WorldWideScience

Sample records for hydrogen density measurements

  1. Capacitive density measurement for supercritical hydrogen

    Science.gov (United States)

    Funke, Th; Haberstroh, Ch; Szoucsek, K.; Schott, S.; Kunze, K.

    2017-12-01

    A new approach for automotive hydrogen storage systems is the so-called cryo-compressed hydrogen storage (CcH2). It has a potential for increased energy densities and thus bigger hydrogen amounts onboard, which is the main attractiveness for car manufacturers such as BMW. This system has further advantages in terms of safety, refueling and cooling potential. The current filling level measurement by means of pressure and temperature measurement and subsequent density calculation faces challenges especially in terms of precision. A promising alternative is the capacitive gauge. This measuring principle can determine the filling level of the CcH2 tank with significantly smaller tolerances. The measuring principle is based on different dielectric constants of gaseous and liquid hydrogen. These differences are successfully leveraged in liquid hydrogen storage systems (LH2). The present theoretical analysis shows that the dielectric values of CcH2 in the relevant operating range are comparable to LH2, thus achieving similarly good accuracy. The present work discusses embodiments and implementations for such a sensor in the CcH2 tank.

  2. Silicon surface barrier detectors used for liquid hydrogen density measurement

    Science.gov (United States)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  3. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Science.gov (United States)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-01

    As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.

  4. Equation-of-state for fluids at high densities-hydrogen isotope measurements and thermodynamic derivations

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1977-01-01

    Hydrogen isotopes play an important role in energy technologies, in particular, the compression to high densities for initiation of controlled thermonuclear fusion energy. At high densities the properties of the compressed hydrogen isotopes depart drastically from ideal thermodynamic predictions. The measurement of accurate data including the author's own recent measurements of n-H 2 and n-D 2 in the range 75 to 300 K and 0.2 to 2.0 GPa (2 to 20 kbar) is reviewed. An equation-of-state of the Benedict type is fit to these data with a double-process least-squares computer program. The results are reviewed and compared with existing data and with a variety of theoretical work reported for fluid hydrogens. A new heuristic correlation is presented for simplicity in predicting volumes and sound velocity at high pressures. 9 figures, 1 table

  5. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, D.; Kurutz, U.; Fantz, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg (Germany)

    2015-04-08

    As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines

  6. High density hydrogen research

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1977-01-01

    The interest in the properties of very dense hydrogen is prompted by its abundance in Saturn and Jupiter and its importance in laser fusion studies. Furthermore, it has been proposed that the metallic form of hydrogen may be a superconductor at relatively high temperatures and/or exist in a metastable phase at ambient pressure. For ten years or more, laboratories have been developing the techniques to study hydrogen in the megabar region (1 megabar = 100 GPa). Three major approaches to study dense hydrogen experimentally have been used, static presses, shockwave compression, and magnetic compression. Static tchniques have crossed the megabar threshold in stiff materials but have not yet been convincingly successful in very compressible hydrogen. Single and double shockwave techniques have improved the precision of the pressure, volume, temperature Equation of State (EOS) of molecular hydrogen (deuterium) up to near 1 Mbar. Multiple shockwave and magnetic techniques have compressed hydrogen to several megabars and densities in the range of the metallic phase. The net result is that hydrogen becomes conducting at a pressure between 2 and 4 megabars. Hence, the possibility of making a significant amount of hydrogen into a metal in a static press remains a formidable challenge. The success of such experiments will hopefully answer the questions about hydrogen's metallic vs. conducting molecular phase, superconductivity, and metastability. 4 figures, 15 references

  7. Application of laser fluorescence spectroscopy by two-photon excitation into atomic hydrogen density measurement in reactive plasmas

    International Nuclear Information System (INIS)

    Kajiwara, Toshinori; Takeda, Kazuyuki; Kim, Hee Je; Park, Won Zoo; Muraoka, Katsunori; Akazaki, Masanori; Okada, Tatsuo; Maeda, Mitsuo.

    1990-01-01

    Density profiles of hydrogen atoms in reactive plasmas of hydrogen and methane gases were measured, for the first time, using the laser fluorescence spectroscopy by two-photon excitation of Lyman beta transition and observation at the Balmer alpha radiation. Absolute density determinations showed atomic densities of around 3 x 10 17 m -3 , or the degree of dissociation to be 10 -4 . Densities along the axis perpendicular to the RF electrode showed peaked profiles, which were due to the balance of atomic hydrogen production by electron impact on molecules against diffusion loss to the walls. (author)

  8. Electron density profile measurements from hydrogen line intensity ratio method in Versatile Experimental Spherical Torus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, YooSung; Shi, Yue-Jiang, E-mail: yjshi@snu.ac.kr; Yang, Jeong-hun; Kim, SeongCheol; Kim, Young-Gi; Dang, Jeong-Jeung; Yang, Seongmoo; Jo, Jungmin; Chung, Kyoung-Jae [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Oh, Soo-Ghee [Division of Energy Systems Research, Ajou University, Suwon 442-749 (Korea, Republic of); Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Center for Advanced Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2016-11-15

    Electron density profiles of versatile experiment spherical torus plasmas are measured by using a hydrogen line intensity ratio method. A fast-frame visible camera with appropriate bandpass filters is used to detect images of Balmer line intensities. The unique optical system makes it possible to take images of H{sub α} and H{sub β} radiation simultaneously, with only one camera. The frame rate is 1000 fps and the spatial resolution of the system is about 0.5 cm. One-dimensional local emissivity profiles have been obtained from the toroidal line of sight with viewing dumps. An initial result for the electron density profile is presented and is in reasonable agreement with values measured by a triple Langmuir probe.

  9. Profiles of plasma parameters and density of negative hydrogen ions by laser detachment measurements in RF-driven ion sources

    International Nuclear Information System (INIS)

    Christ-Koch, Sina

    2007-01-01

    This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields (∝ 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H - )=1.10 17 1/m 3 , which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)

  10. Plasma density measurements on refuelling by solid hydrogen pellets in a rotating plasma

    International Nuclear Information System (INIS)

    Joergensen, L.W.; Sillesen, A.H.

    1978-01-01

    The refuelling of a plasma by solid hydrogen pellets situated in the plasma is investigated. Nearly half of the pellet material is evaporated and seems to be completely ionized, resulting in an increase of the amount of plasma equivalent to one third of the total amount of plasma without refuelling. The gross behaviour of the plasma is not changed. (author)

  11. Measures for removing hydrogen

    International Nuclear Information System (INIS)

    Baukal, W.; Koehling, A.; Langer, G.; Poeschel, E.

    1984-01-01

    Basis for the investigation is a 1300-MW-PWR. The evolution of hydrogen was studied in design-basis and three hypothetical accident scenarios, the loss-of-coolant accident, the failure of emergency cooling system and core meltdown. It was shown that in the case of release rates of 4m 3 H 2 /h, the known post-accident hydrogen removal systems can be used and at medium rates up to 80 m 3 H 2 /h recombines of nuclear and non-nuclear industries are suitable under certain conditions. In the case of larger release rates it appears useful to apply a small recombiner of the type of the post-accident hydrogen removal system combined with an other hydrogen countermeasures. Recommendations are being made for the installation of an accident-proof hydrogen measuring system. (DG) [de

  12. ASRDI oxygen technology survey. Volume 5: Density and liquid level measurement instrumentation for the cryogenic fluids oxygen, hydrogen, and nitrogen

    Science.gov (United States)

    Roder, H. M.

    1974-01-01

    Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.

  13. Measuring the electron density in plasmas from the difference of Lorentzian part of the widths of two Balmer series hydrogen lines

    Energy Technology Data Exchange (ETDEWEB)

    Yubero, C. [Grupo de Física de Plasmas: Diagnosis, Modelos y Aplicaciones (FQM-136), Edificio A. Einstein (C-2), Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba (Spain); García, M.C., E-mail: fa1gamam@uco.es [Grupo de Física de Plasmas: Diagnosis, Modelos y Aplicaciones (FQM-136), Edificio A. Einstein (C-2), Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba (Spain); Dimitrijevic, M.S. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Sola, A.; Gamero, A. [Grupo de Física de Plasmas: Diagnosis, Modelos y Aplicaciones (FQM-136), Edificio A. Einstein (C-2), Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba (Spain)

    2015-05-01

    We present an alternative optical emission spectroscopy method to measure the plasma electron density from the difference of widths of two Balmer series hydrogen lines (H{sub α} and H{sub β}), especially convenient for non-thermal plasmas since with this method, there is no need to know either the gas temperature or the van der Waals contribution to the Lorentzian part of the line. In this paper it has been assumed that the part of full width at half maximum due to Stark broadening can be determined with the approximation of Lorentzian line shape. The method has been applied to the determination of the electron density in an argon microwave-induced plasma maintained at atmospheric pressure, and comparison with the results obtained using other diagnostic methods has been done. - Highlights: • An alternative method to measure the electron density in plasmas from two Balmer series hydrogen lines (H{sub α} and H{sub β}) is presented. • The method is very convenient for plasmas with electron densities of the order of 10{sup 14} cm{sup −3} and above, at low gas temperatures. • It has been applied to the determination of the electron density of an argon microwave plasma at atmospheric pressure. • Results from it are in good agreement with previous ones obtained using other diagnostic methods.

  14. Enhancing atom densities in solid hydrogen by isotopic substitution

    International Nuclear Information System (INIS)

    Collins, G.W.; Souers, P.C.; Mapoles, E.R.; Magnotta, F.

    1991-01-01

    Atomic hydrogen inside solid H 2 increases the energy density by 200 MegaJoules/m 3 , for each percent mole fraction stored. How many atoms can be stored in solid hydrogen? To answer this, we need to know: (1) how to produce and trap hydrogen atoms in solid hydrogen, (2) how to keep the atoms from recombining into the ground molecular state, and (3) how to measure the atom density in solid hydrogen. Each of these topics will be addressed in this paper. Hydrogen atoms can be trapped in solid hydrogen by co-condensing atoms and molecules, external irradiation of solid H 2 , or introducing a radioactive impurity inside the hydrogen lattice. Tritium, a heavy isotope of hydrogen, is easily condensed as a radioactive isotopic impurity in solid H 2 . Although tritium will probably not be used in future rockets, it provides a way of applying a large, homogenious dose to solid hydrogen. In all of the data presented here, the atoms are produced by the decay of tritium and thus knowing how many atoms are produced from the tritium decay in the solid phase is important. 6 refs., 6 figs

  15. Measurement of true density

    International Nuclear Information System (INIS)

    Carr-Brion, K.G.; Keen, E.F.

    1982-01-01

    System for determining the true density of a fluent mixture such as a liquid slurry, containing entrained gas, such as air comprises a restriction in pipe through which at least a part of the mixture is passed. Density measuring means such as gamma-ray detectors and source measure the apparent density of the mixture before and after its passage through the restriction. Solid-state pressure measuring devices are arranged to measure the pressure in the mixture before and after its passage through the restriction. Calculating means, such as a programmed microprocessor, determine the true density from these measurements using relationships given in the description. (author)

  16. Extreme hydrogen plasma densities achieved in a linear plasma generator

    NARCIS (Netherlands)

    Rooij, van G.J.; Veremiyenko, V.P.; Goedheer, W.J.; Groot, de B.; Kleyn, A.W.; Smeets, P.H.M.; Versloot, T.W.; Whyte, D.G.; Engeln, R.A.H.; Schram, D.C.; Lopes Cardozo, N.J.

    2007-01-01

    A magnetized hydrogen plasma beam was generated with a cascaded arc, expanding in a vacuum vessel at an axial magnetic field of up to 1.6 T. Its characteristics were measured at a distance of 4 cm from the nozzle: up to a 2 cm beam diameter, 7.5×1020 m-3 electron density, ~2 eV electron and ion

  17. Fast response densitometer for measuring liquid density

    Science.gov (United States)

    1972-01-01

    Densitometer was developed which produces linear voltage proportional to changes in density of flowing liquid hydrogen. Unit has fast response time and good system stability, statistical variation, and thermal equilibrium. System accuracy is 2 percent of total density span. Basic design may be altered to include measurement of other flowing materials.

  18. Determination of Hydrogen Density by Swift Heavy Ions.

    Science.gov (United States)

    Xu, Ge; Barriga-Carrasco, M D; Blazevic, A; Borovkov, B; Casas, D; Cistakov, K; Gavrilin, R; Iberler, M; Jacoby, J; Loisch, G; Morales, R; Mäder, R; Qin, S-X; Rienecker, T; Rosmej, O; Savin, S; Schönlein, A; Weyrich, K; Wiechula, J; Wieser, J; Xiao, G Q; Zhao, Y T

    2017-11-17

    A novel method to determine the total hydrogen density and, accordingly, a precise plasma temperature in a lowly ionized hydrogen plasma is described. The key to the method is to analyze the energy loss of swift heavy ions interacting with the respective bound and free electrons of the plasma. A slowly developing and lowly ionized hydrogen theta-pinch plasma is prepared. A Boltzmann plot of the hydrogen Balmer series and the Stark broadening of the H_{β} line preliminarily defines the plasma with a free electron density of (1.9±0.1)×10^{16}  cm^{-3} and a free electron temperature of 0.8-1.3 eV. The temperature uncertainty results in a wide hydrogen density, ranging from 2.3×10^{16} to 7.8×10^{18}  cm^{-3}. A 108 MHz pulsed beam of ^{48}Ca^{10+} with a velocity of 3.652  MeV/u is used as a probe to measure the total energy loss of the beam ions. Subtracting the calculated energy loss due to free electrons, the energy loss due to bound electrons is obtained, which linearly depends on the bound electron density. The total hydrogen density is thus determined as (1.9±0.7)×10^{17}  cm^{-3}, and the free electron temperature can be precisely derived as 1.01±0.04  eV. This method should prove useful in many studies, e.g., inertial confinement fusion or warm dense matter.

  19. Precision density measuring equipment: Design, selected examples

    International Nuclear Information System (INIS)

    Karasinski, T.; Patzelt, K.; Dieker, C.; Hansen, H.; Wenzl, H.; Schober, T.

    1987-06-01

    The report deals with solids density measurement using the pyknometer, the hydrostatic balance, or the floating specimen method. The mathematical relations are derived, and error sources are shown. A detailed description is given of a measuring set-up for measuring the density of solids and liquids. An error calculation is presented. After explaining the determination of density of a standard solid body, the report describes the density measurement of monocrystalline germanium, of niobium-tritide, Ni 3 Al, Ge-Si, and gallium arsenide, the determination of space-lattice expansion by hydrogen isotopes, and of the purity of H-D mixtures. (GG) [de

  20. Density measures and additive property

    OpenAIRE

    Kunisada, Ryoichi

    2015-01-01

    We deal with finitely additive measures defined on all subsets of natural numbers which extend the asymptotic density (density measures). We consider a class of density measures which are constructed from free ultrafilters on natural numbers and study a certain additivity property of such density measures.

  1. Plasma probe characteristics in low density hydrogen pulsed plasmas

    International Nuclear Information System (INIS)

    Astakhov, D I; Lee, C J; Bijkerk, F; Goedheer, W J; Ivanov, V V; Krivtsun, V M; Zotovich, A I; Zyryanov, S M; Lopaev, D V

    2015-01-01

    Probe theories are only applicable in the regime where the probe’s perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas on a similarly short time scale as investigated here. Indeed, in the case studied here, probe measurements would lead to, either a large overestimate, or underestimate of the plasma density, depending on the chosen probe theory. In contrast, the simulations of the plasma evolution and the probe characteristics do not suffer from such strict applicability limits. These studies show that probe theory cannot be justified through probe measurements. However, limiting cases of probe theories can be used to estimate upper and lower bounds on plasma densities. These theories include and neglect orbital motion, respectively, with different collisional terms leading to intermediate estimates. (paper)

  2. Density of Resonance Neutrons in Hydrogenous Media Near the Source

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1944-07-01

    This report was written by D.V. Booker, E. Broda and L. Kowarski at the Cavendish Laboratory (Cambridge) in January 1944 and is about the density of resonance neutrons in hydrogenous media near the source. Neutron-absorbing properties of a medium sometimes cannot be studied by the usual density integration technique because the amount of medium, or the intensity far from the source is insufficient. In such cases many useful deductions can be made from single-point activation measurements in a medium of known behaviour provided the differences between the scattering properties of the two media are negligible, insofar as they influence the observed activations, or can be allowed for. The relevant properties of a hydrogenous medium are discussed in this report and the activation of resonance detectors in H{sub 3}BO{sub 3} is compared to the activation in C{sub 10}H{sub 8}, used as a reference medium. (nowak)

  3. Measurement of the Lyman-alpha radiation at ionization manometers for determination of the hydrogen atom number density in fusion experiments

    International Nuclear Information System (INIS)

    Loercher, M.

    1990-01-01

    Codes like DEGAS which simulate the interaction of neutral gas with plasma (e.g. in a divertor), not only deliver the global density and flux of neutral particles, but also allow one, in addition, to distinguish between atoms and molecules. Whereas the global parameters of the neutral gas in a divertor can be measured by, for example, special ion gauges like those, which are installed in the divertor chamber, there has until now been no possibility of measuring the atomic and molecular density independently. In the frame of a diploma thesis (M. Loercher) an ASDEX neutral pressure gauge was modified in such a way that it delivers not only the global density of neutral particles (molecules and atoms) by ionization, but also the density of the atoms by measurement of the Lα-radiation produced by electron impact exitation. Owing to the very weak intensity the main effort was dedicated to developing a detector-filter combination which allows the Lα-radiation to be separated from, the H 2 bands in the VUV and be measured with a time resolution of at least of few ms. Several versions were tested theoretically and practically. The best solution was found to be a combination of an O 2 filter using MgF 2 windows and a multichannel plate. The arrangement was tested and calibrated with an atomic beam of known intensity from an oven. (orig.)

  4. Measurement of loose powder density

    International Nuclear Information System (INIS)

    Akhtar, S.; Ali, A.; Haider, A.; Farooque, M.

    2011-01-01

    Powder metallurgy is a conventional technique for making engineering articles from powders. Main objective is to produce final products with the highest possible uniform density, which depends on the initial loose powder characteristics. Producing, handling, characterizing and compacting materials in loose powder form are part of the manufacturing processes. Density of loose metallic or ceramic powder is an important parameter for die design. Loose powder density is required for calculating the exact mass of powder to fill the die cavity for producing intended green density of the powder compact. To fulfill this requirement of powder metallurgical processing, a loose powder density meter as per ASTM standards is designed and fabricated for measurement of density. The density of free flowing metallic powders can be determined using Hall flow meter funnel and density cup of 25 cm/sup 3/ volume. Density of metal powders like cobalt, manganese, spherical bronze and pure iron is measured and results are obtained with 99.9% accuracy. (author)

  5. Profiles of plasma parameters and density of negative hydrogen ions by laser detachment measurements in RF-driven ion sources; Profile der Plasmaparameter und Dichte negativer Wasserstoffionen mittels Laserdetachmentmessungen in HF-angeregten Ionenquellen

    Energy Technology Data Exchange (ETDEWEB)

    Christ-Koch, Sina

    2007-12-20

    This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields ({proportional_to} 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H{sup -})=1.10{sup 17} 1/m{sup 3}, which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)

  6. Method of measuring density of gas in a vessel

    International Nuclear Information System (INIS)

    Shono, Kosuke.

    1981-01-01

    Purpose: To accurately measure the density of a gas in a vessel even at a loss-of-coolant accident in a BWR type reactor. Method: When at least one of the pressure or the temperature of gas in a vessel exceeds the usable range of a gas density measuring instrument due to a loss-of-coolant accident, the gas in the vessel is sampled, and the pressure or the temperature of the sampled gas are measured by matching them to the usable conditions of the gas density measuring instrument. Hydrogen gas and oxygen gas densities exceeding the usable range of the gas density measuring instrument are calculated by the following formulae based on the measured values. C'sub(O) = P sub(T).C sub(O)/P sub(T), C'sub(H) = C''sub(H).C'sub(O)/C''sub(O), where C sub(O), P sub(T), C'sub(H) represent the oxygen density, the total pressure and the hydrogen density of the internal pressure gas of the vessel after the respective gas density measuring instruments exceed the usable ranges; C sub(O), P sub(T) represent the oxygen density and the total pressure of the gas in the vessel before the gas density measuring instruments exceeded the usable range, and C''sub(H), C''sub(O) represent the hydrogen density and oxygen density of the respective sampled gases. (Kamimura, M.)

  7. Volume generation of negative ions in high density hydrogen discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1983-01-01

    A parametric survey is made of a high-density tandem two-chamber hydrogen negative ion system. The optimum extracted negative ion current densities are sensitive to the atom concentration in the discharge and to the system scale length. For scale lengths ranging from 10 cm to 0.1 cm optimum current densities range from of order 1 to 100 mA cm -2 , respectively

  8. Measuring single-cell density.

    Science.gov (United States)

    Grover, William H; Bryan, Andrea K; Diez-Silva, Monica; Suresh, Subra; Higgins, John M; Manalis, Scott R

    2011-07-05

    We have used a microfluidic mass sensor to measure the density of single living cells. By weighing each cell in two fluids of different densities, our technique measures the single-cell mass, volume, and density of approximately 500 cells per hour with a density precision of 0.001 g mL(-1). We observe that the intrinsic cell-to-cell variation in density is nearly 100-fold smaller than the mass or volume variation. As a result, we can measure changes in cell density indicative of cellular processes that would be otherwise undetectable by mass or volume measurements. Here, we demonstrate this with four examples: identifying Plasmodium falciparum malaria-infected erythrocytes in a culture, distinguishing transfused blood cells from a patient's own blood, identifying irreversibly sickled cells in a sickle cell patient, and identifying leukemia cells in the early stages of responding to a drug treatment. These demonstrations suggest that the ability to measure single-cell density will provide valuable insights into cell state for a wide range of biological processes.

  9. Density functional theory for hydrogen storage materials: successes and opportunities

    International Nuclear Information System (INIS)

    Hector, L G Jr; Herbst, J F

    2008-01-01

    Solid state systems for hydrogen storage continue to be the focus of considerable international research, driven to a large extent by technological demands, especially for mobile applications. Density functional theory (DFT) has become a valuable tool in this effort. It has greatly expanded our understanding of the properties of known hydrides, including electronic structure, hydrogen bonding character, enthalpy of formation, elastic behavior, and vibrational energetics. Moreover, DFT holds substantial promise for guiding the discovery of new materials. In this paper we discuss, within the context of results from our own work, some successes and a few shortcomings of state-of-the-art DFT as applied to hydrogen storage materials

  10. Orbisphere: an immediate measurement of hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The device presented here, has in the beginning been conceived for nuclear industries (nuclear power plants, waste processing, uranium enrichment) and can measure the concentration of dissolved hydrogen and the partial pressures of gaseous hydrogen. This hydrogen analyser has numerous applications, particularly in metal corrosion research and control, water processing, organic and mineral synthesis, in pharmaceutic industry, for gas purity control [fr

  11. The variation of interstellar element abundances with hydrogen density

    International Nuclear Information System (INIS)

    Keenan, F.P.; Hibbert, A.; Dufton, P.L.; Murray, M.J.

    1986-01-01

    The variation of the interstellar nitrogen, oxygen and magnesium abundances with mean line-of-sight hydrogen density is analysed in terms of a two-component model, which consists of warm, low-density neutral gas and cold clouds. In all cases the gas-phase abundances have been deduced using reliable oscillator strengths specifically calculated for this purpose. Depletions in the warm and cold gas, are derived from non-linear least-squares fits to the data. (author)

  12. Renewable carbohydrates are a potential high-density hydrogen carrier

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.-H. Percival [Biological Systems Engineering Department, 210-A Seitz Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Institute for Critical Technology and Applied Sciences (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); DOE BioEnergy Science Center (BESC), Oak Ridge, TN 37831 (United States)

    2010-10-15

    The possibility of using renewable biomass carbohydrates as a potential high-density hydrogen carrier is discussed here. Gravimetric density of polysaccharides is 14.8 H{sub 2} mass% where water can be recycled from PEM fuel cells or 8.33% H{sub 2} mass% without water recycling; volumetric densities of polysaccharides are >100 kg of H{sup 2}/m{sup 3}. Renewable carbohydrates (e.g., cellulosic materials and starch) are less expensive based on GJ than are other hydrogen carriers, such as hydrocarbons, biodiesel, methanol, ethanol, and ammonia. Biotransformation of carbohydrates to hydrogen by cell-free synthetic (enzymatic) pathway biotransformation (SyPaB) has numerous advantages, such as high product yield (12 H{sub 2}/glucose unit), 100% selectivity, high energy conversion efficiency (122%, based on combustion energy), high-purity hydrogen generated, mild reaction conditions, low-cost of bioreactor, few safety concerns, and nearly no toxicity hazards. Although SyPaB may suffer from current low reaction rates, numerous approaches for accelerating hydrogen production rates are proposed and discussed. Potential applications of carbohydrate-based hydrogen/electricity generation would include hydrogen bioreactors, home-size electricity generators, sugar batteries for portable electronics, sugar-powered passenger vehicles, and so on. Developments in thermostable enzymes as standardized building blocks for cell-free SyPaB projects, use of stable and low-cost biomimetic NAD cofactors, and accelerating reaction rates are among the top research and development priorities. International collaborations are urgently needed to solve the above obstacles within a short time. (author)

  13. A density functional study on the adsorption of hydrogen molecule

    Indian Academy of Sciences (India)

    An all-electron scalar relativistic calculation on the adsorption of hydrogen molecule onto small copper clusters has been performed by using density functional theory with the generalized gradient approximation (GGA) at PW91 level. Our results reveal that after adsorption of H2 molecule, the Cu-Cu interaction is ...

  14. Hydrogen incorporation in high hole density GaN:Mg

    Science.gov (United States)

    Zvanut, M. E.; Uprety, Y.; Dashdorj, J.; Moseley, M.; Doolittle, W. Alan

    2011-03-01

    We investigate hydrogen passivation in heavily doped p-type GaN using electron paramagnetic resonance (EPR) spectroscopy. Samples include both conventionally grown GaN (1019 cm-3 Mg, 1017 cm-3 holes) and films grown by metal modulation epitaxy (MME), which yielded higher Mg (1- 4 x 1020 cm-3) and hole (1- 40 x 1018 cm-3) densities than found in conventionally grown GaN. The Mg acceptor signal is monitored throughout 30 minute annealing steps in N2 :H2 (92%:7%)) and subsequently pure N2 . N2 :H2 heat treatments of the lower hole density films begin to reduce the Mg EPR intensity at 750 o C, but quench the signal in high hole density films at 600 o C. Revival of the signal by subsequent N2 annealing occurs at 800 o C for the low hole density material and 600 o C in MME GaN. The present work highlights chemical differences between heavily Mg doped and lower doped films; however, it is unclear whether the difference is due to changes in hydrogen-Mg complex formation or hydrogen diffusion. The work at UAB is supported by the NSF.

  15. Method of measuring surface density

    International Nuclear Information System (INIS)

    Gregor, J.

    1982-01-01

    A method is described of measuring surface density or thickness, preferably of coating layers, using radiation emitted by a suitable radionuclide, e.g., 241 Am. The radiation impinges on the measured material, e.g., a copper foil and in dependence on its surface density or thickness part of the flux of impinging radiation is reflected and part penetrates through the material. The radiation which has penetrated through the material excites in a replaceable adjustable backing characteristic radiation of an energy close to that of the impinging radiation (within +-30 keV). Part of the flux of the characteristic radiation spreads back to the detector, penetrates through the material in which in dependence on surface density or thickness of the coating layer it is partly absorbed. The flux of the penetrated characteristic radiation impinging on the face of the detector is a function of surface density or thickness. Only that part of the energy is evaluated of the energy spectrum which corresponds to the energy of characteristic radiation. (B.S.)

  16. Neutron transmission measurements on hydrogen filled microspheres

    International Nuclear Information System (INIS)

    Dyrnjaja, Eva; Hummel, Stefan; Keding, Marcus; Smolle, Marie-Theres; Gerger, Joachim; Zawisky, Michael

    2014-01-01

    Hollow microspheres are promising candidates for future hydrogen storage technologies. Although the physical process for hydrogen diffusion through glass is well understood, measurements of static quantities (e.q. hydrogen pressure inside the spheres) as well as dynamic properties (e.g. diffusion rate of hydrogen through glass) are still difficult to handle due to the small size of the spheres (d≈15μm). For diffusion rate measurements, the long-term stability of the experiment is also mandatory due to the relatively slow diffusion rate. In this work, we present an accurate and long-term stable measurement technique for static and dynamic properties, using neutron radiography. Furthermore, possible applications for hydrogen filled microspheres within the scope of radiation issues are discussed

  17. Density functional and many-body theories of Hydrogen plasmas

    International Nuclear Information System (INIS)

    Perrot, F.; Dharma-Wardana, M.W.C.

    1983-11-01

    This work is an attempt to go beyond the standard description of hot condensed matter using the well-known ''average atom model''. The first part describes a static model using ''Density functional theory'' to calculate self-consistent coupled electron and ion density profiles of the plasma not restricted to a single average atomic sphere. In a second part, the results are used as ingredients for a many-body approach to electronic properties: the one-particle Green-function self-energy is calculated, from which shifted levels, populations and level-widths are deduced. Results for the Hydrogen plasma are reported, with emphasis on the 1s bound state

  18. Electrochemical measurement of tritium and hydrogen permeation through iron membranes

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1988-01-01

    Permeation rates of tritium and hydrogen through iron were measured by the electrochemical method in which an aqueous solution containing 3.7 x 10 12 Bq/m 3 tritium was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a specimen by cathodic polarization with a constant current density, while at the other side of the specimen the permeated tritium and hydrogen were extracted by potentiostatical ionization. Nearly all of the potentiostatic current of the extraction side stands for the ionization of hydrogen, because the concentration of tritium in the cathodic electrolyte is very small. The amount of permeated hydrogen was obtained by integrating the anodic current, and that of tritium was determined by measuring the radioactivity of the electrolyte sampled from the extraction side. The separation factor for permeation obtained under steady state conditions (the ratio of permeation rates of hydrogen to tritium divided by the ratio of the concentration of hydrogen to tritium in the charging electrolyte) is 12 at 288 K. This value is independent of cathodic current density. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) in iron were determined from the time lag of tritium and hydrogen permeation. For annealed specimens at 286 K, D T = 9 x 10 -10 m 2 /s and D H = 4 x 10 -9 m 2 /s, and for 9% cold-worked specimens at 284 K, D T = 3 x 10 -10 m 2 /s and D H = 4 x 10 -10 m 2 /s. (author)

  19. Electrochemical measurement of tritium and hydrogen permeation through iron membranes

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1987-01-01

    Permeation rates of tritium and hydrogen through iron were measured by the electro-chemical method in which an aqueous solution containing 3.7 x 10 12 Bq/m 3 tritium was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a specimen by cathodic polarization with a constant current density, while at the other side of the specimen the permeated tritium and hydrogen were extracted by potentiostatical ionization. Nearly all of the potentiostatic current on the extraction side is produced by the ionization of hydrogen, because the concentration of tritium in the cathodic electrolyte is very small. The amount of permeated hydrogen was obtained by integrating the potentiostatic current, and that of permeated tritium was determined by measuring the radioactivity of the electrolyte sampled from the anodic side. The separation factor for permeation obtained under steady state conditions (the ratio of permeation rates of hydrogen to tritium divided by the ratio of the concentration of hydrogen to tritium in the cathodic electrolyte) is 12 at 288 K. This value is independent of cathodic current density. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) in iron were determined from the tritium and hydrogen permeation by using time lag technique. For annealed iron at 286 K, D T = 9 x 10 -10 m 2 /s and D H = 4 x 10 -9 m 2 /s, and for 9 % cold-worked iron at 284 K, D T = 3 x 10 -10 m 2 /s and D H = 4 x 10 -10 m 2 /s. (author)

  20. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  1. Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines

    International Nuclear Information System (INIS)

    Filippi, F.; Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-01-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.

  2. Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, F., E-mail: francesco.filippi@roma1.infn.it [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Cianchi, A. [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Di Giovenale, D.; Di Pirro, G.; Ferrario, M. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Mostacci, A.; Palumbo, L. [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Zigler, A. [Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.

  3. High density plasma productions by hydrogen storage electrode in the Tohoku University Heliac

    International Nuclear Information System (INIS)

    Utoh, H.; Takahashi, H.; Tanaka, Y.; Takenaga, M.; Ogawa, M.; Shinde, J.; Iwazaki, K.; Shinto, K.; Kitajima, S.; Sasao, M.; Nishimura, K.; Inagaki, S.

    2005-01-01

    In the Tohoku University Heliac (TU-Heliac), the influence of a radial electric field on improved modes has been investigated by an electrode biasing. In both positive and negative biasing experiments by the stainless steel (SUS) electrode (cold-electron or ion collection), the improvement of plasma confinement was clearly observed. Furthermore, by negative biasing with a hot cathode (electron injection), the radial electric fields can be actively controlled as a consequence of the control of the electrode current I E . By using the electrode made of a hydrogen storage metal, for example Titanium (Ti) or Vanadium (V), the following possibility can be expected: (1) ions accelerated from the positive biased electrode allow the simulation for the orbit loss of high-energy particles, (2) the electrons/neutral- particles injected from the negative biased electrode provide the production of the high- density plasma, if hydrogen are successfully stored in the electrode. In this present work, several methods were tried as the treatment for hydrogen storage. In the case of the Ti electrode biased positively after the treatment, the improvement of plasma confinement was observed in He plasma, which were same as the experimental results of the SUS electrode. However, in the electron density profiles inside the electrode position there was difference between the biased plasma by the Ti electrode and that by the SUS electrode. In some of Ar discharges biased negatively with the Ti electrode after the treatment, the electron density and the line intensity of H α increased about 10 times of those before biasing. This phenomenon has not been observed in the Ar plasma biased by the SUS electrode. This result suggested that the Ti electrode injected electrons/neutral-hydrogen into the plasma. This high-density plasma productions were observed only 1 ∼ 3 times in the one treatment for hydrogen storage. By using a Vanadium (V) electrode, productions of the high-density plasma

  4. Hydrogen content and density in nanocrystalline carbon films of a predominant diamond character

    International Nuclear Information System (INIS)

    Hoffman, A.; Heiman, A.; Akhvlediani, R.; Lakin, E.; Zolotoyabko, E.; Cyterman, C.

    2003-01-01

    Nanocrystalline carbon films possessing a prevailing diamond or graphite character, depending on substrate temperature, can be deposited from a methane hydrogen mixture by the direct current glow discharge plasma chemical vapor deposition method. While at a temperature of ∼880 deg. C, following the formation of a thin precursor graphitic film, diamond nucleation occurs and a nanodiamond film grows, at higher and lower deposition temperatures the films maintain their graphitic character. In this study the hydrogen content, density and nanocrystalline phase composition of films deposited at various temperatures are investigated. We aim to elucidate the role of hydrogen in nanocrystalline films with a predominant diamond character. Secondary ion mass spectroscopy revealed a considerable increase of the hydrogen concentration in the films that accompanies the growth of nanodiamond. It correlates with near edge x-ray adsorption spectroscopy measurements, that showed an appearance of spectroscopic features associated with the diamond structure, and with a substantial increase of the film density detected by x-ray reflectivity. Electron energy loss spectroscopy showed that nanocrystalline diamond films can be deposited from a CH 4 /H 2 mixture with hydrogen concentration in the 80%-95% range. For a deposition temperature of 880 deg. C, the highest diamond character of the films was found for a hydrogen concentration of 91% of H 2 . The deposition temperature plays an important role in diamond formation, strongly influencing the content of adsorbed hydrogen with an optimum at 880 deg. C. It is suggested that diamond nucleation and growth of the nanodiamond phase is driven by densification of the deposited graphitic films which results in high local compressive stresses. Nanodiamond formation is accompanied by an increase of hydrogen concentration in the films. It is suggested that hydrogen retention is critical for stabilization of nanodiamond crystallites. At lower

  5. CH spectroscopy for carbon chemical erosion analysis in high density low temperature hydrogen plasma

    NARCIS (Netherlands)

    Westerhout, J.; Cardozo, N. J. L.; Rapp, J.; van Rooij, G. J.

    2009-01-01

    The CH A-X molecular band is measured upon seeding the hydrogen plasma in the linear plasma generator Pilot-PSI [electron temperature T-e=0.1-2.5 eV and electron density n(e)=(0.5-5) X 10(20) m(-3)] with methane. Calculated inverse photon efficiencies for these conditions range from 3 up to

  6. Measuring hydrogen-isotope distribution profiles

    International Nuclear Information System (INIS)

    Poppe, C.H.

    1977-01-01

    A new nondestructive technique was developed for measuring the depth distribution of hydrogen isotopes absorbed or implanted near the surface of any material. The method allows real-time study of the inventory and diffusion of hydrogen, deuterium, and tritium. Briefly, the technique involves bombarding the surface with a monoenergetic beam of ions chosen for their ability to react with the hydrogen isotope in question and produce fast neutrons. The energy distribution of the neutrons is a sensitive indicator of the energy of the bombarding particles at the instant of reaction, and hence of the depth of the reaction sites below he surface of the material. A sensitivity of one part per million was obtained for tritium in copper. The technique is applicable to several energy-related materials problems. 5 figures

  7. Modelling high density phenomena in hydrogen fibre Z-pinches

    International Nuclear Information System (INIS)

    Chittenden, J.P.

    1990-09-01

    The application of hydrogen fibre Z-pinches to the study of the radiative collapse phenomenon is studied computationally. Two areas of difficulty, the formation of a fully ionized pinch from a cryogenic fibre and the processes leading to collapse termination, are addressed in detail. A zero-D model based on the energy equation highlights the importance of particle end losses and changes in the Coulomb logarithm upon collapse initiation and termination. A 1-D Lagrangian resistive MHD code shows the importance of the changing radial profile shapes, particularly in delaying collapse termination. A 1-D, three fluid MHD code is developed to model the ionization of the fibre by thermal conduction from a high temperature surface corona to the cold core. Rate equations for collisional ionization, 3-body recombination and equilibration are solved in tandem with fluid equations for the electrons, ions and neutrals. Continuum lowering is found to assist ionization at the corona-core interface. The high density plasma phenomena responsible for radiative collapse termination are identified as the self-trapping of radiation and free electron degeneracy. A radiation transport model and computational analogues for the effects of degeneracy upon the equation of state, transport coefficients and opacity are implemented in the 1-D, single fluid model. As opacity increases the emergent spectrum is observed to become increasingly Planckian and a fall off in radiative cooling at small radii and low frequencies occurs giving rise to collapse termination. Electron degeneracy terminates radiative collapse by supplementing the radial pressure gradient until the electromagnetic pinch force is balanced. Collapse termination is found to be a hybrid process of opacity and degeneracy effects across a wide range of line densities with opacity dominant at large line densities but with electron degeneracy becoming increasingly important at lower line densities. (author)

  8. Density evaluation of remotely-supplied hydrogen radicals produced via tungsten filament method for SiCl4 reduction

    Science.gov (United States)

    Zohra Dahmani, Fatima; Okamoto, Yuji; Tsutsumi, Daiki; Ishigaki, Takamasa; Koinuma, Hideomi; Hamzaoui, Saad; Flazi, Samir; Sumiya, Masatomo

    2018-05-01

    Effect of the hydrogen radical on the reduction of a silicon tetrachloride (SiCl4) source was studied. The hydrogen radicals were generated using a tungsten (W) filament in a generation chamber, and were remotely supplied to another reaction chamber. The density of the hydrogen radical was estimated from the optical transmittance of 600-nm-wavelength light through phosphate glass doped with tungsten oxide (WO3). Lifetime of the hydrogen radical seemed sufficiently long, and its density as supplied to the reaction chamber was estimated to be on the order of 1012 cm‑3. Signal intensity of the peak corresponding to SiCl4 (m/z = 170) detected by quadrupole-mass measurement was confirmed to decrease owing to the reaction with the remotely-supplied hydrogen radical. This indicates the possibility that chemically-stable SiCl4, as one of the by-products of the Siemens process, can be reduced to produce silicon.

  9. Absolute atomic hydrogen density distribution in a hollow cathode discharge by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Gonzalo, A B; Rosa, M I de la; Perez, C; Mar, S; Gruetzmacher, K

    2004-01-01

    We report on quantitative measurements of ground-state atomic hydrogen densities in a stationary plasma far off thermodynamic equilibrium, generated in a hollow cathode discharge, by two-photon polarization spectroscopy via the 1S-2S transition. Absolute densities are obtained using a well established calibration method based on the non-resonant two-photon polarization signal of xenon gas at room temperature, which serves as the reference at the wavelength of the hydrogen transition. This study is dedicated to demonstrating the capability of two-photon polarization spectroscopy close to the detection limit. Therefore, it requires single-longitudinal mode UV-laser radiation provided by an advanced UV-laser spectrometer

  10. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    Science.gov (United States)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  11. Measure and dimension functions: measurability and densities

    Science.gov (United States)

    Mattila, Pertti; Mauldin, R. Daniel

    1997-01-01

    During the past several years, new types of geometric measure and dimension have been introduced; the packing measure and dimension, see [Su], [Tr] and [TT1]. These notions are playing an increasingly prevalent role in various aspects of dynamics and measure theory. Packing measure is a sort of dual of Hausdorff measure in that it is defined in terms of packings rather than coverings. However, in contrast to Hausdorff measure, the usual definition of packing measure requires two limiting procedures, first the construction of a premeasure and then a second standard limiting process to obtain the measure. This makes packing measure somewhat delicate to deal with. The question arises as to whether there is some simpler method for defining packing measure and dimension. In this paper, we find a basic limitation on this possibility. We do this by determining the descriptive set-theoretic complexity of the packing functions. Whereas the Hausdorff dimension function on the space of compact sets is Borel measurable, the packing dimension function is not. On the other hand, we show that the packing dimension functions are measurable with respect to the [sigma]-algebra generated by the analytic sets. Thus, the usual sorts of measurability properties used in connection with Hausdorff measure, for example measures of sections and projections, remain true for packing measure.

  12. Measurements of H-atom density by a catalytic probe

    International Nuclear Information System (INIS)

    Vesel, A.; Drenik, A.; Mozetic, M.

    2006-01-01

    One of the important plasma parameters in tokamaks is the density of neutral hydrogen atoms which can be measured by catalytic probes. The method is based on the catalytic recombination of H atoms on the metal surface. In order to prevent a substantial drain of atoms by the probe, it should be made as small as possible. But still this effect can not be neglected. Therefore a study of the influence of a catalytic probe on the H-atom density was performed. The source of neutral H-atoms was inductively coupled RF hydrogen plasma. The gas from the discharge vessel was leaked to an experimental chamber through a narrow tube with the diameter of 5 mm and the length of 6 cm. Charged particles created in the discharge vessel were recombined on the walls of the narrow tube, so that the gas entering the experimental chamber was a mixture of hydrogen atoms and molecules only. The density of H-atoms in the experimental chamber was measured with two nickel catalytic probes. One probe was at fixed position and the other one was made movable. A change in the probe signal of the fixed probe was measured versus the position of the movable probe. The measurements were performed at the pressures between 10 Pa and 200 Pa and at two different RF powers 200 W and 300 W. It was found that the density of neutral hydrogen atoms was reduced for about 20% due to the presence of the probe. This result was independent from the pressure in the experimental chamber. (author)

  13. Density Functional Theory Study of the Interaction of Hydrogen with Li6C60.

    Science.gov (United States)

    Wang, Qian; Jena, Puru

    2012-05-03

    Hydrogen storage properties of Li-coated C60 fullerene have been studied using density functional theory within the local density as well as generalized gradient approximation. Hydrogen atoms are found to bind to Li6C60 in two distinct forms, with the first set attaching to C atoms, not linked to Li, in atomic form. Once all such C atoms are saturated with hydrogen, the second set of hydrogen atoms bind quasi-molecularly to the Li atoms, five of which remain in the exohedral and the sixth in the endohedral position. The corresponding hydrogen gravimetric density in Li6C60H40 is 5 wt %. Desorption of hydrogen takes place in succession, the ones bound quasi-molecularly desorbing at a temperature lower than the ones bound atomically. The results are compared with the recent experiment on hydrogen adsorption in Li6C60.

  14. Electron and current density measurements on tokamak plasmas

    International Nuclear Information System (INIS)

    Lammeren, A.C.A.P. van.

    1991-01-01

    The first part of this thesis describes the Thomson-scattering diagnostic as it was present at the TORTUR tokamak. For the first time with this diagnostic a complete tangential scattering spectrum was recorded during one single laser pulse. From this scattering spectrum the local current density was derived. Small deviations from the expected gaussian scattering spectrum were observed indicating the non-Maxwellian character of the electron-velocity distribution. The second part of this thesis describes the multi-channel interferometer/ polarimeter diagnostic which was constructed, build and operated on the Rijnhuizen Tokamak Project (RTP) tokamak. The diagnostic was operated routinely, yielding the development of the density profiles for every discharge. When ECRH (Electron Cyclotron Resonance Heating) is switched on the density profile broadens, the central density decreases and the total density increases, the opposite takes place when ECRH is switched off. The influence of MHD (magnetohydrodynamics) activity on the density was clearly observable. In the central region of the plasma it was measured that in hydrogen discharges the so-called sawtooth collapse is preceded by an m=1 instability which grows rapidly. An increase in radius of this m=1 mode of 1.5 cm just before the crash is observed. In hydrogen discharges the sawtooth induced density pulse shows an asymmetry for the high- and low-field side propagation. This asymmetry disappeared for helium discharges. From the location of the maximum density variations during an m=2 mode the position of the q=2 surface is derived. The density profiles are measured during the energy quench phase of a plasma disruption. A fast flattening and broadening of the density profile is observed. (author). 95 refs.; 66 figs.; 7 tabs

  15. Mammography density estimation with automated volumetic breast density measurement

    International Nuclear Information System (INIS)

    Ko, Su Yeon; Kim, Eun Kyung; Kim, Min Jung; Moon, Hee Jung

    2014-01-01

    To compare automated volumetric breast density measurement (VBDM) with radiologists' evaluations based on the Breast Imaging Reporting and Data System (BI-RADS), and to identify the factors associated with technical failure of VBDM. In this study, 1129 women aged 19-82 years who underwent mammography from December 2011 to January 2012 were included. Breast density evaluations by radiologists based on BI-RADS and by VBDM (Volpara Version 1.5.1) were compared. The agreement in interpreting breast density between radiologists and VBDM was determined based on four density grades (D1, D2, D3, and D4) and a binary classification of fatty (D1-2) vs. dense (D3-4) breast using kappa statistics. The association between technical failure of VBDM and patient age, total breast volume, fibroglandular tissue volume, history of partial mastectomy, the frequency of mass > 3 cm, and breast density was analyzed. The agreement between breast density evaluations by radiologists and VBDM was fair (k value = 0.26) when the four density grades (D1/D2/D3/D4) were used and moderate (k value = 0.47) for the binary classification (D1-2/D3-4). Twenty-seven women (2.4%) showed failure of VBDM. Small total breast volume, history of partial mastectomy, and high breast density were significantly associated with technical failure of VBDM (p 0.001 to 0.015). There is fair or moderate agreement in breast density evaluation between radiologists and VBDM. Technical failure of VBDM may be related to small total breast volume, a history of partial mastectomy, and high breast density.

  16. Absolute density measurements in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2001-05-01

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  17. Absolute density measurements in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. Rapp

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

    Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  18. Diffusion of hydrogen into and through γ-iron by density functional theory

    Science.gov (United States)

    Chohan, Urslaan K.; Koehler, Sven P. K.; Jimenez-Melero, Enrique

    2018-06-01

    This study is concerned with the early stages of hydrogen embrittlement on an atomistic scale. We employed density functional theory to investigate hydrogen diffusion through the (100), (110) and (111) surfaces of γ-Fe. The preferred adsorption sites and respective energies for hydrogen adsorption were established for each plane, as well as a minimum energy pathway for diffusion. The H atoms adsorb on the (100), (110) and (111) surfaces with energies of ∼4.06 eV, ∼3.92 eV and ∼4.05 eV, respectively. The barriers for bulk-like diffusion for the (100), (110) and (111) surfaces are ∼0.6 eV, ∼0.5 eV and ∼0.7 eV, respectively. We compared these calculated barriers with previously obtained experimental data in an Arrhenius plot, which indicates good agreement between experimentally measured and theoretically predicted activation energies. Texturing austenitic steels such that the (111) surfaces of grains are preferentially exposed at the cleavage planes may be a possibility to reduce hydrogen embrittlement.

  19. Li4FeH6: Iron-containing complex hydride with high gravimetric hydrogen density

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saitoh

    2014-07-01

    Full Text Available Li4FeH6, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900 °C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li4FeH6 is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li4FeH6 at moderate pressures. Li4FeH6 can be recovered at ambient conditions where Li4FeH6 is metastable.

  20. Improved density measurement by FIR laser interferometer on EAST tokamak

    International Nuclear Information System (INIS)

    Shen, Jie; Jie, Yinxian; Liu, Haiqing; Wei, Xuechao; Wang, Zhengxing; Gao, Xiang

    2013-01-01

    Highlights: • In 2012, the water-cooling Mo wall was installed in EAST. • A schottky barrier diode detector is designed and used on EAST for the first time. • The three-channel far-infrared laser interferometer can measure the electron density. • The improved measurement and latest experiment results are reported. • The signal we get in this experiment campaign is much better than we got in 2010. -- Abstract: A three-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer is in operation since 2010 to measure the line averaged electron density on experimental advanced superconducting tokamak (EAST). The HCN laser signal is improved by means of a new schottky barrier diode (SBD) detector. The improved measurement and latest experiment results of the three-channel FIR laser interferometer on EAST tokamak are reported

  1. Improved density measurement by FIR laser interferometer on EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jie, E-mail: shenjie1988@ipp.ac.cn; Jie, Yinxian; Liu, Haiqing; Wei, Xuechao; Wang, Zhengxing; Gao, Xiang

    2013-11-15

    Highlights: • In 2012, the water-cooling Mo wall was installed in EAST. • A schottky barrier diode detector is designed and used on EAST for the first time. • The three-channel far-infrared laser interferometer can measure the electron density. • The improved measurement and latest experiment results are reported. • The signal we get in this experiment campaign is much better than we got in 2010. -- Abstract: A three-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer is in operation since 2010 to measure the line averaged electron density on experimental advanced superconducting tokamak (EAST). The HCN laser signal is improved by means of a new schottky barrier diode (SBD) detector. The improved measurement and latest experiment results of the three-channel FIR laser interferometer on EAST tokamak are reported.

  2. Electron beam induced fluorescence measurements of the degree of hydrogen dissociation in hydrogen plasmas

    NARCIS (Netherlands)

    Smit, C.; Brussaard, G.J.H.; de Beer, E.C.M.; Schram, D.C.; Sanden, van de M.C.M.

    2004-01-01

    The degree of dissociation of hydrogen in a hydrogen plasma has been measured using electron beam induced fluorescence. A 20 kV, 1 mA electron beam excites both the ground state H atom and H2 molecule into atomic hydrogen in an excited state. From the resulting fluorescence the degree of

  3. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  4. The use of infrared absorption to determine density of liquid hydrogen.

    Science.gov (United States)

    Unland, H. D.; Timmerhaus, K. D.; Kropschot, R. H.

    1972-01-01

    Experimental evaluation of the use of infrared absorption for determining the density of liquid hydrogen, and discussion of the feasibility of an airborne densitometer based on this concept. The results indicate that infrared absorption of liquid hydrogen is highly sensitive to the density of hydrogen, and, under the operating limitations of the equipment and experimental techniques used, the determined values proved to be repeatable to an accuracy of 2.7%. The desiderata and limitations of an in-flight density-determining device are outlined, and some of the feasibility problems are defined.

  5. High Density Hydrogen Storage in Metal Hydride Composites with Air Cooling

    OpenAIRE

    Dieterich, Mila; Bürger, Inga; Linder, Marc

    2015-01-01

    INTRODUCTION In order to combine fluctuating renewable energy sources with the actual demand of electrical energy, storages are essential. The surplus energy can be stored as hydrogen to be used either for mobile use, chemical synthesis or reconversion when needed. One possibility to store the hydrogen gas at high volumetric densities, moderate temperatures and low pressures is based on a chemical reaction with metal hydrides. Such storages must be able to absorb and desorb the hydrogen qu...

