these problems are defined and approached in actual decision-making environments

  11. Plutonium economy

    International Nuclear Information System (INIS)

    Traube, K.

    1984-01-01

    The author expresses his opinion on the situation, describes the energy-economic setting, indicates the alternatives: fuel reprocessing or immediate long-term storage, and investigates the prospects for economic utilization of the breeder reactors. All the facts suggest that the breeder reactor will never be able to stand economic competition with light-water reactors. However, there is no way to prove the future. It is naive to think that every doubt could and must be removed before stopping the development of breeder reactors - and thus also the reprocessing of the fuel of light-water reactors. On the basis of the current state of knowledge an unbiased cost-benefit-analysis can only lead to the recommendation to stop construction immediately. But can 'experts', who for years or even decades have called for and supported the development of breeder reactors be expected to make an unbiased analysis. Klaus Traube strikes the balance of the state Germany's nuclear economy is in: although there is no chance of definitively abandoning that energy-political cul-de-sac, no new adventures must be embarked upon. Responsible handling of currently used nuclear technology means to give up breeder technology and waive plutonium economy. It is no supreme technology with the aid of which structural unemployment or any other economic problem could be solved. (orig.) [de

  12. Re-making the global economy of knowledge: do new fields of research change the structure of North-South relations?

    Science.gov (United States)

    Connell, Raewyn; Pearse, Rebecca; Collyer, Fran; Maia, João; Morrell, Robert

    2017-08-17

    How is global-North predominance in the making of organized knowledge affected by the rise of new domains of research? This question is examined empirically in three interdisciplinary areas - climate change, HIV-AIDS, and gender studies - through interviews with 70 researchers in Southern-tier countries Brazil, South Africa and Australia. The study found that the centrality of the North was reinstituted as these domains came into existence, through resource inequalities, workforce mechanisms, and intellectual framing. Yet there are tensions in the global economy of knowledge, around workforce formation, hierarchies of disciplines, neoliberal management strategies, and mismatches with social need. Intellectual workers in the Southern tier have built significant research centres, workforces and some distinctive knowledge projects. These create wider possibilities of change in the global structure of organized knowledge production. © London School of Economics and Political Science 2017.

  13. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  14. Linking Indigenous Peoplesr Health-Related Decision Making to Information Communication Technology: Insights from an Emerging Economy

    Directory of Open Access Journals (Sweden)

    Md. Jahir Uddin Palas

    2017-04-01

    Full Text Available Indigenous peoples are being marginalised globally from a socioeconomic perspective and are often excluded from mainstream communities for social and/or geographic reasons. Historically, they tend to have lower living standards, including poor health conditions as compared to the rest of the population. Literature suggests that information and communication technologies (ICTs have the potential to improve awareness about how to improve health and wellbeing. In order to both deepen and broaden the understanding of how ICTs can influence Indigenous peoplesr health-related decision-making, this study has developed a conceptual framework based on the capability approach, focusing on the five dimensions of freedoms suggested by Amartya Sen. Data collected from a sample of members of an Indigenous community in Bangladesh, using a purposive sampling method, were analysed through qualitative techniques to identify ways in which a mobile-based health system have influenced the lives of indigenous people. The findings revealed that the mobile healthcare system explored in this study addressed a number of factors pertaining to indigenous peoplesr quality of life. These findings are useful for policy formulation related to the design and implementation of healthcare strategies in Bangladesh. The conceptual framework, following further validation, could serve as a platform for the advancement of research towards understanding how mobile healthcare systems can improve the wellbeing of individuals in indigenous communities.

  15. Collaborative Economy

    DEFF Research Database (Denmark)

    that are emerging from them, and how governments are responding to these new challenges. In doing so, the book provides both theoretical and practical insights into the future of tourism in a world that is, paradoxically, becoming both increasingly collaborative and individualized. Table of Contents Preface 1.The...... collaborative economy and tourism Dianne Dredge and Szilvia Gyimóthy PART I - Theoretical explorations 2.Definitions and mapping the landscape in the collaborative economy Szilvia Gyimóthy and Dianne Dredge 3.Business models of the collaborative economy Szilvia Gyimóthy 4.Responsibility and care...... in the collaborative economy Dianne Dredge 5.Networked cultures in the collaborative economy Szilvia Gyimóthy 6.Policy and regulatory perspectives in the collaborative economy Dianne Dredge PART II - Disruptions, innovations and transformations 7.Regulating innovation in the collaborative economy: An examination...

  16. Collaborative Economy

    DEFF Research Database (Denmark)

    collaborative economy and tourism Dianne Dredge and Szilvia Gyimóthy PART I - Theoretical explorations 2.Definitions and mapping the landscape in the collaborative economy Szilvia Gyimóthy and Dianne Dredge 3.Business models of the collaborative economy Szilvia Gyimóthy 4.Responsibility and care...... and similar phenomena are among these collective innovations in tourism that are shaking the very bedrock of an industrial system that has been traditionally sustained along commercial value chains. To date there has been very little investigation of these trends, which have been inspired by, amongst other...... in the collaborative economy Dianne Dredge 5.Networked cultures in the collaborative economy Szilvia Gyimóthy 6.Policy and regulatory perspectives in the collaborative economy Dianne Dredge PART II - Disruptions, innovations and transformations 7.Regulating innovation in the collaborative economy: An examination...

  17. Iron ore catalysts for methane decomposition to make CO x free hydrogen and carbon nano material

    KAUST Repository

    Zhou, Lu

    2018-03-27

    In this work, for the first time, iron ores with 91.7%–96.2% FeO, 1.3%–2.3% AlO, 1.2%–4.5% SiO, 1.3%–3.9% NaO, were studied directly as bulk catalysts for methane decomposition. By hydrogen pre-reduction at 850 °C, FeO species on iron ores were gradually reduced into FeO, FeO and then finally into Fe species. After reduction of 1.6 g of iron ore catalysts of 50 µm particle size with 100 mL/min pure H for 3.5 h at 850 °C, CMD life testing was conducted at 850 °C and GHSV of 3.75 L/g h and the catalyst showed a stable methane conversion for 5 h. When methane decomposition proceeded on Fe sites, FeC species would be formed to deposit graphite around themselves to finally form carbon nano onions. This carbon nano onions material showed excellent application for wastewater purification. All samples were fully characterized with XRF, XRD, H-TPR, TEM and Raman.

  18. The hydrogen-energy sector. Report to Mrs the Minister of Ecology, Sustainable Development and Energy, Mr the Minister of Economy, Industry and Digital

    International Nuclear Information System (INIS)

    Durville, Jean-Louis; Gazeau, Jean-Claude; Nataf, Jean-Michel; Cueugniet, Jean; Legait, Benoit

    2015-09-01

    After a synthesis and 20 recommendations, this report discusses what the energy landscape could be by 2030. Then, it more specifically deals with the case of hydrogen as an energy vector. Several aspects are addressed: the main characteristics of hydrogen, the various modes of hydrogen production, hydrogen storage and distribution, uses of hydrogen in various sectors (notably energy and mobility), safety and regulation. It also proposes an international overview in terms on context and strategy, regulation, intellectual property, stationary installations, storage, and mobility. Issues related to the economic approach are discussed, notably by outlining the existence of divergent studies, different hypotheses on key parameters, and different models. The last part discusses strategic directions and states some recommendations related to assessment, to hydrogen production, to the contribution of hydrogen to the energy system regulation, to the emergence of a variety of uses, to objectives in terms of R and D, and to the evolution of the legal and regulatory context to promote and support the development of this sector

  19. Observing the economy

    Science.gov (United States)

    Rosenbaum, Stan

    2009-07-01

    In "The (unfortunate) complexity of the economy" (April pp28-32) Jean-Philippe Bouchaud presents clear evidence that traditional assumptions of rational markets have to be abandoned. The old investor slogan "buy on promise, sell on rumour" quickly magnifies a downturn into a crisis, which triggers two questions. If physics-based models are applied (beyond understanding and prediction) to actual market decisions, does this make the economy more or less stable? And, is this cause for stronger regulation?

  20. Knowledge Economy

    OpenAIRE

    Kerr, Aphra; O Riain, Sean

    2009-01-01

    We examine a number of key questions regarding this knowledge economy. First, we look at the origin of the concept as well as early attempts to define and map the knowledge economy empirically. Second, we examine a variety of perspectives on the socio-spatial organisation of the knowledge economy and approaches which link techno-economic change and social-spatial organisation. Building on a critique of these perspectives, we then go on to develop a view of a knowledge economy that is conteste...

  1. Risoe energy report 3. Hydrogen and its competitors

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H; Feidenhans' l, R; Soenderberg Petersen, L [eds.

    2004-10-01

    Interest in the hydrogen economy has grown rapidly in recent years. Countries with long traditions of activity in hydrogen research and development have now been joined by a large number of newcomers. The main reason for this surge of interest is that the hydrogen economy may be an answer to the two main challenges facing the world in the years to come: climate change and the need for security of energy supplies. Both these challenges require the development of new, highly-efficient energy technologies that are either carbon-neutral or low emitting technologies. Another reason for the growing interest in hydrogen is the strong need for alternative fuels, especially in the transport sector. Alternative fuels could serve as links between the power system and the transport sector, to facilitate the uptake of emerging technologies and increase the flexibility and robustness of the energy system as a whole. This Risoe Energy Report provides a perspective on energy issues at global, regional and national levels. The following pages provide a critical examination of the hydrogen economy and its alternatives. The report explains the current R and D situation addresses the challenges facing the large-scale use of hydrogen, and makes some predictions for the future. The current and future role of hydrogen in energy systems is explored at Danish, European and global levels. The report discusses the technologies for producing, storing and converting hydrogen, the role of hydrogen in the transport sector and in portable electronics, hydrogen infrastructure and distribution systems, and environmental and safety aspects of the hydrogen economy. (BA)

  2. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  3. Nuclides Economy

    International Nuclear Information System (INIS)

    Ivanov, Evgeny; Subbotin, Stanislav

    2007-01-01

    Traditionally the subject of discussion about the nuclear technology development is focused on the conditions that facilitate the nuclear power deployment. The main objective of this work is seeking of methodological basis for analysis of the coupling consequences of nuclear development. Nuclide economy is the term, which defines a new kind of society relations, dependent on nuclear technology development. It is rather closed to the setting of problems then to the solving of them. Last year Dr. Jonathan Tennenbaum published in Executive Intelligence Review Vol. 33 no 40 the article entitled as 'The Isotope Economy' where main interconnections for nuclear energy technologies and their infrastructure had been explained on the popular level. There he has given several answers and, therefore, just here we will try to expand this concept. We were interested by this publication because of similarity of our vision of resource base of technologies development. The main paradigm of 'Isotope economy' was expresses by Lyndon H. LaRouche: 'Instead of viewing the relevant resources of the planet as if they were a fixed totality, we must now assume responsibility of man's creating the new resources which will be more than adequate to sustain a growing world population at a constantly improved standard of physical per-capita output, and personal consumption'. We also consider the needed resources as a dynamic category. Nuclide economy and nuclide logistics both are needed for identifying of the future development of nuclear power as far we follow the holistic analysis approach 'from cave to grave'. Thus here we try to reasoning of decision making procedures and factors required for it in frame of innovative proposals development and deployment. The nuclear power development is needed in humanitarian scientific support with maximally deep consideration of all inter-disciplinary aspects of the nuclear power and nuclear technologies implementation. The main objectives for such

  4. Comparative thermoeconomic analysis of hydrogen production by water electrolysis and by ethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Riveros-Godoy, Gustavo; Chavez-Rodriguez, Mauro; Cavaliero, Carla [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Mechanical Engineering School], Email: garg@fem.unicamp.br

    2010-07-01

    Hydrogen is the focus of this work that evaluates in comparative form through thermo economic analysis two hydrogen production processes: water electrolysis and ethanol steam reforming. Even though technical-economical barriers still exist for the development of an economy based on hydrogen, these difficulties are opportunities for the appearance of new business of goods and services, diversification of the energy mix, focus of research activities, development and support to provide sustainability to the new economy. Exergy and rational efficiency concept are used to make a comparison between both processes. (author)

  5. Collaborative Economy and Tourism

    DEFF Research Database (Denmark)

    Dredge, Dianne; Gyimóthy, Szilvia

    2017-01-01

    The digital collaborative economy is one of the most fascinating developments to have claimed our attention in the last decade. Not only does it defy clear definition, but its historical links back to non-monetised sharing and gift economies and its contemporary foundations in monetising idling...... or spare capacity make it difficult to theorise. In this chapter, we lay the foundation for a social science approach to the exploration of the collaborative economy and its relationship with tourism. We argue that “collaborative” and “economy” should be conceptualised in a broad and inclusive manner...... in order to avoid narrow theorisations and blinkered accounts that focus only on digitally-mediated, monetised transactions. A balance between individual and collective dimensions of the collaborative economy is also necessary if we are to understand its societal implications....

  6. Moneyless Economy

    OpenAIRE

    Das, Subhendu

    2012-01-01

    Moneyless economy (MLE) does not have any money in the economy. All products and services are free for all people. This means everybody must work, work for free, and get everything they want for free also. Any work that a society needs is considered legitimate. MLE is not socialism. MLE has the ability to provide a lifestyle that anyone wants. We show that it is possible to run the exact same economy that we have now, in the exact same way, and without money. Any government of any country can...

  7. Iran's Economy

    National Research Council Canada - National Science Library

    Ilias, Shayerah

    2008-01-01

    .... To the extent that U.S. sanctions and other efforts to change Iranian state policy target aspects of Iran ssssssss economy as a means of influence, it is important to evaluate Iran's economic structure, strengths, and vulnerabilities...

  8. Iran's Economy

    National Research Council Canada - National Science Library

    Ilias, Shayerah

    2008-01-01

    .... To the extent that U.S. sanctions and other efforts to change Iranian state policy target aspects of Iran's economy as a means of influence, it is important to evaluate Iran's economic structure, strengths, and vulnerabilities...

  9. Cambodia's economy

    OpenAIRE

    Ear, Sophal

    2008-01-01

    "This presentation is adapted from a Harvard KSG workshop held earlier this year on the Political Economy of "Binding Constraints to Growth" Cambodia Pilot for which I served as an External Panelist/Resource Person."

  10. Mobile economy

    OpenAIRE

    Turowski, Klaus

    2004-01-01

    Mobile economy : Transaktionen, Prozesse, Anwendungen und Dienste ; 4. Workshop Mobile Commerce, 02.-03. Februar 2004, Univ. Augsburg / K. Turowski ... (Hrsg.). - Bonn : Ges. für Informatik, 2004. - 189 S. : Ill., graph. Darst. - (GI-Edition : Proceedings ; 42)

  11. Hydrogen storage in nanostructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Assfour, Bassem

    2011-02-28

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn{sup 2+}) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its

  12. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    OpenAIRE

    Henstra, Anne M.; Stams, Alfons J. M.

    2011-01-01

    Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial catalytic processes, makes this organism an interesting alternative for production of cheap hydrogen gas suitable to fuel CO-sensitive fuel cells in a future hydrogen economy, provided sufficiently lo...

  13. A global survey of hydrogen energy research, development and policy

    International Nuclear Information System (INIS)

    Solomon, Barry D.; Banerjee, Abhijit

    2006-01-01

    Several factors have led to growing interest in a hydrogen energy economy, especially for transportation. A successful transition to a major role for hydrogen will require much greater cost-effectiveness, fueling infrastructure, consumer acceptance, and a strategy for its basis in renewable energy feedstocks. Despite modest attention to the need for a sustainable hydrogen energy system in several countries, in most cases in the short to mid term hydrogen will be produced from fossil fuels. This paper surveys the global status of hydrogen energy research and development (R and D) and public policy, along with the likely energy mix for making it. The current state of hydrogen energy R and D among auto, energy and fuel-cell companies is also briefly reviewed. Just two major auto companies and two nations have specific targets and timetables for hydrogen fuel cells or vehicle production, although the EU also has an aggressive, less specific strategy. Iceland and Brazil are the only nations where renewable energy feedstocks are envisioned as the major or sole future source of hydrogen. None of these plans, however, are very certain. Thus, serious questions about the sustainability of a hydrogen economy can be raised

  14. IAHE Hydrogen Civilization Conception for the Humankind Sustainable Future

    International Nuclear Information System (INIS)

    Victor A Goltsov; Lyudmila F Goltsova; T Nejat Veziroglu

    2006-01-01

    There are generalized of a novel Hydrogen Civilization (HyCi-) conception of the International Association for Hydrogen Energy. The HyCi-Conception states that at this rigorous, severe historical period the humankind still has a real possibility to save the biosphere and makes living out of humanity be possible and real process. The above objective can be achieved by the only way, the way of advantageous all-planetary work along the direction of ecologically clean vector 'Hydrogen energy → Hydrogen economyHydrogen civilization'. The HyCi-Conception includes three constituent, mutually conditioned parts: industrially-ecological, humanitarian-cultural and geopolitical-internationally legislative ones. Legislative-economical mechanism of transition to hydrogen civilization is formulated, and the most important possible stages of HyCi-transition are indicated and discussed. (authors)

  15. Operant Conditioning - Token Economy.

    Science.gov (United States)

    Montgomery, Jacqueline; McBurney, Raymond D.

    Described is an Operant Conditioning-Token Economy Program, teaching patients to be responsible for their own behavior, to make choices, and to be motivated to change. The program was instigated with mentally ill patients in a state hospital and was later used with institutionalized mentally handicapped groups. After two years, only four of the…

  16. Experience economy brimming with potential

    DEFF Research Database (Denmark)

    Sørensen, Flemming; Sundbo, Jon

    2014-01-01

    In these days of economic uncertainty, businesses ought to make better use of recent research into the experience economy. Perhaps co-creation and individualisation can save us from the crisis, argue the editors of a new book about the latest research into the experience economy....

  17. Make

    CERN Document Server

    Frauenfelder, Mark

    2012-01-01

    The first magazine devoted entirely to do-it-yourself technology projects presents its 29th quarterly edition for people who like to tweak, disassemble, recreate, and invent cool new uses for technology. MAKE Volume 29 takes bio-hacking to a new level. Get introduced to DIY tracking devices before they hit the consumer electronics marketplace. Learn how to build an EKG machine to study your heartbeat, and put together a DIY bio lab to study athletic motion using consumer grade hardware.

  18. Configuration and technology implications of potential nuclear hydrogen system applications.

    Energy Technology Data Exchange (ETDEWEB)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options

  19. Human economy and natural economy

    Directory of Open Access Journals (Sweden)

    Masullo Andrea

    2014-03-01

    Full Text Available The decline of economy is due to its dependency from a virtual value, the currency, the coin, that in the recent phase of consumerism is so far from real value: human capital and natural capital. If human economy wants to continue to produce wellbeing, it must accept to be a subset of natural economy, intercept flux of matter produced by its circular mechanisms, put constraints in it, i.e. machines and structures, to direct it temporarily for our advantage, and finally release it to the same original flux, in an still usable state. In this way it will assume a function no more parasitic but symbiotic. It will be connected to natural cycles without destroying it, recovering the co-evolutionary link between nature and culture, building an economic web suited to the ecological web; thus we will have a mosaic characterised by biodiversity, technological diversity, and cultural diversity, able to produce a durable prosperity.

  20. Networked Economies | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Search. Two schoolgirls work on a computer at school in Colombia ... artificial intelligence, and digital technologies like sensors are increasingly automating economies. ... Similarly while innovations such as open government data could make ...

  1. Hydrogen fuel. Uses

    International Nuclear Information System (INIS)

    Darkrim-Lamari, F.; Malbrunot, P.

    2006-01-01

    Hydrogen is a very energetic fuel which can be used in combustion to generate heat and mechanical energy or which can be used to generate electricity and heat through an electrochemical reaction with oxygen. This article deals with the energy conversion, the availability and safety problems linked with the use of hydrogen, and with the socio-economical consequences of a generalized use of hydrogen: 1 - hydrogen energy conversion: hydrogen engines, aerospace applications, fuel cells (principle, different types, domains of application); 2 - hydrogen energy availability: transport and storage (gas pipelines, liquid hydrogen, adsorbed and absorbed hydrogen in solid materials), service stations; 3 - hazards and safety: flammability, explosibility, storage and transport safety, standards and regulations; 4 - hydrogen economy; 5 - conclusion. (J.S.)

  2. Hydrogen Storage In Nanostructured Materials

    OpenAIRE

    Assfour, Bassem

    2011-01-01

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storag...

  3. Linear Economy Versus Circular Economy: A Comparative and Analyzer Study for Optimization of Economy for Sustainability

    Directory of Open Access Journals (Sweden)

    Sariatli Furkan

    2017-05-01

    Full Text Available Upon visiting the existing literature on the subject of linear vs. circular economy, this paper finds that, the blueprint of the current economy is hardly sustainable by using the comparative benchmarking method that drained from literature. The intrinsic mechanics of the linear economy, by relying on the wasteful take - make - dispose flow, is detrimental to the environment, cannot supply the growing populace of our planet with essential services and it naturally leads to strained profitability. Elements of a plausible solution to the challenges have been around for decades, although they have only recently been compiled in to the conceptual framework of circular economy. The core ideas of Circular Economy are elimination of waste by design, respect for the social, economic and natural environment and resource-conscious business conduct. Built on the backbone of these principles, the circular economy has demonstrated to deliver tangible benefits and viability to address the economic, environmental and social challenges of our days.

  4. Hydrogen Special. Facts, developments, opinions

    International Nuclear Information System (INIS)

    Hisschemoeller, M.; Van de Kerkhof, M.; Stam, T.; Cuppen, E.; Bakker, S.; Florisson, O.; Mallant, R.; Ros, J.; Naghelhout, D.; De Witte, N.; Van Delft, J.; Huurman, J.; Susebeek, J.; De Wit, H.; Hogenhuis, C.; Maatman, D.; Vaessen, M.; Vergragt, P.J.; Bout, P.; Molag, M.; Hemmes, K.; Taanman, M.; Dame, E.; Van Soest, J.P.

    2007-01-01

    In a large number of short articles several aspects of hydrogen are discussed: (dis)advantages; production; transport; distribution; storage; use in fuel cells, vehicles and houses; market; financing of the hydrogen-based economy; hydrogen transition and developing countries; education and training; developments in the USA and the European Union [nl

  5. The hydrogen economy. When there is no more oil. The creation of the worldwide energy web and the redistribution of power on earth; Die H{sub 2}-Revolution. Wenn es kein Oel mehr gibt. Mit neuer Energie fuer eine gerechte Weltwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Rifkin, J.

    2002-07-01

    The author explains that the next great economic era will be powered by hydrogen. Drawing on a variety of well-balanced research studies, his premise is that the world must switch from a fossil-fuel economy to a hydrogen based economy. This must happen soon for three reasons: the imminent peak of global oil production, the increased concentration of remaining oil reserves in the Middle East one of the most politically and socially unstable regions of the world and the steady heating up of the world atmosphere from fossil-fuel dependency. This revolution will make energy available to each country, not just the wealthiest nations, and would be the first democratic energy regime in history. [German] Das Zeitalter der fossilen Brennstoffe (Kohlenwasserstoffzeitalter) ist an einem kritischen Punkt angelangt. In dem Buch von Jeremy Rifkin beweisen nach einem kurzen Abriss der Energiegeschichte akribisch angefuehrte umfangreiche Statistiken, dass das Erdoel und Erdgas spaetestens 2010 spuerbar knapp sein wird. Die wenigen verbliebenen Erdoelreserven liegen ausserdem ueberwiegend in politisch instabilen Gebieten. Bei steigender Oelknappheit treiben die alternativ verwendeten anderen fossilen Energiequellen die globale Erwaermung voran und gefaehrden das Oekosystem der Erde. Jeremy Rifkin sieht den einzigen Ausweg in einer neuen, auf Wasserstoff basierenden Weltwirtschaft. Die ''Dekarbonisierung'' der Energie, die unvermeidlich zur Wasserstoffzukunft fuehren wird, ist abzusehen. Wasserstoff wird eine basisdemokratische, nachhaltige Energie- und Brennstoffquelle der Zukunft, unabhaengig von Oelimporten. Brennstoffzellen auf Wasserstoffbasis koennen den Energiebedarf der gesamten Menschheit ueber einen sehr langen Zeitraum decken. Die realisierung einer neuen dezentralen Form der Energienutzung und demokratischen Energiekontrolle durch Millionen von Verbrauchern (lokalen Kleinstkraftwerken mit Brennstoffzellen), angeschlossen an ein weltweites

  6. ICT Innovation in Emerging Economies

    DEFF Research Database (Denmark)

    Xiao, Xiao; B. Califf, Christopher; Sarker, Saonee

    2013-01-01

    ICT innovation is known to significantly elevate a country’s growth and to enhance productivity. It is now well-acknowledged that emerging economies are beginning to innovate at a rapid rate despite some of the challenges they face. Given that these countries with such economies now comprise...... economies, what needs to be studied, and how they should be studied. We attempt to contribute in this area by: (1) providing a comprehensive framework of existing research on ICT innovation in emerging economies, (2) highlighting the gaps that have been left behind, and (3) providing specific guidelines...... to future researchers, including a research model summarizing the salient issues that need examination. We believe that our study makes an important contribution to research on ICT innovation in emerging economies, and can be a useful resource for future researchers interested in this topic....

  7. Human trafficking: fighting the illicit economy with the legitimate economy

    OpenAIRE

    Shelley, Louise; Bain, Christina

    2015-01-01

    Since the beginning of research on human trafficking, there has been attention paid to the challenges surrounding the illicit economy. In creating new strategies and initiatives on combatting human trafficking, there needs to be more discussion surrounding the legitimate economy and how the business sector can make an impact in the fight against trafficking. Currently, there is a growing movement of businesses that are looking to address human trafficking through training, education, and lead...

  8. Hydrogen energy and sustainability: overview and the role for nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2008-01-01

    This paper discusses the role of nuclear power in hydrogen energy and sustainability. Hydrogen economy is based on hydrogen production, packaging (compression, liquefaction, hydrides), distribution (pipelines, road, rail, ship), storage (pressure and cryogenic containers), transfer and finally hydrogen use

  9. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  10. Information model of economy

    Directory of Open Access Journals (Sweden)

    N.S.Gonchar

    2006-01-01

    Full Text Available A new stochastic model of economy is developed that takes into account the choice of consumers are the dependent random fields. Axioms of such a model are formulated. The existence of random fields of consumer's choice and decision making by firms are proved. New notions of conditionally independent random fields and random fields of evaluation of information by consumers are introduced. Using the above mentioned random fields the random fields of consumer choice and decision making by firms are constructed. The theory of economic equilibrium is developed.

  11. Trends in Hydrogen Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hoevenaars, A.J.; Weeda, M. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2009-09-15

    FCT claims to have insight in these numbers. Lessons learned from driving the FCVs are in general encouraging. Durability and reliability improve with experience, fuel economy and range increase and costs are still going down. Generally it can be said that the OEMs are on schedule with delivering required improvements, though they also warn that they can not make FCVs a success on their own and call for market stimulation by means of fuel cell refuelling station networks.

  12. Trends in Hydrogen Vehicles

    International Nuclear Information System (INIS)

    Hoevenaars, A.J.; Weeda, M.

    2009-09-01

    FCT claims to have insight in these numbers. Lessons learned from driving the FCVs are in general encouraging. Durability and reliability improve with experience, fuel economy and range increase and costs are still going down. Generally it can be said that the OEMs are on schedule with delivering required improvements, though they also warn that they can not make FCVs a success on their own and call for market stimulation by means of fuel cell refuelling station networks.

