WorldWideScience

Sample records for hydrogen conversion we-net

  1. FY 2000 Project of international clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the research and development project aimed at construction of the international clean energy network using hydrogen conversion (WE-NET). The projects include 12 tasks; system evaluation for, e.g., optimum scenario for introduction of hydrogen energy; experiments for hydrogen safety; study on the international cooperation for WE-NET; development of power generation technology using a 100kW cogeneration system including hydrogen-firing diesel engine; developmental research on vehicles driven by a hydrogen fuel cell system; developmental research on the basic technologies for PEFC utilizing pure hydrogen; developmental research on a 30Nm{sup 3}/hour hydrogen refueling station for vehicles; developmental research on hydrogen production technology; developmental research on hydrogen transportation and storage technology, e.g., liquid hydrogen pump; research and development of the databases of and processing technology for cryogenic materials exposed to liquid hydrogen; developmental research on hydrogen absorbing alloys for small-scale hydrogen transportation and storage systems; and study on innovative and leading technologies. (NEDO)

  2. Fiscal 1996 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development was performed for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. Under subtask 1, the whole WE-NET project was subjected to evaluation, which included coordination between the respective tasks. Under subtask 2, information exchange and research cooperation were carried out with research institutes overseas. Under subtask 3, a conceptual design was prepared of a total system using ammonia as the medium for hydrogen transportation, accident data were collected and screened, and safety measures and evaluation techniques were developed and improved. Under subtask 4, the hot press method and the electroless plating method were selected as better electrode bonding methods. Under subtask 5, hydrogen liquefaction cycle processes, liquid hydrogen tankers, storage facilities, etc., were studied. Under subtasks 6-9, furthermore, investigations were conducted about low-temperature substance technology, hydrogen energy, hydrogen combustion turbine, etc. (NEDO)

  3. Fiscal 1995 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research and development was performed for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. Under subtask 1, besides investigation of a pilot plant of phase 2, the WE-NET image as a whole was studied. Under subtask 2, technical information was exchanged at an international symposium and a long-term vision of the international network was discussed. Under subtask 3, for the evaluation of the effect of hydrogen energy introduction on the global level, national level, and city level, simulation models were discussed and improved. Under subtask 4, tests and studies were made concerning electrode bonding methods. Under subtask 5, the Neon Brayton cycle process was surveyed and studied as a hydrogen liquefaction cycle. Under subtasks 6-9, furthermore, surveys and studies were made about techniques relating to low-temperature substances, hydrogen energy, hydrogen combustion turbines, and so forth. (NEDO)

  4. 1999 annual summary report on results. International clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The R and D were conducted on the international clean network (WE-NET) which aims at producing hydrogen by using renewable energy, converting it in a form suitable for transportation and supplying the hydrogen to places of quantity consumption of energy. The FY 1999 results were summed up. In the system evaluation, study was made on sodium carbonate electrolysis by-producing hydrogen, the supply amount by coke oven by-producing hydrogen and the economical efficiency, etc. As to the safety, study was made on the design of hydrogen supply stand model. Concerning the power generation technology, study was conducted on element technologies of injection valve, exhaust gas condenser, gas/liquid separator, etc. Relating to the hydrogen fueled vehicle system, the shock destructive testing, etc. were conducted on the hydrogen tank and hydrogen storage alloys. Besides, a lot of R and D were carried out of pure water use solid polymer fuel cells, hydrogen stand, hydrogen production technology, hydrogen transportation/storage technology, low temperature materials, transportation/storage using hydrogen storage alloys, innovative advanced technology, etc. (NEDO)

  5. Fiscal 1994 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Research and development was made for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. In this fiscal year, surveys were conducted of the status of research and development in each of the fields, and research was started on element technologies in some of the fields. Under subtask 1, surveys and studies were started for pilot plant phase 2. Under subtask 2, an international symposium was held for the enhancement of technical information exchange. Under subtask 3, a liquid hydrogen system conceptual design was prepared for the estimation of facility cost, etc. Under subtask 4, small experimental cells were fabricated for evaluating electrode bonding methods. Under subtask 5, studies were made about the processes of the helium Brayton cycle and hydrogen Claude cycle for the development of a large-scale hydrogen liquefaction plant. Under subtasks 6-9, furthermore, surveys and studies were conducted about low-temperature substance technology, hydrogen energy, hydrogen combustion turbines, and so forth. (NEDO)

  6. WE-NET: Japanese hydrogen program

    International Nuclear Information System (INIS)

    Mitsugi, Chiba; Harumi, Arai; Kenzo, Fukuda

    1998-01-01

    The Agency of Industrial Science and Technology (AIST), in the Ministry of International Trade and Industry (MITI), started the New Sunshine Program in 1993 by unifying the Sunshine Program (R and D on new energy technology), the Moonlight Program (R and D on energy conservation technology), and the Research and Development Program for Environmental Technology. The objective of the new program is to develop innovative technologies to allow sustainable growth while solving energy and environmental issues. One of the new projects in this program is the ''International Clean Energy System Technology Utilizing Hydrogen (World Energy Network)'': WE-NET. The goal of WE-NET is to construct a worldwide energy network for effective supply, transportation and utilization of renewable energy using hydrogen. The WE-NET program extends over 28 years from 1993 to 2020. In Phase 1, we started core research in areas such as development of high efficiency technologies including hydrogen production using polymer electrolyte membrane water electrolysis, hydrogen combustion turbines, etc. (author)

  7. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 2. Research study on promotion of international cooperation; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 2. Kokusai kyoryoku suishin no tame no chosa kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the research result on promotion of international cooperation in the WE-NET project in fiscal 1996. The WE-NET project aims at development of the total system for hydrogen production, transport, storage and utilization, and construction of the earth-friendly innovative global clean energy network integrating elemental technologies. Since the standpoint is different between latent resource supplying countries and technology supplying countries, the WE-NET project should be constantly promoted under international understanding and cooperation. The committee distributed the annual summary report prepared by NEDO to overseas organizations, and made positive PR activities in the 11th World Conference and others. The committee made the evaluation on the improvement effect of air pollution by introducing a hydrogen vehicle in combination with Stanford University, and preparation of PR video tapes for hydrogen energy. Preliminary arrangement of Internet home pages, establishment of a long-term vision for international cooperation, and proposal toward the practical WE-NET are also made. 9 figs., 13 tabs.

  8. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 3. Study on the global network; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 3. Global network kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the introduction condition of hydrogen as substituting energy and CO2 reduction effect were analyzed using a global energy model. The WE-NET project aims at global-wide introduction of clean energy by converting abundant renewable clean energy into hydrogen transportable to distant consumers all over the world. The study result in fiscal 1996 is as follows. Undeveloped hydroelectric resources in the world are estimated to be 12 trillion kWh/y equivalent to the existing developed one in the world. Since the cost of the hydroelectric power generation projects over 1000MW in the planning stage is estimated to be 0.02-0.05$/kWh lower than that of other renewable energies, such projects are expected as energy source in the initial stage of the practical WE-NET project. The GREEN model was modified by adding a hydrogen analysis function, and extending an analysis period. The modified model allowed evaluation of the long-term important role of hydrogen energy, in particular, the capability of CO2 gas reduction all over the world. 28 refs., 92 figs., 56 tabs.

  9. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 4. Development of hydrogen production technology; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 4. Suiso seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes development of hydrogen production technology as a part of the WE-NET project. For the solid polymer water electrolysis method higher in efficiency and lower in cost than the previous methods, 5 companies have developed element technologies for improving electrolysis cells and synthesis technologies of hot solid polymer electrolyte based on each proper catalyst electrode production method. In fiscal 1996, the initial study on large-scale systems by middle laboratory cells was made as well as improvement of electrolysis performance by small laboratory cells and endurance tests. Among the previous methods such as a hot press method (bonding of an ion exchange membrane to an electrode), an electroless plating method (preparation of porous surface onto a membrane electrode assembly), a zero gap method (preparation of high-efficiency high-current density cells), and a sintered porous electrode method (carrying of the mixture of catalytic powder and ion exchange resin-dissipated solution onto sintered metallic porous electrode surface), the former two methods were adopted for development of bench-scale cells as effective promising methods. 192 refs., 183 figs., 108 tabs.

  10. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 3. Conceptual design of the total system; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 3. Zentai system gainen sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the research result on the conceptual design of the total system for the WE-NET project in 1996. Basic conditions are as follows: solid polymer water electrolysis, hydrogen combustion turbine power generation, hydrogen transport/storage through ammonia medium, power generation scale of 1000-4000MW (2-5 yen/kWh), and transport distance of 5000-20000km between supply and consumption places. The system efficiency was estimated to be 68% and 23% at an ammonia arrival time and power sending end, respectively, and it was dependent on a transport distance, while no power generation scale. The power cost was estimated to be 7 yen/Mcal and 33 yen/kWh, respectively. The system efficiency at a sending end was lower by 15% and 2% than that of the liquid hydrogen and methanol system, while the power cost was higher by 0 and 8 yen/kWh, respectively. It was necessary for loss reduction of this ammonia system to develop a new high-efficiency ammonia synthesis process, and hydrogen separation (decomposition/refining) process. 80 figs., 52 tabs.

  11. WE-NET Hydrogen Energy Symposium proceedings; WE-NET suiso energy symposium koen yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-24

    The research and development of WE-NET (World Energy Network) was started in 1993 as a NEDO (New Energy and Industrial Technology Development Organization) project in the New Sunshine Program of Agency of Industrial Science and Technology, Ministry of International Trade and Industry, and aims to contribute to the improvement of global environment and to ease the difficult energy supply/demand situation. The ultimate goal of WE-NET is the construction of a global-scale clean energy network in which hydrogen will be produced from renewable energies such as water and sunshine for distribution to energy consuming locations. Experts are invited to the Symposium from the United States, Germany, and Canada. Information is collected from the participants on hydrogen energy technology development in the three countries, the result of the Phase I program of WE-NET is presented to hydrogen energy scientists in Japan, and views and opinions on the project are collected from them. Accommodated in the above-named publication are 30 essays and three special lectures delivered at the Symposium. (NEDO)

  12. FY 1998 annual summary report on International Clean Energy Network Using Hydrogen Conversion (WE-NET) system technology. Subtask 2. Examination and promotion of measures to obtain international understanding and cooperation; 1998 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 2 (kokusai kyoryoku shuishin no tame no chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the results of examination and promotion of measures to obtain international understanding and cooperation, and examination and development of measures to promote international exchange of technical information, conducted in the FY 1998 continuously from the previous year, with the object to realize the International Clean Energy Network Using Hydrogen Conversion (WE-NET) project. In the FY 1998, the English version of the 1997 annual summary report was distributed to a total of about 150 overseas organizations. The WE-NET project activities were presented to the 12th World Hydrogen Energy Conference, International Joint Power Generation Conference held in 1998 by American Society of Mechanical Engineers, and 2nd International Symposium on Advanced Energy Conversion Systems and Related Technologies. For the examination and development of measures to promote international exchange of technical information, the contracting party of Japan for the Hydrogen Implementation Agreement with IEA has been shifted from the government of Japan to NEDO. NEDO has been representing Japan for various workshops on the tasks. The hydrogen projects conducted by Germany and USA were also surveyed. The WE-NET project homepage was opened in June, 1998. (NEDO)