  6. Prediction of hydrogen storage on Y-decorated graphene: A density functional theory study

    International Nuclear Information System (INIS)

    Liu, Wenbo; Liu, Yang; Wang, Rongguo

    2014-01-01

    Highlight: • Rare earth metal Y has an excellent performance on hydrogen storage. • After decoration, each Y can attach six hydrogen molecules without dissociation. • The Y atoms disperse uniformly and stably on B/graphene. • The enhancement of H binding is caused by hybridization and electrostatic attraction. - Abstract: Yttrium decorated graphene has been investigated as a potential carrier for high density hydrogen storage. The adsorption energy and optimized geometry for yttrium on pristine and boron doped graphene have been studied by DFT calculations. The clustering and stability of isolated yttrium atoms on graphene has also been considered. For yttrium decorated boron doped graphene, each yttrium can attach six hydrogen molecules with average adsorption energy of −0.568 eV per hydrogen molecule and the hydrogen storage capacity of this material is 5.78 wt.%, indicating yttrium decorated boron doped graphene as a promising hydrogen storage candidate

  7. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    WINTEC

    density functional theory; quantum fluid dynamics. 1. Introduction ... dynamics of strongly non-linear interaction of atoms with intense ... theory and quantum fluid dynamics in real space. .... clear evidence of bond softening since density in the.

  8. Residual gas entering high density hydrogen plasma: rarefaction due to rapid heating

    NARCIS (Netherlands)

    N. den Harder,; D.C. Schram,; W. J. Goedheer,; de Blank, H. J.; M. C. M. van de Sanden,; van Rooij, G. J.

    2015-01-01

    The interaction of background molecular hydrogen with magnetized (0.4 T) high density (1–5 × 10 20  m −3 ) low temperature (∼3 eV) hydrogen plasma was inferred from the Fulcher band emission in the linear plasma generator Pilot-PSI. In the plasma center,

  9. Performance of various density functionals for the hydrogen bonds in DNA base pairs

    NARCIS (Netherlands)

    van der Wijst, T.; Fonseca Guerra, C.; Swart, M.; Bickelhaupt, F.M.

    2006-01-01

    We have investigated the performance of seven popular density functionals (B3LYP, BLYP, BP86, mPW, OPBE, PBE, PW91) for describing the geometry and stability of the hydrogen bonds in DNA base pairs. For the gas-phase situation, the hydrogen-bond lengths and strengths in the DNA pairs have been

  10. Large-Scale Liquid Hydrogen Testing of Variable Density Multilayer Insulation with a Foam Substrate

    Science.gov (United States)

    Martin, J. J.; Hastings, L.

    2001-01-01

    The multipurpose hydrogen test bed (MHTB), with an 18-cu m liquid hydrogen tank, was used to evaluate a combination foam/multilayer combination insulation (MLI) concept. The foam element (Isofoam SS-1171) insulates during ground hold/ascent flight, and allowed a dry nitrogen purge as opposed to the more complex/heavy helium purge subsystem normally required. The 45-layer MLI was designed for an on-orbit storage period of 45 days. Unique WI features include a variable layer density, larger but fewer double-aluminized Mylar perforations for ascent to orbit venting, and a commercially established roll-wrap installation process that reduced assembly man-hours and resulted in a roust, virtually seamless MLI. Insulation performance was measured during three test series. The spray-on foam insulation (SOFI) successfully prevented purge gas liquefaction within the MLI and resulted in the expected ground hold heat leak of 63 W/sq m. The orbit hold tests resulted in heat leaks of 0.085 and 0.22 W/sq m with warm boundary temperatures of 164 and 305 K, respectively. Compared to the best previously measured performance with a traditional MLI system, a 41-percent heat leak reduction with 25 fewer MLI layers was achieved. The MHTB MLI heat leak is half that calculated for a constant layer density MLI.

  11. Indirect, reversible high-density hydrogen storage in compact metal ammine salts

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Hummelshøj, Jens Strabo; Klerke, Asbjørn

    2008-01-01

    The indirect hydrogen storage capabilities of Mg(NH3)(6)Cl-2, Ca(NH3)(6)Cl-2, Mn(NH3)(6)Cl-2, and Ni(NH3)(6)Cl-2 are investigated. All four metal ammine chlorides can be compacted to solid tablets with densities of at least 95% of the crystal density. This gives very high indirect hydrogen...

  12. Lamb-shift measurement in hydrogenic phosphorus

    International Nuclear Information System (INIS)

    Pross, H.; Budelsky, D.; Kremer, L.; Platte, D.; von Brentano, P.; Gassen, J.; Mueller, D.; Scheuer, F.; Pape, A.; Sens, J.C.

    1993-01-01

    The final result of a 2s 2 S 1/2-- 2p 2 P 1/2 Lamb-shift measurement by the laser resonance method in hydrogenic phosphorus is reported. Metastable 2s 2 S 1/2 ions were prepared using a β∼0.08 velocity beam of 31 P 14+ ions obtained from the MP tandem accelerator at the Centre de Recherches Nucleaires in Strasbourg. From the metastable state the transition to the 2p 2 P 3/2 state was induced with a high-power dye laser leading to a measured transition energy of ΔE=2.231 33(12) eV. Subtracting the well-known fine-structure splitting ΔE FS =2.314 82(2) eV, the Lamb shift is deduced to be E expt (LS)=20 188(29) GHz. This result is compared with the theoretical value E theor (LS)=20 254(10) GHz and with other experimental results for the Lamb shift in the region Z≤18. Finally, the utility of the Lamb-shift measurements in testing the G(Zα) function of the self-energy, which includes only terms in (Zα) n , n≥6, is discussed

  13. Population densities of excited atomic hydrogen as diagnostic tool to study an RF hydrogen discharge

    NARCIS (Netherlands)

    van den Donker, M.N.; Jedrzejczyk, D.; Klomfass, J.; Hartgers, A.; Kessels, W.M.M.; Sanden, van de M.C.M.; Rech, B.; Veldhuizen, van E.M.

    2005-01-01

    The at. state distribution function (ASDF) of hydrogen was numerically modeled as a function of electron d., electron temp. and neutral d., by means of a collisional-radiative modeling code. Two limiting cases regarding the hydrogen dissocn. degree were considered, namely 0% and 100% dissocn.

  14. Apparatus for measurement of tree core density

    International Nuclear Information System (INIS)

    Blincow, D.W.

    1975-01-01

    Apparatus is described for direct measurement of the density of a core sample from a tree. A radiation source and detector with a receptacle for the core therebetween, an integrator unit for the detector output, and an indicating meter driven by the integrator unit are described

  15. Measuring Air Density in the Introductory Lab

    Science.gov (United States)

    Calza, G.; Gratton, L. M.; Lopez-Arias, T.; Oss, S.

    2010-01-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion--buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the…

  16. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Hiroto, E-mail: hiroto@eng.hokudai.ac.jp

    2017-02-28

    Highlights: • The reaction pathway of the hydrogen addition to graphene surface was determined by the DFT method. • Binding energies of atomic hydrogen to graphene surface were determined. • Absorption spectrum of hydrogenated graphene was theoretically predicted. • Hyperfine coupling constant of hydrogenated graphene was theoretically predicted. - Abstract: Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4–37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2–7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8–28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  17. Mapping of the atomic hydrogen density in combustion processes at atmospheric pressure by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Steiger, A.; Gruetzmacher, K.; Steiger, M.; Gonzalo, A.B.; Rosa, M.I. de la

    2001-01-01

    With laser spectroscopic techniques used so far, quantitative measurements of atomic number densities in flames and other combustion processes at atmospheric pressure yield no satisfying results because high quenching rates remarkably reduce the signal size and the results suffer from large uncertainties. Whereas, two-photon polarization spectroscopy is not limited by quenching, as the polarization signal is a direct measure of the two-photon absorption. This sensitive laser technique with high spatial and temporal resolution has been applied to determine absolute number densities and the kinetic temperatures of atomic hydrogen in flames for the first time. The great potential of this method of measurement comes into its own only in conjunction with laser radiation of highest possible spectral quality, i.e. single-frequency ns-pulses with peak irradiance of up to 1 GW/cm 2 tunable around 243 nm for 1S-2S two-photon transition of atomic hydrogen

  18. Acoustic levitation methods for density measurements

    Science.gov (United States)

    Trinh, E. H.; Hsu, C. J.

    1986-01-01

    The capability of ultrasonic levitators operating in air to perform density measurements has been demonstrated. The remote determination of the density of ordinary liquids as well as low density solid metals can be carried out using levitated samples with size on the order of a few millimeters and at a frequency of 20 kHz. Two basic methods may be used. The first one is derived from a previously known technique developed for acoustic levitation in liquid media, and is based on the static equilibrium position of levitated samples in the earth's gravitational field. The second approach relies on the dynamic interaction between a levitated sample and the acoustic field. The first technique appears more accurate (1 percent uncertainty), but the latter method is directly applicable to a near gravity-free environment such as that found in space.

  19. Measurement of the lunar neutron density profile

    International Nuclear Information System (INIS)

    Woolum, D.S.; Burnett, D.S.; Furst, M.; Weiss, J.R.

    1975-01-01

    An in situ measurement of the lunar neutron density from 20 to 400 g cm -2 depth below the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment (LNPE) using particle tracks produced by the 10 B (n,α) 7 Li reaction. Both the absolute magnitude and the depth profile of the neutron density are in good agreement with theoretical calculations by Lingenfelter, Canfield, and Hampel. However, relatively small deviations between experiment and theory in the effect of Cd absorption on the neutron density and in the relative 149 Sm to 157 Gd capture rates reported previously (Russ et al., 1972) imply that the true lunar 157 Gd capture rate is about one half of that calculated theoretically. (Auth.)

  20. Electron density measurements during ion beam transport on Gamble II

    International Nuclear Information System (INIS)

    Weber, B.V.; Hinshelwood, D.D.; Neri, J.M.; Ottinger, P.F.; Rose, D.V.; Stephanakis, S.J.; Young, F.C.

    1999-01-01

    High-sensitivity laser interferometry was used to measure the electron density created when an intense proton beam (100 kA, 1 MeV, 50 ns) from the Gamble II generator was transported through low-pressure gas as part of a project investigating Self-Pinched Transport (SPT) of intense ion beams. This measurement is non-perturbing and sufficiently quantitative to allow benchmarking of codes (particularly IPROP) used to model beam-gas interaction and ion-beam transport. Very high phase sensitivity is required for this measurement. For example, a 100-kA, 1-MeV, 10-cm-radius proton beam with uniform current density has a line-integrated proton density equal to n b L = 3 x 10 13 cm -2 . An equal electron line-density, n e L = n b L, (expected for transport in vacuum) will be detected as a phase shift of the 1.064 microm laser beam of only 0.05degree, or an optical path change of 1.4 x 10 -4 waves (about the size of a hydrogen atom). The time-history of the line-integrated electron density, measured across a diameter of the transport chamber at 43 cm from the input aperture, starts with the proton arrival time and decays differently depending on the gas pressure. The gas conditions included vacuum (10 -4 Torr air), 30 to 220 mTorr He, and 1 Torr air. The measured densities vary by three orders of magnitude, from 10 13 to 10 16 cm -2 for the range of gas pressures investigated. In vacuum, the measured electron densities indicate only co-moving electrons (n e L approximately n b L). In He, when the gas pressure is sufficient for ionization by beam particles and SPT is observed, n e L increases to about 10 n b L. At even higher pressures where electrons contribute to ionization, even higher electron densities are observed with an ionization fraction of about 2%. The diagnostic technique as used on the SPT experiment will be described and a summary of the results will be given. The measurements are in reasonable agreement with theoretical predictions from the IPROP code

  1. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on ...

  2. A density functional study on the adsorption of hydrogen molecule ...

    Indian Academy of Sciences (India)

    tive adsorption of H2 onto the minimum energy copper clusters by using the density ... theoretical study of molecular oxygen and atomic oxy- gen adsorption onto small ...... the values for all singlet spin states are zero, indicating that no ...

  3. Hydrogenation of graphene nanoflakes and C-H bond dissociation of hydrogenated graphene nanoflakes: a density functional theory study

    Institute of Scientific and Technical Information of China (English)

    Sheng Tao; Hui-Ting Liu; Liu-Ming Yan; Bao-Hua Yue; Ai-Jun Li

    2017-01-01

    The Gibbs free energy change for the hydrogenation of graphene nanoflakes Cn (n =24,28,30 and 32) and the C-H bond dissociation energy of hydrogenated graphene nanoflakes CnHm (n =24,28,30 and 32;and m =1,2 and 3) are evaluated using density functional theory calculations.It is concluded that the graphene nanoflakes and hydrogenated graphene nanoflakes accept the ortharyne structure with peripheral carbon atoms bonded via the most triple bonds and leaving the least unpaired dangling electrons.Five-membered rings are formed at the deep bay sites attributing to the stabilization effect from the pairing of dangling electrons.The hydrogenation reactions which eliminate one unpaired dangling electron and thus decrease the overall multiplicity of the graphene nanoflakes or hydrogenated graphene nanoflakes are spontaneous with negative or near zero Gibbs free energy change.And the resulting C-H bonds are stable with bond dissociation energy in the same range as those of aromatic compounds.The other C-H bonds are not as stable attributing to the excessive unpaired dangling electrons being filled into the C-H anti-bond orbital.

  4. Experimental measurements of negative hydrogen ion production from surfaces

    International Nuclear Information System (INIS)

    Graham, W.G.

    1977-09-01

    Experimental measurements of the production of H - from surfaces bombarded with hydrogen are reviewed. Some measurements of H + and H 0 production from surfaces are also discussed with particular emphasis on work which might be relevant to ion source applications

  5. State density of valence-band tail and photoconductivity amorphous hydrogenated silicon

    International Nuclear Information System (INIS)

    Golikova, O.A.; Domashevskaya, Eh.P.; Mezdrogina, M.M.; Sorokina, K.L.; Terekhov, V.A.; Trostyanskij, S.N.

    1991-01-01

    Relation between photoconductivity and g(ε) mobility gap within the range adjoining to the top (mobility end) of valent zone (VZ tail) in a-Si:H film is studied. Stationary photoconductivity within spectral maximum range (χ=0.63μm) at Φ=10 17 photxcm -2 s -1 flow is measured. Density of g(ε) states are controlled using ultrasoft X-ray emission spectroscopy. It is shown, that correlation between photoconductivity and width of VZ tail may reflect the fact of their similar dependence o film heterogeneity: at the increase of share of microholes there occur both expansion of VZ tail and growth of number of respective hydrogen complexes and torn relations which results in drop of photoconductivity

  6. Titanium-decorated graphene for high-capacity hydrogen storage studied by density functional simulations

    International Nuclear Information System (INIS)

    Liu Yali; Ren Ling; He Yao; Cheng Haiping

    2010-01-01

    We present results of density functional theory (DFT) calculations of the adsorption of hydrogen molecules on Ti-decorated graphene. Our results indicate that the binding energies of molecular hydrogen on Ti-decorated graphene can be dramatically enhanced to 0.23-0.60 eV. The hybridization of the Ti 3d orbitals with the H 2 σ and σ* orbitals plays a central role in the enhanced binding. There is also a contribution from the attractive interaction between the surface dipole and the dipole of polarized H 2 . It can be expected that Ti-decorated graphene could be considered as a potential high-capacity hydrogen storage medium.

  7. High density hydrogen storage in nanocavities: Role of the electrostatic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Reguera, L. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Legaria 694, Mexico D.F (Mexico); Facultad de Quimica, Universidad de La Habana, La Habana (Cuba); Roque, J. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Legaria 694, Mexico D.F (Mexico); Hernandez, J. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Legaria 694, Mexico D.F (Mexico); Universidad de Pinar del Rio, Pinar del Rio (Cuba); Reguera, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Legaria 694, Mexico D.F (Mexico); Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana, La Habana (Cuba)

    2010-12-15

    High pressure H{sub 2} adsorption isotherms at N{sub 2} liquid temperature were recorded for the series of cubic nitroprussides, Ni{sub 1-x}Co{sub x}[Fe(CN){sub 5}NO] with x = 0, 0.5, 0.7, 1. The obtained data were interpreted according to the effective polarizing power for the metal found at the surface of the cavity. The cavity volume where the hydrogen molecules are accumulated was estimated from the amount of water molecules that are occupying that available space in the as-synthesized solids considering a water density of 1 g/cm{sup 3}. The calculated cavity volume was then used to obtain the density of H{sub 2} storage in the cavity. For the Ni-containing material the highest storage density was obtained, in a cavity volume of 448.5 A{sup 3} up to 10.4 hydrogen molecules are accumulated, for a local density of 77.6 g/L, above the density value corresponding to liquid hydrogen (71 g/L). Such high value of local density was interpreted as related to the electrostatic contribution to the adsorption potential for the hydrogen molecule within the cavity. (author)

  8. Measurement of strong interaction parameters in antiprotonic hydrogen and deuterium

    CERN Document Server

    Augsburger, M A; Borchert, G L; Chatellard, D; Egger, J P; El-Khoury, P; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Siems, T; Simons, L M

    1999-01-01

    In the PS207 experiment at CERN, X-rays from antiprotonic hydrogen and deuterium have been measured at low pressure. The strong interaction shift and the broadening of the K/sub alpha / transition in antiprotonic hydrogen were $9 determined. Evidence was found for the individual hyperfine components of the protonium ground state. (7 refs).

  9. Electron density measurement for steady state plasmas

    International Nuclear Information System (INIS)

    Kawano, Yasunori; Chiba, Shinichi; Inoue, Akira

    2000-01-01

    Electron density of a large tokamak has been measured successfully by the tangential CO 2 laser polarimeter developed in JT-60U. The tangential Faraday rotation angles of two different wavelength of 9.27 and 10.6 μm provided the electron density independently. Two-color polarimeter concept for elimination of Faraday rotation at vacuum windows is verified for the first time. A system stability for long time operation up to ∼10 hours is confirmed. A fluctuation of a signal baseline is observed with a period of ∼3 hours and an amplitude of 0.4 - 0.7deg. In order to improve the polarimeter, an application of diamond window for reduction of the Faraday rotation at vacuum windows and another two-color polarimeter concept for elimination of mechanical rotation component are proposed. (author)

  10. Electron density measurements on the plasma focus

    International Nuclear Information System (INIS)

    Rueckle, B.

    1976-01-01

    The paper presents a determination of the maximum electron density in a plasma focus, produced with the NESSI experimental setup, by the method of laser beam deflection. For each discharge a time-resolved measurement was performed at four different places. Neutron efficiency as well as the time of the initial X-ray emission was registrated. The principle and the economic aspects of the beam deflection method are presented in detail. The experimental findings and the resulting knowledge of the neutron efficiency are discussed. (GG) [de

  11. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  12. The hydrogen bond in ice probed by soft x-ray spectroscopy and density functional theory

    International Nuclear Information System (INIS)

    Nilsson, A.; Ogasawara, H.; Cavalleri, M.; Nordlund, D.; Nyberg, M.; Wernet, Ph.; Pettersson, L.G.M.

    2005-01-01

    We combine photoelectron and x-ray absorption spectroscopy with density functional theory to derive a molecular orbital picture of the hydrogen bond in ice. We find that the hydrogen bond involves donation and back-donation of charge between the oxygen lone pair and the O-H antibonding orbitals on neighboring molecules. Together with internal s-p rehybridization this minimizes the repulsive charge overlap of the connecting oxygen and hydrogen atoms, which is essential for a strong attractive electrostatic interaction. Our joint experimental and theoretical results demonstrate that an electrostatic model based on only charge induction from the surrounding medium fails to properly describe the internal charge redistributions upon hydrogen bonding

  13. Hydrogen consumption and power density in a co-flow planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Ben Moussa, Hocine; Zitouni, Bariza [Laboratoire d' etude des systemes energetiques industriels (LESEI), Universite de Batna, Batna (Algeria); Oulmi, Kafia [Laboratoire de chimie et de chimie de l' environnement, Universite de Batna, Batna (Algeria); Mahmah, Bouziane; Belhamel, Maiouf [CDER, BP. 62 Route de l' Observatoire. Bouzareah. Alger (Algeria); Mandin, Philippe [Centre de Developpement des Energies Renouvelables (CDER), LECA, UMR 7575 CNRS-ENSCP Paris 6 (France)

    2009-06-15

    In the present work, power density and hydrogen consumption in a co-flow planar solid oxide fuel cell (SOFC) are studied according to the inlet functional parameters; such as the operational temperature, the operational pressure, the flow rates and the mass fractions of the species. Furthermore, the effect of the cell size is investigated. The results of a zero and a one-dimensional numerical electro-dynamic model predict the remaining quantity of the fed hydrogen at the output of the anode flow channel. The remaining hydrogen quantities and the SOFC's power density obtained are discussed as a function of the inlet functional parameters, the geometrical configuration of the cell and several operating cell voltages values. (author)

  14. Quadrature interferometry for plasma density measurements

    International Nuclear Information System (INIS)

    Warthen, B.J.; Shlachter, J.S.

    1995-01-01

    A quadrature interferometer has been used routinely in several pulsed power experiments to measure the line-averaged electron density. The optical source is a 30 mW, continuous wave Nd-YAG laser operating at 1,300 nm. The light is coupled directly to an optical fiber and split into reference and scene beams with a fiber splitter. The scene beam is transported to and from the plasma using single mode optical fibers up to 100 m in length. To simplify alignment through the plasma, the authors have used GRIN lenses on both the launch and receive sides of the single pass transmission diagnostic where this is possible. The return beam passes through a half-wave plate which is used to compensate for polarization rotation associated with slow (hour) time scale drift in the single mode fibers. The reference beam is sent through a quarter-wave plate to produce circular polarization; mixing of the reference and scene beams is accomplished using a non-polarizing beam splitter, and the interference signals are focused into additional fibers which relay the light to fast photodiodes. The quadrature optics allow for an unambiguous determination of the slope of the density changes at inflection points. All of the beam processing optics are located on a stable optical table which is remote and protected from the experiment. Final setup of the interferometer is facilitated by looking at the Lissajous figure generated from the two quadrature components. The authors have used this interferometer to diagnose the background density in the Pegasus-II power flow channel, to study the plasma plume generated in foil implosion experiments, to measure the plasma blowoff during implosions, and to understand the plasma formation mechanism in a fusion target plasma system

  15. Hydrogen retention properties of co-deposition under high-density plasmas in TRIAM-1M

    International Nuclear Information System (INIS)

    Tokitani, M.; Miyamoto, M.; Tokunaga, K.; Fujiwara, T.; Yoshida, N.; Sakamoto, M.; Zushi, H.; Hanada, K.; TRIAM Group,; Nagata, S.; Tsuchiya, B.

    2007-01-01

    Retention of hydrogen in co-deposits formed under high-density plasma discharge in TRIAM-1M was studied. In order to quantify the retained hydrogen, material probe experiments were performed under the high-density (n at e ∼10 19 m -3 ) discharges. After the exposure to the plasma, the quantitative analysis of deposition, hydrogen retention, and microscopic modification of specimens were performed by means of ion beam analysis and transmission electron microscopy. The co-deposits mainly consisted of Mo. The deposition rate of Mo was about ten times higher than that of the low-density discharge case. The hydrogen concentrations (H/Mo) retained in the co-deposits were 0.06-0.17, which was much higher than that in bulk-Mo and almost equal to the low-density case. These results indicate that as long as the co-deposition layers are continuously formed, strong wall pumping in TRIAM-1M is maintained during the discharges

  16. Electron density fluctuation measurements in the TORTUR tokamak

    International Nuclear Information System (INIS)

    Remkes, G.J.J.

    1990-01-01

    This thesis deals with measurements of electron-density fluctuations in the TORTUR tokamak. These measurements are carried out by making use of collective scattering of electromagnetic beams. The choice of the wavelength of the probing beam used in collective scattering experiments has important consequences. in this thesis it is argued that the best choice for a wavelength lies in the region 0.1 - 1 mm. Because sources in this region were not disposable a 2 mm collective scattering apparatus has been used as a fair compromise. The scattering theory, somewhat adapted to the specific TORTUR situation, is discussed in Ch. 2. Large scattering angles are admitted in scattering experiments with 2 mm probing beams. This had consequences for the spatial response functions. Special attention has been paid to the wave number resolution. Expressions for the minimum source power have been determined for two detection techniques. The design and implementation of the scattering apparatus has been described in Ch. 3. The available location of the scattering volume and values of the scattering angle have been determined. The effect of beam deflection due to refraction effects is evaluated. The electronic system is introduced. Ch. 4 presents the results of measurements of density fluctuations in the TORTUR tokamak in the frequency range 1 kHz to 100 MHz end the wave number region 400 - 4000 m -1 in different regions of the plasma. Correlation between density and magnetic fluctuations has been found in a number of cases. During the current decay at the termination of several plasma discharges minor disruptions occurred. The fluctuations during these disruptions have been monitored. Measurements have been performed in hydrogen as well as deuterium. A possible dependence of the wave number on the ion gyroradius has been investigated. The isotropy of the fluctuations in the poloidal plane was investigated. A theoretical discussion of the measured results is given in ch. 5. ( H.W.). 63

  17. Study on state equation for hydrogen storage measurement by volumetric method

    International Nuclear Information System (INIS)

    Dai Wei; Xu Jiajing; Wang Chaoyang; Tang Yongjian

    2014-01-01

    Volumetric measurement technique is one of the most popular methods for determining the amount of hydrogen storage. A new state equation was established which extended the limitations from the ideal gas state equation, the van der Waals equation and the Gou equation. The new state equation was then employed to describe the p-V-T character of hydrogen and investigate the adsorption quantity of hydrogen storage in resorcin-formaldehyde aerogel under different temperatures and pressures. The new equation was used to describe the density of hydrogen under different temperatures and pressures. The results are in good agreement with the experimental data. The differences arising from various underlying physics were carefully analyzed. (authors)

  18. Correlation and spectral density measurements by LDA

    International Nuclear Information System (INIS)

    Pfeifer, H.J.

    1986-01-01

    The present paper is intended to give a review on the state-of-the art in correlation and spectral density measurements by means of laser Doppler anemometry. As will be shown in detail the most important difference in performing this type of studies is the fact that laser anemometry relies on the presence of particles in the flow serving as flow velocity indicators. This means that, except in heavily seeded flows, the instantaneous velocity can only be sampled at random instants. This calls for new algorithms to calculate estimates of both correlation functions and power spectra. Various possibilities to handle the problem of random sampling have been developed in the past. They are explained from the theoretical point of view and the experimental aspects are detailed as far as they are different from conventional applications of laser anemometry

  19. Neutronographic measurements of the motion of hydrogen and hydrogeneous substances in liquids and solids

    International Nuclear Information System (INIS)

    Zeilinger, A.; Pochman, W.A.; Rauch, H.; Suleiman, M.

    1976-01-01

    Earlier measurements of hydrogen motion in liquids by neutron radiography have been extended to obtain additional parameters of governing the mixing behavior of light and heavy water. Furthermore motion of water in concrete was measured leading to a determination of (1) the vapor diffusion coefficient of water in concrete, (2) the porosity of the concrete, and (3) the mass transfer coefficient of vapor from the concrete to the environment. Recently the ability of neutron radiography to measure the hydrogen motion in metals was demonstrated and the diffusion coefficients of hydrogen in V, Ta, Nb and beta-Ti was determined. In addition, some work on resolution measurements of neutron radiography will be reported. (author)

  20. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    Science.gov (United States)

    Tachikawa, Hiroto

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4-37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2-7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8-28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  1. Interferometric determination of electron density in a high pressure hydrogen arc. 1. Calculation of refraction index

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, R; Guenther, K; Ulbricht, R [Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Elektronenphysik

    1980-01-14

    The refraction index of a hydrogen plasma in LTE was calculated as a function of the wavelength of observation, temperature and pressure, taking into account bound-bound and bound-free transitions of the neutral atom. According to the present calculation, the influence of excited states at higher temperatures is smaller than indicated by Baum et al (Plasma Phys.; 17: 79 (1975)) for argon. Using the calculations presented here, the interferometric investigation of a high pressure hydrogen arc should allow the determination of the electron density with an accuracy of the order of 1%.

  2. Dependence of the saturated light-induced defect density on macroscopic properties of hydrogenated amorphous silicon

    OpenAIRE

    Park, H. R.; Liu, J. Z.; Roca i Cabarrocas, P.; Maruyama, A.; Isomura, M.; Wagner, S.; Abelson, J. R.; Finger, F.

    2008-01-01

    We report a study of the saturated light-induced defect density Ns,sat in 37 hydrogenated (and in part fluorinated) amorphous silicon [a-Si:H(F)] films grown in six different reactors under widely different conditions. Ns,sat was attained by exposing the films to light from a krypton ion laser (λ=647.1 nm). Ns,sat is determined by the constant photocurrent method and lies between 5×1016 and 2×1017 cm−3. Ns,sat drops with decreasing optical gap Eopt and hydrogen content cH, but is not correlat...

  3. Comparative study on hydrogenation of propanal on Ni(111) and Cu(111) from density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    An, Wei, E-mail: weian@sues.edu.cn; Men, Yong; Wang, Jinguo

    2017-02-01

    Highlights: • Hydrogenation of propanal is kinetically much faster on Ni(111) than Cu(111). • Hydroxyl route is prefered over alkoxy route on Ni(111). • Alkoxy route is prefered over hydroxyl route on Cu(111). • Activation barrier for hydrogenation of carbonyl is lowered by H-tunneling effect. • η{sup 2}(C,O)-adsorption mode is beneficial for hydrogenation/dehydrogenation of aldehyde. - Abstract: Using propanal as a probe molecule, we have comparatively investigated hydrogenation of carbonyl (C=O) in short carbon-chain aldehyde on Ni(111) and Cu(111) by means of periodic density functional theory. Our focus is in particular on the differentiation of reaction route in sequential hydrogenation on Ni(111) and Cu(111) following Langmuir–Hinshelwood mechanism. Strong binding with alkoxy intermediates has great impact on altering reaction pathways on the two surfaces, where hydroxyl route via 1-hydroxyl propyl intermediate is dominant on Ni(111), but alkoxy route via propoxyl intermediate is more likely on Cu(111) due to a higher activiation barrier of initial hydrogenation in hydroxyl route. In comparison, hydrogenation of carbonyl on Ni(111) is kinetically much faster than that on Cu(111) as a result of much lower activation barrier in rate-determining step (i.e., 13.2 vs 26.8 kcal/mol) of most favorable reaction pathways. Furthermore, the discrepancy in calculated and experimental barriers can be well explained by using the concept of H-tunneling effect on bond forming with H atoms during sequential hydrogenation. The different features of electronic structure exhibited by the two metal surfaces provide insight into their catalytic behaviors.

  4. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    International Nuclear Information System (INIS)

    Nakano, H.; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-01-01

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure

  5. Radio-frequency slurry-density measurement for dredging pipelines

    NARCIS (Netherlands)

    van Eeten, M.J.C.

    2011-01-01

    Hydraulic dredgers make use of a density meter to measure the instantaneous density in the slurry transport pipeline, primarily for process control and production calculation. the current ‘golden’ standard for slurry density measurement is the radioactive density meter. It is based on a slurry

  6. Electron temperature and density profiles measurement in the TJ-1 tokamak by Thomson scattering

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1986-01-01

    Electron temperature and density profiles of ohmically heated hydrogen plasmas in the TJ-1 tokamak have been measured by Thomson scattering. The temperature profile peaks sharply in the central region while the density profile is very flat. Temperature values between 100 and 390 eV have been measured for densities in the range of 5.10 12 to 2.6.10 13 cm -3 . Parameters characterizing TJ-1 plasma, such as confinement times Z eff , have been deduced from experimental data. Energy confinement times are compared with experimental scaling laws. (author)

  7. Measurement of log moisture content and density by gamma and neutron backscatter

    International Nuclear Information System (INIS)

    Barry, B.J.

    2002-01-01

    Measurement of the moisture content and green density of wood was investigated using scattering of gamma rays and neutrons. Both of these processes are dependent on density but neutrons are particularly sensitive to the hydrogen content, which changes with moisture content. A material mimicking the green density and moisture content of real wood was successfully used in a laboratory study to establish the feasibility of measuring these within the range found in standing trees. A later field trial indicated that the technique needed more development to take account of the natural variability of real trees. (author). 3 refs., 11 figs., 1 table

  8. Hydrogen solubility measurements of analyzed tall oil fractions and a solubility model

    International Nuclear Information System (INIS)

    Uusi-Kyyny, Petri; Pakkanen, Minna; Linnekoski, Juha; Alopaeus, Ville

    2017-01-01

    Highlights: • Hydrogen solubility was measured in four tall oil fractions between 373 and 597 K. • Continuous flow synthetic isothermal and isobaric method was used. • A Henry’s law model was developed for the distilled tall oil fractions. • The complex composition of the samples was analyzed and is presented. - Abstract: Knowledge of hydrogen solubility in tall oil fractions is important for designing hydrotreatment processes of these complex nonedible biobased materials. Unfortunately measurements of hydrogen solubility into these fractions are missing in the literature. This work reports hydrogen solubility measured in four tall oil fractions between 373 and 597 K and at pressures from 5 to 10 MPa. Three of the fractions were distilled tall oil fractions their resin acids contents are respectively 2, 20 and 23 in mass-%. Additionally one fraction was a crude tall oil (CTO) sample containing sterols as the main neutral fraction. Measurements were performed using a continuous flow synthetic isothermal and isobaric method based on the visual observation of the bubble point. Composition of the flow was changed step-wise for the bubble point composition determination. We assume that the tall oil fractions did not react during measurements, based on the composition analysis performed before and after the measurements. Additionally the densities of the fractions were measured at atmospheric pressure from 293.15 to 323.15 K. A Henry’s law model was developed for the distilled tall oil fractions describing the solubility with an absolute average deviation of 2.1%. Inputs of the solubility model are temperature, total pressure and the density of the oil at 323.15 K. The solubility of hydrogen in the CTO sample can be described with the developed model with an absolute average deviation of 3.4%. The solubility of hydrogen increases both with increasing pressure and/or increasing temperature. The more dense fractions of the tall oil exhibit lower hydrogen

  9. Toward accurate prediction of potential energy surfaces and the spectral density of hydrogen bonded systems

    International Nuclear Information System (INIS)

    Rekik, Najeh

    2014-01-01

    Despite the considerable progress made in quantum theory and computational methods, detailed descriptions of the potential energy surfaces of hydrogen-bonded systems have not yet been achieved. In addition, the hydrogen bond (H-bond) itself is still so poorly understood at the fundamental level that it remains unclear exactly what geometry constitutes a “real” H-bond. Therefore, in order to investigate features essential for hydrogen bonded complexes, a simple, efficient, and general method for calculating matrix elements of vibrational operators capable of describing the stretching modes and the H-bond bridges of hydrogen-bonded systems is proposed. The derived matrix elements are simple and computationally easy to evaluate, which makes the method suitable for vibrational studies of multiple-well potentials. The method is illustrated by obtaining potential energy surfaces for a number of two-dimensional systems with repulsive potentials chosen to be in Gaussian form for the stretching mode and of the Morse-type for the H-bond bridge dynamics. The forms of potential energy surfaces of weak and strong hydrogen bonds are analyzed by varying the asymmetry of the Gaussian potential. Moreover, the choice and applicability of the selected potential for the stretching mode and comparison with other potentials used in the area of hydrogen bond research are discussed. The approach for the determination of spectral density has been constructed in the framework of the linear response theory for which spectral density is obtained by Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode. The approach involves anharmonic coupling between the high frequency stretching vibration (double well potential) and low-frequency donor-acceptor stretching mode (Morse potential) as well as the electrical anharmonicity of the dipole moment operator of the fast mode. A direct relaxation mechanism is incorporated through a time decaying exponential

  10. Reineke’s stand density index: a quantitative and non-unitless measure of stand density

    Science.gov (United States)

    Curtis L. VanderSchaaf

    2013-01-01

    When used as a measure of relative density, Reineke’s stand density index (SDI) can be made unitless by relating the current SDI to a standard density but when used as a quantitative measure of stand density SDI is not unitless. Reineke’s SDI relates the current stand density to an equivalent number of trees per unit area in a stand with a quadratic mean diameter (Dq)...

  11. Detailed studies of a high-density polarized hydrogen gas target for storage rings

    International Nuclear Information System (INIS)

    Zapfe, K.; Brueckner, W.; Gaul, H.G.; Grieser, M.; Lin, M.T.; Moroz, Z.; Povh, B.; Rall, M.; Stechert, B.; Steffens, E.; Stenger, J.; Stock, F.; Tonhaeuser, J.; Montag, C.; Rathmann, F.; Fick, D.; Braun, B.; Graw, G.; Haeberli, W.

    1996-01-01

    A high-density target of polarized atomic hydrogen gas for applications in storage rings was produced by injecting atoms from an atomic beam source into a T-shaped storage cell. The influence of the internal gas target on electron-cooled beams of 27 MeV α-particles and 23 MeV protons in the Heidelberg Test Storage Ring has been studied in detail. Target polarization and target thickness were measured by means of 27 MeV α-particles. For hyperfine states 1+2 a target thickness of n=(0.96±0.04) x 10 14 H/cm 2 was achieved with the cell walls cooled to 100 K. Working with a weak magnetic holding field (∼5 G) the maximum target polarization was P T =0.84±0.02 when state 1 and P T =0.46±0.01 when states 1+2 were injected. The target polarization was found to be constant over a period of 3 months with a net charge of Q∼100 C passing the storage cell. (orig.)

  12. An electrochemical hydrogen meter for measuring hydrogen in sodium using a ternary electrolyte mixture

    CERN Document Server

    Sridharan, R; Nagaraj, S; Gnanasekaran, T; Periaswami, G

    2003-01-01

    An electrochemical sensor for measuring hydrogen concentration in liquid sodium that is based on a ternary mixture of LiCl, CaCl sub 2 and CaHCl as the electrolyte has been developed. DSC experiments showed the eutectic temperature of this ternary system to be approx 725 K. Impedance spectroscopic analysis of the electrolyte indicated ionic conduction through a molten phase at approx 725 K. Two electrochemical hydrogen sensors were constructed using the ternary electrolyte of composition 70 mol% LiCl:16 mol% CaHCl:14 mol% CaCl sub 2 and tested at 723 K in a mini sodium loop and at hydrogen levels of 60-250 ppb in sodium. The sensors show linear response in this concentration range and are capable of detecting a change of 10 ppb hydrogen in sodium over a background level of 60 ppb. Identification of this electrolyte system and its use in a sensor for measuring hydrogen in sodium are described in this paper.

  13. Stark broadening of the Hα line of hydrogen at low densities: quantal and semiclassical results

    International Nuclear Information System (INIS)

    Stehle, C.; Feautrier, N.

    1984-01-01

    Stark profiles of the Hα lines of hydrogen are computed at low densities in the 'impact' theory. By a comparison with quantal results, it is shown that a simple semiclassical perturbational approach with appropriate cutoffs is sufficient to give accurate profiles in the line centre. Neglecting the natural broadening and the fine-structure effects, the authors prove that the electronic broadening is negligible and that the profile has a Lorentzian shape. An analytical expression of the half width is given. (author)

  14. Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen

    Science.gov (United States)

    Young, Matthew Garett

    The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.

  15. Measurement of hydrogen in BCN films by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko [Kanazawa Univ. (Japan); Awazu, Kaoru [Industrial Research Inst., of Ishikawa, Kanazawa (Japan); Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-07-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influence on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem produce the films with the properties required. Ion beam techniques using nuclear reactions are effective for the quantitative determination of hydrogen concentration. A specially designed spectrometer is employed for the detailed determination of hydrogen concentrations by detecting 4.43MeV {gamma}-rays from the resonant nuclear reactions {sup 1}H({sup 15}N, {alpha}{gamma}){sup 12}C at the 6.385MeV. In this study, the BCN films were formed on silicon substrate by ion beam assisted deposition (IBAD), in which boron and carbon were deposited by electron beam heating of B{sub 4}C solid and nitrogen was supplied by ion implantation simultaneously. The concentrations of hydrogen in BCN films were measured using RNRA. The mechanical properties of BCN films were evaluated using an ultra-micro-hardness tester. It was confirmed that the hardness of BCN films increased with increasing the concentration of hydrogen. (author)

  16. Hydrogen dynamics in Na3AlH6: A combined density functional theory and quasielastic neutron scattering study

    DEFF Research Database (Denmark)

    Voss, Johannes; Shi, Qing; Jacobsen, Hjalte Sylvest

    2007-01-01

    alanate with TiCl3, and here we study hydrogen dynamics in doped and undoped Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. The hydrogen dynamics is found to be vacancy mediated and dominated by localized jump events, whereas long-range bulk......Understanding the elusive catalytic role of titanium-based additives on the reversible hydrogenation of complex hydrides is an essential step toward developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed effects of doping sodium...... defect motion in sodium alanate could result from vacancy-mediated sodium diffusion....

  17. Measurements of recombination coefficient of hydrogen atoms on plasma deposited thin films

    International Nuclear Information System (INIS)

    Drenik, A.; Vesel, A.; Mozetic, M.

    2006-01-01

    We have performed experiments in plasma afterglow in order to determine the recombination coefficients of plasma deposited thin films of tungsten and graphite. Plasma deposited films rather than bulk material were used in order to more closely emulate surface structure of plasma-facing material deposits in fusion reactors. We have also determined the recombination coefficient of 85250 borosilicate glass and Teflon. Plasma was created by means of a radio frequency generator in a mixture of argon and hydrogen at the pressures between 60 Pa and 280 Pa. The degree of dissociation of hydrogen molecules was found to be between 0.1 and 1. The H-atom density was measured by Fiber Optic Catalytic Probe. The recombination coefficient was determined by measuring the axial profile of the H-atom density and using Smith's side arm diffusion model. (author)

  18. X-ray measurements of water fog density

    International Nuclear Information System (INIS)

    Camp, A.L.

    1982-11-01

    Water-fog densities were measured in a laboratory experiment using x-ray diagnostics. Fog densities were measured, varying the flow rate, nozzle type, nozzle configuration, nozzle height above the x-ray beam, and water surface tension. Suspended water volume fractions between 0.0008 and 0.0074 percent were measured. The fog density increases approximately as the square root of the flow rate; the other parameters had little effect on the density

  19. Electron density measurements in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mitarai, O; Nakashima, H; Nakamura, K; Hiraki, N; Toi, K [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-02-01

    Electron density measurements in the TRIAM-1 tokamak are carried out by a 140 GHz microwave interferometer. To follow rapid density variations, a high-speed direct-reading type interferometer is constructed. The density of (1 - 20) x 10/sup 13/ cm/sup -3/ is measured.

  20. Electron density measurements in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Mitarai, Osamu; Nakashima, Hisatoshi; Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo

    1980-01-01

    Electron density measurements in the TRIAM-1 tokamak are carried out by a 140 GHz microwave interferometer. To follow rapid density variations, a high-speed direct-reading type interferometer is constructed. The density of (1 - 20) x 10 13 cm -3 is measured. (author)

  1. Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBin; ZHANG PengYan; MA Kai; HAN Fang; CHEN GuoHua; WEI XiongHui

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures, The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume, which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×106 (volume ratio) in the gas phase. Meanwhile, FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration, respectively. Furthermore, the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  2. Thermodynamic and kinetic properties of hydrogen defect pairs in SrTiO3 from density functional theory

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Bonanos, Nikolaos; Rossmeisl, Jan

    2011-01-01

    A density functional theory investigation of the thermodynamic and kinetic properties of hydrogen–hydrogen defect interactions in the cubic SrTiO3 perovskite is presented. We find a net attraction between two hydrogen atoms with an optimal separation of ∼2.3 Å. The energy gain is ca. 0.33 eV comp...

  3. Concentration of atomic hydrogen in a dielectric barrier discharge measured by two-photon absorption fluorescence

    Science.gov (United States)

    Dvořák, P.; Talába, M.; Obrusník, A.; Kratzer, J.; Dědina, J.

    2017-08-01

    Two-photon absorption laser-induced fluorescence (TALIF) was utilized for measuring the concentration of atomic hydrogen in a volume dielectric barrier discharge (DBD) ignited in mixtures of Ar, H2 and O2 at atmospheric pressure. The method was calibrated by TALIF of krypton diluted in argon at atmospheric pressure, proving that three-body collisions had a negligible effect on quenching of excited krypton atoms. The diagnostic study was complemented with a 3D numerical model of the gas flow and a zero-dimensional model of the chemistry in order to better understand the reaction kinetics and identify the key pathways leading to the production and destruction of atomic hydrogen. It was determined that the density of atomic hydrogen in Ar-H2 mixtures was in the order of 1021 m-3 and decreased when oxygen was added into the gas mixture. Spatially resolved measurements and simulations revealed a sharply bordered region with low atomic hydrogen concentration when oxygen was added to the gas mixture. At substoichiometric oxygen/hydrogen ratios, this H-poor region is confined to an area close to the gas inlet and it is shown that the size of this region is not only influenced by the chemistry but also by the gas flow patterns. Experimentally, it was observed that a decrease in H2 concentration in the feeding Ar-H2 mixture led to an increase in H production in the DBD.

  4. Procedure for Uranium-Molybdenum Density Measurements and Porosity Determination

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-13

    The purpose of this document is to provide guidelines for preparing uranium-molybdenum (U-Mo) specimens, performing density measurements, and computing sample porosity. Typical specimens (solids) will be sheared to small rectangular foils, disks, or pieces of metal. A mass balance, solid density determination kit, and a liquid of known density will be used to determine the density of U-Mo specimens using the Archimedes principle. A standard test weight of known density would be used to verify proper operation of the system. By measuring the density of a U-Mo sample, it is possible to determine its porosity.

  5. A technique for measuring hydrogen and water in inert gases and the hydrogen concentration in liquid sodium

    International Nuclear Information System (INIS)

    Smith, C.A.

    1978-04-01

    A method is described of measuring the hydrogen and water content of an inert gas. It is based upon the use of an electrochemical oxygen cell and has a high sensitivity at low hydrogen and water levels. The following possible applications of the method are described together with supporting experimental measurements: improving the sensitivity and range of the present PFR secondary circuit hydrogen detection instruments; the measurement of hydrogen diffusion coefficients in steels; the measurement of waterside corrosion rates of boiler steels; on-line monitoring of waterside boiler corrosion. Attention is given to the characteristics of diffusion barriers in relation to the first and last of these. (author)

  6. Density functional theory study on the formation of reactive benzoquinone imines by hydrogen abstraction

    DEFF Research Database (Denmark)

    Leth, Rasmus; Rydberg, Patrik; Jørgensen, Flemming Steen

    2015-01-01

    Many drug compounds are oxidized by cytochrome P450 (CYP) enzymes to form reactive metabolites. This study presents density functional theory calculations of the CYP-mediated metabolism of acetaminophen and a series of related compounds that can form reactive metabolites by hydrogen abstraction....... The substitution pattern affects the activation barrier for hydrogen abstraction by up to 30 kJ/mol. A correlation (R(2) = 0.72) between the transition-state energies and the corresponding substrate radical energies has been established. Using this correlation is significantly less time-demanding than using...... the porphyrin model to determine the activation energies. We have used this correlation on monosubstituted phenols to rationalize the effect of the various substituents in the drug compounds. In addition to facilitating a chemical interpretation, the approach is sufficiently fast and reliable to be used...

  7. Density functional theory study on the ionic liquid pyridinium hydrogen sulfate

    Science.gov (United States)

    Tankov, Ivaylo; Yankova, Rumyana; Genieva, Svetlana; Mitkova, Magdalena; Stratiev, Dicho

    2017-07-01

    The geometry, electronic structure and chemical reactivity of a pyridinium-based ionic liquid, pyridinium hydrogen sulfate ([H-Pyr]+[HSO4]-), have been discussed on the basis of quantum chemical density functional theory calculations using B3LYP/6-311+G(d,p) and B3LYP/6-311++G(2d,2p) approaches. The calculations indicated that [H-Pyr]+[HSO4]- exists in the form of an ion pair. A large electropositive potential was found on the pyridinium ring, while the regions of a negative electrostatic potential is linked with the lone pair of electronegative oxygen atoms in hydrogen sulfate anion ([HSO4]-). Electron transfer both within the anion, and between the anion and cation of an ion pair were described using natural bond orbital theory. The energy values of -7.1375 and -2.8801 eV were related to HOMO and LUMO orbitals, respectively.

  8. Plant density affects measures of biodiversity effects

    Czech Academy of Sciences Publication Activity Database

    Stachová, T.; Fibich, P.; Lepš, Jan

    2013-01-01

    Roč. 6, č. 1 (2013), s. 1-11 ISSN 1752-9921 R&D Projects: GA ČR GD206/08/H044 Grant - others:GA JU(CZ) 138/2010/P Institutional support: RVO:60077344 Keywords : biodiversity effects * plant density * constant final yield Subject RIV: EH - Ecology, Behaviour Impact factor: 2.284, year: 2013 http://jpe.oxfordjournals.org/content/early/2012/04/27/jpe.rts015.full.pdf+html

  9. Estimating snowpack density from Albedo measurement

    Science.gov (United States)

    James L. Smith; Howard G. Halverson

    1979-01-01

    Snow is a major source of water in Western United States. Data on snow depth and average snowpack density are used in mathematical models to predict water supply. In California, about 75 percent of the snow survey sites above 2750-meter elevation now used to collect data are in statutory wilderness areas. There is need for a method of estimating the water content of a...

  10. Gamma densitometer for measuring Pu density in fuel tubes

    International Nuclear Information System (INIS)

    Winn, W.G.

    1982-01-01

    A fuel-gamma-densitometer (FGD) has been developed to examine nondestructively the uniformity of plutonium in aluminum-clad fuel tubes at the Savannah River Plant (SRP). The monitoring technique is γ-ray spectroscopy with a lead-collimated Ge(Li) detector. Plutonium density is correlated with the measured intensity of the 208 keV γ-ray from 237 U (7d) of the 241 Pu (15y) decay chain. The FGD measures the plutonium density within 0.125- or 0.25-inch-diameter areas of the 0.133- to 0.183-inch-thick tube walls. Each measurement yields a density ratio that relates the plutonium density of the measured area to the plutonium density in normal regions of the tube. The technique was used to appraise a series of fuel tubes to be irradated in an SRP reactor. High-density plutonium areas were initially identified by x-ray methods and then examined quantitatively with the FGD. The FGD reliably tested fuel tubes and yielded density ratios over a range of 0.0 to 2.5. FGD measurements examined (1) nonuniform plutonium densities or hot spots, (2) uniform high-density patches, and (3) plutonium density distribution in thin cladding regions. Measurements for tubes with known plutonium density agreed with predictions to within 2%. Attenuation measurements of the 208-keV γ-ray passage through the tube walls agreed to within 2 to 3% of calculated predictions. Collimator leakage measurements agreed with model calculations that predicted less than a 1.5% effect on plutonium density ratios. Finally, FGD measurements correlated well with x-ray transmission and fluoroscopic measurements. The data analysis for density ratios involved a small correction of about 10% for γ-shielding within the fuel tube. For hot spot examinations, limited information for this correction dictated a density ratio uncertainty of 3 to 5%

  11. Density measurements of small amounts of high-density solids by a floatation method

    International Nuclear Information System (INIS)

    Akabori, Mitsuo; Shiba, Koreyuki

    1984-09-01

    A floatation method for determining the density of small amounts of high-density solids is described. The use of a float combined with an appropriate floatation liquid allows us to measure the density of high-density substances in small amounts. Using the sample of 0.1 g in weight, the floatation liquid of 3.0 g cm -3 in density and the float of 1.5 g cm -3 in apparent density, the sample densities of 5, 10 and 20 g cm -3 are determined to an accuracy better than +-0.002, +-0.01 and +-0.05 g cm -3 , respectively that correspond to about +-1 x 10 -5 cm 3 in volume. By means of appropriate degassing treatments, the densities of (Th,U)O 2 pellets of --0.1 g in weight and --9.55 g cm -3 in density were determined with an accuracy better than +-0.05 %. (author)

  12. Two Photon Absorption Laser Induced Fluorescence for Neutral Hydrogen Profile Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Scime, Earl E. [West Virginia Univ., Morgantown, WV (United States)

    2016-09-23

    The magnitude and spatial dependence of neutral density in magnetic confinement fusion experiments is a key physical parameter, particularly in the plasma edge. Modeling codes require precise measurements of the neutral density to calculate charge-exchange power losses and drag forces on rotating plasmas. However, direct measurements of the neutral density are problematic. In this work, we proposed to construct a laser-based diagnostic capable of providing spatially resolved measurements of the neutral density in the edge of plasma in the DIII-D tokamak. The diagnostic concept is based on two-photon absorption laser induced fluorescence (TALIF). By injecting two beams of 205 nm light (co or counter propagating), ground state hydrogen (or deuterium or tritium) can be excited from the n = 1 level to the n = 3 level at the location where the two beams intersect. Individually, the beams experience no absorption, and therefore have no difficulty penetrating even dense plasmas. After excitation, a fraction of the hydrogen atoms decay from the n = 3 level to the n = 2 level and emit photons at 656 nm (the Hα line). Calculations based on the results of previous TALIF experiments in magnetic fusion devices indicated that a laser pulse energy of approximately 3 mJ delivered in 5 ns would provide sufficient signal-to-noise for detection of the fluorescence. In collaboration with the DIII-D engineering staff and experts in plasma edge diagnostics for DIII-D from Oak Ridge National Laboratory (ORNL), WVU researchers designed a TALIF system capable of providing spatially resolved measurements of neutral deuterium densities in the DIII-D edge plasma. The laser systems were specified, purchased, and assembled at WVU. The TALIF system was tested on a low-power hydrogen discharge at WVU and the plan was to move the instrument to DIII-D for installation in collaboration with ORNL researchers. After budget cuts at DIII-D, the DIII-D facility declined to support

  13. Two Photon Absorption Laser Induced Fluorescence for Neutral Hydrogen Profile Measurements

    International Nuclear Information System (INIS)

    Scime, Earl E.