  13. British Columbia hydrogen and fuel cell strategy : an industry vision for our hydrogen future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-05-15

    British Columbia's strategy for global leadership in hydrogen fuel cell technology was outlined. It was suggested that hydrogen and fuel cells will power a significant portion of the province by 2020, and will be used in homes, businesses, industry and transportation. The following 3 streams of activity were identified as leading to the achievement of this vision: (1) a hydrogen highway of technology demonstrations in vehicles, refuelling facilities and stationary power systems in time for and building on the 2010 Winter Olympic and Paralympic Games, (2) the development of a globally leading sustainable energy technology cluster that delivers products and services as well as securing high-value jobs, and (3) the renewal of the province's resource heartlands to supply the fuel and knowledge base for hydrogen-based communities and industries, and clean hydrogen production and distribution. It was suggested that in order to achieve the aforementioned goals, the government should promote the hydrogen highway and obtain $135 million in funding from various sources. It was recommended that the BC government and members of industry should also work with the federal government and other provinces to make Canada an early adopter market. Creative markets for BC products and services both in Canada and abroad will be accomplished by global partnerships, collaboration with Alberta and the United States. It was suggested that in order to deploy clean energy technologies, BC must integrate their strategy into the province's long-term sustainable energy plan. It was concluded that the hydrogen and fuel cell cluster has already contributed to the economy through jobs, private sector investment and federal and provincial tax revenues. The technology cluster's revenues have been projected at $3 billion with a workforce of 10,000 people by 2010. The hydrogen economy will reduce provincial air emissions, improve public health, and support sustainable tourism

  14. Small-scale reforming of diesel and jet fuels to make hydrogen and syngas for fuel cells: A review

    International Nuclear Information System (INIS)

    Xu, Xinhai; Li, Peiwen; Shen, Yuesong

    2013-01-01

    Highlights: • Issues of reforming of heavy hydrocarbon fuels are reviewed. • The advantages of autothermal reforming over other types of reforming are discussed. • The causes and solutions of the major problems for reforming reactors are studied. • Designs and startup strategies for autothermal reforming reactors are proposed. - Abstract: This paper reviews the technological features and challenges of autothermal reforming (ATR) of heavy hydrocarbon fuels for producing hydrogen and syngas onboard to supply fuels to fuel cells for auxiliary power units. A brief introduction at the beginning enumerates the advantages of using heavy hydrocarbon fuels onboard to provide hydrogen or syngas for fuel cells such as solid oxide fuel cells (SOFCs). A detailed review of the reforming and processing technologies of diesel and jet fuels is then presented. The advantages of ATR over steam reforming (SR) and partial oxidation reforming (POX) are summarized, and the ATR reaction is analyzed from a thermodynamic point of view. The causes and possible solutions to the major problems existing in ATR reactors, including hot spots, formation of coke, and inhomogeneous mixing of fuel, steam, and air, are reviewed and studied. Designs of ATR reactors are discussed, and three different reactors, one with a fixed bed, one with monoliths, and one with microchannels are investigated. Novel ideas for design and startup strategies for ATR reactors are proposed at the end of the review

  15. Impact of bread making on fructan chain integrity and effect of fructan enriched breads on breath hydrogen, satiety, energy intake, PYY and ghrelin.

    Science.gov (United States)

    Morris, C; Lynn, A; Neveux, C; Hall, A C; Morris, G A

    2015-08-01

    Recently, there has been considerable interest in the satiety inducing properties of inulin type fructans (ITF) as a tool for weight management. As a staple food, breads provide an excellent vehicle for ITF supplementation however the integrity of the ITF chains and properties upon bread making need to be assessed. Breads enriched with 12% fructooligosaccharides (FOS) and 12% inulin were baked and the degree of polymerisation of fructans extracted from the breads were compared to those of pure compounds. An acute feeding study with a single blind cross-over design was conducted with 11 participants to investigate the effect of ITF enriched breads on breath hydrogen, self-reported satiety levels, active ghrelin, total PYY and energy intake. Size exclusion chromatography indicated that little or no depolymerisation of inulin occurred during bread making, however, there was evidence of modest FOS depolymerisation. Additionally, ITF enriched breads resulted in increased concentrations of exhaled hydrogen although statistical significance was reached only for the inulin enriched bread (p = 0.001). There were no significant differences between bread types in reported satiety (p = 0.129), plasma active ghrelin (p = 0.684), plasma PYY (p = 0.793) and energy intake (p = 0.240). These preliminary results indicate that inulin enriched bread may be a suitable staple food to increase ITF intake. Longer intervention trials are required to assess the impact of inulin enriched breads on energy intake and body weight.

  16. MARKETING IMPLICATION IN WINE ECONOMY

    Directory of Open Access Journals (Sweden)

    Ştefan MATEI

    2014-11-01

    Full Text Available The wine, a very complex product in viticulture, has proved its tremendous importance not only to the individual but rational nutrition and increasing national income of a country cultivators (evidenced by the upward trend of the share of crop production horticulture and viticulture in the global economy agricultural. More interesting is, given the continued growth in the number of scientific publications and their quality (at least since the 1980s - where "wine" is the centerpiece of these studies - we can not but be witnessing a growing interest more to this "potion" and found that the growing popularity of wine in the science reveals the emergence of a new academic field, ie "wine economy" (or wine-economy. This study aims to make a foray into "wine economy" and to outline some of the implications of marketing in this area.

  17. Measuring the informal economy in South Africa

    Directory of Open Access Journals (Sweden)

    S Saunders

    2015-01-01

    Full Text Available Measuring the size of the South African informal economy has received inadequate attention, making it difficult for policy-makers to assess the impact of policy measures to stimulate informal economic activity. This article aims to estimate the size of the informal economy by using the Currency Demand Approach.  The empirical results reveal that the informal economy as a percentage of GDP decreased from 1967 to 1993, before levelling off.  The growth in the informal econmy has also underperformed in comparison to formal economic growth. There appears to be a causal relationship running from the informal to the formal economy. Macro-economic policies aimed at the formal economy will not necessarily 'trickle down' to the informal, while these polcies aimed at the informal economy may have a profound effect on the formal economy.

  18. Resource Complementarity and IT Economies of Scale

    DEFF Research Database (Denmark)

    Woudstra, Ulco; Berghout, Egon; Tan, Chee-Wee

    2017-01-01

    In this study, we explore economies of scale for IT infrastructure and application services. An in-depth appreciation of economies of scale is imperative for an adequate understanding of the impact of IT investments. Our findings indicate that even low IT spending organizations can make...... a difference by devoting at least 60% of their total IT budget on IT infrastructure in order to foster economies of scale and extract strategic benefits....

  19. The hydrogen issue.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  20. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Carl-Jochen Winter

    2006-01-01

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  1. Overview of interstate hydrogen pipeline systems

    International Nuclear Information System (INIS)

    Gillette, J.L.; Kolpa, R.L.

    2008-01-01

    . The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines

  2. Overview of interstate hydrogen pipeline systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    . The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines

  3. Competition and the hydrogen market

    International Nuclear Information System (INIS)

    Takeda, T.

    2006-01-01

    This paper addresses the issues of competition in the hydrogen market. The major drivers for the hydrogen-based economy are industrial growth, environmental and health benefits from improved air quality and reduced greenhouse gases as well as diversification of energy supply and security

  4. Why are Market Economies Politically Stable?

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Olsson, Ola

    at the expense of other groups in society. If the gains from specialization become su¢ ciently large, however, a market economy will emerge. From being essentially noncooperative under self-sufficiency, the political decision making process becomes cooperative in the market economy, as the welfare of individuals...

  5. The Greenlandic Economy – Structure and Prospects

    DEFF Research Database (Denmark)

    Andersen, Torben M.

    an economic development which addresses current economic and social problems, makes the economy independent of transfers from outside, and provides for a satisfactory increase in living standards. Essential for this is a transformation such that the economy does not only rely on renewable natural resources...

  6. Economically sustainable: market synergies in hydrogen systems

    International Nuclear Information System (INIS)

    Hart, D.

    2000-01-01

    As interest in the use of hydrogen as an energy carrier grows, it is important to understand the advantages and disadvantages of a market-based approach to its introduction. While there will always be niche markets in which it makes sense to employ what is currently a comparatively expensive form of energy storage and delivery, this will not enable the sort of large-scale penetration that will allow for economies of mass-manufacture to bring the cost of hydrogen down. In addition, energy markets are becoming increasingly liberalised, and because of this it is important to understand the sort of market pressures that are arising where none have existed before. These pressures may actually lead to opportunities for hydrogen in energy storage and for use in power generation and transport fuel modes, and allow market penetration to occur more rapidly than might be the case in a centralised energy structure. In the liberalised energy market within the UK, for example, there are two areas of potentially major growth in hydrogen production and consumption: energy storage for renewable generators; and backup systems at weak electricity grid links. The first of these is due, in part, to potential changes in regulation governing the way that electricity is sold into the market, while the second is dependent more on an increasingly congested electricity grid and the high costs of building supplementary infrastructure. In both cases there is potential for the early use of hydrogen energy systems in an economically competitive environment. (author)

  7. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Marc A.; Koohi-Fayegh, Seama [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2016-02-15

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  8. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  9. A fuzzy analytic hierarchy/data envelopment analysis approach for measuring the relative efficiency of hydrogen R and D programs in the sector of developing hydrogen energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongkon; Kim, Jongwook [Korea Institute of Energy Research (Korea, Republic of). Energy Policy Research Center; Mogi, Gento [Tokyo Univ. (Japan). Graduate School of Engineering; Hui, K.S. [Hong Kong City Univ. (China). Manufacturing Engineering and Engineering Management

    2010-07-01

    Korea takes 10th place of largest energy consuming nations in the world since it spends 222 million ton of oil equivalent per year and depends on the most amount of consumed energy resources, which account for 96% import in 2008 with the 5.6% selfsufficiency ratio of energy resources. The interest of energy technology development has increased due to its poor energy environments. Specifically, the fluctuation of oil prices has been easily affecting Korean energy environments and economy. Considering its energy environments, energy technology development can be one of the optimal solution and breakthrough to solve Korea's energy circumstances, energy security, and the low carbon green growth with Korea's sustainable development. Moreover, energy and environment issues are the key factors for leading the future sustainable competitive advantage and green growth of one nation over the others nations. Lots of advanced nations have been trying to develop the energy technologies with the establishment of the strategic energy technology R and D programs for creating and maintain a competitive advantage and leading the global energy market. In 2005, we established strategic hydrogen energy technology roadmap in the sector of developing hydrogen energy technologies for coping with next 10 years from 2006 to 2015 as an aspect of hydrogen energy technology development. Hydrogen energy technologies are environmentally sound and friendly comparing with conventional energy technologies. Hydrogen energy technologies can play a key role and is the one of the best alternatives getting much attentions coping with UNFCCC and the hydrogen economy. Hydrogen energy technology roadmap shows meaningful guidelines for implementing the low carbon green growth society. We analyzed the world energy outlook to make hydrogen ETRM and provide energy policy directions in 2005. It focuses on developing hydrogen energy technology considering Korea's energy circumstance. We make a

  10. Radiation processing and market economy

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1998-01-01

    In the system of totalitarian economy, regulated by bureaucracy, the real value of equipment, materials and services is almost completely unknown, what makes impossible the comparison of different technologies, eliminates competition, disturbs research and development. With introduction of market economy in Central and Eastern Europe, the radiation processing has lost doubtful support, becoming an independent business, subject to laws of free market economy. Only the most valuable objects of processing have survived that test. At the top of the list are: radiation sterilization of medical equipment and radiation induced crosslinking of polymers, polyethylene in particular. New elements of competition has entered the scene, as well as questions of international regulations and standards have appeared

  11. Green energy and hydrogen research at University of Waterloo

    International Nuclear Information System (INIS)

    Fowler, M.

    2006-01-01

    This paper summarises Green Energy and Hydrogen Research at the University of Waterloo in Canada. Green energy includes solar, wind, bio fuels, hydrogen economy and conventional energy sources with carbon dioxide sequestration

  12. UNDERGROUND ECONOMY, INFLUENCES ON NATIONAL ECONOMIES

    Directory of Open Access Journals (Sweden)

    CEAUȘESCU IONUT

    2015-04-01

    Full Text Available The purpose of research is to improve the understanding of nature underground economy by rational justification of the right to be enshrined a reality that, at least statistically, can no longer be neglected. So, we propose to find the answer to the question: has underground economy to stand-alone?

  13. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  14. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  15. An Economy of Grace

    Directory of Open Access Journals (Sweden)

    Victor Tan Chen

    2017-03-01

    Full Text Available This essay is adapted from a plenary talk the author gave at the “Growing Apart: The Implications of Economic Inequality” interdisciplinary conference at Boston College on 9 April 2016, as well as portions of his book Cut Loose: Jobless and Hopeless in an Unfair Economy, a sociological ethnography based on interviews and observations of unemployed autoworkers in Detroit, Michigan, and Windsor, Canada, during and after the Great Recession. The essay discusses four themes from this research. First, it provides a sociological understanding of how long-term unemployment and economic inequality are experienced by today’s less advantaged workers. Second, it illustrates how social policy can improve their circumstances. Third, it examines the limits of policy, and how dealing with inequality also requires changing the broader culture. Fourth, it makes the case for one possible approach to bring about that cultural change: a morality of grace.

  16. Understanding the New Economy.

    Science.gov (United States)

    Morrell, Louis R.

    2001-01-01

    Asserts that while the Nasdaq bubble did burst, the new economy is real and that failure to understand the rules of the digital economy can lead to substandard investment portfolio performance. Offers guidelines for higher education institutional investors. (EV)

  17. Hydrogen and nuclear power

    International Nuclear Information System (INIS)

    Holt, D.J.

    1976-12-01

    This study examines the influence that the market demand for hydrogen might have on the development of world nuclear capacity over the next few decades. In a nuclear economy, hydrogen appears to be the preferred energy carrier over electricity for most purposes, due to its ready substitution and usage for all energy needs, as well as its low transmission costs. The economic factors upon which any transition to hydrogen fuelling will be largely based are seen to be strongly dependent on the form of future energy demand, the energy resource base, and on the status of technology. Accordingly, the world energy economy is examined to identify the factors which might affect the future demand price structure for energy, and a survey of current estimates of world energy resources, particularly oil, gas, nuclear, and solar, is presented. Current and projected technologies for production and utilization of hydrogen are reviewed, together with rudimentary cost estimates. The relative economics are seen to favour production of hydrogen from fossil fuels far into the foreseeable future, and a clear case emerges for high temperature nuclear reactors in such process heat applications. An expanding industrial market for hydrogen, and near term uses in steelmaking and aircraft fuelling are foreseen, which would justify an important development effort towards nuclear penetration of that market. (author)

  18. To make the economy of nuclear?

    International Nuclear Information System (INIS)

    Tinturier, B.; Barre, B.; Le Bars, Y.; Catz, H.; Perez, S.; Laponche, B.; Charpin, J.M.; Dessus, B.; Pellat, R.; Lipietz, A.

    2000-01-01

    This issue treats the report to the Prime minister about the prospective economical study of the nuclear electric path, study made by Jean-Michel Charpin, Benjamin Dessus and Rene Pellat. Synthesis, comments and criticisms are the essential of this issue. The different parts hand over to the President of Electricite de France, Bernard Tinturier, to the Director of the Research and development of COGEMA, Bertrand Barre (he speaks for oneself), to the President of ANDRA (national agency for the radioactive waste management), Yves Le Bars, to a Cea salaried employee administrator who has been elected on a list sponsored by the C.F.D.T., Henri Catz, to a Cea researcher, national responsible of the National Federation Energy Mines (C.G.T.), Serge Perez. (N.C.)

  19. Knowledge Based Economy Assessment

    OpenAIRE

    Madalina Cristina Tocan

    2012-01-01

    The importance of knowledge-based economy (KBE) in the XXI century is evident. In the article the reflection of knowledge on economy is analyzed. The main point is targeted to the analysis of characteristics of knowledge expression in economy and to the construction of structure of KBE expression. This allows understanding the mechanism of functioning of knowledge economy. The authors highlight the possibility to assess the penetration level of KBE which could manifest itself trough the exist...

  20. FROM CIRCULAR ECONOMY TO BLUE ECONOMY

    Directory of Open Access Journals (Sweden)

    Iustin-Emanuel, ALEXANDRU

    2014-11-01

    Full Text Available Addressing the subject of this essay is based on the background ideas generated by a new branch of science - Biomimicry. According to European Commissioner for the Environment, "Nature is the perfect model of circular economy". Therefore, by imitating nature, we are witnessing a process of cycle redesign: production-consumption-recycling. The authors present some reflections on the European Commission's decision to adopt after July 1, 2014 new measures concerning the development of more circular economies. Starting from the principles of Ecolonomy, which is based on the whole living paradigm, this paper argues for the development within each economy of entrepreneurial policies related to the Blue economy. In its turn, Blue economy is based on scientific analyses that identify the best solutions in a business. Thus, formation of social capital will lead to healthier and cheaper products, which will stimulate entrepreneurship. Blue economy is another way of thinking economic practice and is a new model of business design. It is a healthy, sustainable business, designed for people. In fact, it is the core of the whole living paradigm through which, towards 2020, circular economy will grow more and more.

  1. Canada's hydrogen energy sector

    International Nuclear Information System (INIS)

    Kimmel, T.B.

    2009-01-01

    Canada produces the most hydrogen per capita of any Organization of Economic Cooperation and Development (OECD) country. The majority of this hydrogen is produced by steam methane reforming for industrial use (predominantly oil upgrading and fertilizer production). Canada also has a world leading hydrogen and fuel cell sector. This sector is seeking new methods for making hydrogen for its future energy needs. The paper will discuss Canada's hydrogen and fuel cell sector in the context of its capabilities, its demonstration and commercialization activities and its stature on the world stage. (author)

  2. The Sharing Economy

    OpenAIRE

    Reinhold, Stephan; Dolnicar, Sara

    2017-01-01

    Peer-to-peer accommodation networks in general, and Airbnb in specific, are frequently referred to as part of the sharing economy. This chapter provides an overview of key characteristics of the sharing economy, discusses how these characteristics relate to peer-to-peer accommodation, and positions peer-to-peer accommodation networks within the sharing economy.

  3. Proceedings of the 1992 DOE/NREL hydrogen program review

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Gao, Q.H.; Miller, E. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1992-07-01

    These proceedings contain 18 papers presented at the meeting. While the majority of the papers (11) had to do with specific hydrogen production methods, other papers were related to hydrogen storage systems, evaluations of and systems analysis for a hydrogen economy, and environmental transport of hydrogen from a pipeline leak.

  4. A participação no processo decisório: um estudo na economia solidária Participation in the decision making process: a study in a solidarity-based economy association

    Directory of Open Access Journals (Sweden)

    Beatriz Centenaro Hellwig

    2007-12-01

    Full Text Available O presente artigo tem por objeto de estudo a participação e, por cenário, a Economia Popular e Solidária, essa forma de fazer econômico que tem por essência a valorização do trabalho sobre o capital, além das relações de trabalho ancoradas na autogestão, e que cultiva como princípio fundamental a solidariedade. Trata-se de uma pesquisa exploratória, baseada em estudo de caso único. A organização onde foi realizado o estudo é uma das treze associações responsáveis pela triagem de resíduos sólidos do Sistema Integrado de Resíduos Sólidos (GIRS, implantado pela Prefeitura Municipal de Porto Alegre em 1989, conforme o princípio da EPS. A análise dos dados revelou, entretanto, um modelo autocrático de gestão e baixo comprometimento dos associados, assim como o fato de que o trabalho é vivenciado como um meio de sobrevivência como outro qualquer. Já as relações entre os trabalhadores são pautadas pela desconfiança e pela competição, fatores que podem estar na origem das elevadas taxas de turnover e do baixo índice de produtividade constatados. Entre as conclusões deste estudo está o reconhecimento da complexidade de reconstruir o laço social.Participation in the decision making process was studied in the scenario of a solidarity-based economy association where work is valued above capital; work relations are anchored in self-management and solidarity is cultivated as a fundamental principle. Exploratory research was done in one of the thirteen associations responsible for solid waste salvage in the Integrated Solid Waste System implemented by the Porto Alegre City Hall in 1989 according to the solidarity-based economy principle. However analysis disclosed an autocratic model of management and limited commitment by associates. Work was considered to be a means of survival, no different from any other. Since relations among the workers are characterized by mistrust and competition, these may be the origin of the

  5. Calculation of LUEC using HEEP Software for Nuclear Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongho; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution by reducing the release of carbon dioxide. A Very High Temperature Reactor (VHTR) is considered as an efficient reactor to couple with the thermo-chemical Sulfur Iodine (SI) cycle to achieve the hydrogen economy. HEEP(Hydrogen Economy Evaluation Program) is one of the software tools developed by IAEA to evaluate the economy of the nuclear hydrogen production system by estimating unit hydrogen production cost. In this paper, the LUHC (Levelized Unit Hydrogen Cost) is calculated by using HEEP for nuclear hydrogen production plant, which consists of 4 modules of 600 MWth VHTR coupled with SI process. The levelized unit hydrogen production cost(LUHC) was calculated by the HEEP software.

  6. Economy or chrematistics: Serbian case

    Directory of Open Access Journals (Sweden)

    Anđelković Petar M.

    2015-01-01

    Full Text Available The nations are worth as much as it is worth their economies. In today's global world, people gain or lose independence primarily by how successful their economy is . Of course, freedom and independence of a people is defended in all fields, but the economic success is the key to success to all the rest. A society that is for us and the former socialist countries, termed transition, represents a return to predatory capitalism and the way in hypocritical, orchestrated democracy; it is now the world of lasting evil and bigger injustice that undermine the state and relentlessly pushing them into ,,peripheral capitalism' (Ljubisa Mitrovic. The word 'economy' is of Greek origin and translated into our language it means' skill of housekeeping (economy'. What we habitually continue to call economy in the world today and in Serbia, we can not call the skill of keeping. The term 'economy' has long been superseded, in his place is the term 'chrematistics' also a word of Greek origin that means inserted enrichment. This term in use is introduced by Aristotle. This ancient philosopher emphasized that the economy and chrematistics are antipodes and that chrematistics destructive to society. By its nature, it leads to the destruction of the economy. Practically, it can be called 'destroyers skill of keeping the economy.' Today in the world and Serbia do not have the economy, we have chrematistics (speculation on commodity markets , pyramid schemes, the development of the securities market , games on the stock market ... . Chrematistics the trick word, and that's why we can replace it with the term 'casino-economy.' A new form of monarchy, which is expressed as a new imperialism, is not based on ' cunning mind' (Hegel and the 'spirit of the law' ( Montesquieu , but the 'cunning of the economy', which is dominated by raw (Hobbes laws of the market and where the economy becomes policies. Figure of societies of Eastern Europe, where the neoliberal social

  7. Modeling of similar economies

    Directory of Open Access Journals (Sweden)

    Sergey B. Kuznetsov

    2017-06-01

    Full Text Available Objective to obtain dimensionless criteria ndash economic indices characterizing the national economy and not depending on its size. Methods mathematical modeling theory of dimensions processing statistical data. Results basing on differential equations describing the national economy with the account of economical environment resistance two dimensionless criteria are obtained which allow to compare economies regardless of their sizes. With the theory of dimensions we show that the obtained indices are not accidental. We demonstrate the implementation of the obtained dimensionless criteria for the analysis of behavior of certain countriesrsquo economies. Scientific novelty the dimensionless criteria are obtained ndash economic indices which allow to compare economies regardless of their sizes and to analyze the dynamic changes in the economies with time. nbsp Practical significance the obtained results can be used for dynamic and comparative analysis of different countriesrsquo economies regardless of their sizes.

  8. Transient shielded liquid hydrogen containers

    International Nuclear Information System (INIS)

    Varghese, A.P.; Herring, R.H.

    1990-01-01

    The storage of hydrogen in the liquid phase has been limited in duration due to the thermal performance constraints of conventional Liquid Hydrogen containers available. Conventional Liquid Hydrogen containers lose hydrogen because of their relatively high heat leak and variations in usage pattern of hydrogen due to shutdowns. Local regulations also discourage venting of hydrogen. Long term storage of Liquid Hydrogen without product loss was usually accomplished using Liquid Nitrogen sacrificial shields. This paper reports on a new low heat leak container developed and patented that will extend the storage time of liquid hydrogen by five hundred percent. The principle of operation of the Transient Shields which makes the extraordinary performance of this container feasible is described in this paper. Also covered are the impact of this new container on present applications of hydrogen and the new opportunities afforded to Liquid hydrogen in the world hydrogen market

  9. Canadian hydrogen strategies

    International Nuclear Information System (INIS)

    Fairlie, M.; Scepanovic, V.; Dube, J.; Hammerli, M.; Taylor, J.

    2004-01-01

    'Full text:' In May of 2004, industry and government embarked on a process to create a strategic plan for development of the 'hydrogen economy' in Canada. The process was undertaken to determine how the development and commercialization of hydrogen technologies could be accelerated to yield a 'visible' reduction in greenhouse gases within the timeframe of Kyoto, while establishing a direction that addresses the necessity of far greater reductions in the future. Starting with a meeting of twenty seven experts drawn from the hydrogen technology, energy and transportation industries and government, a vision and mission for the planning process was developed. Two months later a second meeting was held with a broader group of stakeholders to develop hydrogen transition strategies that could achieve the mission, and from identifying the barriers and enablers for these strategies, an action plan was created. This paper reviews the results from this consultation process and discusses next steps. (author)

  10. Hydrogen perspectives in Japan

    International Nuclear Information System (INIS)

    Furutani, H.

    2000-01-01

    Hydrogen energy is considered to present a potential effective options for achieving the greenhouse gas minimization. The MITI (Ministry of International Trade and Industry) of Japanese Government is promoting the WE-NET (World Energy Network System) Project which envisions (1) construction of a global energy network for effective supply, transportation, storage and utilization of renewable energy using hydrogen as an energy carrier as a long-term options of sustainable energy economy, and (2) promotion of market entry of hydrogen energy in near and/or mid future even before construction of a WE-NET system. In this paper, I would like to report how far the hydrogen energy technology development addressed under Phase I has progressed, and describe the outline of the Phase II Plan. (author)

  11. Hydrogen energy for beginners

    CERN Document Server

    2013-01-01

    This book highlights the outstanding role of hydrogen in energy processes, where it is the most functional element due to its unique peculiarities that are highlighted and emphasized in the book. The first half of the book covers the great natural hydrogen processes in biology, chemistry, and physics, showing that hydrogen is a trend that can unite all natural sciences. The second half of the book is devoted to the technological hydrogen processes that are under research and development with the aim to create the infrastructure for hydrogen energetics. The book describes the main features of hydrogen that make it inalienable player in processes such as fusion, photosynthesis, and metabolism. It also covers the methods of hydrogen production and storage, highlighting at the same time the exclusive importance of nanotechnologies in those processes.

  12. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  13. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    Clean forms of energy are needed to support sustainable global economic growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision for moving toward a hydrogen economy - a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. In February 2003, President George W. Bush announced a new Hydrogen Fuel Initiative to achieve this vision. To realize this vision, the U.S. must develop and demonstrate advanced technologies for hydrogen production, delivery, storage, conversion, and applications. Toward this end, the DOE has worked with public and private organizations to develop a National Hydrogen Energy Technology Road-map. The Road-map identifies the technological research, development, and demonstration steps required to make a successful transition to a hydrogen economy. One of the advantages of hydrogen is that it can utilize a variety of feedstocks and a variety of production technologies. Feedstock options include fossil resources such as coal, natural gas, and oil, and non-fossil resources such as biomass and water. Production technologies include thermochemical, biological, electrolytic and photolytic processes. Energy needed for these processes can be supplied through fossil, renewable, or nuclear sources. Hydrogen can be produced in large central facilities and distributed to its point of use or it can be produced in a distributed manner in small volumes at the point of use such as a refueling station or stationary power facility. In the shorter term, distributed production will play an important role in initiating the use of hydrogen due to its lower capital investment. In the longer term, it is likely that centralized

  14. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    potential, the maximum efficiency is about 52 % under the conditions of 40% sulfur power plant efficiency and 60 w-% sulfuric acid concentration in electrolyzer The major factors that can affect the cycle efficiency are reducing the electrode over-potential Because the once-through process does not need a high temperature reactor for sulfuric acid decomposition, initial hydrogen feed for boosting the hydrogen economy can be provided by the currently available nuclear electricity which is carbon-free. After the initiation of the hydrogen economy, closed recycle of sulfuric acid using high temperature nuclear reactors can be pursued. Until the commercialization of closed nuclear hydrogen process, by using the once-through process, the initial hydrogen feed for the hydrogen economy can be provided by nuclear electricity. Fossil fuels provide 86% of total primary energy today. Considering the current energy mix, fossil fuels will inevitably play a major role and sulfur will flow out as a by product. The sulfur byproduct utilization for the nuclear hydrogen generation will make the transition to the hydrogen economy smooth. In addition, off-peak electricity can be converted into hydrogen by the once-through process and converted back to electricity for the peak load. Depending on the electrode potential and round trip efficiency, off-peak electricity can be stored very efficiently. (authors)

  15. Rebalancing the Eurozone Troubled Economies

    Directory of Open Access Journals (Sweden)

    Ziółkowski Michał

    2014-10-01

    Full Text Available The aim of the article is to assess how much rebalancing of the six eurozone troubled economies (Ireland, Portugal, Spain, Italy, Greece, Cyprus was achieved since the outbreak of the financial crisis in 2007/2008, to what extent migrations were a mitigating factor on their labor markets and how much the troubled countries were assisted in their adjustment by other countries. The first part of the article shows an overall macroeconomic picture of the troubled economies' rebalancing together with a presentation of the etiology of the problem (i.e. accumulation of imbalances. The second part presents the role of migrations and the third part the role of the Eurosystem and international financial assistance in the rebalancing process. The research is based on comparing developments in selected indicators across countries. The conclusions are that the rebalancing in the troubled countries was either at most limited or actually their economies continued to fall out of balance (various indicators showing various developments make the situation ambiguous, migrations were either not much supportive for rebalancing of the troubled economies or they did not provide any dent to unemployment at all and that the troubled countries were provided with significant international assistance mainly in the form of the ECB policies causing the rise in the Target balances.