  13. Fiscal 1998 research report on International Clean Energy Network using Hydrogen Conversion (WE-NET). Subtask 2. Research on promotion of international cooperation (research on standardization of hydrogen energy technologies); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) sub task. 2. Kokusai kyoryoku suishin no tame no chosa kento (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report summarizes the fiscal 1998 research result on the basic research on standardization of hydrogen energy technologies, and ISO/TC197. As for the standardization, in relation to the hydrogen station in the WE-NET second phase research, the laws related to handling of gaseous hydrogen, and the basic issues on facility and safe handling were studied. As for ISO/TC197, the following draft standards were examined: Fuel supply system interface for liquid hydrogen vehicles, fuel tank for liquid hydrogen vehicles, container for liquid hydrogen transport, specification of hydrogen fuel, hydrogen fuel supply facility for air ports, gaseous hydrogen and hydrogen mixture fuel system for vehicles, gaseous hydrogen fuel connector for vehicles, gaseous hydrogen fuel tank for vehicles, and basic items for hydrogen system safety. Final examination of the fuel supply system interface for liquid hydrogen vehicles, and the specification of hydrogen fuel was finished, and these are scheduled to be registered for ISO. (NEDO)

  14. FY 1998 annual summary report on International Clean Energy Network Using Hydrogen Conversion (WE-NET) system technology. Subtask 9. Research and evaluation of innovative and leading technologies; 1998 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 9 (kakushinteki, sendoteki gijutsu ni kansuru chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In order to make useful suggestions and proposals for the International Clean Energy Network Using Hydrogen Conversion (WE-NET) project and thereby to promote the research and development activities, the innovative and leading technologies have been studied, investigated and evaluated. In FY 1998, a total of 6 proposals were collected, and evaluated to prioritize for the conceptual studies. These are related to methanol-fueled power generation turbine system, conceptual design of high-efficiency production system for high-efficiency solar cell by the 10 GW/y scale production process, investigation of potential of wind power, CO2 recycling methanol fuel cell, investigation of catalysis materials for hydrogen combustion and catalytic combustion systems, development of reversible high-temperature steam electrolysis cell/solid oxide fuel cell by the synthesis from aqueous solutions, and mobile heat recovery hydrogen production system. Promising technologies to be reflected on the WE-NET project were examined, based on the new technologies acquired from the research and investigation so far. As a result, two candidates were selected; hydrogen liquefaction by magnetic refrigeration technology, and catalytic combustion gas turbine. (NEDO)

  15. FY 1998 summary report on the results of the R and D of the international clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the purpose of solving the global environmental problem and relaxing the energy supply/demand, the R and D were conducted of the international energy network for hydrogen production and utilization using renewable energy, and the FY 1998 results were summarized. As to the conceptual design of the total system, the detailed study was made of the conceptual design of liquid hydrogen transportation/storage system by reviewing the data inputted into the system such as the equipment cost and by making a trial calculation of the power generation cost. Concerning the development of hydrogen production technology, the following were carried out: survey of characteristics of ion exchange membranes of each company, production technology improvement and stacking technology development of large area cell, etc. Relating to the development of hydrogen transportation/storage technology, selection of the hydrogen closed cycle as the liquefaction process, heat insulation test using panel test piece, etc. As to the development of the hydrogen combustion turbine, selection of the oxygen dilution combustion method annular combustor by the combustion experiment, verification of the plant efficiency of more than 60% by the turbine blade evaluation test, evaluation/selection of the topping regenerative cycle high-temperature heat exchanger, etc. (NEDO)

  16. FY 1998 annual summary report on International Clean Energy Network Using Hydrogen Conversion (WE-NET) system technology. Subtask 6. Development of cryogenic temperature materials technologies; 1998 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 6 (teion zairyo gijutsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Summarized herein are the cryogenic temperature materials technologies for the International Clean Energy Network Using Hydrogen Conversion (WE-NET) project, developed in FY 1998. The R and D programs have been implemented continuously since 1994. For stainless steel, the base and TIG weld metals were evaluated for their material characteristics in liquid hydrogen. The items investigated included the influences of hydrogen charge, 20% of stretch working on the base metal, welding methods, and ?-ferrite content on the characteristics. Fatigue strength of the base metal was found to increases as temperature decreases, but remain unchanged in a range from 20 to 77K. No significant difference was observed between 304L and 316L. For aluminum alloy, mechanical characteristics, centered by fatigue characteristics, were investigated for the base and weld metals. The sample of higher tensile strength showed a higher fatigue strength, at room temperature, 77 and 4K. The other tested items investigated included embrittlement characteristics in a hydrogen atmosphere, phase transformation, hydrogen diffusion and fracture toughness, for establishing the databases of cryogenic temperature materials. (NEDO)

  17. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 2. Research study on promotion of international cooperation (standardization of hydrogen energy technology); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 2. Kokusai kyoryoku suishin no tame no chosa kento (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the basic study on standardization of hydrogen energy technology, and the research study on ISO/TC197 in fiscal 1996. As a part of the WE-NET project, the subtask 2 aims at preparation of standards necessary for practical use and promotion. Developmental states in every field of hydrogen energy technologies, current states of domestic/overseas related standards and laws, and needs and issues of standardization were surveyed. In particular, the needs and issues were clarified in relation to existing standards and laws from the viewpoint of specific hydrogen property. ISO/TC197 was established in 1989 for standardization of the systems and equipment for production, storage, transport, measurement and utilization of hydrogen energy. Four working groups are in action for the supply system and tank of liquid hydrogen fuel for automobiles, the container and ship for complex transport of liquid hydrogen, the specifications of hydrogen products for energy, and the hydrogen supply facility for airports. The draft international standards were proposed to the international conference in 1996. 16 refs., 21 figs., 41 tabs.

  18. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 5. Development of hydrogen transport/storage technology (development of tanker for liquid hydrogen); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 5. Suiso yuso chozo gijutsu no kaihatsu (ekitai suiso yuso tanker no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the tanker for liquid hydrogen transport was studied. In fiscal 1996, some experiments and numerical analyses were proposed which are necessary to solve technological issues extracted in fiscal 1995 for heat insulation structure. The issue was roughly classified into vacuum and non-vacuum insulation, and their basic functions and required performance were arranged. Boil-off rate of 0.2-0.4%/d was targeted. The insulation system which applies polyurethane form (PUF) to tank surfaces and injects atmospheric N2 gas into the surrounding hold space, could achieve the targeted insulation performance by PUF of 1m in thickness. The system of vacuum panel insulation and atmospheric N2 gas injection into a hold space required the panel of 500mm in thickness because of the large effect of metallic outer panel material. The system of vacuum hold and PUF panels was faced with the essential issue for realizing and maintaining vacuum hold. The super insulation system featured by layered insulation materials and vacuum layer spaces was also strongly affected by degree of vacuum. 23 figs., 8 tabs.

  19. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 5. Development of hydrogen transport/storage technology (development of storage facility for liquid hydrogen); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 5. Suiso yuso chozo gijutsu no kaihatsu (ekitai suiso chozo setsubi no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the storage facility for a large amount of liquid hydrogen (LH) was studied. Gasification loss caused by heat input of LH delivery pumps was studied for liquefaction and power generation bases assuming an pump efficiency of 70%, and the total heat and mass balance such as interface conditions for calculating the amount of boil-off gas was reviewed. The target storage capacity of 50,000m{sup 3} was reasonable, however, the performance of loading arms should be examined. The capacity around 5,000m{sup 3} of coastal localized bases was reasonable for control delivery loss caused by coastal tanker or LH container system to 2.6%. The capacity of 500m{sup 3} was suitable for inland bases, resulting in the loss of 1.2%. The concept design of the storage tank of 50,000m{sup 3} extracted confirmation of low-temperature characteristics of adiabatic materials and structures, and development of leakage inspection technology and vacuum holding technology as issues. The concept design of the underground storage tank showed that the material specifications for LNG ones are applicable to it by using proper adiabatic structures. 4 refs., 72 figs., 27 tabs.

  20. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 1. Research study on integrated evaluation and development plan; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 1. Sogo hyoka to kaihatsu keikaku no tame no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the research result on the WE-NET project in fiscal 1996. The WE-NET project is composed of various elemental technologies such as hydrogen production, transport, storage, low-temperature material, utilization and hydrogen combustion turbine. The organic integrated cooperation and coordination between individual subtasks are indispensable for effective promotion of the project and optimization of the total system. The current R and D states of every elemental technology were surveyed, and its findings were utilized for coordination of the whole project and examination of the research project including pilot studies. Eleven important items in the total coordination including a total system cost and safety measures in a developmental stage were examined. The development results for 4 years of fiscal 1993-1996 were assessed together, and the draft working plan for fiscal 1997-1998 was also decided. The verification test plan of a hydrogen combustion turbine scheduled in Phase II was studied, and the basic plans of development step were proposed. The draft report of a transition scenario was also prepared. 6 figs., 68 tabs.

  1. Fiscal 1999 phase 2 R and D report of WE-NET (International Clean Energy Network Using Hydrogen Conversion). Task 2. Research on safety measures; 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu seika hokokusho. Task 2. Anzen taisaku ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 WE-NET phase 2, task 2 research result on safety measures. In the study on preparation of the safety design standard, based on the concept design of the hydrogen supply station under investigation in task 7, latent anomalies and accidents, safety measures against them, and precautions for the safety design were arranged. Survey was made on databases available to collect failure rates necessary for quantitative risk assessment. In the study on establishment of a safety evaluation method, an evaporation apparatus for liquid hydrogen was prepared for comparative experiment with liquid nitrogen. Various information on flow and evaporation properties of liquid hydrogen were obtained. Survey was made on previously reported documents for hydrogen explosion experiment and preparation of an experiment plan. The simulation model for spillage, evaporation and diffusion of liquid hydrogen was verified and improved on the basis of the experiment results. A commercially available computation program for hydrogen deflagration was introduced, and its implementation was studied. (NEDO)

  2. Fiscal 1999 phase 2 R and D report of WE-NET (International Clean Energy Network Using Hydrogen Conversion). Task 10. Development of low-temperature materials; 1999 nendo suiso riyo kokusai clean energy gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 10. Teion zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research result on material property test under liquid hydrogen environment, and development of optimum welding material and welding technique for the WE-NET plan. In the study on material properties in a liquid hydrogen temperature range, fatigue strength tests of base metals and weld metals were conducted under liquid hydrogen environment continuously, and further fatigue data were collected. As a result, it was clarified that both SUS304L and SUS316L have extremely high fatigue strength. To improve the tenacity of candidate weld metals under liquid hydrogen environment, material tests of welds were conducted on the laser-welded stainless steel joint and friction stir- welded Al alloy joint prepared by TWI (The Welding Institute) in the U.K. The laser-welded stainless steel joint showed higher low-temperature tenacity and lower ductility than TIG- welded joints. The friction stir-welded Al alloy joint showed extremely improved tensile strength and tenacity in a liquid hydrogen temperature range. For the low-temperature material database, both addition of new data and improvement of software were promoted. (NEDO)

  3. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 3. Conceptual design of the total system (safety measures and evaluation technology); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 3. Zentai system gainen sekkei (anzen taisaku hyoka gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Safety measures and assessment technology were studied for the WE-NET project. As the study result in fiscal 1996, the information on safety design, anomaly and accident was collected and arranged. The information on safety measures, ideology and criterion was also collected by visiting some domestic and overseas organizations experienced about handling of liquid hydrogen (LH). The initial survey was made for the safety design ideology, analytical technique and disaster preventive measures of LNG systems as the similar cold liquid system. Accidents and explosion accident of a hydrogen production plant (water electrolysis) in Germany were analyzed. Events on storage tanks and leakage around the tanks were studied as typical risk of LH considering temporary and LNG system design information. The model based on the LH spillage test result and 3-D dispersion of vapor cloud were prepared by modifying a simulation code. The model allowed evaluation of the effect of explosion and fire accidents of compressed hydrogen gas and flying fragments on structures and people, and visual display of distances from a tank and damage conditions. 19 refs., 29 figs., 18 tabs.