    2016-01-01

    The magnitude and spatial dependence of neutral density in magnetic confinement fusion experiments is a key physical parameter, particularly in the plasma edge. Modeling codes require precise measurements of the neutral density to calculate charge-exchange power losses and drag forces on rotating plasmas. However, direct measurements of the neutral density are problematic. In this work, we proposed to construct a laser-based diagnostic capable of providing spatially resolved measurements of the neutral density in the edge of plasma in the DIII-D tokamak. The diagnostic concept is based on two-photon absorption laser induced fluorescence (TALIF). By injecting two beams of 205 nm light (co or counter propagating), ground state hydrogen (or deuterium or tritium) can be excited from the n = 1 level to the n = 3 level at the location where the two beams intersect. Individually, the beams experience no absorption, and therefore have no difficulty penetrating even dense plasmas. After excitation, a fraction of the hydrogen atoms decay from the n = 3 level to the n = 2 level and emit photons at 656 nm (the H α line). Calculations based on the results of previous TALIF experiments in magnetic fusion devices indicated that a laser pulse energy of approximately 3 mJ delivered in 5 ns would provide sufficient signal-to-noise for detection of the fluorescence. In collaboration with the DIII-D engineering staff and experts in plasma edge diagnostics for DIII-D from Oak Ridge National Laboratory (ORNL), WVU researchers designed a TALIF system capable of providing spatially resolved measurements of neutral deuterium densities in the DIII-D edge plasma. The laser systems were specified, purchased, and assembled at WVU. The TALIF system was tested on a low-power hydrogen discharge at WVU and the plan was to move the instrument to DIII-D for installation in collaboration with ORNL researchers. After budget cuts at DIII-D, the DIII-D facility declined to support installation on their

  14. Performance of Several Density Functional Theory Methods on Describing Hydrogen-Bond Interactions.

    Science.gov (United States)

    Rao, Li; Ke, Hongwei; Fu, Gang; Xu, Xin; Yan, Yijing

    2009-01-13

    We have investigated eleven density functionals, including LDA, PBE, mPWPW91, TPSS, B3LYP, X3LYP, PBE0, O3LYP, B97-1, MPW1K, and TPSSh, for their performances on describing hydrogen bond (HB) interactions. The emphasis has been laid not only on their abilities to calculate the intermolecular hydrogen bonding energies but also on their performances in predicting the relative energies of intermolecular H-bonded complexes and the conformer stabilities due to intramolecular hydrogen bondings. As compared to the best theoretical values, we found that although PBE and PBE0 gave the best estimation of HB strengths, they might fail to predict the correct order of relative HB energies, which might lead to a wrong prediction of the global minimum for different conformers. TPSS and TPSSh did not always improve over PBE and PBE0. B3LYP was found to underestimate the intermolecular HB strengths but was among the best performers in calculating the relative HB energies. We showed here that X3LYP and B97-1 were able to give good values for both absolute HB strengths and relative HB energies, making these functionals good candidates for HB description.

  15. Testing the molecular-hydrogen Kennicutt-Schmidt law in the low-density environments of extended ultraviolet disc galaxies

    Science.gov (United States)

    Watson, Linda C.; Martini, Paul; Lisenfeld, Ute; Böker, Torsten; Schinnerer, Eva

    2016-01-01

    Studying star formation beyond the optical radius of galaxies allows us to test empirical relations in extreme conditions with low average gas density and low molecular fraction. Previous studies discovered galaxies with extended ultraviolet (XUV) discs, which often contain star-forming regions with lower Hα-to-far-UV (FUV) flux ratios compared to inner disc star-forming regions. However, most previous studies lack measurements of molecular gas, which is presumably the component of the interstellar medium out of which stars form. We analysed published CO measurements and upper limits for 15 star-forming regions in the XUV or outer disc of three nearby spiral galaxies and a new CO upper limit from the IRAM (Institut de Radioastronomie Millimétrique) 30 m telescope in one star-forming region at r = 3.4r25 in the XUV disc of NGC 4625. We found that the star-forming regions are in general consistent with the same molecular-hydrogen Kennicutt-Schmidt law that applies within the optical radius, independent of whether we used Hα or FUV as the star formation rate (SFR) tracer. However, a number of the CO detections are significantly offset towards higher SFR surface density for their molecular-hydrogen surface density. Deeper CO data may enable us to use the presence or absence of molecular gas as an evolutionary probe to break the degeneracy between age and stochastic sampling of the initial mass function as the explanation for the low Hα-to-FUV flux ratios in XUV discs.

  16. Tomographic Measurements of Longitudinal Phase Space Density

    CERN Document Server

    Hancock, S; McIntosh, E; Metcalf, M

    1999-01-01

    Tomography : the reconstruction of a two-dimensional image from a series of its one-dimensional projections is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. One of the simplest algorithms has been modified to take into account the non-linearity of large-amplitude synchrotron motion in a particle accelerator. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The algorithm was developed in Mathematica TM in order to exploit the extensive built-in functions and graphics. Subsequently, it has been recoded in Fortran 90 with the aim of reducing the execution time by at least a factor of one hundred. The choice of Fortran 90 was governed by the desire ultimately to exploit parallel architectures, but sequential compilation and execution have already largely yielded the required gain in speed. The use of the method to produce longitudinal phase space plots, animated sequences o...

  17. Smart density: A more accurate method of measuring rural residential density for health-related research.

    Science.gov (United States)

    Owens, Peter M; Titus-Ernstoff, Linda; Gibson, Lucinda; Beach, Michael L; Beauregard, Sandy; Dalton, Madeline A

    2010-02-12

    Studies involving the built environment have typically relied on US Census data to measure residential density. However, census geographic units are often unsuited to health-related research, especially in rural areas where development is clustered and discontinuous. We evaluated the accuracy of both standard census methods and alternative GIS-based methods to measure rural density. We compared residential density (units/acre) in 335 Vermont school neighborhoods using conventional census geographic units (tract, block group and block) with two GIS buffer measures: a 1-kilometer (km) circle around the school and a 1-km circle intersected with a 100-meter (m) road-network buffer. The accuracy of each method was validated against the actual residential density for each neighborhood based on the Vermont e911 database, which provides an exact geo-location for all residential structures in the state. Standard census measures underestimate residential density in rural areas. In addition, the degree of error is inconsistent so even the relative rank of neighborhood densities varies across census measures. Census measures explain only 61% to 66% of the variation in actual residential density. In contrast, GIS buffer measures explain approximately 90% of the variation. Combining a 1-km circle with a road-network buffer provides the closest approximation of actual residential density. Residential density based on census units can mask clusters of development in rural areas and distort associations between residential density and health-related behaviors and outcomes. GIS-defined buffers, including a 1-km circle and a road-network buffer, can be used in conjunction with census data to obtain a more accurate measure of residential density.

  18. Smart density: a more accurate method of measuring rural residential density for health-related research

    Directory of Open Access Journals (Sweden)

    Gibson Lucinda

    2010-02-01

    Full Text Available Abstract Background Studies involving the built environment have typically relied on US Census data to measure residential density. However, census geographic units are often unsuited to health-related research, especially in rural areas where development is clustered and discontinuous. Objective We evaluated the accuracy of both standard census methods and alternative GIS-based methods to measure rural density. Methods We compared residential density (units/acre in 335 Vermont school neighborhoods using conventional census geographic units (tract, block group and block with two GIS buffer measures: a 1-kilometer (km circle around the school and a 1-km circle intersected with a 100-meter (m road-network buffer. The accuracy of each method was validated against the actual residential density for each neighborhood based on the Vermont e911 database, which provides an exact geo-location for all residential structures in the state. Results Standard census measures underestimate residential density in rural areas. In addition, the degree of error is inconsistent so even the relative rank of neighborhood densities varies across census measures. Census measures explain only 61% to 66% of the variation in actual residential density. In contrast, GIS buffer measures explain approximately 90% of the variation. Combining a 1-km circle with a road-network buffer provides the closest approximation of actual residential density. Conclusion Residential density based on census units can mask clusters of development in rural areas and distort associations between residential density and health-related behaviors and outcomes. GIS-defined buffers, including a 1-km circle and a road-network buffer, can be used in conjunction with census data to obtain a more accurate measure of residential density.

  19. Laser produced plasma density measurement by Mach-Zehnder interferometry

    International Nuclear Information System (INIS)

    Vaziri, A.; Kohanzadeh, Y.; Mosavi, R.K.

    1976-06-01

    This report describes an optical interferometric method of measuring the refractive index of the laser-produced plasma, giving estimates of its electron density. The plasma is produced by the interaction of a high power pulsed CO 2 laser beam with a solid target in the vacuum. The time varying plasma has a transient electron density. This transient electron density gives rise to a changing plasma refractive index. A Mach-Zehnder ruby laser interferometer is used to measure this refractive index change

  20. Quantum probability measures and tomographic probability densities

    NARCIS (Netherlands)

    Amosov, GG; Man'ko, [No Value

    2004-01-01

    Using a simple relation of the Dirac delta-function to generalized the theta-function, the relationship between the tomographic probability approach and the quantum probability measure approach with the description of quantum states is discussed. The quantum state tomogram expressed in terms of the

  1. A gauge for the measurement of wood density MGD-05

    International Nuclear Information System (INIS)

    Bartak, J.; Machaj, B.; Urbanski, P.; Pienkos, P.

    2006-01-01

    Wood density is an important parameter determining several properties of wood as: wood quality, mechanical resistance, charcoal production, transport cost, etc. Radiometric methods for the measurement of wood density are based on attenuation of 241 Am gamma radiation, or measurement of backscattered 241 Am radiation. In the paper authors describe the newly constructed computerized gauge designed for the non routine measurements. Up to 1000 measuring results can be stored in the gauge memory and the measuring results can be sent to an external laptop for computations of density contours

  2. Alpha radiation gauge for the measurement of gas density

    International Nuclear Information System (INIS)

    Lech, M.

    1977-01-01

    Alpha gauge for the measurement of gas density with thick alfa source, has been developed. The gauge is based on radiation transmission through a space filled with gas and total-count principle. Air density can be measured in the range 1,2 - 1,27 kg m -3 with a maximum standard deviation of 2 x 10 -3 kg m -3 . (author)

  3. Preionization electron density measurement by collecting electric charge

    International Nuclear Information System (INIS)

    Giordano, G.; Letardi, T.

    1988-01-01

    A method using electron collection for preionization-electron number density measurements is presented. A cathode-potential drop model is used to describe the measurement principle. There is good agreement between the model and the experimental result

  4. Spectrum of density turbulence measured by microwave reflectometer

    International Nuclear Information System (INIS)

    Ding Xuantong; Cao Janyong; Xu Deming; Zhang Hongying; Yang Qinwei

    1993-01-01

    The principle of measuring lower frequency density turbulence with microwave reflectometer is presented. Preliminary results from the HL-1 tokamak have been obtained and compared with the results measured by means of electrostatic probe

  5. Procedure of non-contacting local mass density and mass density distribution measurements

    International Nuclear Information System (INIS)

    Menzel, M.; Winkler, K.

    1985-01-01

    The invention has been aimed at a procedure of non-contacting local mass density and/or mass density distribution measurements i.e. without the interfering influence of sensors or probes. It can be applied to installations, apparatuses and pipings of chemical engineering, to tank constructions and transportation on extreme temperature and/or pressure conditions and aggressive media influences respectively. The procedure has utilized an ionizing quantum radiation whereby its unknown weakening and scattering is compensated by a suitable combination of scattering and transmission counter rate measurements in such a way that the local mass densities and the mass density distribution respectively are determinable

  6. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Eric [College of Engineering, Purdue University, West Lafayette, IN 47907 (United States); Dailly, Anne [Chemical and Environmental Sciences Laboratory, General Motors Corporation, Warren, MI 48090 (United States)], E-mail: poirierem@gmail.com, E-mail: anne.dailly@gm.com

    2009-05-20

    Hydrogen adsorption measurements and modelling for the Zn-based microporous metal-organic framework (MOF) Zn{sub 4}O(1,3,5-benzenetribenzoate){sub 2}, MOF-177, were performed over the 50-77 K and 0-40 bar ranges. The maximum excess adsorption measured under these conditions varies over about 105-70 mg g{sup -1}. An analysis of the isotherms near saturation shows that hydrogen is ultimately adsorbed in an incompressible phase whose density is comparable to that of the bulk liquid. These liquid state properties observed under supercritical conditions reveal a remarkable effect of nanoscale confinement. The entire set of adsorption isotherms can be well described using a micropore filling model. The latter is used, in particular, to determine the absolute amounts adsorbed and the adsorption enthalpy. When expressed in terms of absolute adsorption, the isotherms show considerable hydrogen storage capacities, reaching up to 125 mg g{sup -1} at 50 K and 25 bar. The adsorption enthalpies are calculated as a function of fractional filling and range from 3 to 5 kJ mol{sup -1} in magnitude, in accordance with physisorption. These results are discussed with respect to a similar analysis performed on another Zn-based MOF, Zn{sub 4}O(1,4-benzenedicarboxylate){sub 3}, IRMOF-1, presented recently. It is found that both materials adsorb hydrogen by similar mechanisms.

  7. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling

    International Nuclear Information System (INIS)

    Poirier, Eric; Dailly, Anne

    2009-01-01

    Hydrogen adsorption measurements and modelling for the Zn-based microporous metal-organic framework (MOF) Zn 4 O(1,3,5-benzenetribenzoate) 2 , MOF-177, were performed over the 50-77 K and 0-40 bar ranges. The maximum excess adsorption measured under these conditions varies over about 105-70 mg g -1 . An analysis of the isotherms near saturation shows that hydrogen is ultimately adsorbed in an incompressible phase whose density is comparable to that of the bulk liquid. These liquid state properties observed under supercritical conditions reveal a remarkable effect of nanoscale confinement. The entire set of adsorption isotherms can be well described using a micropore filling model. The latter is used, in particular, to determine the absolute amounts adsorbed and the adsorption enthalpy. When expressed in terms of absolute adsorption, the isotherms show considerable hydrogen storage capacities, reaching up to 125 mg g -1 at 50 K and 25 bar. The adsorption enthalpies are calculated as a function of fractional filling and range from 3 to 5 kJ mol -1 in magnitude, in accordance with physisorption. These results are discussed with respect to a similar analysis performed on another Zn-based MOF, Zn 4 O(1,4-benzenedicarboxylate) 3 , IRMOF-1, presented recently. It is found that both materials adsorb hydrogen by similar mechanisms.

  8. High current density ion beam measurement techniques

    International Nuclear Information System (INIS)

    Ko, W.C.; Sawatzky, E.

    1976-01-01

    High ion beam current measurements are difficult due to the presence of the secondary particles and beam neutralization. For long Faraday cages, true current can be obtained only by negative bias on the target and by summing the cage wall and target currents; otherwise, the beam will be greatly distorted. For short Faraday cages, a combination of small magnetic field and the negative target bias results in correct beam current. Either component alone does not give true current

  9. Precise optical Lamb shift measurements in atomic hydrogen

    International Nuclear Information System (INIS)

    Weitz, M.; Schmidt-Kaler, F.; Haensch, T.W.

    1992-01-01

    The 1S ground-state Lamb shift in atomic hydrogen has been measured to an accuracy of 1.3 parts in 10 5 by directly comparing the optical frequencies of the 1S-2S and the 2S-4S,4D two-photon transitions. The result, 8172.82(11) MHz, agrees with the theoretical prediction of 8172.94(9) MHz and rivals measurements of the 2S Lamb shift as a test of QED for a bound system. A comparison of the 2S-4S and 2S-4D intervals yields a 4S Lamb shift of 131.66(4) MHz

  10. Density and temperature measurement using CARS spectroscopy

    International Nuclear Information System (INIS)

    Hirth, A.; Vollrath, K.

    1979-01-01

    Coherent Anti Stokes Raman Scattering (CARS) a technique derived from nonlinear optics offers two major advantages compared with the spontaneous Raman method: improved scattering efficiency and spatial coherence of the scattered signal. The theory of the coherent mixing in resonant media serves as a quantitative background of the CARS technique. A review of several applications on plasma physics and gasdynamics is given, which permits to consider the CARS spectroscopy as a potential method for nonintrusive measurement of local concentration and temperature in gas flows and reactive media. (Auth.)

  11. Measuring planetary hydrogen by remote gamma-ray sensing

    International Nuclear Information System (INIS)

    Haines, E.L.; Metzger, A.E.

    1984-01-01

    A γ-ray spectrometer (GRS) orbiting about an airless or nearly airless planetary body may be used to detect and measure hydrogen concentration and the neutron leakage flux. The H concentration affects both the magnitude and energy spectrum of the neutron flux, while the neutron flux, in turn, determines the intensity of the observed H γ-ray line for a given concentration. Because of this interconnection, the dual measurement of both H and neutron flux enhances the accuracy of each, and assists in the measurement of other elements. Hydrogen is detected by means of its 2.223 MeV γ ray which arises from the capture of thermal neutrons producing deuterium. The 2.223 MeV H signal is observed in the γ-ray spectrum against an interference spectrum consisting of cosmic γ rays, planetary background emission, and a variety of γ rays arising from cosmic-ray particle interactions with the γ-ray spectrometer and spacecraft (SC). In addition, line interferences are generated by the interactions of neutrons with hydrogenous materials in the GRS and SC. In this paper the expected signal levels and the sources of continuum and line interference in the detection and measurement of H are assessed in terms of two possible missions, a lunar orbiter and a comet nucleus rendezvous. In lunar orbit, a 100 h observation at an altitude of 100 km should enable the detection of H at a level of 0.06% with an uncertainty of approx.=0.02%. At a distance equal to the radius of a comet's nucleus, in 100 h a GRS can detect H at a level of 0.07% and can measure H at expected cometary levels (approx.= 6%) with an uncertainty of 0.06%. (orig.)

  12. Electron density and gas density measurements in a millimeter-wave discharge

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, S. C., E-mail: sschaub@mit.edu; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology 167 Albany St., Bldg. NW16, Cambridge, Massachusetts 02139 (United States)

    2016-08-15

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.

  13. Electron density and gas density measurements in a millimeter-wave discharge

    International Nuclear Information System (INIS)

    Schaub, S. C.; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J.

    2016-01-01

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.

  14. Numerical study of overpopulation density for laser oscillation in recombining hydrogen plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Oda, T.; Furukane, U.

    1983-06-01

    The dependence of overpopulation density (OD) on ground-level population density (n1) and electron temperature (Te) in a recombining hydrogen plasma is evaluated for line pairs with the principal quantum numbers (2,3), (3,4), and (4,5). The approach is based on the simultaneouss solution of the quasi-steady-state rate equation (including interatomic-collision terms) and the optical-escape-factor equation for the Lyman series with Doppler profile. Calculations are performed for optically thin and thick plasmas at a fixed atomic temperature of 0.15 eV, over a Te range from 0.1 to 1 eV and an electron-density (ne) range from 10 to the 11th to 10 to the 17th per cu cm. It is shown that peak OD occurs at an ne slightly below that at which population inversion is destroyed, that peak OD is inversely sensitive to Te, and that peak OD(2,3) is the highest of the three peak OD. Laser oscillation is determined to be possible for (2,3) at Te higher than for (3,4) and (4,5), if self-absorption is negligible. The OD remains constant as n1 increases, up to the point at which significant self-absorption occurs. No laser oscillation is expected at level (4,5), nor in optically thick plasma at any level, for the realistic cavity parameters and temperatures used in the calculations. 21 references.

  15. Interferometer for electron density measurement in exploding wire plasma

    International Nuclear Information System (INIS)

    Batra, Jigyasa; Jaiswar, Ashutosh; Kaushik, T.C.

    2016-12-01

    Mach-Zehnder Interferometer (MZI) has been developed for measuring electron density profile in pulsed plasmas. MZI is to be used for characterizing exploding wire plasmas for correlating electron density dynamics with x-rays emission. Experiments have been carried out for probing electron density in pulsed plasmas produced in our laboratory like in spark gap and exploding wire plasmas. These are microsecond phenomenon. Changes in electron density have been registered in interferograms with the help of a streak camera for specific time window. Temporal electron density profiles have been calculated by analyzing temporal fringe shifts in interferograms. This report deals with details of MZI developed in our laboratory along with its theory. Basic introductory details have also been provided for exploding wire plasmas to be probed. Some demonstrative results of electron density measurements in pulsed plasmas of spark gap and single exploding wires have been described. (author)

  16. Determination of density of band-gap states of hydrogenated amorphous silicon suboxide thin films

    International Nuclear Information System (INIS)

    Bacioglu, A.

    2005-01-01

    Variation of density of gap states of PECVD silicon suboxide films with different oxygen concentrations was evaluated through electrical and optical measurements. Optical transmission and constant photocurrent method (CPM) were used to determine absorption coefficient as a function of photon energy. From these measurements the localized density of states between the valance band mobility edge and Fermi level has been determined. To determine the variation of conduction band edge, steady state photoconductivity (SSPC), photoconductivity response time (PCRT) and transient photoconductivity (TPC) measurements were utilized. Results indicate that the conduction and valance band edges, both, widen monotonically with oxygen content

  17. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    Science.gov (United States)

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  18. Recent advances in measurements of the nuclear level density

    International Nuclear Information System (INIS)

    John, Bency

    2007-01-01

    A short review of recent advances in measurements of the nuclear level density is given. First results of the inverse level density parameter - angular momentum correlation in a number of nuclei around Z∼50 shell region at an excitation energy around 0.3 MeV/nucleon are presented. Significant variations observed over and above the expected shell corrections are discussed in context of the emerging trends in microscopic calculations of the nuclear level density. (author)

  19. Model Insensitive and Calibration Independent Method for Determination of the Downstream Neutral Hydrogen Density Through Ly-alpha Glow Observations

    Science.gov (United States)

    Gangopadhyay, P.; Judge, D. L.

    1996-01-01

    Our knowledge of the various heliospheric phenomena (location of the solar wind termination shock, heliopause configuration and very local interstellar medium parameters) is limited by uncertainties in the available heliospheric plasma models and by calibration uncertainties in the observing instruments. There is, thus, a strong motivation to develop model insensitive and calibration independent methods to reduce the uncertainties in the relevant heliospheric parameters. We have developed such a method to constrain the downstream neutral hydrogen density inside the heliospheric tail. In our approach we have taken advantage of the relative insensitivity of the downstream neutral hydrogen density profile to the specific plasma model adopted. We have also used the fact that the presence of an asymmetric neutral hydrogen cavity surrounding the sun, characteristic of all neutral densities models, results in a higher multiple scattering contribution to the observed glow in the downstream region than in the upstream region. This allows us to approximate the actual density profile with one which is spatially uniform for the purpose of calculating the downstream backscattered glow. Using different spatially constant density profiles, radiative transfer calculations are performed, and the radial dependence of the predicted glow is compared with the observed I/R dependence of Pioneer 10 UV data. Such a comparison bounds the large distance heliospheric neutral hydrogen density in the downstream direction to a value between 0.05 and 0.1/cc.

  20. High-energy-density hydrogen-halogen fuel cells for advanced military applications

    International Nuclear Information System (INIS)

    Balko, E.N.; McElroy, J.F.

    1981-01-01

    It is pointed out that hydrogen-halogen fuel cell systems are particularly suited for an employment as ground power sources for military applications. The large cell potential and reversible characteristics of the H 2 Cl 2 and H 2 Br 2 couples permit high energy storage density and efficient energy conversion. When used as flow batteries, the fluid nature of the reactants in the hydrogen-halogen systems has several advantages over power sources which involve solid phases. Very deep discharge is possible without degradation of subsequent performance, and energy storage capacity is limited only by the external reactant storage volume. Very rapid chemical recharging is possible through replenishment of the reactant supply. A number of H 2 Cl 2 and H 2 Br 2 fuel cell systems have been studied. These systems use the same solid polymer electrolyte (SPE) cell technology originally developed for H2/O2 fuel cells. The results of the investigation are illustrated with the aid of a number of graphs

  1. A comprehensive tool for measuring mammographic density changes over time.

    Science.gov (United States)

    Eriksson, Mikael; Li, Jingmei; Leifland, Karin; Czene, Kamila; Hall, Per

    2018-06-01

    Mammographic density is a marker of breast cancer risk and diagnostics accuracy. Density change over time is a strong proxy for response to endocrine treatment and potentially a stronger predictor of breast cancer incidence. We developed STRATUS to analyse digital and analogue images and enable automated measurements of density changes over time. Raw and processed images from the same mammogram were randomly sampled from 41,353 healthy women. Measurements from raw images (using FDA approved software iCAD) were used as templates for STRATUS to measure density on processed images through machine learning. A similar two-step design was used to train density measures in analogue images. Relative risks of breast cancer were estimated in three unique datasets. An alignment protocol was developed using images from 11,409 women to reduce non-biological variability in density change. The protocol was evaluated in 55,073 women having two regular mammography screens. Differences and variances in densities were compared before and after image alignment. The average relative risk of breast cancer in the three datasets was 1.6 [95% confidence interval (CI) 1.3-1.8] per standard deviation of percent mammographic density. The discrimination was AUC 0.62 (CI 0.60-0.64). The type of image did not significantly influence the risk associations. Alignment decreased the non-biological variability in density change and re-estimated the yearly overall percent density decrease from 1.5 to 0.9%, p density measures was not influenced by mammogram type. The alignment protocol reduced the non-biological variability between images over time. STRATUS has the potential to become a useful tool for epidemiological studies and clinical follow-up.

  2. Line profiles of hydrogenic ions from high-temperature and high-density plasmas

    International Nuclear Information System (INIS)

    Hou Qing; Li Jianming

    1991-01-01

    Applying the Hooper's first-order theory, the authors calculate the static micro-electric field distributions in plasmas containing various multiply-charged ions. The influences of the impurity concentrations on the micro electric field distributions and on the Lyman profiles (n→1) from hydrogenic ions are analysed. Based on the optical-thin line profiles, the radiation transfer equation in sphere plasmas with various optical depths is solved. The results confirm that the opacity-broadening of the line profiles has almost no effect on the separation of Lyman β splitted peaks. Such separation is determined by electric field at which the static micro-electric field distribution has a maximum. The separation can be utilized for spatially resolved and temporally resolved density diagnostic of fusion plasmas

  3. Density gradients in ceramic pellets measured by computed tomography

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Palmer, B.J.F.

    1986-07-01

    Density gradients are of fundamental importance in ceramic processing and computed tomography (CT) can provide accurate measurements of density profiles in sintered and unsintered ceramic parts. As a demonstration of this potential, the density gradients in an unsintered pellet pressed from an alumina powder were measured by CT scanning. To detect such small density gradients, the CT images must have good density resolution and be free from beam-hardening effects. This was achieved by measuring high-contrast (low-noise) images with the use of an Ir-192 isotopic source. A beam-hardening correction was applied. The resulting images are discussed relative to the transmission of forces through the powder mass during the pelletizing process

  4. Measuring the Density of a Molecular Cluster Injector via Visible Emission from an Electron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, D. P.; Kaita, R.; Majeski, R. M.; Stotler, D. P.

    2010-06-28

    A method to measure the density distribution of a dense hydrogen gas jet is pre- sented. A Mach 5.5 nozzle is cooled to 80K to form a flow capable of molecular cluster formation. A 250V, 10mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  5. Ambient RF energy scavenging: GSM and WLAN power density measurements

    NARCIS (Netherlands)

    Visser, H.J.; Reniers, A.C.F.; Theeuwes, J.A.C.

    2009-01-01

    To assess the feasibility of ambient RF energy scavenging, a survey of expected power density levels distant from GSM-900 and GSM-1800 base stations has been conducted and power density measurements have been performed in a WLAN environment. It appears that for distances ranging from 25 m to 100 m

  6. Optical measurements on hydrogen at ultrahigh static pressures. Summary report for NRIP W233

    International Nuclear Information System (INIS)

    Mills, R.L.; Liebenberg, D.H.

    1979-02-01

    The results of a two-year New Research Initiatives Program (NRIP) aimed at developing apparatus and techniques for studying hydrogen and other gases under ultrahigh static pressure in diamond--anvil cells are summarized. The following goals were achieved: A facility was established in which precision optical measurements can be made; special diamond cells for use at low temperatures were built; procedures were devised for loading cells with gases at high density; preliminary visual, x-ray, and spectral studies on various gases at pressures up to 50 kbar were conducted; and having demonstrated the feasibility of NRIP, other sponsorship on a continuing basis was obtained

  7. Resolution of Unresolved Safety Issue A-48, ''Hydrogen control measures and effects of hydrogen burns on safety equipment''

    International Nuclear Information System (INIS)

    Ferrell, C.M.; Soffer, L.

    1989-09-01

    Unresolved Safety Issue (USI) A-48 arose as a result of the large amount of hydrogen generated and burned within containment during the Three Mile Island accident. This issue covers hydrogen control measures for recoverable degraded-core accidents for all boiling-water reactors (BWRs) and those pressurized-water reactors (PWRs) with ice-condenser containments. The Commission and the nuclear industry have sponsored extensive research in this area, which has led to significant revision of the Commission's hydrogen control regulations, given in Title 10, Code of Federal Regulations, Part 50 (10 CFR 50), Section 50.44. BWRs having Mark I and II containments are presently required to operate with inerted containment atmospheres that effectively prevent hydrogen combustion. BWRs with Mark III containments and PWRs with ice-condenser containments are now required to be equipped with hydrogen control systems to protect containment integrity and safety systems inside containment. Industry has chosen to use hydrogen igniter systems to burn hydrogen produced in a controlled fashion to prevent damage. An independent review by a Committee of the National Research Council concluded that, for most accident scenarios, current regulatory requirements make it highly unlikely that hydrogen detonation would be the cause of containment failure. On the basis of the extensive research effort conducted and current regulatory requirements, including their implementation, the staff concludes that no new regulatory guidance on hydrogen control for recoverable degraded-core accidents for these types of plants is necessary and that USI A-48 is resolved

  8. A magnetic suspension system for measuring liquid density

    Directory of Open Access Journals (Sweden)

    Luz María Centeno González

    2013-01-01

    Full Text Available Density is a derived quantity of mass and length; it is defined as mass per volume unit and its SI unit is kg/m3. National metrology institutes have been designing and building their own magnetic suspension systems during the last 5 decades for making fluid density measurements; this has allowed them to carry out research into liquids and gases’ physical characteristics. This paper was aimed at designing and developing a magnetic suspension system for a magnetic balance used in determining liquid density to be used in CENAM’s metrology density laboratories.

  9. Density measurements of microsecond-conduction-time POS plasmas

    International Nuclear Information System (INIS)

    Hinshelwood, D.; Goodrich, P.J.; Weber, B.V.; Commisso, R.J.; Grossmann, J.M.; Kellogg, J.C.

    1993-01-01

    Measurements of the electron density in a coaxial microsecond conduction time plasma opening switch during switch operation are described. Current conduction is observed to cause a radial redistribution of the switch plasma. A local reduction in axial line density of more than an order of magnitude occurs by the time opening begins. This reduction, and the scaling of conduction current with plasma density, indicate that current conduction in this experiment is limited by hydrodynamic effects. It is hypothesized that the density reduction allows the switch to open by an erosion mechanism. Initial numerical modeling efforts have reproduced the principal observed results. A model that predicts accurately the conduction current is presented

  10. The solid molecular hydrogens in the ordered state as function of density and ortho-para concentration: a far infrared study

    International Nuclear Information System (INIS)

    Jochemsen, R.

    1978-01-01

    In this thesis, the results of far infrared absorption experiments on solid molecular hydrogen and deuterium are presented. In Chapter I an introduction to the properties of solid molecular hydrogens in given. The experimental system used for the high pressure infrared measurements and the data handling procedures are discussed in Chapter II. The theory of infrared absorption and the averaging of the dipole moment over the motion of the molecules is contained in Chapter III. In this chapter a general sum rule for the integrated absorption is derived. The remaining chapters present the results of the measurements and the discussion. In Chapter IV the author concentrates on the phonon frequencies as a function of ortho-para concentration and density, while in Chapter V measuremtns of phonon lineshape and integrated absorption intensities are presented. Finally, in Chapter VI, a study is given of the phase transition in solid hydrogen and deuterium. This study provides accurate values for the transition temperature as a function of density (in deuterium) and as a function of ortho-para concentration (in hydrogen) as well as the dependence of the order parameter on the temperature and the ortho-para concentration. (Auth.)

  11. PWFA plasma source - interferometric diagnostics for Li vapor density measurements

    International Nuclear Information System (INIS)

    Sivakumaran, V.; Mohandas, K.K.; Singh, Sneha; Ravi Kumar, A.V.

    2015-01-01

    A prototype (40 cm long) plasma source based on Li heat pipe oven has been developed for the Plasma Wakefield Acceleration (PWFA) experiments at IPR (IPR), Gujarat as a part of the ongoing Accelerator Programme. Li vapor in the oven is produced by heating solid Li in helium buffer gas. A uniform column of Li plasma is generated by UV photo ionization (193 nm) of the Li vapor in the heat pipe oven. In these experiments, an accurate measurement of Li vapor density is important as it has got a direct consequence on the plasma electron density. In the present experiment, the vapor density is measured optically by using Hook method (spectrally resolved white light interferometry). The hook like structure formed near the vicinity of the Li 670.8 nm resonance line was recorded with a white light Mach Zehnder interferometer crossed with an imaging spectrograph to estimate the Li vapor density. The vapor density measurements have been carried out as a function of external oven temperature and the He buffer gas pressure. This technique has the advantage of being insensitive to line broadening and line shape, and its high dynamic range even with optically thick absorption line. Here, we present the line integrated Lithium vapor density measurement using Hook method and also compare the same with other optical diagnostic techniques (White light absorption and UV absorption) for Li vapor density measurements. (author)

  12. Comparative measurement of the neutral density and particle confinement time in EBT

    International Nuclear Information System (INIS)

    Glowienka, J.C.; Richards, R.K.

    1985-11-01

    The neutral density and particle confinement time in the ELMO Bumpy Torus-Scale Experiment (EBT-S) have been determined by two different techniques. These involve a spectroscopic measurement of molecular and atomic hydrogen emissions and a time-decay measurement of a fast-ion population using a diagnostic neutral beam. The results from both diagnostics exhibit identical trends for either estimate, although the absolute values differ by a factor of 2 to 3. The observed variations with fill gas pressure and microwave power from either technique are consistent with measurements of electron density and temperature. In this paper, the measurement techniques are discussed, and the results are compared in the context of consistency with independently observed plasma behavior. 6 refs., 7 figs

  13. Hydrogen, oxygen and hydroxyl on porous silicon surface: A joint density-functional perturbation theory and infrared spectroscopy approach

    International Nuclear Information System (INIS)

    Alfaro, Pedro; Palavicini, Alessio; Wang, Chumin

    2014-01-01

    Based on the density functional perturbation theory (DFPT), infrared absorption spectra of porous silicon are calculated by using an ordered pore model, in which columns of silicon atoms are removed along the [001] direction and dangling bonds are initially saturated with hydrogen atoms. When these atoms on the pore surface are gradually replaced by oxygen ones, the ab-initio infrared absorption spectra reveal oxygen, hydroxyl, and coupled hydrogen–oxygen vibrational modes. In a parallel way, freestanding porous silicon samples were prepared by using electrochemical etching and they were further thermally oxidized in a dry oxygen ambient. Fourier transform infrared spectroscopy was used to investigate the surface modifications caused by oxygen adsorption. In particular, the predicted hydroxyl and oxygen bound to the silicon pore surface are confirmed. Finally, a global analysis of measured transmittance spectra has been performed by means of a combined DFPT and thin-film optics approach. - Highlights: • The density functional perturbation theory is used to study infrared absorption. • An ordered pore model is used to investigate the oxidation in porous silicon (PSi). • Infrared transmittance spectra of oxidized PSi freestanding samples are measured

  14. Rapid density-measurement system with vibrating-tube densimeter

    International Nuclear Information System (INIS)

    Kayukawa, Yohei; Hasumoto, Masaya; Watanabe, Koichi

    2003-01-01

    Concerning an increasing demand for environmentally friendly refrigerants including hydrocarbons, thermodynamic properties of such new refrigerants, especially densities, are essential information for refrigeration engineering. A rapid density-measurement system with vibrating-tube densimeter was developed in the present study with an aim to supply large numbers of high-quality PVT property data in a short period. The present system needs only a few minutes to obtain a single datum, and requires less than 20 cm 3 sample fluid. PVT properties in the entire fluid-phase, vapor-pressures, saturated-liquid densities for pure fluid are available. Liquid densities, bubble-point pressures and saturated-liquid densities for mixture can be obtained. The measurement range is from 240 to 380 K for temperature and up to 7 MPa for pressure. By employing a new calibration function, density can be precisely obtained even at lower densities. The densimeter is calibrated with pure water and iso-octane which is one of the density-standard fluids, and then measurement uncertainty was evaluated to be 0.1 kg m -3 or 0.024% whichever greater in density, 0.26 kPa or 0.022% whichever greater in pressure and 3 mK for temperature, respectively. The performance of the present measurement system was examined by measuring thermodynamic properties for refrigerant R134a. The experimental results were compared with available equation of state and confirmed to agree with it within ±0.05% for liquid densities while ±0.5% in pressure for the gas phase

  15. Negative vacuum energy densities and the causal diamond measure

    International Nuclear Information System (INIS)

    Salem, Michael P.

    2009-01-01

    Arguably a major success of the landscape picture is the prediction of a small, nonzero vacuum energy density. The details of this prediction depend in part on how the diverging spacetime volume of the multiverse is regulated, a question that remains unresolved. One proposal, the causal diamond measure, has demonstrated many phenomenological successes, including predicting a distribution of positive vacuum energy densities in good agreement with observation. In the string landscape, however, the vacuum energy density is expected to take positive and negative values. We find the causal diamond measure gives a poor fit to observation in such a landscape - in particular, 99.6% of observers in galaxies seemingly just like ours measure a vacuum energy density smaller than we do, most of them measuring it to be negative.

  16. Optimum design of a microwave interferometer for plasma density measurement

    International Nuclear Information System (INIS)

    Lindberg, L.; Eriksson, A.

    1980-11-01

    Theoretical and practical problems arising in the application of microwave interferometry to density measurements on transient plasmas are discussed. The conditions for unambiquous measurements in a density range as wide as possible are analyzed. It is shown that the initial zero adjustment of the interferometer bridge recommended in many text books is the worst possible choice of initial condition when the aim is high initial sensitivity at low densities. The analytic expressions needed for unambiquous evaluation of any phase shift from a few degrees to several times π (counting of fringes) are derived. The practical design of the interferometer circuit and its inherent error sources due to reflexions and non-ideal component properties are discussed. The results are applied to an interferometer operating at 80 GHz used on a pulsed plasma experiment. The minimum measurable phase shift is 2deg and the range of linear densities that have been measured is = 1 . 10 16 - 3 . 10 18 m -2

  17. Automated Volumetric Mammographic Breast Density Measurements May Underestimate Percent Breast Density for High-density Breasts

    NARCIS (Netherlands)

    Rahbar, K.; Gubern Merida, A.; Patrie, J.T.; Harvey, J.A.

    2017-01-01

    RATIONALE AND OBJECTIVES: The purpose of this study was to evaluate discrepancy in breast composition measurements obtained from mammograms using two commercially available software methods for systematic trends in overestimation or underestimation compared to magnetic resonance-derived

  18. Precision Electron Density Measurements in the SSX MHD Wind Tunnel

    Science.gov (United States)

    Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.

    2017-10-01

    We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.

  19. Electron density profile measurements by microwave reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Paume, M.; Chareau, J.M.

    1995-01-01

    A proposal is presented developing reflectometry diagnostic for electron density profile measurements as routine diagnostic without manual intervention as achieved at JET. Since density fluctuations seriously perturb the reflected signal and the measurement of the group delay, a method is described to overcome the irrelevant results with the help of an adaptive filtering technique. Accurate profiles are estimated for about 70% of the shots. (author) 3 refs.; 6 figs

  20. Mammographic density measurements are not affected by mammography system.

    Science.gov (United States)

    Damases, Christine N; Brennan, Patrick C; McEntee, Mark F

    2015-01-01

    Mammographic density (MD) is a significant risk factor for breast cancer and has been shown to reduce the sensitivity of mammography screening. Knowledge of a woman's density can be used to predict her risk of developing breast cancer and personalize her imaging pathway. However, measurement of breast density has proven to be troublesome with wide variations in density recorded using radiologists' visual Breast Imaging Reporting and Data System (BIRADS). Several automated methods for assessing breast density have been proposed, each with their own source of measurement error. The use of differing mammographic imaging systems further complicates MD measurement, especially for the same women imaged over time. The purpose of this study was to investigate whether having a mammogram on differing manufacturer's equipment affects a woman's MD measurement. Raw mammographic images were acquired on two mammography imaging systems (General Electric and Hologic) one year apart and processed using VolparaDensity™ to obtain the Volpara Density Grade (VDG) and average volumetric breast density percentage (AvBD%). Visual BIRADS scores were also obtained from 20 expert readers. BIRADS scores for both systems showed strong positive correlation ([Formula: see text]; [Formula: see text]), while the VDG ([Formula: see text]; [Formula: see text]) and AvBD% ([Formula: see text]; [Formula: see text]) showed stronger positive correlations. Substantial agreement was shown between the systems for BIRADS ([Formula: see text]; [Formula: see text]), however, the systems demonstrated an almost perfect agreement for VDG ([Formula: see text]; [Formula: see text]).

  1. Density functional study of manganese atom adsorption on hydrogen-terminated armchair boron nitride nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Abdullahi, Yusuf Zuntu [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Physics, Faculty of Science, Kaduna State University, P.M.B. 2339, Kaduna State (Nigeria); Rahman, Md. Mahmudur, E-mail: mahmudur@upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Shuaibu, Alhassan [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Physics, Faculty of Science, Nigerian Defence Academy, P.M.B 2109 Kaduna (Nigeria); Abubakar, Shamsu [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Physics, Faculty of Science, Yobe State University, P.M.B. 1144, Yobe State (Nigeria); Zainuddin, Hishamuddin [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Muhida, Rifki [Department of Physics-Energy Engineering, Surya University, Gedung 01 Scientia Business Park, Jl. Boulevard Gading Serpong Blok O/1, Summarecon Serpong, Tangerang 15810, Banten (Indonesia); Setiyanto, Henry [Analytical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132 (Indonesia)

    2014-08-15

    In this paper, we have investigated stable structural, electric and magnetic properties of manganese (Mn) atom adsorption on armchair hydrogen edge-terminated boron nitride nanoribbon (A-BNNRs) using first principles method based on density-functional theory with the generalized gradient approximation. Calculation shows that Mn atom situated on the ribbons of A-BNNRs is the most stable configuration, where the bonding is more pronounced. The projected density of states (PDOS) of the favored configuration has also been computed. It has been found that the covalent bonding of boron (B), nitrogen (N) and Mn is mainly contributed by s, d like-orbitals of Mn and partially occupied by the 2p like-orbital of N. The difference in energy between the inner and the edge adsorption sites of A-BNNRs shows that Mn atoms prefer to concentrate at the edge sites. The electronic structures of the various configurations are wide, narrow-gap semiconducting and half-metallic, and the magnetic moment of Mn atoms are well preserved in all considered configurations. This has shown that the boron nitride (BN) sheet covered with Mn atoms demonstrates additional information on its usefulness in future spintronics, molecular magnet and nanoelectronics devices.

  2. Density functional study of manganese atom adsorption on hydrogen-terminated armchair boron nitride nanoribbons

    International Nuclear Information System (INIS)

    Abdullahi, Yusuf Zuntu; Rahman, Md. Mahmudur; Shuaibu, Alhassan; Abubakar, Shamsu; Zainuddin, Hishamuddin; Muhida, Rifki; Setiyanto, Henry

    2014-01-01

    In this paper, we have investigated stable structural, electric and magnetic properties of manganese (Mn) atom adsorption on armchair hydrogen edge-terminated boron nitride nanoribbon (A-BNNRs) using first principles method based on density-functional theory with the generalized gradient approximation. Calculation shows that Mn atom situated on the ribbons of A-BNNRs is the most stable configuration, where the bonding is more pronounced. The projected density of states (PDOS) of the favored configuration has also been computed. It has been found that the covalent bonding of boron (B), nitrogen (N) and Mn is mainly contributed by s, d like-orbitals of Mn and partially occupied by the 2p like-orbital of N. The difference in energy between the inner and the edge adsorption sites of A-BNNRs shows that Mn atoms prefer to concentrate at the edge sites. The electronic structures of the various configurations are wide, narrow-gap semiconducting and half-metallic, and the magnetic moment of Mn atoms are well preserved in all considered configurations. This has shown that the boron nitride (BN) sheet covered with Mn atoms demonstrates additional information on its usefulness in future spintronics, molecular magnet and nanoelectronics devices.

  3. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Directory of Open Access Journals (Sweden)

    Rymantas Kazys

    2015-08-01

    Full Text Available An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%.

  4. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Science.gov (United States)

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-01-01

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%). PMID:26262619

  5. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions.

    Science.gov (United States)

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-08-07

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10(-3) g/cm(3) (1%).

  6. RZP 202 - a modular system for surface density measurement

    International Nuclear Information System (INIS)

    Severa, L.; Merinsky, J.

    The sensing element is an ionization chamber of the type that has maximum sensitivity to beta radiation of the used radionuclide ( 147 Pm, 85 Kr, 90 Sr- 90 Y) or to gamma radiation of radionuclide 241 Am. Collimation shields were developed for the said sources. Measurement of the ionization currents is made with an electrometer with a vibration capacitor. Invariable configuration is secured by a measuring arm. The modular units are of the CAMAC system design. The surface density meters measure deviations from the rated surface density. The scale for inputting surface density is linear. The configuration, functional continuity of the individual parts and the possibility of variant designs of surface density meters are described and the technical parameters of RZP 202 and its configuration and design are given

  7. Wireless Sensor Node for Surface Seawater Density Measurements

    Directory of Open Access Journals (Sweden)

    Roberto Saletti

    2012-03-01

    Full Text Available An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  8. Wireless sensor node for surface seawater density measurements.

    Science.gov (United States)

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  9. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    Science.gov (United States)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  10. Coupled cluster and density functional theory calculations of atomic hydrogen chemisorption on pyrene and coronene as model systems for graphene hydrogenation.

    Science.gov (United States)

    Wang, Ying; Qian, Hu-Jun; Morokuma, Keiji; Irle, Stephan

    2012-07-05

    Ab initio coupled cluster and density functional theory studies of atomic hydrogen addition to the central region of pyrene and coronene as molecular models for graphene hydrogenation were performed. Fully relaxed potential energy curves (PECs) were computed at the spin-unrestricted B3LYP/cc-pVDZ level of theory for the atomic hydrogen attack of a center carbon atom (site A), the midpoint of a neighboring carbon bond (site B), and the center of a central hexagon (site C). Using the B3LYP/cc-pVDZ PEC geometries, we evaluated energies at the PBE density functional, as well as ab initio restricted open-shell ROMP2, ROCCSD, and ROCCSD(T) levels of theory, employing cc-pVDZ and cc-pVTZ basis sets, and performed a G2MS extrapolation to the ROCCSD(T)/cc-pVTZ level of theory. In agreement with earlier studies, we find that only site A attack leads to chemisorption. The G2MS entrance channel barrier heights, binding energies, and PEC profiles are found to agree well with a recent ab initio multireference wave function theory study (Bonfanti et al. J. Chem. Phys.2011, 135, 164701), indicating that single-reference open-shell methods including B3LYP are sufficient for the theoretical treatment of the interaction of graphene with a single hydrogen atom.

  11. Density and moisture measurements by nuclear method and its application to compaction control in road construction

    International Nuclear Information System (INIS)

    Mohd Azmi Ismail

    1994-01-01

    The application of nuclear technique in civil engineering sector which emphasises on the in-situ density and moisture measurements of soil in road construction is discussed. The nuclear density-moisture gauge utilises both gamma-rays and neutrons for the determination of the density and moisture content, respectively. The knowledge on the density and moisture content will be used to evaluate the degree of compaction of the compacted layers. The technique offers not only a fast and non-destructive measurement but it is also accurate, economical and repeatable. A calibration equation which is stored in the built-in microprocessor is applicable for any type of soil. Corrections for the interferences from needless gamma-rays produced as a result of thermal neutrons interaction with certain nuclei for the density measurement and effects of hydrogen other than absorbed water for the moisture measurement are considered in the equation. This paper describes briefly the theory and the characteristics of the nuclear gauge and its application in road construction work

  12. Effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames

    International Nuclear Information System (INIS)

    Guo, H.; Tayebi, B.; Galizzi, C.; Escudie, D.

    2009-01-01

    Hydrogen (H 2 ) is a clean burning component, but relatively expensive. Mixing a small amount of hydrogen with other fuels is an effective way to use H 2 . H 2 enriched combustion significantly improves fuel efficiency and reduces pollutant (nitrogen oxide and particulate matter) emissions. This presentation discussed the effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames. The presentation discussed flame configuration; the experimental methodology using laser tomography; and results for typical images, burning velocity, ratio of turbulent to laminar burning velocities, flame surface density, curvature, flame brush thickness, and integrated flame surface area. It was concluded that the increase of turbulent burning velocity was faster than that of laminar burning velocity, which contradicted traditional theory. figs.

  13. Measurement and analyses of molten Ni-Co alloy density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; K. MUKAI; FANG Liang; FU Ya; YANG Ren-hui

    2006-01-01

    With the advent of powerful mathematical modeling techniques for material phenomena, there is renewed interest in reliable data for the density of the Ni-based superalloys. Up to now, there has been few report on the density of molten Ni-Co alloy.In order to obtain more accurate density data for molten Ni-Co alloy, the density of molten Ni-Co alloy was measured with a modified sessile drop method, and the accommodation of different atoms in molten Ni-Co alloy was analyzed. The density of alloy is found to decrease with increasing temperature and Co concentration in the alloy. The molar volume of molten Ni-Co alloy increases with increasing Co concentration. The molar volume of Ni-Co alloy determined shows a positive deviation from the linear molar volume, and the deviation of molar volume from ideal mixing increases with increasing Co concentration over the experimental concentration range.

  14. Study of the input-side subsurface reorganization vs. the outside current density in hydrogen permeation under constant cell voltage through iron membrane according to RHC concept

    International Nuclear Information System (INIS)

    DePetris-Wery, M.; Wery, S.; Catonne, J.C.