  16. On Population Mobility in Market Economy

    Institute of Scientific and Technical Information of China (English)

    Yu Xianzhong

    2005-01-01

    Regular and extensive social population mobility in natural economy is neither necessary nor possible while in a planned economic system, social population distribution is necessary but social population mobility is unlikely. Modern market economy as a highly mobile economy has a free-mobile population characteristic of market economy, which is fundamental to optimize human resource distribution. The rule for the modern market-based population movement is as follows: If the mobile population is the rational behavior choosers, under the permissive developmental environment as arranged by the social system, they tend to move from low profit-making fields to high income fields when there exists comparable difference of income in different regions and different industries, and various potential and practical profit-making chances. The degree of difference in comparable income is positively co-relative to the velocity and flux of mobile population.

  17. The Sharing Economy

    DEFF Research Database (Denmark)

    Avital, Michel; Carroll, John M.; Hjalmarsson, Anders

    2015-01-01

    The sharing economy is spreading rapidly worldwide in a number of industries and markets. The disruptive nature of this phenomenon has drawn mixed responses ranging from active conflict to adoption and assimilation. Yet, in spite of the growing attention to the sharing economy, we still do not know...... much about it. With the abundant enthusiasm about the benefits that the sharing economy can unleash and the weekly reminders about its dark side, further examination is required to determine the potential of the sharing economy while mitigating its undesirable side effects. The panel will join...... the ongoing debate about the sharing economy and contribute to the discourse with insights about how digital technologies are critical in shaping this turbulent ecosystem. Furthermore, we will define an agenda for future research on the sharing economy as it becomes part of the mainstream society as well...

  18. Macroeconomic perspectives on the Danish economy

    DEFF Research Database (Denmark)

    Andersen, Torben M.; Hougaard Jensen, Svend E.; Risager, Ole

    A guide to major economic policy issues in Denmark. Leading Danish and international economists discuss, in comparative conte×t, the Danish economy's performance in the last 40 years, and assess the challenges which Denmark in common with other small, open economies faces in the global economy...... today. Major features include the continuing of academic analysis with policy making e×perience and e×pertise, and the e×amination of topical issues including the impact of EMU on "outsider" nations....

  19. Human Trafficking: Fighting the Illicit Economy with the Legitimate Economy

    Directory of Open Access Journals (Sweden)

    Louise Shelley

    2015-02-01

    Full Text Available Since the beginning of research on human trafficking, there has been attention paid to the challenges surrounding the illicit economy. In creating new strategies and initiatives on combatting human trafficking, there needs to be more discussion surrounding the legitimate economy and how the business sector can make an impact in the fight against trafficking. Currently, there is a growing movement of businesses that are looking to address human trafficking through training, education, and leadership initiatives; codes of conduct; supply chain management; and financial analysis. This paper will examine the latest in these strategies and approaches by businesses in the global war against human trafficking, in addition to a discussion of a new initiative engaging the private sector co-led by Dr. Louise Shelley and Christina Bain through the World Economic Forum’s Global Agenda Council Network.

  20. Economy and Grace

    DEFF Research Database (Denmark)

    Pedersen, Else Marie Wiberg

    2015-01-01

    Luther develops his idea the grace of God in tandem with his idea of economy, and a society characterized by ethical and social values such as love of neighbour and caring for the poor. Hence, the reformer's search for a gracious God is developed along with his criticism of the current indulgence...... doctrine and the emerging 'oeconomia moderna'. Thus, building on a simul gratia et oeconomia, grace and economy simultaneously, Luther's reformation theology can be perceived as te intersection of an economy of grace and a horizontal social economy (works of love) in quotidian life that together constitute...

  1. Hydrogen assisted diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilik, Gregory K.; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Hedan; Haworth, Daniel C. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Herreros, Jose Martin [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla La-Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-05-15

    that temperature changes alone are not sufficient to explain the observed reduction in NO and increase in NO{sub 2} with increasing H{sub 2}. The CFD results are consistent with the hypothesis that in-cylinder HO{sub 2} levels increase with increasing hydrogen, and that the increase in HO{sub 2} enhances the conversion of NO to NO{sub 2}. Increased aspiration of hydrogen resulted in PM, and HC emissions which were combustion mode dependent. Predominantly, CO and CO{sub 2} decreased with the increase of hydrogen. The aspiration of hydrogen into the engine modestly decreased fuel economy due to reduced volumetric efficiency from the displacement of air in the cylinder by hydrogen. (author)

  2. Regional Priorities of Green Economy

    Directory of Open Access Journals (Sweden)

    Sergey Nikolayevich Bobylev

    2015-06-01

    Full Text Available The article is dedicated to transforming the economy of Russian regions to a green economy, which is an essential factor for the sustainable development. This is important not only for Russia but the whole world because our country has the great natural capital and provides important environmental services that support the planet biosphere. Based on the analysis of economic, social and ecological statistical data and Human Development Index (HDI we have shown that the development of Russian Federal Districts is very unbalanced and each Russian region has its own way to new economic model. For instance, it is necessary to increase the well-being in the North Caucasus Federal District, it is important to reach higher life expectancy at birth in the Siberian and the Far Eastern Districts. It is necessary to move from the «brown» economy to a green one by using the human capital (building a knowledge economy, by applying Best Available Technologies (Techniques, by investing in efficiency of use of natural resources and by increasing energy efficiency. The transition to a green economy will help to achieve social equity and the development of human potential; it helps to move from the exploitation of non-renewable natural capital to renewable human capital. All these socio-economic measures should give decoupling effect, make risks lower, reduce the exploitation of natural capital, stop the environmental degradation and prevent the ecological crisis. Transition to the green economic model has to be accompanied by new economic development indicators, which take into account social and environmental factors.

  3. Hydrogen-powered road vehicles. Positive and negative health effects of new fuel

    International Nuclear Information System (INIS)

    2008-09-01

    Because of the political, social and environmental problems associated with dependency on fossil fuels, there is considerable interest in alternative energy sources. Hydrogen is regarded as a promising option, particularly as a fuel for road vehicles. The Dutch Energy research Centre of the Netherlands (ECN) recently published a vision of the future, in which it suggested that by 2050 more than half of all cars in the Netherlands could be running on hydrogen. Assuming that the hydrogen is produced from renewable energy sources, migration to hydrogen-powered vehicles would also curb carbon dioxide emissions. In the United States, Japan and Europe, considerable public and private investment is therefore being made with a view to developing the technologies needed to make the creation of a hydrogen-based economy possible within a few decades. A switch to using hydrogen as the primary energy source for road vehicles would have far-reaching social consequences. As with all technological developments, opportunities would be created, but drawbacks would inevitably be encountered as well. Some of the disadvantages associated with hydrogen are already known, and are to some degree manageable. It is likely, however, that other drawbacks would come to light only once hydrogen-powered cars were actually in use With that thought in mind, and in view of the social significance of a possible transition to hydrogen, it was decided that the Health Council should assess the positive and negative effects that hydrogen use could have on public health. It is particularly important to make such an assessment at the present early stage in the development of hydrogen technologies, so that gaps in existing scientific knowledge may be identified and appropriate strategies may be developed for addressing such gaps. This report has been produced by the Health and Environment Surveillance Committee, which has special responsibility for the identification of important correlations between

  4. Progress of Nuclear Hydrogen Program in Korea

    International Nuclear Information System (INIS)

    Lee, Won Jae

    2009-01-01

    To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels is required. Hydrogen is considered a promising future energy solution because it is clean, abundant and storable and has a high energy density. As other advanced countries, the Korean government had established a long-term vision for transition to the hydrogen economy in 2005. One of the major challenges in establishing a hydrogen economy is how to produce massive quantities of hydrogen in a clean, safe and economical way. Among various hydrogen production methods, the massive, safe and economic production of hydrogen by water splitting using a very high temperature gas-cooled reactor (VHTR) can provide a success path to the hydrogen economy. Particularly in Korea, where usable land is limited, the nuclear production of hydrogen is deemed a practical solution due to its high energy density. To meet the expected demand for hydrogen, the Korea Atomic Energy Institute (KAERI) launched a nuclear hydrogen program in 2004 together with Korea Institute of Energy Research (KIER) and Korea Institute of Science and Technology (KIST). Then, the nuclear hydrogen key technologies development program was launched in 2006, which aims at the development and validation of key and challenging technologies required for the realization of the nuclear hydrogen production demonstration system. In 2008, Korean Atomic Energy Commission officially approved a long-term development plan of the nuclear hydrogen system technologies as in the figure below and now the nuclear hydrogen program became the national agenda. This presentation introduces the current status of nuclear hydrogen projects in Korea and the progress of the nuclear hydrogen key technologies development. Perspectives of nuclear process heat applications are also addressed

  5. Real economy versus virtual economy - New challenges for nowadays society

    Directory of Open Access Journals (Sweden)

    Associates Professon Dr. Veronica Adriana Popescu

    2011-05-01

    Full Text Available In the paper Real Economy versus Virtual Economy – New Challenges for Nowadays Society our goal is to present the importance of both real economy and virtual economy.At the begging of our research, we have presented the main views of some specialists concerning both virtual and real economy. After that we have compared the two types of economies and we have stressed the most important aspects connected to them. The main reason why we have decided to approach this complex subject is due to the increasing interest in the virtual economy matters and the relation that this particular type of economy develops with the real economy.

  6. The Circular Economy: In Practice-focused Undergraduate Engineering Education

    DEFF Research Database (Denmark)

    Knudby, Torben; Larsen, Samuel

    2017-01-01

    The growth of the planet’s population makes the traditional industrial model of “take, make and waste” unsustainable. The circular economy, in which resources are continuously reused, offers a solution. For manufacturers of durable goods the circular economy requires a well-functioning circular...

  7. LABOUR RELATIONS IN POSTINDUSTRIAL ECONOMY

    Directory of Open Access Journals (Sweden)

    Yuriy Rostislavovitch Chistyakov

    2013-09-01

    Full Text Available The article deals with inadequacy of present-day labour relations in economy. Out of date form of labour relations makes workforce dependable, causes social inequality, prevents economical development. The article gives results of theoretical and empiric research. The mechanism of guaranteed reproduction of labour to be realized as social partnership is offered.Purpose: the purpose is to give critical estimation of present-day labour relations in postindustrial economy.Method of studies: monographic, general theoretic economic analysis, correlation statistic analysisResults: a new modern adequate alternative form of labour relations guarantying the reproduction of labour is introducedField of application: industrial regulation both in economics in general and concrete businesses; motivation of workers.DOI: http://dx.doi.org/10.12731/2218-7405-2013-8-29

  8. Availability Cascades & the Sharing Economy

    DEFF Research Database (Denmark)

    Netter, Sarah

    2014-01-01

    attention. This conceptual paper attempts to explain the emergent focus on the sharing economy and associated business and consumption models by applying cascade theory. Risks associated with this behavior will be especially examined with regard to the sustainability claim of collaborative consumption......In search of a new concept that will provide answers to as to how modern societies should not only make sense but also resolve the social and environmental problems linked with our modes of production and consumption, collaborative consumption and the sharing economy are increasingly attracting....... With academics, practitioners, and civil society alike having a shared history in being rather fast in accepting new concepts that will not only provide business opportunities but also a good conscience, this study proposes a critical study of the implications of collaborative consumption, before engaging...

  9. Dismantling the Cold War economy

    International Nuclear Information System (INIS)

    Markusen, A.; Yudkin, J.

    1992-01-01

    End-of-the-Cold-War economic realities include political jockeying over the future of weapons systems, a paucity of meaningful conversion efforts, and a suspicion that a weak economy will be unable to compensate for the loss of jobs and purchasing power as defense budgets are reduced. The authors of this book present three interrelated hypotheses: The first is that the existence of a large military production sector has depleted the civilian economy of key resources and has preempted creation of the kind of broad-base civilian-oriented industrial policies needed for economic revitalization. The second is that a large military production sector creates barriers to the movement of resources. The third is that economic depletion and the barriers to moving resources to civilian production make conversion planning essential. This book explains why conversion is difficult, but offers only a few pages of specific conversion proposals

  10. Heroes of the knowledge economy

    DEFF Research Database (Denmark)

    Ørberg, Jakob Williams

    they themselves envisage their futures. The thesis looks behind the mirror cabinet of policy making and aims to better grasp the work and personal investments of Indian youth in creating the imaginaries we rely on globally, when we envision the global knowledge economy. The thesis is as such an account......The Indian engineering student has both nationally and globally come to symbolize the advent of a global knowledge economy. Indian engineering students are depicted in policy documents and popular media as important protagonists that will take India into the this promising future. This thesis...... is a study of these Indian ‘heroes’. It is based on ethnographic fieldwork in an iconic site for their production, the top Indian engineering university, the Indian Institute of Technology Delhi, and it aims to understand how students engage in the creation of both their own and national – even global...

  11. Car buyers and fuel economy?

    International Nuclear Information System (INIS)

    Turrentine, Thomas S.; Kurani, Kenneth S.

    2007-01-01

    This research is designed to help researchers and policy makers ground their work in the reality of how US consumers are thinking and behaving with respect to automotive fuel economy. Our data are from semi-structured interviews with 57 households across nine lifestyle 'sectors.' We found no household that analyzed their fuel costs in a systematic way in their automobile or gasoline purchases. Almost none of these households track gasoline costs over time or consider them explicitly in household budgets. These households may know the cost of their last tank of gasoline and the unit price of gasoline on that day, but this accurate information is rapidly forgotten and replaced by typical information. One effect of this lack of knowledge and information is that when consumers buy a vehicle, they do not have the basic building blocks of knowledge assumed by the model of economically rational decision-making, and they make large errors estimating gasoline costs and savings over time. Moreover, we find that consumer value for fuel economy is not only about private cost savings. Fuel economy can be a symbolic value as well, for example among drivers who view resource conservation or thrift as important values to communicate. Consumers also assign non-monetary meaning to fuel prices, for example seeing rising prices as evidence of conspiracy. This research suggests that consumer responses to fuel economy technology and changes in fuel prices are more complex than economic assumptions suggest. The US Department of Energy and the Energy Foundation supported this research. The authors are solely responsible for the content and conclusions presented

  12. Economy Profile of Argentina

    OpenAIRE

    World Bank Group

    2017-01-01

    Doing Business 2018 is the 15th in a series of annual reports investigating the regulations that enhance business activity and those that constrain it. This economy profile presents the Doing Business indicators for Argentina. Doing Business presents quantitative indicators on business regulation and the protection of property rights that can be compared across 190 economies; for 2018 Arge...

  13. Economy Profile of Estonia

    OpenAIRE

    World Bank Group

    2017-01-01

    Doing Business 2018 is the 15th in a series of annual reports investigating the regulations that enhance business activity and those that constrain it. This economy profile presents the Doing Business indicators for Estonia. Doing Business presents quantitative indicators on business regulation and the protection of property rights that can be compared across 190 economies; for 2018 Estonia ...

  14. Economy Profile of Australia

    OpenAIRE

    World Bank Group

    2017-01-01

    Doing Business 2018 is the 15th in a series of annual reports investigating the regulations that enhance business activity and those that constrain it. This economy profile presents the Doing Business indicators for Australia. Doing Business presents quantitative indicators on business regulation and the protection of property rights that can be compared across 190 economies; for 2018 Aust...

  15. Economy Profile of Bolivia

    OpenAIRE

    World Bank Group

    2017-01-01

    Doing Business 2018 is the 15th in a series of annual reports investigating the regulations that enhance business activity and those that constrain it. This economy profile presents the Doing Business indicators for Bolivia. Doing Business presents quantitative indicators on business regulation and the protection of property rights that can be compared across 190 economies; for 2018 Bolivia ...

  16. Free variable economy

    NARCIS (Netherlands)

    Roelofsen, F.

    2009-01-01

    Several authors have recently argued that semantic interpretation is subject to economy constraints. In particular, Fox (1999) argued that the interpretation of pronouns is subject to BINDING ECONOMY, which favors local binding over non-local binding. The present paper points out a problem for

  17. Saga of hydrogen civilization

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T.N. [Univ. of Miami, Coral Gables, FL (United States). Clean Energy Research Institute

    2008-09-30

    In the 1960s, air pollution in cities became an important issue hurting the health of people. The author became interested in environmental issues in general and air pollution in particular. He started studying possible vehicle fuels, with a view of determining the fuel which would cause little or no pollution. He particularly studied methanol, ethanol, ammonia and hydrogen as well as the gasohols (i.e., the mixtures of gasoline and methanol and/or ethanol). His investigation of fuels for transportation lasted five years (1967-1972). The result was that hydrogen is the cleanest fuel, and it is also the most efficient one. It would not produce CO (carbon monoxide), CO{sub 2} (carbon dioxide), SO{sub x}, hydrocarbons, soot and particulates. If hydrogen was burned in oxygen, it would not produce NO{sub x} either. If it burned in air, there would then be some NO{sub x} produced. Since the author has always believed that engineers and scientists should strive to find solutions to the problems facing humankind and the world, he established the Clean Energy Research Institute (CERI) at the University of Miami in 1973. The mission of the Institute was to find a solution or solutions to the energy problem, so the world economy can function properly and provide humankind with high living standards. To find clean forms of energy was also the mission of the Institute, so that they would not produce pollution and damage the health of flora, fauna and humans, as well as the environment of the planet Earth as a whole. CERI looked at all of the possible primary energy sources, including solar, wind, currents, waves, tides, geothermal, nuclear breeders and thermonuclear. Although they are much cleaner and would last much longer than fossil fuels, these sources were not practical for use. They were not storable or transportable by themselves, except nuclear. They could not be used as a fuel for transportation by themselves, except nuclear for marine transportation. In order to solve

  18. The Italian hydrogen programme

    International Nuclear Information System (INIS)

    Raffaele Vellone

    2001-01-01

    Hydrogen could become an important option in the new millennium. It provides the potential for a sustainable energy system as it can be used to meet most energy needs without harming the environment. In fact, hydrogen has the potential for contributing to the reduction of climate-changing emissions and other air pollutants as it exhibits clean combustion with no carbon or sulphur oxide emissions and very low nitrogen oxide emissions. Furthermore, it is capable of direct conversion to electricity in systems such as fuel cells without generating pollution. However, widespread use of hydrogen is not feasible today because of economic and technological barriers. In Italy, there is an ongoing national programme to facilitate the introduction of hydrogen as an energy carrier. This programme aims to promote, in an organic frame, a series of actions regarding the whole hydrogen cycle. It foresees the development of technologies in the areas of production, storage, transport and utilisation. Research addresses the development of technologies for separation and sequestration of CO 2 , The programme is shared by public organisations (research institutions and universities) and national industry (oil companies, electric and gas utilities and research institutions). Hydrogen can be used as a fuel, with significant advantages, both for electric energy generation/ co-generation (thermo-dynamic cycles and fuel cells) and transportation (internal combustion engine and fuel cells). One focus of research will be the development of fuel cell technologies. Fuel cells possess all necessary characteristics to be a key technology in a future economy based on hydrogen. During the initial phase of the project, hydrogen will be derived from fossil sources (natural gas), and in the second phase it will be generated from renewable electricity or nuclear energy. The presentation will provide a review of the hydrogen programme and highlight future goals. (author)

  19. Ultrafine hydrogen storage powders

    Science.gov (United States)

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  20. High density hydrogen research

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1977-01-01

    The interest in the properties of very dense hydrogen is prompted by its abundance in Saturn and Jupiter and its importance in laser fusion studies. Furthermore, it has been proposed that the metallic form of hydrogen may be a superconductor at relatively high temperatures and/or exist in a metastable phase at ambient pressure. For ten years or more, laboratories have been developing the techniques to study hydrogen in the megabar region (1 megabar = 100 GPa). Three major approaches to study dense hydrogen experimentally have been used, static presses, shockwave compression, and magnetic compression. Static tchniques have crossed the megabar threshold in stiff materials but have not yet been convincingly successful in very compressible hydrogen. Single and double shockwave techniques have improved the precision of the pressure, volume, temperature Equation of State (EOS) of molecular hydrogen (deuterium) up to near 1 Mbar. Multiple shockwave and magnetic techniques have compressed hydrogen to several megabars and densities in the range of the metallic phase. The net result is that hydrogen becomes conducting at a pressure between 2 and 4 megabars. Hence, the possibility of making a significant amount of hydrogen into a metal in a static press remains a formidable challenge. The success of such experiments will hopefully answer the questions about hydrogen's metallic vs. conducting molecular phase, superconductivity, and metastability. 4 figures, 15 references

  1. Storing Renewable Energy in the Hydrogen Cycle.

    Science.gov (United States)

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  2. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  3. Our Lunar Destiny: Creating a Lunar Economy

    Science.gov (United States)

    Rohwer, Christopher J.

    2000-01-01

    "Our Lunar Destiny: Creating a Lunar Economy" supports a vision of people moving freely and economically between the earth and the Moon in an expansive space and lunar economy. It makes the economic case for the creation of a lunar space economy and projects the business plan that will make the venture an economic success. In addition, this paper argues that this vision can be created and sustained only by private enterprise and the legal right of private property in space and on the Moon. Finally, this paper advocates the use of lunar land grants as the key to unleashing the needed capital and the economic power of private enterprise in the creation of a 21st century lunar space economy. It is clear that the history of our United States economic system proves the value of private property rights in the creation of any new economy. It also teaches us that the successful development of new frontiers-those that provide economic opportunity for freedom-loving people-are frontiers that encourage, respect and protect the possession of private property and the fruits of labor and industry. Any new 21st century space and lunar economy should therefore be founded on this same principle.

  4. Hydrogen storage in graphitic nanofibres

    OpenAIRE

    McCaldin, Simon Roger

    2007-01-01

    There is huge need to develop an alternative to hydrocarbons fuel, which does not produce CO2 or contribute to global warming - 'the hydrogen economy' is such an alternative, however the storage of hydrogen is the key technical barrier that must be overcome. The potential of graphitic nanofibres (GNFs) to be used as materials to allow the solid-state storage of hydrogen has thus been investigated. This has been conducted with a view to further developing the understanding of the mechanism(s) ...

  5. ECONOMY AND SOCIAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Oleg BOGOMOLOV

    2008-12-01

    Full Text Available Market reforms in the post-socialist countries have brought into sharp focus the problem of interconnection and interaction between the economy and the social environment. The economy is inseparable from politics and the operation of the political system, from the state of the social consciousness, the moral and cultural level of the population and from many other aspects of human life and behavior, in short, from everything that can be described by the concept of social environment. Society in every country is a single organism with closely interconnected and interacting parts and systems. Their conjugation and mutual influence are not always apparent and are often overlooked. It is quite easy to see how changes in policy affect the economy and then trace the feedback effect of the economy on policy. It is more difficult to discern the direct and feedback relationship of the economy with administrative relations, with the state of culture, science, morals and public opinion. Meanwhile, an underestimation of these mutual influences is a frequent cause of failures in socio-economic transformation. It is to be regretted that the reforms in Russia were accompanied by a dangerous disruption not only of the economy, but also of the entire system of social relations. What was primary here and what was secondary? In order to answer this question the paper takes a theoretical look at the problem of interaction between the economy and the social environment.

  6. Comparing flexibility mechanisms for fuel economy standards

    International Nuclear Information System (INIS)

    Fischer, Carolyn

    2008-01-01

    Since 1975, the Corporate Average Fuel Economy (CAFE) program has been the main policy tool in the US for coping with the problems of increasing fuel consumption and dependence on imported oil. The program mandates average fuel economy requirements for the new vehicle sales of each manufacturer's fleet, with separate standards for cars and light trucks. The fact that each manufacturer must on its own meet the standards means that the incentives to improve fuel economy are different across manufacturers and vehicle types, although the problems associated with fuel consumption do not make such distinctions. This paper evaluates different mechanisms to offer automakers the flexibility of joint compliance with nationwide fuel economy goals: tradable CAFE credits, feebates, output-rebated fees, and tradable credits with banking. The policies are compared according to the short- and long-run economic incentives, as well as to issues of transparency, implementation, administrative and transaction costs, and uncertainty

  7. Signs of political economy

    Directory of Open Access Journals (Sweden)

    Bernard Lamizet

    2015-12-01

    Full Text Available Like any political system, economy is a system of signs and representations. The Semiotics of economy elaborates its analytical methods to interpret such signs, which give meaning to the economy by representing its performances in public debate and in the media. Four major features distinguish the Semiotics of political economy from other semiotic forms or other systems of information and political representation. First of all, the relationship between the signification of the economy and the real or the imaginary phenomena to which they refer always pertains to the order of values. The second characteristic of economic signs is the significance of the state of lack they express. The third characteristic of signs of the economy is the form of sign production, which can be designated by the concept of emission of signs and their diffusion. Finally, as all signs, the economic sign is arbitrary. In the field of Economics, such arbitrariness does not imply that the Subject is free to superimpose whatever value to the signs themselves, but refers to the rupture between the world and its possible transformation. The very meaning of the word economy is here at stake. Oikos, in Greek (the term from which the word economy is derived refers to a known, familiar space. Economy transforms the real, natural world into a symbolic social world, into a world of relations with others whom we recognise and whose actions are relatively predictable. It might be useful to consider the contemporary issue of debt, its implications and its multiple meanings, which includes both the ethical and moral dimension of the condemnation of debt as well as the imaginary political dimension based on the expression of an idea of independence.

  8. www.FuelEconomy.gov

    Data.gov (United States)

    U.S. Environmental Protection Agency — FuelEconomy.gov provides comprehensive information about vehicles' fuel economy. The official U.S. government site for fuel economy information, it is operated by...

  9. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  10. Economies Evolve by Energy Dispersal

    Directory of Open Access Journals (Sweden)

    Stanley Salthe

    2009-10-01

    Full Text Available Economic activity can be regarded as an evolutionary process governed by the 2nd law of thermodynamics. The universal law, when formulated locally as an equation of motion, reveals that a growing economy develops functional machinery and organizes hierarchically in such a way as to tend to equalize energy density differences within the economy and in respect to the surroundings it is open to. Diverse economic activities result in flows of energy that will preferentially channel along the most steeply descending paths, leveling a non-Euclidean free energy landscape. This principle of 'maximal energy dispersal‘, equivalent to the maximal rate of entropy production, gives rise to economic laws and regularities. The law of diminishing returns follows from the diminishing free energy while the relation between supply and demand displays a quest for a balance among interdependent energy densities. Economic evolution is dissipative motion where the driving forces and energy flows are inseparable from each other. When there are multiple degrees of freedom, economic growth and decline are inherently impossible to forecast in detail. Namely, trajectories of an evolving economy are non-integrable, i.e. unpredictable in detail because a decision by a player will affect also future decisions of other players. We propose that decision making is ultimately about choosing from various actions those that would reduce most effectively subjectively perceived energy gradients.

  11. Hydriding and dehydriding rates and hydrogen-storage capacity of ...

    Indian Academy of Sciences (India)

    means of nuclear, wind, solar, tidal or geothermal energy. When hydrogen is converted into energy, water is the only exhaust product. It is thus extremely environmental friendly as an energy carrier. Although hydrogen has obvious benefits, an immediate incorporation of hydrogen into the world economy has a number of ...

  12. Population and the Colombian economy.

    Science.gov (United States)

    Sanders, T G

    1983-01-01

    Colombia is the only one of the 6 most populous Latin American countries that is currently free of major economic crisis requiring an agreement with the International Monetary Fund. The difference in the economic performances of these countries is relative, since the rate of growth in the Colombian economy was only 1.5% in 1982. Yet, Colombia seems to have weathered the international recession better than most. The crisis atmosphere in the rest of Latin America, triggered by overall economic decline, high rates of inflation, and an indebtedness that soaks up much of export earnings to service it, is lacking in Colombia or present in lesser degree. If Colombia can strengthen its political performance and tighten national unity, it could move through the 1980s with considerable confidence and success in economic development. Colombia differs little from other major Latin American countries with regard to traditionalism and modernization. Most Colombians are secularized. Colombia is far ahead of most comparable Latin American countries in fertility control. The lower rate of population increase defines the extent to which the economy must provide education, health, food, and jobs. 2 other factors are essential for understanding the current situation in Colombia and its prospects for the 1980s. Government policy in the 1970s opted for an austerity program while the other countries were growing rapidly, in large part through borrowed resources. A 2nd factor is the prospect of attaining autonomy in energy production. These special characteristics--population, public policy, and energy--are discussed. Since the mid 1960s Colombia has functioned with 3 family planning programs. Their existence makes contraception easily available to the population generally. In 1960 Colombia had a higher total fertility rate (TFR) 7.0, than either Venezuela (6.6) or Brazil (5.3), but by 1976 its TFR was down to 4.1, while Venezuela's (4.8) and Brazil's (4.3) were now higher. On balance

  13. Exploring the Sharing Economy

    DEFF Research Database (Denmark)

    Netter, Sarah

    Despite the growing interest on the part of proponents and opponents - ranging from business, civil society, media, to policy-makers alike - there is still limited knowledge about the working mechanisms of the sharing economy. The thesis is dedicated to explore this understudied phenomenon...... and to provide a more nuanced understanding of the micro- and macro-level tensions that characterize the sharing economy. This thesis consists of four research papers, each using different literature, methodology, and data sets. The first paper investigates how the sharing economy is diffused and is ‘talked......-level tensions experience by sharing platforms by looking at the case of mobile fashion reselling and swapping markets. The final paper combines the perspectives of different sharing economy stakeholders and outlines some of the micro and macro tensions arising in and influencing the organization of these multi...