  4. Fiscal 1999 phase 2 R and D report of WE-NET (International Clean Energy Network Using Hydrogen Conversion). Task 7. Development of hydrogen supply station; 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu seika hokokusho. Task 7. Suiso kyokyu station no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research result on element technologies and system technology for hydrogen supply stations. In 1999, study was made on the total system of hydrogen supply stations, and basic specifications and total designs were studied for such main component systems of hydrogen supply stations as hydrogen production equipment with a reformer of natural gas, polymer electrolyte water electrolyzer hydrogen supply system, hydrogen absorbing alloy tank, and hydrogen dispenser unit. From the study result on the optimum operation condition of the hydrogen production equipment, a S/C (ratio of steam/mol of material carbon) of 2.5, reforming temperature of 700 degrees C, recycling gas ratio of 0.21, and air-fuel ratio of 1.3-2.0 were obtained. In the study on optimum hydrogen absorbing alloy, LaNi{sub 5} alloy system with Mn as additive were selected. For the polymer electrolyte water electrolyzer hydrogen supply station, the basic specification of a total system, and the remote control system of the station were studied and established. R and D themes in the future were also presented. (NEDO)

  5. Fiscal 1999 phase 2 R and D report of WE-NET (International Clean Energy Network Using Hydrogen Conversion). Task 5. Development of hydrogen vehicle system; 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 5. Suiso jidosha system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research result on the safety of hydrogen absorbing alloy tanks for hydrogen vehicle systems and the measuring method of a fuel consumption rate of hydrogen fuel cell powered vehicles. In the impact rupture test of (mini-scale) hydrogen absorbing alloy tanks, the impact 3-point bending test result by drop weight showed no ignition caused by impact and friction energy acting on hydrogen released by rupture of tanks, and the necessity for taking spontaneous ignition of alloys due to fuel leakage into account. The experiment result on deformation and rupture of alloy tanks caused by expansion and contraction of crystal lattices due to hydrogen absorption and desorption showed relatively large deformation due to grain fining only within earlier 10 cycles, and no cracks nor other defects even after 1000 cycles. In the measurement of a fuel consumption rate of hydrogen fuel cell powered vehicles, the study result on flow rate measurement method, full tank method, electric current method, hydrogen balance method and oxygen balance method showed that the electric current method is most simple, accurate and practical. (NEDO)

  6. Fiscal 1999 phase 2 R and D report of WE-NET (International Clean Energy Network Using Hydrogen Conversion). Task 6. Development of the polymer electrolyte membrane fuel cell supplied with pure hydrogen; 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu seika hokokusho. Task 6. Junsuiso kyokyu kotai kobunshigata nenryo denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research result on development of element technologies for a pure hydrogen fuel cell power system of nearly 45% in efficiency at terminal, and demonstration test result on the 30kW class polymer electrolyte membrane fuel cell system supplied with pure hydrogen. On cell voltage characteristics in high-utilization operation, study was made on degradation and corrosion caused by short supply of hydrogen by using a single cell. As a result, it was found out that reverse polarization of -3.0V has small effect, however, that of -0.7V causes corrosion and deterioration of cell characteristics in a short time. In operation using actual-size cells for the 30kW class plant, it was effective to wet cells on the air side. On hydrogen high-utilization operation technique, study was made on hydrogen recovery and recycle operation, anode outlet line closed operation, and anode recycle operation. In addition, some studies were made on specifications of auxiliary facilities for fuel cells, safety measures for fuel cells and humidity control of supplied hydrogen gas. (NEDO)

  7. Fiscal 1993 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology (Subtask 8 - Development of hydrogen combustion turbine - Development of main accessories); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) (Subtask 8. Suiso nensho tabin no kaihatsu - Shuyo hokirui no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    In the first fiscal year 1993 of the project, surveys were conducted about current technologies relative to cold energy-utilizing oxygen production equipment and high-temperature heat exchangers for the development of main accessories for a hydrogen combustion turbine plant. Kobe Steel, Ltd., conducted surveys about very low temperature heat exchangers and cold energy utilization technology used in facilities for gasifying liquid hydrogen or liquefied gas. Daido Hoxan, Inc., in its research on the possibility of air separator performance enhancement through liquid hydrogen cold energy application, studied reduction in power unit requirement, stable power supply responding to changes in load, safety measures, and so forth. Toshiba Corporation conducted surveys and studies about heat conduction improvement techniques and about the type, structure, and materials for heat exchangers for the embodiment of a high-temperature heat exchanger excellent in performance and high in structural soundness. Mitsubishi Heavy Industries, Ltd., aiming to establish basic technologies for heat exchangers, studied efficiency enhancement with low pressure loss, improved hygroscopic moisture removing function, and new materials utilization for achieving high-temperature capability. (NEDO)

  8. FY 1998 annual summary report on International Clean Energy Network Using Hydrogen Conversion (WE-NET) system technology. Subtask 8. Development of hydrogen combustion turbine and ultrahigh-temperature materials; 1998 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 8 (suiro nensho turbine no kaihatsu/chokoon zairyo no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Summarized herein are the materials designs/production and tests/evaluation results of heat-resistant materials, i.e., alloys, ceramic composites and carbon-based composites, which are expected to be applicable to the hydrogen combustion turbines. These have been studied since 1993, and this paper summarizes the overall evaluation results of the phase I program. The intermetallic compound as one of the candidate materials has a high-temperature strength in a range from 1200 to 1400 degrees C by optimizing elements added. However, no prospect is obtained for heat resistance at 1700 degrees C or more for the material not coated or cooled moderately. Each of the other candidate materials tested shows a bright prospect of applicability at the base material and specimen levels. The single-crystal superalloy for hybrid cooling structures has novelty in that it is free of Cr but incorporated with Si and Hf, showing approximately 10 degrees C higher heat-resistant temperature than CMSX-4. CMC and C/C are inherently excellent heat-resistant materials, and are attractive advanced composites, because they are expected to realize no-cooled blades at 1700 degrees C. (NEDO)

  9. Fiscal 1993 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology (Subtask 8 - Research and development of hydrogen combustion turbine - Development of ultrahigh-temperature materials); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET). (Subtask 8. Suiso nensho tabin no kaihatsu - Cho koon zairyo no kaihatsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Current technologies are surveyed and tasks to discharge are extracted relating to heat resistant alloys, intermetallic compounds, ceramic based composite materials, and carbon based composite materials, which are expected to be used for hydrogen combustion turbines. Concerning oxide dispersion strengthened alloys for cooled vanes, tasks to discharge are extracted, which relate to the designing, development, and selection of vane materials, bonding layer materials, and coating materials, and to thermal barrier coating techniques and machining techniques. Concerning porous fiber reinforced ceramic materials for ceramic shells, tasks involve the elucidation of corrosion behavior and manufacturing techniques. MoSi{sub 2}, which is a promising high-melting intermetallic compound, also presents some tasks to discharge for an increase in its high strength and high ductility in an ultrahigh-temperature steam/reducing atmosphere, and for improvement in manufacturing techniques. For the carbon/carbon composite material which is the sole material usable in the ultrahigh-temperature domain of 2,000 degrees C, an analysis and evaluation method taking its anisotropy into consideration needs to be developed, and an oxidation resistant coating has to be also developed. In addition to the designing and development of these materials, development is necessary of materials testing and evaluating techniques. (NEDO)

  10. Fiscal 1999 phase 2 R and D report of WE-NET (International Clean Energy Network Using Hydrogen Conversion). Task 9. Development of liquid hydrogen transport and storage technology Part 3 (Concept design of hydrogen liquefaction facility); 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu seika hokokusho. Task 9. Ekika suiso yuso chozo gijutsu no kaihatsu 3 (suiso ekika setsubi no gainen sekkei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research result on the aerodynamic design and seal design necessary for development of advanced hydrogen compressors for large-scale hydrogen liquefiers in the WE-NET plan. In the study on aerodynamic performance of impellers, 3-D viscous flow analysis of 2 types of new impeller forms (20 and 15 degrees) was carried out based on the study result on backward angle. The 2-D viscous flow analysis result on diffuser suitable for hydrogen compressors showed that improvement of the performance of a NACA65 type profile diffuser is possible. The study result on scale effect by using Casy's evaluation formula showed the efficiency difference of nearly 2.6% between impeller diameters of 1000mm and 300mm at 0.08 in exit width ratio. Study was made on hydrogen gas leak for spiral groove sealing selected as hydrogen gas sealing. The study on small capacity hydrogen liquefiers was conducted on the same process cycle as the 11t/d liquefier which has been commercially available. (NEDO)

  11. Fiscal 1998 research report on International Clean Energy Network using Hydrogen Conversion (WE-NET). Subtask 3. Conceptual design of the whole system; 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) sub task 3. Zentai system gainen sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report summarizes the fiscal 1998 result on the conceptual design of the full-scale whole system from hydrogen production to end use. In elaboration of the conceptual design of a liquid hydrogen transport and storage system, a hydrogen combustion turbine generation facility was divided into a cryogenic oxygen production facility and a hydrogen combustion turbine generation facility, and their facility costs, annual expense ratios and scale factors were set separately for trial calculation of generation costs. In study on the profitability of alternative hydrogen production systems and the hydrogen combustion turbine generation system, the cost of the combination of hydrogen production by coal gasification or natural gas modification and the generation system was calculated. In addition, this cost was compared with the costs of liquid hydrogen, methanol or ammonia system. In study on the profitability of a distributed use system of hydrogen, a hydrogen diesel system, fuel cell system and fuel supply system for vehicles were studied roughly. (NEDO)

  12. Fiscal 1998 research report on International Clean Energy Network using Hydrogen Conversion (WE-NET). Subtask 3. Prediction evaluation on a national scale; 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) sub task. 3. Ikkoku kibo deno yosoku hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Japanese long-term energy demand and various energy use styles were simulated from the viewpoint of a profitability and environmental preservation, and hydrogen consumption was studied. In the research in fiscal 1998, the data on available primary energy was modified based on the upper limit of CO{sub 2} emission by COP3, and the long-term energy supply and demand outlook of Advisory Committee for Energy in June, 1998. The result of scenario analysis is as follows: (1) The reference scenario showed that reduction of a hydrogen price is indispensable to use imported hydrogen, (2) The carbon externality scenario showed that market penetration of hydrogen can be large if the carbon externality amounts to $300/t-C, (3) The high fossil fuel price scenario showed that a fossil fuel price (in particular, price of hydrocarbon) highly affects market penetration of hydrogen, and (4) The low nuclear capacity scenario suggested that a competitiveness of hydrogen is considerably improved as an energy supply-demand-balance is tight. (NEDO)