    2010-01-01

    In this work, hydrogen permeation tests were performed on pure iron membrane in 1 M sodium hydroxide at 298 K, subjected to hydrogen charging under 'quasi-potentiostatic' polarization conditions, i.e. constant cell voltage applied between the cathode (membrane entry side) and the anode (counter electrode), which is a typical situation during metal electrodeposition or cathodic degreasing on steel in metal finishing industry. Two consecutive charging-discharging runs were carried out. Prolonged hydrogen charging under quasi-potentiostatic polarization was investigated and the change of cathodic current density (i in ) chg and electrode potential (E in ) chg as well as permeation current density (i out ) chg were analysed. Three singularities were underlined for each experiment: (i) the curve (i in ) chg = f((E in ) chg ), illustrating the inverse of hydrogen charge resistance R HC -1 evolution which was negative, equal to zero and then became positive; (ii) quasi-periodic instabilities during the R HC -1 zero period, probably induced by atomic reorganizing due to subsurface hydrogen insertion in the input-side; (iii) the same ratio (i out ) chg /(i in ) chg = -6 x 10 -5 . During discharge runs, both sides of the membrane were polarized at the same potential (E in ) dischg = (E out ) dischg = -0.285 V/Hg/HgO/NaOH 1 M and the current densities, (i in ) dischg and (i out ) dischg which corresponded to the desorption rates of hydrogen, were measured. The following correlation (i out ) dischg vs.(i in ) dischg = -6 x 10 -5 was confirmed leading us to introduce the R HC -1 mirror concept to observe the input-side subsurface reorganization by the survey of its potential vs. outside current density during the hydrogen charge. Thus, this R HC -1 mirror concept showed: (i) a non-stop and irreversible progress in the subsurface reorganization during the two permeations; (ii) a probable structural evolution to a stable subsurface structure, the only condition of a real steady

  15. Nondestructive density measured in powder metallurgy and ceramics

    International Nuclear Information System (INIS)

    Schlieper, G.; Arnold, V.; Dirkes, H.

    1989-01-01

    Absorption measurements with gamma radiation have been utilized for the determination of porosities (densities) in materials compacted or sintered from metallic or ceramic powders. The mathematical background for the assessment of this method, and for evaluations of the accuracy of measurement is presented within the reported paper. The equipment for the practical application of density measurements in industry has been developed. Hardware and software of this computerized instrument are designed for a maximum of safety, ease of operation, reliability, flexibility, and efficiency. (orig./RHM) [de

  16. Space potential, temperature, and density profile measurements on RENTOR

    International Nuclear Information System (INIS)

    Schoch, P.M.

    1983-05-01

    Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed

  17. Rocket measurements of electron density irregularities during MAC/SINE

    Science.gov (United States)

    Ulwick, J. C.

    1989-01-01

    Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.

  18. Plasma density measurements from the GEOS-1 relaxation sounder

    International Nuclear Information System (INIS)

    Etcheto, J.; Bloch, J.J.

    1978-01-01

    The relaxation sounder uses the characteristics of the propagation of radiowaves to sound the plasma surrounding the spacecraft. It determines, in particular, the plasma frequency, which gives the electron density. Measurements over the whole dayside of the magnetosphere, from the evening to the night sectors, are now available. The behaviour of the plasma resonance depends on local time, the nighttime echoes being generally weaker. Density measurements thus obtained are shown and discussed in the context of what is presently known about the plasma distribution in the magnetosphere. In particular, the density around apogee is studied as a function of magnetic activity. On the dayside, it appears to vary between a few and a few tens of electrons per cubic centimeter. The evolution of the density profile for several consecutive days is studied and interpreted tracing back the drift of the particles. (Auth.)

  19. Density dependence of stopping cross sections measured in liquid ethane

    International Nuclear Information System (INIS)

    Both, G.; Krotz, R.; Lohmer, K.; Neuwirth, W.

    1983-01-01

    Electronic stopping cross sections for 7 Li projectiles (840--175 keV) have been measured with the inverted Doppler-shift attenuation method in liquid ethane (C 2 H 6 ) at two different densities. The density of the target has been varied by changing the temperature, and measurements have been performed at 0.525 g/cm 3 (199 K) and 0.362 g/cm 3 (287 K). At the higher density the stopping cross section is about 2% smaller. This result agrees with a calculation of the stopping cross section of liquid ethane, applying Lindhard's theory in the local-density approximation using a simple model of the liquid. It is also in agreement with various observations of the so-called physical-state effect, which show that the stopping cross section of the same substance is smaller in a condensed phase than in the gaseous one

  20. WSN-Based Space Charge Density Measurement System.

    Science.gov (United States)

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  1. Radiometric densimeter for measuring and automatic control of liquid density

    International Nuclear Information System (INIS)

    Wajs, J.

    1982-01-01

    A performance rule of the radiometric densimeter produced by ''POLON ''Works is presented. A simplified analysis of the correction of density indication changes due to liquid temperature variations is described. A method of replacing the measuring pipe carrying the liquid being measured by suitable standards is given. The method is for automatic systems control. (A.S.)

  2. In Situ Measurement of Local Hydrogen Production Rate by Bubble-Evolved Recording

    Directory of Open Access Journals (Sweden)

    Xiaowei Hu

    2013-01-01

    Full Text Available Hydrogen visibly bubbles during photocatalytic water splitting under illumination with above-bandgap radiation, which provides a direct measurement of local gas-evolving reaction rate. In this paper, optical microscopy of superfield depth was used for recording the hydrogen bubble growth on Cd0.5Zn0.5S photocatalyst in reaction liquid and illuminated with purple light. By analyzing change of hydrogen bubble size as a function of time, we understood that hydrogen bubble growth experienced two periods, which were inertia effect dominated period and diffusion effect dominated period, respectively. The tendency of hydrogen bubble growth was similar to that of the gas bubble in boiling, while the difference in bubble diameter and growth time magnitude was great. Meanwhile, we obtained the local hydrogen production rate on photocatalyst active site by measuring hydrogen bubble growth variation characteristics. This method makes it possible to confirm local actual hydrogen evolution rate quantitatively during photocatalytic water splitting.

  3. Investigation on molecular interaction of amino acids in aqueous disodium hydrogen phosphate solutions with reference to volumetric and compressibility measurements

    International Nuclear Information System (INIS)

    Kumar, Harsh; Singla, Meenu; Jindal, Rajeev

    2014-01-01

    Highlights: • Densities and speeds of sound of amino acids in aqueous disodium hydrogen phosphate. • Partial molar volumes and compressibility of transfer. • Positive values of transfer volume indicates interactions between ions of amino acids and TSC. • Ion–hydrophilic and hydrophilic–hydrophilic interactions are present. • Pair-wise interactions are dominant in the mixtures. -- Abstract: The interactions of amino acids glycine (Gly), L-alanine (Ala), and L-valine (Val) with disodium hydrogen phosphate (DSHP) as a function of temperature have been investigated by combination of volumetric and acoustic measurements. Densities (ρ) and speeds of sound (u) of amino acids in aqueous solutions of disodium hydrogen phosphate have been measured at T = (288.15, 293.15, 298.15, 303.15 and 308.15) K and atmospheric pressure. The apparent molar volume (V ϕ ), the partial molar volume (V ϕ 0 ) and standard partial molar volumes of transfer (ΔV ϕ 0 ) for amino acids from water to aqueous disodium hydrogen phosphate solutions have been calculated from density data. Partial molar adiabatic compressibility (κ ϕ,s ) and partial molar adiabatic compressibility of transfer (Δκ ϕ,S 0 ) have been calculated from speed of sound data. The pair (V AB , κ AB ) and triplet (V ABB , κ ABB ) interaction coefficient have been calculated from both the properties. The results have been explained based on competing patterns of interactions of co-solvents and the solute

  4. Measurements of electron density profiles using an angular filter refractometer

    International Nuclear Information System (INIS)

    Haberberger, D.; Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H.

    2014-01-01

    A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10 21  cm −3 with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres

  5. Measurements of electron density profiles using an angular filter refractometer

    Energy Technology Data Exchange (ETDEWEB)

    Haberberger, D., E-mail: dhab@lle.rochester.edu; Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14636 (United States)

    2014-05-15

    A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10{sup 21} cm{sup −3} with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres.

  6. Correlations between different methods of UO2 pellet density measurement

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1977-07-01

    Density of UO 2 pellets was measured by three different methods, i.e., geometrical, water-immersed and meta-xylene immersed and treated statistically, to find out the correlations between UO 2 pellets are of six kinds but with same specifications. The correlations are linear 1 : 1 for pellets of 95% theoretical densities and above, but such do not exist below the level and variated statistically due to interaction between open and close pores. (auth.)

  7. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, Ole; Ludewigt, Bernhard [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2011-11-15

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm{sup 2} have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material.

  8. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source.

    Science.gov (United States)

    Waldmann, Ole; Ludewigt, Bernhard

    2011-11-01

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. © 2011 American Institute of Physics

  9. Simultaneous measurements of work function and H‒ density including caesiation of a converter surface

    Science.gov (United States)

    Cristofaro, S.; Friedl, R.; Fantz, U.

    2017-08-01

    Negative hydrogen ion sources rely on the surface conversion of neutral atomic hydrogen and positive hydrogen ions to H-. The efficiency of this process depends on the actual work function of the converter surface. By introducing caesium into the source the work function decreases, enhancing the negative ion yield. In order to study the impact of the work function on the H- surface production at similar conditions to the ones in ion sources for fusion devices like ITER and DEMO, fundamental investigations are performed in a flexible laboratory experiment. The work function of the converter surface can be absolutely measured by photoelectric effect, while a newly installed cavity ring-down spectroscopy system (CRDS) measures the H- density. The CRDS is firstly tested and characterized by investigations on H- volume production. Caesiation of a stainless steel sample is then performed in vacuum and the plasma effect on the Cs layer is investigated also for long plasma-on times. A minimum work function of (1.9±0.1) eV is reached after some minutes of plasma treatment, resulting in a reduction by a value of 0.8 eV compared to vacuum measurements. The H- density above the surface is (2.1±0.5)×1015 m-3. With further plasma exposure of the caesiated surface, the work function increases up to 3.75 eV, due to the impinging plasma particles which gradually remove the Cs layer. As a result, the H- density decreases by a factor of at least 2.

  10. High-Sensitivity Measurement of Density by Magnetic Levitation.

    Science.gov (United States)

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  11. Neutron temperature measurements in a cryogenic hydrogenous moderator

    International Nuclear Information System (INIS)

    Ball, R.M.; Hoovler, G.S.; Lewis, R.H.

    1995-01-01

    Benchmarkings of neutronic calculations are most successful when there is a direct correlation between a measurement and an analytic result. In the thermal neutron energy region, the fluence rate as a function of moderator temperature and position within the moderator is an area of potential correlation. The measurement can be done by activating natural lutetium. The two isotopes of the element lutetium have widely different cross sections and permit the discrimination of flux shape and energy distributions at different reactor conditions. The 175 Lu has a 1/v dependence in the thermal energy region, and 176 Lu has a resonance structure that approximates a constant cross section in the same region. The saturation activation of the two isotopes has been measured in an insulated moderator container at the center of a thermal heterogeneous reactor designed for space nuclear propulsion. The measurements were made in a hydrogenous (polyethylene) moderator at three temperatures (83, 184, and 297 K) and five locations within the moderator. Simultaneously, the reactivity effect of the change in the moderator temperature was determined to be positive with an increase in temperature. The plot of activation shows the variation in neutron fluence rate and current with temperature and explains the positive reactivity coefficient. A neutron temperature can be inferred from a postulated Maxwell-Boltzmann distribution and compared with Monte Carlo or other calculations

  12. Density measurements under pressure for the binary system 1-propanol plus toluene

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Andersen, Simon Ivar

    2005-01-01

    and seven isobars up to 30 MPa. The uncertainty of the reported densities is less than 0.05%. The measured data has been used to study the influence of temperature, pressure, and composition on the isothermal compressibility and the isobaric thermal expansivity as well as the excess molar volume, which...... shows a complex sigmoid behavior involving both positive and negative values. This complex behavior has been interpreted as the result of changes in the free volume due to volume expansion and compressibility as a result of the breaking of hydrogen bonds of the self-associating alcohol molecules...

  13. Measurement of temperature, electric conductivity and density of plasma

    International Nuclear Information System (INIS)

    Vasilevova, I.; Nefedov, A.; Oberman, F.; Urinson, A.

    1982-01-01

    Three instruments are briefly described developed by the High Temperatures Institute of the USSR Academy of Sciences for the measurement of plasma temperature, electric conductivity and density. The temperature measuring instrument uses as a standard a light source whose temperature may significantly differ from plasma temperature because three light fluxes are compared, namely the flux emitted by the plasma, the flux emitted directly by the standard source, and the flux emitted by the standard source after passage through the plasma. The results of measurement are computer processed. Electric conductivity is measured using a coil placed in a probe which is automatically extended for a time of maximally 0.3 seconds into the plasma stream. The equipment for measuring plasma density consists of a special single-channel monochromator, a temperature gauge, a plasma pressure gauge, and of a computer for processing the results of measurement. (Ha)

  14. Simulation of density measurements in plasma wakefields using photo acceleration

    CERN Document Server

    Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Sadler, James; Burrows, Philip N; Trines, Raoul; Holloway, James; Wing, Matthew; Bingham, Robert; Norreys, Peter

    2015-01-01

    One obstacle in plasma accelerator development is the limitation of techniques to diagnose and measure plasma wakefield parameters. In this paper, we present a novel concept for the density measurement of a plasma wakefield using photon acceleration, supported by extensive particle in cell simulations of a laser pulse that copropagates with a wakefield. The technique can provide the perturbed electron density profile in the laser’s reference frame, averaged over the propagation length, to be accurate within 10%. We discuss the limitations that affect the measurement: small frequency changes, photon trapping, laser displacement, stimulated Raman scattering, and laser beam divergence. By considering these processes, one can determine the optimal parameters of the laser pulse and its propagation length. This new technique allows a characterization of the density perturbation within a plasma wakefield accelerator.

  15. Simulation of density measurements in plasma wakefields using photon acceleration

    Directory of Open Access Journals (Sweden)

    Muhammad Firmansyah Kasim

    2015-03-01

    Full Text Available One obstacle in plasma accelerator development is the limitation of techniques to diagnose and measure plasma wakefield parameters. In this paper, we present a novel concept for the density measurement of a plasma wakefield using photon acceleration, supported by extensive particle in cell simulations of a laser pulse that copropagates with a wakefield. The technique can provide the perturbed electron density profile in the laser’s reference frame, averaged over the propagation length, to be accurate within 10%. We discuss the limitations that affect the measurement: small frequency changes, photon trapping, laser displacement, stimulated Raman scattering, and laser beam divergence. By considering these processes, one can determine the optimal parameters of the laser pulse and its propagation length. This new technique allows a characterization of the density perturbation within a plasma wakefield accelerator.

  16. Electron density interferometry measurement in laser-matter interaction

    International Nuclear Information System (INIS)

    Popovics-Chenais, C.

    1981-05-01

    This work is concerned with the laser-interferometry measurement of the electronic density in the corona and the conduction zone external part. Particularly, it is aimed at showing up density gradients and at their space-time localization. The first chapter recalls the density profile influence on the absorption principal mechanisms and the laser energy transport. In chapter two, the numerical and analytical hydrodynamic models describing the density profile are analysed. The influence on the density profile of the ponderomotive force associated to high oscillating electric fields is studied, together with the limited thermal conduction and suprathermal electron population. The mechanism action, in our measurement conditions, is numerically simulated. Calculations are made with experimental parameters. The measurement interaction conditions, together with the diagnostic method by high resolution laser interferometry are detailed. The results are analysed with the help of numerical simulation which is the experiment modeling. An overview of the mechanisms shown up by interferometric measurements and their correlation with other diagnostics is the conclusion of this work [fr

  17. Equation of State measurements of hydrogen isotopes on Nova

    Energy Technology Data Exchange (ETDEWEB)

    Collins, G. W., LLNL

    1997-11-01

    High intensity lasers can be used to perform measurements of materials at extremely high pressures if certain experimental issues can be overcome. We have addressed those issues and used the Nova laser to shock-compress liquid deuterium and obtain measurements of density and pressure on the principal Hugoniot at pressures from 300 kbar to more than 2 Mbar. The data are compared with a number of equation of state models. The data indicate that the effect of molecular dissociation of the deuterium into a monatomic phase may have a significant impact on the equation of state near 1 Mbar.

  18. DAQ system for low density plasma parameters measurement

    International Nuclear Information System (INIS)

    Joshi, Rashmi S.; Gupta, Suryakant B.

    2015-01-01

    In various cases where low density plasmas (number density ranges from 1E4 to 1E6 cm -3 ) exist for example, basic plasma studies or LEO space environment measurement of plasma parameters becomes very critical. Conventional tip (cylindrical) Langmuir probes often result into unstable measurements in such lower density plasma. Due to larger surface area, a spherical Langmuir probe is used to measure such lower plasma densities. Applying a sweep voltage signal to the probe and measuring current values corresponding to these voltages gives V-I characteristics of plasma which can be plotted on a digital storage oscilloscope. This plot is analyzed for calculating various plasma parameters. The aim of this paper is to measure plasma parameters using a spherical Langmuir probe and indigenously developed DAQ system. DAQ system consists of Keithley source-meter and a host system connected by a GPIB interface. An online plasma parameter diagnostic system is developed for measuring plasma properties for non-thermal plasma in vacuum. An algorithm is developed using LabVIEW platform. V-I characteristics of plasma are plotted with respect to different filament current values and different locations of Langmuir probe with reference to plasma source. V-I characteristics is also plotted for forward and reverse voltage sweep generated programmatically from the source meter. (author)

  19. Outcomes of bone density measurements in coeliac disease.

    Science.gov (United States)

    Bolland, Mark J; Grey, Andrew; Rowbotham, David S

    2016-01-29

    Some guidelines recommend that patients with newly diagnosed coeliac disease undergo bone density scanning. We assessed the bone density results in a cohort of patients with coeliac disease. We searched bone density reports over two 5-year periods in all patients from Auckland District Health Board (2008-12) and in patients under 65 years from Counties Manukau District Health Board (2009-13) for the term 'coeliac.' Reports for 137 adults listed coeliac disease as an indication for bone densitometry. The average age was 47 years, body mass index (BMI) 25 kg/m(2), and 77% were female. The median time between coeliac disease diagnosis and bone densitometry was 261 days. The average bone density Z-score was slightly lower than expected (Z-score -0.3 to 0.4) at the lumbar spine, total hip and femoral neck, but 88-93% of Z-scores at each site lay within the normal range. Low bone density was strongly related to BMI: the proportions with Z-score 30 kg/m(2) were 28%, 15%, 6% and 0% respectively. Average bone density was normal, suggesting that bone density measurement is not indicated routinely in coeliac disease, but could be considered on a case-by-case basis for individuals with strong risk factors for fracture.

  20. Density and water content measurement with two dual detector probes

    International Nuclear Information System (INIS)

    Cariou, J.; Menard, J.

    1980-01-01

    The ''Laboratoires des Ponts et Chaussees'' have developed an electronic device for geological prospections. This system includes gamma-gamma and neutron-neutron probes for continuous measurement in borehole down to one hundred meters. It is used, as well to measure the density and the water content in the field of soil mechanic engineering. When the diameter is not constant all along the borehole the two probes have to use a dual detector procedure. When constant, a simple detector procedure is sufficient to obtain density and water content. Two examples show the possibilities of this apparatus, particularly to control the borehole diameter and the soil chemical composition [fr

  1. Methods and apparatus for measuring the density of geological formations

    International Nuclear Information System (INIS)

    Seeman, B.

    1975-01-01

    A tool for measuring the density of the geological formations traversed by a borehole is described. An apparatus corrects the effects of barite on the count rate of the pulses which are used for the density measurement and have an amplitude higher than a given threshold, by determining the deformations in the amplitude spectrum of these pulses and adjusting this threshold so as to compensate by the variation in the number of pulses taken into account, resulting from the adjustment for the variation in the number of counted pulses resulting from the said deformations

  2. Precision measurements of linear scattering density using muon tomography

    Science.gov (United States)

    Åström, E.; Bonomi, G.; Calliari, I.; Calvini, P.; Checchia, P.; Donzella, A.; Faraci, E.; Forsberg, F.; Gonella, F.; Hu, X.; Klinger, J.; Sundqvist Ökvist, L.; Pagano, D.; Rigoni, A.; Ramous, E.; Urbani, M.; Vanini, S.; Zenoni, A.; Zumerle, G.

    2016-07-01

    We demonstrate that muon tomography can be used to precisely measure the properties of various materials. The materials which have been considered have been extracted from an experimental blast furnace, including carbon (coke) and iron oxides, for which measurements of the linear scattering density relative to the mass density have been performed with an absolute precision of 10%. We report the procedures that are used in order to obtain such precision, and a discussion is presented to address the expected performance of the technique when applied to heavier materials. The results we obtain do not depend on the specific type of material considered and therefore they can be extended to any application.

  3. Agreement of mammographic measures of volumetric breast density to MRI.

    Directory of Open Access Journals (Sweden)

    Jeff Wang

    Full Text Available Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known.To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population.Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume.Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2 values ranging from 0.40 (log fibroglandular volume to 0.91 (total breast volume. Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63, but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume.Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  4. Agreement of mammographic measures of volumetric breast density to MRI.

    Science.gov (United States)

    Wang, Jeff; Azziz, Ania; Fan, Bo; Malkov, Serghei; Klifa, Catherine; Newitt, David; Yitta, Silaja; Hylton, Nola; Kerlikowske, Karla; Shepherd, John A

    2013-01-01

    Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known. To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population. Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS) assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara) with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume. Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2) values ranging from 0.40 (log fibroglandular volume) to 0.91 (total breast volume). Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63), but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume. Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  5. Direct measurement of interstellar extinction toward young stars using atomic hydrogen Lyα absorption

    Energy Technology Data Exchange (ETDEWEB)

    McJunkin, Matthew; France, Kevin; Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Schneider, P. C. [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Hillenbrand, Lynne [California Institute of Technology, Department of Astrophysics, MC105-24, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Schindhelm, Eric [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Edwards, Suzan, E-mail: matthew.mcjunkin@colorado.edu [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States)

    2014-01-10

    Interstellar reddening corrections are necessary to reconstruct the intrinsic spectral energy distributions (SEDs) of accreting protostellar systems. The stellar SED determines the heating and chemical processes that can occur in circumstellar disks. Measurement of neutral hydrogen absorption against broad Lyα emission profiles in young stars can be used to obtain the total H I column density (N(H I)) along the line of sight. We measure N(H I) with new and archival ultraviolet observations from the Hubble Space Telescope (HST) of 31 classical T Tauri and Herbig Ae/Be stars. The H I column densities range from log{sub 10}(N(H I)) ≈19.6-21.1, with corresponding visual extinctions of A{sub V} =0.02-0.72 mag, assuming an R{sub V} of 3.1. We find that the majority of the H I absorption along the line of sight likely comes from interstellar rather than circumstellar material. Extinctions derived from new HST blue-optical spectral analyses, previous IR and optical measurements, and new X-ray column densities on average overestimate the interstellar extinction toward young stars compared to the N(H I) values by ∼0.6 mag. We discuss possible explanations for this discrepancy in the context of a protoplanetary disk geometry.

  6. Density of asphalt paving mixtures: Measurements, variations, and influencing factors

    International Nuclear Information System (INIS)

    Solaimanian, M.

    1990-01-01

    The first part describes the results of a research study to determine the effectiveness of the Troxler Model 4640 Thin Lift Nuclear Density Gauge. The densities obtained from cores and the nuclear density gauge from seven construction projects were compared. A linear regression technique was used to investigate how well the core densities could be predicted from nuclear densities. Correlation coefficients were determined to indicate the degree of correlation between the core and nuclear densities. Using a statistical analysis technique, the range of differences between core and nuclear measurements was established for specified confidence levels for each project. Analysis of the data indicated that the accuracy of this gauge is highly material dependent. While acceptable results were obtained with limestone mixtures, the gauge did not perform satisfactorily with mixtures containing siliceous aggregate. The data presented in this paper indicate that the gauge could be used as a quality control tool provided that a calibration is developed for each project. The maximum theoretical specific gravities of asphalt-aggregate paving mixtures obtained from different methods were compared. The study included experimental work and analysis of the resulting data. The agreement between results obtained from the Texas C-14 method and the Rice method were excellent. Results obtained by backcalculating theoretical maximum densities from a single Rice test were also found to be satisfactory. Theoretical approach based on bulk specific gravity of aggregate is not recommended because of yielding significantly low theoretical maximum specific gravities and high relative densities. The last two parts summarize density levels and corresponding variations obtained from fifty-seven construction projects throughout the state of Texas

  7. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xia [value too long for type character varying(50); Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph

    2010-06-30

    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of

  8. Urinary density measurement and analysis methods in neonatal unit care

    Directory of Open Access Journals (Sweden)

    Maria Vera Lúcia Moreira Leitão Cardoso

    2013-09-01

    Full Text Available The objective was to assess urine collection methods through cotton in contact with genitalia and urinary collector to measure urinary density in newborns. This is a quantitative intervention study carried out in a neonatal unit of Fortaleza-CE, Brazil, in 2010. The sample consisted of 61 newborns randomly chosen to compose the study group. Most neonates were full term (31/50.8% males (33/54%. Data on urinary density measurement through the methods of cotton and collector presented statistically significant differences (p<0.05. The analysis of interquartile ranges between subgroups resulted in statistical differences between urinary collector/reagent strip (1005 and cotton/reagent strip (1010, however there was no difference between urinary collector/ refractometer (1008 and cotton/ refractometer. Therefore, further research should be conducted with larger sampling using methods investigated in this study and whenever possible, comparing urine density values to laboratory tests.

  9. A pilot study examining density of suppression measurement in strabismus.

    Science.gov (United States)

    Piano, Marianne; Newsham, David

    2015-01-01

    Establish whether the Sbisa bar, Bagolini filter (BF) bar, and neutral density filter (NDF) bar, used to measure density of suppression, are equivalent and possess test-retest reliability. Determine whether density of suppression is altered when measurement equipment/testing conditions are changed. Our pilot study had 10 subjects aged ≥18 years with childhood-onset strabismus, no ocular pathologies, and no binocular vision when manifest. Density of suppression upon repeated testing, with clinic lights on/off, and using a full/reduced intensity light source, was investigated. Results were analysed for test-retest reliability, equivalence, and changes with alteration of testing conditions. Test-retest reliability issues were present for the BF bar (median 6 filter change from first to final test, p = 0.021) and NDF bar (median 5 filter change from first to final test, p = 0.002). Density of suppression was unaffected by environmental illumination or fixation light intensity variations. Density of suppression measurements were higher when measured with the NDF bar (e.g. NDF bar = 1.5, medium suppression, vs BF bar = 6.5, light suppression). Test-retest reliability issues may be present for the two filter bars currently still under manufacture. Changes in testing conditions do not significantly affect test results, provided the same filter bar is used consistently for testing. Further studies in children with strabismus having active amblyopia treatment would be of benefit. Despite extensive use of these tests in the UK, this is to our knowledge the first study evaluating filter bar equivalence/reliability.

  10. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2004-01-01

    An increase in produced hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase

  11. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet

    2005-01-01

    An increase in hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to the lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase

  12. Coupling two iteratives algorithms for density measurements by computerized tomography

    International Nuclear Information System (INIS)

    Silva, L.E.M.C.; Santos, C.A.C.; Borges, J.C.; Frenkel, A.D.B.; Rocha, G.M.

    1986-01-01

    This work develops a study for coupling two iteratives algotithms for density measurements by computerized tomography. Tomographies have been obtained with an automatized prototype, controled by a microcomputer, projected and assembled in the Nuclear Instrumentation Laboratory, at COPPE/UFRJ. Results show a good performance of the tomographic system, and demonstrate the validity of the method of calculus adopted. (Author) [pt

  13. Measurements of plasma temperature and electron density in laser

    Indian Academy of Sciences (India)

    The temperature and electron density characterizing the plasma are measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time window of 300–2000 ns. An echelle spectrograph coupled with a gated intensified charge coupled detector is used to record the plasma emissions.

  14. Electron density measurement in an evolving plasma. Experimental devices

    International Nuclear Information System (INIS)

    Consoli, Terenzio; Dagai, Michel

    1960-01-01

    The experimental devices described here allow the electron density measurements in the 10 16 e/m 3 to 10 20 e/m 3 interval. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1223-1225, sitting of 15 February 1960 [fr

  15. Device for measuring neutron-flux distribution density

    International Nuclear Information System (INIS)

    Rozenbljum, N.D.; Mitelman, M.G.; Kononovich, A.A.; Kirsanov, V.S.; Zagadkin, V.A.

    1977-01-01

    An arrangement is described for measuring the distribution of neutron flux density over the height of a nuclear reactor core and which may be used for monitoring energy release or for detecting deviations of neutron flux from an optimal level so that subsequent balance can be achieved. It avoids mutual interference of detectors. Full constructional details are given. (UK)

  16. Density measurement using gamma radiation - theory and application

    International Nuclear Information System (INIS)

    Springer, E.K.

    1979-01-01

    There are still widespread uncertainties about the use and safety of gamma radiation in industries. This paper describes, by the example of radiometric density measurement, the theory of gamma radiation. The differences and advantages of both types of detectors, the ionization chamber and the scintillation counter, are discussed. The degree of accuracy which can be expected from the radiometric density meter will be defined, and the inter-relationship: source strength - measuring range - measuring length(normally the pipe diameter) in relation to the measuring accuracy required will be explained in detail. The use of radioactive material requires the permission of the Atomic Energy Board. The formalities involved to receive a user's licence and the implementations of safety standards set by the local authorities are discussed in depth [af

  17. Measurement of the hydrogen yield in the radiolysis of water by dissolved fission products

    International Nuclear Information System (INIS)

    Sauer, M.C. Jr.; Hart, E.J.; Flynn, K.F.; Gindler, J.E.

    1976-04-01

    Hydrogen from the radiolysis of water by dissolved fission products is stripped from the solution and collected by bubbling CO 2 through the solution. Quantitative measurements of the G value for hydrogen show that the yield is essentially the same as would be obtained by external gamma radiolysis of nonradioactive solutions of the same chemical composition. The hydrogen yield can be enhanced by addition of a hydrogen-atom donor, such as formic acid, to the solution. The yield of hydrogen from fission-waste solutions is discussed with respect to the question of whether it represents a significant energy source

  18. Incorporation of Hydrogen Bond Angle Dependency into the Generalized Solvation Free Energy Density Model.

    Science.gov (United States)

    Ma, Songling; Hwang, Sungbo; Lee, Sehan; Acree, William E; No, Kyoung Tai

    2018-04-23

    To describe the physically realistic solvation free energy surface of a molecule in a solvent, a generalized version of the solvation free energy density (G-SFED) calculation method has been developed. In the G-SFED model, the contribution from the hydrogen bond (HB) between a solute and a solvent to the solvation free energy was calculated as the product of the acidity of the donor and the basicity of the acceptor of an HB pair. The acidity and basicity parameters of a solute were derived using the summation of acidities and basicities of the respective acidic and basic functional groups of the solute, and that of the solvent was experimentally determined. Although the contribution of HBs to the solvation free energy could be evenly distributed to grid points on the surface of a molecule, the G-SFED model was still inadequate to describe the angle dependency of the HB of a solute with a polarizable continuum solvent. To overcome this shortcoming of the G-SFED model, the contribution of HBs was formulated using the geometric parameters of the grid points described in the HB coordinate system of the solute. We propose an HB angle dependency incorporated into the G-SFED model, i.e., the G-SFED-HB model, where the angular-dependent acidity and basicity densities are defined and parametrized with experimental data. The G-SFED-HB model was then applied to calculate the solvation free energies of organic molecules in water, various alcohols and ethers, and the log P values of diverse organic molecules, including peptides and a protein. Both the G-SFED model and the G-SFED-HB model reproduced the experimental solvation free energies with similar accuracy, whereas the distributions of the SFED on the molecular surface calculated by the G-SFED and G-SFED-HB models were quite different, especially for molecules having HB donors or acceptors. Since the angle dependency of HBs was included in the G-SFED-HB model, the SFED distribution of the G-SFED-HB model is well described

  19. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  20. Grain bulk density measurement based on wireless network

    Directory of Open Access Journals (Sweden)

    Wu Fangming

    2017-01-01

    Full Text Available To know the accurate quantity of stored grain, grain density sensors must be used to measure the grain’s bulk density. However, multi-sensors should be inserted into the storage facility, to quickly collect data during the inventory checking of stored grain. In this study, the ZigBee and Wi-Fi coexistence network’s ability to transmit data collected by density sensors was investigated. A system consisting of six sensor nodes, six router nodes, one gateway and one Android Pad was assembled to measure the grain’s bulk density and calculate its quantity. The CC2530 chip with ZigBee technology was considered as the core of the information processing, and wireless nodes detection in sensor, and router nodes. ZigBee worked in difference signal channel with Wi-Fi to avoid interferences and connected with Wi-Fi module by UART serial communications interfaces in gateway. The Android Pad received the measured data through the gateway and processed this data to calculate quantity. The system enabled multi-point and real-time parameter detection inside the grain storage. Results show that the system has characteristics of good expansibility, networking flexibility and convenience.

  1. Density and volume measurements of reprocessing plant feed

    International Nuclear Information System (INIS)

    Platzer, R.; Carrier, M.; Neuilly, M.; Dedaldechamp, P.

    1985-05-01

    A theoretical study of the phenomenon of gas bubbles formation within a liquid led to an adaptation of the differential pressure bubbling technique for the measurement of liquid levels and densities in tanks. Experiments, carried out on a 800 liters tank with water and uranyl nitrate solutions had the double aim to study the precision attainable on volume and density measurements and to design a method for corrections of influencing factors. In parallel, procedures for transfer of known volumes through the use of siphons and for tank calibration by liquid level measurement are also investigated. The paper presents the first results obtained so far and the conclusions to be drawn for the elaboration of calibration and exploitation procedures suitables for use in reprocessing plants. The demonstration to transfer mass of solution with an accuracy of 0.1% is made [fr

  2. Measurements of density profile evolution during the stably-stratified filling of an open enclosure

    International Nuclear Information System (INIS)

    Tarawneh, Constantine M.; Homan, K.O.

    2008-01-01

    The stably-stratified filling of an open enclosure produces an interfacial gradient layer which is transported through the enclosure with the bulk flow. The evolution of this interfacial layer is strongly time-dependent and is driven by the nature of the interaction between the internal gravity waves and the inlet-driven interfacial shear. Measurements of density profile evolution have been completed for a rectangular enclosure with a single corner inlet and density variation produced by saline concentration. This system serves as a mass transfer analog to large-scale, thermally-stratified energy storage devices, preserving dynamic similitude in a laboratory-scale system. The experiments covered jet Reynolds numbers of 200-2200 and Froude numbers of 0.06-0.6 in an enclosure with a width 23 times the jet inlet height. The density profiles are seen to be strongly asymmetric and exhibit growth rates significantly different than due to simple one-dimensional molecular diffusion. In addition, shadowgraph and hydrogen bubble visualizations of the density and velocity fields in the gradient layer show the persistence of complex multi-dimensional flow structure even at relatively late stages of the filling process when the gradient layer has been transported well away from the enclosure inlet. The evolution of the vertical density profile has been compared quantitatively to a quasi one-dimensional model based upon empirical diffusivity coefficients

  3. Hydrogen release from irradiated elastomers measured by Nuclear Reaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jagielski, J., E-mail: jacek.jagielski@itme.edu.pl [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland); Ostaszewska, U. [Institute for Engineering of Polymer Materials & Dyes, Division of Elastomers & Rubber Technology, Harcerska 30, 05-820 Piastow (Poland); Bielinski, D.M. [Technical University of Lodz, Institute of Polymer & Dye Technology, Stefanowskiego 12/16, 90-924 Lodz (Poland); Grambole, D. [Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden Rossendorf, PO Box 51 01 19, D-01314 Dresden (Germany); Romaniec, M.; Jozwik, I.; Kozinski, R. [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); Kosinska, A. [National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland)

    2016-03-15

    Ion irradiation appears as an interesting method of modification of elastomers, especially friction and wear properties. Main structural effect caused by heavy ions is a massive loss of hydrogen from the surface layer leading to its smoothening and shrinking. The paper presents the results of hydrogen release from various elastomers upon irradiation with H{sup +}, He{sup +} and Ar{sup +} studied by using Nuclear Reaction Analysis (NRA) method. The analysis of the experimental data indicates that the hydrogen release is controlled by inelastic collisions between ions and target electrons. The last part of the study was focused on preliminary analysis of mechanical properties of irradiated rubbers.

  4. Vibrational signatures of cation-anion hydrogen bonding in ionic liquids: a periodic density functional theory and molecular dynamics study.

    Science.gov (United States)

    Mondal, Anirban; Balasubramanian, Sundaram

    2015-02-05

    Hydrogen bonding in alkylammonium based protic ionic liquids was studied using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Normal-mode analysis within the harmonic approximation and power spectra of velocity autocorrelation functions were used as tools to obtain the vibrational spectra in both the gas phase and the crystalline phases of these protic ionic liquids. The hydrogen bond vibrational modes were identified in the 150-240 cm(-1) region of the far-infrared (far-IR) spectra. A blue shift in the far-IR mode was observed with an increasing number of hydrogen-bonding sites on the cation; the exact peak position is modulated by the cation-anion hydrogen bond strength. Sub-100 cm(-1) bands in the far-IR spectrum are assigned to the rattling motion of the anions. Calculated NMR chemical shifts of the acidic protons in the crystalline phase of these salts also exhibit the signature of cation-anion hydrogen bonding.

  5. Measurement and Analysis of the Diffusible Hydrogen in Underwater Wet Welding Joint

    Directory of Open Access Journals (Sweden)

    Kong Xiangfeng

    2016-01-01

    Full Text Available The diffusible hydrogen in steel weldments is one of the main reasons that led to hydrogen assisted cracking. In this paper, the results of literatures survey and preliminary tests of the diffusible hydrogen in underwater wet welding joint were presented. A fluid-discharge method of for measuring the diffusible hydrogen in weldment was introduced in detail. Two kinds of underwater welding electrode diffusible hydrogen are 26.5 mL/100g and 35.5 mL/100g by fluid-discharge method, which are high levels. The diffusible hydrogen of underwater welding is higher than atmospheric welding, and the result is closely related to welding material. The best way to control the diffusible hydrogen is adjusting welding material and improving fluidity of slag.

  6. A mathematical model of the maximum power density attainable in an alkaline hydrogen/oxygen fuel cell

    Science.gov (United States)

    Kimble, Michael C.; White, Ralph E.

    1991-01-01

    A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum.

  7. Cumulative sum quality control for calibrated breast density measurements

    International Nuclear Information System (INIS)

    Heine, John J.; Cao Ke; Beam, Craig

    2009-01-01

    Purpose: Breast density is a significant breast cancer risk factor. Although various methods are used to estimate breast density, there is no standard measurement for this important factor. The authors are developing a breast density standardization method for use in full field digital mammography (FFDM). The approach calibrates for interpatient acquisition technique differences. The calibration produces a normalized breast density pixel value scale. The method relies on first generating a baseline (BL) calibration dataset, which required extensive phantom imaging. Standardizing prospective mammograms with calibration data generated in the past could introduce unanticipated error in the standardized output if the calibration dataset is no longer valid. Methods: Sample points from the BL calibration dataset were imaged approximately biweekly over an extended timeframe. These serial samples were used to evaluate the BL dataset reproducibility and quantify the serial calibration accuracy. The cumulative sum (Cusum) quality control method was used to evaluate the serial sampling. Results: There is considerable drift in the serial sample points from the BL calibration dataset that is x-ray beam dependent. Systematic deviation from the BL dataset caused significant calibration errors. This system drift was not captured with routine system quality control measures. Cusum analysis indicated that the drift is a sign of system wear and eventual x-ray tube failure. Conclusions: The BL calibration dataset must be monitored and periodically updated, when necessary, to account for sustained system variations to maintain the calibration accuracy.

  8. Cumulative sum quality control for calibrated breast density measurements

    Energy Technology Data Exchange (ETDEWEB)

    Heine, John J.; Cao Ke; Beam, Craig [Cancer Prevention and Control Division, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612 (United States); Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 W. Taylor St., Chicago, Illinois 60612 (United States)

    2009-12-15

    Purpose: Breast density is a significant breast cancer risk factor. Although various methods are used to estimate breast density, there is no standard measurement for this important factor. The authors are developing a breast density standardization method for use in full field digital mammography (FFDM). The approach calibrates for interpatient acquisition technique differences. The calibration produces a normalized breast density pixel value scale. The method relies on first generating a baseline (BL) calibration dataset, which required extensive phantom imaging. Standardizing prospective mammograms with calibration data generated in the past could introduce unanticipated error in the standardized output if the calibration dataset is no longer valid. Methods: Sample points from the BL calibration dataset were imaged approximately biweekly over an extended timeframe. These serial samples were used to evaluate the BL dataset reproducibility and quantify the serial calibration accuracy. The cumulative sum (Cusum) quality control method was used to evaluate the serial sampling. Results: There is considerable drift in the serial sample points from the BL calibration dataset that is x-ray beam dependent. Systematic deviation from the BL dataset caused significant calibration errors. This system drift was not captured with routine system quality control measures. Cusum analysis indicated that the drift is a sign of system wear and eventual x-ray tube failure. Conclusions: The BL calibration dataset must be monitored and periodically updated, when necessary, to account for sustained system variations to maintain the calibration accuracy.

  9. Pulse compression radar reflectometry for density measurements on fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Costley, A; Prentice, R [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Laviron, C [Compagnie Generale des Matieres Nucleaires (COGEMA), 78 - Velizy-Villacoublay (France); Prentice, R [Toulouse-3 Univ., 31 (France). Centre d` Etude Spatiale des Rayonnements

    1994-07-01

    On tokamaks and other toroidal machines, reflectometry is a very rapidly developing technique for density profile measurements, particularly near the edge. Its principle relies on the total reflection of an electromagnetic wave at a cutoff layer, where the critical density is reached and the local refractive index goes to zero. With the new fast frequency synthesizers now available, a method based on pulse compression radar is proposed for plasma reflectometry, overcoming the limitations of the previous reflectometry methods. The measurement can be made on a time-scale which is effectively very short relatively to the plasma fluctuations, and the very high reproducibility and stability of the source allows an absolute calibration of the waveguides to be made, which corrects for the effects of the parasitic reflections. 2 refs., 5 figs.

  10. Plasma density measurement with ring-type cutoff probe

    International Nuclear Information System (INIS)

    Kim, D.W.; You, S.J.; Na, B.K.; Kim, J.H.; Shin, Y.H.; Chang, H.Y.; Oh, W.Y.

    2013-01-01

    We proposed a cutoff probe with a ring-type detection tip enclosing a bar-type radiation tip. A comparative study between a proposed ring-type cutoff (RTC) probe and a conventional bar-type cutoff (BTC) probe showed that the RTC probe solved the problem of the BTC probe, the large measurement uncertainty of the electron density in a capacitively coupled plasma source. This improved characteristics of the RTC probe might have originated from the geometrical structure of the RTC probe concerning the monopole antennae radiation. This proposed cutoff probe can be expected to expand the applicable diagnostic range and to enhance the sensitivity of the cutoff probe. - Highlights: ► A cutoff probe with a ring type detection tip is proposed. ► Comparative experiment and simulation were conducted. ► The proposed probe showed a small uncertainty of measured plasma density. ► Improved characteristics might be originated from the geometrical structure

  11. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  12. An ultracold neutron storage bottle for UCN density measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bison, G.; Burri, F.; Daum, M. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Kirch, K. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule (ETH), Zürich (Switzerland); Krempel, J. [Institute for Particle Physics, Eidgenössische Technische Hochschule (ETH), Zürich (Switzerland); Lauss, B., E-mail: bernhard.lauss@psi.ch [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Meier, M. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Ries, D., E-mail: dieter.ries@psi.ch [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule (ETH), Zürich (Switzerland); Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland)

    2016-09-11

    We have developed a storage bottle for ultracold neutrons (UCNs) in order to measure the UCN density at the beamports of the Paul Scherrer Institute's (PSI) UCN source. This paper describes the design, construction and commissioning of the robust and mobile storage bottle with a volume comparable to typical storage experiments (32 L) e.g. searching for an electric dipole moment of the neutron.

  13. Thermogravimetric measurement of hydrogen storage in carbon-based materials: promise and pitfalls

    International Nuclear Information System (INIS)

    Pinkerton, F.E.; Wicke, B.G.; Olk, C.H.; Tibbetts, G.G.; Meisner, G.P.; Meyer, M.S.; Herbst, J.F.

    2000-01-01

    We have used a thermogravimetric analyzer (TGA) to measure the hydrogen absorption capacity of a variety of carbon-based storage materials, including Li- and K-intercalated graphite and Li-doped multi-wall nanotubes. The TGA uses weight gain/loss as a function of time and temperature to monitor hydrogen absorption/desorption in flowing hydrogen gas. Creating and maintaining a contaminant-free atmosphere is critical to the accurate TGA measurement of hydrogen absorption in carbon-based materials; even low concentrations of impurity gases such as O 2 or H 2 O are sufficient to masquerade as hydrogen absorption. We will discuss examples of this effect relevant to recent reports of hydrogen storage appearing in the literature. The precautions required are non-trivial. In our TGA, for instance, about 16% of the original atmosphere remains after a two-hour purge; at least 15 hours is required to fully purge the apparatus. Furthermore, we cover the TGA with a protective atmosphere enclosure during sample loading to minimize the introduction of impurity gases. With these precautions it is possible to unambiguously measure hydrogen storage. For example, we have determined the hydrogen absorption capacity of our K-intercalated graphite samples to be 1.3 wt% total hydrogen absorption above 50 o C, of which 0.2 wt% can be reproducibly recovered with temperature cycling. With due care, TGA measurements provide complementary information to that obtained from standard pressure techniques for measuring hydrogen sorption, which rely on measuring the loss of gas pressure in a known volume. Taken together, TGA and pressure measurements provide a powerful combination for determining verifiable hydrogen storage capacity. (author)

  14. A measurement of perpendicular current density in an aurora

    International Nuclear Information System (INIS)

    Bering, E.A.; Mozer, F.S.

    1975-01-01

    A Nike Tomahawk sounding rocket was launched into a 400-γ auroral substorm on February 7, 1972, from Esrange, Kiruna, Sweden. The rocket instrumentation included a split Langmuir probe plasma velocity detector and a double-probe electric field detector. Above 140-km altitude the electric field deduced from the ion flow velocity measurement and the electric field measured by the double probe agree to an accuracy within the uncertainties of the two measurements. The difference between the two measurements at altitudes below 140 km provides an in situ measurement of current density and conductivity. Alternatively, if values for the conductivity are assumed, the neutral wind velocity can be deduced. The height-integrated current was 0.11 A/m flowing at an azimuth of 276degree. The neutral winds were strong, exhibited substantial altitude variation in the east-west component, and were predominantly southward

  15. Pauli potential from Heilmann-Lieb electron density obtained by summing hydrogenic closed-shell densities over the entire bound-state spectrum

    International Nuclear Information System (INIS)

    Bogar, Ferenc; Bartha, Ferenc; Bartha, Ferenc A.; March, Norman H.

    2011-01-01

    Independently, in the mid-1980s, several groups proposed to bosonize the density-functional theory (DFT) for fermions by writing a Schroedinger equation for the density amplitude ρ(r) 1/2 , with ρ(r) as the ground-state electron density, the central tool of DFT. The resulting differential equation has the DFT one-body potential V(r) modified by an additive term V P (r) where P denotes Pauli. To gain insight into the form of the Pauli potential V P (r), here, we invoke the known Coulombic density, ρ ∞ (r) say, calculated analytically by Heilmann and Lieb (HL), by summation over the entire hydrogenic bound-state spectrum. We show that V P∞ (r) has simple limits for both r tends to infinity and r approaching zero. In particular, at large r, V P∞ (r) precisely cancels the attractive Coulomb potential -Ze 2 /r, leaving V(r)+V P∞ (r) of O(r -2 ) as r tends to infinity. The HL density ρ ∞ (r) is finally used numerically to display V P∞ (r) for all r values.

  16. Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-27

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  17. Hydrogen-isotope motion in scandium studied by ultrasonic measurements

    International Nuclear Information System (INIS)

    Leisure, R.G.; Schwarz, R.B.; Migliori, A.; Torgeson, D.R.; Svare, I.

    1993-01-01

    Resonant ultrasound spectroscopy has been used to investigate ultrasonic attenuation in single crystals of Sc, ScH 0.25 , and ScD 0.18 over the temperature range of 10--300 K for frequencies near 1 MHz. Ultrasonic-attenuation peaks were observed in the samples containing H or D with the maximum attenuation occurring near 25 K for ScH 0.25 and near 50 K for ScD 0.18 . The general features of the data suggest that the motion reflected in the ultrasonic attenuation is closely related to the low-temperature motion seen in nulcear-magnetic-resonance spin-lattice-relaxation measurements. The ultrasonic results were fit with a two-level-system (TLS) model involving tunneling between highly asymmetric sites. The relaxation of the TLS was found to consist of two parts: a weakly temperature-dependent part, probably due to coupling to electrons; and a much more strongly temperature-dependent part, attributed to multiple-phonon processes. The strongly temperature-dependent part was almost two orders of magnitude faster in ScH 0.25 than in ScD 0.18 , in accordance with the idea that tunneling is involved in the motion. Surprisingly, the weakly temperature-dependent part was found to be about the same for the two isotopes. The asymmetries primarily responsible for coupling the TLS to the ultrasound are attributed to interactions between hydrogen ions that lie on adjacent c axes. The results are consistent with an isotope-independent strength for the coupling of the TLS to the ultrasound

  18. Locating the rate-limiting step for the interaction of hydrogen with Mg(0001) using density-functional theory calculations and rate theory

    DEFF Research Database (Denmark)

    Vegge, Tejs

    2004-01-01

    The dissociation of molecular hydrogen on a Mgs0001d surface and the subsequent diffusion of atomic hydrogen into the magnesium substrate is investigated using Density Functional Theory (DFT) calculations and rate theory. The minimum energy path and corresponding transition states are located usi...... to be rate-limiting for the ab- and desorption of hydrogen, respectively. Zero-point energy contributions are found to be substantial for the diffusion of atomic hydrogen, but classical rates are still found to be within an order of magnitude at room temperature.......The dissociation of molecular hydrogen on a Mgs0001d surface and the subsequent diffusion of atomic hydrogen into the magnesium substrate is investigated using Density Functional Theory (DFT) calculations and rate theory. The minimum energy path and corresponding transition states are located using...

  19. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  20. Hydrogen bonding interactions between ethylene glycol and water:density,excess molar volume,and spectral study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures. The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume,which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×10?6 (volume ratio) in the gas phase. Meanwhile,FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration,respectively. Furthermore,the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  1. Time-Dependent Density Functional Theory Analysis of Triphenylamine-Functionalized Graphene Doped with Transition Metals for Photocatalytic Hydrogen Production.

    Science.gov (United States)

    Mota, Elder A V; Neto, Abel F G; Marques, Francisco C; Mota, Gunar V S; Martins, Marcelo G; Costa, Fabio L P; Borges, Rosivaldo S; Neto, Antonio M J C

    2018-07-01

    The electronic structures and optical properties of triphenylamine-functionalized graphene (G-TPA) doped with transition metals, using water as a solvent, were theoretically investigated to verify the efficiency of photocatalytic hydrogen production with the use of transition metals. This study was performed by Density Functional Theory and Time-dependent Density Functional Theory through Gaussian 09W software, adopting the B3LYP functional for all structures. The 6-31g(d) basis set was used for H, C and N atoms, and the LANL2DZ basis set for transition metals using the Effective Core Potentials method. Two approaches were adopted: (1) using single metallic dopants (Ni, Pd, Fe, Os and Pt) and (2) using combinations of Ni with the other dopants (NiPd, NiPt, NiFe and NiOs). The DOS spectra reveal an increase of accessible states in the valence shell, in addition to a gap decrease for all dopants. This doping also increases the absorption in the visible region of solar radiation where sunlight is most intense (400 nm to 700 nm), with additional absorption peaks. The results lead us to propose the G-TPA structures doped with Ni, Pd, Pt, NiPt or NiPd to be novel catalysts for the conversion of solar energy for photocatalytic hydrogen production, since they improve the absorption of solar energy in the range of interest for solar radiation; and act as reaction centers, reducing the required overpotential for hydrogen production from water.