  14. Research Award: Networked Economies

    International Development Research Centre (IDRC) Digital Library (Canada)

    Office 2004 Test Drive User

    2015-08-06

    year, paid, ... the areas of democracy, human rights and economic growth. ... Networked Economies is seeking a Research Award Recipient to explore research questions ... such as engineering or computer/information science;.

  15. Livelihoods and the economy

    International Development Research Centre (IDRC) Digital Library (Canada)

    better lives. IDRC's support for economic research has helped governments steer national eco-nomies toward growth, level the playing field for busi- ... special treatment and accounting stan- dards were ... part alongside men in all activities,.

  16. Political Economy of Finance

    NARCIS (Netherlands)

    Perotti, E.

    2013-01-01

    This survey reviews how a recent political economy literature helps explaining variation in governance, competition, funding composition and access to credit. Evolution in political institutions can account for financial evolution, and appear critical to explain rapid changes in financial structure,

  17. The Effects: Economy

    Science.gov (United States)

    Nutrient pollution has diverse and far-reaching effects on the U.S. economy, impacting tourism, property values, commercial fishing, recreational businesses and many other sectors that depend on clean water.

  18. The Collaborative Economy

    DEFF Research Database (Denmark)

    Avital, Michel; Andersson, Magnus; Nickerson, Jeffrey

    2014-01-01

    An economy based on the exchange of capital, assets and services between individuals has grown significantly, spurred by proliferation of internet-based platforms that allow people to share underutilized resources and trade with reasonably low transaction costs. The movement toward this economy...... of “sharing” translates into market efficiencies that bear new products, reframe established services, have positive environmental effects, and may generate overall economic growth. This emerging paradigm, entitled the collaborative economy, is disruptive to the conventional company-driven economic paradigm...... as evidenced by the large number of peer-to-peer based services that have captured impressive market shares sectors ranging from transportation and hospitality to banking and risk capital. The panel explores economic, social, and technological implications of the collaborative economy, how digital technologies...

  19. 78 FR 46799 - Use of Market Economy Input Prices in Nonmarket Economy Proceedings

    Science.gov (United States)

    2013-08-02

    ...The Department of Commerce (``Department'') is modifying its regulation which states that the Department normally will use the price that a nonmarket economy (``NME'') producer pays to a market economy supplier when a factor of production is purchased from a market economy supplier and paid for in market economy currency, in the calculation of normal value (``NV'') in antidumping proceedings involving NME countries. The rule establishes a requirement that the input at issue be produced in one or more market economy countries, and a revised threshold requiring that ``substantially all'' (i.e., 85 percent) of an input be purchased from one or more market economy suppliers before the Department uses the purchase price paid to value the entire factor of production. The Department is making this change because it finds that a market economy input price is not the best available information for valuing all purchases of that input when market economy purchases of an input do not account for substantially all purchases of the input.

  20. HUG - the Hydrogen Utility Group

    International Nuclear Information System (INIS)

    Tinkler, M.

    2006-01-01

    The Hydrogen Utility Group (HUG) was formally established in October 2005 by a group of leading electric utilities with a common interest in sharing hydrogen experiences and lessons learned. HUG's Mission Statement is: 'To accelerate utility integration of promising hydrogen energy related business applications through the coordinated efforts and actions of its members in collaboration with key stakeholders, including government agencies and utility support organizations.' In February 2006, HUG members presented a briefing to the US Senate Hydrogen and Fuel Cell Caucus in Washington, DC, outlining the significant role that the power industry should play in an emerging hydrogen economy. This presentation provides an overview of that briefing, summarizing the HUG's ongoing interests and activities

  1. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    International Nuclear Information System (INIS)

    O'Brien, James E.

    2010-01-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a 'hydrogen economy.' The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  2. Shadow Economy and Poverty

    OpenAIRE

    Nikopour, Hesam; Shah Habibullah, Muzafar

    2010-01-01

    This study attempts to investigate the relationship between shadow economy and poverty by explaining the mechanism through which shadow economy affects poverty via its impact on government size and economic growth, and using the human poverty index (HPI) for developing and developed countries. In order to achieve this objective, the three-way interaction model is utilized using data of 139 developing and 23 developed countries separately during 1999-2007. For developing countries the dynamic ...

  3. Corruption and the economy

    OpenAIRE

    Tanzi Vito

    2013-01-01

    This paper focuses on the economic and not on the political impact of corruption. Corruption delegitimizes the working of a market economy, as well as the outcomes of political processes. This paper highlights ways in which corruption, by distorting economic decisions and the working of the market economy, inevitably reduces a country’s rate of growth. The paper also discusses some of the channels through which corruption distorts various economic decisions. Finally, the paper reports o...

  4. The Placenta Economy

    DEFF Research Database (Denmark)

    Kroløkke, Charlotte; Dickinson, Elizabeth; Foss, Karen A.

    2018-01-01

    This article examines the human placenta not only as a scientific, medical and biological entity but as a consumer bio-product. In the emergent placenta economy, the human placenta is exchanged and gains potentiality as food, medicine and cosmetics. Drawing on empirical research from the United......, in the emergent bio-economy, the dichotomy between the inner and the outer body is deconstructed, while the placenta gains clinical and industrial as well as affective value....

  5. The Dutch Economy 2009

    International Nuclear Information System (INIS)

    2010-09-01

    In the series 'The Dutch Economy' the Dutch Statistical Office describes and analyzes annual developments in enterprises, households and governments, and with respect to employment and the environment. One of the subjects is 'Economy and Environment' with the sub-topics 'Resources and Energy', 'Emissions' and 'Environmental Taxes'. Furthermore, in articles on specific themes current economic issues are discussed. One of those themes has the title 'Share of renewable energy in the Netherlands is still small'. [nl

  6. Token economy for schizophrenia.

    LENUS (Irish Health Repository)

    McMonagle, T

    2000-01-01

    A token economy is a behavioural therapy technique in which the desired change is achieved by means of tokens administered for the performance of predefined behaviours according to a program. Though token economy programmes were widespread in the 1970s they became largely restricted to wards where long-stay patients from institutions are prepared for transfer into the community and were particularly aimed at changing negative symptoms of schizophrenia - poor motivation, poor attention and social withdrawal.

  7. Regulating the sharing economy

    OpenAIRE

    Erickson, Kristofer; Sorensen, Inge

    2016-01-01

    In this introductory essay, we explore definitions of the ‘sharing economy’, a concept indicating both social (relational, communitarian) and economic (allocative, profit-seeking) aspects which appear to be in tension. We suggest combining the social and economic logics of the sharing economy to focus on the central features of network enabled, aggregated membership in a pool of offers and demands (for goods, services, creative expressions). This definition of the sharing economy distinguishe...

  8. Revisiting the solar hydrogen alternative

    Energy Technology Data Exchange (ETDEWEB)

    Tomkiewicz, M. [Brooklyn College of CUNY, NY (United States)

    1996-09-01

    Research aimed at the development of technology to advance the solar-hydrogen alternative is per definition mission oriented. The priority that society puts on such research rise and fall with the priorities that we associate with the mission. The mission that we associate with the hydrogen economy is to provide a technological option for an indefinitely sustainable energy and material economies in which society is in equilibrium with its environment. In this paper we try to examine some global aspects of the hydrogen alternative and recommend formulation of a {open_quotes}rational{close_quotes} tax and regulatory system that is based on efforts needed to restore the ecological balance. Such a system, once entered into the price structure of the alternative energy schemes, will be used as a standard to compare energy systems that in turn will serve as a base for prioritization of publicly supported research and development.

  9. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  10. The Migration of Railway Freight Transport from Command Economy to Market Economy: The Case of China.

    OpenAIRE

    Xie, R.; Chen, H.; Nash, C.

    2000-01-01

    In recent years, the Chinese railways freight transport has been facing great challenges from the transport market and economic expansion. The total freight volume has been increasing. But the market share of railway freight has decreased greatly, especially since the beginning of migration from command economy to market economy. In this paper, we make some insight into five aspects. Firstly, the historical and current situation of freight transport in China and the relationship between econo...

  11. Conversion of a gasoline internal combustion engine to operate on hydrogen fuel

    International Nuclear Information System (INIS)

    Bates, M.; Dincer, I.

    2009-01-01

    This study deals with the conversion of a gasoline spark ignition internal combustion engine to operate on hydrogen fuel while producing similar power, economy and reliability as gasoline. The conversion engine will have the fuel system redesigned and ignition and fuel timing changed. Engine construction material is of great importance due to the low ignition energy of hydrogen, making aluminum a desirable material in the intake manifold and combustion chamber. The engine selected to convert is a 3400 SFI dual over head cam General Motors engine. Hydrogen reacts with metals causing hydrogen embrittlement which leads to failure due to cracking. There are standards published by American Society of Mechanical Engineers (ASME) to avoid such a problem. Tuning of the hydrogen engine proved to be challenging due to the basic tuning tools of a gasoline engine such as a wide band oxygen sensor that could not measure the 34:1 fuel air mixture needed for the hydrogen engine. Once the conversion was complete the engine was tested on a chassis dynamometer to compare the hydrogen horsepower and torque produced to that of a gasoline engine. Results showed that the engine is not operating correctly. The engine is not getting the proper amount of fuel needed for complete combustion when operated in a loaded state over 3000 rpm. The problem was found to be the use of the stock injector driver that could not deliver enough power for the proper operation of the larger CM4980 injectors. (author)

  12. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  13. If the hydrogen was used as a substitute for the petroleum. After the petroleum, the hydrogen?

    International Nuclear Information System (INIS)

    Rifkin, J.

    2002-01-01

    The fossil energies reserves are not inexhaustible. From the opinion of the american Jeremy Rifkin which published a book on this subject (the hydrogen economy), the hydrogen presents many energetic advantages to replace the petroleum. The main points of the book are presented and discussed in this paper. (A.L.B.)

  14. Health Information Economy: Literature Review.

    Science.gov (United States)

    Ebrahimi, Kamal; Roudbari, Masoud; Sadoughi, Farahnaz

    2015-04-19

    Health Information Economy (HIE) is one of the broader, more complex, and challenging and yet important topics in the field of health science that requires the identification of its dimensions for planning and policy making. The aim of this study was to determine HIE concept dimensions. This paper presents a systematic methodology for analyzing the trends of HIE. For this purpose, the main keywords of this area were identified and searched in the databases and from among 4775 retrieved sources, 12 sources were studied in the field of HIE. Information Economy (IE) in the world has passed behind four paradigms that involve the information evaluation perspective, the information technology perspective, the asymmetric information perspective and information value perspective. In this research, the fourth perspective in the HIE was analyzed. The main findings of this research were categorized in three major groups, including the flow of information process in the field of health (production. collection, processing and dissemination), and information applications in the same field (education, research, health industry, policy, legislation, and decision-making) and the underlying fields. According to the findings, HIE has already developed a theoretical and conceptual gap that due to its importance in the next decade would be one of the research approaches to health science.

  15. Health Information Economy: Literature Review

    Science.gov (United States)

    Ebrahimi, Kamal; Roudbari, Masoud; Sadoughi, Farahnaz

    2015-01-01

    Introduction: Health Information Economy (HIE) is one of the broader, more complex, and challenging and yet important topics in the field of health science that requires the identification of its dimensions for planning and policy making. The aim of this study was to determine HIE concept dimensions. Methods: This paper presents a systematic methodology for analyzing the trends of HIE. For this purpose, the main keywords of this area were identified and searched in the databases and from among 4775 retrieved sources, 12 sources were studied in the field of HIE. Results: Information Economy (IE) in the world has passed behind four paradigms that involve the information evaluation perspective, the information technology perspective, the asymmetric information perspective and information value perspective. In this research, the fourth perspective in the HIE was analyzed. The main findings of this research were categorized in three major groups, including the flow of information process in the field of health (production. collection, processing and dissemination), and information applications in the same field (education, research, health industry, policy, legislation, and decision-making) and the underlying fields. Conclusion: According to the findings, HIE has already developed a theoretical and conceptual gap that due to its importance in the next decade would be one of the research approaches to health science. PMID:26153182

  16. Circular economy and nuclear energy

    International Nuclear Information System (INIS)

    2016-01-01

    Circular economy means no production of waste through re-using and recycling. As other industries, nuclear industry has committed itself to a policy of sustainability and resource preservation. EDF has developed a 5 point strategy: 1) the closure of the fuel cycle through recycling, 2) operating nuclear power plants beyond 40 years, 3) reducing the volume of waste, 4) diminishing the consumption of energy through the implementation of new processes (for instance the enrichment through centrifugation uses 50 times less power than gaseous diffusion enrichment) and 5) making evolve the prevailing doctrine concerning the management of very low level radioactive waste: making possible the re-use of slightly contaminated steel scrap or concrete instead of storing them in dedicated disposal centers. (A.C.)

  17. Availability Cascades and the Sharing Economy

    DEFF Research Database (Denmark)

    Netter, Sarah

    2016-01-01

    As scholars search for a new concept that will provide answers on how modern societies should make sense of and resolve the social and environmental problems linked to our modes of production and consumption, the sharing economy is attracting increased attention. To better understand this emergent...

  18. Regulating the sharing economy

    Directory of Open Access Journals (Sweden)

    Kristofer Erickson

    2016-06-01

    Full Text Available In this introductory essay, we explore definitions of the ‘sharing economy’, a concept indicating both social (relational, communitarian and economic (allocative, profit-seeking aspects which appear to be in tension. We suggest combining the social and economic logics of the sharing economy to focus on the central features of network enabled, aggregated membership in a pool of offers and demands (for goods, services, creative expressions. This definition of the sharing economy distinguishes it from other related peer-to-peer and collaborative forms of production. Understanding the social and economic motivations for and implications of participating in the sharing economy is important to its regulation. Each of the papers in this special issue contributes to knowledge by linking the social and economic aspects of sharing economy practices to regulatory norms and mechanisms. We conclude this essay by suggesting future research to further clarify and render intelligible the sharing economy, not as a contradiction in terms but as an empirically observable realm of socio-economic activity.

  19. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  20. Provision of Effectiveness of University Education on the Market Economy

    Science.gov (United States)

    Kuznetsov, Nikolai; Usenko, Lyudmila; Ivanova, Olga; Kostoglodova, Elena

    2017-01-01

    Purpose: The purpose of this paper is to evaluate and determine the effectiveness of university education on the economy of various countries. Design/methodology/approach: To determine the necessity and expedience of making provision for the effectiveness of university education on the market economy, this work uses the method of regression and…

  1. Procedures when calculating economy for building envelopes in Denmark

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1999-01-01

    of using total-economy. Total-economy incorporates all present and future investments (e.g. operational and maintenance costs) into one number making it possible to invest more money when constructing a building and save the money later on due to lower cost for maintenance and energy consumption.This paper...

  2. Hydrogen pellet injection device

    International Nuclear Information System (INIS)

    Kanno, Masahiro.

    1992-01-01

    In a hydrogen pellet injection device, a nozzle block having a hydrogen gas supply channel is disposed at the inner side of a main cryogenic housing, and an electric resistor is attached to the block. Further, a nozzle block and a hydrogen gas introduction pipe are attached by way of a thermal insulating spacer. Electric current is supplied to the resistor to positively heat the nozzle block and melt remaining solid hydrogen in the hydrogen gas supply channel. Further, the effect of temperature elevation due to the resistor is prevented from reaching the side of the hydrogen gas introduction pipe by the thermal insulation spacer. That is, the temperature of the nozzle block is directly and positively elevated, to melt the solid hydrogen rapidly. Preparation operation from the injection of the hydrogen pellet to the next injection can be completed in a shorter period of time compared with a conventional case thereby enabling to make the test more efficient. Further, only the temperature of the nozzle block is elevated with no effect of temperature elevation due to the resistor to other components by the thermal insulation flange. (N.H.)

  3. What Does Olympic Games Bring to Economy

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ In 1984, Ubeross, a wizard in the U.S.business circle, creatively combined the Olympic Games with commerce,thus made the Los Angeles Olympic Games of that year become "the Olympic Games which makes money for the first time". Since then, the original Olympic Games which "sustain losses in the sports propaganda" has possessed an ultra ability that "makes the golden-rimmed paper turn into money" Thus, the concept "Olympic economy" appeared.

  4. Petroleum and the economy

    International Nuclear Information System (INIS)

    Bohi, D.R.

    1992-01-01

    In re-examining the effect of energy price shocks on the economy, this article applies several tests to show that the apparent coincidence between price shocks and poor economic performance may be misleading. For example, whereas macroeconomic analysis graphs of employment and GNP clearly indicate an apparent correlation between the 1979 petroleum price hike and economic downturn in the USA, Great Britain and Germany, Japan's performance stayed fairly constant during that period. Additional sectoral analyses of the performances of the western economies show that the impacts of the '74 and '79 oil price shocks were not equally distributed across the different industrial sectors of the various nations. The paper argues that a deeper understanding of the energy-economy relationship is required to reduce these ambiguities

  5. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  6. Pyrolysis of petroleum residues while making use of the hydrogen potential of polymer waste; Pyrolyse von Erdoelrueckstaenden unter Nutzung des Wasserstoffpotentials von Polymerabfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Klemens, I; Butz, T; Rahimian, I; Linde, A [Institut fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany)

    1998-09-01

    The hydrogen potential contained in waste plastics is to be utilized optimally for cracking of petroleum residues. Homogeneous distribution of the plastic particles in the petroleum residue is to ensure short distances between the hydrogen donor and acceptor, a sufficently large reaction surface, and stable mixing for further processing. Apart from homogeneity, another factor of interest is the influence of mixed-in polymer particles on the colloidal stability of the petroleum residue and the physico-chemical properties of the mixtures. With a view to further processing, the mixtures were analyzed for high-temperature stability, flow characteristics, and reaction behaviour during pyrolysis. (orig.) [Deutsch] Ziel dieses Vorhabens ist es, das in den Kunststoffabfaellen vorhandene Wasserstoffpotential optimal fuer eine tiefergehende Spaltung der Erdoelrueckstaende nutzbar zu machen. Durch eine homogene Verteilung der Kunststoffpartikel im Erdoelrueckstand soll ein moeglichst kurzer Transportweg zwischen Wasserstoff-Donor und -Akkzeptor, eine ausreichend grosse Reaktionsoberflaeche und eine fuer weitere Verarbeitungsschritte notwendige stabile Mischung erreicht werden. Ebenso interessant wie die Homogenitaet solcher Gemische ist auch der Einfluss der eingemengten Polymerteilchen auf die Kolloidstabilitaet des Erdoelrueckstandes und die physikalisch-chemischen Eigenschaften der Mischungen. Im Hinblick auf eine technische Weiterverarbeitung werden die Gemische besonders auf ihre Stabilitaet bei erhoehten Temperaturen (Heisslagerstabilitaet), ihr Fliessverhalten sowie ihr Reaktionsverhalten waehrend der Pyrolyse untersucht. (orig.)

  7. Experimenting with alternative economies

    DEFF Research Database (Denmark)

    Longhurst, Noel; Avelino, Flor; Wittmayer, Julia

    2016-01-01

    Neoliberalism is a powerful narrative that has shaped processes of urban economic development across the globe. This paper reports on four nascent ‘new economic’ narratives which represent fundamentally different imaginaries of the urban economy. Experiments informed by these narratives challenge...... the dominant neoliberal logic in four key dimensions: What is the purpose of economic development? What are the preferred distributive mechanisms? Who governs the economy? What is the preferred form of economic organisation? The emergence of these experiments illustrates that cities are spaces where counter...

  8. SOCIAL ECONOMY EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Florina Oana Virlanuta

    2015-05-01

    Full Text Available The social economy combines profitability with social inclusion. Social innovation is the first step in the creation of a social enterprise. Social economy development is a process underway, innovative in terms of relating the individual to the production processes, the concept of citizenship, production areas and modalities. The concern for sustainable development, analysis of economic and financial crisis, the issue of the relationship between the individual and the production process open up many opportunities for development that can influence public policies on employment and social cohesion.

  9. Inverting the moral economy

    DEFF Research Database (Denmark)

    Olwig, Mette Fog; Noe, Christine; Kangalawe, Richard

    2017-01-01

    Governments, donors and investors often promote land acquisitions for forest plantations as global climate change mitigation via carbon sequestration. Investors’ forestry thereby becomes part of a global moral economy imaginary. Using examples from Tanzania we critically examine the global moral...... economy’s narrative foundation, which presents trees as axiomatically ‘green’, ‘idle’ land as waste and economic investments as benefiting the relevant communities. In this way the traditional supposition of the moral economy as invoked by the economic underclass to maintain the basis of their subsistence...

  10. Inverting the moral economy

    DEFF Research Database (Denmark)

    Olwig, Mette Fog; Noe, Christine; Kangalawe, Richard

    2015-01-01

    Governments, donors and investors often promote land acquisitions for forest plantations as global climate change mitigation via carbon sequestration. Investors’ forestry thereby becomes part of a global moral economy imaginary. Using examples from Tanzania we critically examine the global moral...... economy’s narrative foundation, which presents trees as axiomatically ‘green’, ‘idle’ land as waste and economic investments as benefiting the relevant communities. In this way the traditional supposition of the moral economy as invoked by the economic underclass to maintain the basis of their subsistence...

  11. Hydrogen: Adding Value and Flexibility to the Nuclear Power Industry

    International Nuclear Information System (INIS)

    Lee, J.; Bhatt, V.; Friley, P.; Horak, W.; Reisman, A.

    2004-01-01

    The objective of this study was to assess potential synergies between the hydrogen economy and nuclear energy options. Specifically: to provide a market analysis of advanced nuclear energy options for hydrogen production in growing hydrogen demand; to conduct an impact evaluation of nuclear-based hydrogen production on the economics of the energy system, environmental emissions, and energy supply security; and to identify competing technologies and challenges to nuclear options

  12. Money creation in the modern economy

    OpenAIRE

    McLeay, Michael; Radia, Amar; Thomas, Ryland

    2014-01-01

    This article explains how the majority of money in the modern economy is created by commercial banks making loans. Money creation in practice differs from some popular misconceptions — banks do not act simply as intermediaries, lending out deposits that savers place with them, and nor do they ‘multiply up’ central bank money to create new loans and deposits. The amount of money created in the economy ultimately depends on the monetary policy of the central bank. In normal times, this is carri...

  13. Industrial Foundations in the Danish Economy

    DEFF Research Database (Denmark)

    Thomsen, Steen

    Industrial Foundations (foundations that own business companies) are found around the world e.g in Northern Europe, Germany, the US and India, but nowhere do they appear to be as economically important as in Denmark. In this paper we review their share of the Danish economy. We find that foundation......-owned companies account for 5-10% of the Danish economy depending on measurement. However, they constitute the bulk of Danish stock market capitalization and R&D expenditure, and they also contribute disproportionally to international business activity. Finally the industrial foundations make charitable donations...

  14. WORLD ECONOMY POST-CRYSIS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Sergiu GARSTEA

    2016-01-01

    Full Text Available Once the acute phases of the financial and euro crises were over, it was clear that it would take time for advanced economies to recover. The history of past financial crises gave a clear warning that recovery would typically be long and painful. The aim is to investigate the state of the world economy to make some conclusions for the less advanced countries, like Moldova. Research methodology involves analytical, comparative, foresight, induction and deduction methods. New development and planning institutions presume the rejection of forms of bureaucratic centralism and base on network forms of organization of the subject and the process of production, trade and services.

  15. Hydrogen, Fuel Cells & Infrastructure Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    This plan details the goals, objectives, technical targets, tasks and schedule for EERE's contribution to the DOE Hydrogen Program. Similar detailed plans exist for the other DOE offices that make up the Hydrogen Program.

  16. Evaluation of coupling terms between intra- and intermolecular vibrations in coarse-grained normal-mode analysis: Does a stronger acid make a stiffer hydrogen bond?

    Science.gov (United States)

    Houjou, Hirohiko

    2011-10-01

    Using theory of harmonic normal-mode vibration analysis, we developed a procedure for evaluating the anisotropic stiffness of intermolecular forces. Our scheme for coarse-graining of molecular motions is modified so as to account for intramolecular vibrations in addition to relative translational/rotational displacement. We applied this new analytical scheme to four carboxylic acid dimers, for which coupling between intra- and intermolecular vibrations is crucial for determining the apparent stiffness of the intermolecular double hydrogen bond. The apparent stiffness constant was analyzed on the basis of a conjunct spring model, which defines contributions from true intermolecular stiffness and molecular internal stiffness. Consequently, the true intermolecular stiffness was in the range of 43-48 N m-1 for all carboxylic acids studied, regardless of the molecules' acidity. We concluded that the difference in the apparent stiffness can be attributed to differences in the internal stiffness of the respective molecules.

  17. Ecology and economy

    International Nuclear Information System (INIS)

    Menard, M.; Bischoff, J.

    1980-01-01

    The green movement challenges workers' unions and socialists. Who are the 'Greens', and what do they want. Where do their theoretical fundamentals come from. Will an ecological economy be able to function. Are the 'Greens' leftists or dreamers fighting against progress. Arguments for trade unionists and socialists in the ecological controversy. (orig.) [de

  18. The Danish Negotiated Economy

    DEFF Research Database (Denmark)

    Pedersen, Ove K.

    2012-01-01

    Denmark is characterised by a number of distinct traits: a small and open economy, a stable democratic political system, a high proportion of organised wage earners covered by collective agreements, a political culture marked by social partnership, and a long tradition of institutionalised class...

  19. Japan's plutonium economy

    International Nuclear Information System (INIS)

    Hecht, M.M.

    1994-01-01

    Japan's plutonium economy is based on the most efficient use of nuclear energy, as envisioned under the Atoms for Peace program of the 1950s and 1960s. The nuclear pioneers assumed that all nations would want to take full advantage of atomic energy, recycling waste into new fuel to derive as much energy as possible from this resource

  20. Airline Safety and Economy

    Science.gov (United States)

    1993-01-01

    This video documents efforts at NASA Langley Research Center to improve safety and economy in aircraft. Featured are the cockpit weather information needs computer system, which relays real time weather information to the pilot, and efforts to improve techniques to detect structural flaws and corrosion, such as the thermal bond inspection system.

  1. Radical Circular Economy

    NARCIS (Netherlands)

    Prins, M.; Mohammadi, S.; Slob, N.

    2015-01-01

    Recently the Circular Economy (CE) concept has gained momentum in the Netherlands, propounding that environmental impact reduction can provide a significant positive economical impulse. The government, larger parts of the industry as a whole, as well as the construction industry, has warmly received

  2. The Hidden STEM Economy

    Science.gov (United States)

    Rothwell, Jonathan

    2013-01-01

    Workers in STEM (science, technology, engineering, and math) fields play a direct role in driving economic growth. Yet, because of how the STEM economy has been defined, policymakers have mainly focused on supporting workers with at least a bachelor's (BA) degree, overlooking a strong potential workforce of those with less than a BA. This report…

  3. Knowledge Economy and its Effects in Romania

    Directory of Open Access Journals (Sweden)

    Prof. Ph. D. Laura Cismas

    2009-05-01

    Full Text Available Knowledge economy implies that the rationality of individuals is limited because they make and adapt their choices in an environment affected by risk and uncertainty. The first part of this paper proposes an analysis of the knowledge economy, based on its interdisciplinary nature. Thus, classical theories adapt to visions that pertain to the dynamics of human interactions, the restructuring of the social network theory, the general equilibrium theory and the game theory.The research part of this paper identifies and explains the link between innovation and knowledge, as well as its effects on the Romanian economy’s competitiveness and innovation. The conclusions illustrate that the consolidation of knowledge-based economy in Romania implies setting certain priorities, such as: investing in education, developing entrepreneurship, creating an innovative and efficient system made up of companies, research centers and universities, which enables new technologies to be absorbed, adapted and created for the society.

  4. Platform economy in Denmark – precarious employment?

    DEFF Research Database (Denmark)

    Rasmussen, Stine; Madsen, Per Kongshøj

    limited. Nevertheless the labour offered through the platforms has a precarious character for instance in terms of lower wages and poorer rights and protection compared to the labour at the traditional, offline labour market. One important issue here is also the confusion as to whether the worker......This paper takes a labour market perspective on the emerging concept of the 'sharing economy' or 'platform economy', which we use as a more appropriate term for the phenomenon. Platform economy is in the article understood as those business models that have emerged since the millennium, where...... digital platforms serve as the link between persons wanting to make use of certain activities, services etc. and those owning them and we only have an interest in the work-related platforms. That means platforms, where paid work is offered and demanded. International examples of this new phenomenon...