  13. WE-NET. Substask 4. Development of hydrogen production technologies; 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 4. Suiso seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Under the hydrogen-utilizing international clean energy system technology project WE-NET (World Energy NET Work), researches were conducted aiming at the establishment of a hydrogen production technology through electrolysis of polymer electrolyte solution. In fiscal 1998, element technologies were developed for the development of high-efficiency/large-capacity water electrolyzing plants using electrodeless deposition and hot pressing, research and investigation of optimum operating conditions were conducted, and a service plant conceptual design and a polymer electrolytic membrane were developed. In addition, literature was searched for the current state of ion exchange membranes and water electrolysis, both indispensable for the hydrogen production technology discussed in this paper. In the field of lamination of large cells (electrode surface:2500cm{sup 2}), an excellent energy efficiency level exceeding 90% set as the target for a large laminated cell performance test was achieved - 92.6% by electrodeless deposition and 94.4% by hot pressing. As for polymer membranes capable of resisting high temperatures, a membrane with an ionic conductivity of 0.066S/cm at 200 degrees C was newly developed. (NEDO)

  14. Worldwide clean energy system technology using hydrogen (WE-NET). subtask 9. Investigation of innovative and leading technologies; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 9. Kakushinteki sendoteki gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The WE-NET Project is a long-term project designed to ensure that an energy network technology using hydrogen becomes a reality not later than 2020. So the project cannot remain effective unless constant efforts are made to foresee future trends of technology and optimize it as the making of entire system for the project. In this project, new technologies which are not up for development are also investigated. Their feasibility should be studied, if necessary. From the foregoing point of view, new technologies are studied, collected and evaluated. Thus, useful suggestions and proposals may be made as to the course for the project to follow, as well as its research and development. Proposals highly evaluated up to FY 1995 are the hydrogen-oxygen internal-combustion Stirling`s engine, hydrogen production by solid oxide electrolysis, magnetic refrigeration technology for liquefaction of hydrogen, solar thermal hydrogen production with iron sponge technology, and hydrogen producing technology with photocatalyst. Conceptual investigation themes in FY 1996 are the hydrogen internal-combustion Stirling engine, solar thermal hydrogen production, phototransformation process, and high-temperature steam electrolysis. 9 figs., 54 tabs.

  15. Fiscal 1997 survey report. Subtask 4 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen production technology); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 4 suiso seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    As a WE-NET subtask, a study has been conducted of the solid polyelectrolyte water electrolysis method by which higher efficiency and lower cost hydrogen production is expected than in the conventional hydrogen production method. Production methods of electrode, electrolyte, etc. were studied. In the electroless plating method, the manufacturing process of membrane-electrode assemblies was realized in a large area of 2500 cm{sup 2} by the porous-surfaced method by studying manufacturing conditions for slurry membrane/membrane assembly/electroless plating processes. In the hot-press method, the refining degree and dispersibility of iridium dioxide powder were studied to improve characteristics of anode catalyst. A method was developed to form polyelectrolyte coatings homogeneously on the surface of electrode layer catalytic powder, and a large area of 2500 cm{sup 2} was realized. Beside the performance test using large single cells, FS was conducted to discuss optimum operating conditions and optimum structures of plants. Both methods indicated the performance exceeding the energy conversion efficiency of 90%, a WE-NET target, at current density of 1A/cm{sup 2} and electrolysis temperature of 80degC. A key was found to a bench-scale development (electrode area of 2500 cm{sup 2}, about 5 layers) to be planned in fiscal 1998. 136 figs., 50 tabs.

  16. Worldwide clean energy system technology using hydrogen (WE-NET). Interim report of the research and development in Phase 1; Suiso riyo kokusai clean energy system gijutsu (WE-NET). Daiikki kenkyu kaihatsu chukan seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    Large scale and effective utilization of renewable energy including hydroelectric power, photovoltaic power, and wind power which are abundant on the earth can contribute to the solution of global environmental issues as well as the release of energy demand and supply. Hydrogen can be produced from the renewable energy, and is converted, transferred and stored if necessary. Such hydrogen can be used in various fields for power generation, fuel for transport, and city gas. In order to establish the technology by which worldwide energy network can be introduced for wide range of fields, conceptual design of a total system has been conducted, and elemental core technologies have been developed. Conceptual design of a practical scale system (total system) including a wide range from production of hydrogen to its utilization has been conducted, and its constitution has been illustrated. In addition, the energy balance and cost of hydrogen have been calculated and analyzed as a trial. Hydrogen production technology, transport and storage technology, and hydrogen utilization technology are introduced as individual elemental technologies. Research results of innovative and leading technologies obtained in FY 1996 are reviewed. 80 figs., 56 tabs.

  17. Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 3. Survey and research on international cooperation - 1 (Promotion of international cooperation); 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 3. Kokusai kyoryoku ni kansuru chosa kenkyu - 1 (kokusai kyoryoku suishin no tame no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    International research cooperation was promoted and technical information was internationally exchanged for the development of the International Clean Energy Network Using Hydrogen Conversion (WE-NET) Project into a truly international cooperation project. In the promotion of international research cooperation, a collection of summarized achievement reports for fiscal 1999 translated into English, based on achievement reports on the respective tasks, was disseminated to 157 related organizations overseas. Activities related to the WE-NET Project were actively presented at international conferences. For research cooperation at IEA (International Energy Agency), engineers were dispatched to its committees and annexes specializing in hydrogen related implementation agreements. In the international exchange of technical information, overseas surveys were conducted for fulfilling the purposes of the respective WE-NET tasks. Investigations were conducted into the latest fuel cell development status across the world, not to mention the automotive fuel cell now attracting earnest attention. Moreover, surveys were conducted of hydrogen energy related research institutes abroad, and a Japanese booth was installed at Hyforum 2000 (The International Hydrogen Energy Forum 2000). (NEDO)

  18. Fiscal 1997 survey report. Subtask 2 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (survey/study for the promotion of international cooperation); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 2 (kokusai kyoryoku suishin no tame no choa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The survey was aimed at developing the WE-NET as a joint project worldwide by taking concrete measures such PR activities to obtain international understanding and cooperation of WE-NET based on the survey/grasp of researches of research institutes in each country and the developmental trend of hydrogen energy in each of the main countries. Implementing a `long-term vision for the WE-NET international cooperation,` the following measures were taken in fiscal 1997. PR activities were positively developed which coped with the worldwide increasing interest in WE-NET such as delivery to overseas institutions of the fiscal 1996 survey report in English summarized by NEDO and information exchanges, and participation in international conferences and presentation of the research results. From a standpoint of positively proceeding with the international technical information exchange, the following were conducted following fiscal 1996: 1) the evaluation study jointly made with Stanford University of effects of reducing air pollution by introducing hydrogen cars, 2) survey on the U.S. hydrogen project, and 3) preparation for opening of the WE-NET internet home pages. 17 figs., 18 tabs.

  19. Hydrogen utilization international clean energy system (WE-NET). Subtask 8. Development of hydrogen combustion turbines (development of combustion control technology); Suiso riyo kokusai clean energy system (WE-NET). Subtask 8. Suiso nensho turbine no kaihatsu nensho seigyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper described the fiscal 1996 developmental results of hydrogen burning turbine combustion technology in the hydrogen utilization international clean energy system (WE-NET) project. A test was conducted on an annular type combustor where oxygen is mixed with steam (inert gas) at burner and fired with hydrogen. Appropriate flame shape and cooling/dilution vapor distribution were attempted, and various data on combustion were measured for improvement. Mixture and flame holding were improved by developing a can type combustor (1) where oxygen is diluted with steam after firing oxygen and hydrogen around burner and by strengthening circulation in the combustor. Improvement such as appropriate steam distribution, etc. is needed. A can type combustor (2) was tested in which the premixed oxygen and hydrogen is supplied from scoop and fired with hydrogen. By supplying part of oxygen from the primary scoop, the residual hydrogen and oxygen concentration around the stoichiometric ratio can be reduced. Concentration of the residual oxygen can be measured by the absorption light method, but it is difficult to adopt the non-contact measuring method to hydrogen. An outlook for the gas temperature measuring method was obtained. 12 refs., 121 figs., 27 tabs.

  20. Fiscal 1997 survey report. Subtask 5 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen transportation/storage technology. 3. development of liquid hydrogen storage equipment); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 5 suiso yuso chozo gijutsu no kaihatsu dai 3 hen ekitai suiso chozo setsubi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the WE-NET development of large capacity liquid hydrogen storage technology, a study has been continued with a target of 50000 m{sup 3} storage development. As to the result of conceptual design and various types of the thermal insulating structure, to confirm the performance, studies were made on the thermal insulating performance test and the strength test on thermal insulating materials to be started in fiscal 1998. The large-capacity common testing equipment for thermal insulation performance to be used in and after fiscal 1998 was fabricated, and the basic performance of the equipment was confirmed by the preliminary cooling test. Further, the test pieces simulated of various thermal insulating structures were designed to study the thermal insulation performance, reformation during the test, strength, etc. It is required to solve problems such as weight reduction of test pieces, prevention of reformation, retention of vacuum, etc. In the test on strength of thermal insulating materials, a test is conducted to confirm strength of thermal insulating materials at temperatures of hydrogen by the extremely low temperature strength test equipment. The studies on test pieces to be used were summed up including the items to be paid attention to during the test because the test situation is different from that in testing metal materials. Since hydrogen is a very flammable gas, much attention should be paid to safety during the test. 13 refs., 63 figs., 32 tabs.

  1. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 7. Development of hydrogen refueling station; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 7. Suiso kyokyu station no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the development of hydrogen refueling stand-alone stations for hydrogen fueled automobiles in the WE-NET. Supply capacity of practical size of 1/10, 30 Nm{sup 3} was selected as the object. For the natural gas reformed type hydrogen generator, discussions were given on design and manufacture of a reforming unit and a PSA device. The PCT diagram method was discussed to estimate the capacity of a hydrogen absorbing alloy type storing facility. Interface between fuel cell driven automobiles and the station was adjusted. For the solid polymer electrolyte water decomposition type, safety measures were discussed with a high-pressure filling system kept in mind. Detailed design was made on a water decomposing hydrogen generator. Fabrication was completed on the hydrogen absorbing alloy type storing facility, and verifications were given on the storage amount, hydrogen absorbing speed, and discharge capability. In the high-pressure refueling system, temperature rise was simulated at a pressure of 35 MPa. Refueling for ten minutes raised the gas temperature by 75 degrees C, and the container surface by 65 degrees C. Local temperature rise was forecasted in the actual work, which is a future discussion assignment. An outline method was discussed for the verification test. (NEDO)

  2. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 7. Survey/study on hydrogen utilization technology; 1998 nendo suiso riyo kokusai clean energy system (WE-NET). 7. Suiso riyo gijutsu ni kansuru chosa kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper described the results of survey/study of the FY 1998 WE-NET project. In Subtask 7, survey/study have been made on the main hydrogen utilization technologies except the hydrogen combustion gas turbine since FY 1993. Based on the survey results having been obtained, study was made on conditions for introducing promising technology, future prospects, etc. in FY 1998. As to the power generation, the basic combustion test and test on hydrogen injection equipment as element test, and test on ignition equipment were carried out using rapid compression/expansion equipment. A scenario for introducing hydrogen vehicle was made, and at the same time environmental LCA was conducted by which environmental influences can be assessed. The survey of the market of pure hydrogen polymer electrolyte fuel cells were made in terms of the electric utility use, industrial use, residential/commercial use, and movement/vehicle use. Study was conducted on the combined process of oxygen production equipment and He Brayton cycle in the subzero fractionation/low-temperature VSA method. Various methods including performance, price, etc. were surveyed/studied, making it a precondition that hydrogen supply stations are installed in stand-alone distribution near places of consumption. (NEDO)