  2. Interferometric measurements of plasma density in high-β plasmas

    International Nuclear Information System (INIS)

    Quinn, W.E.

    1977-01-01

    The coupled-cavity laser interferometer technique is particularly applicable to the measurement of pulsed plasma densities. This technique is based on the fact that if a small fraction of a gas laser's output radiation is reflected into the laser with an external mirror, the intensity of the laser output is modulated. These amplitude or intensity modulations are produced by changes in the laser gain. A rotating corner mirror or an oscillating mirror can be used to produce a continuous feedback modulation of the interferometer which produces a continuous background fringe pattern. The presence of plasma in the outer cavity causes an additional change which results in a phase shift of the regular period of the background fringe pattern. The integral of the plasma density along the line of sight can be evaluated by comparison of the time history of the fringes obtained with and without plasma

  3. Measurements of edge density profile modifications during IBW on TFTR

    International Nuclear Information System (INIS)

    Hanson, G.R.; Bush, C.E.; Wilgen, J.B.

    1997-01-01

    Ion Bernstein wave (IBW) antennas are known to have substantial localized effects on the plasma edge. To allow better understanding and measurement of these effects, the TFTR edge reflectometer has been relocated to the new IBW antenna. This move was facilitated by the incorporation of a diagnostic access tube in the IBW antenna identical to the original diagnostic tube in the fast-wave (FW) antenna. This allowed the reflectometer launcher to simply be moved from the old FW antenna to the new IBW antenna. Only a moderate extension of the waveguide transmission line was required to reconnect the reflectometer to the launcher in its new location. Edge density profile modification during IBW experiments has been observed. Results from IBW experiments will be presented and contrasted to the edge density modifications previously observed during FW heating experiments

  4. High precision measurement of fuel density profiles in nuclear fusion plasmas

    NARCIS (Netherlands)

    Svensson, J.; von Hellermann, M.; Konig, R.

    2002-01-01

    This paper presents a method for deducing fuel density profiles of nuclear fusion plasmas in realtime during an experiment. A Multi Layer Perceptron (MLP) neural network is used to create a mapping between plasma radiation spectra and indirectly deduced hydrogen isotope densities. By combining

  5. Physical properties of Martian meteorites: Porosity and density measurements

    Science.gov (United States)

    Coulson, Ian M.; Beech, Martin; Nie, Wenshuang

    Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet's surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. In comparison with the limited existing data for Martian meteorites we find fairly good agreement, although our porosity values typically lie at the low end of published values. Surprisingly, despite the increased data set, there is little by way of correlation between either porosity or density with parameters such as shock effect or terrestrial residency. Further data collection on additional meteorite samples is required before more definitive statements can be made concerning the validity of these observations.

  6. Measurements of hydrogen concentration in liquid sodium by using an inert gas carrier method

    International Nuclear Information System (INIS)

    Funada, T.; Nihei, I.; Yuhara, S.; Nakasuji, T.

    1979-01-01

    A technique was developed to measure the hydrogen level in liquid sodium using an inert gas carrier method. Hydrogen was extracted into an inert gas from sodium through a thin nickel membrane in the form of a helically wound tube. The amount of hydrogen in the inert gas was analyzed by gas chromatography. The present method is unique in that it can be used over the wide range of sodium temperatures (150 to 700 0 C) and has no problems associated with vacuum systems. The partial pressure of hydrogen in sodium was determined as a function of cold-trap temperature (T/sub c/). Sieverts' constant (K/sub s/) was determined as a function of sodium temperature (T). From Sieverts' constant, the solubility of hydrogen in sodium is calculated. It was found that other impurities in sodium, such as (O) and (OH), have little effect on the hydrogen pressure in the sodium loop

  7. The Physical Density of the City—Deconstruction of the Delusive Density Measure with Evidence from Two European Megacities

    Directory of Open Access Journals (Sweden)

    Hannes Taubenböck

    2016-11-01

    Full Text Available Density is among the most important descriptive as well as normative measures in urban research. While its basic concept is generally understandable, approaches towards the density measure are manifold, diverse and of multidimensional complexity. This evolves from differing thematic, spatial and calculative specifications. Consequently, applied density measures are often used in a subjective, non-transparent, unspecific and thus non-comparable manner. In this paper, we aim at a systematic deconstruction of the measure density. Varying thematic, spatial and calculative dimensions show significant influence on the measure. With both quantitative and qualitative techniques of evaluation, we assess the particular influences on the measure density. To do so, we reduce our experiment setting to a mere physical perspective; that is, the quantitative measures building density, degree of soil sealing, floor space density and, more specifically, the density of generic structural classes such as open spaces and highest built-up density areas. Using up-to-date geodata derived from remote sensing and volunteered geographic information, we build upon high-quality spatial information products such as 3-D city models. Exemplified for the comparison of two European megacities, namely Paris and London, we reveal and systemize necessary variables to be clearly defined for meaningful conclusions using the density measure.

  8. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    Science.gov (United States)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  9. Structural, optical, mechanical and density functional theory studies of 1H-pyrazol-2-ium hydrogen oxalate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Devi, P. Karthiga, E-mail: karthvi19@gmail.com; Venkatachalam, K.

    2016-11-01

    In the present work, we have grown 1H- pyrazol-2-ium hydrogen oxalate single crystal by slow evaporation solution growth technique. The lattice parameters are determined from single crystal X ray diffraction studies. The functional groups present in the compound are confirmed by Fourier transform infrared spectroscopy. UV-Vis analysis shows that the crystal has a wide transparency window. Vicker's hardness test has been carried out to estimate the stiffness constant, fracture toughness, brittleness index and yield strength of the crystal. Density functional study B3LYP method at 6-31 G (d, p) has been performed to study the optimized structure, HOMO-LUMO energy gap, hyperpolarizability and thermodynamic properties. - Highlights: • The title compound was analyzed using FTIR and UV–Vis spectroscopy. • Mechanical study was carried out using Vicker's hardness test. • Optimized molecular geometry was determined using DFT method. • Hydrogen bonding interaction was studied through NBO analysis.

  10. Remote application of an oscillatory system for density measurements

    International Nuclear Information System (INIS)

    Fortsch, E.M.; Wade, M.A.

    1974-01-01

    An Anton-Paar densimeter was modified for remote use and installed in the Remote Analytical Facility of the Idaho Chemical Processing Plant. This instrument determines density by measuring the deviation in resonant frequency of a hollow-glass mechanical oscillator when filled with sample material. The volume of the oscillator is constant and any change in its frequency is due to the sample. The change in frequency is a measure of the mass of the sample. Since there is no need to measure either volume or mass, the remote manipulations are simplified. This unit replaced existing falling-drop equipment with a reduction in cost and improvement of precision. The remote unit is used routinely 24 h a day with a precision of better than +- 5 x 10 -4 g/ml

  11. Evaluation of the Automatic Density Compensation for Pressurizer Level Measurement

    International Nuclear Information System (INIS)

    Jeong, Insoo; Min, Seohong; Ahn, Myunghoon

    2014-01-01

    When using two transmitters, it is difficult for the operators to identify the correct level of the pressurizer (PZR) upon failure of one of the two transmitters. For this reason, Korean Utility Requirements Document (KURD) requires that the operators to use three independent level indicators. Two hot calibrated transmitters and one cold calibrated transmitter compose PZR level transmitters in APR1400. In this paper, the deviation between cold calibration and hot calibration is evaluated, and the application of compensated PZR level measurement and uncompen-sated PZR level measurement during the normal operation of APR1400 are introduced. The PZR level signals for APR1400 come in three channels. To satisfy the KURD requirements for PZR level measurement, and at the same time to accomplish correction design and implementation, applicability and differences between hot calibration and cold calibration, compensated level and uncompensated level were evaluated as follows: For proper indication of PZR levels under normal operating condition, two of the three transmitters went through hot calibration and the remaining one transmitter went through cold calibration. This was to allow indicating entire regions of PZR regardless of the plant operation modes. For automatic density compensation per KURD requirements, the algorithm of the density compensated PZR level implemented in the DCS controller and PRV logic is adopted as a signal validation method

  12. X-ray spectroscopy for high energy-density X pinch density and temperature measurements (invited)

    International Nuclear Information System (INIS)

    Pikuz, S.A.; Shelkovenko, T.A.; Chandler, K.M.; Mitchell, M.D.; Hammer, D.A.; Skobelev, I.Y.; Shlyaptseva, A.S.; Hansen, S.B.

    2004-01-01

    X pinch plasmas produced from fine metal wires can reach near solid densities and temperatures of 1 keV or even more. Plasma conditions change on time scales as short as 5-10 ps as determined using an x-ray streak camera viewing a focusing crystal spectrograph or directly viewing the plasma through multiple filters on a single test. As a result, it is possible to determine plasma conditions from spectra with ∼10 ps time resolution. Experiments and theory are now coming together to give a consistent picture of the dynamics and kinetics of these high energy density plasmas with very high temporal and spatial precision. A set of diagnostic techniques used in experiments for spectrally, temporally, and spatially resolved measurements of X pinch plasmas is described. Results of plasma parameter determination from these measurements are presented. X ray backlighting of one x-pinch by another with ∼30 ps x-ray pulses enables the dynamics and kinetics to be correlated in time

  13. Quantitative measurement of the orbital angular momentum density of light

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-03-01

    Full Text Available of the azimuthal mode index, n, on LCD1 is equiva- lent to n on LCD2. If the reader wishes to orientate the experimental setup differently, such that the two SLMs have the same orientation (i.e., are not mirror images of each other), the complex conjugate... measurement, is separated into two parts: (1) the generation of the optical field and (2) the mea- surement of the OAM density, which is achieved by performing a modal decomposition of the opti- cal field. A. Symmetric Superposition of Two Bessel Beams...

  14. Poloidal polarimeter for current density measurements in ITER

    International Nuclear Information System (INIS)

    Donne, A.J.H.; Graswinckel, M.F.; Cavinato, M.; Giudicotti, L.; Zilli, E.; Gil, C.; Koslowski, H.R.; McCarthy, P.; Nyhan, C.; Prunty, S.; Spillane, M.; Walker, C.

    2004-01-01

    One of the systems envisaged for measuring the current density profile in the ITER is a 118 μm poloidal polarimeter system. The proposed system has two independent views: one fan of chords observes the plasma via an equatorial port and a second fan views down from an upper port. This article will present the status of the on-going work and will address issues as sensitivity and accuracy, refraction, Gaussian beam ray-tracing, alignment, and calibration as well as some specific design details

  15. A torque-measuring micromotor provides operator independent measurements marking four different density areas in maxillae.

    Science.gov (United States)

    Di Stefano, Danilo Alessio; Arosio, Paolo; Piattelli, Adriano; Perrotti, Vittoria; Iezzi, Giovanna

    2015-02-01

    Bone density at implant placement site is a key factor to obtain the primary stability of the fixture, which, in turn, is a prognostic factor for osseointegration and long-term success of an implant supported rehabilitation. Recently, an implant motor with a bone density measurement probe has been introduced. The aim of the present study was to test the objectiveness of the bone densities registered by the implant motor regardless of the operator performing them. A total of 3704 bone density measurements, performed by means of the implant motor, were registered by 39 operators at different implant sites during routine activity. Bone density measurements were grouped according to their distribution across the jaws. Specifically, four different areas were distinguished: a pre-antral (between teeth from first right maxillary premolar to first left maxillary premolar) and a sub-antral (more distally) zone in the maxilla, and an interforaminal (between and including teeth from first left mandibular premolar to first right mandibular premolar) and a retroforaminal (more distally) zone in the lower one. A statistical comparison was performed to check the inter-operators variability of the collected data. The device produced consistent and operator-independent bone density values at each tooth position, showing a reliable bone-density measurement. The implant motor demonstrated to be a helpful tool to properly plan implant placement and loading irrespective of the operator using it.

  16. Standard Test Method for Electronic Measurement for Hydrogen Embrittlement From Cadmium-Electroplating Processes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This test method covers an electronic hydrogen detection instrument procedure for measurement of plating permeability to hydrogen. This method measures a variable related to hydrogen absorbed by steel during plating and to the hydrogen permeability of the plate during post plate baking. A specific application of this method is controlling cadmium-plating processes in which the plate porosity relative to hydrogen is critical, such as cadmium on high-strength steel. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statement, see Section 8. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  17. Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture.

    Science.gov (United States)

    Leibowitz, L. P.

    1973-01-01

    Shock structure during ionization of a hydrogen-helium mixture has been followed using hydrogen line and continuum emission measurements. A reaction scheme is proposed which includes hydrogen dissociation and a two-step excitation-ionization mechanism for hydrogen ionization by atom-atom and atom-electron collisions. Agreement has been achieved between numerical calculations and measurements of emission intensity as a function of time for shock velocities from 13 to 20 km/sec in a 0.208 H2-0.792 He mixture. The electron temperature was found to be significantly different from the heavy particle temperature during much of the ionization process. Similar time histories for H beta and continuum emission indicate upper level populations of hydrogen in equilibrium with the electron concentration during the relaxation process.

  18. Calculation of emission from hydrogenic ions in super liquid density plasmas

    International Nuclear Information System (INIS)

    Bailey, D.S.; Valeo, E.J.

    1976-01-01

    Previous calculations of line emission were extended to higher density, lower temperature plasmas, typical of those expected in early ablative compression experiments. Emission from Ne-seeded fuel was analyzed in order to diagnose the density and temperature of the compressed core. The Stark/Doppler broadened emission profile is calculated for the H-like Ne resonance line. The observable lineshape is then obtained by time-averaging over expected density and temperature profiles and by including the effects of radiative transfer

  19. Density functional for van der Waals forces accounts for hydrogen bond in benchmark set of water hexamers

    DEFF Research Database (Denmark)

    Kelkkanen, Kari André; Lundqvist, Bengt; Nørskov, Jens Kehlet

    2009-01-01

    A recent extensive study has investigated how various exchange-correlation (XC) functionals treat hydrogen bonds in water hexamers and has shown traditional generalized gradient approximation and hybrid functionals used in density-functional (DF) theory to give the wrong dissociation-energy trend...... of low-lying isomers and van der Waals (vdW) dispersion forces to give key contributions to the dissociation energy. The question raised whether functionals that incorporate vdW forces implicitly into the XC functional predict the correct lowest-energy structure for the water hexamer and yield accurate...

  20. Density Measurement of Compact Toroid with Mach-Zehnder Interferometer

    Science.gov (United States)

    Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary

    2016-10-01

    Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.

  1. Measurements of the sheath potential in low density plasmas

    International Nuclear Information System (INIS)

    Bradley, J.W.; Khamis, R.A.; Sanduk, M.I.; Elliott, J.A.; Rusbridge, M.G.

    1992-01-01

    We have measured the sheath potential around a probe in a range of different plasma conditions in the UMIST, University of Manchester Institute of Science and Technology, quadrupole GOLUX and in a related experiment in which the plasma expands freely to supersonic velocity. In the latter case, the sheath potential agrees well with an appropriately modified form of the usual expression for a field-free plasma, for both hydrogen and argon plasmas. In GOLUX, however, the sheath potential is found to be significantly less than the accepted value, even when the magnetic field is taken into account. For the slow moving plasma in the outer part of the quadrupole confining field, we present both theoretical and experimental results showing that the reduction is due to truncation of the electron velocity distribution as the probe drains electrons from a closed flux tube faster than they can be replaced. In the central hot plasma, however, this explanation cannot apply. Here, the plasma is moving at about sonic speed and magnetic effects are weak. Nevertheless, the results are significantly different from both in the field free experiment. (author)

  2. Annual measurements of gain and loss in aboveground carbon density

    Science.gov (United States)

    Baccini, A.; Walker, W. S.; Carvalho, L.; Farina, M.; Sulla-menashe, D. J.; Houghton, R. A.

    2017-12-01

    Tropical forests hold large stores of carbon, but their net carbon balance is uncertain. Land use and land-cover change (LULCC) are believed to release between 0.81 and 1.14 PgC yr-1, while intact native forests are thought to be a net carbon sink of approximately the same magnitude. Reducing the uncertainty of these estimates is not only fundamental to the advancement of carbon cycle science but is also of increasing relevance to national and international policies designed to reduce emissions from deforestation and forest degradation (e.g., REDD+). Contemporary approaches to estimating the net carbon balance of tropical forests rely on changes in forest area between two periods, typically derived from satellite data, together with information on average biomass density. These approaches tend to capture losses in biomass due to deforestation (i.e., wholesale stand removals) but are limited in their sensitivity to forest degradation (e.g., selective logging or single-tree removals), which can account for additional biomass losses on the order of 47-75% of deforestation. Furthermore, while satellite-based estimates of forest area loss have been used successfully to estimate associated carbon losses, few such analyses have endeavored to determine the rate of carbon sequestration in growing forests. Here we use 12 years (2003-2014) of pantropical satellite data to quantify net annual changes in the aboveground carbon density of woody vegetation (MgC ha-1yr-1), providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 Tg C yr-1. This net release of carbon consists of losses of 861.7 ± 80.2 Tg C yr-1 and gains of -436.5 ± 31.0 Tg C yr-1 . Gains result from forest growth; losses result from reductions in forest area due to deforestation and from reductions in biomass density within standing forests (degradation), with the latter accounting for 68.9% of overall losses. Our findings advance previous research

  3. Measurements of cascade times of antiprotons in molecular hydrogen and helium

    CERN Document Server

    Bianconi, A; Corradini, M; Donzella, A; Gómez, G; Lodi-Rizzini, E; Venturelli, L; Vilar, R; Zenoni, A; Bertin, A; Bruschi, M; Capponi, M; De Castro, S; Donà, R; Galli, D; Giacobbe, B; Marconi, U; Massa, I; Piccinini, M; Semprini-Cesari, N; Spighi, R; Vagnoni, V M; Vecchi, S; Villa, M; Vitale, A; Zoccoli, A; Cicalò, C; De Falco, A; Masoni, A; Puddu, G; Serci, S; Usai, G L; Gorchakov, O E; Prakhov, S N; Rozhdestvensky, A M; Tretyak, V I; Poli, M; Gianotti, P; Guaraldo, C; Lanaro, A; Lucherini, V; Petrascu, C; Ableev, V G; Ricci, R A; Vannucci, Luigi; Filippini, V; Fontana, A; Montagna, P; Rotondi, A; Salvini, P; Mirfakhraee, N; Bussa, M P; Busso, L; Cerello, P G; Denisov, O Yu; Ferrero, L; Garfagnini, R; Grasso, A; Maggiora, A; Panzarasa, A; Panzieri, D; Tosello, F; Botta, E; Bressani, Tullio; Calvo, D; Costa, S; D'Isep, F; Feliciello, A; Filippi, A; Marcello, S; Agnello, M; Iazzi, F; Minetti, B; Tessaro, S; Santi, L

    2000-01-01

    The OBELIX experiment at CERN collected samples of antiproton annihilations at rest in different gaseous targets, such as hydrogen, deuterium and helium. We analyze a set of the Obelix data using a new technique for measuring, for the first time, the cascade times independent of the capture energy and of the antiproton stopping power. We report on measurements of the cascade times for hydrogen at 3.4, 5.8, 9.8 and 150 mbar and for helium at 8.2, 50 and 150 mbar pressure. An estimate of the antiproton capture energy in hydrogen is also presented. (12 refs).

  4. (MnH9)2- salts with high hydrogen contents and unusual bonding: Density functional calculations

    Science.gov (United States)

    Gupta, Michèle; Gupta, Raju P.; Singh, D. J.

    2009-12-01

    The compounds BaReH9 and K2ReH9 are the prototypical members of a family of hydrides described as salts of (ReH9)2- anions. The structures reflect highly unusual chemistry with short H-H distances and at the same time very high ninefold coordination of Re by hydrogen atoms. This is of interest because of the resulting high hydrogen-to-metal ratios, 4.5 in BaReH9 and 3 in K2ReH9 . Here we use density functional calculations to investigate possible new members of this family including both Re and Mn compounds. We find that although SrReH9 and CaReH9 have not been synthesized these are very likely to be stable compounds that may be prepared in a similar manner as the Ba analog. We also find that the manganese counterparts, including K2MnH9 , are also likely to be stable and have thermodynamic properties consistent with requirements for hydrogen storage.

  5. Novel (MnH9)2- salts with high hydrogen contents and unusual bonding: density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Michele [Universite Paris Sud, Orsay, France; Gupta, Raju [CEA, Saclay, France; Singh, David J [ORNL

    2009-01-01

    The compounds BaReH{sub 9} and K{sub 2}ReH{sub 9} are the prototypical members of a family of hydrides described as salts of (ReH{sub 9}){sup 2-} anions. The structures reflect highly unusual chemistry with short H-H distances and at the same time very high ninefold coordination of Re by hydrogen atoms. This is of interest because of the resulting high hydrogen-to-metal ratios, 4.5 in BaReH{sub 9} and 3 in K{sub 2}ReH{sub 9}. Here we use density functional calculations to investigate possible new members of this family including both Re and Mn compounds. We find that although SrReH{sub 9} and CaReH{sub 9} have not been synthesized these are very likely to be stable compounds that may be prepared in a similar manner as the Ba analog. We also find that the manganese counterparts, including K{sub 2}MnH{sub 9}, are also likely to be stable and have thermodynamic properties consistent with requirements for hydrogen storage.

  6. The influence of a spatial displacement of hydrogen on the reactivity and neutron flux density distribution in a ZrH-moderated reactor

    International Nuclear Information System (INIS)

    Doehler, J.; Bartsch, G.

    1975-08-01

    The effect of changes of the hydrogen concentration in uranium zirconium hydride resulting from spatially varying temperatures on the reactivity and neutron flux distribution of the BER-II core (power 2.2 MW) are shown. Furthermore, in general, the influence of the hydrogen concentration on important reactor parameters of a fuel cell of BER-II is calculated and presented. A comparison of the diffusion calculation with spatially constant hydrogen concentrations shows a decrease of the thermal neutron flux density in regions with a low hydrogen content (high temperature) and inversely an increase for high hydrogen concentrations. Furthermore, a change of the effective multiplication factor by 0.6% was found in the case of a spatially varying hydrogen concentration as compared with the calculation for a constant concentration. (orig.) [de

  7. CT Measured Psoas Density Predicts Outcomes After Enterocutaneous Fistula Repair

    Science.gov (United States)

    Lo, Wilson D.; Evans, David C.; Yoo, Taehwan

    2018-01-01

    Background Low muscle mass and quality are associated with poor surgical outcomes. We evaluated CT measured psoas muscle density as a marker of muscle quality and physiologic reserve, and hypothesized that it would predict outcomes after enterocutaneous fistula repair (ECF). Methods We conducted a retrospective cohort study of patients 18 – 90 years old with ECF failing non-operative management requiring elective operative repair at Ohio State University from 2005 – 2016 that received a pre-operative abdomen/pelvis CT with intravenous contrast within 3 months of their operation. Psoas Hounsfield Unit average calculation (HUAC) were measured at the L3 level. 1 year leak rate, 90 day, 1 year, and 3 year mortality, complication risk, length of stay, dependent discharge, and 30 day readmission were compared to HUAC. Results 100 patients met inclusion criteria. Patients were stratified into interquartile (IQR) ranges based on HUAC. The lowest HUAC IQR was our low muscle quality (LMQ) cutoff, and was associated with 1 year leak (OR 3.50, p < 0.01), 1 year (OR 2.95, p < 0.04) and 3 year mortality (OR 3.76, p < 0.01), complication risk (OR 14.61, p < 0.01), and dependent discharge (OR 4.07, p < 0.01) compared to non-LMQ patients. Conclusions Psoas muscle density is a significant predictor of poor outcomes in ECF repair. This readily available measure of physiologic reserve can identify patients with ECF on pre-operative evaluation that have significantly increased risk that may benefit from additional interventions and recovery time to mitigate risk before operative repair. PMID:29505144

  8. Measuring hydrogen by cold-neutron prompt-gamma activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Paul, R L; Greenberg, R R [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Div. of Inorganic Analytical Research; Vincent, D H [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1994-05-01

    By irradiating with cold neutrons and avoiding hydrogenous materials of construction, a PGAA instrument was developed at the Cold Neutron Research Facility at NIST with hydrogen detection limits in the microgram range in many materials. Quantities of 5-10 [mu]g H/g are presently measurable in gram-sized samples of silicon or quartz, and of order 0.01 wt % can be quantitatively measured in complex silicate rocks. (author) 19 refs.; 1 fig.; 1 tab.

  9. A Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Induced Pseudoscalar Coupling gp

    International Nuclear Information System (INIS)

    Banks, Thomas Ira

    2007-01-01

    This dissertation describes a measurement of the rate of nuclear muon capture by the proton, performed by the MuCap Collaboration using a new technique based on a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas at room temperature and 1 MPa pressure. The hydrogen target's low gas density of 1 percent compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate was obtained from the difference between the mu- disappearance rate in hydrogen--as determined from data collected in the experiment's first physics run in fall2004--and the world average for the mu+ decay rate. After combining the results of my analysis with the results from another independent analysis of the 2004 data, the muon capture rate from the hyperfine singlet ground state of the mu-p atom is found to be Λ S = 725.0 ± 17.4 1/s, from which the induced pseudoscalar coupling of the nucleon, gP(q2 = -0.88m2mu)= 7.3 ± 1.1, is extracted. This result for gP is consistent with theoretical predictions that are based on the approximate chiral symmetry of QCD

  10. Room temperature photoluminescence spectrum modeling of hydrogenated amorphous silicon carbide thin films by a joint density of tail states approach and its application to plasma deposited hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Sel, Kıvanç; Güneş, İbrahim

    2012-01-01

    Room temperature photoluminescence (PL) spectrum of hydrogenated amorphous silicon carbide (a-SiC x :H) thin films was modeled by a joint density of tail states approach. In the frame of these analyses, the density of tail states was defined in terms of empirical Gaussian functions for conduction and valance bands. The PL spectrum was represented in terms of an integral of joint density of states functions and Fermi distribution function. The analyses were performed for various values of energy band gap, Fermi energy and disorder parameter, which is a parameter that represents the width of the energy band tails. Finally, the model was applied to the measured room temperature PL spectra of a-SiC x :H thin films deposited by plasma enhanced chemical vapor deposition system, with various carbon contents, which were determined by X-ray photoelectron spectroscopy measurements. The energy band gap and disorder parameters of the conduction and valance band tails were determined and compared with the optical energies and Urbach energies, obtained by UV–Visible transmittance measurements. As a result of the analyses, it was observed that the proposed model sufficiently represents the room temperature PL spectra of a-SiC x :H thin films. - Highlights: ► Photoluminescence spectra (PL) of the films were modeled. ► In the model, joint density of tail states and Fermi distribution function are used. ► Various values of energy band gap, Fermi energy and disorder parameter are applied. ► The model was applied to the measured PL of the films. ► The proposed model represented the room temperature PL spectrum of the films.

  11. Measuring the environmental benefits of hydrogen transportation fuel cycles under uncertainty about external costs

    International Nuclear Information System (INIS)

    Chernyavs'ka, Liliya; Gulli, Francesco

    2010-01-01

    In this paper, we attempt to measure the environmental benefits of hydrogen deployment in the transportation sector. We compare the hydrogen pathways to the conventional transportation fuel cycles in terms of external costs, estimated using the results of the most accurate methodologies available in this field. The central values of performed analysis bring us ambiguous results. The external cost of the best conventional solution ('oil to diesel hybrid internal-combustion engine') in some cases is just higher and in others just lower than that of the best fossil fuel to hydrogen solution ('natural gas to hydrogen fuel cell'). Nevertheless, by accounting for the uncertainty about external costs, we are able to remove this ambiguity highlighting that the hydrogen pathway provides significant environmental benefits ,especially in densely populated areas, assuming 100% city driving.

  12. The impact of mammographic imaging systems on density measurement

    Science.gov (United States)

    Damases, Christine N.; Brennan, Patrick C.; McEntee, Mark F.

    2015-03-01

    The purpose of this study is to investigate whether having a mammogram on differing manufacturer equipment will affect a woman's breast density (BD) measurement. The data set comprised of 40 cases, each containing a combined image of the left craniocaudal (LCC) and left mediolateral oblique (LMLO). These images were obtained from 20 women age between 42-89 years. The images were acquired on two imaging systems (GE and Hologic) one year apart. Volumetric BD was assessed by using Volpara Density Grade (VDG) and average BD% (AvBD%). Twenty American Board of Radiology (ABR) examiners assessed the same images using the BIRADS BD scale 1-4. Statistical comparisons were performed on the means using Mann-Whitney, on correlation using Spearman's rank coefficient of correlation and agreement using Cohen's Kappa. The absolute median BIRADS difference between GE and Hologic was 0.225 (2.00 versus 2.00; pperfect agreement for VDG (κ=0.933; p<0.001).

  13. Study of 2D MXene Cr{sub 2}C material for hydrogen storage using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, A. [Department of Physics and National Centre for Nanosciences & Nanotechnology, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400 098 (India); Dashora, Alpa, E-mail: dashoralpa@gmail.com [UM-DAE Centre for Excellence in Basic Sciences, Vidyanagari, Santacruz (E), Mumbai 400 098 (India); Patel, N. [Department of Physics and National Centre for Nanosciences & Nanotechnology, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400 098 (India); Dipartimento di Fisica, Università degli Studi di Trento, I-38123 Povo, Trento (Italy); Miotello, A. [Dipartimento di Fisica, Università degli Studi di Trento, I-38123 Povo, Trento (Italy); Press, M.; Kothari, D.C. [Department of Physics and National Centre for Nanosciences & Nanotechnology, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400 098 (India)

    2016-12-15

    Highlights: • First-principles studies showed that Cr{sub 2}C MXene can store 7.6 wt.% of H{sub 2}. • 6.4 wt.% H{sub 2} can be reversibly stored at ambient temperature. • Charge transfer between H and Cr is responsible for the reversible H{sub 2} adsorption. • H-atom on hollow site between three Cr atoms is the most stable site. - Abstract: Hydrogen storage capacity of 2D MXene Cr{sub 2}C has been studied using density functional theory. Possibility to adsorb H{sub 2} molecule on Cr{sub 2}C surface at various sites has been studied. Among the studied adsorption sites on Cr{sub 2}C surface, few sites were found suitable for chemisorption and physisorption of H{sub 2} molecules. Few of the studied sites are also found to be suitable for Kubas-type interaction, which is useful for reversible hydrogen storage at ambient conditions. Electronic structure calculations and charge transfer analysis have been done to understand the interactions of adsorbed hydrogen with the Cr{sub 2}C layer. It has been found that the total hydrogen storage capacity of Cr{sub 2}C is 7.6 wt.% in which 1.2 wt.% of H is due to the chemisorption, 3.2 wt.% is bonded with Kubas-interaction and remaining 3.2 wt.% is bonded through weak electrostatic interactions (with binding energy of 0.26 eV/H{sub 2} and charge transfer of 0.09 e{sup −} to H atom from Cr atom). Thus the reversible hydrogen storage capacity at ambient conditions (controlled by hydrogen bonded with energies ranging from 0.1 to 0.4 eV/H{sub 2}, in the present case through Kubas and weak electrostatic interactions) is 6.4 wt.% which is greater than the 2017 DoE recommended target value of 5.5 wt.%.

  14. Density functional theory study of hydrogenation mechanism in Fe-doped Mg(0 0 0 1) surface

    International Nuclear Information System (INIS)

    Wu Guangxin; Zhang Jieyu; Wu Yongquan; Li Qian; Chou Kuochih; Bao Xinhua

    2009-01-01

    Using density functional theory (DFT) in combination with nudged elastic band (NEB) method, the dissociative chemisorptions and diffusion processes of hydrogen on both pure and Fe-doped Mg(0 0 0 1) surfaces are studied. Firstly, the dissociation pathway of H 2 and the relative barrier were investigated. The calculated dissociation barrier (1.08 eV) of hydrogen molecule on a pure Mg(0 0 0 1) surface is in good agreement with comparable experimental and theoretical studies. For the Fe-doped Mg(0 0 0 1) surface, the activated barrier decreases to 0.101 eV due to the strong interaction between the s orbital of H and the d orbital of Fe. Then, the diffusion processes of atomic hydrogen on pure and Fe-doped Mg(0 0 0 1) are presented. The obtained diffusion barrier to the first subsurface is 0.45 eV and 0.98 eV, respectively. Finally, Chou method was used to investigate the hydrogen sorption kinetic mechanism of pure MgH 2 and Mg mixed with 5 at.% Fe atoms composites. The obtained activation energies are 0.87 ± 0.02 and 0.31 ± 0.01 eV for H 2 dissociation on the pure surface and H atom diffusion in Fe-doped Mg surfaces, respectively. It suggests that the rate-controlling step is dissociation of H 2 on the pure Mg surface while it is diffusion of H atom in the Fe-doped Mg surface. And both of fitting data are matching well with our calculation results.

  15. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.

    1994-01-01

    The present research reports on the effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures. Experimental and theoretical research related to combustion phenomena in hydrogen-air-steam mixtures has been ongoing for many years. However, detonation cell size data currently exists or hydrogen-air-steam mixtures up to a temperature of only 400K. Sever accident scenarios have been identified for light water reactors (LWRs) where hydrogen-air mixture temperatures in excess of 400K could be generated within containment. The experiments in this report focus on extending the cell size data base for initial mixture temperatures in excess of 400K. The experiments were carried out in a 10-cm inner-diameter, 6.1-m long heated detonation tube with a maximum operating temperature of 700K and spatial temperature uniformity of ±14K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300K--650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15 percent by hydrogen at 300K down to about 9 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  16. Bone mineral density measurement over the shoulder region

    DEFF Research Database (Denmark)

    Doetsch, A M; Faber, J; Lynnerup, N

    2002-01-01

    values decreased with age (P shoulder BMD levels increased significantly with increased body mass index (BMI) (P positive relationship between the increased hip/shoulder BMD differential with BMI supports the conclusion that the shoulder is subject......The purpose of this study was to (1). establish a method for measuring bone mineral density (BMD) over the shoulder region; (2). compare the relationship between shoulder BMD levels with hip BMD and body mass index (BMI); and (3). discuss the relevance of the shoulder scan as an early indicator...... of osteoporosis compared with hip scans, the latter representing a weight-bearing part of the skeleton. We developed a scanning procedure, including a shoulder fixation device, and determined the most appropriate software in order to establish a reference material with the highest possible precision. Duplicate...

  17. Reactivity of palladium nano-particles supported in hydrogenation: role of particles surface density; Reactivite des nanoparticules de palladium supportees en hydrogenation: role de la densite surfacique de particules

    Energy Technology Data Exchange (ETDEWEB)

    Benkhaled, M.

    2004-10-01

    The objective of this work is to investigate the influence of the particle surface density on the hydrogenation of polyunsaturated compounds (buta-1,3-diene, ortho-xylene). Highly dispersed Pd/Al{sub 2}O{sub 3} ({gamma} and {delta}-Al{sub 2}O{sub 3}) catalysts were prepared from Pd(nitrite) complexes (size < 7 angstrom, controlled by TEM, HAADF, EXAFS and CO chemisorption). Increasing the particle surface density from 2240 to 12880 particles/{mu}m{sup 2} leads to a modification of the electronic properties as evidenced by CO-FTIR, XPS and XANES. By contrast, the comparison of the supports at iso-density showed no significant difference of the physico-chemical properties of the supported metal particles. In parallel, the catalytic performances in hydrogenation of butadiene and butenes are very sensitive both to the nature of the support for the same density and to the surface density for the same support. It was shown that the reactions of hydrogenation could be controlled at the same time by the electronic properties of the metal nano-particles but also by the phenomenon of hydrogen diffusion around the particles on a zone of support. In this case, the support can play the part of hydrogen tank. (author)

  18. Standard hydrogen electrode and potential of zero charge in density functional calculations

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Björketun, Mårten; Skúlason, Egill

    2011-01-01

    standard hydrogen electrode potential (ASHEP) from the calculated work function. Although conceptually correct, this procedure introduces two sources of errors: (i) the experimental estimate of the ASHEP varies from 4.28 to 4.85 V and, as has been previously shown and is reconfirmed here, (ii...... possess in order for its computed ASHEP to closely match the experimental benchmark. We capture and quantify these three effects by calculating trends in the ASHEP and PZC on eight close-packed transition metals, considering the four most simple and representative water models. Finally, it is also...

  19. Catalase-Aminotriazole Assay, an Invalid Method for Measurement of Hydrogen Peroxide Production by Wood Decay Fungi

    OpenAIRE

    Highley, Terry L.

    1981-01-01

    The catalase-aminotriazole assay for determination of hydrogen peroxide apparently cannot be used for measuring hydrogen peroxide production in crude preparations from wood decay fungi because of materials in the crude preparations that interfere with the test.

  20. Measurement of atomic-hydrogen spin-exchange parameters at 0.5 K using a cryogenic hydrogen maser

    International Nuclear Information System (INIS)

    Hayden, M.E.; Huerlimann, M.D.; Hardy, W.N.

    1996-01-01

    Using a cryogenic hydrogen maser, suitably modified to have electronic control of both the resonance frequency and the quality factor of the external cavity, we have measured a number of spin-exchange parameters for an atomic-hydrogen (H) gas at a temperature of 0.5 K. These results are relevant to the ultimate achievable frequency stability for cryogenic H masers and, when coupled with accurate calculations of the spin-exchange parameters, serve as a sensitive test of the H-H interatomic potentials. We find evidence for a frequency shift not predicted by semiclassical theories of spin exchange. In the context of a fully quantum mechanical hydrogen-atom spin-exchange theory [B. J. Verhaar et al., Phys. Rev. A 35, 3825 (1987) and J. M. V. A. Koelman et al., Phys. Rev. A 38, 3535 (1988)], this frequency shift is attributed to the influence of hyperfine interactions during spin-exchange collisions. Our findings are generally in agreement with these predictions; however, the sign of the hyperfine-induced frequency shift appears to differ from theory. copyright 1996 The American Physical Society

  1. Effect of Clothing on Measurement of Bone Mineral Density.

    Science.gov (United States)

    McNamara, Elizabeth A; Feldman, Anna Z; Malabanan, Alan O; Abate, Ejigayehu G; Whittaker, LaTarsha G; Yano-Litwin, Amanda; Dorazio, Jolene; Rosen, Harold N

    2016-01-01

    It is unknown whether allowing patients to have BMD (bone mineral density) studies acquired while wearing radiolucent clothing adlib contributes appreciably to the measurement error seen. To examine this question, a spine phantom was scanned 30 times without any clothing, while draped with a gown, and while draped with heavy winter clothing. The effect on mean BMD and on SD (standard deviation) was assessed. The effect of clothing on mean or SD of the area was not significant. The effect of clothing on mean and SD for BMD was small but significant and was around 1.6% for the mean. However, the effect on BMD precision was much more clinically important. Without clothing the spine phantom had an least significant change of 0.0077 gm/cm(2), while when introducing variability of clothing the least significant change rose as high as 0.0305 gm/cm(2). We conclude that, adding clothing to the spine phantom had a small but statistically significant effect on the mean BMD and on variance of the measurement. It is unlikely that the effect on mean BMD has any clinical significance, but the effect on the reproducibility (precision) of the result is likely clinically significant. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  2. Quasi-quadrature interferometer for plasma density radial profile measurements

    International Nuclear Information System (INIS)

    Lowenthal, D.D.; Hoffman, A.L.

    1979-01-01

    A cw Mach Zehnder multichannel interferometer has been developed to measure time-dependent fractional fringe shifts with an accuracy of one-fortieth fringe. The design is quasi-quadrature in that known phase shifts, introduced in the reference beam, are time multiplexed with the normal reference beam. This technique requires only one detector per interferometer channel as compared to two detectors for most quadrature designs. The quadrature information makes the sense of density changes unambiguous, it automatically calibrates the instrument during the plasma event, and it makes fringe shift measurements virtually independent of fringe contrast fluctuations caused by plasma refractive and/or absorptive effects. The interferometer optical design is novel in that the electro-optic crystal used to introduce the 90 0 phase shifts is located in the common 2-mm-diam HeNe entrance beam to the interferometer, by exploiting polarization techniques, rather than in the expanded 1--2-cm reference beam itself. This arrangement greatly reduces the size, cost, and high-voltage requirements for the phase modulating crystal

  3. Experiments to Measure Hydrogen Release from Graphite Walls During Disruptions in DIII-D

    International Nuclear Information System (INIS)

    Hollmann, E.M.; Pablant, N.A.; Rudakov, D.L.; Boedo, J.A.; Brooks, N.H.; Jernigan, Thomas C.; Pigarov, A.Y.

    2009-01-01

    Spectroscopy and wall the bake-out measurements are performed in the DIII-D tokamak to estimate the amount of hydrogen stored in and released from the walls during disruptions. Both naturally occurring disruptions and disruptions induced by massive gas injection (MGI) are investigated. The measurements indicate that both types of disruptions cause a net release of order 10(21) hydrogen (or deuterium) atoms from the graphite walls. This is comparable to the pre-disruptions plasma particle inventory, so the released hydrogen is important for accurate modeling of disruptions. However, the amount of hydrogen released is small compared to the total saturated wall inventory of order 10(22)-10(23), So it appears that many disruptions are necessary to provide full pump-out of the vessel walls. (C) 2009 Published by Elsevier B.V.

  4. Probe measurements of hydrogen fluxes during discharge cleaning in JFT-2M

    International Nuclear Information System (INIS)

    Matsuzaki, Y.

    1989-01-01

    Thermal desorption spectroscopy (TDS) has been applied during discharge cleaning in the JFT-2M tokamak to measure hydrogen fluxes. The TDS carbon sample, thickness 0.13 mm, was heated to 1000 0 C by direct current and the temperature distribution of the sample surface measured by infrared thermography. The probe was exposed to three types of plasma: Taylor-type discharge cleaning (TDC), ECR discharge cleaning (ECR-DC), and glow discharge cleaning (GDC). The TDS spectra show peak desorption at around 800 0 C. The hydrogen flux, obtained by integration of the TDS spectrum, decreases exponentially in the radial direction with decay length 7.4 cm and 5.8 cm in TDC and ECR-DC, respectively. The relation between hydrogen fluxes and water vapour production was investigated. In TDC, the amount of water vapour depends more strongly on the electron temperature of the plasma than on the hydrogen flux. In ECR-DC, the production of water vapour increases approximately linearly with the hydrogen-flux. In GDC, hydrogen fluxes were measured by TDS but no water vapour could be detected in the residual gases during the discharge. (orig.)

  5. In situ measurements of hydrogen concentration and flux between 160 and 300 km in the thermosphere

    International Nuclear Information System (INIS)

    Breig, E.L.; Hanson, W.B.; Hoffman, J.H.; Kayser, D.C.

    1976-01-01

    Thermospheric concentrations of neutral atomic hydrogen near and below the F peak are directly related to H + , O + and atomic oxygen concentrations through the charge exchange equilibrium that is established between hydrogen and oxygen at these altitudes. This chemical relationship, together with in situ measurements of ionospheric and neutral atmospheric concentrations by instrumentation on board the Atmosphere Explorer C satellite, is utilized to investigate properties of neutral hydrogen at altitudes below 200 km where vertical diffusion strongly affects the hydrogen distribution. Data are discussed for a set of satellite orbits during quiet geomagnetic and solar conditions in February 1974; the resultant altitude variation of the derived hydrogen concentrations applies specifically to early afternoon at low 10 5 atoms/cm 3 is observed for these conditions at 300 km. At lower altitudes the concentration profiles are interpreted in terms of vertical hydrogen flow. The resultant daytime flux in the thermosphere is estimated to be (3.2 +- 1.0) x 10 8 atoms/cm 2 s. The present observations thus support theoretical estimates and model calculations of large hydrogen flow upward from the region below 100 km. They also support the concept of daytime thermospheric loss process of greater magnitude than the traditional evaporative escape mechanism

  6. CO{sub 2} laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Vyacheslavov, L.N. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Tanaka, K.; Kawahata, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    A CO{sub 2} laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  7. CO2 laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    International Nuclear Information System (INIS)

    Vyacheslavov, L.N.; Tanaka, K.; Kawahata, K.

    2001-04-01

    A CO 2 laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  8. Solubility measurements of hydrogen in 1-butyl-3-methylimidazolium tetrafluoroborate and the effect of carbon dioxide and a selected catalyst on the hydrogen solubility in the ionic liquid

    NARCIS (Netherlands)

    Toussaint, V.A.; Kühne, E.; Shariati - Sarabi, A.; Peters, C.J.

    2013-01-01

    The high pressure phase behavior of a binary mixture containing hydrogen (H-2) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) is studied by measuring bubble-point pressures at different temperatures for three compositions with hydrogen mole fractions of 5, 7.5 and 10 mol%. Since

  9. MASS MEASUREMENTS IN PROTOPLANETARY DISKS FROM HYDROGEN DEUTERIDE

    Energy Technology Data Exchange (ETDEWEB)

    McClure, M. K. [Karl-Schwarzschild-Straße 2, D-85748 Garching bei München (Germany); Bergin, E. A.; Cleeves, L. I., E-mail: mmcclure@eso.org, E-mail: ebergin@umich.edu, E-mail: ilse.cleeves@cfa.harvard.edu [Department of Astronomy, The University of Michigan, 500 Church St., 830 Dennison Bldg., Ann Arbor, MI 48109 (United States); and others

    2016-11-10

    The total gas mass of a protoplanetary disk is a fundamental, but poorly determined, quantity. A new technique has been demonstrated to assess directly the bulk molecular gas reservoir of molecular hydrogen using the HD J = 1–0 line at 112 μ m. In this work we present a Herschel Space Observatory {sup 10} survey of six additional T Tauri disks in the HD line. Line emission is detected at >3 σ significance in two cases: DM Tau and GM Aur. For the other four disks, we establish upper limits to the line flux. Using detailed disk structure and ray-tracing models, we calculate the temperature structure and dust mass from modeling the observed spectral energy distributions, and we include the effect of UV gas heating to determine the amount of gas required to fit the HD line. The ranges of gas masses are 1.0–4.7 × 10{sup -2} for DM Tau and 2.5–20.4 × 10{sup -2} for GM Aur. These values are larger than those found using CO for GM Aur, while the CO-derived gas mass for DM Tau is consistent with the lower end of our mass range. This suggests a CO chemical depletion from the gas phase of up to a factor of five for DM Tau and up to two orders of magnitude for GM Aur. We discuss how future analysis can narrow the mass ranges further.

  10. WTP Waste Feed Qualification: Hydrogen Generation Rate Measurement Apparatus Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    The generation rate of hydrogen gas in the Hanford tank waste will be measured during the qualification of the staged tank waste for processing in the Hanford Tank Waste Treatment and Immobilization Plant. Based on a review of past practices in measurement of the hydrogen generation, an apparatus to perform this measurement has been designed and tested for use during waste feed qualification. The hydrogen generation rate measurement apparatus (HGRMA) described in this document utilized a 100 milliliter sample in a continuously-purged, continuously-stirred vessel, with measurement of hydrogen concentration in the vent gas. The vessel and lid had a combined 220 milliliters of headspace. The vent gas system included a small condenser to prevent excessive evaporative losses from the sample during the test, as well as a demister and filter to prevent particle migration from the sample to the gas chromatography system. The gas chromatograph was an on line automated instrument with a large-volume sample-injection system to allow measurement of very low hydrogen concentrations. This instrument automatically sampled the vent gas from the hydrogen generation rate measurement apparatus every five minutes and performed data regression in real time. The fabrication of the hydrogen generation rate measurement apparatus was in accordance with twenty three (23) design requirements documented in the conceptual design package, as well as seven (7) required developmental activities documented in the task plan associated with this work scope. The HGRMA was initially tested for proof of concept with physical simulants, and a remote demonstration of the system was performed in the Savannah River National Laboratory Shielded Cells Mockup Facility. Final verification testing was performed using non-radioactive simulants of the Hanford tank waste. Three different simulants were tested to bound the expected rheological properties expected during waste feed qualification testing. These

  11. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings.

    Science.gov (United States)

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-04-01

    We propose and demonstrate hydrogen peroxide (H 2 O 2 ) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 10 5 ) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H 2 O 2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H 2 O 2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H 2 O 2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H 2 O 2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H 2 O 2 and glucose detection in human serum.

  12. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings

    Science.gov (United States)

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-01-01

    We propose and demonstrate hydrogen peroxide (H2O2) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 105) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H2O2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H2O2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H2O2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H2O2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H2O2 and glucose detection in human serum. PMID:29675315

  13. Experiment to measure oxygen opacity at high density and temperature

    Science.gov (United States)

    Keiter, Paul; Butler, Hannah; Trantham, Matt; Mussack, Katie; Colgan, James; Fontes, Chris; Guzik, Joyce; Kilcrease, David; Perry, Ted; Orban, Chris; Ducret, Jean-Eric; La Pennec, Maelle; Turck-Chieze, Sylvaine; Mancini, Roberto; Heeter, Robert

    2017-10-01

    In recent years, there has been a debate over the abundances of heavy elements (Z >2) in the solar interior. Recent solar atmosphere models [Asplund 2009] find a significantly lower abundance for C, N, and O compared to models used roughly a decade ago. Recent opacity measurements of iron disagree with opacity model predictions [Bailey et al., 2015]. Repeated scrutiny of the experiment and data has not produced a conclusive reason for the discrepancy. New models have been implemented in the ATOMIC opacity code for low-Z elements [Colgan, 2013, Armstrong 2014], however no data currently exists to test the low-Z material models in the regime relevant to the solar convection zone. We present an experimental design using the opacity platform developed at the National Ignition Facility to study the oxygen opacity at densities and temperatures near the solar convection zone conditions. This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDLP, Grant Number DE-NA0002956, and the NLUF Program, Grant Number DE-NA0002719, and through the LLE, University of Rochester by the NNSA/OICF under No. DE-NA0001944.

  14. Hydrogen plasmas beyond density-functional theory: dynamic correlations and the onset of localization

    International Nuclear Information System (INIS)

    Perrot, F.; Dharma-Wardana, M.W.C.

    1984-01-01

    The density-functional theory (DFT) equations - previously considered in their application to the study of a system of ions and electrons in thermodynamic equilibrium at arbitrary temperatures and pressure - are reviewed with attention given to extending their validity in obtaining the one-electron excitation spectrum. The DFT model developed here provides structure factors and Kohn-Sham eigenstates which are then used to calculate the self-energy of the one-electron Green function, thus transcending the local-density approximations and the well-known limitations of DFT, especially with regard to the excitation spectrum. The one-particle formalism used makes contact with the multiple-scattering theories of disordered materials, liquid metals, etc., and is a necessary first step to a future calculation of two-particle propagators and related properties. 28 references

  15. Dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zongying [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Union Research Center of Fuel Cell, School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chen, Haipeng [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Zhou, Shixue, E-mail: zhoushixue66@163.com [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590 (China)

    2017-02-01

    Highlights: • Clarify the effect of vacancy defect on H{sub 2} dissociation on Mg (0001) surface. • Demonstrate the effects of vacancy defect on H atom diffusion. • Reveal the minimum energy diffusion path of H atom from magnesium surface into bulk. - Abstract: First-principles calculations with the density functional theory (DFT) have been carried out to study dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces. Results show that energy barriers of 1.42 eV and 1.28 eV require to be overcome for H{sub 2} dissociation on defect-free and vacancy defective Mg (0001) surfaces respectively, indicating that reactivity of Mg (0001) surface is moderately increased due to vacancy defect. Besides, the existence of vacancy defect changes the preferential H atom diffusion entrance to the subsurface and reduces the diffusion energy barrier. An interesting remark is that the minimum energy diffusion path of H atom from magnesium surface into bulk is a spiral channel formed by staggered octahedral and tetrahedral interstitials. The diffusion barriers computed for H atom penetration from the surface into inner-layers are all less than 0.70 eV, which is much smaller than the activation energy for H{sub 2} dissociation on the Mg (0001) surface. This suggests that H{sub 2} dissociation is more likely than H diffusion to be rate-limiting step for magnesium hydrogenation.