  5. Plutonium economy. Plutonium-Wirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Traube, K

    1984-01-01

    The author expresses his opinion on the situation, describes the energy-economic setting, indicates the alternatives: fuel reprocessing or immediate long-term storage, and investigates the prospects for economic utilization of the breeder reactors. All the facts suggest that the breeder reactor will never be able to stand economic competition with light-water reactors. However, there is no way to prove the future. It is naive to think that every doubt could and must be removed before stopping the development of breeder reactors - and thus also the reprocessing of the fuel of light-water reactors. On the basis of the current state of knowledge an unbiased cost-benefit-analysis can only lead to the recommendation to stop construction immediately. But can 'experts', who for years or even decades have called for and supported the development of breeder reactors be expected to make an unbiased analysis. Klaus Traube strikes the balance of the state Germany's nuclear economy is in: although there is no chance of definitively abandoning that energy-political cul-de-sac, no new adventures must be embarked upon. Responsible handling of currently used nuclear technology means to give up breeder technology and waive plutonium economy. It is no supreme technology with the aid of which structural unemployment or any other economic problem could be solved.

  6. Integrated waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Armstrong, C.

    2004-01-01

    'Full text:' The BC Hydrogen Highway's, Integrated Waste Hydrogen Utilization Project (IWHUP) is a multi-faceted, synergistic collaboration that will capture waste hydrogen and promote its use through the demonstration of 'Hydrogen Economy' enabling technologies developed by Canadian companies. IWHUP involves capturing and purifying a small portion of the 600 kg/hr of by-product hydrogen vented to the atmosphere at the ERCO's electrochemical sodium chlorate plant in North Vancouver, BC. The captured hydrogen will then be compressed so it is suitable for transportation on roadways and can be used as a fuel in transportation and stationary fuel cell demonstrations. In summary, IWHUP invests in the following; Facilities to produce up to 20kg/hr of 99.999% pure 6250psig hydrogen using QuestAir's leading edge Pressure Swing Absorption technology; Ultra high-pressure transportable hydrogen storage systems developed by Dynetek Industries, Powertech Labs and Sacre-Davey Engineering; A Mobile Hydrogen Fuelling Station to create Instant Hydrogen Infrastructure for light-duty vehicles; Natural gas and hydrogen (H-CNG) blending and compression facilities by Clean Energy for fueling heavy-duty vehicles; Ten hydrogen, internal combustion engine (H-ICE), powered light duty pick-up vehicles and a specialized vehicle training, maintenance, and emissions monitoring program with BC Hydro, GVRD and the District of North Vancouver; The demonstration of Westport's H-CNG technology for heavy-duty vehicles in conjunction with local transit properties and a specialized vehicle training, maintenance, and emissions monitoring program; The demonstration of stationary fuel cell systems that will provide clean power for reducing peak-load power demands (peak shaving), grid independence and water heating; A comprehensive communications and outreach program designed to educate stakeholders, the public, regulatory bodies and emergency response teams in the local community, Supported by industry

  7. Digital Economy for Sustainable Economic Growth

    Directory of Open Access Journals (Sweden)

    Shuyong Guo

    2017-12-01

    Full Text Available Recent decades have seen a rapid digital transformation resulting in important and sometimes even crucial changes in business, society and the global economy. After the global crisis of 2008–2009, digital industries have been among the most dynamic and promising in the global economy. Nevertheless, the world lacks equilibrium between benefits and risks in the digital economy, which explains the need for global governance in this sphere. This article analyzes the role and characteristics of the G20 in the introduction of global governance in the digital economy. The authors review what’s meant by the digital economy and define the key characteristics of this sector, as well as highlight the challenges to international cooperation, analyze the digital strategies of G20 countries, study the G20’s participation in the global governance of the digital economy, analyze the potential for the leaders of China and Russia, and make recommendations concerning the participation of the G20 in the global governance of the digital economy. The authors arrive at the following conclusions. First, society has to govern the digital economy properly in order to eliminate disparities between developed and developing countries, as well as address cyber security and other threats, and promote a higher quality of life for all. Second, the G20 has very limited experience in the governing of the digital economy, but as a leader in terms of soft power, and as an organization with limited membership that includes both countries with a developed digital sector and countries that lag behind, it may play a great role in the digital economy’s global governance. Third, the US has historically been a leader in the IT sector and the digital economy. In recent years, China has sufficiently improved its positions, which allows it to aspire to a higher role in global governance. Russia may also play a greater (though not a leading role, taking into account its experience and

  8. STATE INTERVENTION IN THE ECONOMY

    Directory of Open Access Journals (Sweden)

    Andreea-Elena, BURDUF (MIERLARU

    2014-11-01

    Full Text Available Starting from the deffinition of protectionism, an economic policy of restraining trade between states through methods such as tariffs on imported goods, restrictive quotas, and a variety of other government regulations designed to allow, according to proponents fair competition between imports and goods and service produced domestically, I am compelled to find Manoilescu's vision of economy. Was this system of political and economic measures of protection of national products from similar foreign products Manoilescu's vision? In the spirit of clasical protectionist doctrine, Manoilescu thought that the focal point of economy was the national economy, the sum of production assets and a conglomerate of individual traders. Amongst national production assets the foremost is the labour, capital and the others having only secondary importance in direct comparison. After the great depression of 1929, his book, The theory of protectionism and international exchanges , was the basis for justifying protectionism in Brazil while in Romania he had to face hostility from authorities, making it impossible for him, even if for several months in 1931 he was the Governor of the National Bank, to apply his vision to end the economic crisis in Romania. M. Manoilescu analyzed the state's economic role and how this is reflected in modern economic science. He saw the state as having the role of setting certain convergent common goals for the whole society and to set rules that removes free will in economic decisions, thus creating the premises for a regulated economic space, based on the transition from little rationale of firms to big rationale of national economy. He demonstrated the necessity of state intervetionism, he has shared the conviction that through the alignment of the Romanian economic strategy to the one from the developed countries the lagging behind of Romania could be surpassed. M. Manoilescu took the occidental type economic policies of the time

  9. An entropic framework for modeling economies

    Science.gov (United States)

    Caticha, Ariel; Golan, Amos

    2014-08-01

    We develop an information-theoretic framework for economic modeling. This framework is based on principles of entropic inference that are designed for reasoning on the basis of incomplete information. We take the point of view of an external observer who has access to limited information about broad macroscopic economic features. We view this framework as complementary to more traditional methods. The economy is modeled as a collection of agents about whom we make no assumptions of rationality (in the sense of maximizing utility or profit). States of statistical equilibrium are introduced as those macrostates that maximize entropy subject to the relevant information codified into constraints. The basic assumption is that this information refers to supply and demand and is expressed in the form of the expected values of certain quantities (such as inputs, resources, goods, production functions, utility functions and budgets). The notion of economic entropy is introduced. It provides a measure of the uniformity of the distribution of goods and resources. It captures both the welfare state of the economy as well as the characteristics of the market (say, monopolistic, concentrated or competitive). Prices, which turn out to be the Lagrange multipliers, are endogenously generated by the economy. Further studies include the equilibrium between two economies and the conditions for stability. As an example, the case of the nonlinear economy that arises from linear production and utility functions is treated in some detail.

  10. HYDROGEN PRODUCTION AND DELIVERY INFRASTRUCTURE AS A COMPLEX ADAPTIVE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Tolley, George S

    2010-06-29

    An agent-based model of the transition to a hydrogen transportation economy explores influences on adoption of hydrogen vehicles and fueling infrastructure. Attention is given to whether significant penetration occurs and, if so, to the length of time required for it to occur. Estimates are provided of sensitivity to numerical values of model parameters and to effects of alternative market and policy scenarios. The model is applied to the Los Angeles metropolitan area In the benchmark simulation, the prices of hydrogen and non-hydrogen vehicles are comparable. Due to fuel efficiency, hydrogen vehicles have a fuel savings advantage of 9.8 cents per mile over non-hydrogen vehicles. Hydrogen vehicles account for 60% of new vehicle sales in 20 years from the initial entry of hydrogen vehicles into show rooms, going on to 86% in 40 years and reaching still higher values after that. If the fuel savings is 20.7 cents per mile for a hydrogen vehicle, penetration reaches 86% of new car sales by the 20th year. If the fuel savings is 0.5 cents per mile, market penetration reaches only 10% by the 20th year. To turn to vehicle price difference, if a hydrogen vehicle costs $2,000 less than a non-hydrogen vehicle, new car sales penetration reaches 92% by the 20th year. If a hydrogen vehicle costs $6,500 more than a non-hydrogen vehicle, market penetration is only 6% by the 20th year. Results from other sensitivity runs are presented. Policies that could affect hydrogen vehicle adoption are investigated. A tax credit for the purchase of a hydrogen vehicle of $2,500 tax credit results in 88% penetration by the 20th year, as compared with 60% in the benchmark case. If the tax credit is $6,000, penetration is 99% by the 20th year. Under a more modest approach, the tax credit would be available only for the first 10 years. Hydrogen sales penetration then reach 69% of sales by the 20th year with the $2,500 credit and 79% with the $6,000 credit. A carbon tax of $38 per metric ton is not

  11. National Hydrogen Vision Meeting Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-11-01

    This document provides presentations and summaries of the notes from the National Hydrogen Vision Meeting''s facilitated breakout sessions. The Vision Meeting, which took place November 15-16, 2001, kicked off the public-private partnership that will pave the way to a more secure and cleaner energy future for America. These proceedings were compiled into a formal report, A National Vision of America''s Transition to a Hydrogen Economy - To 2030 and Beyond, which is also available online.

  12. Nuclear power, economy and environment

    International Nuclear Information System (INIS)

    Stoffaes, C.

    1994-01-01

    The explanations in this article aim at clarifying the background of the problem of nuclear energies. Why did countries give up developing nuclear energy? Which roles do economic political and psychological factors play in making energy political decisions? How could a balance be found in using the various energy sources which must meet the constantly increasing demand for electric power? Which preconditions must be fulfilled to return to nuclear energy world-wide (as using coal is connected with many environmental risks) and how long would it take? If, however, nuclear power is even to be included in the energy-political discussions of the governments and the public opinions in each country, there are a number of sensitive topics waiting for an answer: Safety and costs of power plants; recycling and storing nuclear wastes; the relationship between civil energy and the availability of nuclear weapons and the future plutonium economy. (orig./UA) [de

  13. Hydrogen storage compositions

    Science.gov (United States)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  14. Millennials and the Sharing Economy

    DEFF Research Database (Denmark)

    Ranzini, Giulia; Newlands, Gemma; Anselmi, Guido

    Report from the EU H2020 Research Project Ps2Share: Participation, Privacy, and Power in the Sharing Economy......Report from the EU H2020 Research Project Ps2Share: Participation, Privacy, and Power in the Sharing Economy...

  15. The collaborative Economy and Tourism

    DEFF Research Database (Denmark)

    Dredge, Dianne; Gyimóthy, Szilvia

    2015-01-01

    House swapping, ridesharing, voluntourism, couchsurfing, dinner hosting and similar innovations epitomize the collaborative economy. The rise of the collaborative economy, also known as collaborative consumption, the sharing economy and peer-to-peer consumption, has been fuelled by a range of soc...... for a balanced assessment of such claims. Highlighting these claims allows us to pursue a more reflective research agenda and leads to a more informed, evidence-based assessment of the collaborative economy and tourism.......House swapping, ridesharing, voluntourism, couchsurfing, dinner hosting and similar innovations epitomize the collaborative economy. The rise of the collaborative economy, also known as collaborative consumption, the sharing economy and peer-to-peer consumption, has been fuelled by a range...... experiences; and higher levels of consumer risk-taking balanced against mechanisms such as peer-to-peer feedback designed to engender trust between producers and consumers. This paper explores and critically assesses the collaborative economy and its implications for tourism industrial systems. It achieves...

  16. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  17. Privatization Framework: Political Economy Perspective

    OpenAIRE

    Bastian, Indra

    2009-01-01

    Privatization has been recognized as a worldwide phenomenon. In this pa-per, a political economy approach is developed to analyze privatization. The ap-proach assumes that political economy and privatization overlap in people’s need. So, the framework of political economy in privatization is based on the ‘need’ phi-losophy. Government and private sectors are contrasted in this respect, leading to a conclusion on privatization as a method to manage the economy. Keywords: privatization, politic...

  18. Are transition economy workers underpaid?

    OpenAIRE

    Adamchik, Vera A.; Brada, Josef C.; King, Arthur E.

    2009-01-01

    We examine the extent to which workers in transition and developed market economies are able to obtain wages that fully reflect their skills and labor force characteristics. We find that workers in two transition economies, the Czech Republic and Poland, are able to better attain the maximum wage available than are workers in a sample of developed market economies. This greater wage-setting efficiency in the transition economies ap-pears to be more the result of social and demographic charact...

  19. Introduction Of Techno-Economy

    International Nuclear Information System (INIS)

    Park, Woo Hui

    2001-08-01

    This book gives descriptions of science, technology and techno-economy, invention and science and technology in the Twenty-First century, theory and model of technological innovation, technology and economy technology and industry, technology and business, spread and transfer of technique, technology and international economy, science, technique and culture, science, technology and government, development of technology in Korea and developing countries, and conclusion on the past and the future of techno-economy.

  20. Hydrogen technologies. Strategy for research, development and demonstration in Denmark, June 2005; Brintteknologier. Strategi for forskning, udvikling og demonstration i Danmark, juni 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    Hydrogen as energy carrier makes its mark on the international energy and research political agenda. In numerous places around the world great expectations are tied to hydrogen and fuel cell technology as a significant contributor to a future sustainable energy economy, which implies gradual reduction of fossil fuel dependence, reduction of greenhouse gas emission and increased use of renewable energy. Denmark has even now an international position of strength in this area. This position has been reached through continuous research and development efforts since the early 1990ies. This strategy report describes existing and future technologies within hydrogen production, distribution and use. Furthermore, the international development is described. The report points at areas in which Danish research and development can assist in helping Danish industry to influence the future global market for hydrogen and fuel cell technologies. (BA)

  1. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  2. COMPETITIVENESS FOR SUSTAINABLE ECONOMIES

    Directory of Open Access Journals (Sweden)

    Nelu Eugen POPESCU

    2014-04-01

    Full Text Available The current economic environment puts pressure on all national economies which struggle to improve their competitiveness and innovativeness in a sustainable way. This article aims to present the current state of the competitiveness by reviewing the main literature and worldwide researches, in order to provide a brief overview of the determinants that drive productivity and economic success at global and national level, taking into consideration the entrepreneurial activity for a country’s competitiveness and economic growth. The paper identifies the ways in which efficiency driven countries can improve their policies and get a better return on their investments, underlining a set of competitiveness enhancing policies (measures that can be implemented by public and private institutions in order to strengthen the economic fundamentals of the economies.

  3. Corruption and the economy

    Directory of Open Access Journals (Sweden)

    Tanzi Vito

    2013-01-01

    Full Text Available This paper focuses on the economic and not on the political impact of corruption. Corruption delegitimizes the working of a market economy, as well as the outcomes of political processes. This paper highlights ways in which corruption, by distorting economic decisions and the working of the market economy, inevitably reduces a country’s rate of growth. The paper also discusses some of the channels through which corruption distorts various economic decisions. Finally, the paper reports on some actions that have been taken by countries in their attempt to reduce corruption stressing that the fight against corruption cannot rely on a magic bullet but has to be fought on many fronts.

  4. Green economy and related concepts

    NARCIS (Netherlands)

    Loiseau, Eleonore; Saikku, Laura; Antikainen, Riina; Droste, Nils; Hansjürgens, Bernd; Pitkänen, Kati; Leskinen, Pekka; Kuikman, Peter; Thomsen, Marianne

    2016-01-01

    For the last ten years, the notion of a green economy has become increasingly attractive to policy makers. However, green economy covers a lot of diverse concepts and its links with sustainability are not always clear. In this article, we focus on definitions of green economy and related concepts

  5. Knowledge Economy and Research Innovation

    Science.gov (United States)

    Bastalich, Wendy

    2010-01-01

    The "knowledge economy" has been received with considerable scepticism by scholars within the fields of political economy, social and political philosophy, and higher education. Key arguments within this literature are reviewed in this article to suggest that, despite policy claims, "knowledge economy" does not describe a "new" mode of economic…

  6. Popular Education in Solidarity Economy

    Science.gov (United States)

    de Melo Neto, José Francisco; da Costa, Francisco Xavier Pereira

    2015-01-01

    This article seeks to show the relation between popular education and solidarity economy in experiences of solidarity economy enterprises in Brazil. It is based on diverse experiences which have occurred in various sectors of this economy, highlighting those experiences which took place in João Pessoa with the creation of a Cooperative of Workers…

  7. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  8. The future of hydrogen - opportunities and challenges

    International Nuclear Information System (INIS)

    Ball, Michael; Wietschel, Martin

    2009-01-01

    The following article is reproduced from 'The Hydrogen Economy: Opportunities and Challenges', edited by Michael Ball and Martin Wietschel, to be published by Cambridge University Press in June 2009. In the light of ever-increasing global energy use, the increasing cost of energy services, concerns over energy supply security, climate change and local air pollution, this book centres around the question of how growing energy demand for transport can be met in the long term. Given the sustained interest in and controversial discussion of the prospects of hydrogen, the authors highlight the opportunities and the challenges of introducing hydrogen as alternative fuel in the transport sector from an economic, technical and environmental point of view. Through its multi-disciplinary approach the book provides a broad range of researchers, decision makers and policy makers with a solid and wide-ranging knowledge base concerning the hydrogen economy. (author)

  9. Hydrogen, fuel of the future?

    International Nuclear Information System (INIS)

    Bello, B.

    2008-01-01

    The European project HyWays has drawn out the road map of hydrogen energy development in Europe. The impact of this new energy vector on the security of energy supplies, on the abatement of greenhouse gases and on the economy should be important in the future. This article summarizes the main conclusions of the HyWays study: CO 2 emissions, hydrogen production mix, oil saving abatement, economic analysis, contribution of hydrogen to the development of renewable energies, hydrogen uses, development of regional demand and of users' centers, transport and distribution. The proposals of the HyWays consortium are as follows: implementing a strong public/private European partnership to reach the goals, favoring market penetration, developing training, tax exemption on hydrogen in the initial phase for a partial compensation of the cost difference, inciting public fleets to purchase hydrogen-fueled vehicles, using synergies with other technologies (vehicles with internal combustion engines, hybrid vehicles, biofuels of second generation..), harmonizing hydrogen national regulations at the European scale. (J.S.)

  10. Social Economy and Responsibility

    Directory of Open Access Journals (Sweden)

    Eva Abramuszkinová Pavlíková

    2012-01-01

    Full Text Available Given the importance of entrepreneurial activities as an engine of economic growth and poverty alleviation, the issue of business development and entrepreneurial activities, has received increasing attention from a number of interested parties worldwide and also in the Czech Republic. The focus of this paper is on a social economy, a social responsibility and social enterprises. The development of the social economy framework will be introduced in the European context and specifically in the Czech Republic. A case study of a Czech social entrepreneur will be introduced based on qualitative research, namely the biographical narrative method.Social enterprises can support activities of various target groups, such as economic activities of mentally and physically handicapped people, which often operate in economically and socially marginalized situations, including stereotyped images. They give them a chance to become active members of society. In this way they can help to reduce the poverty on a local level. The aim of this paper is to introduce a social entrepreneurship as important part of social economy development in the Czech Republic.

  11. 76 FR 39477 - Revisions and Additions to Motor Vehicle Fuel Economy Label

    Science.gov (United States)

    2011-07-06

    ...The Environmental Protection Agency (EPA) and the National Highway Traffic Safety Administration (NHTSA) are issuing a joint final rule establishing new requirements for the fuel economy and environment label that will be posted on the window sticker of all new automobiles sold in the U.S. The labeling requirements apply for model year 2013 and later vehicles with a voluntary manufacturer option for model year 2012. The labeling requirements apply to passenger cars, light-duty trucks, and medium duty passenger vehicles such as larger sport-utility vehicles and vans. The redesigned label provides expanded information to American consumers about new vehicle fuel economy and fuel consumption, greenhouse gas and smog-forming emissions, and projected fuel costs and savings, and also includes a smartphone interactive code that permits direct access to additional Web resources. Specific label designs are provided for gasoline, diesel, ethanol flexible fuel, compressed natural gas, electric, plug-in hybrid electric, and hydrogen fuel cell vehicles. This rulemaking is in response to provisions in the Energy Independence and Security Act of 2007 that imposed several new labeling requirements and new advanced-technology vehicles entering the market. NHTSA and EPA believe that these changes will help consumers to make more informed vehicle purchase decisions, particularly as the future automotive marketplace provides more diverse vehicle technologies from which consumers may choose. These new label requirements do not affect the methodologies that EPA uses to generate consumer fuel economy estimates, or the automaker compliance values for NHTSA's corporate average fuel economy and EPA's greenhouse gas emissions standards. This action also finalizes a number of technical corrections to EPA's light-duty greenhouse gas emission standards program.

  12. Study on system layout and component design in the HTTR hydrogen production system. Contract research

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Shimizu, Akira; Uchida, Shoji

    2003-01-01

    The global warming becomes a significant issue in the world so that it needs to reduce the CO 2 emission. It is expected that hydrogen is in place of the fossil fuels such as coal and oil, and plays the important role to resolve the global warming. There are several hydrogen making processes such as water electrolysis and steam reforming of hydrocarbon. Steam reforming of hydrocarbon is a major hydrogen making process because of economy in industry. It utilizes the fossil fuels as process heat for chemical reaction and results in a large CO 2 emission. New steam reforming system without fossil fuel can contribute to resolve the global warming. High temperature gas-cooled reactor (HTGR) has a unique feature to be able to supply a hot helium gas whose temperature is approximately 950degC at the reactor outlet. This makes HTGR possible to utilize for not only power generation but also process heat utilization. JAERI constructed the high temperature engineering test reactor (HTTR) that is a sort of HTGR in Oarai establishment and starts operation. Nuclear heat utilization is one of the R and D items of the HTTR. The steam reforming system coupling to the HTTR for hydrogen production has been designed. This report represents the system layout and design specification of key components in HTTR steam reforming system. (author)

  13. Study on system layout and component design in the HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Nishihara, Tetsuo; Shimizu, Akira [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tanihira, Masanori [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Uchida, Shoji [Advanced Reactor Technology Co., Ltd., Tokyo (Japan)

    2003-01-01

    The global warming becomes a significant issue in the world so that it needs to reduce the CO{sub 2} emission. It is expected that hydrogen is in place of the fossil fuels such as coal and oil, and plays the important role to resolve the global warming. There are several hydrogen making processes such as water electrolysis and steam reforming of hydrocarbon. Steam reforming of hydrocarbon is a major hydrogen making process because of economy in industry. It utilizes the fossil fuels as process heat for chemical reaction and results in a large CO{sub 2} emission. New steam reforming system without fossil fuel can contribute to resolve the global warming. High temperature gas-cooled reactor (HTGR) has a unique feature to be able to supply a hot helium gas whose temperature is approximately 950degC at the reactor outlet. This makes HTGR possible to utilize for not only power generation but also process heat utilization. JAERI constructed the high temperature engineering test reactor (HTTR) that is a sort of HTGR in Oarai establishment and starts operation. Nuclear heat utilization is one of the R and D items of the HTTR. The steam reforming system coupling to the HTTR for hydrogen production has been designed. This report represents the system layout and design specification of key components in HTTR steam reforming system. (author)

  14. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    Lee, Ki Young; Chang, J. H.; Park, J. K.

    2007-06-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production system, and the assessment of the nuclear hydrogen production economy. To estimate the attainments of the key technologies in progress with the performance goals of GIF, itemized are the attainment indices based on SRP published in VHTR R and D steering committee of Gen-IV. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items conformed to the NHDD concepts established in a preconceptual design in 2005. The codes for analyzing the hydrogen production economy are developed for calculating the unit production cost of nuclear hydrogen. We developed basic R and D quality management methodology to meet design technology of VHTR's needs. By putting it in practice, we derived some problems and solutions. We distributed R and D QAP and Q and D QAM to each teams and these are in operation. Computer simulations are performed for estimating the thermal efficiency for the electrodialysis component likely to adapting as one of the hydrogen production system in Korea and EED-SI process known as the key components of the hydrogen production systems. Using the commercial codes, the process diagrams and the spread-sheets were produced for the Bunsen reaction process, Sulphuric Acid dissolution process and HI dissolution process, respectively, which are the key components composing of the SI process

  15. Comparison between response dynamics in transition economies and developed economies

    Science.gov (United States)

    Tenenbaum, Joel; Horvatić, Davor; Bajić, Slavica Cosović; Pehlivanović, Bećo; Podobnik, Boris; Stanley, H. Eugene

    2010-10-01

    In developed economies, the sign of the price increment influences the volatility in an asymmetric fashion—negative increments tend to result in larger volatility (increments with larger magnitudes), while positive increments result in smaller volatility. We explore whether this asymmetry extends from developed economies to European transition economies and, if so, how such asymmetry changes over time as these transition economies develop and mature. We analyze eleven European transition economies and compare the results with those obtained by analyzing U.S. market indices. Specifically, we calculate parameters that quantify both the volatility asymmetry and the strength of its dependence on prior increments. We find that, like their developed economy counterparts, almost all transition economy indices exhibit a significant volatility asymmetry, and the parameter γ characterizing asymmetry fluctuates more over time for transition economies. We also investigate how the association between volatility and volatility asymmetry varies by type of market. We test the hypothesis of a negative correlation between volatility and volatility asymmetry. We find that, for developed economies, γ experiences local minima during (i) “Black Monday” on October 19, 1987, (ii) the dot-com bubble crash in 2002, and (iii) the 2007-2009 global crisis while for transition economies, γ experiences local maxima during times of economic crisis.

  16. Color Changing Hydrogen Sensors

    Science.gov (United States)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  17. The real new economy.

    Science.gov (United States)

    Farrell, Diana

    2003-10-01

    During the soar-and-swoon days of the late 1990s, many people believed that information technology, and the Internet in particular, were "changing everything" in business. A fundamental change did happen in the 1990s, but it was less about technology than about competition. Under director Diana Farrell, the McKinsey Global Institute has conducted an extensive study of productivity and its connection to corporate IT spending and use during that period. The study revealed that information technology is important--but not central--to the fate of industries and individual companies. So if information technology was not the primary factor in the productivity surge, what was? The study points to competition and innovation. In those industries that saw increases in competitive intensity, managers were forced to innovate aggressively to protect their revenues and profits. Those innovations--in products, business practices, and technology--led to the gains in productivity. In fact, a critical dynamic of the new economy--the real new economy--is the virtuous cycle of competition, innovation, and productivity growth. Managers can innovate in many ways, but during the 1990s, information technology was a particularly powerful tool, for three reasons: First, IT enabled the development of attractive new products and efficient new business processes. Second, it facilitated the rapid industrywide diffusion of innovations. And third, it exhibited strong scale economies--its benefits multiplied rapidly as its use expanded. This article reveals surprising data on how various industries in the United States and Europe were affected by competition, innovation, and information technology in the 1990s and offers insights about how managers can get more from their IT investments.

  18. Domesticizing Financial Economies

    DEFF Research Database (Denmark)

    Deville, Joe; Lazarus, Jeanne; Luzzi, Mariana

    show. Third, the “domestication of financial economies”: financial literacy programs developed by governmental bodies, international organizations, and banks have become a ubiquitous layer attached to the assemblage of financial economies in many countries. And last but not least, “domesticizing social...... practices as well as the precise way financial providers are evaluating, sorting and targeting their consumers. We believe these diverse trends are starting to converge, and the ambitions of this paper are both to organize scattered literature and to reflect upon the consequences of the new field...

  19. Economy and energy politic

    International Nuclear Information System (INIS)

    Martin, J.M.

    1992-01-01

    This book, divided into four parts, describes, first, energy consumption and national economy growth. In a second part, the irresistible ascent of coal, natural gas and petroleum international markets is studied. In the third part, energy politic is investigated: exchanges releasing, prices deregulation, contestation of power industry monopoly, energy national market and common energetic politic, single market concept. In the last part, global risks and world-wide regulations are given: demand, energy resources, technical changes, comparative evaluations between fossil, nuclear and renewable energies, environment, investments financing and international cooperation. 23 refs., 14 figs., 16 tabs

  20. The Methanol Economy Project

    Energy Technology Data Exchange (ETDEWEB)

    Olah, George [Univ. of Southern California, Los Angeles, CA (United States); Prakash, G. K. [Univ. of Southern California, Los Angeles, CA (United States)

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  1. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  2. If the hydrogen was used as a substitute for the petroleum. After the petroleum, the hydrogen?; Si l'hydrogene remplacait le petrole. Apres le petrole, l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    Rifkin, J

    2002-07-01

    The fossil energies reserves are not inexhaustible. From the opinion of the american Jeremy Rifkin which published a book on this subject (the hydrogen economy), the hydrogen presents many energetic advantages to replace the petroleum. The main points of the book are presented and discussed in this paper. (A.L.B.)

  3. Energy: the solar hydrogen alternative

    Energy Technology Data Exchange (ETDEWEB)

    Bocheris, J O.M.