  3. Achievement report for fiscal 2000. Phase II research and development task-5 for hydrogen utilizing international clean energy system technology (WE-NET) (Development of hydrogen fueled automobile system); 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 5. Suiso jidosha system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the WE-NET Phase II for Task-5, the development of a hydrogen fueled automobile system. For a fast filling method using a hydrogen absorbing alloy as the fuel tank, a rare earth system, the Laves system, and a body-centered cubic system were selected to discuss filling time when the plate-fin system tank and the divided system tank are used. Either system was found capable of filling 80% of the effective hydrogen absorbing amount within 10 minutes, having achieved the target. Guidelines were obtained for the design aiding method by using the cooling water flow rates, temperatures, and simulations. In the safety assessment, even the spontaneously combusting alloy of Category 1 in the Fire Fighting Law did not cause ignition even if the tank was damaged and the alloy was discharged in the dropping/falling weight tests. It was inferred that the ignition temperature is not reached because of the self-cooling made when hydrogen is discharged from the alloy. In the fire resistance test, the tank temperature was found not to rise as long as hydrogen is discharged from the alloy. Since the temperature rise and damage could occur if the discharge has been finished completely, discussions are required on materials and the soluble plug. Deformation may occur in the initial stage of the hydrogen absorbing and discharging cycles, but it would not occur after 5,000 cycles. (NEDO)

  4. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 1. Survey/research for the comprehensive evaluation and developmental plan; 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 1. Sogo hyoka to kaihatsu keikaku no tame no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper described the results of the FY 1998 WE-NET project survey. WE-NET is composed of various element technologies such as hydrogen production, hydrogen transportation, storage technology, low-temperature materials, hydrogen utilization, and hydrogen combustion turbine technology. Therefore, considering the effectiveness as a total system, it is extremely important to traversally evaluate the situation of the R and D of each technology and developmental achievements and to work out developmental plans with integration, considering the effectiveness as a total system. From viewpoints of making effective promotion of the project and attempting optimization as a total system, it is necessary to make organic/comprehensive connection and adjustment among individual subtasks all the time. In this survey/research, in the case of proceeding with the above-mentioned studies, a committee having knowledgeable persons and learned persons as members was established. There, an investigational study was conducted over the whole WE-NET structural technology, and at the same time the following were attempted: the constant/mobile comprehensive adjustment of the whole project, evaluation of the developmental results, and optimization of the developmental plans. The results obtained in 6 years of Period I were evaluated traversally and comprehensively, and how to proceed with the development in Period II was proposed, which showed the developmental continuity. (NEDO)

  5. Achievement report for fiscal 2000 on the phase II research and development for the hydrogen utilizing international clean energy system technology (WE-NET). Task 1. Investigations and researched on system assessment; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 1. System hyoka ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the WE-NET Phase II for Task-1. Technologies drawing attentions relate to fuel cell driven automobiles and hybrid automobiles in the field of utilizing hydrogen derived from reproducible energies and fossil energies, and fuel cell co-generation and micro gas turbine co-generation in the field of electric power generation. Hydrogen reformed from gasoline on board the automobile as the fuel for fuel cell driven automobiles, hydrogen as a by-product of coke furnace off-gas (COG), and reproducible energy hydrogen have the same fuel consumption performance as in the hybrid automobiles. Particularly the COG is low in cost, and has large supply potential. Liquefied hydrogen is as promising as compressed hydrogen in view of the cost for automotive hydrogen supply stations. What has high economic performance as the self-sustaining systems for islands are photovoltaic and wind power generation, and the system using hydrogen as the secondary energy. Since much of the reproducible energies is used for electric power demand in Japan, the by-product hydrogen and the reformed hydrogen in an amount of 9.3 billion Nm{sup 3}/year would take care of majority of the demand in view of the short time period. For a longer time span, hydrogen originated from the reproduced energies in the Pan-Pacific Region should be introduced. (NEDO)

  6. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 6. Development of fuel cell of pure hydrogen fueled solid polymer type; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 6. Junsuiso kyokyu kotai kobunshigata nenryo denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the WE-NET Phase II for research and development Task-6. The objective is to verify performance and reliability, by means of field tests, of a power generation plant using fuel cells of pure hydrogen fueled solid polymer type with power transmission terminal efficiency of 45% and output of 30 kW. The fuel cells were developed by using the cathode humidification process as a humidification method suitable for operation at high utilization rates. With a three-cell stack made by using this humidification process (having an effective area of 289 cm{sup 2}), verification was made on the current density of 0.2A/cm{sup 2}, the characteristics of 0.75V or higher, and the uniform voltage distribution performance being the immediate targets. In order to mitigate the hydrogen utilization in the fuel cells, discussions were given on the serial flow system that divides the laminated cells into two blocks. Thus, operation was found possible with the utilization rate in each block reduced to about 80% by selecting an adequate division rate even if the hydrogen utilization rate is 96% in the entire stack. Stable operation has been performed in the 5-kW class power generation test using the cathode interior humidifying system. Specifications for 30-kW class power plant, system configuration, safety, and material balance were discussed. The basic design was made on the hydrogen gas humidity adjusting system. (NEDO)

  7. Fiscal 1997 survey report. Subtask 5 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen transportation/storage technology. 4. Development of various kinds of common equipment); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 5 suiso yuso chozo gijutsu no kaihatsu dai 4 hen kakushu kyotsu kikirui no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the WE-NET development of a large-capacity liquid hydrogen pump, a magnetic bearing was studied. The test piece is a 1/3 scale model of the actual equipment, in which two radial bearings and one thrust were combined, and the impeller and turbine blade were distributed in both ends. Ti was used to the rotor and turbine, permalloy to the electromagnet, and aluminum to the case. The flotation control is made by 5-axial control, and each control coefficient was so selected that rigid body primary and secondary modes can enter into the safe domain in control. Further, as the position sensor used for control, the one used to the liquid hydrogen turbo pump of the rocket engine was made opposite and was used with the temperature characteristic compensated. The test was conducted under the extremely low temperature environment of liquid nitrogen/hydrogen temperature. It was confirmed that the sensor and electromagnet work favorably. The rotation experiment was carried out under the extremely low temperature environment and enabled the rotation up to approximately 19000 rpm. The dangerous speed of the axial rigid body is in around 6000 to 10000 rpm, and it was possible to pass this. Further improvement will be made by the tuning of control. 70 figs., 8 tabs.

  8. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 5. Survey on the R and D of technologies for hydrogen transport and storage by hydrogen absorbing alloys (V. Development of the distributed transport/storage use hydrogen absorbing alloys); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 5. Suiso yuso chozo gijutsu no kaihatsu (V. bunsan yuso chozoyo suiso kyuzo gokin no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper described the FY 1998 results of the development of hydrogen distributed transport/storage use absorbing alloys in the WE-NET project. Study was made of improvement of hydrogen desorption characteristics by substituting Ca for part of Mg of Mg-Ni alloys and substituting Cr for part of Ni. It is necessary to shift the state of atomic bond by H atom and metal atom in alloys from the ionic bond to the metallic bond, and to change from the amorphous state to the BCC type crystal structure. It was found out that it was possible to do it by improving the composition and heat treatment. The addition of Cu to LaMg{sub 2} alloys shifts the bond with hydrogen to the bond with metal. Easy hydrogen desorption and large absorbing capacity can be expected. It was found out that LaMg{sub 2}Cu{sub 2} synthesized by the reaction sintering method has reversible hydrogen absorbing desorption characteristics. The absorbing amount is 2.4 wt%, the desorption amount 1.2 wt%, and the desorption temperature 190 degrees C. Those are still far from WE-NET targeted values, but a clue to the search was obtained. It was found out that by applying doping technology by Ti, etc. to NaAlH{sub 4}, characteristics can be expected of the desorption amount, 4.5 wt%, of the hydrogen desorption starting temperature from 100 degrees C to 200 degrees C. (NEDO)

  9. Fiscal 1997 survey report. Subtask 9 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (survey/study on the innovative and leading technology); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 9 kakushinteki, sendoteki gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the purpose of giving useful suggestions/proposals to the course of WE-NET and contributing to the R and D, conducted were survey/collection/evaluation of new technologies. The paper described the fiscal 1997 results. The number of the proposals of new technology accumulated during fiscal 1993 to 1997 is 28. The proposals of new technology made in fiscal 1997 are hydrogen production effectively using solar energy by wavelength zone, hydrogen storage using fullerene, and the methanol power generation turbine system. Four technologies proposed in fiscal 1996 and 1997 were evaluated. The evaluation method requires two steps of the marking using the analytic hierarchy process (AHP) and the adjustment by the committee. The highly evaluated proposals out of those having been made were analysis/evaluation of hydrogen-oxygen internal-combustion Stirling engine, hydrogen production effectively using solar energy by wavelength zone, hydrogen production by solid oxide electrolysis, magnetic refrigeration method for hydrogen liquefaction, hydrogen production technology using photocatalyst, etc. The paper also stated the result of studying concepts of innovative/leading technologies in fiscal 1996. 4 figs., 29 tabs.

  10. Fiscal 1997 survey report. Subtask 6 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of technology of low temperature materials); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 6 teion zairyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper described the results of the development of technology of low temperature materials in the fiscal 1997 WE-NET. Using experimental equipment for materials under the atmosphere of liquid hydrogen, an experiment on mechanical characteristics under the liquid hydrogen atmosphere (20K) was conducted of the base materials of candidate steels (SUS304L, SUS316L and A5083). In material evaluation experiments (tension/fracture toughness/fracture tests), characteristic behaviors of the materials were shown which are different from those shown in the environment of liquid He (4k), etc. Even if the amount of {delta} ferrite in the metal welded of the stainless steel is small, approximately 1%, the degradation of low temperature toughness occurred. Welded joints of stainless steel by submerged arc welding and MAG welding were in now way inferior in tension characteristic to those by TIG welding, but were inferior in toughness ranging from room temperature to extremely low temperature. As to aluminum alloys, materials excellent in extremely-low temperature toughness were able to be found. Under the low temperature hydrogen gas atmosphere, the lower the strain rate is, the higher the hydrogen brittleness susceptibility is around 220K (extremely large hydrogen brittleness temperature) (SUS304L). In the hydrogen gas of 100 atm, hydrogen invades the material at 100degC, but does not at 77k. 38 refs., 173 figs., 48 tabs.

  11. Fiscal 1997 survey report. Subtask 3 (hydrogen utilization worldwide clean system technology) (WE-NET) (total system conceptual design/safety measures/evaluation technology); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 3 zentai system gainen sekkei - anzen taisaku hyoka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Concerning the study of safety measures in WE-NET, the paper described the fiscal 1997 results. For drawing up a policy for safety design, technology of preserving hydrogen at high temperature/pressure, continuing collecting information on existing plants (liquid hydrogen, LNG). Investigating manuals of NASA and NASDA and also referring to people`s opinions at chemical plants, etc., the study entered into the setting-up of the safety policy and design standards. Examples of anomalies/accidents were extracted, and classification/arrangement were commenced of the measures for anomalies of detection/prevention/protection. Toward the diffusion of hydrogen and the enhancement and unification of explosion/fire simulation models, the extraction of problems has been almost finished. The second mini work shop on safety was held in the U.S., and exchanges of information were made among researchers of each country. All agreed on the importance of collecting data as the base of safety standards. As to safety measures in various tests using combustor evaluation experimental facilities, experimental equipment for materials under liquid hydrogen and experimental equipment of thermal insulation under liquid hydrogen, problems were extracted between researchers and people concerned with safety measures, and the measures to solve them were studied. 18 refs., 31 figs., 10 tabs.