  16. Electronic and Optical Properties of Small Hydrogenated Silicon Quantum Dots Using Time-Dependent Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Muhammad Mus-’ab Anas

    2015-01-01

    Full Text Available This paper presents a systematic study of the absorption spectrum of various sizes of small hydrogenated silicon quantum dots of quasi-spherical symmetry using the time-dependent density functional theory (TDDFT. In this study, real-time and real-space implementation of TDDFT involving full propagation of the time-dependent Kohn-Sham equations were used. The experimental results for SiH4 and Si5H12 showed good agreement with other earlier calculations and experimental data. Then these calculations were extended to study larger hydrogenated silicon quantum dots with diameter up to 1.6 nm. It was found that, for small quantum dots, the absorption spectrum is atomic-like while, for relatively larger (1.6 nm structure, it shows bulk-like behavior with continuous plateau with noticeable peak. This paper also studied the absorption coefficient of silicon quantum dots as a function of their size. Precisely, the dependence of dot size on the absorption threshold is elucidated. It was found that the silicon quantum dots exhibit direct transition of electron from HOMO to LUMO states; hence this theoretical contribution can be very valuable in discerning the microscopic processes for the future realization of optoelectronic devices.

  17. Performance of wave function and density functional methods for water hydrogen bond spin-spin coupling constants.

    Science.gov (United States)

    García de la Vega, J M; Omar, S; San Fabián, J

    2017-04-01

    Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.

  18. Interaction between a high density-low temperature plasma and a frozen hydrogen pellet in a railgun injector

    International Nuclear Information System (INIS)

    Grapperhaus, M.J.

    1993-01-01

    A model has been developed which describes the ablation process of frozen hydrogen pellets in an electromagnetic railgun. The model incorporates the neutral gas shielding model in which the pellet surface is heated by incident electrons from the plasma arc. The heated surface then ablates, forming a neutral cloud which attenuates the incoming electrons. The energy lost in the cloud by the electrons heats the ablatant material as it flows into the plasma arc. Under steady-state conditions, a scaling law for the ablation rate was derived as a function of plasma-arc temperature and density. In addition, flow conditions and the criteria for the existence of a steady-state solution were formulated and subsequently examined under simplifying assumptions. Comparison with experimentally observed ablation rates shows good qualitative agreement

  19. Atomic processes, cross sections, and reaction rates necessary for modelling hydrogen-negative-ion sources and identification of optimum H- current densities

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1991-01-01

    The principal electron excitation cross sections for vibrational excitation in a hydrogen discharge are reported. In the first chamber of a two-chamber hydrogen negative-ion-source system subject to the beam-line constraint of a maximum gas pressure, the density of vibrationally excited molecules reaches an asymptote for increasing discharge current or the equivalent fast electron density. Operating near this first-chamber asymptote, there exists a spatially-dependent maximum negative-ion density in the second chamber. With the extraction grid placed at this maximum the optimum performance of a hydrogen-based system is determined. This optimum performance provides a criterion for the selection of differing source types for fusion applications

  20. Measurement of effective solvus temperature of hydrogen in Zr - 2. 5 wt % Nb using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C.E.; Ambler, J.F.R.

    1978-01-01

    The effect of applied tensile stress on the solvus temperature of hydrogen in cold-worked Zr - 2.5 wt % Nb has been measured using acoustic emission. Hydrides are necessary for delayed hydrogen cracking and the lowest temperature at which hydride cracking cannot be detected by acoustic emission was taken as the solvus temperature. The results show that any effect of tensile stress on terminal solubility, Cs, is undetectable. Between about 2 and 100 ppM hydrogen, the results can be described by: C/sub s/ = 1.40 x 10/sup 5/ exp - (36100/RT) ppM. They also suggest that the equilibrium phase, delta-hydride, is responsible for delayed hydrogen cracking.

  1. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    Energy Technology Data Exchange (ETDEWEB)

    Dadfarnia, Mohsen (University of Illinois at Urbana-Champaign, Urbana, IL); Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros (University of Illinois at Urbana-Champaign, Urbana, IL); Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A. (CP Industries, McKeesport, PA)

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  2. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    Science.gov (United States)

    Dunne, M. G.; McCarthy, P. J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.; the ASDEX Upgrade Team

    2012-12-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications.

  3. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Dunne, M.G.; McCarthy, P.J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.

    2012-01-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications. (paper)

  4. The role of adequate reference materials in density measurements in hemodialysis

    Science.gov (United States)

    Furtado, A.; Moutinho, J.; Moura, S.; Oliveira, F.; Filipe, E.

    2015-02-01

    In hemodialysis, oscillation-type density meters are used to measure the density of the acid component of the dialysate solutions used in the treatment of kidney patients. An incorrect density determination of this solution used in hemodialysis treatments can cause several and adverse events to patients. Therefore, despite the Fresenius Medical Care (FME) tight control of the density meters calibration results, this study shows the benefits of mimic the matrix usually measured to produce suitable reference materials for the density meter calibrations.

  5. The role of adequate reference materials in density measurements in hemodialysis

    International Nuclear Information System (INIS)

    Furtado, A; Moura, S; Filipe, E; Moutinho, J; Oliveira, F

    2015-01-01

    In hemodialysis, oscillation-type density meters are used to measure the density of the acid component of the dialysate solutions used in the treatment of kidney patients. An incorrect density determination of this solution used in hemodialysis treatments can cause several and adverse events to patients. Therefore, despite the Fresenius Medical Care (FME) tight control of the density meters calibration results, this study shows the benefits of mimic the matrix usually measured to produce suitable reference materials for the density meter calibrations

  6. Hydrogen and carbon vapour pressure isotope effects in liquid fluoroform studied by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Takao; Mitome, Ryota; Yanase, Satoshi [Sophia Univ., Tokyo (Japan). Faculty of Science and Technology

    2017-06-01

    H/D and {sup 12}C/{sup 13}C vapour pressure isotope effects (VPIEs) in liquid fluoroform (CHF{sub 3}) were studied at the MPW1PW91/6-31 ++ G(d) level of theory. The CHF{sub 3} monomer and CHF{sub 3} molecules surrounded by other CHF{sub 3} molecules in every direction in CHF{sub 3} clusters were used as model molecules of vapour and liquid CHF{sub 3}. Although experimental results in which the vapour pressure of liquid {sup 12}CHF{sub 3} is higher than that of liquid {sup 12}CDF{sub 3} and the vapour pressure of liquid {sup 13}CHF{sub 3} is higher than that of liquid {sup 12}CHF{sub 3} between 125 and 212 K were qualitatively reproduced, the present calculations overestimated the H/D VPIE and underestimated the {sup 12}C/{sup 13}C VPIE. Temperature-dependent intermolecular interactions between hydrogen and fluorine atoms of neighbouring molecules were required to explain the temperature dependences of both H/D and {sup 12}C/{sup 13}C VPIEs.

  7. Detection of Mild Emphysema by Computed Tomography Density Measurements

    International Nuclear Information System (INIS)

    Vikgren, J.; Friman, O.; Borga, M.; Boijsen, M.; Gustavsson, S.; Bake, B.; Tylen, U.; Ekberg-Jansson, A.

    2005-01-01

    Purpose: To assess the ability of a conventional density mask method to detect mild emphysema by high-resolution computed tomography (HRCT); to analyze factors influencing quantification of mild emphysema; and to validate a new algorithm for detection of mild emphysema. Material and Methods: Fifty-five healthy male smokers and 34 never-smokers, 61-62 years of age, were examined. Emphysema was evaluated visually, by the conventional density mask method, and by a new algorithm compensating for the effects of gravity and artifacts due to motion and the reconstruction algorithm. Effects of the reconstruction algorithm, slice thickness, and various threshold levels on the outcome of the density mask area were evaluated. Results: Forty-nine percent of the smokers had mild emphysema. The density mask area was higher the thinner the slice irrespective of the reconstruction algorithm and threshold level. The sharp algorithm resulted in increased density mask area. The new reconstruction algorithm could discriminate between smokers with and those without mild emphysema, whereas the density mask method could not. The diagnostic ability of the new algorithm was dependent on lung level. At about 90% specificity, sensitivity was 65-100% in the apical levels, but low in the rest of the lung. Conclusion: The conventional density mask method is inadequate for detecting mild emphysema, while the new algorithm improves the diagnostic ability but is nevertheless still imperfect

  8. Periodic density functional theory study of ethylene hydrogenation over Co3O4 (1 1 1) surface: The critical role of oxygen vacancies

    Science.gov (United States)

    Lu, Jinhui; Song, JiaJia; Niu, Hongling; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2016-05-01

    Recently, metal oxides are attracting increasing interests as hydrogenation catalyst. Herein we studied the hydrogenation of ethylene on perfect and oxygen defective Co3O4 (1 1 1) using periodic density functional theory. The energetics and pathways of ethylene hydrogenation to ethane were determined. We have demonstrated that (i) H2 dissociation on Co3O4 is a complicated two-step process through a heterolytic cleavage, followed by the migration of H atom and finally yields the homolytic product on both perfect and oxygen defective Co3O4 (1 1 1) surfaces easily. (ii) After introducing the surface oxygen vacancy, the stepwise hydrogenation of ethylene by atomic hydrogen is much easier than that on perfect surface due to the weaker bond strength of OH group. The strength of Osbnd H bond is a crucial factor for the hydrogenation reaction which involves the breakage of Osbnd H bond. The formation of oxygen vacancy increases the electronic charges at the adjacent surface O, which reduces its capability of further gaining electrons from adsorbed atomic hydrogen and then weakens the strength of Osbnd H bond. These results emphasize the importance of the oxygen vacancies for hydrogenation on metal oxides.

  9. MEASURING PROTOPLANETARY DISK GAS SURFACE DENSITY PROFILES WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jonathan P.; McPartland, Conor, E-mail: jpw@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-10-10

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams and Best to show that gas surface density profiles can be measured from high fidelity {sup 13}CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M {sub gas} = 0.048 M {sub ⊙}, and accretion disk characteristic size R {sub c} = 213 au and gradient γ = 0.39. The same parameters match the C{sup 18}O 2–1 image and indicate an abundance ratio [{sup 12}CO]/[C{sup 18}O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large {sup 13}CO 2–1 image library and fit simulated data. For disks with gas masses 3–10 M {sub Jup} at 150 pc, ALMA observations with a resolution of 0.″2–0.″3 and integration times of ∼20 minutes allow reliable estimates of R {sub c} to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.

  10. A NEW RECIPE FOR OBTAINING CENTRAL VOLUME DENSITIES OF PRESTELLAR CORES FROM SIZE MEASUREMENTS

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Yorke, Harold W.

    2011-01-01

    We propose a simple analytical method for estimating the central volume density of prestellar molecular cloud cores from their column density profiles. Prestellar cores feature a flat central part of the column density and volume density profiles of the same size indicating the existence of a uniform-density inner region. The size of this region is set by the thermal pressure force which depends only on the central volume density and temperature of the core, and can provide a direct measurement of the central volume density. Thus, a simple length measurement can immediately yield a central density estimate independent of any dynamical model for the core and without the need for fitting. Using the radius at which the column density is 90% of the central value as an estimate of the size of the flat inner part of the column density profile yields an estimate of the central volume density within a factor of two for well-resolved cores.

  11. Two-temperature equilibration in warm dense hydrogen measured with x-ray scattering from the LCLS

    Science.gov (United States)

    Fletcher, Luke; High Energy Density Sciences Collaboration

    2017-10-01

    Understanding the properties of warm dense hydrogen plasmas is critical for modeling stellar and planetary interiors, as well as for inertial confinement fusion (ICF) experiments. Of central importance are the electron-ion collision and equilibration times that determine the microscopic properties in a high energy density state. Spectrally and angularly resolved x-ray scattering measurements from fs-laser heated hydrogen have resolved the picosecond evolution and energy relaxation from a two-temperature plasma towards thermodynamic equilibrium in the warm dense matter regime. The interaction of rapidly heated cryogenic hydrogen irradiated by a 400 nm, 5x1017 W/cm2 , 70 fs-laser is visualized with ultra-bright 5.5 kev x-ray pulses from the Linac Coherent Light (LCLS) source in 1 Hz repetition rate pump-probe setting. We demonstrate that the energy relaxation is faster than many classical binary collision theories that use ad hoc cutoff parameters used in the Landau-Spitzer determination of the Coulomb logarithm. This work was supported by the DOE Office of Science, Fusion Energy Science under contract No. SF00515 and supported under FWP 100182 and DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, contract DE-AC02-76SF00515.

  12. Density measurement verification for hot mix asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  13. Density measurement verification for hot mixed asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  14. Measurement of acidity and density of plutonium solutions

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Bowers, D.L.; Kemmerlin, R.P.

    1978-01-01

    The solutions were analyzed for acidity and total Pu concentration at ambient temperature while the density was determined at 25, 35, 45, and 60 0 C. From least squares fitting, it was found that the density could be computed to within 1% of the experimental value using the equation D = 1 + 0.0477[H + ] - 4.25 x 10 -3 [H + ] 2 + 1.477 x 10 -3 [Pu] - (T - 25)/1000

  15. In-situ electrochemical impedance spectroscopy measurements of zirconium alloy oxide conductivity: Relationship to hydrogen pickup

    International Nuclear Information System (INIS)

    Couet, Adrien; Motta, Arthur T.; Ambard, Antoine; Livigni, Didier

    2017-01-01

    Highlights: • In-situ electrochemistry on zirconium alloys in 360 °C pure water show oxide layer resistivity changes during corrosion. • A linear relationship is observed between oxide resistivity and instantaneous hydrogen pickup fraction. • The resistivity of the oxide layer formed on Zircaloy-4 (and thus its hydrogen pickup fraction) is higher than on Zr-2.5Nb. - Abstract: Hydrogen pickup during nuclear fuel cladding corrosion is a critical life-limiting degradation mechanism for nuclear fuel. Following a program dedicated to zirconium alloys, corrosion, it has been hypothesized that oxide electronic resistivity determines hydrogen pickup. In-situ electrochemical impedance spectroscopy experiments were performed on Zircaloy-4 and Zr-2.5Nb alloys in 360 °C water. The oxide resistivity was measured as function of time. The results show that as the oxide resistivity increases so does the hydrogen pickup fraction. The resistivity of the oxide layer formed on Zircaloy-4 is higher than on Zr-2.5Nb, resulting in a higher hydrogen pickup fraction of Zircaloy-4, compared to Zr-2.5Nb.

  16. A clean measurement of the hydrogen retardation of the rate of solid phase epitaxy in silicon

    International Nuclear Information System (INIS)

    Liu, A.C.Y.; McCallum, J.C.

    1999-01-01

    The rate retarding effects of the impurity hydrogen on solid phase epitaxy (SPE) in silicon have yet to be completely understood. Existing measurements of this behaviour do not coincide exactly, however, several features have attained prominence. Firstly, a linear decrease in the SPE rate is detected up until a certain concentration of hydrogen. Subsequent to this point the rate remains almost constant at around half the intrinsic rate. It is conjectured that the hydrogen bonds to and passivates the defects whose agency enables the incorporation of atoms from the amorphous phase to the crystalline. This rate reduction increases until the defect population is saturated. At this point the reduction in rate ceases. Secondly, a dependence on temperature has not been consolidated, in contrast with the trends observed with the doping species. Here a method is proposed for producing a controlled concentration of hydrogen for the advancing amorphous/crystalline interface to encounter during epitaxy. A bubble layer is formed in crystalline silicon approximately 0.6μm beneath the surface through the implantation of hydrogen at 65 keV with fluences of 4 x 10 16 /cm 2 and 3 x 10 16 /cm 2 and annealing for 1 hour at 850 deg C in dry argon. The anneal doesn't out gas all the introduced hydrogen, leaving a remnant gas pressure in the bubbles. The hydrogen implants at the two fluences should yield two samples with different amounts of hydrogen trapped in the bubbles. A buried amorphous layer is created to encompass the bubble layer containing this residual contaminant through silicon self implantation at appropriate energies and fluences. The progress of the front interface of the buried amorphous layer is monitored by time resolved reflectivity (TRR) as SPE is effected at various temperatures

  17. Improved continuum lowering calculations in screened hydrogenic model with l-splitting for high energy density systems

    Science.gov (United States)

    Ali, Amjad; Shabbir Naz, G.; Saleem Shahzad, M.; Kouser, R.; Aman-ur-Rehman; Nasim, M. H.

    2018-03-01

    The energy states of the bound electrons in high energy density systems (HEDS) are significantly affected due to the electric field of the neighboring ions. Due to this effect bound electrons require less energy to get themselves free and move into the continuum. This phenomenon of reduction in potential is termed as ionization potential depression (IPD) or the continuum lowering (CL). The foremost parameter to depict this change is the average charge state, therefore accurate modeling for CL is imperative in modeling atomic data for computation of radiative and thermodynamic properties of HEDS. In this paper, we present an improved model of CL in the screened hydrogenic model with l-splitting (SHML) proposed by G. Faussurier and C. Blancard, P. Renaudin [High Energy Density Physics 4 (2008) 114] and its effect on average charge state. We propose the level charge dependent calculation of CL potential energy and inclusion of exchange and correlation energy in SHML. By doing this, we made our model more relevant to HEDS and free from CL empirical parameter to the plasma environment. We have implemented both original and modified model of SHML in our code named OPASH and benchmark our results with experiments and other state-of-the-art simulation codes. We compared our results of average charge state for Carbon, Beryllium, Aluminum, Iron and Germanium against published literature and found a very reasonable agreement between them.

  18. Hydrogen bonding in malonaldehyde: a density functional and reparametrized semiempirical approach

    International Nuclear Information System (INIS)

    Kovacevic, Goran; Hrenar, Tomica; Doslic, Nadja

    2003-01-01

    Intramolecular proton transfer in malonaldehyde (MA) has been investigated by density functional theory (DFT). The DFT results were used for the construction of a high quality semiempirical potential energy surface with a reparametrized PM3 Hamiltonian. A two-step reparameterization procedure is proposed in which (i) the PM3-MAIS core-core functions for the O-H and H-H interactions were used and a new functional form for the O-O correction function was proposed and (ii) a set of specific reaction parameters (SRP) has been obtained via genetic algorithm optimization. The quality of the reparametrized semiempirical potential energy surfaces was tested by calculating the tunneling splitting of vibrational levels and the anharmonic vibrational frequencies of the system. The applicability to multi-dimensional dynamics in large molecular systems is discussed

  19. Linac4 Low Energy Beam Measurements with Negative Hydrogen

    CERN Document Server

    Scrivens, R; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J B; Lettry, J; Lombardi, A; Midttun, O; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-01-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  20. Linac4 low energy beam measurements with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Scrivens, R., E-mail: richard.scrivens@cern.ch; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T. [CERN, 1211 Geneva 23 (Switzerland)

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  1. Measurement of shadowgraph of flying solid-hydrogen pellets

    International Nuclear Information System (INIS)

    Hasegawa, Kouichi; Kasai, Satoshi; Suzuki, Sadaaki; Oda, Yasushi.

    1992-11-01

    The measurement system of shadowgraphs of flying pellets for the high-speed multi-pellet injector is described. Shadowgraphs of pellets ejected repeatedly with 1-5 Hz could be taken with about 100 % probability by using the system, which is composed of a intense pulse-lamp with a video-camera and a timing control system. (author)

  2. Periodic density functional theory study of ethylene hydrogenation over Co3O4 (1 1 1) surface: The critical role of oxygen vacancies

    International Nuclear Information System (INIS)

    Lu, Jinhui; Song, JiaJia; Niu, Hongling; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2016-01-01

    Highlights: • H 2 dissociates in heterolytic way following H atoms migration to form O−H bond. • H 2 dissociation occurs at low temperature on perfect and oxygen defective Co 3 O 4 . • Oxygen vacancy promotes hydrogenation thermodynamically and kinetically. • O−H bond is weakened on oxygen defective surface. • Hydrogenation requires compromise between H−H activation and O−H breakage. - Abstract: Recently, metal oxides are attracting increasing interests as hydrogenation catalyst. Herein we studied the hydrogenation of ethylene on perfect and oxygen defective Co 3 O 4 (1 1 1) using periodic density functional theory. The energetics and pathways of ethylene hydrogenation to ethane were determined. We have demonstrated that (i) H 2 dissociation on Co 3 O 4 is a complicated two-step process through a heterolytic cleavage, followed by the migration of H atom and finally yields the homolytic product on both perfect and oxygen defective Co 3 O 4 (1 1 1) surfaces easily. (ii) After introducing the surface oxygen vacancy, the stepwise hydrogenation of ethylene by atomic hydrogen is much easier than that on perfect surface due to the weaker bond strength of OH group. The strength of O−H bond is a crucial factor for the hydrogenation reaction which involves the breakage of O−H bond. The formation of oxygen vacancy increases the electronic charges at the adjacent surface O, which reduces its capability of further gaining electrons from adsorbed atomic hydrogen and then weakens the strength of O−H bond. These results emphasize the importance of the oxygen vacancies for hydrogenation on metal oxides.

  3. Density-based similarity measures for content based search

    Energy Technology Data Exchange (ETDEWEB)

    Hush, Don R [Los Alamos National Laboratory; Porter, Reid B [Los Alamos National Laboratory; Ruggiero, Christy E [Los Alamos National Laboratory

    2009-01-01

    We consider the query by multiple example problem where the goal is to identify database samples whose content is similar to a coUection of query samples. To assess the similarity we use a relative content density which quantifies the relative concentration of the query distribution to the database distribution. If the database distribution is a mixture of the query distribution and a background distribution then it can be shown that database samples whose relative content density is greater than a particular threshold {rho} are more likely to have been generated by the query distribution than the background distribution. We describe an algorithm for predicting samples with relative content density greater than {rho} that is computationally efficient and possesses strong performance guarantees. We also show empirical results for applications in computer network monitoring and image segmentation.

  4. Optical density measurements on the examination of colon cancer tissues

    International Nuclear Information System (INIS)

    Touati, E.; Ajaal, T.; Hamassi, A.

    2015-01-01

    Automated quantitative image analysis can aid in cancer diagnosis and, in general, mange medical treatments managements and improve routine medical diagnosis. Early diagnosis can make big difference between life and death. Microscopic images from two tissue types forty-four normal and fifty-eight cancers, was evaluated based on their ability to identify abnormalities in colon images. Optical density approach is applied to extract parameters that exhibit cancer behavior on colon tissues images. Using statistical toolbox, a significant result of (p<0.0001) for the mean and the variance of the optical density parameter were detected, and only (p<0.001) for skewness optical density. based on linear discrimination method, the obtained result shows 905 accuracy for both sensitivity and specificity, and with an overall accuracy of 90% (author)

  5. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    NARCIS (Netherlands)

    Santos, Emilie M. M.; Yoo, Albert J.; Beenen, Ludo F.; Berkhemer, Olvert A.; den Blanken, Mark D.; Wismans, Carrie; Niessen, Wiro J.; Majoie, Charles B.; Marquering, Henk A.; Fransen, Puck S. S.; Beumer, Debbie; van den Berg, Lucie A.; Lingsma, Hester F.; Schonewille, Wouter J.; Vos, Jan Albert; Nederkoorn, Paul J.; Wermer, Marieke J. H.; van Walderveen, Marianne A. A.; Staals, Julie; Hofmeijer, Jeannette; van Oostayen, Jacques A.; Lycklama à Nijeholt, Geert J.; Boiten, Jelis; Brouwer, Patrick A.; Emmer, Bart J.; de Bruijn, Sebastiaan F.; van Dijk, Lukas C.; Kappelle, L. Jaap; Lo, Rob H.; van Dijk, Ewoud J.; de Vries, Joost; de Kort, Paul L. M.; van den Berg, Jan S. P.; A A M van Hasselt, Boudewijn; Aerden, Leo A. M.; Dallinga, René J.; Visser, Marieke C.; Bot, Joseph C. J.; Vroomen, Patrick C.; Eshghi, Omid; Schreuder, Tobien H. C. M. L.; Heijboer, Roel J. J.; Keizer, Koos; Tielbeek, Alexander V.; Hertog, Heleen M. Den; Gerrits, Dick G.; van den Berg-Vos, Renske M.; Karas, Giorgos B.; Steyerberg, Ewout W.; Flach, H. Zwenneke; Sprengers, Marieke E. S.; Jenniskens, Sjoerd F. M.; van den Berg, René; Koudstaal, Peter J.; van Zwam, Wim H.; Roos, Yvo B. W. E. M.; van der Lugt, Aad; van Oostenbrugge, Robert J.; Dippel, Diederik W. J.

    2016-01-01

    Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert

  6. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    NARCIS (Netherlands)

    E.M.M. Santos (Emilie M.); A.J. Yoo (Albert J.); L.F.M. Beenen (Ludo); O.A. Berkhemer (Olvert); M.D. Den Blanken (Mark D.); C. Wismans (Carrie); W.J. Niessen (Wiro); C.B. Majoie (Charles); H. Marquering (Henk)

    2016-01-01

    textabstractIntroduction: Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by

  7. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    NARCIS (Netherlands)

    Santos, E.M.; Yoo, A.J.; Beenen, L.F.; Berkhemer, O.A.; Blanken, M.D. den; Wismans, C.; Niessen, W.J.; Majoie, C.B.; Marquering, H.A.; Dijk, E.J. van; et al.,

    2016-01-01

    INTRODUCTION: Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and

  8. Density measurements as a means for detection of semiconductor - metal transitions in melts of chalcogenide systems

    International Nuclear Information System (INIS)

    Thurn, H.; Ruska, J.

    1976-01-01

    It is reported on density measurements from liquidus temperature up to 900 or 1,000 0 C of a number of Se- or Te-containing liquid alloys. Anomalous density variations with temperature were found in many cases. The density measurements have been performed by a γ-ray absorption method. (orig./HK) [de

  9. Effects of the light beam bending on the interferometric electron density measurements

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Koyama, K.; Tanimoto, M.; Sugiura, M.

    1980-01-01

    In the measurements of plasma density profile with laser interferometers, the maximum relative errors due to the deflection of laser light caused by steep gradients of the electron density are analytically evaluated. As an example the errors in the measurements of density profile of a plasma focus by using a UV-N 2 laser are estimated. (author)

  10. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by others as intermeadiary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II? quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  11. A measurement of the proton structure functions from neutrino-hydrogen and antineutrino-hydrogen charged-current interactions

    International Nuclear Information System (INIS)

    Jones, G.T.; Jones, R.W.L.; Kennedy, B.W.; O'Neale, S.W.; Hamisi, F.; Miller, D.B.; Mobayyen, M.M.; Wainstein, S.; Corrigan, G.; Myatt, G.; Radojicic, D.; Shotton, P.N.; Towers, S.J.; Bullock, F.W.; Burke, S.

    1989-01-01

    Within the framework of the quark-parton model, the quark and anti-quark structure functions of the proton have been measured by fitting them to the distributions of the events in the Bjorken y variable. The data used form the largest sample of neutrino and antineutrino interactions on a pure hydrogen target available, and come from exposures of BEBC to the CERN wide band neutrino and antineutrino beams. It is found that the ratio d ν /u ν of valence quark distributions falls with increasing Bjorken x. In the context of the quark-parton model the results constrain the isospin composition of the accompanying diquark system. Models involving scattering from diquarks are in disagreement with the data. (orig.)

  12. Measurements of low energy neutral hydrogen efflux during ICRF heating

    International Nuclear Information System (INIS)

    Cohen, S.A.; Ruzic, D.; Voss, D.E.

    1984-09-01

    Using the Low Energy Neutral Atom Spectrometer, measurements were made of the H 0 and D 0 efflux from PLT during ion cyclotron heating experiments. The application of rf power at frequencies appropriate to fundamental and 2nd-harmonic heating results in a rapid, toroidally uniform rise in the charge-exchange efflux at a rate of about 10 15 cm -2 s -1 MW -1 . This flux increase is larger at lower plasma currents. The cause of this flux and its impact on plasma behavior are discussed

  13. Transport dynamics of a high-power-density matrix-type hydrogen-oxygen fuel cell

    Science.gov (United States)

    Prokopius, P. R.; Hagedorn, N. H.

    1974-01-01

    Experimental transport dynamics tests were made on a space power fuel cell of current design. Various operating transients were introduced and transport-related response data were recorded with fluidic humidity sensing instruments. Also, sampled data techniques were developed for measuring the cathode-side electrolyte concentration during transient operation.

  14. Wood fibre density measurement with 238 Pu radiation

    International Nuclear Information System (INIS)

    Barry, B.J.; Baker, D.B.

    1996-01-01

    The form of the curve of attenuation by wood fibre of the X radiation from 238 Pu has been determined. An exponential function containing a term second order in the areal density of the fibre described the curve accurately. The effect of scatter is negligible, even with an uncollimated radiation beam. (author). 18 refs., 1 tab., 6 figs

  15. Measures for ensuring hydrogen fire and explosion safety for VVER-440/230

    International Nuclear Information System (INIS)

    Bezlepkin, V.; Semashko, S.; Svetlov, S.; Sidorov, V.; Ivkov, I.; Krylov, Yu.; Kukhtevich, V.

    2004-01-01

    integral release (as compared to a small leak accident). In the course of propagating the said accident, dangerous local concentrations of hydrogen may occur (with a possibility of rapid deflagration combustion) in the places which are closely located to the leakage. In this case, maximum volume of the boxes, where fast deflagration combustion may occur is commensurate with the volumes of main rooms. In case of 20 mm small primary leak and of a failure of the emergency makeup system, maximum emissions of hydrogen would be significantly lower than peak emissions during 500 mm large break accident, anyhow an integral release into the tight rooms would be drastically higher. Capacity of the hydrogen removal system has therefore been selected based on possible peak emissions of hydrogen, on the one hand, and a necessity of removing of huge amount of hydrogen within a long period of time, on the other. Avoidance of such combustion conditions whose loads may lead to a destruction of civil structures and of localizing safety systems has been the key criterion for selecting the locations and capacity of the recombiners. Analysis of various arrangements of recombiners allows to design the hydrogen removal system in such a way that the concentration of hydrogen in combination with aqueous steam and air would turn out to be lower than the concentration limits of fire propagation throughout the entire calculation range of changing the parameters of medium within the rooms during the accidents under review. The concentration monitoring system is built up so that operator would have representative information on the changes in the concentration of hydrogen within the tight rooms. Sensors are located in the places where hydrogen may very probably occur and such places have been determined based on the findings of calculation analysis. Thus, the measures aimed at removal and monitoring of hydrogen recommended on the basis of the presented calculation analyses are in full compliance with

  16. Variation of molecular hydrogen tropospheric concentration over Southern Poland - results of the continuous chromatographic measurements.

    Science.gov (United States)

    Necki, J.; Chmura, L.

    2012-04-01

    Although hydrogen is one of the fundamental constituents of the earth's atmosphere its global balance is still poorly clarified. A few developed inventories diverging values for efficiency of sources and sinks of this gas. The European network for the hydrogen concentrations measurement is based on several unevenly spaced measurement points. While in 2009 MPI Jena has delivered accurate scale for hydrogen measurements and the techniques of analyses are well described, still large areas of Central Europe is uncovered by representative stations. The first measurement point, established under the EUROHYDROS EU program, on the territory of Poland was Kraków city. Different laboratory setups was tested there and compared to each other. The Kraków area has significant car traffic and its geographical location implies frequent temperature inversions in lower troposphere leading to the accumulation of trace gases in atmosphere of the city. Observations launched in 2007 revealed that the concentration of hydrogen fluctuates strongly within diurnal and seasonal timescales. Its average concentration is three times larger than this, observed at the other stations. The European "background" concentrations of hydrogen are not reflected in the Krakow record. An ideal place to carry out observation of the regional air composition for Central Europe is a research station located in the meteorological observatory at Kasprowy Wierch. Measurement point at the top of mountain peak with elevation of 2000m a.s.l. gives an access to the well mixed troposphere. The station delivers also the necessary facilities and logistics. Since year 1996 greenhouse gas measurement program has been operating at this point. The first measurements of atmospheric concentrations of hydrogen at Kasprowy Wierch were performed in year 2010, based on dedicated gas chromatograph using RGD detector installed at the station. Analysis of hydrogen content in the outside air is performed without any enrichment

  17. Phase equilibrium measurements of structure II clathrate hydrates of hydrogen with various promoters

    NARCIS (Netherlands)

    Torres Trueba, A.; Rovetto, L.J.; Florusse, L.J.; Kroon, M.C.; Peters, C.J.

    2011-01-01

    Phase equilibrium measurements of single and mixed organic clathrate hydrates with hydrogen were determined within a pressure range of 2.0–14.0 MPa. The organic compounds studied were furan, 2,5-dihydrofuran, tetrahydropyran, 1,3-dioxolane and cyclopentane. These organic compounds are known to form

  18. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.

    Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  19. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    2003-07-01

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  20. An efficient and reproducible method for measuring hydrogen peroxide in exhaled breath condensate.

    NARCIS (Netherlands)

    Beurden, W.J.C van; Harff, G.A.; Dekhuijzen, P.N.R.; Bosch, M.J. van den; Creemers, J.P.H.M.; Smeenk, F.J.M.W.

    2002-01-01

    We investigated the sensitivity and reproducibility of a test procedure for measuring hydrogen peroxide (H202) in exhaled breath condensate and the effect of storage of the condensate on the H2O2 concentration, and compared the results to previous studies.Twenty stable COPD patients breathed into

  1. Water leak detection in sodium heated steam generators through measurement of hydrogen concentration in sodium

    International Nuclear Information System (INIS)

    Cambillard, E.; Lacroix, A.; Martin, P.; Viala, J.

    1980-07-01

    This report includes a description of apparatus for measuring hydrogen concentration in the secondary sodium system of the PHENIX reactor. The calibration method and results obtained since the commissioning of the reactor are also described. Mention is made of improvements to be built into SUPER PHENIX [fr

  2. Electron momentum density measurements by means of positron annihilation and Compton spectroscopy

    International Nuclear Information System (INIS)

    Gerber, W.; Dlubek, G.; Marx, U.; Bruemmer, O.; Prautzsch, J.

    1982-01-01

    The electron momentum density is measured applying positron annihilation and Compton spectroscopy in order to get information about electron wave functions. Compton spectroscopic measurements of Pd-Ag and Cu-Zn alloy systems are carried out taking into account crystal structure, mixability, and order state. Three-dimensional momentum densities of silicon are determined in order to get better information about its electronic structure. The momentum density and the spin density of ferromagnetic nickel are investigated using angular correlation curves

  3. Measurement and modelling of hydrogen bonding in 1-alkanol plus n-alkane binary mixtures

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Jensen, Lars; Kofod, Jonas L.

    2007-01-01

    Two equations of state (simplified PC-SAFT and CPA) are used to predict the monomer fraction of 1-alkanols in binary mixtures with n-alkanes. It is found that the choice of parameters and association schemes significantly affects the ability of a model to predict hydrogen bonding in mixtures, eve...... studies, which is clarified in the present work. New hydrogen bonding data based on infrared spectroscopy are reported for seven binary mixtures of alcohols and alkanes. (C) 2007 Elsevier B.V. All rights reserved....... though pure-component liquid densities and vapour pressures are predicted equally accurately for the associating compound. As was the case in the study of pure components, there exists some confusion in the literature about the correct interpretation and comparison of experimental data and theoretical...

  4. Measurements of the Fe3+ diffusion coefficient in Fricke Xylenol gel using optical density measurements

    International Nuclear Information System (INIS)

    Nonato de Oliveira, Lucas; Sampaio, Francisco Glaildo Almeida; Moreira, Marcos Vasques; Almeida, Adelaide de

    2014-01-01

    In Fricke dosimetry, optical density measurements are performed some time after dosimeter irradiation. Values of the diffusion coefficient of Fe 3+ in Fricke Xylenol gel (FXG) are necessary for determining the spatial distribution of the absorbed dose from measurements of the optical density. Five sets of FXG dosimeters, kept at different constant temperatures, were exposed to collimated 6 MV photons. The optical density profile, proportional to the Fe 3+ concentration, at the boundary between irradiated and non-irradiated parts of each dosimeter was measured periodically over a period of 60 h. By comparing the experimental data with a function that accounts for the unobserved initial concentration profile of Fe 3+ in the FXG, we obtained diffusion coefficients 0.30±0.05, 0.40±0.05, 0.50±0.05, 0.60±0.05 and 0.80±0.05 mm 2 /h for the temperatures 283.0±0.5, 286.0±0.5, 289.0±0.5, 292.0±0.5, and 296.0±0.5 K, respectively. The activation energy of Fe 3+ diffusion in the gel, 0.54±0.06 eV, was determined from the temperature dependence of the diffusion coefficients. - Highlights: • A new analytical method to determine diffusion coefficients of ions in gels is proposed. • The method is applied for measurements of the diffusion coefficients of Fe 3+ ions in a Fricke gel dosimeter. • Activation energy of the Fe 3+ ions in the gel was found to be 0.54 ±0.06 eV

  5. Hydrogen equilibrium pressure measurements in the Li-N-H system by static manometric method

    International Nuclear Information System (INIS)

    Ananda, N.S.; Jat, R.A.; Sawant, S.G.; Parida, S.C.; Singh, Z.; Venugopal, V.

    2010-01-01

    Light weight hydrogen storage materials are very promising in terms of their high gravimetric hydrogen storage capacity and low cost. One such reported system is the Li-N-H system with a theoretical hydrogen capacity of 11.5 wt% according to the following equilibrium reactions; (1) Li 3 N+H 2 → Li 2 NH + LiH and (2) Li 2 NH+H 2 → LiNH 2 + LiH. The enthalpy of reaction (1) is -165 kJ/mole of H 2 whereas that of reaction (2) is -45 kJ/mole of H 2 . Hence, the second reaction is of utmost importance for low temperature release of hydrogen with a capacity of 6.5 wt%. The equilibrium hydrogen pressures of the above two reactions have been reported by pressure-composition isotherm studies at a pressure range of 3-15 atm., in which the mid-point of the sloping plateau of P-C isotherm is considered as the equilibrium pressure. This method may not yield the true equilibrium pressure. Hence, in this study, we have carried out measurements of equilibrium pressure using a static manometric method where we have considered reaction (2) only

  6. Thickness gauge for the measurement of the density of graphite

    International Nuclear Information System (INIS)

    Leveque, P.; Gasnier, M.; Hours, R.; Jouquet, G.; Rappeneau, J.; Tanguy, J.C.

    1961-01-01

    A thickness gauge was built, based on absorption of Bremsstrahlung generated in a Be target by a ( 90 Sr + 90 Y) β- source. This allows rapid and precise estimation (95 per cent probable error = 0.7 per cent) of the densities in slabs of graphite having a constant thickness of 25 ± 0.05 mm, the diameter of the beam being about 1 cm. Results obtained in this way are presented. (author) [fr

  7. Plasma Temperature Determination of Hydrogen Containing High-Frequency Electrodeless Lamps by Intensity Distribution Measurements of Hydrogen Molecular Band

    OpenAIRE

    Gavare, Zanda; Revalde, Gita; Skudra, Atis

    2010-01-01

    The goal of the present work was the investigation of the possibility to use intensity distribution of the Q-branch lines of the hydrogen Fulcher-α diagonal band (d3Πu−→a3∑g+ electronic transition; Q-branch with v=v′=2) to determine the temperature of hydrogen containing high-frequency electrodeless lamps (HFEDLs). The values of the rotational temperatures have been obtained from the relative intensity distributions for hydrogen-helium and hydrogen-argon HFEDLs depending on the applied curren...

  8. Simulation of density fluctuations before the L-H transition for Hydrogen and Deuterium plasmas in the DIII-D tokamak using the BOUT++ code

    Science.gov (United States)

    Wang, Y. M.; Xu, X. Q.; Yan, Z.; Mckee, G. R.; Grierson, B. A.; Xia, T. Y.; Gao, X.

    2018-02-01

    A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n  =  30 or k_θρ_i˜0.12 . The ion diamagnetic drift and E× B convection flow are balanced when the radial electric field (E r ) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density n_e˜1.5×1019 m-3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40 kHz and 10 kHz respectively. The poloidal wave number k_θ is about 0.2 cm -1 (k_θρ_i˜0.05 ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are  ˜3.5-6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. The electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.

  9. Absolute determination of the deuterium content of heavy water, measurement of absolute density

    International Nuclear Information System (INIS)

    Ceccaldi, M.; Riedinger, M.; Menache, M.

    1975-01-01

    The absolute density of two heavy water samples rich in deuterium (with a grade higher than 99.9%) was determined with the hydrostatic method. The exact isotopic composition of this water (hydrogen and oxygen isotopes) was very carefully studied. A theoretical estimate enabled us to get the absolute density value of isotopically pure D 2 16 O. This value was found to be 1104.750 kg.m -3 at t 68 =22.3 0 C and under the pressure of one atmosphere. (orig.) [de

  10. Range measurements of keV hydrogen ions in solid oxygen and carbon monoxide

    International Nuclear Information System (INIS)

    Schou, J.; Soerensen, H.; Andersen, H.H.; Nielsen, M.; Rune, J.

    1984-01-01

    Ranges of 1.3-3.5 keV/atom hydrogen and deuterium molecular ions have been measured by a thin-film reflection method. The technique, used here for range measurements in solid oxygen and carbon monoxide targets, is identical to the one used previously for range measurements in hydrogen and nitrogen. The main aim was to look for phase-effects, i.e. gas-solid differences in the stopping processes. While measured ranges in solid oxygen were in agreement with known gas data, the ranges in solid carbon monoxide were up to 50% larger than those calculated from gas-stopping data. The latter result agrees with that previously found for solid nitrogen. (orig.)

  11. Optimum extracted H- and D- current densities from gas-pressure-limited high-power hydrogen/deuterium tandem ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1993-01-01

    The tandem hydrogen/deuterium ion source is modelled for the purpose of identifying the maximum current densities that can be extracted subject to the gas-pressure constraints proposed for contemporary beam-line systems. Optimum useful extracted current densities are found to be in the range of approximately 7 to 10 mA cm -2 . The sensitivity of these current densities is examined subject to uncertainties in the underlying atomic/molecular rate processes; A principal uncertainty remains the quantification of the molecular vibrational distribution following H 3 + wall collisions

  12. Measurement of scattering cross sections of liquid and solid hydrogen, deuterium and deuterium hydride for thermal neutrons

    International Nuclear Information System (INIS)

    Seiffert, W.D.

    1984-01-01

    The scattering cross sections for liquid and solid normal hydrogen, para-hydrogen, deuterium and deuterium hydride were measured for thermal neutrons at various temperatures. Solid samples of para-hydrogen exhibit distinct Bragg scattering. Liquid samples of deuterium and para-hydrogen also exhibit distinct coherence phenomena, which is indicative of strong local ordering of the molecules. In para-hydrogen and deuterium hydride, the threshold for scattering with excitation of rotations is distinctly visible. The positions of the thresholds show that the molecules in liquid hydrogen are not unhindered in their movement. After the beginning of the rotational excitation the scattering cross sections of liquid and solid para-hydrogen have different shapes which is to be explained by the differences in the dynamics of the liquid and the solid specimen. 22 references

  13. A measurement of hydrogen transport in deuterium discharges using the dynamic response of the effective mass

    International Nuclear Information System (INIS)

    Dudok de Wit, T.; Duval, B.P.; Joye, B.; Lister, J.B.

    1992-02-01

    Particle tagging in a tokamak provides an attractive method for studying transport mechanisms. The injection of test particles at the plasma edge and the subsequent measurement of the evolution of their concentration at the centre can be used to quantify the underlying transport mechanisms. This has been carried out on the TCA tokamak by injecting hydrogen into a deuterium discharge, and simultaneously measuring the temporal evolution of the effective mass and the edge ionisation rate. (author) 3 figs., 9 refs

  14. Evaluation of measurement precision errors at different bone density values

    International Nuclear Information System (INIS)

    Wilson, M.; Wong, J.; Bartlett, M.; Lee, N.

    2002-01-01

    Full text: The precision error commonly used in serial monitoring of BMD values using Dual Energy X Ray Absorptometry (DEXA) is 0.01-0.015g/cm - for both the L2 L4 lumbar spine and total femur. However, this limit is based on normal individuals with bone densities similar to the population mean. The purpose of this study was to systematically evaluate precision errors over the range of bone density values encountered in clinical practice. In 96 patients a BMD scan of the spine and femur was immediately repeated by the same technologist with the patient taken off the bed and repositioned between scans. Nine technologists participated. Values were obtained for the total femur and spine. Each value was classified as low range (0.75-1.05 g/cm ) and medium range (1.05- 1.35g/cm ) for the spine, low range (0.55 0. 85 g/cm ) and medium range (0.85-1.15 g/cm ) for the total femur. Results show that the precision error was significantly lower in the medium range for total femur results with the medium range value at 0.015 g/cm - and the low range at 0.025 g/cm - (p<0.01). No significant difference was found for the spine results. We also analysed precision errors between three technologists and found a significant difference (p=0.05) occurred between only two technologists and this was seen in the spine data only. We conclude that there is some evidence that the precision error increases at the outer limits of the normal bone density range. Also, the results show that having multiple trained operators does not greatly increase the BMD precision error. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  15. Quantitatively measuring the orbital angular momentum density of light : Presentation

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2013-08-01

    Full Text Available the orbital angular momentum density of light Angela Dudleya, Christian Schulzeb, Igor Litvina, Michael Duparréb and Andrew Forbes*a,c,d a CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa; b Institute of Applied Optics, Friedrich...., “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000). [3] Sztul, H. I. and Alfano, R. R., “The Poynting vector and angular momentum of Airy beams,” Opt. Express 16(13), 9411–9416 (2008). [4] Allen, L...

  16. A straightforward method for measuring the range of apparent density of microplastics.

    Science.gov (United States)

    Li, Lingyun; Li, Mengmeng; Deng, Hua; Cai, Li; Cai, Huiwen; Yan, Beizhan; Hu, Jun; Shi, Huahong

    2018-10-15

    Density of microplastics has been regarded as the primary property that affect the distribution and bioavailability of microplastics in the water column. For measuring the density of microplastis, we developed a simple and rapid method based on density gradient solutions. In this study, we tested four solvents to make the density gradient solutions, i.e., ethanol (0.8 g/cm 3 ), ultrapure water (1.0 g/cm 3 ), saturated NaI (1.8 g/cm 3 ) and ZnCl 2 (1.8 g/cm 3 ). Density of microplastics was measured via observing the float or sink status in the density gradient solutions. We found that density gradient solutions made from ZnCl 2 had a larger uncertainty in measuring density than that from NaI, most likely due to a higher surface tension of ZnCl 2 solution. Solutions made from ethanol, ultrapure water, and NaI showed consistent density results with listed densities of commercial products, indicating that these density gradient solutions were suitable for measuring microplastics with a density range of 0.8-1.8 g/cm 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Implementation of 252Cf-source-driven power spectrum density measurement system

    International Nuclear Information System (INIS)

    Ren Yong; Wei Biao; Feng Peng; Li Jiansheng; Ye Cenming

    2012-01-01

    The principle of 252 Cf-source-driven power spectrum density measurement method is introduced. A measurement system and platform is realized accordingly, which is a combination of hardware and software, for measuring nuclear parameters. The detection method of neutron pulses based on an ultra-high-speed data acquisition card (three channels, 1 GHz sampling rate, 1 ns synchronization) is described, and the data processing process and the power spectrum density algorithm on PC are designed. This 252 Cf-source-driven power spectrum density measurement system can effectively obtain the nuclear tag parameters of nuclear random processes, such as correlation function and power spectrum density. (authors)

  18. Probing the structure, stability and hydrogen adsorption of lithium functionalized isoreticular MOF-5 (Fe, Cu, Co, Ni and Zn) by density functional theory.

    Science.gov (United States)

    Venkataramanan, Natarajan Sathiyamoorthy; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2009-04-14

    Li adsorption on isoreticular MOFs with metal Fe, Cu, Co, Ni and Zn was studied using density function theory. Li functionalization shows a considerable structural change associated with a volume change in isoreticular MOF-5 except for the Zn metal center. Hydrogen binding energies on Li functionalized MOFs are seen to be in the range of 0.2 eV, which is the desired value for an ideal reversible storage system. This study has clearly shown that Li doping is possible only in Zn-based MOF-5, which would be better candidate to reversibly store hydrogen.

  19. Ground state hydrogen conformations and vibrational analysis of 1,2-dihdroxyanthraquinone (alizarin) molecule by AB initio Hartree-Fock and density functional theory calculations

    International Nuclear Information System (INIS)

    Delta, E.; Ucun, F.; Saglam, A.

    2010-01-01

    The ground state hydrogen conformations of 1,2-dihydroxyanthraquinone (alizarin) molecule have been investigated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-31G(d,p) basis set. The calculations indicate that the compound in the ground state exist with the doubly bonded O atom linked intra molecularly by the two hydrogen bonds. The vibrational analyses of the ground state conformation of the compound were also made and its optimized geometry parameters were given.

  20. Probing the Structure, Stability and Hydrogen Adsorption of Lithium Functionalized Isoreticular MOF-5 (Fe, Cu, Co, Ni and Zn by Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Kawazoe

    2009-04-01

    Full Text Available Li adsorption on isoreticular MOFs with metal Fe, Cu, Co, Ni and Zn was studied using density function theory. Li functionalization shows a considerable structural change associated with a volume change in isoreticular MOF-5 except for the Zn metal center. Hydrogen binding energies on Li functionalized MOFs are seen to be in the range of 0.2 eV, which is the desired value for an ideal reversible storage system. This study has clearly shown that Li doping is possible only in Zn-based MOF-5, which would be better candidate to reversibly store hydrogen.

  1. Measurement of the ratio of hydrogen to deuterium at the KSTAR 2009 experimental campaign

    International Nuclear Information System (INIS)

    Kwak, Jong-Gu; Wang, Son Jong; Kim, Sun Ho; Park, Jae Min; Na, Hoon Kyun

    2010-01-01

    The control of the ratio of hydrogen to the deuterium is one of the very important issues for ion cyclotron range of frequency (ICRF) minority heating as well as the plasma wall interaction in the tokamak. The ratio of hydrogen to deuterium during the tokamak shot was deduced from the emission spectroscopy measurements during the KSTAR 2009 experimental campaign. Graphite tiles were used for the plasma facing components (PFCs) at KSTAR and its surface area exposed to the plasma was about 11 m 2 . The data showed that it remained as high as around 50% during the campaign period because graphite tiles were exposed to the air for about two months and the hydrogen contents at the tiles are not fully pumped out due to the lack of baking on the PFC in the 2009 campaign. The validation of the spectroscopy method was checked by using the Zeeman effects and the ratio of hydrogen to the deuterium is compared with results from the residual gas analysis. During the tokamak shot, the ratio is low below 10% initially and saturated after around 1 s. When there is a hydrogen injection to the vessel via ion cyclotron wall conditioning and the boronization process where the carbone is used, the ratio of the hydrogen to the deuterium is increased by up to 100% and it recovers to around 50% after one day of operation. However it does not decrease below 50% at the end of the experimental campaign. It was found that the full baking on the PFC (with a high temperature and sufficient vacuum pumping) is required for the ratio control which guarantees the efficient ICRF heating at the KSTAR 2010 experimental campaign.

  2. The estimation of heavy metal concentration in FBR reprocessing solvent streams by density measurement

    International Nuclear Information System (INIS)

    Brown, M.L.; Savage, D.J.