    1977-01-01

    The author argues that nuclear and solar energy should begin replacing conventional fossil sources as soon as possible because oil, gas and even coal supplies will be depleted within decades. A hydrogen economy would introduce major technical problems but its chief benefits are that it permits energy storage in a post fossil fuel era when electricity is expected to play a major role. It can be converted to electricity, cleanly and efficiently with fuel cells and in liquid form can be burnt as jet fuel. Hydrogen can also be burnt in internal combustion engines although less efficiently in fuel cells. However, although hydrogen is clean and efficient, technical development is still needed to reduce its cost and to cope with safety problems. The book contains a wealth of technical information and is a valuable reference on a topic of growing importance.

  4. The energy economy

    International Nuclear Information System (INIS)

    Meritet, Sophie; Vaujour, Jean-Baptiste

    2015-01-01

    This introduction to the economy of energy applies the main economic concepts to the energy sector (nature of the good, supply, demand), proposes an overview of existing actors, and analyses challenges and tools of economic policy like network regulation, competition policy, independence and energy transition. By using recent examples, statistics and international comparisons, it gives elements to highlight issues like the relationship between shale gas exploitation and economic recovery in the USA, the choice between monopole and competition for electricity or gas supply, reaching greenhouse gas emissions of the energy sector by incentives or taxes, secure energy supplies in a changing international environment, ways to supply energy to everyone at prices guaranteeing economy competitiveness, or ways to evolve towards energy systems which would be more environment- and climate-friendly. The successive chapters address fundamentals issues (nature of the good, historical and technical overview), the State intervention (definition of an energy policy, steering the energy mix, ensuring secure supply), the reorganisation of industries and the protection of consumers, the relationship between energy and climate (worrying perspectives, progressive emergence of solutions). The last chapter addresses the future challenges like innovation, and disruptive innovations (smart grids, big data, batteries, CO 2 capture and storage, nuclear waste processing and management, development of nuclear fusion), and the issue of energy poverty

  5. Network Transformations in Economy

    Directory of Open Access Journals (Sweden)

    Bolychev O.

    2014-09-01

    Full Text Available In the context of ever-increasing market competition, networked interactions play a special role in the economy. The network form of entrepreneurship is increasingly viewed as an effective organizational structure to create a market value embedded in innovative business solutions. The authors study the characteristics of a network as an economic category and emphasize certain similarities between Rus sian and international approaches to identifying interactions of economic systems based on the network principle. The paper focuses on the types of networks widely used in the economy. The authors analyze the transformation of business networks along two lines: from an intra- to an inter-firm network and from an inter-firm to an inter-organizational network. The possible forms of network formation are described depending on the strength of connections and the type of integration. The drivers and reasons behind process of transition from a hierarchical model of the organizational structure to a network type are identified. The authors analyze the advantages of creating inter-firm networks and discuss the features of inter-organizational networks as compares to inter-firm ones. The article summarizes the reasons for and advantages of participation in inter-rganizational networks and identifies the main barriers to the formation of inter-organizational network.

  6. A green economy?

    Directory of Open Access Journals (Sweden)

    Petrus Simons

    2014-08-01

    Full Text Available Economic growth has become a fetish, as it is believed to yield many benefits to society. It has its origins in the Enlightenment ideal of progress through science, technology and a free market economy. J.W. Goethe anticipated the problems of such progress in his poem Faust, especially its second part. Binswanger interprets Goethe’s view on the modern economy as a form of alchemy, an attempt to master time through the invention of monetary capital. Keynes’s views on progress and liquidity are compatible with this analysis. The problems, evoked by the uncritical application of scientific technology so as to increase material welfare, have given rise to a dialectic between business seeking growth and those concerned about its effects, especially on ecology. Sustainable development is an outcome of this dialectic, without abandoning it. Others, particularly those advocating décroissance [de-growth], reject the concepts underlying growth. The ideology underlying this is a combination of technicism and economism. A spiritual revolution is called for to break the hold of this ideology on society, with a change from the metaphor of the world as a machine to that of a garden-city. It is suggested that working groups should analyse the various proposals for change from the perspective of the garden-city metaphor.

  7. DEVELOPING COUNTRIES. TRANSITION ECONOMIES

    Directory of Open Access Journals (Sweden)

    Dumitru FILIPEANU

    2016-05-01

    Full Text Available According to the modern theories of economic development – the take-off, backwardness, convergence and balanced growth hypothesis - the new industrialized states from Asia seem to have noticed the advantages of backwardness from which low income countries benefited, namely the possibility to take advantage of the latest technological discoveries of advanced countries, thus achieving a faster growth than the latter which operated closer to the technological border. The assimilation of appropriate technologies, however, required the efficient mobilization and allocation of resources and the improvement of human and physical capital. While the Western countries were confronted with crises generated by inflationary shocks and movements of speculative capital, the relative isolation of countries whose economy was planned by the world economy sheltered them until 1990, unemployment being practically non-existent. Asia's exceptional economic success is not only due to borrowing Western practices, but also to the fact that Asian societies maintained certain traditional features of their own culture - such as a strong work ethic - and integrated them in the modern business environment.

  8. Risk Perception of an Emergent Technology: The Case of Hydrogen Energy

    Directory of Open Access Journals (Sweden)

    Rob Flynn

    2006-01-01

    Full Text Available Although hydrogen has been used in industry for many years as a chemical commodity, its use as a fuel or energy carrier is relatively new and expert knowledge about its associated risks is neither complete nor consensual. Public awareness of hydrogen energy and attitudes towards a future hydrogen economy are yet to be systematically investigated. This paper opens by discussing alternative conceptualisations of risk, then focuses on issues surrounding the use of emerging technologies based on hydrogen energy. It summarises expert assessments of risks associated with hydrogen. It goes on to review debates about public perceptions of risk, and in doing so makes comparisons with public perceptions of other emergent technologies—Carbon Capture and Storage (CCS, Genetically Modified Organisms and Food (GM and Nanotechnology (NT—for which there is considerable scientific uncertainty and relatively little public awareness. The paper finally examines arguments about public engagement and "upstream" consultation in the development of new technologies. It is argued that scientific and technological uncertainties are perceived in varying ways and different stakeholders and different publics focus on different aspects or types of risk. Attempting to move public consultation further "upstream" may not avoid this, because the framing of risks and benefits is necessarily embedded in a cultural and ideological context, and is subject to change as experience of the emergent technology unfolds. URN: urn:nbn:de:0114-fqs0601194

  9. THE INFLUENCE OF INSTITUTIONAL STRATEGIES ON THE UNDERGROUND ECONOMY

    Directory of Open Access Journals (Sweden)

    Ciprian Tudurachi

    2014-12-01

    Full Text Available The fight against shadow economy must be addressed not only as a permanent concern of economic analysts and decision-makers, but rather as a problematic ethical-moral nature affecting economic and interpersonal relations, as strategic and operational object. The authors attempt outline an institutional management strategy geared towards underground economy combating has as objective the strands establishment without having exhaustiveness claim. We make a case for extending the implementation of a coherent program, strategic and operational, and its adoption as a way of institutional management in the context it really wants to launch a concerted offensive to combat the underground economy.

  10. How can design science contribute to a circular economy?

    DEFF Research Database (Denmark)

    Pigosso, Daniela Cristina Antelmi; McAloone, Tim C.

    2017-01-01

    Circular Economy is increasingly seen as a key approach to operationalising goals and supporting the transition to a sustainable society by enhancing competitiveness and economic growth. Creating a Circular Economy requires fundamental changes throughout the value chain, from innovation, product...... design and production processes all the way to end of life, new business models and consumption patterns. This paper explores how design science can support the transition from the traditional linear 'take-make-consume-dispose' approach, to a Circular Economy. By means of a systematic literature review...

  11. Barter Economies and Centralized Merchants

    OpenAIRE

    Jose Noguera

    2000-01-01

    The main goal of this essay is to analyze the emergence of a barter economy, and the rise of centralized merchants and a barter redistribution system out of a primitive barter system. The environment is a spatial general equilibrium model where exchange is costly. Since exchange becomes more complicated as the scope of the economy increases, we prove that, after the economy reaches a critical size, the cost of trade expansion surpasses its benefits. This imposes limitations on the scope of th...

  12. Future role of hydrogen in FRG

    International Nuclear Information System (INIS)

    Bradke, H.

    1992-01-01

    Relative to the Federal Republic of Germany energy-economy framework, this paper prepares supply and demand assessments for a set of energy source diversification strategy alternatives involving the substantial use of hydrogen fuels, with the aim of reducing the strain on the the earth's limited supplies of fossil fuels and limiting carbon dioxide emissions into the atmosphere. These assessments include forecasts of population dynamics, GNP, and sectoral energy consumption, production, imports and prices for fossil fuels and renewable energy sources. The comparative evaluation of the diversification scenarios includes sensitivity analyses to establish the optimum mix of economy-energy planning criteria that would allow for the successful evolution of a hydrogen based economy in the FRG by the year 2040

  13. Macroeconomics in an open economy.

    Science.gov (United States)

    Cooper, R N

    1986-09-12

    The customary treatment of national economies as closed and self-contained must be substantially modified to allow for those economies that typically trade goods, services, and securities with other countries in increasing volume. Open economy macroeconomics is essential to understanding the major events of the U.S. economy over the past half dozen years. Both the sharp rise in the dollar and the unprecedentedly large U.S. trade deficit are linked to the U.S. budget deficit, as is the drop in the rate of inflation.

  14. Social economy and social enterprise

    DEFF Research Database (Denmark)

    Hulgård, Lars

    2011-01-01

    practice will be put under increasing pressure. There is a difference between a social economy approach to the third sector and an approach based upon the notion of a non-profit constraint. Social economy is well positioned as a third sector to play a core role in meeting this urgency. But how does...... the social economy fit with current strategies in the areas of welfare policies and social service? Is it as a certain type of social entrepreneurship an integral part of a social innovation of the mainstream market economy or is it part of an emerging counter discourse in the sense of a participatory non...

  15. Modelling the Global Transportation Systems for the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Krzyzanowski, D.A.; Kypreos, S.

    2004-03-01

    A modelling analysis of the transportation system is described, focused on the market penetration of different transportation technologies (including Learning-by-Doing) until the year 2050. A general outline of the work and first preliminary results are presented. (author)

  16. Method of making alkali metal hydrides

    Science.gov (United States)

    Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek; Hlova, Ihor; Castle, Andra

    2017-05-30

    A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.

  17. Manitoba: path to a hydrogen future

    International Nuclear Information System (INIS)

    Parsons, R.V.; Crone, J.

    2003-01-01

    A hydrogen economy is not just about future clean energy but is also about future economic development. It is about new products, new services, new knowledge, and renewable energy sources that will be ultimately used by consumers in the future, and thus represent potential new economic opportunities. The concept of achieving important environmental and health goals through a cleaner energy economy, based on hydrogen, is not new. Similarly, the desire of individual jurisdictions to seek out and develop economic development opportunities is not new. The key question today becomes one of how to plot directions on hydrogen that will yield appropriate economic development gains in the future. While hydrogen offers significant promise, the prospect benefits are recognized to be still largely long-term in nature. In addition, the ability to identify appropriate future directions is clouded by a degree of 'hydrogen hype' and by a variety of major technical and market uncertainties. During 2002, a unique process was initiated within Manitoba combining these elements to work toward a Hydrogen Economic Development Strategy, a strategy that is ultimately intended to lead the province as a whole to determining our future economic niches for hydrogen. This paper describes the nature of the assessment process undertaken within Manitoba, the outcomes achieved and general insights of relevance to a broader audience. (author)

  18. Nippon oil's activities toward realization of hydrogen society

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Kojiro; Okazaki, Junji; Kobori, Yoshihiro; Iki, Hideshi [Nippon Oil Corporation (Japan)

    2010-07-01

    Nippon Oil Corporation, a major Japanese energy distributor, has been devoting extensive efforts toward the establishment of hydrogen supply systems. The Council on Competitiveness-Nippon (COCN), an advisory organization which has influence on Japanese government policy, has announced that the establishment of hydrogen infrastructure should be started in 2015. By that time, we plan to have completed the development of necessary technologies for the infrastructure. It is well recognized that the storage and transportation of hydrogen is the sticking point on the path to realization of a hydrogen economy. The scope of our research covers key technologies for hydrogen storage and transportation, including carbon fiber reinforced plastic (CFRP) tanks for compressed hydrogen gas, hydrogen storage materials, and hydrogen transportation systems which utilize organic chemical hydride (OCH). This article describes Nippon Oil's strategy for realization of the hydrogen economy. (orig.)

  19. Rethinking the Sharing Economy

    DEFF Research Database (Denmark)

    Kornberger, Martin; Leixnering, Stephan; Meyer, Renate

    2017-01-01

    Our paper focuses on a non-standard sharing example that harbors the potential to disrupt received wisdom on the sharing economy. While originally entering the field to analyze, broadly from a governance perspective, how the 2015 refugee crisis was handled in Vienna, Austria, we found that the no...... of sharing: economic and moral. Our paper contributes to this Special Issue of the Academy of Management Discoveries by highlighting and explaining the two-fold economic and moral nature of sharing and the organization of sharing between movement and platform....... sharing of resources (i.e., the economic dimension): the sharing of a distinct concern (i.e., the moral dimension of sharing). Our discovery exemplifies such a moral dimension that is rather different from the status quo materialistic treatments focusing on economic transactions and property rights...

  20. Securing the Digital Economy

    Directory of Open Access Journals (Sweden)

    Valentin P. MĂZĂREANU

    2010-01-01

    Full Text Available The Digital economy has naturally led to thereconfiguration of communication and information processes.These processes are depending on the computer, starting fromthe personal one and reaching to computer networks, whetherlocal, metropolitan or global. These led to the development ofsuch information systems able to communicate information,systems that must also ensure the security of communicationsbetween computers within the company, but also betweencomputers of different parties, outside the company. As thecommunication between computers in the network has evolvedto electronic funds transfer (EFT, digital money andcommunication of personal data, internet banking, etc., theimportance of security issues of data transmitted over thenetwork also has increased. Even more as the network hasevolved into a “wireless” one.

  1. Fuel economy handbook

    Energy Technology Data Exchange (ETDEWEB)

    Short, W [ed.

    1979-01-01

    An overview of the UK's energy situation from 1950 to 2020 is presented. Problems are discussed and recommendations are made. A strong argument is presented for energy conservation, greater use of nuclear energy, and restrained production of North Sea oil. Specific recommendations are made for financial and operational considerations of (1) new or replacement boiler plants; (2) space heating of factories, offices and similar buildings; and (3) possible use of various fuels including duel-fuel economics and use of wastes. Tariffs and charges are discussed as well as services (e.g. compressed air, cooling water, sources of waste, etc.). Standby considerations (peak load lopping, turbines-engines, parallel or sectioned operation, etc.) and heat distribution (steam, condensate return and uses) are discussed. Throughout, the emphasis is on fuel economy. Savings in process such as recovering waste heat and the storage of heat are considered. For small industrial furnaces, intermittent heating, heat recovery, and the importance of furnace loading are discussed. (MJJ)

  2. [Economy class syndrome].

    Science.gov (United States)

    Morio, Hiroshi

    2003-10-01

    Economy class syndrome is venous thromboembolism following air travel. This syndrome was firstly reported in 1946, and many cases have been reported since 1990s. Low air pressure and low humidity in the aircraft cabin may contribute to the mechanism of this syndrome. Risk factors for venous thrombosis in the plane were old age, small height, obesity, hormonal therapy, malignancy, smoking, pregnancy or recent parturition, recent trauma or operation, chronic disease and history of venous thrombosis. In Japan, the feminine gender is also risk factor though reason was not well known. For prophylaxis, adequate fluid intake and leg exercise are recommended to all passengers. For passengers with high risk, prophylactic measures such as compression stockings, aspirin or low molecular weight heparin should be considered.

  3. From war economies to peace economies in Africa | Broodryk ...

    African Journals Online (AJOL)

    One reason for the persistence and protracted nature of conflict on the. African continent is the phenomenon of war economies. These have transformed the nature of war itself where the object is not at neutralizing an enemy but to institutionalize violence at a profitable level of intensity. Transforming war economies into ...

  4. Political economies and environmental futures for the sharing economy

    NARCIS (Netherlands)

    Frenken, Koen|info:eu-repo/dai/nl/207145253

    2017-01-01

    The sudden rise of the sharing economy has sparked an intense public debate about its definition, its effects and its future regulation. Here, I attempt to provide analytical guidance by defining the sharing economy as the practice that consumers grant each other temporary access to their

  5. Tourism's intimate economies

    Directory of Open Access Journals (Sweden)

    Bill Maurer

    2008-12-01

    Full Text Available [First paragraph] What’s Love Got To Do with It? Transnational Desires and Sex Tourism in the Dominican Republic. Denise Brennan. Durham NC: Duke University Press, 2004. ix + 280 pp. (Paper US$ 21.95 Behind the Smile: The Working Lives of Caribbean Tourism. George Gmelch. Bloomington: Indiana University Press, 2003. x + 212 pp. (Paper US$ 19.95 New research on Caribbean tourism solidly locates it within the regional shift from “incentive-induced exports” like bananas to “service-based exports” like data processing, offshore finance, and novel forms of mass tourism (Mullings 2004:294; Duval 2004. Earlier studies may have made mention of the similarities between plantation economies and tourism development, but new models like the all-inclusive resort demonstrate a near identity of form and structure with plantation systems: foreign dominance over ownership and profit leaves little multiplier effect for the Caribbean islands playing host to enclaved resorts. Agricultural exports have been in free fall since the end of preferential trade protocols, and export manufacturing after the North American Free Trade Agreement is in steep decline. If new service economies seemed to offer a solution to economic and social disorder, the reaction to the events of September 11, 2001 demonstrated the fragility of service-based exports and, in particular, of new kinds of tourism. It took four years for international tourism to rebound to pre-9/11 levels;1 with the perceived threat of SARS and avian flu, as well as the Iraq war and the weak U.S. dollar, official projections of the industry’s near future are “cautiously optimistic.”2

  6. Abraham Lincoln and the global economy.

    Science.gov (United States)

    Hormats, Robert D

    2003-08-01

    Abraham Lincoln would have well understood the challenges facing many modern emerging nations. In Lincoln's America, as in many developing nations today, sweeping economic change threatened older industries, traditional ways of living, and social and national cohesion by exposing economies and societies to new and powerful competitive forces. Yet even in the midst of the brutal and expensive American Civil war--and in part because of it--Lincoln and the Republican Congress enacted bold legislation that helped create a huge national market, a strong and unified economy governed by national institutions, and a rising middle class of businessmen and property owners. Figuring out how to maximize the benefits of globalization while minimizing its disruptions is a formidable challenge for policy makers. How do you expand opportunities for the talented and the lucky while making sure the rest of society doesn't fall behind? It may be helpful to look at the principles that informed the policies that Lincoln and the Republican Congress instituted after they came to power in 1861: Facilitate the upward mobility of low- and middle-income groups to give them a significant stake in the country. Emphasize the good of the national economy over regional interests. Affirm the need for sound government institutions to temper the dynamics of the free enterprise system. Tailor policies to the national situation. Realize that a period of turmoil may present a unique opportunity for reform. These principles drove the reforms that helped Americans cope with and benefit from rapid technological advances and the fast integration of the American economy in the nineteenth century. They may be instructive to today's policy makers who are struggling to help their own citizens integrate into the fast-changing global economy of the twenty-first century.

  7. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  8. Waste to chemicals for a circular economy.

    Science.gov (United States)

    Iaquaniello, Gaetano; Centi, Gabriele; Annarita Salladini, Annarita; Palo, Emma; Perathoner, Siglinda

    2018-06-25

    The implementation of a circular economy is a fundamental step to create a greater and more sustainable future for a better use of resources and energy. Wastes and in particular municipal solid waste represent an untapped source of carbon (and hydrogen) to produce a large range of chemicals from methane to alcohols (as methanol or ethanol) or urea. The waste to chemical (WtC) process and related economics are assessed in this concept article to show the validity of such solution both from an economic point of view and from an environmental perspective considering the sensible reduction in greenhouse gas emissions with respect to conventional production from fossil fuels. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Environmental economy account for Denmark 2003

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    The environmental economy account for Denmark shows that the contribution to acidification in Denmark increased with 1% from 2002 to 2003, while the contribution to the greenhouse effect increased with 11,3%. The latter covers an increase of 19,3 % from the energy supply and an increase of 22,4% from Danish ships' bunkering outside Denmark. The environmental account for Denmark presents accounts of the energy consumption (and water consumption) of the industrial branches and the households together with their emission of pollutants to the atmosphere. The account also contains information about the environmental taxes and subsidies that rest with industry and households. Finally, volume and value are presented of the oil and gas reserves in the North Sea. The environmental account combines environmental data with the Danish National Accounts, making it possible to analyse the relation between economy and environment. (ln)

  10. Environmental economy account for Denmark 2004

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The environmental economy account for Denmark shows that the contribution to acidification in Denmark decreased with 5,2% from 2003 to 2004, while the contribution to the greenhouse effect decreased with 4,4%. The reserves of petroleum and natural gas increased in 2004 with 14 b.DKK to 232 b.DKK. The environmental account for Denmark presents accounts of the energy consumption (and water consumption) of the industrial branches and the households together with their emission of pollutants to the atmosphere. The account also contains information about the environmental taxes and subsidies that rest with industry and households. Finally, volume and value are presented of the oil and gas reserves in the North Sea. The environmental account combines environmental data with the Danish National Accounts, making it possible to analyse the relation between economy and environment. (ln)

  11. Environmental economy account for Denmark 2001

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The environmental economy account for Denmark shows that the contribution to acidification in Denmark decreased with 11% from 2000 to 2001 while the contribution to the greenhouse effect decreased with 0,4%. The latter must be seen in relation to the fact that the contribution from energy consumption increased with 5,4% and that the contribution from Danish ships' bunkering outside Denmark decreased with 7,7%. The environmental account for Denmark presents accounts of the consumption of energy (and water) of the industrial branches and the households together with their emission of pollutants to the atmosphere. The account also contains information about the environmental taxes and subsidies that rest with industry and households. Finally volume and value are presented for the oil and gas reserves in the North Sea. The environmental account combines environmental data with the Danish National Accounts making it possible to analyse the relation between economy and environment. (ln)

  12. Hycom Pre - Feasibility study. Final report[Hydrogen communities

    Energy Technology Data Exchange (ETDEWEB)

    Lacobazzi, A; Mario, F di [ENEA, (Italy); Hasenauer, U [Fraunhofer IS, (Germany); Joergensen, B H; Bromand Noergaard, P [Risoe National Lab., (Denmark)

    2005-07-01

    The Quick-start Programme of the European Union Initiative for Growth identifies the hydrogen economy as one of the key areas for investment in the medium term (2004-2015). In this context the HyCOM (Hydrogen Communities) programme has been initiated. The main goal of this programme is the creation of a limited number of strategically sited stand-alone hydrogen communities producing hydrogen from various primary sources (mostly renewables) and using it for heat and electricity production and as fuel for vehicles. This report looks at the establishment of such hydrogen communities, analysing the main technical, economic, social, and environmental aspects as well as financial and regulatory barriers associated with the creation and operation of hydrogen communities. It also proposes a number of concepts for Hydrogen Communities and criteria with which a Hydrogen Community should be evaluated. The study is not in any way intended to be prescriptive. (ln)

  13. Welcome to the experience economy.

    Science.gov (United States)

    Pine, B J; Gilmore, J H

    1998-01-01

    First there was agriculture, then manufactured goods, and eventually services. Each change represented a step up in economic value--a way for producers to distinguish their products from increasingly undifferentiated competitive offerings. Now, as services are in their turn becoming commoditized, companies are looking for the next higher value in an economic offering. Leading-edge companies are finding that it lies in staging experiences. To reach this higher level of competition, companies will have to learn how to design, sell, and deliver experiences that customers will readily pay for. An experience occurs when a company uses services as the stage--and goods as props--for engaging individuals in a way that creates a memorable event. And while experiences have always been at the heart of the entertainment business, any company stages an experience when it engages customers in a personal, memorable way. The lessons of pioneering experience providers, including the Walt Disney Company, can help companies learn how to compete in the experience economy. The authors offer five design principles that drive the creation of memorable experiences. First, create a consistent theme, one that resonates throughout the entire experience. Second, layer the theme with positive cues--for example, easy-to-follow signs. Third, eliminate negative cues, those visual or aural messages that distract or contradict the theme. Fourth, offer memorabilia that commemorate the experience for the user. Finally, engage all five senses--through sights, sounds, and so on--to heighten the experience and thus make it more memorable.

  14. Financing pharmaceuticals in transition economies.

    Science.gov (United States)

    Kanavos, P

    1999-06-01

    This paper (a) provides a methodological taxonomy of pricing, financing, reimbursement, and cost containment methodologies for pharmaceuticals; (b) analyzes complex agency relationships and the health versus industrial policy tradeoff; (c) pinpoints financing measures to balance safety and effectiveness of medicines and their affordability by publicly funded systems in transition; and (d) highlights viable options for policy-makers for the financing of pharmaceuticals in transition. Three categories of measures and their implications for pharmaceutical policy cost containing are analyzed: supply-side measures, targeting manufacturers, proxy demand-side measures, targeting physicians and pharmacists, and demand-side measures, targeting patients. In pursuing supply side measures, we explore free pricing for pharmaceuticals, direct price controls, cost-plus and cost pricing, average pricing and international price comparisons, profit control, reference pricing, the introduction of a fourth hurdle, positive and negative lists, and other price control measures. The analysis of proxy-demand measures includes budgets for physicians, generic policies, practice guidelines, monitoring the authorizing behavior of physicians, and disease management schemes. Demand-side measures explore the effectiveness of patient co-payments, the impact of allowing products over-the-counter and health promotion programs. Global policies should operate simultaneously on the supply, the proxy demand, and the demand-side. Policy-making needs to have a continuous long-term planning. The importation of policies into transition economy may require extensive and expensive adaptation, and/or lead to sub-optimal policy outcomes.

  15. Interorganisational Management in Entrepreneurial Economies

    DEFF Research Database (Denmark)

    Christensen, Poul Rind; Piihl, Jesper

    2004-01-01

    In this article relationship management is defined and discussed in the context of an entrepreneurial society. Important aspects of trends in entrepreneurial economies to aspects of managerial economies. Based on a review of established management theories, it is concluded that there is a need...

  16. Entrepreneurship in the network economy

    NARCIS (Netherlands)

    Velthuijsen, Hugo; de Graaf, Frank Jan; Zhang, Henry; Zhao, Ruimei

    2009-01-01

    The network economy typically signifies a notion from the information society where new products and services are developed by collaborating individuals and/or businesses organised in virtual networks. The network economy has important characteristics in common with Northern European governance

  17. New Economy - New Policy Rules?

    NARCIS (Netherlands)

    Bullard, J.; Schaling, E.

    2000-01-01

    The U.S. economy appears to have experienced a pronounced shift toward higher productivity over the last five years or so. We wish to understand the implications of such shifts for the structure of optimal monetary policy rules in simple dynamic economies. Accordingly, we begin with a standard

  18. Fuel Economy Testing and Data

    Science.gov (United States)

    EPA’s Fuel Economy pages provide information on current standards and how federal agencies work to enforce those laws, testing for national Corporate Average Fuel Economy or CAFE standards, and what you can do to reduce your own vehicle emissions.

  19. Water for greening the economy

    CSIR Research Space (South Africa)

    De Lange, Willem J

    2015-03-01

    Full Text Available ] for such an overview). The focus here falls on a discussion aimed to improve alignment between water resource management and the principles of a green economy. Previous chapters have made it clear that a green economy requires a holistic approach towards policy...

  20. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  1. The underground economy in Romania

    Directory of Open Access Journals (Sweden)

    Adriana Veronica LITRA

    2016-07-01

    Full Text Available The paper aims at covering issues related to the underground economy, activities that compound this phenomenon, its magnitude in Romania and reported to the European average. Underground economy in Romania consists of undeclared work (2/3 from the total and unreported income; it decreased from 33.6% of GDP in 2003 to 28% in 2014, but remained over EU-28 average with about 10 p.p. Among EU-28 countries, only Bulgaria exceeds the size of the underground economy of Romania. The underground economy is a challenge for the leadership of the state which must act simultaneously to stop illegal activities, and to discourage non-declaration of the legal activities. Corruption favours maintaining the underground economy, delays economic development, obstructs democratic processes and affects justice and the law state.

  2. Hydrogen storage in a combined M.sub.xAlH.sub.6/M'.sub.y(NH.sub.2).sub.z system and methods of making and using the same

    Science.gov (United States)

    Lu, Jun [Salt Lake City, UT; Fang, Zhigang Zak [Salt Lake City, UT; Sohn, Hong Yong [Salt Lake City, UT

    2012-04-03

    As a promising clean fuel for vehicles, hydrogen can be used for propulsion, either directly or in fuel cells. Hydrogen storage compositions having high storage capacity, good dehydrogenation kinetics, and hydrogen release and uptake reactions which are reversible are disclosed and described. Generally a hydrogen storage composition of a metal aluminum hexahydride and a metal amide can be used. A combined system (Li.sub.3AIH.sub.6/3LiNH.sub.2) with a very high inherent hydrogen capacity (7.3 wt %) can be carried out at moderate temperatures, and with approximately 95% of that inherent hydrogen storage capacity (7.0%) is reversible over repeated cycling of release and uptake.