  12. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 2. Investigations and researched on safety measures; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 2. Anzen taisaku ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the WE-NET Phase II for Task-2, the safety measures. In order to structure safety design criteria, potential anomalies, accident phenomena, and safety measures that can be applied were put into order based on the conceptual designs on hydrogen supply stations. Items of information were collected and put into order on failure rates and other factors to estimate accident occurrence frequency required for quantitative risk assessment. Representative event scenarios were selected by estimating the event evolving processes. In order to obtain knowledge about the steady state of run-off and evaporation of liquefied hydrogen, experiments were performed by using a small-size experimenting device, whereas new findings were discovered. To identify the fundamental knowledge related to explosion of hydrogen, and to verify a program simulating the explosion, explosion experiments were inaugurated to have established the stable experiment performing method. A calculation program simulating leakage and evaporation of liquefied hydrogen was verified and analyzed from the experimental results, and the program improvements were discussed. Pre-estimation and verification were carried out on the explosion experiments by using the hydrogen explosion and combustion simulating calculation program, and discussions were given on program improvement. (NEDO)

  13. Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 11. Distributed transportation of hydrogen/hydrogen absorbing alloy for hydrogen storage; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 11. Suiso bunsan yuso chozoyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Studies were conducted to find out hydrogen absorbing alloys with an effective hydrogen absorption rate of 3 mass % or more, hydrogen discharge temperature of 100 degrees C or lower, hydrogen absorbing capacity after 5,000 cycles not less than 90% of the initial capacity, applicable to stationary and mobile systems. The V-based alloy that achieved an effective hydrogen absorption rate of 2.6 mass % in the preceding fiscal year was subjected to studies relating to safety and durability. Since V is costly, efforts were exerted to develop TiCrMo alloys to replace the V-based alloy. In the search for novel high-performance alloys, endeavors centered on novel ternary alloys, novel alloys based on Mg and Ti, and novel intermetallic compounds of the Mg-4 family. In the study of guidelines for developing next-generation high-performance alloys, methods for creating hydrides with an H/M (hydrogen/metal) ratio far higher than 2 were discussed. Mentioned as techniques to produce such hydrides were the utilization of the hole regulated lattice, novel alloys based on the ultrahigh pressure hydride phase, new substances making use of the cooperative phenomenon in the coexistent multiple-phase structure, and the like. (NEDO)

  14. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 10. Development of low-temperature materials; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 10. Teion zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the development of candidate low-temperature materials for liquid hydrogen transportation and storage (including mother materials and welds) for WE-NET. Evaluation tests were performed on material properties (mechanical properties, low-temperature embrittlement, and hydrogen embrittlement sensitivity) under room temperature and low temperature regions including liquid hydrogen atmosphere. Low temperature toughness of welds was assessed particularly to identify characteristics of different welding methods developed newly for improvements. The stainless steels and the mother materials of aluminum alloy selected as the candidates have sufficient characteristics even under the liquid hydrogen atmosphere, but the welds have lower low-temperature toughness, requiring improvement. For the stainless steels, since the amount of {delta} ferrite in welds affects greatly the low-temperature toughness, adoption of complete austenite type welding metal is effective. The reduced pressure electron beam welding method can enhance drastically the low-temperature toughness of stainless steel. For the aluminum alloy, it can be one of the alternatives to use an alloy system with composition of high low-temperature toughness. The friction stir welding method for the aluminum alloy was found to provide extremely high low-temperature toughness, which can be evaluated as a new welding method. (NEDO)

  15. Research and development in second term of hydrogen utilizing international clean energy system technology (WE-NET) in fiscal 1999. Task 2. Hydrogen absorbing alloys for discrete hydrogen transportation and storage; 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 11. Suiso bunsan yuso chozoyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Developmental researches have been performed on hydrogen absorbing alloys intended to be applied to stationary and moving objects. This paper summarizes the achievements in fiscal 1999. As a method for evaluating effective hydrogen absorption amount, proposals were made on definition and measuring method for effective hydrogen absorption amount assuming hydrogen absorption at 20 degrees C, and 10 and 30 atmospheric pressures, and hydrogen discharge at 100 degrees C and one atmospheric pressure. In the research of an Mg-Ni based alloy, the Mg based alloy having the Laves composition, treated by mechanical grinding was found to discharge hydrogen of 0.2 to 0.35% by mass at 423K. This discharge temperature is the lowest among the Mg based alloys having been developed to date. In the research of the V based hydrogen absorbing alloy, the V-Ti-Cr-Mn alloy was developed successfully that discharges hydrogen of 2.64% by mass when hydrogen absorbed at 273 K and 3.3 MPa is discharged at 373 K and 0.01 MPa. Furthermore, development has been made on the V-Ti-Cr-Mn-Ni alloy that shows high effective hydrogen absorption amount without being treated by heat. This alloy has as high effective hydrogen absorption amount as 2.47% by mass under the above described conditions. (NEDO)

  16. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 4. Development of motive power generation technology; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 4. Doryoku hassei gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the WE-NET Phase II for Task-4, the development of a motive power generation technology. The objective is to build a 100-kW class single cylinder hydrogen-argon circulating diesel system. For a hydrogen injection valve being the key to the system, development was made on the conventional hydraulic system with quick compression, expansion, and electronics control. Discussions were given on an exhaust gas condenser and a gas-liquid separator to handle gas mixture with low steam concentration. In order to assure the mechanical strength to deal with the argon working gas, super-chargers and expansion turbines were also discussed. When the hydrogen injection pressure is increased from 20 to 25 MPa in the basic test, the combustion speed has increased, and the indicated thermal efficiency has been improved. The same effect was obtained also when the oxygen/argon ratio was increased. Although the thermal loss increases if the oxygen/argon ratio is increased, the loss in the indicated thermal efficiency is compensated by the gain derived from increasing the combustion speed. When argon is used as the working gas, the temperatures in parts of the combustion chamber rise much higher than that in the case of a light oil diesel system. Therefore, discussions were given on materials and structures that can withstand elevated temperatures, and assessments and tests were performed on high-temperature lubricants. (NEDO)

  17. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 12. Search and assessment of innovative and leading technologies; Suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 12. Kakushinteki sendoteki kenkyu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Search and assessment were carried out on innovative and leading technologies which are outside the development objects at the present, but are promising for the future. This paper describes the achievements in fiscal 2000. In the hydrogen manufacturing method using natural gas as the raw material, but not generating carbon dioxide, a method using plasma has the hydrogen conversion rate of more than 90%, capable of providing carbon black with added value. On a hydrogen selective enzyme hydrogenase sensor, verification was given on its sensitivity and response speed, but the discussion was interrupted because of difficulty in obtaining the enzyme. Naphthenic hydrogen storage and transportation media (easy in hydrogenation and dehydrogenation) were discussed, whereas the reaction promoting effect was identified in both of the super heating liquid film process and the membrane reactor system. Enhancement in output and efficiency may be anticipated if hydrogen-rich reformed gas is obtained by reforming methane (natural gas) by utilizing waste heat from a gas turbine of several MW capacity. Hydrogen liquefaction technologies using the magnetic freezing process was discussed as the fundamental research assignment, wherein fiscal 2000 has studied the basic design and optimal magnetic materials. (NEDO)

  18. Fiscal 1999 hydrogen utilization international clean energy system technology (WE-NET). Phase 2 R and D (Task 3) -research/study concerning international cooperation (Volume 1. research/study for promoting international cooperation); 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 3. Kokusai kyoryoku ni kansuru chosa kenkyu (1. kokusai kyoryoku suishin no tame no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Various measures were implemented with the aim of realizing the 'longterm vision for international cooperation' in connection with hydrogen utilization international clean energy system technology (WE-NET) formulated in fiscal 1996. The English version of the 1998 annual summary report on results was distributed to approximately 170 pertinent organizations overseas. To develop understanding of the WE-NET project, presentations were given in numerous international conferences. In addition, as research cooperation in IEA (International Energy Agency), specialists were dispatched to the hydrogen implementation committee, the corresponding committee to hydrogen implementation agreement, and to each annex. In international exchange of technical information, each WE-NET task exchanged information with organizations abroad through overseas survey and conducted research on European hydrogen project, for example. With the purpose of developing understanding of WE-NET project activities, a preparatory work was done for participation in HYFORUM2000 (Germany) and World Hydrogen Energy Conference (Beijing) which will be held in 2000. (NEDO)

  19. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen - WE-NET (Sub-task 5. Development of hydrogen transportation and storage technology - Edition 3. Development of liquid hydrogen storage facility); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) (Sub tusk 5: Suiso yuso chozo gijutsu no kaihatsu - Dai 3 hen. Ekitai suiso chozo setsubi no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    With an intention to establish a technology required to build a hydrogen storage tank with a storage capacity of 50,000 m{sup 3} as the target shown in the basic plan for WE-NET, the current fiscal year has performed the technical literature surveys to identify the existing technologies. In the survey on the similar large storage system, a liquefied natural gas (LNG) was taken up, and the survey on the LNG bases in Japan was carried out. With regard to the existing liquefied hydrogen storage system, surveys were performed on the test site for developing the liquefied hydrogen/liquefied oxygen engines, the rocket launch sites, and liquefied hydrogen manufacturing plant. In relation with peripheral technologies for the underground storage tank being an excellent anti-seismic form, the LNG underground storage facilities were surveyed. Regarding the rock mass storage tank, surveys were carried out on the LPG rock mass storage having been used practically, and the LNG rock mass storage that is in the demonstration phase. In the research on storage facilities, surveys were executed on the forms and heat insulation structures of the similar large low-temperature storage tanks, the use record of the existing liquefied hydrogen storage tanks, heat insulating materials, and heat insulating structures. (NEDO)

  20. Fiscal 1997 survey report. Subtask 5 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen transportation/storage technology. 2. development of the liquid hydrogen transportation tanker); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 5 suiso yuso chozo gijutsu no kaihatsu dai 2 hen ekitai suiso yuso tanker no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Technology development is being conducted for construction of the long distance transportation tanker of large quantity liquid hydrogen. In fiscal 1997, test pieces of thermal insulating materials to be planned for fiscal 1998 were designed and studied. The purpose of the test is to confirm thermal insulating performance and behaviors of each material under the temperature of liquid hydrogen. The inside of the outer tank of the experimental equipment was held at vacuum of 10{sup -6} to 10{sup -7} Torr to exclude thermal convection effects and evaluate only heat coming from heater through the test piece. The heat from the heater at the lower part of the test piece is through the test piece and makes the liquid hydrogen of the upper tank evaporate. Thermal conductivity of the test piece is calculated from the evaporation quantity. As to PUF (polyurethane foam) panels, studied were reformation preventive measures, influential evaluation of the side transfer heat quantity, and the time required for vacuuming. In the vacuum panel, study subjects were extracted on the selection of core materials, reformation preventive measures, deterioration with age, the practical manufacturing method of experimental panels, etc. As to the super insulation, subjects were studied on the performance measuring method/accuracy, measures against heat transfer from the inside of the experimental equipment, control of the vacuum degree, etc. 10 refs., 45 figs., 6 tabs.