    1986-04-01

    The application of density measurement to heavy metal monitoring in the solvent phase is described, including practical experience gained during three fast reactor fuel reprocessing campaigns. An experimental algorithm relating heavy metal concentration and sample density was generated from laboratory-measured density data, for uranyl nitrate dissolved in nitric acid loaded tri-butyl phosphate in odourless kerosene. Differences in odourless kerosene batch densities are mathematically interpolated, and the algorithm can be used to estimate heavy metal concentrations from the density to within +1.5 g/l. An Anton Paar calculating digital densimeter with remote cell operation was used for all density measurements, but the algorithm will give similar accuracy with any density measuring device capable of a precision of better than 0.0005 g/cm 3 . For plant control purposes, the algorithm was simplified using a density referencing system, whereby the density of solvent not yet loaded with heavy metal is subtracted from the sample density. This simplified algorithm compares very favourably with empirical algorithms, derived from numerical analysis of density data and chemically measured uranium and plutonium data obtained during fuel reprocessing campaigns, particularly when differences in the acidity of the solvent are considered before and after loading with heavy metal. This simplified algorithm had been successfully used for plant control of heavy metal loaded solvent during four fast reactor fuel reprocessing campaigns. (author)

  3. Measurement of percent hydrogen in the mechanical vacuum pump gas stream during BWR startup

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    All U.S BWRs use a Mechanical Vacuum Pump (MVP) to establish condenser vacuum during start-ups, normally from the initial heat-up to the point where sufficient reactor steam pressure and flow is available to place the Steam Jet Air Ejector (SJAE) and off-gas treatment system in service. MVP operation is restricted to <5% power and gas stream concentrations of <4% H 2 , the lower flammability limit (LFL) for hydrogen/air mixtures. For a particular plant startup prior to hydrogen injection for hydrogen water chemistry (HWC), the MVP %H 2 would depend on the air in-leakage rate, the H 2 gas generation rate from radiolysis and the gas/steam transport rate from the reactor vessel to the main condenser. The radiolysis rate at low power, which is not precisely known and has not been modeled for the BWR, is normally assumed to increase in proportion to thermal power. Two thirds of the radiolytic gas by volume would be H 2 and one third O 2 . The MVP is not equipped with %H 2 sampling and measurement capability, and many MVP systems include no flow measurement. No U.S plant or literature data on MVP %H 2 were found. The industry-first Early Hydrogen Water Chemistry (EHWC) demonstration at the Peach Bottom 3 nuclear power plant involved hydrogen gas injection into the reactor vessel during startup while the MVP was in service. To support the EHWC project, it was necessary to collect baseline MVP %H 2 data during a startup without hydrogen injection and to monitor MVP %H 2 during the startup with EHWC. The MVP system had no normal sample point, but included test taps in the suction and discharge piping. A sampling method and apparatus was invented (EPRI patent pending), designed, built and applied to obtain %H 2 measurements in the MVP gas stream. The apparatus allowed a gas sample stream to be taken from either the suction (vacuum) or discharge side of the MVP. The gas sample stream was preconditioned to remove moisture (the MVP uses water as a liquid compressant), flowed to

  4. In situ/non-contact superfluid density measurement apparatus

    Science.gov (United States)

    Nam, Hyoungdo; Su, Ping-Hsang; Shih, Chih-Kang

    2018-04-01

    We present a double-coil apparatus designed to operate with in situ capability, which is strongly desired for superconductivity studies on recently discovered two-dimensional superconductors. Coupled with a scanning tunneling microscope, the study of both local and global superconductivity [for superconducting gap and superfluid density (SFD), respectively] is possible on an identical sample without sample degradations due to damage, contamination, or oxidation in an atmosphere. The performance of the double-coil apparatus was tested on atomically clean surfaces of non-superconducting Si(111)-7 × 7 and on superconducting films of 100 nm-thick Pb and 1.4 nm-ultrathin Pb. The results clearly show the normal-to-superconductor phase transition for Pb films with a strong SFD.

  5. Measuring the relative hydrogen-bonding strengths of alcohols in aprotic organic solvents.

    Science.gov (United States)

    Tessensohn, Malcolm E; Lee, Melvyn; Hirao, Hajime; Webster, Richard D

    2015-01-12

    Voltammetric experiments with 9,10-anthraquinone and 1,4-benzoquinone performed under controlled moisture conditions indicate that the hydrogen-bond strengths of alcohols in aprotic organic solvents can be differentiated by the electrochemical parameter ΔEp (red) =|Ep (red(1)) -Ep (red(2)) |, which is the potential separation between the two one-electron reduction processes. This electrochemical parameter is inversely related to the strength of the interactions and can be used to differentiate between primary, secondary, tertiary alcohols, and even diols, as it is sensitive to both their steric and electronic properties. The results are highly reproducible across two solvents with substantially different hydrogen-bonding properties (CH3 CN and CH2 Cl2 ) and are supported by density functional theory calculations. This indicates that the numerous solvent-alcohol interactions are less significant than the quinone-alcohol hydrogen-bonding interactions. The utility of ΔEp (red) was illustrated by comparisons between 1) 3,3,3-trifluoro-n-propanol and 1,3-difluoroisopropanol and 2) ethylene glycol and 2,2,2-trifluoroethanol. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Plasma Temperature Determination of Hydrogen Containing High-Frequency Electrode less Lamps by Intensity Distribution Measurements of Hydrogen Molecular Band

    International Nuclear Information System (INIS)

    Gavare, Z.; Revalde, G.; Skudra, A.

    2011-01-01

    The goal of the present work was the investigation of the possibility to use intensity distribution of the Q-branch lines of the hydrogen Fulcher-a diagonal band (d3η u- a3Σg + electronic transition; Q-branch with ν=ν=2) to determine the temperature of hydrogen containing high-frequency electrode less lamps (HFEDLs). The values of the rotational temperatures have been obtained from the relative intensity distributions for hydrogen-helium and hydrogen-argon HFEDLs depending on the applied current. The results have been compared with the method of temperature derivation from Doppler profiles of He 667.8 nm and Ar 772.4 nm lines. The results of both methods are in good agreement, showing that the method of gas temperature determination from the intensity distribution in the hydrogen Fulcher-a (2-2)Q band can be used for the hydrogen containing HFEDLs. It was observed that the admixture of 10% hydrogen in the argon HFEDLs significantly reduces the gas temperature

  7. Correlation between electrochemical impedance measurements and corrosion rate of magnesium investigated by real-time hydrogen measurement and optical imaging

    OpenAIRE

    Curioni, M.; Scenini, F.; Monetta, T.; Bellucci, F.

    2015-01-01

    The corrosion behaviour of magnesium in chloride-containing aqueous environment was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) performed simultaneously with real-time hydrogen evolution measurements and optical imaging of the corroding surface. The potentiodynamic investigation revealed substantial deviations from linearity in close proximity of the corrosion potential. In particular, differences in the slope of the current/potential curves w...

  8. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  9. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    International Nuclear Information System (INIS)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-01-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10 -4 torr at temperatures between 250 and 700 degrees C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R ∼ 10 and 100 at 700 and 250 degrees C, respectively). However at <267 degrees C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy

  10. Kinetic energy measurement of hydrogen in LHD peripheral plasma with a multi-wavelength-range fine-resolution spectrometer

    International Nuclear Information System (INIS)

    Fujii, Keisuke; Mizushiri, Keisuke; Nishioka, Tomomi; Shikama, Taiichi; Iwamae, Atsushi; Goto, Motoshi; Morita, Shigeru; Hasuo, Masahiro

    2010-01-01

    We have simultaneously measured high resolution emission spectra of the hydrogen atomic Balmer-α, -β, -γ lines and molecular Fulcher-α band for a LHD peripheral plasma generated under a central magnetic field strength of 0.4 T. It is found that the velocity distributions of excited atoms calculated from the Balmer-α, -β, and -γ line shapes show similar profiles to each other. The translational kinetic energy corresponding to the average velocity is about 13 eV, which is about 300 times larger than the rotational energy of hydrogen molecules estimated from the line intensities in the Fulcher-α band. The velocity distributions differ from Maxwellian and have a high velocity tail over 1x10 5 m/s. A correlation between the high velocity tail and the electron temperature and density is seen and suggesting the excited atoms having such high velocities to be generated by the charge exchange collisions from high velocity protons in the peripheral region.

  11. Direct measurements of neutral density depletion by two-photon absorption laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Aanesland, A.; Liard, L.; Leray, G.; Jolly, J.; Chabert, P.

    2007-01-01

    The ground state density of xenon atoms has been measured by spatially resolved laser-induced fluorescence spectroscopy with two-photon excitation in the diffusion chamber of a magnetized Helicon plasma. This technique allows the authors to directly measure the relative variations of the xenon atom density without any assumptions. A significant neutral gas density depletion was measured in the core of the magnetized plasma, in agreement with previous theoretical and experimental works. It was also found that the neutral gas density was depleted near the radial walls

  12. Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects.

    Science.gov (United States)

    Marcos, S; Tornow, R P; Elsner, A E; Navarro, R

    1997-07-01

    Foveal cone spacing was measured in vivo using an objective technique: ocular speckle interferometry. Cone packing density was computed from cone spacing data. Foveal cone photopigment density difference was measured in the same subjects using retinal densitometry with a scanning laser ophthalmoscope. Both the cone packing density and cone photopigment density difference decreased sharply with increasing retinal eccentricity. From the comparison of both sets of measurements, the computed amounts of photopigment per cone increased slightly with increasing retinal eccentricity. Consistent with previous results, decreases in cone outer segment length are over-compensated by an increase in the outer segment area, at least in retinal eccentricities up to 1 deg.

  13. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  14. A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements

    Science.gov (United States)

    Döge, Stefan; Hingerl, Jürgen

    2018-03-01

    The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD2) crystals requires a good understanding of the UCN transport and how the crystal's morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H2) and deuterium (D2), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10-5 to 10-7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed.

  15. A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements.

    Science.gov (United States)

    Döge, Stefan; Hingerl, Jürgen

    2018-03-01

    The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD 2 ) crystals requires a good understanding of the UCN transport and how the crystal's morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H 2 ) and deuterium (D 2 ), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10 -5 to 10 -7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed.

  16. MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT

    International Nuclear Information System (INIS)

    Adriani, O.; Bongi, M.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bruno, A.; Boezio, M.; Bonvicini, V.; Formato, V.; Bogomolov, E. A.; Bottai, S.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Santis, C. De; Castellini, G.; Donato, C. De; Simone, N. De; Felice, V. Di

    2016-01-01

    The cosmic-ray hydrogen and helium ( 1 H, 2 H, 3 He, 4 He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes 2 H and 3 He in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December

  17. MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [University of Naples “Federico II,” Department of Physics, I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [University of Bari, Department of Physics, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Formato, V. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; Santis, C. De [University of Rome “Tor Vergata,” Department of Physics, I-00133 Rome (Italy); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Donato, C. De; Simone, N. De; Felice, V. Di [INFN, Sezione di Rome “Tor Vergata,” I-00133 Rome (Italy); and others

    2016-02-10

    The cosmic-ray hydrogen and helium ({sup 1}H, {sup 2}H, {sup 3}He, {sup 4}He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes {sup 2}H and {sup 3}He in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December.

  18. Metallic hydrogen research

    International Nuclear Information System (INIS)

    Burgess, T.J.; Hawke, R.S.

    1978-01-01

    Theoretical studies predict that molecular hydrogen can be converted to the metallic phase at very high density and pressure. These conditions were achieved by subjecting liquid hydrogen to isentropic compression in a magnetic-flux compression device. Hydrogen became electrically conducting at a density of about 1.06 g/cm 3 and a calculated pressure of about 2 Mbar. In the experimental device, a cylindrical liner, on implosion by high explosive, compresses a magnetic flux which in turn isentropically compresses a hydrogen sample; coaxial conical anvils prevent escape of the sample during compression. One anvil contains a coaxial cable that uses alumina ceramic as an insulator; this probe allows continuous measurement of the electrical conductivity of the hydrogen. A flash x-ray radiograph exposed during the experiment records the location of the sample-tube boundaries and permits calculation of the sample density. The theoretical underpinnings of the metallic transition of hydrogen are briefly summarized, and the experimental apparatus and technique, analytical methods, and results are described. 9 figures

  19. Gravimetric and volumetric approaches adapted for hydrogen sorption measurements with in situ conditioning on small sorbent samples

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Tessier, A.; Bose, T.K.

    2005-01-01

    We present high sensitivity (0 to 1 bar, 295 K) gravimetric and volumetric hydrogen sorption measurement systems adapted for in situ sample conditioning at high temperature and high vacuum. These systems are designed especially for experiments on sorbents available in small masses (mg) and requiring thorough degassing prior to sorption measurements. Uncertainty analysis from instrumental specifications and hydrogen absorption measurements on palladium are presented. The gravimetric and volumetric systems yield cross-checkable results within about 0.05 wt % on samples weighing from (3 to 25) mg. Hydrogen storage capacities of single-walled carbon nanotubes measured at 1 bar and 295 K with both systems are presented

  20. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    International Nuclear Information System (INIS)

    Santos, Emilie M.M.; Yoo, Albert J.; Beenen, Ludo F.; Majoie, Charles B.; Berkhemer, Olvert A.; Blanken, Mark D. den; Wismans, Carrie; Niessen, Wiro J.; Marquering, Henk A.

    2016-01-01

    Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert observers. For 132 consecutive patients with acute ischemic stroke, three experts and two trained observers determined thrombus density by placing three standardized regions of interest (ROIs) in the thrombus and corresponding contralateral arterial segment. Subsequently, absolute and relative thrombus densities were determined using either one or three ROIs. Intraclass correlation coefficient (ICC) was determined, and Bland-Altman analysis was performed to evaluate interobserver and intermethod agreement. Accuracy of the trained observer was evaluated with a reference expert observer using the same statistical analysis. The highest interobserver agreement was obtained for absolute thrombus measurements using three ROIs (ICCs ranging from 0.54 to 0.91). In general, interobserver agreement was lower for relative measurements, and for using one instead of three ROIs. Interobserver agreement of trained non-experts and experts was similar. Accuracy of the trained observer measurements was comparable to the expert interobserver agreement and was better for absolute measurements and with three ROIs. The agreement between the one ROI and three ROI methods was good. Absolute thrombus density measurement has superior interobserver agreement compared to relative density measurement. Interobserver variation is smaller when multiple ROIs are used. Trained non-expert observers can accurately and reproducibly assess absolute thrombus densities using three ROIs. (orig.)

  1. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Emilie M.M. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, Rotterdam (Netherlands); Department of Radiology, AMC, Amsterdam (Netherlands); Yoo, Albert J. [Texas Stroke Institute, Plano, TX (United States); Beenen, Ludo F.; Majoie, Charles B. [Department of Radiology, AMC, Amsterdam (Netherlands); Berkhemer, Olvert A. [Department of Radiology, AMC, Amsterdam (Netherlands); Department of Neurology, Erasmus MC, Rotterdam (Netherlands); Blanken, Mark D. den; Wismans, Carrie [AMC, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Niessen, Wiro J. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, Rotterdam (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Marquering, Henk A. [Department of Radiology, AMC, Amsterdam (Netherlands); AMC, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Collaboration: on behalf of the MR CLEAN investigators

    2016-02-15

    Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert observers. For 132 consecutive patients with acute ischemic stroke, three experts and two trained observers determined thrombus density by placing three standardized regions of interest (ROIs) in the thrombus and corresponding contralateral arterial segment. Subsequently, absolute and relative thrombus densities were determined using either one or three ROIs. Intraclass correlation coefficient (ICC) was determined, and Bland-Altman analysis was performed to evaluate interobserver and intermethod agreement. Accuracy of the trained observer was evaluated with a reference expert observer using the same statistical analysis. The highest interobserver agreement was obtained for absolute thrombus measurements using three ROIs (ICCs ranging from 0.54 to 0.91). In general, interobserver agreement was lower for relative measurements, and for using one instead of three ROIs. Interobserver agreement of trained non-experts and experts was similar. Accuracy of the trained observer measurements was comparable to the expert interobserver agreement and was better for absolute measurements and with three ROIs. The agreement between the one ROI and three ROI methods was good. Absolute thrombus density measurement has superior interobserver agreement compared to relative density measurement. Interobserver variation is smaller when multiple ROIs are used. Trained non-expert observers can accurately and reproducibly assess absolute thrombus densities using three ROIs. (orig.)

  2. Estimating tree bole and log weights from green densities measured with the Bergstrom Xylodensimeter.

    Science.gov (United States)

    Dale R. Waddell; Michael B. Lambert; W.Y. Pong

    1984-01-01

    The performance of the Bergstrom xylodensimeter, designed to measure the green density of wood, was investigated and compared with a technique that derived green densities from wood disk samples. In addition, log and bole weights of old-growth Douglas-fir and western hemlock were calculated by various formulas and compared with lifted weights measured with a load cell...

  3. Study on Method of Asphalt Density Measurement Using Low Level Radioactive Isotope

    International Nuclear Information System (INIS)

    Chung, Jin-young; Kim, Jung-hoon; Whang, Joo-ho

    2008-01-01

    The fundamental cause of damage to road pavement is insufficient management of asphalt density during construction. Currently, asphalt density in Korea is measured in a laboratory by extracting a core sample after construction. This method delays the overall time of measurement and therefore it is difficult to achieve real-time density management. Using a radioactive isotope for measuring asphalt density during construction reduces measuring time thus enabling realtime measurement. Also, it is provided reliable density measurement to achieve effective density management at work sites. However, existing radiological equipment has not been widely used because of management restrictions and regulations due to the high radiation dose. In this study, we employed a non-destructive method for density measurement. Density is measured by using a portable gamma-ray backscatter device having a radioactivity emission of 100 μCi or less (notice No. 2002-23, Ministry of Science and Technology, standards on radiation protection, etc.), a sealed radioactive source subject to declaration

  4. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    International Nuclear Information System (INIS)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T.; Guharay, S.K.

    1997-01-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H - ) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  5. An improved method for measuring the magnetic inhomogeneity shift in hydrogen masers

    Science.gov (United States)

    Reinhardt, V. S.; Peters, H. E.

    1975-01-01

    The reported method makes it possible to conduct all maser frequency measurements under conditions of low magnetic field intensity for which the hydrogen maser is most stable. Aspects concerning the origin of the magnetic inhomogeneity shift are examined and the available approaches for measuring this shift are considered, taking into account certain drawbacks of currently used methods. An approach free of these drawbacks can be based on the measurement of changes in a parameter representing the difference between the number of atoms in the involved states.

  6. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    Energy Technology Data Exchange (ETDEWEB)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T. [National Inst. for Fusion Science, Nagoya (Japan); Guharay, S.K.

    1997-02-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H{sup -}) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  7. A microwave interferometer for density measurement and stabilization in process plasmas

    International Nuclear Information System (INIS)

    Pearson, D.I.C.; Campbell, G.A.; Domier, C.W.

    1988-01-01

    A low-cost heterodyne microwave interferometer system capable of measuring and/or controlling the plasma density over a dynamic range covering two orders of magnitude is demonstrated. The microwave frequency is chosen to match the size and density of plasma to be monitored. Large amplitude, high frequency fluctuations can be quantitatively followed and the longer-time-scale density can be held constant over hours of operation, for example during an inline production process to maintain uniformity and stoichiometry of films. A linear relationship is shown between plasma density and discharge current in a specific plasma device. This simple relationship makes control of the plasma straightforward using the interferometer as a density monitor. Other plasma processes could equally well benefit from such density control capability. By combining the interferometer measurement with diagnostics such as probes or optical spectroscopy, the total density profile and the constituent proportions of the various species in the plasma could be determined

  8. Hydrogen safety in nuclear power - issues and measures. Preparing 'handbook for improved hydrogen safety in nuclear power'

    International Nuclear Information System (INIS)

    Ogawa, Tooru; Nakajima, Kiyoshi; Hino, Ryutaro

    2015-01-01

    In response to hydrogen explosion at the reactor building of TEPCO Fukushima Daiichi Nuclear Power Station, the common understanding among researchers in various fields has been required for the chain of various events surrounding hydrogen in case of the accident of a light water reactor. The group composed of specialists of nuclear power and gas combustion/explosion from universities, nuclear power equipment manufacturers, business interests, and nuclear power institutes is promoting the preparation work of 'Handbook for upgrading the safety of hydrogen measures related to nuclear power,' which is scheduled to be published in the end of 2015. The main themes dealt with in the handbook are as follows; (1) severe accident management and hydrogen control, (2) hydrogen combustion phenomena to be considered, (3) behavior of air - water vapor - hydrogen system, (4) passive autocatalytic recombiner (PAR) / igniter / containment spray, and (5) water-containing waste management. This paper introduces the outline of these movements and latest achievements. (A.O.)

  9. Local density measurement of additive manufactured copper parts by instrumented indentation

    Science.gov (United States)

    Santo, Loredana; Quadrini, Fabrizio; Bellisario, Denise; Tedde, Giovanni Matteo; Zarcone, Mariano; Di Domenico, Gildo; D'Angelo, Pierpaolo; Corona, Diego

    2018-05-01

    Instrumented flat indentation has been used to evaluate local density of additive manufactured (AM) copper samples with different relative density. Indentations were made by using tungsten carbide (WC) flat pins with 1 mm diameter. Pure copper powders were used in a selective laser melting (SLM) machine to produce samples to test. By changing process parameters, samples density was changed from the relative density of 63% to 71%. Indentation tests were performed on the xy surface of the AM samples. In order to make a correlation between indentation test results and sample density, the indentation pressure at fixed displacement was selected. Results show that instrumented indentation is a valid technique to measure density distribution along the geometry of an SLM part. In fact, a linear trend between indentation pressure and sample density was found for the selected density range.

  10. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Congsen [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Physics, National University of Defense Technology, Changsha 410073 (China); Janssen, Maurice H. M. [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  11. Estimation of the hydrogen flux from a PEM electrolyzer, based in the solar irradiation measured in Zacatecas Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Duron-Torres, S.M.; Villagrana-Munoz, L.E.; Garcia-Saldivar, V.M.; Escalante-Garcia, I.L. [Univ. Autonoma de Zacatecas, Zacatecas (Mexico). Unidad Academica de Ciencias Quimicas; Arriaga-Hurtado, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo (Mexico)

    2010-07-15

    The current cost of obtaining hydrogen from electrolyzers is higher than the cost of producing fossil fuels. However, with advances in technology and greater use of alternative energy sources, the cost of electrolytic hydrogen production may decrease to the point of being competitive. This study calculated how much hydrogen can be produced in a typical polymer exchange membrane (PEM) electrolyzer. Local solar irradiation measurements were carried out from November 2007 to April 2008 at the Campus Siglo 21 Solarimetric Station at Zacatecas University in Mexico. The mean irradiation measured was 6.6 kW-h per m{sup 2}. Based on the solar data obtained at the station, the hydrogen produced by a typical solar-hydrogen (SH) system was evaluated. The study showed that an important quantity of hydrogen as an energy vector could be obtained from solar radiation. April was determined to be the month of maximum hydrogen production. The lowest hydrogen production was in November. The data obtained during this study can be used to evaluate the solar renewable energy resource expressed as hydrogen production. 19 refs., 1 tab., 4 figs.

  12. Detection of atomic and molecular hydrogen in post-discharge by resonant multi-photo-ionisation. Determination of absolute atomic densities

    International Nuclear Information System (INIS)

    Persuy, Philippe

    1990-01-01

    Within the frame of studies on devices for physical vapour deposition, and on phenomena leading to these depositions, this research thesis reports the development of a laser-diagnosis based on the phenomenon of resonant multi-photo-ionisation, and an attempt to obtain from it values of the absolute concentration of atomic hydrogen. After some recalls on the diversity of multi-photon phenomena, their theoretical and experimental evolutions, and on the particular role of hydrogen, the author reports experiments performed at 307.7 and 364.7 nm which respectively addressed the post-discharge detection of molecular hydrogen and of atomic hydrogen. A model is presented which addresses the interaction volume, and results of experiments of atom multi-photo-ionisation are reported. One of the results of this model is an assessment of the cross-section of the excitation with three photons of the hydrogen atom. This result is then used to determine the absolute density of atoms in fundamental state for different discharge conditions. Finally, the author presents the calculation software and some curve examples displaying the evolution of the number of ions and of excited states within the interaction volume [fr

  13. Measuring the Magnetic Flux Density in the CMS Steel Yoke

    CERN Document Server

    Klyukhin, V I; Ball, A; Curé, B; Gaddi, A; Gerwig, H; Hervé, A; Mulders, M; Loveless, R

    2012-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line a...

  14. Study on the technique for precision measurement of density of SiO_2 foam shells

    International Nuclear Information System (INIS)

    Ma Xiaojun; Gao Dangzhong; Meng Jie

    2013-01-01

    The measuring method based on vertical scanning interference and combined with the relation between refraction index and density of SiO_2 foam shells is introduced, and the relation is analyzed according to formulas of Lorentz-Lorenz and Gladstone-Dale. The experimental result and measuring uncertainty evaluation indicate that the precision measurement of density of low density SiO_2 foam shells can be realized by using the vertical scanning interference technique and combining with Gladstone and Dale analysis method, and the measuring uncertainty is about 5%. (authors)

  15. Large density amplification measured on jets ejected from a magnetized plasma gun

    OpenAIRE

    Yun, Gunsu S.; You, Setthivoine; Bellan, Paul M.

    2007-01-01

    Observation of a large density amplification in the collimating plasma jet ejected from a coplanar coaxial plasma gun is reported. The jet velocity is ~30 km s^-1 and the electron density increases from ~10^20 to 10^(22–23) m^-3. In previous spheromak experiments, electron density of the order 10^(19–21) m^-3 had been measured in the flux conserver region, but no density measurement had been reported for the source gun region. The coplanar geometry of our electrodes permits direct observation...

  16. Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening

    International Nuclear Information System (INIS)

    Dong Lifang; Ran Junxia; Mao Zhiguo

    2005-01-01

    We present a method and results for measurement of electron density in atmospheric-pressure dielectric barrier discharge. The electron density of microdischarge in atmospheric pressure argon is measured by using the spectral line profile method. The asymmetrical deconvolution is used to obtain Stark broadening. The results show that the electron density in single filamentary microdischarge at atmospheric pressure argon is 3.05x10 15 cm -3 if the electron temperature is 10,000 K. The result is in good agreement with the simulation. The electron density in dielectric barrier discharge increases with the increase of applied voltage

  17. Absolute measurement of alkaline atoms in low density jet

    International Nuclear Information System (INIS)

    Labbe, J.; Guernigou, J.

    1974-01-01

    In order to determine the neutral fraction of cesium vapor which is not ionized in the beam issuing from an ion thruster, a particular sensor was developed at ONERA. This probe, the sensibility of which is 6 10 7 atoms sec -1 was used in order to measure the variation of cesium atom flux ejected from a spherical isothermal cavity. Experiments were performed in three flow conditions caracterized by the ratio of the mean free path to the dimension of the orifice or to the diameter of the cavity. Results demonstrate that it is possible in this configuration to obtain an efflux of 5 10 13 atoms sec -1 in accordance to cosine law when the mean free path is about the diameter of the spherical cavity [fr

  18. Plasma density fluctuation measurements from coherent and incoherent microwave reflection

    International Nuclear Information System (INIS)

    Conway, G.D.; Schott, L.; Hirose, A.

    1996-01-01

    Using the spatial coherency present in a reflected microwave signal (Conway et al 1994 Rev. Sci. Instrum. 65 2920) it is possible to measure a coherent, Γ c , and an incoherent, Γ i , reflection coefficient (proportional to the radar cross section) from a turbulent plasma cutoff layer. Results acquired with a 17 GHz reflectometer from a STOR-M tokamak edge region (r/a ∼ 0.8) give significant Γ c and Γ i , which suggests two-dimensional structure in the reflection layer. Using a 'distorted-mirror' model for the plasma fluctuations, estimates of an effective radial width, σ, and poloidal correlation length, L p , can be derived from the reflection coefficients. STOR-M results typically give a σ of a few millimetres and an L p of a couple of centimetres. (author)

  19. Modeling dendrite density from magnetic resonance diffusion measurements

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Kroenke, CD; Østergaard, Leif

    2007-01-01

    in this model: (i) the dendrites and axons, which are modeled as long cylinders with two diffusion coefficients, parallel (DL) and perpendicular (DT) to the cylindrical axis, and (ii) an isotropic monoexponential diffusion component describing water diffusion within and across all other structures, i.......e., in extracellular space and glia cells. The model parameters are estimated from 153 diffusion-weighted images acquired from a formalin-fixed baboon brain. A close correspondence between the data and the signal model is found, with the model parameters consistent with literature values. The model provides......Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal...

  20. Steam generators of Phenix: Measurement of the hydrogen concentration in sodium for detecting water leaks in the steam generator tubes

    International Nuclear Information System (INIS)

    Cambillard, E.; Lacroix, A.; Langlois, J.; Viala, J.

    1975-01-01

    The Phenix secondary circuits are provided with measurement systems of hydrogen concentration in sodium, that allow for the detection of possible water leaks in steam generators and the location of a faulty module. A measurement device consists of : a detector with nickel membranes of 0, 3 mm wall thickness, an ion pump with a 200 l/s flow rate, a quadrupole mass spectrometer and a calibrated hydrogen leak. The temperature correction is made automatically. The main tests carried out on the leak detection systems are reported. Since the first system operation (October 24, 1973), the measurements allowed us to obtain the hydrogen diffusion rates through the steam generator tube walls. (author)

  1. Blood Density Is Nearly Equal to Water Density: A Validation Study of the Gravimetric Method of Measuring Intraoperative Blood Loss.

    Science.gov (United States)

    Vitello, Dominic J; Ripper, Richard M; Fettiplace, Michael R; Weinberg, Guy L; Vitello, Joseph M

    2015-01-01

    Purpose. The gravimetric method of weighing surgical sponges is used to quantify intraoperative blood loss. The dry mass minus the wet mass of the gauze equals the volume of blood lost. This method assumes that the density of blood is equivalent to water (1 gm/mL). This study's purpose was to validate the assumption that the density of blood is equivalent to water and to correlate density with hematocrit. Methods. 50 µL of whole blood was weighed from eighteen rats. A distilled water control was weighed for each blood sample. The averages of the blood and water were compared utilizing a Student's unpaired, one-tailed t-test. The masses of the blood samples and the hematocrits were compared using a linear regression. Results. The average mass of the eighteen blood samples was 0.0489 g and that of the distilled water controls was 0.0492 g. The t-test showed P = 0.2269 and R (2) = 0.03154. The hematocrit values ranged from 24% to 48%. The linear regression R (2) value was 0.1767. Conclusions. The R (2) value comparing the blood and distilled water masses suggests high correlation between the two populations. Linear regression showed the hematocrit was not proportional to the mass of the blood. The study confirmed that the measured density of blood is similar to water.

  2. Low-energy hydrogen flux measurements at the TORTUR tokamak with negative ion conversion

    International Nuclear Information System (INIS)

    Toledo, Wiebo van.

    1990-01-01

    The interaction of a tokamak plasma with the vessel wall is one of the most important subjects in thermonuclear research. The information about this interaction is not complete without direct detection of the outward stream of low-energy, down to a few electronvolts, neutral hydrogen or deuterium atoms. The detection of these atoms is the subject of this thesis. An appropriate method to analyse the atoms which are emitted from the edge plasma is to use a time-of-flight analyser. This kind of apparatus selects particles according to their velocities with-out distinguishing between different masses. If these analysers use the Daly-method the lowest measurable energy of the hydrogen atoms is approximately 25 electronvolts. To increase the detection efficiency a new detection method was developed. This new method uses the conversion of hydrogen atoms into H- ions on a cesiated tungsten surface. By this conversion the lowest measurable energy is decreased down to 5 electron-volt. (author). 93 refs.; 44 figs.; 7 tabs

  3. The contribution of the hydrogen bond acidity on the lipophilicity of drugs estimated from chromatographic measurements.

    Science.gov (United States)

    Pallicer, Juan M; Pascual, Rosalia; Port, Adriana; Rosés, Martí; Ràfols, Clara; Bosch, Elisabeth

    2013-02-14

    The influence of the hydrogen bond acidity when the 1-octanol/water partition coefficient (log P(o/w)) of drugs is determined from chromatographic measurements was studied in this work. This influence was firstly evaluated by means of the comparison between the Abraham solvation parameter model when it is applied to express the 1-octanol/water partitioning and the chromatographic retention, expressed as the solute polarity p. Then, several hydrogen bond acidity descriptors were compared in order to determine properly the log P(o/w) of drugs. These descriptors were obtained from different software and comprise two-dimensional parameters such as the calculated Abraham hydrogen bond acidity A and three-dimensional descriptors like HDCA-2 from CODESSA program or WO1 and DRDODO descriptors calculated from Volsurf+software. The additional HOMO-LUMO polarizability descriptor should be added when the three-dimensional descriptors are used to complement the chromatographic retention. The models generated using these descriptors were compared studying the correlations between the determined log P(o/w) values and the reference ones. The comparison showed that there was no significant difference between the tested models and any of them was able to determine the log P(o/w) of drugs from a single chromatographic measurement and the correspondent molecular descriptors terms. However, the model that involved the calculated A descriptor was simpler and it is thus recommended for practical uses. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Comparison of neutral density profiles measured using Dα and C5+ in NSTX-U

    Science.gov (United States)

    Bell, R. E.; Scotti, F.; Diallo, A.; Leblanc, B. P.; Podesta, M.; Sabbagh, S. A.

    2017-10-01

    Edge neutral density profiles determined from two different measurements are compared on NSTX-U plasmas. Neutral density measurements were not typical on NSTX plasmas. An array of fibers dedicated to the measurement of passive emission of C5+, used to subtract background emission for charge exchange recombination spectroscopy (CHERS), can be used to infer deuterium neutral density near the plasma edge. The line emission from C5+ is dominated by charge exchange with neutral deuterium near the plasma edge. An edge neutral density diagnostic consisting of a camera with a Dα filter was installed on NSTX-U. The line-integrated measurements from both diagnostics are inverted to obtain local emissivity profiles. Neutral density is then inferred using atomics rates from ADAS and profile measurements from Thomson scattering and CHERS. Comparing neutral density profiles from the two diagnostic measurements helps determine the utility of using the more routinely available C5+ measurements for neutral density profiles. Initial comparisons show good agreement between the two measurements inside the separatrix. Supported by US DoE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  5. Separate density and viscosity measurements of unknown liquid using quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Feng Tan

    2016-09-01

    Full Text Available Aqueous liquids have a wide range of applications in many fields. Basic physical properties like the density and the viscosity have great impacts on the functionalities of a given ionic liquid. For the millions kinds of existing liquids, only a few have been systematically measured with the density and the viscosity using traditional methods. However, these methods are limited to measure the density and the viscosity of an ionic liquid simultaneously especially in processing micro sample volumes. To meet this challenge, we present a new theoretical model and a novel method to separate density and viscosity measurements with single quartz crystal microbalance (QCM in this work. The agreement of experimental results and theocratical calculations shows that the QCM is capable to measure the density and the viscosity of ionic liquids.

  6. Charge-exchange neutral hydrogen measurements in TFTR using Pd-MOS microsensors

    International Nuclear Information System (INIS)

    Bastasz, R.; Kilpatrick, S.J.; Ruzic, D.N.

    1991-06-01

    An array of Pd-metal-oxide semiconductor (Pd-MOS) diodes has been used to monitor the fluence and energy of charge-exchange neutral hydrogen isotopes striking the wall of the Tokamak Fusion Test Reactor (TFTR). The array was positioned 4 cm behind the graphite-tiled wall at the toroidal midplane and exposed to several hundred plasma discharges. Hydrogen isotopes striking the Pd-MOS diodes were detected by measuring the leakage current, which is affected by the presence of these species at the Pd/SiO 2 interface. It was found that the midplane flux strongly increased for neutral-beam heated plasmas and correlated with co-injected neutral beam power. The majority of the neutral flux was <50 eV in energy but its energy distribution extended to above 500 eV. 20 refs., 4 figs

  7. Application of interferometry and Faraday rotation techniques for density measurements on ITER

    International Nuclear Information System (INIS)

    Snider, R.T.; Carlstrom, T.N.; Ma, C.H.; Peebles, W.A.

    1995-01-01

    There is a need for real time, reliable density measurement for density control, compatible with the restricted access and radiation environment on ITER. Line average density measurements using microwave or laser interferometry techniques have proven to be robust and reliable for density control on contemporary tokamaks. In ITER, the large path length, high density and density gradients, limit the wavelength of a probing beam to shorter then about 50 microm due to refraction effects. In this paper the authors consider the design of short wavelength vibration compensated interferometers and Faraday rotation techniques for density measurements on ITER. These techniques allow operation of the diagnostics without a prohibitively large vibration isolated structure and permits the optics to be mounted directly on the radial port plugs on ITER. A beam path designed for 10.6 microm (CO2 laser) with a tangential path through the plasma allows both an interferometer and a Faraday rotation measurement of the line average density with good density resolution while avoiding refraction problems. Plasma effects on the probing beams and design tradeoffs will be discussed along with radiation and long pulse issues. A proposed layout of the diagnostic for ITER will be present

  8. Factors affecting neutron measurements and calculations. Part E. Hydrogen content in granite

    International Nuclear Information System (INIS)

    Komatsubara, Tetsuro; Sasa, Kimikazu; Ohshima, Hiroyuki

    2005-01-01

    For evaluation of radiation doses from the atomic bomb at Hiroshima, many systematic measurements have been made of the residual activities of activation products in rocks and concrete. For the Motoyasu Bridge, which is located close to the bomb hypocenter, the depth profile of 152 Eu was measured in a granite core (Hasai et al. 1987; Shizuma et al. 1997). In order to reproduce the depth profile of the activities, it is important to calculate the neutron scattering and absorption (Endo et al. 1999). In this section, the first result of hydrogen analysis by proton-proton elastic recoil coincidence spectrometry for the granite samples is described. (author)

  9. Density measurements in the boundary layer of the ASDEX RF heated plasma

    International Nuclear Information System (INIS)

    El Shaer, M.

    1986-11-01

    The boundary layer in the main chamber of ASDEX is diagnosed using a movable 2.2 mm microwave interferometer. The measured radial density profile decreases exponentially outside of the separatrix with three different e-folding lengths, the middle part of the profile is flatter with a larger e-folding length. The boundary density increases proportionally to the increase of the main plasmy density near the separatrix, far from the separatrix this increase is weaker. The boundary density increases with the increase of the main magnetic field in the discharge. With the application of the RF heating at the lower hybrid frequency the boundary density is submitted to a large modification. The behavior of this modification in the density profile depends on the rate of injection of the cold feeding gas. In the discharge with a constant or decreasing gas feeding rate the density profile flattens, and with an increasing rate it steepens when the RF pulse is applied. (orig.)

  10. Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement

    Science.gov (United States)

    Kopp, E.

    1984-01-01

    A model for production and loss of oxonium ions in the high-latitude D-region is developed, based on the observed excess of 34(+) which has been interpreted as H2O2(+). The loss mechanism suggested in the study is the attachment of N2 and/or CO2 in three-body reactions. Furthermore, mesospheric water vapor and H2O2 densities are inferred from measurements of four high-latitude ion compositions, based on the oxonium model. Mixing ratios of hydrogen peroxide of up to two orders of magnitude higher than previous values were obtained. A number of reactions, reaction constants, and a block diagram of the oxonium ion chemistry in the D-region are given.

  11. Hydrogen permeation measurement of the reduced activation ferritic steel F82H by the vacuum thermo-balance method

    International Nuclear Information System (INIS)

    Yoshida, Hajime; Enoeda, Mikio; Abe, Tetsuya; Akiba, Masato

    2005-03-01

    Hydrogen permeation fluxes of the reduced activation ferritic steel F82H were quantitatively measured by a newly proposed method, vacuum thermo-balance method, for a precise estimation of tritium leakage in a fusion reactor. We prepared sample capsules made of F82H, which enclosed hydrogen gas. The hydrogen in the capsules permeated through the capsule wall, and subsequently desorbed from the capsule surface during isothermal heating. The vacuum thermo-balance method allows simultaneous measurement of the hydrogen permeation flux by two independent methods, namely, the net weight reduction of the sample capsule and exhaust gas analysis. Thus the simultaneous measurements by two independent methods increase the reliability of the permeability measurement. When the gas pressure of enclosed hydrogen was 0.8 atm at the sample temperature of 673 K, the hydrogen permeation flux of F82H obtained by the net weight reduction and the exhaust gas analysis was 0.75x10 18 (H 2 /m 2 s) and 2.2x10 18 (H 2 /m 2 s), respectively. The ratio of the hydrogen permeation fluxes obtained by the net weight reduction to that measured by the exhaust gas analysis was in the range from 1/4 to 1/1 in this experiment. The temperature dependence of the estimated permeation flux was similar in both methods. Taking the uncertainties of both measurements into consideration, both results are supposed to be consistent. The enhancement of hydrogen permeation flux was observed from the sample of which outer surface was mechanically polished. Through the present experiments, it has been demonstrated that the vacuum thermo-balance method is effective for the measurement of hydrogen permeation rate of F82H. (author)

  12. Study of errors in absolute flux density measurements of Cassiopeia A

    International Nuclear Information System (INIS)

    Kanda, M.

    1975-10-01

    An error analysis for absolute flux density measurements of Cassiopeia A is discussed. The lower-bound quadrature-accumulation error for state-of-the-art measurements of the absolute flux density of Cas A around 7 GHz is estimated to be 1.71% for 3 sigma limits. The corresponding practicable error for the careful but not state-of-the-art measurement is estimated to be 4.46% for 3 sigma limits

  13. Hydrogen adsorption on activated carbon nanotubes with an atomic-sized vanadium catalyst investigated by electrical resistance measurements

    International Nuclear Information System (INIS)

    Im, Ji Sun; Yun, Jumi; Kang, Seok Chang; Lee, Sung Kyu; Lee, Young-Seak

    2012-01-01

    Activated multi-walled carbon nanotubes were prepared with appended vanadium as a hydrogen storage medium. The pore structure was significantly improved by an activation process that was studied using Raman spectroscopy, field emission transmission electron microscopy and pore analysis techniques. X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the vanadium catalyst was introduced into the carbon nanotubes in controlled proportions, forming V 8 C 7 . The improved pore structure functioned as a path through the carbon nanotubes that encouraged hydrogen molecule adsorption, and the introduced vanadium catalyst led to high levels of hydrogen storage through the dissociation of hydrogen molecules via the spill-over phenomenon. The hydrogen storage behavior was investigated by electrical resistance measurements for the hydrogen adsorbed on a prepared sample. The proposed mechanism of hydrogen storage suggests that the vanadium catalyst increases not only the amount of hydrogen that is stored but also the speed at which it is stored. A hydrogen storage capacity of 2.26 wt.% was achieved with the activation effects and the vanadium catalyst at 30 °C and 10 MPa.

  14. Trapezium Bone Density-A Comparison of Measurements by DXA and CT.

    Science.gov (United States)

    Breddam Mosegaard, Sebastian; Breddam Mosegaard, Kamille; Bouteldja, Nadia; Bæk Hansen, Torben; Stilling, Maiken

    2018-01-18

    Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium bone density. The aim of this study was to: (1) determine the correlation between measurements of bone mineral density of the trapezium obtained by dual-energy X-ray absorptiometry (DXA) scans by a circumference method and a new inner-ellipse method; and (2) to compare those to measurements of bone density obtained by computerized tomography (CT)-scans in Hounsfield units (HU). We included 71 hands from 59 patients with a mean age of 59 years (43-77). All patients had Eaton-Glickel stage II-IV trapeziometacarpal (TM) joint osteoarthritis, were under evaluation for trapeziometacarpal total joint replacement, and underwent DXA and CT wrist scans. There was an excellent correlation (r = 0.94) between DXA bone mineral density measures using the circumference and the inner-ellipse method. There was a moderate correlation between bone density measures obtained by DXA- and CT-scans with (r = 0.49) for the circumference method, and (r = 0.55) for the inner-ellipse method. DXA may be used in pre-operative evaluation of the trapezium bone quality, and the simpler DXA inner-ellipse measurement method can replace the DXA circumference method in estimation of bone density of the trapezium.

  15. Plasma density measurements on COMPASS-C tokamak from electron cyclotron emission cutoffs

    International Nuclear Information System (INIS)

    Chenna Reddy, D.; Edlington, T.

    1996-01-01

    Electron cyclotron emission (ECE) is a standard diagnostic in present day tokamak devices for temperature measurement. When the plasma density is high enough the emission at some frequencies is cut off. Of these cutoff frequencies, the first frequency to cut off depends on the shape of the density profile. If the density profile can be described by a few parameters, in some circumstances, this first cutoff frequency can be used to obtain two of these parameters. If more than two parameters are needed to describe the density profile, then additional independent measurements are required to find all the parameters. We describe a technique by which it is possible to obtain an analytical relation between the radius at which the first cutoff occurs and the profile parameters. Assuming that the shape of the profile does not change as the average density rises after the first cutoff, one can use the cutoffs at other frequencies to obtain the average density at the time of these cutoffs. The plasma densities obtained with this technique using the data from a 14 channel ECE diagnostic on COMPASS-C tokamak are in good agreement with those measured by a standard 2 mm interferometer. The density measurement using the ECE cutoffs is an independent measurement and requires only a frequency calibration of the ECE diagnostic. copyright 1996 American Institute of Physics

  16. Direct measurements of adsorption heats of hydrogen on nano-porous carbons

    International Nuclear Information System (INIS)

    Akihiko Matsumoto; Kazumasa Yamamoto; Tomoyuki Miyata

    2005-01-01

    Since a exciting report of hydrogen storage in single-walled carbon nano-tubes by Dillon and his colleagues, nano-porous carbon materials, such as carbon nano-tubes, carbon nano-horns and micro-porous activated carbon, have attracted considerable attention as hydrogen storage materials. Adsorption plays a predominating role in the hydrogen storage process on solid surfaces. The adsorption is a spontaneous process, which is caused by interaction between gas molecules and surface, hence, it is always exothermic process and observed as adsorption heats. For this reason, direct measurement of the adsorption heats by adsorption micro-calorimetry would provide quantitative information on the strength of adsorption interaction and the adsorption mechanism. However, the adsorption amounts of hydrogen on carbon materials are far less than those of condensable vapors near room temperature due to low critical temperature of hydrogen (33.2 K), therefore, the adsorption heats can not be determined accurately at conventional measurement conditions near room temperature and the atmospheric pressure. This contribution reports the calorimetric characterization of hydrogen adsorption on nano-porous carbon materials at low temperature and high-pressure conditions. The high-pressure adsorption apparatus consists of a volumetric adsorption line connected to a twin-conduction type microcalorimeter. Activated carbon fibers (ACF, Ad'all Co.) of different micro-pore sizes (Table 1) were used as model adsorbents. Each ACF has slit-shaped micropores of uniform size. The adsorption isotherms and differential heats of adsorption at high-pressure region from 0 to 10 MPa were simultaneously measured at isothermal condition from 203 to 298 K. The adsorption isotherms on ACF were of Henry type regardless of adsorption temperature and pore width; the uptakes increased linearly with equilibrium pressure. The adsorption isotherm at lower sorption temperature tended to show higher sorptivity. The

  17. Direct measurements of adsorption heats of hydrogen on nano-porous carbons

    International Nuclear Information System (INIS)

    Akihiko, Matsumoto; Kazumasa, Yamamoto; Tomoyuki, Miyata

    2005-01-01

    Since a exciting report of hydrogen storage in single-walled carbon nano-tubes by Dillon and his colleagues [1], nano-porous carbon materials, such as carbon nano-tubes, carbon nano-horns and micro-porous activated carbon, have attracted considerable attention as hydrogen storage materials. Adsorption plays a predominating role in the hydrogen storage process on solid surfaces. The adsorption is a spontaneous process, which is caused by interaction between gas molecules and surface, hence, it is always exothermic process and observed as adsorption heats. For this reason, direct measurement of the adsorption heats by adsorption microcalorimetry would provide quantitative information on the strength of adsorption interaction and the adsorption mechanism. However, the adsorption amounts of hydrogen on carbon materials are far less than those of condensable vapors near room temperature due to low critical temperature of hydrogen (33.2 K), therefore, the adsorption heats can not be determined accurately at conventional measurement conditions near room temperature and the atmospheric pressure. This contribution reports the calorimetric characterization of hydrogen adsorption on nano-porous carbon materials at low temperature and high-pressure conditions. The high-pressure adsorption apparatus consists of a volumetric adsorption line connected to a twin-conduction type microcalorimeter. Activated carbon fibers (ACF, Ad'all Co.) of different micropore sizes (Table 1) were used as model adsorbents. Each ACF has slit-shaped micropores of uniform size [2]. The adsorption isotherms and differential heats of adsorption at high-pressure region from 0 to 10 MPa were simultaneously measured at isothermal condition from 203 to 298 K. The adsorption isotherms on ACF were of Henry type regardless of adsorption temperature and pore width; the uptakes increased linearly with equilibrium pressure. The adsorption isotherm at lower sorption temperature tended to show higher sorptivity

  18. 205 nm continuous-wave laser: application to the measurement of the Lamb shift in hydrogen

    International Nuclear Information System (INIS)

    Bourzeix, S.

    1995-01-01

    The subject of this thesis is the construction of an experimental set-up, and in particular of a tunable continuous-wave laser at 205 nm, for the measurement of the ground state Lamb shift in atomic hydrogen. Chapter 1 deals with the Lamb shift from a historical point of view, and with the interest of its measurement, for metrology and test of quantum electrodynamics. Chapter 2 is devoted to the theory of the hydrogen atom. The principle of the experiment is based on the comparison of two frequencies which are in a ratio of 4: those of the two-photon transitions of 2S-6S or 2S-6D and 1S-3S. Chapter 3 describes the experimental set-up used to measure the 2S-6D transition which is excited by a titanium-sapphire laser at 820 nm. The 205 nm light required to excite the 1S-3S transition is generated by two frequency-doubling of the titanium-sapphire laser, made in non-linear crystals placed in enhancement cavities. Chapter 4 is entirely devoted to the frequency-doubling. After a recall of non-linear optics, the enhancement cavities are described in detail, as well as the results we achieved. At last chapter 5 describes the research for a signal on the 1S-3S transition: the construction of a ground state atomic beam, and the development of the detection system. This work has led to a preliminary measurement of the ground state Lamb shift in atomic hydrogen: L(1S) = 8172.850 (174) MHz whose result is in very good agreement with both the previous measurements and the most recent theoretical results. (author)

  19. Simulating measures of wood density through the surface by Compton scattering

    International Nuclear Information System (INIS)

    Penna, Rodrigo; Oliveira, Arno H.; Braga, Mario R.M.S.S.; Vasconcelos, Danilo C.; Carneiro, Clemente J.G.; Penna, Ariane G.C.

    2009-01-01

    Monte Carlo code (MCNP-4C) was used to simulate a nuclear densimeter for measuring wood densities nondestructively. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on a wood block surface. Results from MCNP shown that scattered photon fluxes may be used to determining wood densities. Linear regressions between scattered photons fluxes and wood density were calculated and shown correlation coefficients near unity. (author)

  20. Stable isotope ratio measurements in hydrogen, nitrogen, and oxygen using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.; Milanovich, F.P.

    1975-01-01

    A method for measuring stable isotope ratios using laser Raman scattering was developed which may prove of significant utility and benefit in stable isotope tracer studies. Crude isotope ratio measurements obtained with a low-power laser indicate that with current technology it should be possible to construct an isotope ratio measurement system using laser Raman scattering that is capable of performing 0.1 percent accuracy isotope ratio measurements of 16 O/ 18 O in natural abundance oxygen gas or 14 N/ 15 N in natural abundance nitrogen gas in times less than two minutes per sample. Theory pertinent to the technique, designs of specific isotope ratio spectrometer systems, and data relating to isotope ratio measurements in hydrogen, nitrogen, and oxygen are presented. In addition, the current status of several studies utilizing this technique is discussed. (auth)

  1. Hydrogen Bonding, (1)H NMR, and Molecular Electron Density Topographical Characteristics of Ionic Liquids Based on Amino Acid Cations and Their Ester Derivatives.

    Science.gov (United States)

    Rao, Soniya S; Bejoy, Namitha Brijit; Gejji, Shridhar P

    2015-08-13

    Amino acid ionic liquids (AAILs) have attracted significant attention in the recent literature owing to their ubiquitous applications in diversifying areas of modern chemistry, materials science, and biosciences. The present work focuses on unraveling the molecular interactions underlying AAILs. Electronic structures of ion pairs consisting of amino acid cations ([AA(+)], AA = Gly, Ala, Val, Leu, Ile, Pro, Ser, Thr) and their ester substituted derivatives [AAE(+)] interacting with nitrate anion [NO3(-)] have been obtained from the dispersion corrected M06-2x density functional theory. The formation of ion pair is accompanied by the transfer of proton from quaternary nitrogen to anion facilitated via hydrogen bonding. The [Ile], [Pro], [Ser], and [Thr] and their esters reveal relatively strong inter- as well as intramolecular hydrogen-bonding interactions. Consequently, the hierarchy in binding energies of [AA][NO3] ion pairs and their ester analogues turns out to be [Gly] > [Ala] > [Ser] ∼ [Val] ∼ [Ile] > [Leu] ∼ [Thr] > [Pro]. The work underlines how the interplay of intra- as well as intermolecular hydrogen-bonding interactions in [AA]- and [AAE]-based ILs manifest in their infrared and (1)H NMR spectra. Substitution of -OCH3 functional group in [AA][NO3] ILs lowers the melting point attributed to weaker hydrogen-bonding interactions, making them suitable for room temperature applications. As opposed to gas phase structures, the presence of solvent (DMSO) does not bring about any proton transfer in the ion pairs or their ester analogues. Calculated (1)H NMR chemical shifts of the solvated structures agree well with those from experiment. Correlations of decomposition temperatures in [AA]- and [AAE]-based ILs with binding energies and electron densities at the bond critical point(s) in molecular electron density topography, have been established.