  3. The Norwegian hydrogen guide 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Hydrogen technologies are maturing at rapid speed, something we experience in Norway and around the globe every day as demonstration projects for vehicles and infrastructure expand at a rate unthinkable of only a few years ago. An example of this evolution happened in Norway in 2009 when two hydrogen filling stations were opened on May the 11th, making it possible to arrange the highly successful Viking Rally from Oslo to Stavanger with more than 40 competing teams. The Viking Rally demonstrated for the public that battery and hydrogen-electric vehicles are technologies that exist today and provide a real alternative for zero emission mobility in the future. The driving range of the generation of vehicles put into demonstration today is more than 450 km on a full hydrogen tank, comparable to conventional vehicles. As the car industry develops the next generation of vehicles for serial production within the next 4-5 years, we will see vehicles that are more robust, more reliable and cost effective. Also on the hydrogen production and distribution side progress is being made, and since renewable hydrogen from biomass and electrolysis is capable of making mobility basically emission free, hydrogen can be a key component in combating climate change and reducing local emissions. The research Council of Norway has for many years supported the development of hydrogen and fuel cell technologies, and The Research Council firmly believes that hydrogen and fuel cell technologies play a crucial role in the energy system of the future. Hydrogen is a flexible transportation fuel, and offers possibilities for storing and balancing intermittent electricity in the energy system. Norwegian companies, research organisations and universities have during the last decade developed strong capabilities in hydrogen and fuel cell technologies, capabilities it is important to further develop so that Norwegian actors can supply high class hydrogen and fuel cell technologies to global markets

  4. Fertility and the economy.

    Science.gov (United States)

    Becker, G S

    1992-08-01

    Fertility and the economy is examined in the context of the Malthusian question about the links between family choices and longterm economic growth. Micro level differences are not included not are a comprehensive range of economic or determinant variables. Specific attention is paid to income and price effects, the quality of children, overlapping generations, mortality effects, uncertainty, and economic growth. Fertility and the demand for children in linked to parental incomes and the cost of rearing children, which is affected by public policies that change the costs. Demand is also related to child and adult mortality, and uncertainty about sex of the child. Fertility in one generation affects fertility in the next. Malthusian and neoclassical models do not capture the current model of modern economies with rising income/capita and human and physical capital, extensive involvement of married women in the labor force, and declining fertility to very low levels. In spite of the present advances in firm knowledge about the relationships between fertility and economic and social variables, there is still much greater ignorance of the interactions. The Malthusian utility function that says fertility rises and falls with income did hold up to 2 centuries of scrutiny, and the Malthusian inclusion of the shifting tastes in his analysis could be translated in the modern context to include price of children. The inclusion of net cost has significant consequences, i.e., rural fertility can be higher because the cost of rearing when children contribute work to maintaining the farm is lower than in the city. An income tax deduction for children in the US reduces cost. Economic growth raises the cost of children due the time spent on child care becoming more valuable. The modern context has changed from Malthusian time, and the cost of education, training, and medical care is relevant. The implication is that a rise in income could reduce the demand for children when

  5. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol

    DEFF Research Database (Denmark)

    Alberico, E.; Nielsen, Martin

    2015-01-01

    The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous...

  6. Energetic hydrogen in Brazil: subsidies for competitiveness police, 2010-2025. Critical and sensitive technologies in priority sectors; Hidrogenio energetico no Brasil: subsidios para politicas de competitividade, 2010-2025. Tecnologias criticas e sensiveis em setores prioritarios

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-08-15

    The report presents an introduction to the hydrogen technology, with proposals of incentives for hydrogen economy, hydrogen production, hydrogen logistic development and hydrogen use systems with relation to the internacional and national environment, considerations, bottlenecks and proposals and a synthetic chart of recommendations.

  7. Research on the development and countermeasures for circular economy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ecological economics and sustainable development economics are the basic theories to research on circular economy. Through the systemically research on the relationship of the three above, this paper thinks that the reuse and recycle of circular economy ts a way that the stall is mended after a sheep is lost. Although the reduction technically controls the production process, it cannot solve the waste caused by blind production and excess competition. We have experienced variety obstacles when implementing the circular economy, whose main reason ts the conflict between the individual ration and the social ration. Therefore, only when the individual ration and social ration incline to conformity,the cooperating Nash equilibrium will be appeared. In order to realize the harmony of ecology, economy and society, we have to explore effective evaluation theory. This paper cites the "five flows of wealth operation theory"from professor Ma Chuandong to search operation mechanism of circular economy, makes clear the developing thoughts of circular economy based on the realities, and brings forward some countermeasures to develop circular economy based on the above theoretical analysis.

  8. STATE REGULATION OF THE NATIONAL ECONOMY OF RUSSIA

    Directory of Open Access Journals (Sweden)

    Vitaly Andreevich Shumaev

    2016-01-01

    Full Text Available The experience in the fi eld of public sector management of the economy, shows the shortcomings identified issues and proposed recommendations to increase the participation of the state in economic development through the expansion of the public sector and the use of innovative industrial policy. The system of economic institutions is recorded in all sectors of the economy. Therefore, the newly formed market institutions are faced with malfunctioning of economic mechanisms and poorly rooted in society. Goal / task. The purpose of this article is to search for the optimal model of management of state sector of economy taking into account modern shortcomings with the purpose of increase of efficiency of activity of economic subjects. The task of this article is to investigate the system of state management of economy in conditions of the worsening economic situation, as well as the search for the optimal model of management of economy of the state. Methodology. In conducting this study the main sources of baseline data were the materials of the state statistics, the works of famous economists. The basis of methodological developments based on comparative methods of analysis. Results. As a result of conducted analysis draws conclusions and makes recommendations aimed at reforming the domestic economy. Conclusions / significance. In the current economic conditions of the state and the new economic realities it is necessary to focus on attracting domestic capital in the Russian economy with the aim of increasing its effectiveness, as well as the analysis of the modern privatisation.

  9. Applying a Virtual Economy Model in Mexico's Oil Sector

    International Nuclear Information System (INIS)

    Baker, G.

    1994-01-01

    The state of Mexico's oil industry, including the accomplishments of Pemex, Mexico's national oil company, was discussed, with particular reference to the progress made in the period of 1988-1994, and the outlook for innovations in the post-Salinas era. The concept of an evolutionary trend from a command economy (State as sole producer), towards market (State as regulator) or mixed economies (State as business partner) in developing countries, was introduced, placing Pemex within this evolutionary model as moving away from centralized control of oil production and distribution, while achieving international competitiveness. The concept of ''virtual market economy'' was also discussed. This model contains the legal basis of a command economy, while instituting modernization programs in order to stimulate market-economic conditions. This type of economy was considered particularly useful in this instance, sine it would allow Pemex units to operate within international performance and price benchmarks while maintaining state monopoly. Specific details of how Pemex could transform itself to a virtual market economy were outlined. It was recommended that Pemex experiment with the virtual mixed economy model; in essence, making the state a co-producer, co-transporter, and co-distributor of hydrocarbons. The effects of such a move would be to bring non-debt funding to oil and gas production, transmission, and associated industrial activities

  10. Informal economy as an expression of the state failure

    OpenAIRE

    Agata Kubiczek

    2010-01-01

    The article deals with the phenomenon of second economy, underground or subterranean economy, unofficial economy, unrecorded economy, informal economy, cash economy etc., which has been assessed here as a function of a given mix of economic policies.

  11. Hercules project: Contributing to the development of the hydrogen infrastructure

    International Nuclear Information System (INIS)

    Arxer, Maria del Mar; Martinez Calleja, Luis E.

    2007-01-01

    A key factor in developing a hydrogen based transport economy is to ensure the establishment of a strong and reliable hydrogen fuel supply chain, from production and distribution, to storage and finally the technology to dispense the hydrogen into the vehicle. This paper describes how the industrial gas industry and, in particular, Air Products and Carburos Metalicos (Spanish subsidiary of Air Products), is approaching the new market for hydrogen as an energy carrier and vehicle fuel. Through participations in projects aiming to create enough knowledge and an early infrastructure build-up, like The Hercules Project (a project carried out in collaboration with eight partners), we contribute to the hydrogen economy becoming a reality for the next generation. (author)

  12. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. Nuclear generated hydrogen has important potential advantages over other sources that will be considered for a growing hydrogen share in a future world energy economy. Still, there are technical uncertainties in nuclear hydrogen processes that need to be addressed through a vigorous research and development effort. Safety issues as well as hydrogen storage and distribution are important areas of research to be undertaken to support a successful hydrogen economy in the future. The hydrogen economy is gaining higher visibility and stronger political support in several parts of the

  13. Future Economy and Touristic Entrepreneurship

    Directory of Open Access Journals (Sweden)

    Viorica Jelev

    2016-09-01

    Full Text Available Specialists claim that Eco-Bio-economy or social economy is the economy of future, in the service of human life by the rational use of environmental resources. The concept brings together in an integrated manner, according to the researchers, economy, ecology, biodiversity, biotechnologies and focuses on integrated sustainable development of the world. The new social economy, together with the corporate social responsibility joins a new multipolar world to a healthy environment by creative and innovative concepts that will ensure the sustainability of living in a sustainable manner. Doctors have added to thisEco-Bio-Economy concept a new one called One Health - a new integrated approach for human, animals and environment health state to that they should emphasize the importance of human behavior upon the planet biodiversity. Economer agents have mostly understood the importance of alarm signals drawn up by researchers on the destruction of the resources of the planet and adapted their business sites to the requirements of the green economy. A responsible business is also ecotourism that promotes a favourable travel for the surrounding environment. It requires accommodation on farms, in peasant houses, small rural hotels. The educational environment contributes to the trend planetary tourism, with the formation of new specialists with new knowledge, behaviors and consumers use formation of new characters, sensitive to environmental issues. This educational model is also promoted by Spiru Haret University, by creating the Master degree in tourism but also in environmental protection.

  14. Hydrogen influence on metals behaviour

    International Nuclear Information System (INIS)

    Tison, P.

    1984-01-01

    Hydrogen isotopes are used in order to investigate the influence of natural oxides and trapping on the permeability of low alloys steels, and martensitic, ferritic, austenitic stainless steels. The permeability of superficial oxides is investigated by reducing and reoxidising the upstream and downstream surfaces (gas ingoing and outgoing faces). The simultaneous or successive use of hydrogen and deuterium enables a direct demonstration of trapping during permeation measurements and a study of the interactions between the diffusing gas and hydrogen absorbed during steel making and processing [fr

  15. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  16. FROM WAR ECONOMIES TO PEACE ECONOMIES IN AFRICA

    African Journals Online (AJOL)

    Abel

    temporary 'interruption' to an ongoing process of development”.4 The second ... indication of the changing nature of world political and economic trends .... (FDI), where war economies cannot, at least not in a positive or legal fashion.24 The.

  17. Perspectives on Eco Economics. Circular Economy and Smart Economy

    Directory of Open Access Journals (Sweden)

    Cristina Balaceanu

    2017-12-01

    Full Text Available The implementation of sustainable development principles in contemporary economic thinking has generated the conceptual remodeling that expresses the new mechanisms of the economy. Thus, the concept of circular economy meet the theoretical representation of an economic system oriented towards the re-use of waste as raw materials and limiting the production of waste that cannot come back into the economic circuit. Circular economy is one that involves even its concept of operation, recovery and regeneration, as much as possible of resources, aiming to preserve, at the highest level, the value and usefulness of products, components and raw materials, distinguishing between technical and biological cycles. In this way, we can find solutions for two major issues affecting today's economy: the limited nature of resources and the pollution generated by the waste resulting from economic activities.

  18. Why the New Economy is a Learning Economy

    DEFF Research Database (Denmark)

    Lundvall, Bengt-Åke

    In this paper it is shown that the intense focus on the new economy reflected real change as well as 'hype?. The basic reason why new economy-growth could not be seen as sustainable is that introducing advanced technologies can only take place successfully when it is accompanied by organizational...... change and competence-building among employees. Any strategy that gives technology an independent role as problem-solver is doomed to fail. Danish data of a unique character are used to demonstrate that the key to economic performance is to promote learning at different levels of the economy....... In the conclusion it is argued that there is a need for a new type of knowledge and learning oriented Keynesianism in order to get close to the kind of growth rates characterizing the high days of the new economy adventure in the US....

  19. Energy in tension between economy and ecology

    International Nuclear Information System (INIS)

    Goergmaier, D.

    1982-01-01

    It is necessary to take all measures in order to make the application of energy harmless and to prevent harmful influences on our environment and ourselves. Only if we use the chances of new technologies for improving the application of energy and for efficient utilisation of energy, but also for improving the quality of environment and if we succeed in reducing unreasonable fears among the citizens we will be able to solve the future problems of energy and environment. Only then we will succeed in making decision which consider ecology as well as economy. Resources and atmosphere are not preserved by waiving technological progress, but by making use of technological developments and increasing productivity. In doing so the industrial society will be able to find the way into the future between the threatening ecological catastrophe and a social disaster. (orig./HSCH) [de

  20. Knowledge for a sustainable economy. Knowledge questions around the Dutch Memorandum on Environment and Economy ('Nota Milieu en Economie'); Kennis voor een duurzame economie. Kennisvragen rond de Nota Milieu en Economie

    Energy Technology Data Exchange (ETDEWEB)

    Dieleman, J.P.C.; Hafkamp, W.A. [Erasmus Studiecentrum voor Milieukunde, Erasmus Universiteit Rotterdam, Rotterdam (Netherlands)

    1999-05-19

    June 18, 1997, the Dutch government presented the Memorandum Environment and Economy with the aim to contribute to integration of environment and economy and to stimulation the realization of a sustainable economy. Next to a vast overview of actions, ideas, perspectives, staring points, challenges and dilemmas to take into account when forming a sustainable economy, it is indicated in that Memorandum that there is a need for research and knowledge to compile relevant data and insight to support decision making processes. The aim of this report is to develop a framework in which knowledge questions can be generated. The questions that fall outside the framework of the Memorandum concern needs, values and images and are formulated in four groups: (1) what is the role of materialism and stress in processes of conventional economic growth?; (2) What is the importance of reduction of consumption ('consuminderen') and slowing down ('onthaasting' or dehasting) to realize a process of sustainable economic development; (3) which images form the basis of the present process of economic development, where do they come from and how do they change over time; and (4) which images of progression give direction to a sustainable economic development and how do they exist? The questions that follow the Memorandum concern decoupling (of environment and economy), sustainable consumption, knowledge economy, institutions and a process of change. Central in the framework of knowledge questions are questions, related to perspectives and actions, as formulated in the Memorandum for different sectors in the Dutch society: industry and services; agriculture and rural areas; and traffic, transport and infrastructure.

  1. Development of Premacy Hydrogen RE Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Wakayama, N. [Mazda Motor Corporation, Hiroshima (Japan)

    2010-07-01

    Hydrogen powered ICE (internal combustion engine) vehicles can play an important role as an automotive power source in the future, because of its higher reliability and cost performance than those of fuel cell vehicles. Combined with hydrogen, Mazda's unique rotary engine (RE) has merits such as a prevention of hydrogen pre-ignition. Mazda has been developing hydrogen vehicles with the hydrogen RE from the early 1990s. Premacy (Mazda5) Hydrogen RE Hybrid was developed and launched in 2009, following RX-8 Hydrogen RE delivered in 2006. A series hybrid system was adopted in Premacy Hydrogen RE Hybrid. A traction motor switches its windings while the vehicle is moving. This switching technology allows the motor to be small and high-efficient. The lithium-ion high voltage battery, which has excellent input-output characteristics, was installed. These features extend the hydrogen fuel driving range to 200 km and obtain excellent acceleration performance. The hydrogen RE can be also operated by gasoline (Dual Fuel System). The additional gasoline operation makes hydrogen vehicles possible to drive in non-hydrogen station area. With approval from the Japanese Ministry of Land Infrastructure and Transport, Mazda Premacy Hydrogen RE Hybrid was delivered successfully to the Japanese market in the form of leasing. (orig.)

  2. Experiences of Emerging Economy Firms

    DEFF Research Database (Denmark)

    Experiences of Emerging Economy Firms investigates the different elements of the experiences of emerging economy firms and sheds essential light on a large variety of aspects associated with their functioning in both home and host contexts. For example, firms must be able to overcome the liability...... of foreign and emerging issues when they expand their activities in various contexts, enter, exit, and re-enter overseas markets; they have to overcome institutional barriers, adapt the cultural challenges in foreign markets, undergo the impact of large multinational firms from developed economies...

  3. Secondary resources and recycling in developing economies.

    Science.gov (United States)

    Raghupathy, Lakshmi; Chaturvedi, Ashish

    2013-09-01

    Recycling of metals extends the efficient use of minerals and metals, reduces pressure on environment and results in major energy savings in comparison to primary production. In developing economies recycling had been an integral part of industrial activity and has become a major concern due to the handling of potentially hazardous material without any regard to the occupational health and safety (OH&S) needs. With rising awareness and interest from policy makers, the recycling scenario is changing and the large scale enterprises are entering the recycling sector. There is widespread expectation that these enterprises would use the Best Available Technologies (BAT) leading to better environment management and enhanced resource recovery. The major challenge is to enhance and integrate the activities of other stakeholders in the value chain to make recycling an economically viable and profitable enterprise. This paper is an attempt to propose a sustainable model for recycling in the developing economies through integration of the informal and formal sectors. The main objective is to augment the existing practices using a scientific approach and providing better technology without causing an economic imbalance to the present practices. In this paper studies on lead acid batteries and e-waste recycling in India are presented to evolve a model for "green economy". Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Digitalizing the Circular Economy

    Science.gov (United States)

    Reuter, Markus A.

    2016-12-01

    Metallurgy is a key enabler of a circular economy (CE), its digitalization is the metallurgical Internet of Things (m-IoT). In short: Metallurgy is at the heart of a CE, as metals all have strong intrinsic recycling potentials. Process metallurgy, as a key enabler for a CE, will help much to deliver its goals. The first-principles models of process engineering help quantify the resource efficiency (RE) of the CE system, connecting all stakeholders via digitalization. This provides well-argued and first-principles environmental information to empower a tax paying consumer society, policy, legislators, and environmentalists. It provides the details of capital expenditure and operational expenditure estimates. Through this path, the opportunities and limits of a CE, recycling, and its technology can be estimated. The true boundaries of sustainability can be determined in addition to the techno-economic evaluation of RE. The integration of metallurgical reactor technology and systems digitally, not only on one site but linking different sites globally via hardware, is the basis for describing CE systems as dynamic feedback control loops, i.e., the m-IoT. It is the linkage of the global carrier metallurgical processing system infrastructure that maximizes the recovery of all minor and technology elements in its associated refining metallurgical infrastructure. This will be illustrated through the following: (1) System optimization models for multimetal metallurgical processing. These map large-scale m-IoT systems linked to computer-aided design tools of the original equipment manufacturers and then establish a recycling index through the quantification of RE. (2) Reactor optimization and industrial system solutions to realize the "CE (within a) Corporation—CEC," realizing the CE of society. (3) Real-time measurement of ore and scrap properties in intelligent plant structures, linked to the modeling, simulation, and optimization of industrial extractive process

  5. CURRENT TRENDS IN THE KNOWLEDGE ECONOMY

    Directory of Open Access Journals (Sweden)

    Ciprian Ionel HRETCANU

    2015-07-01

    Full Text Available In this paper we discuss various aspects of the current economy known as the knowledge economy. Also we will review two indicators of this new economy, because these indicators presents a general plan on access, use and degree of diffusion of knowledge. Then, based on these indicators and taking into account other aspects, we outline the structure relations between "new economy" and "digital economy". Finally we present the main types of business existing in the digital economy.

  6. Metastable hydrogen

    International Nuclear Information System (INIS)

    Dose, V.

    1982-01-01

    This paper deals with the basic physical properties of the metastable 2 2 sub(1/2) state of atomic hydrogen. Applications relying on its special properties, including measurement of the Lamb shift, production of spin-polarized protons and the measurement of molecular electric moments, are discussed. (author)

  7. Fuel Economy Label and CAFE Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Engine and Vehicle Compliance Certification and Fuel Economy Inventory contains measured emissions and fuel economy compliance information for light duty...

  8. Competitiveness in tourism economies of the APEC

    Directory of Open Access Journals (Sweden)

    Reyna María Ibáñez Pérez

    2015-08-01

    Full Text Available It is estimated that by 2030 the influx of tourists worldwide scope 1. 7 billion people. For such figures become a reality, timely in formation that can be taken as a reference for the generation of strategies aimed at harnessing the tourism potential of the various destinations in the world is required, plus a coordinated work between different economies, blocks and organizations. Here, in this article, an overview of the situation and development of tourism competitiveness of nations that make up the Forum Asia Pacific Economic Cooperation (APEC is provided. The methodology consisted of review of specialized search and sta tistical information influx, income and tourism competitiveness globally and literature APEC member country. The main results indicate that globally between 2010 and 2013, APEC countries experienced an increase in tourism revenues of 25%, a figure that exceeds global trends. In 2013, the level of tourism competitiveness presented by APEC, ranged between 6 and 82 position globally and only 53% of the 19 APEC economies that were evaluated by the World Economic Forum (WEF, improved their level of competitiveness. In relation to the regulatory framework linked to tourism, nations like Peru, Brunei and Russia reached the lowest ratings of the block thus have enormous work to do to improve your score in this category. In business environment and infrastructure, highlighted America. While in human and cultural resources, proved to be the issue in which APEC economies outperformed. Finally, results for APEC economies, evidence that critical areas are those concerning regulation and policies; and particularly sustainability issue, which can become a bottleneck in terms of competitiveness in the area of APEC therefore must strengthen and design better strategies for joint efforts in relation to such matters.

  9. Tourism, the Future of Economy in Albania

    Directory of Open Access Journals (Sweden)

    Arjana Kadiu

    2016-03-01

    Full Text Available Tourism is one of the main pillars of economy for many countries in the world. It influences the economy and offers more employment possibilities every year. Mediterranean countries have a favorable, geographical position and climate to develop tourism. Most of these countries, have obtained higher incomes from this industry, and as a result, more prosperity and economic development. Today, about 30 % of the world’s tourists spend their vacations in the Mediterranean Region. Albania is one of these countries and it has great possibilities for the future.The nature of Albania, it’s geographical position and its panorama, the climatic and physical diversity of its territory, represent some of its rich resources and strengthness. Previously, Albania’s economy depended in agriculture and small industries. After the 90-s, when many citizens left the country, the situation changed and even that source of income became inconsiderable. Heavy or textile industry, were hardly developed. Tourism was hardly developed too. Only few investments were made in this sector. In October 2012, EU Commission recommended Albania to be granted the EU candidate status. Therefore, Albania’s economy has to be developed according to EU standards. In this paper we would like to assess, which may be some important and effective innovative management strategies for Albania’s tourism. What are some of the steps to follow in this direction? The article aims to make a comparison with Greece and Montenegro, as reference points, in order to understand these countries’ touristic strategies and try to adapt some of them or think about new effective ones. It aims to provide a profile that shows; strengths, weaknesses, opportunities and threats. The study will be based in official statistics and scientific literature. The study concludes that the economic benefits of tourism are considerable, immediate and there are many new ways to activate the natural sources of Albania.

  10. Handbook on the Experience Economy

    DEFF Research Database (Denmark)

    This illuminating Handbook presents the state-of-the-art in the scientific field of experience economy studies. It offers a rich and varied collection of contributions that discuss different issues of crucial importance for our understanding of the experience economy. Each chapter reflects diverse...... an insight into how receivers react to experiential elements of experience economy studies. An innovative presentation of experience economics, this is a remarkable collection of new theory and analyses. This book will prove an invaluable resource to researchers and students in management, marketing...... scientific viewpoints from disciplines including management, mainstream economics and sociology to provide a comprehensive overview. The Handbook is divided into three subsections to explore progression in the scientific field of experience economy studies. The first section focuses on fundamental debates...

  11. Iraq's Economy: Past, Present, Future

    National Research Council Canada - National Science Library

    Sanford, Jonathan E

    2003-01-01

    .... Iraq's industrial sector was created, in large part, as a result of government efforts to diversify the economy through economic development projects using the proceeds from Iraq's oil wealth and borrowed funds...

  12. Inefficient equilibria in transition economy

    Directory of Open Access Journals (Sweden)

    Sergei Guriev

    1999-01-01

    Full Text Available The paper studies a general equilibrium in an economy where all market participants face a bid-ask spread. The spread may be caused by indirect business taxes, middlemen rent-seeking, delays in payments or liquidity constraints or price uncertainty. Wherever it comes from the spread causes inefficiency of the market equilibrium. We discuss some institutions that can decrease the inefficiency. One is second currency (barter exchange in the inter-firm transactions. It is shown that the general equilibrium in an economy with second currency is effective though is still different from Arrow–Debreu equilibrium. Another solution can be introduction of mutual trade credit. In the economy with trade credit there are multiple equilibria that are more efficient than original bid-ask spread but still not as efficient as Arrow–Debreu one, too. The implications for firms' integration and applicability to Russian economy are discussed.

  13. Iraq's Economy: Past, Present, Future

    National Research Council Canada - National Science Library

    Sanford, Jonathan E

    2003-01-01

    .... This pattern was most pronounced during the recent regime of Saddam Hussein, which was at root a centrally-directed command economy with some trappings of market economics and crony capitalism...

  14. Industrial implications of hydrogen

    International Nuclear Information System (INIS)

    Pressouyre, G.M.

    1982-01-01

    Two major industrial implications of hydrogen are examined: problems related to the effect of hydrogen on materials properties (hydrogen embrittlement), and problems related to the use and production of hydrogen as a future energy vector [fr

  15. The Underground Economy in Romania

    Directory of Open Access Journals (Sweden)

    Cleopatra Sendroiu

    2006-07-01

    Full Text Available Underground economic activities exist in most countries around the world, and they usually have the same causes: inadequate tax systems, excessive state interference in the economy and the lack of coordination in establishing economic policies. Through this paper, we aim to offer certain recommendations, which, in our opinion, would lead to solving the issue of inadequate allocation of resources and would also contribute to restoration of the worldwide economy.

  16. Action plan for coordinated deployment of hydrogen fuel cell vehicles and hydrogen infrastructure

    International Nuclear Information System (INIS)

    Elrick, W.

    2009-01-01

    This paper discussed a program designed to provide hydrogen vehicles and accessible hydrogen stations for a pre-commercial hydrogen economy in California. The rollout will coordinate the placement of stations in areas that meet the needs of drivers in order to ensure the transition to a competitive marketplace. An action plan has been developed that focuses on the following 3 specific steps: (1) the validation of early passenger vehicle markets, (2) expanded transit bus use, and (2) the establishment of regulations and standards. Specific tasks related to the steps were discussed, as well as potential barriers to the development of a hydrogen infrastructure in California. Methods of ensuring coordinated actions with the fuel cell and hydrogen industries were also reviewed

  17. Social Economy: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Ioan HOSU

    2012-06-01

    Full Text Available The present article addresses a topic of interest for both the public sector and the nonprofit sector, namely that of the innovative practices of social economy. Diverse practices and models of social economy are increasingly present in the Romanian community, this being the reason why it is important to study the major coordinates of social economy and social entrepreneurship identified by means of an empirical research done in Romania. Social economy is considered one of the most important innovative strategy approaches as this sector may contribute to some efforts done for the elimination of poverty and the re-launching of local economies. The integration of the identified elements in regional programs and public policies is the starting point of the strategic approaches regarding reform in public administration. Social economy can be an example of joint action for public and private organizations and institutions interested in carrying out community projects based on inclusive, participative and innovative forms of community development.

  18. Efficient production and economics of the clean fuel hydrogen. Paper no. IGEC-1-Keynote-Elnashaie

    International Nuclear Information System (INIS)

    Elnashaie, S.