  1. Fiscal 1997 survey report. Subtask 8 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen combustion turbines/development of combustion control technology); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system (WE-NET) subtask 8 suiso nensho turbine no kaihatsu nensho seigyo gijutsu no kaihatsi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Concerning the development of hydrogen combustion turbines, the paper described the fiscal 1997 results. As a hydrogen/oxygen combustor, the annular combustor was studied. Based on the results obtained by the last fiscal year, a combustor for the evaluation test was designed/fabricated. Oxygen is mixed with vapor at the portion of the burner, rotated/jetted (flame held by the circulation flow generated) and made to burn with hydrogen (porous injection). The smooth ignition and equilibrium wall temperature distribution were made possible. Concentrations of the residual hydrogen/oxygen in the stoichiometric mixture ratio combustion were both less than 1%. Further, can type combustor I is a type in which hydrogen and oxygen are burned near the burner and then are diluted by vapor. Improved of the burner structure and diluted vapor hole, it was tested. In can type combustor II, a mixture of oxygen and vapor is supplied and burned with hydrogen. The appropriate supply of oxygen was 20% distribution to the primary scoop and 80% to secondary. In both combustors, smooth ignition was possible, and concentrations of the residual hydrogen/oxygen in the stoichiometric mixture ratio combustion were controlled at minimum (approximately 1%). The evaluation method for the optimum hydrogen/oxygen combustor was studied. 142 figs., 24 tabs.

  2. Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 8. Development of hydrogen production technology; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 8. Suiso seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development was carried out to establish a hydrogen production technology in the electrolysis of water using the solid macromolecular electrolyte method expected to be more efficient and less costly than the conventional hydrogen production methods. In the development of large area electrolysis cell lamination, a lamination comprising ten 2,500cm{sup 2} cells was fabricated, and a value exceeding the target energy efficiency of 90% was achieved. In the fabrication of stacks for hydrogen service stations, a lamination of ten cell stacks of 1,000cm{sup 2} was built, which achieved energy efficiency of not less than 90% at the an electrolysis temperature of 100 degrees C. A hydrogen production plant conceptual design was prepared under the conditions of hydrogen generation amount: 10,000Nm{sup 3}/h, electrode area: 10,000cm{sup 2}/cell, current density: 2.5A/cm{sup 2}, operating temperature: 120 degrees C, cell voltage: 1.705V, total number of cells: 976, stack constitution: 122/stack, and the number of stacks: 8. The result of studies placed the plant construction cost at 2.18-billion yen including building and civil engineering costs, and the hydrogen production unit cost at 28.4 yen/Nm{sup 3}. (NEDO)

  3. Hydrogen photoproduction by photoelectrochemical conversion

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The water-splitting reaction by photoelectrochemical processes has gained much more attention than any of many reactions proposed for solar generation of energy-rich molecules (fuels). The conversion efficiency of the photosystem is the key factor. The higher the efficiency, the more economically feasible will be the conversion scheme. The conversion efficiency is a function of the semiconductor properties, light intensity, spectral quality, properties of the electrolyte, counterelectrode, cell configuration, etc. The semiconductor parameters include band gap, absorption coefficient and diffusion length. The area and material used for a counterelectrode are important when considering polarization losses in a two-electrode system. Besides, the stability problem is also a very important one to meet the requirement for practical applications. This paper reviews some important issues on photoelectrochemical generation of hydrogen by water splitting. It includes energy conversion efficiency, market assessment and cost goal, state of the technology, and future directions for research

  4. Fiscal 1999 hydrogen utilization international clean energy system technology (WE-NET). Phase 2 R and D (Task 8) - development of hydrogen production technology; 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 8. Suiso seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    R and D was conducted with the view of establishing hydrogen production technology based on the solid high polymer electrolyte water electrolysis method, which presumably offers higher efficiency and lower cost than conventional methods. This year, as well as implementing development of large-scale cell lamination (electrode area 2,500 cm{sup 2}, 10 cells) by using two hydrogen production methods (electroless plating method and hot press method), work was started for developing cells (electrode area 1,000 cm{sup 2}) for hydrogen stations. In the research on longterm durability improvement, with a 50 cm{sup 2} membrane electrolyte or cell, the evaluation test results were obtained of stable electrolytic performance showing more than 93% energy efficiency after 400 hour operation, under the conditions with electrolysis pressure 0.4MPa and electrolysis temperature 120 degree C. In a test of 1,000 cm{sup 2} prototype cell for hydrogen stations, the evaluation result was obtained for energy efficiency of 92% under the conditions with electrolysis pressure 0.5MPa and electrolysis temperature 120 degree C; thus, this year's target efficiency of over 90% was achieved. Further, enhancement of the quality was contrived for example by improving the electroless plating method and remodeling a roll press machine. (NEDO)

  5. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 9. Development of liquid hydrogen transportation and storage technologies - 1; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 9. Ekitai suiso yuso chozo gijutsu no kaihatsu - 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the development of liquid hydrogen transportation and storage technologies. Discussions were given on the following three types of specimens as the heat insulation performance test structures: the vacuum panel type (polyurethane foam coated with SUS sheet, while the inside is kept in the vacuum state); the solid vacuum type (combination of polyurethane foam with vacuum heat insulation); and the powder under normal pressure type (a structure in which the ambient of powder pearlite heat insulating material becomes the atmospheric pressure, whereas a SUS case is set up to separate vacuum layer of the test apparatus from atmosphere layer of the specimen, with the SUS case filled with pearlite). Adding the two types of specimens used in the previous fiscal year, five test specimens in total were discussed on the result of the performance tests to advance the database management. As a low temperature strength test for the insulating materials, the compression test was performed on a microsphere being a kind of solid vacuum (normal pressure) heat insulating materials at room temperature, the liquid nitrogen temperature and in liquid hydrogen atmosphere. The compression strength under liquid hydrogen is 1,044 MPa, which is two times greater than the normal temperature strength of 496 MPa, representing the compression strength rising in proportion with temperature drop. Problems were extracted in developing a small capacity liquid hydrogen transportation and storage system. (NEDO)

  6. Achievement report for fiscal 1998 on World Energy Network (WE-NET). Subtask 5. Development of hydrogen transportation and storage technologies (development of liquid hydrogen storage facilities); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 5. Suiso yuso chozo gijutsu no kaiahtsu (ekitai suiso chozo setsubi no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    An insulation structure suitable for large tanks was tested for insulation capability and strength at the liquid hydrogen temperature for the development of liquid hydrogen storage facilities. For the insulation test, a specimen was built of a porous solid material, and the specimen was given an additional duty of serving a test of a high temperature plate that was to impose loads on the specimen. The test conditions were not met, however, with too much variation in presence in temperature distribution. For the structural material compressive strength test, a method was worked out involving a hard urethane foam material specimen in liquid hydrogen, and was implemented. It was found that the specimen fracture that occurred was in the form of the collapse of the loaded surface. Tests were conducted at three temperatures, which were the normal temperature, the liquid nitrogen temperature, and the liquid hydrogen temperature, and compressive strength was determined for each of the three cases. No great difference in strength resulted from the difference between the two low temperatures. As for compressive strength at low temperatures, it was found that the strength was approximately two times greater than at the normal temperature. The above findings indicate that hard polyurethane foam is on the safe side when it is designed for the normal temperature. (NEDO)

  7. Fiscal 1999 hydrogen utilization international clean energy system technology (WE-NET). Phase 2 R and D (Task 3) - survey/study concerning international cooperation (Survey/study concerning standardization of hydrogen energy technology); 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 3. Kokusai kyoryoku ni kansuru kenkyu (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With the aim of R and D of hydrogen energy technologies and the promotion of their practical use and proliferation, conducted were research on standardization of hydrogen energy technologies and research/study on draft international standards proposed by ISO/TC197. In the research on the standardization, legislation, rules and guidelines for Japan were compiled based on reference to the materials in the 'sourcebook for hydrogen applications' which was prepared in the U.S./Canada. The Japanese laws and regulations applicable to hydrogen are the high pressure gas safety law, fire service law, industrial safety and health law, building standard law, law on prevention of disasters in petroleum industrial complexes and other petroleum facilities, road vehicles act, road traffic law, harbor regulation law, etc., with related legislation compiled under headings classified as pressure containers, gas facilities, consumption, transportation, explosion proofing of electrical equipment, list of laws, and related documents. In reference to ISO/TC197, the 8th plenary meeting and WGs were held during April 6-8, 1999, in the U.S., where the progress status report, study contents, future schedule for newly proposed items, etc., of each WG were reviewed and discussed. (NEDO)

  8. Fiscal 1999 hydrogen utilization international clean energy system technology (WE-NET). Phase 2 R and D (Task 3) - survey/study concerning international cooperation (Survey/study concerning standardization of hydrogen energy technology); 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 3. Kokusai kyoryoku ni kansuru kenkyu (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With the aim of R and D of hydrogen energy technologies and the promotion of their practical use and proliferation, conducted were research on standardization of hydrogen energy technologies and research/study on draft international standards proposed by ISO/TC197. In the research on the standardization, legislation, rules and guidelines for Japan were compiled based on reference to the materials in the 'sourcebook for hydrogen applications' which was prepared in the U.S./Canada. The Japanese laws and regulations applicable to hydrogen are the high pressure gas safety law, fire service law, industrial safety and health law, building standard law, law on prevention of disasters in petroleum industrial complexes and other petroleum facilities, road vehicles act, road traffic law, harbor regulation law, etc., with related legislation compiled under headings classified as pressure containers, gas facilities, consumption, transportation, explosion proofing of electrical equipment, list of laws, and related documents. In reference to ISO/TC197, the 8th plenary meeting and WGs were held during April 6-8, 1999, in the U.S., where the progress status report, study contents, future schedule for newly proposed items, etc., of each WG were reviewed and discussed. (NEDO)

  9. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen - WE-NET (Sub-task 5. Development of hydrogen transportation and storage technology - Edition 4. Development of different common devices); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) (Sub tusk 5: Suiso yuso chozo gijutsu no kaihatsu - Dai 4 hen. Kakushu kyotsu kikirui no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    In developing hydrogen transportation and storage technologies based on the WE-NET project under the theme of the 'development of different common devices', surveys and discussions have been performed on four themes with high urgency. It was revealed that, with respect to the large liquid hydrogen pump, the survey report should be reported on the pump models, motors, reduction of NPSH, and bearings, and that the cryogenic pump technology has a necessity of further development because the technology is biased to pumps for rocket with high head. With regard to the vacuum heat-insulated piping with large diameters, such strict problems in the technological development were made clear as high heat insulating performance, optimization of the shield structure, measures for thermal stress, anti-seismic measures, and sealing mechanism at joints, in addition to the vacuum heat insulating piping technology that has been built to date. The liquid hydrogen valve is subjected to a technological problem of the very low temperature and combustion performances of liquid hydrogen, which requires further researches. With respect to the instrumentation facilities, as a result of discussing the liquid level meter system and the flow rate meter system, it was found that there is no almighty method, whereas selection of the method should be as required in particular situation. (NEDO)

  10. Hydrogen utilization international clean energy system technology (WE-NET). Subtask 8. Research and development of hydrogen combustion turbines (development of ultra-high temperature materials); Suiso riyo kokusai clean energy system (WE-NET). Subtask 8. Suiso nensho turbine no kenkyu kaihatsu chokoon zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper described the result of the fiscal 1996 development of ultra-high temperature materials for parts of hydrogen combustion turbines, as part of the hydrogen utilization technology, which have excellent environmental protectivity and remarkably high efficiency. By the optimized solution heat treatment of monocrystal alloy developed in the previous fiscal year, obtained was strength property the same as the existing super alloys. As to FRC, pore size and strength property of SiC organic hybrid were made clear. ODS alloy cooling blades and heat insulation coating were studied, and YSZ was found to be most excellent as coating material. Concerning intermetallic compounds, the applicability to ultra-high temperatures up to 1700degC was not obtained. For improvement of heat resistance and environment resistance, adopted were highly compacting SiC matrix and BN coatings. Al2O3 was excellent in long-time stability. In the 1600degC steam corrosion test on multiplex structural materials with Al2O3 as surface material, chemical stability was confirmed. Three-dimensional woven fiber reinforced composite materials of C/C{center_dot}CMC were trially produced by changing the fiber orientation, and improvement in ultra-high temperature thermal shock resistance was confirmed. A study was made of spot observation of the specimen surface by laser microscope, and development was conducted of a temperature measuring method with no influence of radiant heat. 44 refs., 250 figs., 40 tabs.