  2. Comparison of subjective and fully automated methods for measuring mammographic density.

    Science.gov (United States)

    Moshina, Nataliia; Roman, Marta; Sebuødegård, Sofie; Waade, Gunvor G; Ursin, Giske; Hofvind, Solveig

    2018-02-01

    Background Breast radiologists of the Norwegian Breast Cancer Screening Program subjectively classified mammographic density using a three-point scale between 1996 and 2012 and changed into the fourth edition of the BI-RADS classification since 2013. In 2015, an automated volumetric breast density assessment software was installed at two screening units. Purpose To compare volumetric breast density measurements from the automated method with two subjective methods: the three-point scale and the BI-RADS density classification. Material and Methods Information on subjective and automated density assessment was obtained from screening examinations of 3635 women recalled for further assessment due to positive screening mammography between 2007 and 2015. The score of the three-point scale (I = fatty; II = medium dense; III = dense) was available for 2310 women. The BI-RADS density score was provided for 1325 women. Mean volumetric breast density was estimated for each category of the subjective classifications. The automated software assigned volumetric breast density to four categories. The agreement between BI-RADS and volumetric breast density categories was assessed using weighted kappa (k w ). Results Mean volumetric breast density was 4.5%, 7.5%, and 13.4% for categories I, II, and III of the three-point scale, respectively, and 4.4%, 7.5%, 9.9%, and 13.9% for the BI-RADS density categories, respectively ( P for trend density categories was k w  = 0.5 (95% CI = 0.47-0.53; P density increased with increasing density category of the subjective classifications. The agreement between BI-RADS and volumetric breast density categories was moderate.

  3. Plasma electron density measurement with multichannel microwave interferometer on the HL-1 tokamak device

    International Nuclear Information System (INIS)

    Xu Deming; Zhang Hongyin; Liu Zetian; Ding Xuantong; Li Qirui; Wen Yangxi

    1989-11-01

    A multichannel microwave interferometer which is composed of different microwave interferometers (one 2 mm band, one 4 mm band and two 8 mm band) has been used to measure the plasma electron density on HL-1 tokamak device. The electron density approaching to 5 x 10 13 cm -3 is measured by a 2 mm band microwave interferometer. In the determinable range, the electron density profile in the cross-section on HL-1 device has been measured by this interferometer. A microcomputer data processing system is also developed

  4. Measurements of low density, high velocity flow by electron beam fluorescence technique

    International Nuclear Information System (INIS)

    Soga, Takeo; Takanishi, Masaya; Yasuhara, Michiru

    1981-01-01

    A low density chamber with an electron gun system was made for the measurements of low density, high velocity (high Mach number) flow. This apparatus is a continuous running facility. The number density and the rotational temperature in the underexpanding free jet of nitrogen were measured along the axis of the jet by the electron beam fluorescence technique. The measurements were carried out from the vicinity of the exit of the jet to far downstream of the first Mach disk. Rotational nonequilibrium phenomena were observed in the hypersonic flow field as well as in the shock wave (Mach disk). (author)

  5. A method of atmospheric density measurements during Shuttle entry using UV laser Rayleigh scattering

    Science.gov (United States)

    Mckenzie, Robert L.

    1987-01-01

    A detailed study is described of the performance capabilities and the hardware requirements for a method in which ambient density is measured along the Space Shuttle flight path using on-board optical instrumentation. The technique relies on Rayleigh scattering of light from a pulsed, ultraviolet, ArF excimer laser operating at a wavelength of 193 nm. The method is shown to be capable of providing direct measurements of ambient density with an uncertainty of less than 1 percent and with a spatial resolution of 1 km, over an altitude range from 50 to 90 km. In addition, extensions of this concept are discussed that allow measurements of the shock wave location and the density profile within the shock layer. Two approaches are identified that appear to be feasible, in which the same laser system is used for the extended measurements as that required for the ambient density measurements.

  6. Measurement of the para-hydrogen concentration in the ISIS moderators using neutron transmission and thermal conductivity

    Science.gov (United States)

    Romanelli, Giovanni; Rudić, Svemir; Zanetti, Matteo; Andreani, Carla; Fernandez-Alonso, Felix; Gorini, Giuseppe; Krzystyniak, Maciej; Škoro, Goran

    2018-04-01

    We present an experimental study to determine the para-hydrogen concentration in the hydrogen moderators at the ISIS pulsed neutron and muon source. The experimental characterisation is based on neutron transmission experiments performed on the VESUVIO spectrometer, and thermal conductivity measurements using the TOSCA para-hydrogen rig. A reliable estimation of the level of para-hydrogen concentration in the hydrogen moderators is of crucial importance in the framework of a current project to completely refurbish the first target station at ISIS. Moreover, we report a new measurement of the total neutron cross section for normal hydrogen at 15 K on the broad energy range 3 meV -10 eV suggesting a revision of the most recent nuclear libraries for incident neutron energies lower than 10 meV. Finally, we characterise systematic errors affecting the para-hydrogen level estimation due to conversion from para to ortho hydrogen, as a function of the time a batch of gas spends in every component of our gas panel and apparatus.

  7. Measurements of electron density and temperature profiles in a gas blanket experiment

    International Nuclear Information System (INIS)

    Kuthy, A.

    1979-02-01

    Radial profiles of electron density, temperature and H sub(β) intensity are presented for the rotating plasma device F-1. The hydrogen filling pressure, the average magnetic field strength at the midplane, and the power input to the discharge have been varied in the ranges 10-100 mTorr, 0.25-0.5 Tesla, and 0.1 to 1.5 MW, respectively. These experiments have been performed with the main purpose of studying the gas blanket (cold-mantle) state of the plasma. It is shown, that a simple spectroscopic method can be used to derive the radial distribution of the electron temperature in such plasmas. The observed peak temperatures and densities are in agreement with earlier theoretical estimates. (author)

  8. Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl

    Directory of Open Access Journals (Sweden)

    F. Keppler

    2018-05-01

    Full Text Available Chloromethane (CH3Cl is an important provider of chlorine to the stratosphere but detailed knowledge of its budget is missing. Stable isotope analysis is a potentially powerful tool to constrain CH3Cl flux estimates. The largest degree of isotope fractionation is expected to occur for deuterium in CH3Cl in the hydrogen abstraction reactions with its main sink reactant tropospheric OH and its minor sink reactant Cl atoms. We determined the isotope fractionation by stable hydrogen isotope analysis of the fraction of CH3Cl remaining after reaction with hydroxyl and chlorine radicals in a 3.5 m3 Teflon smog chamber at 293 ± 1 K. We measured the stable hydrogen isotope values of the unreacted CH3Cl using compound-specific thermal conversion isotope ratio mass spectrometry. The isotope fractionations of CH3Cl for the reactions with hydroxyl and chlorine radicals were found to be −264±45 and −280±11 ‰, respectively. For comparison, we performed similar experiments using methane (CH4 as the target compound with OH and obtained a fractionation constant of −205±6 ‰ which is in good agreement with values previously reported. The observed large kinetic isotope effects are helpful when employing isotopic analyses of CH3Cl in the atmosphere to improve our knowledge of its atmospheric budget.

  9. Measurements relating fire radiative energy density and surface fuel consumption - RxCADRE 2011 and 2012

    Science.gov (United States)

    Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar

    2016-01-01

    Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...

  10. Reproducible automated breast density measure with no ionizing radiation using fat-water decomposition MRI.

    Science.gov (United States)

    Ding, Jie; Stopeck, Alison T; Gao, Yi; Marron, Marilyn T; Wertheim, Betsy C; Altbach, Maria I; Galons, Jean-Philippe; Roe, Denise J; Wang, Fang; Maskarinec, Gertraud; Thomson, Cynthia A; Thompson, Patricia A; Huang, Chuan

    2018-04-06

    Increased breast density is a significant independent risk factor for breast cancer, and recent studies show that this risk is modifiable. Hence, breast density measures sensitive to small changes are desired. Utilizing fat-water decomposition MRI, we propose an automated, reproducible breast density measurement, which is nonionizing and directly comparable to mammographic density (MD). Retrospective study. The study included two sample sets of breast cancer patients enrolled in a clinical trial, for concordance analysis with MD (40 patients) and reproducibility analysis (10 patients). The majority of MRI scans (59 scans) were performed with a 1.5T GE Signa scanner using radial IDEAL-GRASE sequence, while the remaining (seven scans) were performed with a 3T Siemens Skyra using 3D Cartesian 6-echo GRE sequence with a similar fat-water separation technique. After automated breast segmentation, breast density was calculated using FraGW, a new measure developed to reliably reflect the amount of fibroglandular tissue and total water content in the entire breast. Based on its concordance with MD, FraGW was calibrated to MR-based breast density (MRD) to be comparable to MD. A previous breast density measurement, Fra80-the ratio of breast voxels with density changes and treatment response. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  11. Local electron density measurements in a screw pinch by means of a Michelson interferometer

    International Nuclear Information System (INIS)

    Hoekzema, J.A.; Busch, P.J.; Mastop, W.J.

    1976-06-01

    The time-dependent density profile of a toroidal screw-pinch plasma is determined from successive measurements of the line density along different sections of a line through the plasma. The pathlength is varied by the introduction of a hollow quartz tube into the plasma

  12. Investigation of the dual-gauge principle for eliminating measurement interference in nuclear density and moisture gauges

    International Nuclear Information System (INIS)

    Dunn, W.L.

    1974-07-01

    The development of mathematical models for an application of the dual-gauge principle to surface neutron moisture content gauges were made under an Agency co-ordinated research programme. The response of a detector (such as a BF 3 proportional counter) to low-energy neutrons is dependent on the hydrogen present in the sample in the form of water. Other factors which affect the gauge response are sample density, composition (particularly with regard to the presence of strong thermal neutron absorbers), and bound hydrogen content. In this work mathematical models for epicadmium and bare BF 3 detector response have been developed for surface neutron moisture content gauges. These models are based on epithermal and thermal line and area flux models obtained from Diffusion Theory and Transport Theory, where flux as a function of radial distance, r, from the source is phi(r), line flux ∫ phi (r) dr, and area flux is ∫ phi (r)rdr. All models have been checked by calculation and comparison to experimental results except for the Transport Theory thermal flux models. The computer calculations were made on an IBM 370/165 system. In addition, the dual-gauge principle was applied and demonstrated as a means of minimizing the composition measurement interference

  13. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Ewall-Wice, Aaron [MIT Kavli Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); DeBoer, David R.; Parsons, Aaron R.; Ali, Zaki S.; Cheng, Carina; Patra, Nipanjana; Dillon, Joshua S. [Department of Astronomy, University of California, Berkeley, CA (United States); Aguirre, James E.; Kohn, Saul A. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Thyagarajan, Nithyanandan; Bowman, Judd; Jacobs, Daniel C. [Arizona State University, School of Earth and Space Exploration, Tempe, AZ 85287 (United States); Dickenson, Roger; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Klima, Patricia J. [National Radio Astronomy Observatory, Charlottesville, VA (United States); and others

    2016-08-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m{sup 2} in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ∼ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.

  14. Precision measurement of the 1S Lamb shift in atomic hydrogen

    International Nuclear Information System (INIS)

    Beausoleil, R.G.; McIntyre, D.H.; Foot, C.J.; Couillaud, B.; Hildum, E.A.; Hansch, T.W.

    1987-01-01

    The authors used cw Doppler-free two-photon spectroscopy to measure the 1S-2S transition frequency in atomic hydrogen gas with a precision of 6 parts in 10 10 . Their result for the energy level separation is f(1S-2S) = 2 466 061 413.3(1.5) MHz and can be used to extract a value of the 1S Lamb shift. Choosing a value of the Rydberg constant measured independently by high-resolution spectroscopy of the hydrogen Balmer-β transition, the authors obtain a value of Δf/sub Lamb/(1S) = 8 173.3(1.7) MHz, in good agreement with the theoretical prediction of 8 173.06(20) MHz. On the other hand, if they trust the theoretical determination of the 1S Lamb shift, they can interpret our experimental result as a measurement of the Rydberg constant. The authors obtain R∞ = 109 737.315(7) cm -1 , in agreement with recent precise measurements

  15. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS

    International Nuclear Information System (INIS)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Ewall-Wice, Aaron; Bradley, Richard F.; DeBoer, David R.; Parsons, Aaron R.; Ali, Zaki S.; Cheng, Carina; Patra, Nipanjana; Dillon, Joshua S.; Aguirre, James E.; Kohn, Saul A.; Thyagarajan, Nithyanandan; Bowman, Judd; Jacobs, Daniel C.; Dickenson, Roger; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Klima, Patricia J.

    2016-01-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m 2 in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ∼ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.

  16. A Measurement of the Rate of Muon Capture in Hydrogen Gas andDetermination of the Proton's Induced Pseudoscalar Coupling gP

    Energy Technology Data Exchange (ETDEWEB)

    Banks, Thomas Ira [Univ. of California, Berkeley, CA (United States)

    2007-07-01

    This dissertation describes a measurement of the rate ofnuclear muon capture by the proton, performed by the MuCap Collaborationusing a new technique based on a time projection chamber operating inultraclean, deuterium-depleted hydrogen gas at room temperature and 1 MPapressure. The hydrogen target's low gas density of 1 percent compared toliquid hydrogen is key to avoiding uncertainties that arise from theformation of muonic molecules. The capture rate was obtained from thedifference between the μ- disappearance rate in hydrogen--as determinedfrom data collected in the experiment's first physics run in fall2004--and the world averagefor the μ+ decay rate. After combining theresults of my analysis with the results from another independent analysisof the 2004 data, the muon capture rate from the hyperfine singlet groundstate of the mu-p atom is found to be ΛS = 725.0 ± 17.4 1/s, fromwhich the induced pseudoscalar coupling of the nucleon, gP(q2 = -0.88m$2\\atop{μ}$)= 7.3 ± 1.1, is extracted. This result for gP is consistent withtheoretical predictions that are based on the approximate chiral symmetryof QCD.

  17. Microwave measurements of the time evolution of electron density in the T-11M tokamak

    International Nuclear Information System (INIS)

    Petrov, V.G.; Petrov, A.A.; Malyshev, A.Yu.; Markov, V.K.; Babarykin, A.V.

    2004-01-01

    Unambiguous diagnostics intended for measuring the time behavior of the electron density and monitoring the line-averaged plasma density in the T-11M tokamak are described. The time behavior of the plasma density in the T-11M tokamak is measured by a multichannel phase-jump-free microwave polarization interferometer based on the Cotton-Mouton effect. After increasing the number of simultaneously operating interferometer channels and enhancing the sensitivity of measurements, it became possible to measure the time evolution of the plasma density profile in the T-11M tokamak. The first results from such measurements in various operating regimes of the T-11M tokamak are presented. The measurement and data processing techniques are described, the measurement errors are analyzed, and the results obtained are discussed. We propose using a pulsed time-of-flight refractometer to monitor the average plasma density in the T-11M tokamak. The refractometer emits nanosecond microwave probing pulses with a carrier frequency that is higher than the plasma frequency and, thus, operates in the transmission mode. A version of the instrument has been developed with a carrier frequency of 140 GHz, which allows one to measure the average density in regimes with a nominal T-11M plasma density of (3-5) x 10 13 cm -3 . Results are presented from the first measurements of the average density in the T-11M tokamak with the help of a pulsed time-of-flight refractometer by probing the plasma in the equatorial plane in a regime with the reflection of the probing radiation from the inner wall of the vacuum chamber

  18. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source.

    Science.gov (United States)

    Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W

    2012-06-01

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  19. Real-time electron density measurements from Cotton-Mouton effect in JET machine

    International Nuclear Information System (INIS)

    Brombin, M.; Boboc, A.; Zabeo, L.; Murari, A.

    2008-01-01

    Real-time density profile measurements are essential for advanced fusion tokamak operation and interferometry is a proven method for this task. Nevertheless, as a consequence of edge localized modes, pellet injections, fast density increases, or disruptions, the interferometer is subject to fringe jumps, which produce loss of the signal preventing reliable use of the measured density in a real-time feedback controller. An alternative method to measure the density is polarimetry based on the Cotton-Mouton effect, which is proportional to the line-integrated electron density. A new analysis approach has been implemented and tested to verify the reliability of the Cotton-Mouton measurements for a wide range of plasma parameters and to compare the density evaluated from polarimetry with that from interferometry. The density measurements based on polarimetry are going to be integrated in the real-time control system of JET since the difference with the interferometry is within one fringe for more than 90% of the cases.

  20. Experimental study of a swept reflectometer with a single antenna for plasma density profile measurement

    International Nuclear Information System (INIS)

    Calderon, M.A.G.; Simonet, F.

    1984-12-01

    The feasibility of a swept microwave reflectometer, with one antenna only, for plasma electron density measurement is studied. Experimental results obtained in the laboratory by simulating the plasma with a metallic mirror are presented

  1. Porosity, Bulk Density, and Volume Reduction During Drying: Review of Measurement Methods and Coefficient Determinations

    NARCIS (Netherlands)

    Qiu, J.; Khalloufi, S.; Martynenko, A.; Dalen, van G.; Schutyser, M.A.I.; Almeida-Rivera, C.

    2015-01-01

    Several experimental methods for measuring porosity, bulk density and volume reduction during drying of foodstuff are available. These methods include among others geometric dimension, volume displacement, mercury porosimeter, micro-CT, and NMR. However, data on their accuracy, sensitivity, and

  2. Stantardization problems in radioisotopic techniques for measuring rock density and humidity

    International Nuclear Information System (INIS)

    Golubin, O.V.; Pavlov, L.S.

    1977-01-01

    A description of the main technical characteristics is given of radioisotope densimeters and hydrometers taken as a base for the State Standard design for field radioisotope instruments for measuring density and moisture of the soil and rocks

  3. Modal decomposition for measuring the orbital angular momentum density of light

    CSIR Research Space (South Africa)

    Schulze, C

    2013-02-01

    Full Text Available We present a novel technique to measure the orbital angular momentum (OAM) density of light. The technique is based on modal decomposition, enabling the complete reconstruction of optical fields, including the reconstruction of the beams Poynting...

  4. Experimental measurements and prediction of liquid densities for n-alkane mixtures

    International Nuclear Information System (INIS)

    Ramos-Estrada, Mariana; Iglesias-Silva, Gustavo A.; Hall, Kenneth R.

    2006-01-01

    We present experimental liquid densities for n-pentane, n-hexane and n-heptane and their binary mixtures from (273.15 to 363.15) K over the entire composition range (for the mixtures) at atmospheric pressure. A vibrating tube densimeter produces the experimental densities. Also, we present a generalized correlation to predict the liquid densities of n-alkanes and their mixtures. We have combined the principle of congruence with the Tait equation to obtain an equation that uses as variables: temperature, pressure and the equivalent carbon number of the mixture. Also, we present a generalized correlation for the atmospheric liquid densities of n-alkanes. The average absolute percentage deviation of this equation from the literature experimental density values is 0.26%. The Tait equation has an average percentage deviation of 0.15% from experimental density measurements

  5. Obtaining sub-daily new snow density from automated measurements in high mountain regions

    Science.gov (United States)

    Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Olefs, Marc

    2018-05-01

    The density of new snow is operationally monitored by meteorological or hydrological services at daily time intervals, or occasionally measured in local field studies. However, meteorological conditions and thus settling of the freshly deposited snow rapidly alter the new snow density until measurement. Physically based snow models and nowcasting applications make use of hourly weather data to determine the water equivalent of the snowfall and snow depth. In previous studies, a number of empirical parameterizations were developed to approximate the new snow density by meteorological parameters. These parameterizations are largely based on new snow measurements derived from local in situ measurements. In this study a data set of automated snow measurements at four stations located in the European Alps is analysed for several winter seasons. Hourly new snow densities are calculated from the height of new snow and the water equivalent of snowfall. Considering the settling of the new snow and the old snowpack, the average hourly new snow density is 68 kg m-3, with a standard deviation of 9 kg m-3. Seven existing parameterizations for estimating new snow densities were tested against these data, and most calculations overestimate the hourly automated measurements. Two of the tested parameterizations were capable of simulating low new snow densities observed at sheltered inner-alpine stations. The observed variability in new snow density from the automated measurements could not be described with satisfactory statistical significance by any of the investigated parameterizations. Applying simple linear regressions between new snow density and wet bulb temperature based on the measurements' data resulted in significant relationships (r2 > 0.5 and p ≤ 0.05) for single periods at individual stations only. Higher new snow density was calculated for the highest elevated and most wind-exposed station location. Whereas snow measurements using ultrasonic devices and snow

  6. Measurement of hard tissue density of head phantom based on the HU by using CBCT

    International Nuclear Information System (INIS)

    Kim, Moon Sun; Kang, Dong Wan; Kim, Jae Duk

    2009-01-01

    The purpose of this study was to determine a conversion coefficient for Hounsfield Units(HU) to material density (g cm -3 ) obtained from cone-beam computed tomography (CBMercuRay TM ) data and to measure the hard tissue density based on the Hounsfield scale on dental head phantom. CT Scanner Phantom (AAPM) equipped with CT Number Insert consists of five cylindrical pins of materials with different densities and teflon ring was scanned by using the CBMercuRay TM (Hitachi, Tokyo, Japan) volume scanner. The raw data were converted into DICOM format and the HU of different areas of CT number insert measured by using CBWorks TM . Linear regression analysis and Student t-test were performed statistically. There was no significant difference (P>0.54) between real densities and measured densities. A linear regression was performed using the density, ρ (g cm -3 ), as the dependent variable in terms of the HU (H). The regression equation obtained was ρ=0.00072 H-0.01588 with an R2 value of 0.9968. Density values based on the Hounsfield scale was 1697.1 ± 24.9 HU in cortical bone, 526.5 ± 44.4 HU in trabecular bone, 2639.1 ± 48.7 HU in enamel, 1246.1 ± 39.4 HU in dentin of dental head phantom. CBCT provides an effective option for determination of material density expressed as Hounsfield Units.

  7. Measure of hydrogen concentration profile in materials by resonant nuclear reactions

    International Nuclear Information System (INIS)

    Livi, R.P.; Zawislak, F.C.; Acquadro, J.C.

    1986-01-01

    The technique for determining the profile of hydrogen concentration in proximities of the surface of materials, is presented. The preliminary measurements were done, using the Pelletron accelerator at Sao Paulo University (USP), in Brazil, for the resonant-nuclear reaction 1 H( 19 F, α γ) 16 O. By using this reaction the technique is sensitive for concentrations above 500 ppm, which could be reduced to 100 ppm through special shieldings and other techniques to reduce the background radiation. (M.C.K.) [pt

  8. Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry

    DEFF Research Database (Denmark)

    Rand, Kasper D; Zehl, Martin; Jensen, Ole Nørregaard

    2009-01-01

    Because of unparalleled sensitivity and tolerance to protein size, mass spectrometry (MS) has become a popular method for measuring the solution hydrogen (1H/2H) exchange (HX) of biologically relevant protein states. While incorporated deuterium can be localized to different regions by pepsin....... The deuterium labeling pattern of beta2-microglobulin is retained in the gaseous fragment ions by employing mild declustering conditions for electrospray ionization. A recently developed model peptide is used to arrive at such ion source declustering conditions that prevent the occurrence of intramolecular gas...

  9. Rate amplification of the two photon emission from para-hydrogen toward the neutrino mass measurement

    International Nuclear Information System (INIS)

    Masuda, Takahiko; Hara, Hideaki; Miyamoto, Yuki; Kuma, Susumu; Nakano, Itsuo; Ohae, Chiaki; Sasao, Noboru; Tanaka, Minoru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2015-01-01

    We recently reported an experiment which focused on demonstrating the macro-coherent amplification mechanism. This mechanism, which was proposed for neutrino mass measurements, indicates that a multi-particle emission rate should be amplified by coherence in a suitable medium. Using a para-hydrogen molecule gas target and the adiabatic Raman excitation method, we observed that the two photon emission rate was amplified by a factor of more than 10 15 from the spontaneous emission rate. This paper briefly summarizes the previous experimental result and presents the current status and the future prospect

  10. Rate amplification of the two photon emission from para-hydrogen toward the neutrino mass measurement

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takahiko, E-mail: masuda@okayama-u.ac.jp; Hara, Hideaki; Miyamoto, Yuki [Okayama University, Research Core for Extreme Quantum World (Japan); Kuma, Susumu [Atomic, Molecular and Optical Physics Laboratory, RIKEN (Japan); Nakano, Itsuo [Okayama University, Research Core for Extreme Quantum World (Japan); Ohae, Chiaki [University of Electro-Communications, Department of Engineering Science (Japan); Sasao, Noboru [Okayama University, Research Core for Extreme Quantum World (Japan); Tanaka, Minoru [Osaka University, Department of Physics (Japan); Uetake, Satoshi [Okayama University, Research Center of Quantum Universe (Japan); Yoshimi, Akihiro; Yoshimura, Koji [Okayama University, Research Core for Extreme Quantum World (Japan); Yoshimura, Motohiko [Okayama University, Research Center of Quantum Universe (Japan)

    2015-11-15

    We recently reported an experiment which focused on demonstrating the macro-coherent amplification mechanism. This mechanism, which was proposed for neutrino mass measurements, indicates that a multi-particle emission rate should be amplified by coherence in a suitable medium. Using a para-hydrogen molecule gas target and the adiabatic Raman excitation method, we observed that the two photon emission rate was amplified by a factor of more than 10{sup 15} from the spontaneous emission rate. This paper briefly summarizes the previous experimental result and presents the current status and the future prospect.

  11. Spectroscopic measurements of the density and electronic temperature at the plasma edge in Tore Supra

    International Nuclear Information System (INIS)

    Lediankine, A.

    1996-01-01

    The profiles of temperature and electronic density at the plasma edge are important to study the wall-plasma interaction and the radiative layers in the Tokamak plasmas. The laser ablation technique of the lithium allows to measure the profile of electronic density. To measure the profile of temperature, it has been used for the first time, the injection of a fluorine neutral atoms beam. The experiments, the results are described in this work. (N.C.)

  12. Method of measuring the current density distribution and emittance of pulsed electron beams

    International Nuclear Information System (INIS)

    Schilling, H.B.

    1979-07-01

    This method of current density measurement employs an array of many Faraday cups, each cup being terminated by an integrating capacitor. The voltages of the capacitors are subsequently displayed on a scope, thus giving the complete current density distribution with one shot. In the case of emittance measurements, a moveable small-diameter aperture is inserted at some distance in front of the cup array. Typical results with a two-cathode, two-energy electron source are presented. (orig.)

  13. System for uranium superficial density measurement in U3Si2 MTR fuel plates using radiography

    International Nuclear Information System (INIS)

    Hey, Martin A.; Gomez Marlasca, Fernando

    2003-01-01

    The paper describes a method for measuring uranium superficial density in high density uranium silicide (U 3 Si 2 ) MTR fuel plates, through the use of industrial radiography, a set of patterns built for this purpose, a transmission optical densitometer, and a quantitative model of analysis and measurement. Our choice for this particular method responds to its high accuracy, low cost and easy implementation according to the standing quality control systems. (author)

  14. Measurement of the absolute tunneling current density in field emission from tungsten(110)

    International Nuclear Information System (INIS)

    Ehrlich, C.D.; Plummer, E.W.

    1978-01-01

    The phenomenon of quantum-mechanical tunneling of an electron through a barrier in the potential energy has been well established in a variety of experiments. The quantity which is usually measured in these experiments is the rate of change of tunneling current and not the absolute current density. This paper reports on a direct measurement of the tunneling current density, which is found to be in good agreement with free-electron theory for W

  15. Changes in CT density-measurement of intraorbital wooden foreign bodies

    International Nuclear Information System (INIS)

    Otani, Etsuko; Hiyama, Fusako; Machi, Setsuko; Hagihara, Masahiro.

    1991-01-01

    We examined in vitro changes in CT density-measurement of intraorbital wooden foreign bodies. Dry wooden sticks were immersed in distilled water, saline, and serum. Computerized tomography scans were taken several times during 22 weeks. Scans were taken in room air and in fatty tissue. The CT density-measurement of the central part of the wooden bodies was calculated. That of the dry wood was about 500 HU; all of the wooden foreign bodies became denser during the 22 weeks, with those immersed in distilled water and saline at about 130 HU, and those immersed in serum at about 150 HU. It was confirmed that wood becomes denser after soaking in aqueous environments. The CT density of wood soaked in water depends on the density of wood fiber, and the CT density of the wood fiber itself. (author)

  16. X-ray radiographic technique for measuring density uniformity of silica aerogel

    International Nuclear Information System (INIS)

    Tabata, Makoto; Hatakeyama, Yoshikiyo; Adachi, Ichiro; Morita, Takeshi; Nishikawa, Keiko

    2013-01-01

    This paper proposes a new X-ray radiographic technique for measuring density uniformity of silica aerogels used as radiator in proximity-focusing ring-imaging Cherenkov detectors. To obtain high performance in a large-area detector, a key characteristic of radiator is the density (i.e. refractive index) uniformity of an individual aerogel monolith. At a refractive index of n=1.05, our requirement for the refractive index uniformity in the transverse plane direction of an aerogel tile is |δ(n−1)/(n−1)|<4% in a focusing dual layer radiator (with different refractive indices) scheme. We applied the radiographic technique to evaluate the density uniformity of our original aerogels from a trial production and that of Panasonic products (SP-50) as a reference, and to confirm they have sufficient density uniformity within ±1% along the transverse plane direction. The measurement results show that the proposed technique can quantitatively estimate the density uniformity of aerogels.

  17. Measuring the Plasma Density of a Ferroelectric Plasma Source in an Expanding Plasma

    International Nuclear Information System (INIS)

    Dunaevsky, A.; Fisch, N.J.

    2003-01-01

    The initial density and electron temperature at the surface of a ferroelectric plasma source were deduced from floating probe measurements in an expanding plasma. The method exploits negative charging of the floating probe capacitance by fast flows before the expanding plasma reaches the probe. The temporal profiles of the plasma density can be obtained from the voltage traces of the discharge of the charged probe capacitance by the ion current from the expanding plasma. The temporal profiles of the plasma density, at two different distances from the surface of the ferroelectric plasma source, could be further fitted by using the density profiles for the expanding plasma. This gives the initial values of the plasma density and electron temperature at the surface. The method could be useful for any pulsed discharge, which is accompanied by considerable electromagnetic noise, if the initial plasma parameters might be deduced from measurements in expanding plasma

  18. In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy.

    Science.gov (United States)

    Diermaier, M; Jepsen, C B; Kolbinger, B; Malbrunot, C; Massiczek, O; Sauerzopf, C; Simon, M C; Zmeskal, J; Widmann, E

    2017-06-12

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of ν HF =1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10 -9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.

  19. Presentation of a methodology for measuring social acceptance of three hydrogen storage technologies and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, I.; Bigay, C. N.

    2005-07-01

    Technologies (MASIT). This methodology takes into account the following points of view : technical, economical, environmental, social and industrial/technological risks. MASIT is the methodology chosen to assess the hydrogen storage technologies developed during the StorHy project. With respect to the methodology, each point of view is defined by several criteria selected with car manufacturers and experts of each domain. Then, each criterion is quantified with the contribution of all partners involved in the project. While technical, economical and environmental criteria are quite objectives (easy to define and measure), the social dimension is subjective and has also a large variability as it depends on perception and measurement at an individual human level. So, the methodological work consists in the improvement of the MASIT methodology from the social point of view. This methodology is applicable for comparison of any other technologies and it has been implemented here to compare the storage technologies developed in the StorHy project for each application selected in the study (light vehicles, fleet vehicles, buses). (Author)

  20. CO2 laser interferometer for temporally and spatially resolved electron density measurements

    Science.gov (United States)

    Brannon, P. J.; Gerber, R. A.; Gerardo, J. B.

    1982-09-01

    A 10.6-μm Mach-Zehnder interferometer has been constructed to make temporally and spatially resolved measurements of electron densities in plasmas. The device uses a pyroelectric vidicon camera and video memory to record and display the two-dimensional fringe pattern and a Pockels cell to limit the pulse width of the 10.6-μm radiation. A temporal resolution of 14 ns has been demonstrated. The relative sensitivity of the device for electron density measurements is 2×1015 cm-2 (the line integral of the line-of-sight length and electron density), which corresponds to 0.1 fringe shift.

  1. CO2 laser interferometer for temporally and spatially resolved electron density measurements

    International Nuclear Information System (INIS)

    Brannon, P.J.; Gerber, R.A.; Gerardo, J.B.

    1982-01-01

    A 10.6-μm Mach--Zehnder interferometer has been constructed to make temporally and spatially resolved measurements of electron densities in plasmas. The device uses a pyroelectric vidicon camera and video memory to record and display the two-dimensional fringe pattern and a Pockels cell to limit the pulse width of the 10.6-μm radiation. A temporal resolution of 14 ns has been demonstrated. The relative sensitivity of the device for electron density measurements is 2 x 10 15 cm -2 (the line integral of the line-of-sight length and electron density), which corresponds to 0.1 fringe shift

  2. Density measurement by means of once scattered gamma radiation the ETG probe, principles and equipment

    International Nuclear Information System (INIS)

    Joergensen, J.L.; Oelgaard, P.L.; Berg, F.

    1987-01-01

    The Department of Electrophysics, the Technical University of Denmark, and the Danish National Road Laboratory have together developed a new patent claimed device for measurements of the in situ density of materials. This report describes the principles of the system and some experimental results. The system is based on the once scattered gamma radiation. In a totally non-destructive and fast way it is possible to measure the density of up to 25 cm thick layers. Furthermore, an estimate of the density variation through the layer may be obtained. Thus the gauge represents a new generation of equipment for e.g. compaction control of road constructions. (author)

  3. Radioisotope labeling technique for vapor density measurements of volatile inorganic species

    International Nuclear Information System (INIS)

    Peterson, E.J.; Caird, J.A.; Hessler, J.P.; Hoekstra, H.R.; Williams, C.W.

    1979-01-01

    A new method for complexed metal ion vapor density measurement involving labeling the metal ions of interest with a radioactive isotope is described. The isotope chosen in the present work is unstable and leads to emission of a characteristic γ ray. Thus the γ-counting rate was related to the number density of complexed metal ions in the vapor phase. This technique is applicable to the study of any volatile inorganic species, but in the present study has been used to measure vapor densities of complex species in the TbCl 3 -AlCl 3 system by using tracer 160 Tb. 4 figures, 2 tables

  4. New bioreactor for in situ simultaneous measurement of bioluminescence and cell density

    Science.gov (United States)

    Picart, Pascal; Bendriaa, Loubna; Daniel, Philippe; Horry, Habib; Durand, Marie-José; Jouvanneau, Laurent; Thouand, Gérald

    2004-03-01

    This article presents a new device devoted to the simultaneous measurement of bioluminescence and optical density of a bioluminescent bacterial culture. It features an optoelectronic bioreactor with a fully autoclavable module, in which the bioluminescent bacteria are cultivated, a modulated laser diode dedicated to optical density measurement, and a detection head for the acquisition of both bioluminescence and optical density signals. Light is detected through a bifurcated fiber bundle. This setup allows the simultaneous estimation of the bioluminescence and the cell density of the culture medium without any sampling. The bioluminescence is measured through a highly sensitive photomultiplier unit which has been photometrically calibrated to allow light flux measurements. This was achieved by considering the bioluminescence spectrum and the full optical transmission of the device. The instrument makes it possible to measure a very weak light flux of only a few pW. The optical density is determined through the laser diode and a photodiode using numerical synchronous detection which is based on the power spectrum density of the recorded signal. The detection was calibrated to measure optical density up to 2.5. The device was validated using the Vibrio fischeri bacterium which was cultivated under continuous culture conditions. A very good correlation between manual and automatic measurements processed with this instrument has been demonstrated. Furthermore, the optoelectronic bioreactor enables determination of the luminance of the bioluminescent bacteria which is estimated to be 6×10-5 W sr-1 m-2 for optical density=0.3. Experimental results are presented and discussed.

  5. Measurements in interplanetary space and in the Martian upper atmosphere with a hydrogen absorption-cell spectrophotometer for Lα-radiation on-board Mars 4 - 7 spaceprobes

    International Nuclear Information System (INIS)

    Babichenko, S.I.; Deregusov, E.V.; Kurt, V.G.; Romanova, N.N.; Skljankin, V.A.; Smirnov, A.S.; Bertaux, J.J.; Blamont, J.

    1977-01-01

    An ultraviolet spectrophotometer UFS-2, designed to measure radiation of atomic hydrogen in the Lα-line, was installed onboard the interplanetary Mars 4 - 7 spaceprobes launched in August 1973. The absorption cell which was used for the first time outside the hydrogen geocorona allowed direct temperature measurements of neutral interstellar hydrogen near the Sun and in the upper Martian atmosphere. (Auth.)

  6. Hydrogen sulfide flux measurements from construction and demolition debris (C&D) landfills.

    Science.gov (United States)

    Eun, Sangho; Reinhart, Debra R; Cooper, C David; Townsend, Timothy G; Faour, Ayman

    2007-01-01

    Hydrogen sulfide (H2S) has been identified as a principal odorous component of gaseous emissions from construction and demolition debris (C&D) landfills. Although several studies have reported the ambient concentrations of H2S near C&D landfills, few studies have quantified emission rates of H2S. One of the most widely used techniques for measuring surface gas emission rates from landfills is the flux chamber method. Flux measurements using the flux chamber were performed at five different C&D landfills from April to August, 2003. The flux rates of H2S measured in this research were between 0.192 and 1.76 mg/(m2-d).

  7. An analytical system for the measurement of stable hydrogen isotopes in ambient volatile organic compounds

    Science.gov (United States)

    Meisehen, T.; Bühler, F.; Koppmann, R.; Krebsbach, M.

    2015-10-01

    Stable isotope measurements in atmospheric volatile organic compounds (VOCs) are an excellent tool to analyse chemical and dynamical processes in the atmosphere. While up to now isotope studies of VOCs in ambient air have mainly focussed on carbon isotopes, we herein present a new measurement system to investigate hydrogen isotope ratios in atmospheric VOCs. This system, consisting of a gas chromatography pyrolysis isotope ratio mass spectrometer (GC-P-IRMS) and a pre-concentration system, was thoroughly characterised using a VOC test mixture. A precision of better than 9 ‰ (in δ 2H) is achieved for n-pentane, 2-methyl-1,3-butadiene (isoprene), n-heptane, 4-methyl-pentane-2-one (4-methyl-2-pentanone), methylbenzene (toluene), n-octane, ethylbenzene, m/p-xylene and 1,2,4-trimethylbenzene. A comparison with independent measurements via elemental analysis shows an accuracy of better than 9 ‰ for n-pentane, n-heptane, 4-methyl-2-pentanone, toluene and n-octane. Above a minimum required pre-concentrated compound mass the obtained δ 2H values are constant within the standard deviations. In addition, a remarkable influence of the pyrolysis process on the isotope ratios is found and discussed. Reliable measurements are only possible if the ceramic tube used for the pyrolysis is sufficiently conditioned, i.e. the inner surface is covered with a carbon layer. It is essential to verify this conditioning regularly and to renew it if required. Furthermore, influences of a necessary H3+ correction and the pyrolysis temperature on the isotope ratios are discussed. Finally, the applicability to measure hydrogen isotope ratios in VOCs at ambient levels is demonstrated with measurements of outside air on 5 different days in February and March 2015. The measured hydrogen isotope ratios range from -136 to -105 ‰ forn-pentane, from -86 to -63 ‰ for toluene, from -39 to -15 ‰ for ethylbenzene, from -99 to -68 ‰ for m/p-xylene and from -45 to -34 ‰ for o-xylene.

  8. Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces

    Science.gov (United States)

    Liu, Bin; Cheng, Lei; Curtiss, Larry; Greeley, Jeffrey

    2014-04-01

    The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the perpendicular distance and the orientation of the aromatic ring with respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van der Waals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted-Evans-Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.

  9. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.

    Science.gov (United States)

    Blotevogel, Thomas; Hartmann, Matthias; Rottengruber, Hermann; Leipertz, Alfred

    2008-12-10

    A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown.

  10. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.; Scott, H. A.; Biener, M. M.; Fein, J. R.; Fournier, K. B.; Gamboa, E. J.; Kemp, G. E.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J. -E.; Wan, W. C.; Drake, R. P.

    2016-09-28

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  11. Summer sudden Na number density enhancements measured with the ALOMAR Weber Na Lidar

    Directory of Open Access Journals (Sweden)

    D. Heinrich

    2008-05-01

    Full Text Available We present summer Na-densities and atmospheric temperatures measured 80 to 110 km above the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR. The Weber Na Lidar is part of ALOMAR, located at 69° N in Norway, 150 km north of the Arctic Circle. The sun does not set here during the summer months, and measurements require a narrowband Faraday Anomalous Dispersion Optical Filter (FADOF.

    We discuss an observed sudden enhancement in the Na number density around 22:00 UT on 1 to 2 June 2006. We compare this observation with previous summer measurements and find a frequent appearance of Na number density enhancements near local midnight. We describe the time of appearance, the altitude distribution, the duration and the strength of these enhancements and compare them to winter observations. We investigate possible formation mechanisms and, as others before, we find a strong link between these Na number density enhancements and sporadic E layers.

  12. Summer sudden Na number density enhancements measured with the ALOMAR Weber Na Lidar

    Directory of Open Access Journals (Sweden)

    D. Heinrich

    2008-05-01

    Full Text Available We present summer Na-densities and atmospheric temperatures measured 80 to 110 km above the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR. The Weber Na Lidar is part of ALOMAR, located at 69° N in Norway, 150 km north of the Arctic Circle. The sun does not set here during the summer months, and measurements require a narrowband Faraday Anomalous Dispersion Optical Filter (FADOF. We discuss an observed sudden enhancement in the Na number density around 22:00 UT on 1 to 2 June 2006. We compare this observation with previous summer measurements and find a frequent appearance of Na number density enhancements near local midnight. We describe the time of appearance, the altitude distribution, the duration and the strength of these enhancements and compare them to winter observations. We investigate possible formation mechanisms and, as others before, we find a strong link between these Na number density enhancements and sporadic E layers.

  13. Catalysis mechanism of Pd-promoted γ-alumina in the thermal decomposition of methane to hydrogen: A density functional theory study

    International Nuclear Information System (INIS)

    Salam, M. Abdus; Abdullah, Bawadi

    2017-01-01

    Thermo-catalytic methane decomposition to elemental hydrogen mechanism in transitional metals (Pd, Ni & Mo) promoted Al_2O_3 (001) catalyst have been studied using the density functional theory (DFT). Decomposition reactions are spontaneous and favourable above 775 K for all promoter. Pd-promoted Al_2O_3 (001) catalyst demonstrates a breakthrough decomposition activity in hydrogen production as compared to Ni− and Mo-promoted Al_2O_3 (001) catalysts. The activation energy (E_a) range of the catalysis for Pd promoted Al_2O_3 (001) catalysts is 0.003–0.34 eV. Whereas, Ni and Mo promoted Al_2O_3 (001) catalysts display activation energy E_a in the range of 0.63–1.15 eV and 0.04–5.98 eV, respectively. Pd-promoted catalyst also shows a higher adsorption energy (−0.68 eV) and reactivity than that of Ni and Mo promoted Al_2O_3 (001) catalysts. The rates of successive decomposition of methane are found to be 16.15 × 10"1"2, 15.95 × 10"1"2 and 16.09 × 10"1"2 s"−"1 for the promoter of Pd, Ni and Mo, respectively. Pd promoted Al_2O_3 (001) catalyst reduces the methane decomposition temperature (775 K) and deactivation rate significantly. The catalytic conditions and catalyst is promising in producing hydrogen to support hydrogen economy. - Highlights: • Transition metals (Pd, Ni & Mo) promoted γ-alumina catalysts are designed successfully. • Pd-promoted catalyst showed breakthrough activity in methane decomposition to hydrogen. • DFT study explored the catalysis mechanism of methane decomposition at atomic level. • Pd-promoted catalyst reduced temperature and activation barrier of methane decomposition reaction significantly.

  14. Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography.

    Science.gov (United States)

    Busignies, Virginie; Leclerc, Bernard; Porion, Patrice; Evesque, Pierre; Couarraze, Guy; Tchoreloff, Pierre

    2006-08-01

    Direct compaction is a complex process that results in a density distribution inside the tablets which is often heterogeneous. Therefore, the density variations may affect the compact properties. A quantitative analysis of this phenomenon is still lacking. Recently, X-ray microtomography has been successfully used in pharmaceutical development to study qualitatively the impact of tablet shape and break-line in the density of pharmaceutical tablets. In this study, we evaluate the density profile in microcrystalline cellulose (Vivapur 12) compacts obtained at different mean porosity (ranging from 7.7% to 33.5%) using X-ray tomography technique. First, the validity of the Beer-Lambert law is studied. Then, density calibration is performed and density maps of cylindrical tablets are obtained and visualized using a process with colour-scale calibration plot which is explained. As expected, important heterogeneity in density is observed and quantified. The higher densities in peripheral region were particularly investigated and appraised in regard to the lower densities observed in the middle of the tablet. The results also underlined that in the case of pharmaceutical tablets, it is important to differentiate the mechanical properties representative of the total volume tablet and the mechanical properties that only characterize the tablet surface like the Brinell hardness measurements.

  15. The prediction of cyclic proximal humerus fracture fixation failure by various bone density measures.

    Science.gov (United States)

    Varga, Peter; Grünwald, Leonard; Windolf, Markus

    2018-02-22

    Fixation of osteoporotic proximal humerus fractures has remained challenging, but may be improved by careful pre-operative planning. The aim of this study was to investigate how well the failure of locking plate fixation of osteoporotic proximal humerus fractures can be predicted by bone density measures assessed with currently available clinical imaging (realistic case) and a higher resolution and quality modality (theoretical best-case). Various density measures were correlated to experimentally assessed number of cycles to construct failure of plated unstable low-density proximal humerus fractures (N = 18). The influence of density evaluation technique was investigated by comparing local (peri-implant) versus global evaluation regions; HR-pQCT-based versus clinical QCT-based image data; ipsilateral versus contralateral side; and bone mineral content (BMC) versus bone mineral density (BMD). All investigated density measures were significantly correlated with the experimental cycles to failure. The best performing clinically feasible parameter was the QCT-based BMC of the contralateral articular cap region, providing significantly better correlation (R 2  = 0.53) compared to a previously proposed clinical density measure (R 2  = 0.30). BMC had consistently, but not significantly stronger correlations with failure than BMD. The overall best results were obtained with the ipsilateral HR-pQCT-based local BMC (R 2  = 0.74) that may be used for implant optimization. Strong correlations were found between the corresponding density measures of the two CT image sources, as well as between the two sides. Future studies should investigate if BMC of the contralateral articular cap region could provide improved prediction of clinical fixation failure compared to previously proposed measures. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. On measurement of cross sections for scattering of pμ - and d μ -atoms in hydrogen and deuterium

    International Nuclear Information System (INIS)

    Bystritskij, V.M.

    1993-01-01

    The paper is a brief review of all experiments on measurement of cross sections for scattering of pμ - atoms in hydrogen and dμ - atoms in hydrogen and deuterium. The experimental results are analysed and compared both with one another and with calculated results. A program for further investigation of scattering of muonic atoms of hydrogen isotopes is proposed in order to clarify the nature of discrepancies between some experimental results and to get more precise information about the above processes. (author.). 24 refs.; 4 figs.; 3 tabs

  17. Empirical Correction for Differences in Chemical Exchange Rates in Hydrogen Exchange-Mass Spectrometry Measurements.

    Science.gov (United States)

    Toth, Ronald T; Mills, Brittney J; Joshi, Sangeeta B; Esfandiary, Reza; Bishop, Steven M; Middaugh, C Russell; Volkin, David B; Weis, David D

    2017-09-05

    A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences. First, differences in chemical exchange rates are measured by use of an unstructured reporter peptide, YPI. An empirical chemical exchange correction factor, determined by use of the HX data from the reporter peptide, is then applied to the HX measurements obtained from a protein of interest under different solution conditions. We demonstrate that the correction is experimentally sound through simulation and in a proof-of-concept experiment using unstructured peptides under slow-exchange conditions (pD 4.5 at ambient temperature). To illustrate its utility, we applied the correction to HX-MS excipient screening data collected for a pharmaceutically relevant IgG4 mAb being characterized to determine the effects of different formulations on backbone dynamics.

  18. Geneva University - Measurement of the Lamb shift in muonic hydrogen: the proton radius puzzle

    CERN Multimedia

    2010-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENEVA 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 12 May 2010 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium Measurement of the Lamb shift in muonic hydrogen: the proton radius puzzle Dr Aldo Antogninia , CREMA Collaboration, Max Planck Institute, Germany At the Paul Scherrer Institut, Switzerland, we have measured several 2S-2P transition frequencies in muonic hydrogen (µp) and deuterium (µd) by means of laser spectroscopy. This results in an order of magnitude improvement on the rms charge radius values of the proton and the deuteron. Additionally the Zemach radii and the deuteron polarizability are also inferred. The new proton radius value is deduced with a relative accuracy of 0.1% but strongly disagrees from CODATA. The origin of this discrepancy is not yet known. It may come from theo...

  19. Quantitative measurement of lung density with x-ray CT and positron CT, (2). Diseased subjects

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kengo; Ito, Masatoshi; Kubota, Kazuo

    1985-05-01

    Lung density was quantitatively measured on six diseased patients with X-ray CT (XCT) and Positron CT(PCT). The findings are as follows: In the silicosis, extravascular lung density was found to be remarkably increased compared to normals (0.29gcm/sup 3/), but blood volume was in normal range. In the post-irradiated lung cancers, extravascular lung density increased in the irradiated sites compared to the non-irradiated opposite sites, and blood volume varied in each case. In a patient with chronic heart failure, blood volume decreased (0.11mlcm/sup 3/) with increased extravascular lung density (0.23gcm/sup 3/). In the chronic obstructive pulmonary disease, both extravascular lung density and blood volume decreased (0.11gcm/sup 3/ and 0.10mlcm/sup 3/ respectively). Lung density measured with XCT was constantly lower than that with PCT in all cases. But changes in the values of lung density measured, correlated well with each other. In conclusion, the method presented here may clarify the etiology of the diffuse pulmonary diseases, and be used to differentiate and grade the diseases.

  20. Quantitative measurement of lung density with x-ray CT and positron CT, (2)

    International Nuclear Information System (INIS)

    Ito, Kengo; Ito, Masatoshi; Kubota, Kazuo

    1985-01-01

    Lung density was quantitatively measured on six diseased patients with X-ray CT (XCT) and Positron CT(PCT). The findings are as follows: In the silicosis, extravascular lung density was found to be remarkably increased compared to normals (0.29gcm -3 ), but blood volume was in normal range. In the post-irradiated lung cancers, extravascular lung density increased in the irradiated sites compared to the non-irradiated opposite sites, and blood volume varied in each case. In a patient with chronic heart failure, blood volume decreased (0.11mlcm -3 ) with increased extravascular lung density (0.23gcm -3 ). In the chronic obstructive pulmonary disease, both extravascular lung density and blood volume decreased (0.11gcm -3 and 0.10mlcm -3 respectively). Lung density measured with XCT was constantly lower than that with PCT in all cases. But changes in the values of lung density measured, correlated well with each other. In conclusion, the method presented here may clarify the etiology of the diffuse pulmonary diseases, and be used to differentiate and grade the diseases. (author)