    2005-01-01

    This paper/plenary lecture to this green energy conference briefly discusses six main issues: 1) The future of hydrogen economy; 2) Thermo-chemistry of hydrogen production for different techniques of autothermic operation using different feedstocks; 3) Improvement of the hydrogen yield and minimization of reformer size through combining fast fluidization with hydrogen and oxygen membranes together with CO 2 sequestration; 4) Efficient production of hydrogen using novel Autothermal Circulating Fluidized Bed Membrane Reformer (ACFBMR); 5) Economics of hydrogen production; and, 6) Novel gasification process for hydrogen production from biomass. It is shown that hydrogen economy is not a Myth as some people advocate, and that with well-directed research it will represent a bright future for humanity utilizing such a clean, everlasting fuel, which is also free of deadly conflicts for the control of energy sources. It is shown that autothermic production of hydrogen using novel reformers configurations and wide range of feedstocks is a very promising route towards achieving a successful hydrogen economy. A novel process for the production of hydrogen from different renewable biomass sources is presented and discussed. The process combines the principles of pyrolysis with the simultaneous use of catalyst, membranes and CO 2 sequestration to produce pure hydrogen directly from the unit. Some of the novel processes presented are essential components of modern bio-refineries. (author)

  19. Hydrogen is not an utopia for Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Celiktas, Melih Soner [EBILTEM, Ege University Science and Technology Research Center, 35100 Izmir (Turkey); Kocar, Gunnur (Solar Energy Institute of Ege University, Izmir Turkey)

    2010-01-15

    The aim of this study was to explore how the future of technological developments in hydrogen will be shaped in Turkey by using a two-round Delphi method undertaken to determine and measure the expectations of the sector representatives through online surveys where a total of 60 experts responded from 18 different locations. The article discusses not only the expert sights on hydrogen technologies but also all bibliometrical approaches. The results showed that the hydrogen economy will enhance innovations as well as economic prosperities with the support of appropriate policies. Formulating such policies requires a timely and detailed understanding of the latest R and D trends and developments in science and technology policy in all developed countries, and the comprehensive analysis of these developments to enable accurate predictions of future science and technology trends. Therefore, we hope that this study can shed a light on the future use of hydrogen technologies, especially for policy makers. (author)

  20. MAHRES: Spanish hydrogen geography

    International Nuclear Information System (INIS)

    Bordallo, C.R.; Moreno, E.; Brey, R.; Guerrero, F.M.; Carazo, A.F.

    2004-01-01

    Nowadays, it is common to hear about the hydrogen potential as an energetic vector or the renewable character of fuel cells; thus, the conjunction between both of them as a way to produce electricity, decreasing pollutant emission, is often discussed. However, that renewable character is only guaranteed in the case that the hydrogen used comes from some renewable energy source. Because of that, and due to the Spanish great potential related to natural usable resources like water, sun, wind or biomass, for instance, it seems attractive to make a meticulous study (supported by the statistical Multicriteria Decision Making Method) in order to quantify that potential and place it in defined geographical areas. Moreover, the growth of the electricity demand is always significant, and in this way the energy consumption in Spain is estimated to grow up to 3'4 % above the average during the next ten years. On the other hand, it must be taken into account that the contribution of the oil production will not be enough in the future. The study being carried out will try to elaborate 'The Spanish Renewable Hydrogen Map', that would contemplate, not only the current situation but also predictable scenarios and their implementation. (author)

  1. Estimating size and scope economies in the Portuguese water sector using the Bayesian stochastic frontier analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Pedro, E-mail: pedrocarv@coc.ufrj.br [Computational Modelling in Engineering and Geophysics Laboratory (LAMEMO), Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro, Av. Pedro Calmon - Ilha do Fundão, 21941-596 Rio de Janeiro (Brazil); Center for Urban and Regional Systems (CESUR), CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Marques, Rui Cunha, E-mail: pedro.c.carvalho@tecnico.ulisboa.pt [Center for Urban and Regional Systems (CESUR), CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2016-02-15

    This study aims to search for economies of size and scope in the Portuguese water sector applying Bayesian and classical statistics to make inference in stochastic frontier analysis (SFA). This study proves the usefulness and advantages of the application of Bayesian statistics for making inference in SFA over traditional SFA which just uses classical statistics. The resulting Bayesian methods allow overcoming some problems that arise in the application of the traditional SFA, such as the bias in small samples and skewness of residuals. In the present case study of the water sector in Portugal, these Bayesian methods provide more plausible and acceptable results. Based on the results obtained we found that there are important economies of output density, economies of size, economies of vertical integration and economies of scope in the Portuguese water sector, pointing out to the huge advantages in undertaking mergers by joining the retail and wholesale components and by joining the drinking water and wastewater services. - Highlights: • This study aims to search for economies of size and scope in the water sector; • The usefulness of the application of Bayesian methods is highlighted; • Important economies of output density, economies of size, economies of vertical integration and economies of scope are found.

  2. Estimating size and scope economies in the Portuguese water sector using the Bayesian stochastic frontier analysis

    International Nuclear Information System (INIS)

    Carvalho, Pedro; Marques, Rui Cunha

    2016-01-01

    This study aims to search for economies of size and scope in the Portuguese water sector applying Bayesian and classical statistics to make inference in stochastic frontier analysis (SFA). This study proves the usefulness and advantages of the application of Bayesian statistics for making inference in SFA over traditional SFA which just uses classical statistics. The resulting Bayesian methods allow overcoming some problems that arise in the application of the traditional SFA, such as the bias in small samples and skewness of residuals. In the present case study of the water sector in Portugal, these Bayesian methods provide more plausible and acceptable results. Based on the results obtained we found that there are important economies of output density, economies of size, economies of vertical integration and economies of scope in the Portuguese water sector, pointing out to the huge advantages in undertaking mergers by joining the retail and wholesale components and by joining the drinking water and wastewater services. - Highlights: • This study aims to search for economies of size and scope in the water sector; • The usefulness of the application of Bayesian methods is highlighted; • Important economies of output density, economies of size, economies of vertical integration and economies of scope are found.

  3. Production of hydrogen from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lohmueller, R

    1984-03-01

    Hydrocarbons are the preferred starting materials for the industrial production of hydrogen. Most hydrogen is produced by steam reforming of light hydrocarbons. Partial oxidation of heavy oil and residue is used for the production of H/sub 2/ and synthesis gas in large plants. In both cases gas purification was improved. Hydrogen-rich gases like coke oven gas, refinery-offgas, and offgases from the chemical and petrochemical industry have high potential for becoming a major source of hydrogen. Processes for recovering H/sub 2/ (and by-products) are condensation and rectification at low temperatures and, most attractive and versatile for the production of very pure H/sub 2/, adsorption (PSA). The environmental impact of H/sub 2/ production lies mainly in the emission of CO/sub 2/ and heat. Other forms of pollution can be considerably reduced by conventional methods. The economy of H/sub 2/ production depends essentially on price and availability of the raw materials.

  4. Clustering economies based on multiple criteria decision making techniques

    Directory of Open Access Journals (Sweden)

    Mansour Momeni

    2011-10-01

    Full Text Available One of the primary concerns on many countries is to determine different important factors affecting economic growth. In this paper, we study some factors such as unemployment rate, inflation ratio, population growth, average annual income, etc to cluster different countries. The proposed model of this paper uses analytical hierarchy process (AHP to prioritize the criteria and then uses a K-mean technique to cluster 59 countries based on the ranked criteria into four groups. The first group includes countries with high standards such as Germany and Japan. In the second cluster, there are some developing countries with relatively good economic growth such as Saudi Arabia and Iran. The third cluster belongs to countries with faster rates of growth compared with the countries located in the second group such as China, India and Mexico. Finally, the fourth cluster includes countries with relatively very low rates of growth such as Jordan, Mali, Niger, etc.

  5. Domesticizing Financial Economies

    DEFF Research Database (Denmark)

    Ossandón, José; Deville, Joe; Lazarus, Jeanne

    , in order to illustrate what we mean by “domesticizing finance”, we seek to bring together diverse and often disconnected recent literature from research conducted across a wide range of national settings and from different disciplinary environments. One goal of this paper, therefore, is to help create....... The angle suggested here is not only open to the mundane, practices and materialities of finance, but also to learning from and connecting more or less distinct layers of finance that tend to remain analytically separated. Third, we suggest that the type of approach proposed here makes it possible to pose...

  6. A new type of hydrogen generator-HHEG (high-compressed hydrogen energy generator)

    International Nuclear Information System (INIS)

    Harada, H.; Tojima, K.; Takeda, M.; Nakazawa, T.

    2004-01-01

    'Full text:' We have developed a new type of hydrogen generator named HHEG (High-compressed Hydrogen Energy Generator). HHEG can produce 35 MPa high-compressed hydrogen for fuel cell vehicle without any mechanical compressor. HHEG is a kind of PEM(proton exchange membrane)electrolysis. It was well known that compressed hydrogen could be generated by water electrolysis. However, the conventional electrolysis could not generate 35 MPa or higher pressure that is required for fuel cell vehicle, because electrolysis cell stack is destroyed in such high pressure. In HHEG, the cell stack is put in high-pressure vessel and the pressure difference of oxygen and hydrogen that is generated by the cell stack is always kept at nearly zero by an automatic compensator invented by Mitsubishi Corporation. The cell stack of HHEG is not so special one, but it is not broken under such high pressure, because the automatic compensator always offsets the force acting on the cell stack. Hydrogen for fuel cell vehicle must be produce by no emission energy such as solar and atomic power. These energies are available as electricity. So, water electrolysis is the only way of producing hydrogen fuel. Hydrogen fuel is also 35 MPa high-compressed hydrogen and will become 70 MPa in near future. But conventional mechanical compressor is not useful for such high pressure hydrogen fuel, because of the short lifetime and high power consumption. Construction of hydrogen station network is indispensable in order to come into wide use of fuel cell vehicles. For such network contraction, an on-site type hydrogen generator is required. HHEG can satisfy above these requirements. So we can conclude that HHEG is the only way of realizing the hydrogen economy. (author)

  7. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    D Cazorla Amoros; D Lozano Castello; F Suarez Garcia; M Jorda Beneytoa; A Linares Solano

    2005-01-01

    Full text of publication follows: From an economic point of view, the use of hydrogen could revolutionize energy and transportation markets, what generates a great interest towards this fuel. This interest has led to the so-called 'hydrogen economy'. However, the main drawback for the use of hydrogen as transportation fuel or in power generation is the storage of this gas to reach a sufficiently high energy density, which could fit to the goals of the DOE hydrogen plan to automotive fuel cell systems i.e. 62 kg H 2 /m 3 ). [1] A review of both experimental and theoretical studies published on the field of hydrogen storage on carbon materials (nano-tubes, nano-fibers and porous carbons) shows a large dispersion in hydrogen storage values. Although some values have exceeded by far the goals of the DOE [2], other authors assure that it is not feasible the use of carbonaceous materials as hydrogen storage systems [3]. The first objective of this presentation is to analyze some possible reasons of the large values dispersion. The discrepancy among the different theoretical studies can be due to non-realist models or to unsuitable approaches. High results dispersion and low reproducibility of experimental measurements are mostly consequence of experimental errors (as for example, the use of small amount of sample) and/or to the use of non-purified materials. In fact, the main disadvantage of the use of novel carbon materials, such as nano-tubes and nano-fibers, is the unavailability of large amounts of those materials with sufficient purity in order to get both feasible measurements in the laboratory, an their subsequent use in large scale. In addition to these possible reasons of errors, for a better understanding of the large results dispersion, the different mechanism of hydrogen storage, such as hydride formation, hydrogen transfer and hydrogen adsorption will be also reviewed in this presentation. Differently to nano-tubes and nano-fibers, activated carbons are

  8. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    Cazorla-Amoros, D.; Lozano-Castello, D.; Suarez-Garcia, F.; Jorda-Beneyto, M.; Linares-Solano, A.

    2005-01-01

    Complete text of publication follows: From an economic point of view, the use of hydrogen could revolutionize energy and transportation markets, what generates a great interest towards this fuel. This interest has led to the so-called 'hydrogen economy'. However, the main drawback for the use of hydrogen as transportation fuel or in power generation is the storage of this gas to reach a sufficiently high energy density, which could fit to the goals of the DOE hydrogen plan to automotive fuel cell systems i.e. 62 kg H 2 /m 3 ) [1]. A review of both experimental and theoretical studies published on the field of hydrogen storage on carbon materials (nano-tubes, nano-fibers and porous cartons) shows a large dispersion in hydrogen storage values. Although some values have exceeded by far the goals of the DOE [2], other authors assure that it is not feasible the use of carbonaceous materials as hydrogen storage systems [3]. The first objective of this presentation is to analyze some possible reasons of the large values dispersion. The discrepancy among the different theoretical studies can be due to non-realist models or to unsuitable approaches. High results dispersion and low reproducibility of experimental measurements are mostly consequence of experimental errors (as for example, the use of small amount of sample) and/or to the use of non-purified materials. In fact, the main disadvantage of the use of novel carbon materials, such as nano-tubes and nano-fibers, is the unavailability of large amounts of those materials with sufficient purity in order to get both feasible measurements in the laboratory, an their subsequent use in large scale. In addition to these possible reasons of errors, for a better understanding of the large results dispersion, the different mechanism of hydrogen storage, such as hydride formation, hydrogen transfer and hydrogen adsorption will be also reviewed in this presentation. Differently to nano-tubes and nano-fibers, activated carbons are

  9. [Environmental governance and the green economy].

    Science.gov (United States)

    Jacobi, Pedro Roberto; Sinisgalli, Paulo Antonio de Almeida

    2012-06-01

    The Rio+20 Conference will mobilize the global community in 2012 to participate in a challenging debate on the global environmental reality and the existing modus operandi with respect to the broad and generic topics of development and the environment. One of the core themes of this meeting is the transition to a green economy in the context of sustainable development and the eradication of poverty. The issue of Global Environmental Governance will top the agenda of the Rio +20 discussions, with a view to promoting and accelerating the transition to sustainable societies. It presents, often in a controversial way, the creation of conditions to define new institutional spaces and shared decision-making processes. Before embarking on the discussion about what king of sustainability should be behind the Green Economy, and its applicability, the scope of this article is to ask readers to reflect on what should be the priority in the discussion on environmental governance This should be explained to the extent that there is a need to change the existing mechanisms of profoundly unequal exploitation of resources, which blocks progress in decision-making processes, as decisions of the few create a perverse logic of appropriation of natural resources and the non-resolution of social exclusion.

  10. Advances in hydrogen production by thermochemical water decomposition: A review

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2010-01-01

    Hydrogen demand as an energy currency is anticipated to rise significantly in the future, with the emergence of a hydrogen economy. Hydrogen production is a key component of a hydrogen economy. Several production processes are commercially available, while others are under development including thermochemical water decomposition, which has numerous advantages over other hydrogen production processes. Recent advances in hydrogen production by thermochemical water decomposition are reviewed here. Hydrogen production from non-fossil energy sources such as nuclear and solar is emphasized, as are efforts to lower the temperatures required in thermochemical cycles so as to expand the range of potential heat supplies. Limiting efficiencies are explained and the need to apply exergy analysis is illustrated. The copper-chlorine thermochemical cycle is considered as a case study. It is concluded that developments of improved processes for hydrogen production via thermochemical water decomposition are likely to continue, thermochemical hydrogen production using such non-fossil energy will likely become commercial, and improved efficiencies are expected to be obtained with advanced methodologies like exergy analysis. Although numerous advances have been made on sulphur-iodine cycles, the copper-chlorine cycle has significant potential due to its requirement for process heat at lower temperatures than most other thermochemical processes.

  11. Which of the technologies for producing hydrogen is the most prospective in Korea?: Evaluating the competitive priority of those in near-, mid-, and long-term

    International Nuclear Information System (INIS)

    Chung, Yanghon; Hong, Sungjun; Kim, Jongwook

    2014-01-01

    In order to evaluate the alternative technologies for producing hydrogen in Korea stage by stage, we searched for impact factors, calculated the weights of them and evaluated the hydrogen production technologies in Korea using analytic hierarchy process (AHP) approach. The AHP is a useful method for resolving multi-criteria decision making problems. We investigated 4 criteria (technical characteristics, economic efficiency, marketability, internal capability) and 11 sub-criteria (scale, efficiency, key barriers, carbon dioxide reduction, current production cost, expected production cost in 2017, feed-stock, technical maturity, R and D competitive level, technology gap with competing agencies, and domestic infrastructure). And the alternatives are natural gas reforming technology, coal gasification technology, biomass gasification technology, water electrolysis technology, thermochemical production technology, photoelectrochemical hydrogen production technology, and biological hydrogen production technology. In order to maintain the objectivity of the analysis result and observe the difference among the groups, the questionnaire survey targets were divided into the R and D professional group and policy professional group. This result of study is expected to serve as important basic information in the establishment of a national R and D strategy to prepare for the imminent hydrogen economy era. - highlights: • We evaluated the alternatives for producing hydrogen in Korea using AHP approach in near-, mid-, and long-term. • The framework is consist of goal, 4 criteria, 11 sub-criteria, and 7 alternatives. • The questionnaire survey targets and results were divided into the R and D professional group and policy professional group

  12. Doing Business Economy Profile 2017 : Australia

    OpenAIRE

    World Bank Group

    2016-01-01

    This economy profile presents the Doing Business indicators for Australia. To allow useful comparison, it also provides data for other selected economies (comparator economies) for each indicator. Doing Business 2017 is the 14th in a series of annual reports investigating the regulations that enhance business activity and those that constrain it. Economies are ranked on their ease of doing...

  13. Competitiveness of chinese socialist market economy

    Directory of Open Access Journals (Sweden)

    Henry Ernesto Turner Barragán

    2015-08-01

    Full Text Available The article analyzes the dynamics held by the Chinese economy becomes, since it happened to be a communist to a capitalist economy and social market economy. Being in the latter, in which the country achieved high rates of economic growth, and improve their competitiveness pillars, generating higher growth prospects in the economy and the income of the society.

  14. Doing Business Economy Profile 2017 : Uruguay

    OpenAIRE

    World Bank Group

    2016-01-01

    This economy profile presents the Doing Business indicators for Uruguay. To allow useful comparison, it also provides data for other selected economies (comparator economies) for each indicator. Doing Business 2017 is the 14th in a series of annual reports investigating the regulations that enhance business activity and those that constrain it. Economies are ranked on their ease of doing b...

  15. CU-ICAR Hydrogen Infrastructure Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Robert Leitner; David Bodde; Dennis Wiese; John Skardon; Bethany Carter

    2011-09-28

    The goal of this project was to establish an innovation center to accelerate the transition to a 'hydrogen economy' an infrastructure of vehicles, fuel resources, and maintenance capabilities based on hydrogen as the primary energy carrier. The specific objectives of the proposed project were to: (a) define the essential attributes of the innovation center; (b) validate the concept with potential partners; (c) create an implementation plan; and (d) establish a pilot center and demonstrate its benefits via a series of small scale projects.

  16. Concepts for Large Scale Hydrogen Production

    OpenAIRE

    Jakobsen, Daniel; Åtland, Vegar

    2016-01-01

    The objective of this thesis is to perform a techno-economic analysis of large-scale, carbon-lean hydrogen production in Norway, in order to evaluate various production methods and estimate a breakeven price level. Norway possesses vast energy resources and the export of oil and gas is vital to the country s economy. The results of this thesis indicate that hydrogen represents a viable, carbon-lean opportunity to utilize these resources, which can prove key in the future of Norwegian energy e...

  17. 2010 Annual Progress Report: DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  18. Final Report: Metal Perhydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One Li

  19. The Economy of Experience for the Promotion of Hotel Products

    Directory of Open Access Journals (Sweden)

    Tatiana G. Zainullina

    2017-09-01

    Full Text Available In this work, an attempt is made to use the terminology and tools of the economy of experience as applied to the hotel product. The analysis of the concept of "economy of experience" is analyzed from the point of view of changing human preferences and the appearance of the so-called "market ofexperience". The postulate is advanced that in the modern economy the sale of any goods and services corresponds with the sale of the corresponding impressions from using them, therefore the most successful business projects are aimed not only at satisfying physiological needs, impressions. The object of exchange is not only goods and services, but also impressions, respectively, the emergence of a new exchange object calls for the development of technologies that make this object more attractive to the direct consumer and show the manufacturer what benefits it can receive from the production and sale of impressions. An attempt has been made to transfer the tools of the economy of impressions to the area of promotion of the hotel product. The hotel economy is a dynamically developing branch of the economy, its development is determined by global economic processes, cultural, historical, sport interactions both within the country and between countries. Along with tourism, the hotel industry is an integral part of the creative economy and the economy of experience, which is based on the desires and needs of a person in gaining new experience. Practice shows that the use of tools in the promotion of the hotel product that affect the receipt of new impressions, feelings and experiences creates a basis for attracting regular customers, on which 60% of the income of the hotel company depends.

  20. The new economy is stronger than you think.

    Science.gov (United States)

    Sahlman, W A

    1999-01-01

    Many policy makers at the Fed contend that the new economy is a fragile bubble--and that with the "irrational exuberance" of the capital markets, the sky is going to fall on the U.S. economy. That couldn't be further from the truth, according to William Sahlman. As long as the government doesn't interfere, he argues, the economy is sturdy, resilient, and raring to grow. The new economy is strong for several reasons. First, it is based on a business model that works. Any business system that relentlessly drives out inefficiency, forces intelligent business-process reengineering, and gives customers more of what they want will be sustainable. Second, it is built on America's admiration for entrepreneurs and its tolerance for failure, not to mention its easy access to capital. Third, the new economy is attracting the best and brightest minds in the country. And finally, says Sahlman, the new economy is strong because it is spreading. It may be primarily an American phenomenon now, but in a few short years it will start to show its effects everywhere, making the whole world a more productive place. Still, Sahlman believes, the road ahead is not without potholes and sharp curves. But that is what the new economy is all about, he maintains--companies attacking the status quo and entrenched players, companies experimenting to find new technologies that improve or replace earlier ones. Such activity presents no cause for alarm. The economic, social, and cultural factors undergirding the new economy are rock solid. It's simply a matter of letting them stand.

  1. Market Economy under Rapid Globalization and Rising Productivity

    OpenAIRE

    Konov, Joshua Ioji

    2012-01-01

    Market economy of enhancing business laws in contracting, bonding, insuring, legal corporate structures , e.g. will marginalize the economic agents and tools that make market competition unfair, empower small and medium businesses and investors, and boost business activities, fiscal strength, employment, and capital transmission. Keynesian capital infusion will extend its market effect in such higher security marketplace.

  2. The impact of Alzheimer's disease on the chinese economy

    DEFF Research Database (Denmark)

    Keogh-Brown, Marcus R; Jensen, Henning Tarp; Arrighi, H Michael

    2016-01-01

    BACKGROUND: Recent increases in life expectancy may greatly expand future Alzheimer's Disease (AD) burdens. China's demographic profile, aging workforce and predicted increasing burden of AD-related care make its economy vulnerable to AD impacts. Previous economic estimates of AD predominantly...

  3. Managing privacy, rights, and security in a digital economy

    NARCIS (Netherlands)

    Angelopoulos, Spyros; McAuley, Derek; Merali, Yasmin; Mortier, Richard; Price, Dominic

    2018-01-01

    We focus on the issues of managing Big Data within a Digital Economy, and address the asymmetrical distribution of power between the originators of data and the organizations that make use of that data. We propose a framework to overcome many of the challenges associated with storage, analysis, and

  4. Integrated marketing communications and their role in economy and education

    OpenAIRE

    Melnikova Nadezhda; Naumenko Tamara; Smakotina Natalia

    2016-01-01

    The article is devoted to the analysis of marketing, its role and significance in the modern education system and economy. The authors review the advantages of integrated marketing communications which include, apart from marketing, organizational culture, advertising, public relations (PR), branding, image making and other types of communication influencing the formation and functions of social processes and institutions, including the economic and education sphere.

  5. Financial accountability of public corporations in liberalized Economy

    African Journals Online (AJOL)

    For more than three decades since 1967 the role of public corporations in the Tanzania economy was dominant. However, their poor financial management and loss-making character could not be underestimated either, particularly by the taxpayer who was ultimately responsible for sustaining them. For instance, in the year ...

  6. Effect of quantum nuclear motion on hydrogen bonding

    Science.gov (United States)

    McKenzie, Ross H.; Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2014-05-01

    This work considers how the properties of hydrogen bonded complexes, X-H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 - 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X-H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.

  7. Effect of quantum nuclear motion on hydrogen bonding

    International Nuclear Information System (INIS)

    McKenzie, Ross H.; Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2014-01-01

    This work considers how the properties of hydrogen bonded complexes, X–H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O–H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 − 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X–H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends

  8. THE NEW ECONOMY AND THE ECONOMY OF TOURISM

    Directory of Open Access Journals (Sweden)

    MIRELA MAZILU

    2011-01-01

    Full Text Available Together with the Internet, e-business and the new economy era, in general, fundamental transformation of the social and economic structure take place. In parallel, the assaults on the standard economic science amplify, in the sense of some conceptual reformulations and of some reinterpretations of the economic phenomena and laws. Besides the classical factors of production, work and capital, information is added, either as a distinct factor or as a detached one of the two mentioned. Also, the empiric findings regarding the so-called tertiarisation of the economy or the increase of the share of the services sector in the total of the national economy, as well as the so-called intangible investments in the total of the investment funds, have lead to numerous attempts of redefining what we call today a "modern economy". Other factors with major influence, regarding the adjustment of the economic science to the new trends from the real economy, refer to the following: the liberalisation of the international exchanges and the globalisation; the growth of the importance of the so-called free time (including here the household activities and the ones unfolded in the interest of the community, entertainment, but also the time destined to the development of the degree of culture and education on one's own and the fluidisation of the limits of differentiation between this and the work activity in the formal sector as well as the informal one; the more rapid dynamic of the financial and banking markets than the so-called classic productive sector of the economy; the extension of the use of computers and of the means and techniques of communication, in the activity of the companies as well as in the households, and the impact on the structure of the time and the financial budget of the population etc. All these have an impact on the tourism unfolding.

  9. Sustainable degrowth through more amateur economy

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    2010-01-01

    (back) from the prof. economy to the amateur economy will be less productive than the prof. economy in terms of output per man hour, but often more 'productive' in generating satisfaction and happiness in the process. Such a shift can create more ultimate benefit (happiness), but less product output......By a simple descriptive model is illustrated how the role of labor input tothe economy will have to revised in a degrowth economy. A destinction is made btween the Professional (GDP) economy, driven by money, and the Amateur economy (voluntary) driven by love. Shifting some economic activities...

  10. Fuel economy of hybrid fuel-cell vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  11. Technology makes life better

    Institute of Scientific and Technical Information of China (English)

    李红

    2015-01-01

    There are many theories about the relationship between technology and society.With the development of world economy,technology has made great progress.However,many changes were taken place in our daily life,especially the appearance of computer.Sending emails,chatting with others online,search for information which is what we need to learn and many other demands in people’s daily life,computers make all of it into possibility.

  12. Model Year 2017 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  13. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  14. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  15. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  16. Model Year 2018 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-12-07

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  17. Working in the informal economy.

    Science.gov (United States)

    Kidder, T

    2000-07-01

    Informal ways of working are widespread and central to the economy and markets. This paper explores what informal economy is and how it could be more valuable for men and women. The informal economy is a mix of the following activities: 1) subsistence work which includes agriculture, marginal economic projects, and unpaid work in the home; 2) informal work which includes unregistered businesses, and illegal or criminal activities; 3) casual production, a sub-contracted or ¿off-the-books¿ work which deprives workers of the benefits tied to recognized employment; and 4) community work and barter. It is shown that more women, when compared to men, work and live on the border between the household and the market economy. Usually men do more technical or mechanized production while women tend to do activities within traditional women's roles. Men and women often have different understanding of what work is. Men consistently underestimate the women's contribution to the household income. To improve this critical issue of gender differences, rules, norms, and laws that cause problems must be identified, and then work can begin with both men and women to change laws and policies, as well as ideas and beliefs about women's contribution to the economy.

  18. The symbolic economy of drugs.

    Science.gov (United States)

    Lentacker, Antoine

    2016-02-01

    This essay reviews four recent studies representing a new direction in the history of pharmaceuticals and pharmaceutical science. To this end, it introduces the notion of a symbolic economy of drugs, defined as the production, circulation, and reception of signs that convey information about drugs and establish trust in them. Each of the studies under review focuses on one key signifier in this symbolic economy, namely the brand, the patent, the clinical trial, and the drug itself. Drawing on Pierre Bourdieu's theory of the economy of symbolic goods, I conceptualize these signifiers as symbolic assets, that is, as instruments of communication and credit, delivering knowledge, carrying value, and producing authority. The notion of a symbolic economy is offered with a threefold intention. First, I introduce it in order to highlight the implications of historical and anthropological work for a broader theory of the economy of drugs, thus suggesting a language for interdisciplinary conversations in the study of pharmaceuticals. Second, I deploy it in an attempt to emphasize the contributions of the recent scholarship on drugs to a critical understanding of our own contemporary ways of organizing access to drugs and information about drugs. Finally, I suggest ways in which it might be of use to scholars of other commodities and technologies.

  19. MEASURING THE ECONOMIC PERFORMANCE OF TRANSITION ECONOMIES : SOME LESSONS FROM CHINESE EXPERIENCE

    NARCIS (Netherlands)

    Maddison, Angus

    This article quantifies the comparative performance of China in several dimensions. Firstly, it shows that China's move from a command to a market economy was less abrupt and more successful than that of 29 other economies making a similar transition. Secondly, while official estimates show annual

  20. Traditional Learning Models, E-Government and E-Learning in the New Economy

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available In the new economy there are various forms of training for human resources. In this paper we are trying to make a parallel into new forms of training and traditional ones. We will discus about this in the new economy context.