  11. Hydrogen utilization international clean energy system technology (WE-NET). Subtask 8. Development of hydrogen combustion turbines (development of the main component devices such as turbine blades and rotors); Suiso riyo kokusai clean energy system gijutsu (WE-NET). Subtask 8. Suiso nensho turbine no kaihatsu (turbine yoku, rotor nado shuyo kosei kiki no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper described the result of the fiscal 1996 development relating to hydrogen combustion turbines, as one of the hydrogen utilization technologies, which have excellent environmentality and are expected of remarkably high efficiency. In the film cooling system of first-stage moving/stationary blades, the smaller the pitch of film pore is, the higher the mean cooling efficiency becomes, indicating 0.7 at maximum. As compared with the conventional shower head type, the metal temperature can be reduced 30-40degC. In the recovery type inner (convection) cooling system, by reducing the blade number, the consumption amount of coolant can be reduced 6% in stationary blade and 13% in moving blade, as compared with the result of the preceding year. In the element test of the hybrid cooling system, film cooling efficiency was actually measured by the porous module test equipment, and the result well agreed with the calculation result. In the water cooling system, studied were water (stationary blade) and vapor (moving blade) of the closed cooling structure for realization of a cycle efficiency of 60%. In rotor/disk cooling, analyses were made of seal characteristic grasp tests and characteristics of the rotor. The effect of deflection in the mainstream was small. Besides, proper value of the seal overlapping amount could be obtained. 6 refs., 368 figs., 55 tabs.

  12. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen - WE-NET (Sub-task 8. Development of hydrogen burning turbines - Development of main components including turbine blades and rotors); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) (Sub tusk 8: Suiso nensho tabin no kaihatsu - tabin yoku rota tou shuyou kosei kiki no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Among the research and development items in relation with the 'development of hydrogen burning turbines' based on the WE-NET project, surveys have been performed on developing the main components including turbine blades and rotors. The current fiscal year has surveyed the latest trends in the existing gas turbine and rotor cooling technologies, and the technological problems were extracted from the viewpoint of application to the hydrogen fueled turbines. Since the hydrogen fueled turbines have the entrance temperature higher than that of power generation gas turbines, development of the blade cooling technology is important. Main cooling methods available are the film cooling and transpiration cooling, whose technological development is necessary in the advanced forms. Cooling method for the inner side of blades includes the impingement cooling and the pin fin cooling, whereas the V-letter shaped turbulence accelerating rib and the serpentine flow path structure are considered promising. Increasing the anti-heat temperature of blades may be realized by utilizing ceramics. As a technology close to putting it into practical use, application of heat shield coating is promising. (NEDO)

  13. Fiscal 1997 survey report. Subtask 8 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (R and D of hydrogen combustion turbines/development of ultra-high temperature materials); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 8 suiso nensho turbine kenkyu kaihatsu chokoon zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the application to hydrogen combustion turbines, the R and D were continued of heat resistant alloys, ceramic composite materials, and carbonaceous composite materials. In the development of highly efficient super alloy single crystal materials, as to the single crystal alloy (Ni-5.3Al-0.5Ti-6.0Mo-4.8W-6.0Re) and an alloy made by adding 0.15%Si to the above alloy and an alloy made by adding 2.0%Hf to the above alloy, data on high temperature tensile property and creep rupture property were obtained, and it was confirmed that Hf added alloys were excellent in strength. Relating to the development of fiber reinforced ceramics, materials for trial fabrication were fabricated by the CVI method using SiC fiber, and the evaluation test was conducted to obtain the basic data. Besides, the following were carried out: study of coating for heat resistant alloy cooled blades, development of ceramic composite materials, development of ceramic multi-structure materials and analysis of fracture behaviors under the ultra-high composite environment, development of 3D fiber reinforced composite materials, development of technology to evaluate basic properties of ultra-high temperature materials, etc. 46 refs., 217 figs., 43 tabs.

  14. Worldwide clean energy system technology using hydrogen (WE-NET). subtask 8. Research and development of hydrogen combustion turbines (evaluation of the optimum system); Suiso riyo kokusai energy system gijutsu (WE-NET). subtask 8. Suiso nensho turbine no kenkyu kaihatsu (saiteki system no hyoka)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Based on the proposed cycle of each contractor, conceptual design of 500 MW class hydrogen combustion turbine power generation plant has been completed through its economic examination. The optimum system has been evaluated on the basis of the conceptual design. For the conceptual design of power generation plant, the gross power generation efficiencies based on HHV of topping regenerating cycle and new Rankine cycle proved to be 61.8% and 61.7%, respectively, which exceed the target efficiency 60%. Economic consideration proved that the construction cost of each cycle will be as the same as that of the current combined cycle power generation plant. The development problem, development step and development cost have become clear. Examination on the reliability proved that the operation reliability of each cycle will be as the same as that of the current combined cycle power generation plant. Examination on the plant layout proved that the conservation of space for each system will be smaller than that of current combined cycle power generation plant. Environmental examination confirmed that each system is very clean power generation system. For the evaluation proposed by each company, the total points of each system became in the order, topping regeneration cycle, new Rankine cycle, and Rankine cycle with reheat and recuperation. 112 figs., 44 tabs.

  15. Report on the achievements in fiscal 1998. Hydrogen utilizing international clean energy system technology (WE-NET). Subtask 8. Development of hydrogen combustion turbine (development of major components such as turbine blades and rotors); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 8. Suiso nensho turbine no kaihatsu (turbine yoku, rotor nado shuyo kosei kiki no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The present research and development is intended to establish the fundamental technologies required to develop a pilot plant, by investigating development of such major component devices as turbine blades and rotors in a hydrogen combustion turbine. In the turbine moving and stator blade cooling technology, it is intended to achieve the power plant efficiency of 60% (based on HHV) as established in the interim evaluation performed in fiscal 1996. Therefore, the necessary element tests, detailed blade design, and partial fabrication were moved forward on the three kinds of the selected blade cooling systems as the cooling systems that can deal with the steam temperature condition as high as 1,700 degrees C. Fiscal 1998 will execute the design and fabrication of test blades and testing devices for blade cooling evaluation tests to be performed at Tashiro Township in Akita Prefecture. At the same time, evaluation and selection will be made on the three kinds of the cooling blades. In the rotor cooling technology, for the purpose of analyzing the rolling-in phenomenon of steam in the main turbine flow, a method will be developed to analyze rotor disk cavity temperatures based on CFD, the basic sealing conditions based thereon will be discussed, and generalization will be made on the rotor cooling technology. (NEDO)

  16. Fiscal 1997 survey report. Subtask 3 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (total system/nation-level energy estimation and assessment); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 3 zentai system ikkoku kibo deno yosoku hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    With relation to the energy supply/demand in Japan toward the second half of the 21st century, an analysis was made using the MARKAL model to predict the amount of hydrogen introduction in the future. As in the last fiscal year, conditions of the study of IEA/ETSAP were continuously used. It was decided on that hydrogen was produced by hydroelectric/photovoltaic power generation overseas. Prices were made 14 yen and 27 yen/103 kcal. The limit price of introduction of import hydrogen was calculated. During the period from 2030 to 2050, if the hydrogen price is less than 7 ten/103 kcal, the result showed that hydrogen can be introduced in a lot of scenarios (case of the severe control of CO2 emissions, case of high priced fossil fuels, case of the low capacity of the development of nuclear power generation, etc.) As the form of hydrogen use, promising are the hydrogen combustion turbine power generation, mixture with town gas (hythane) and hydrogen cars. However, a precondition for the introduction is that the cost of hydrogen car should be more economical than the competitive means of transportation. As to hydrogen combustion turbines and hythane, the quantity of hydrogen introduction depends little on variations of characteristics of the equipment used. 11 refs., 55 figs., 21 tabs.

  17. Fiscal 1999 hydrogen utilization international clean energy system technology (WE-NET). Phase 2 R and D (Task 1. Survey/study concerning system evaluation); 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 1. System hyoka ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With the aim of formulating a strategy for introducing hydrogen, assessment was carried out on the energy consumption, environmental impacts and cost effiectiveness concerning various hydrogen utilization systems. In regard to soda-electrolysis by-product hydrogen and coke-oven by-product hydrogen, hydrogen supply capacity and cost effectiveness were evaluated. As a result, the two systems were found to have an annual hydrogen supply capacity of 11.52 GNm{sup 3} in total. As to the cost effectiveness, transportation by pipeline was 34 yen/Nm{sup 3}-H{sub 2} in the case of soda-electrolysis by-product hydrogen, and 40 yen/Nm{sup 3}-H{sub 2} in the case of coke-oven by-product hydrogen. An estimated cost of power generation showed 56 yen to 67 yen/kWh in such a system on remote islands as replacing diesel power generation by wind power generation, storing part of the electric energy produced in the form of hydrogen through water electrolysis, and using it as fuel for power generation by the fuel cell unit if wind conditions are unfavorable. Power generation cost on remote islands at present is sometimes in excess of 50 yen/kWh; therefore, this combined system showed promising results. The cost of using wooden biomass was estimated to be 51,000 yen/TOE , whose competitiveness is uncertain. (NEDO)

  18. Fiscal 1997 survey report. Subtask 3 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (conceptual design of the total system/city-level energy estimation and assessment); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask zentai system gainen sekkei (toshi kibo deno yosoku hyoka)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper described the fiscal 1997 result of the study of scenarios for introducing hydrogen to the urban area. In the case of studying it in London, it was found that hythane (mixture of hydrogen into town gas) was effective, but in the case of doing in Tokyo, it was found that the scenario was undesirable because of the increasing infracost. Accordingly, another scenario was studied. It was assessed from the aspects of environmental advantages, infracosts, and potential advantageous values in urban areas associated with hydrogen utilization (hydrogen premium). It is most effective to use hydrogen as a fuel of transportation means from the aspect of environmental merits as the decrease in external cost. In Tokyo, the dependence upon electric power is large, and therefore it is attractive to introduce highly efficient fuel cells which enable the dispersed cogeneration using hydrogen. The value of hydrogen is determined by the avoidance of environmentally influential substances and the surplus generated output by fuel cells (substitution for the existing natural gas). When the high external cost can be assumed, the value of hydrogen becomes large. The paper also considered the arrangement of infrastructures in Tokyo. 187 refs., 14 figs., 18 tabs.

  19. Achievement report for fiscal 1998 on World Energy Network (WE-NET). Subtask 8. Development of hydrogen combustion turbine (Development of main accessories); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) seika hokokusho. 8. Suiso nensho turbine no kaihatsu (shuyo hokirui no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report covers the effort to develop hydrogen-fueled turbines under the international clean energy project. In the development of technologies for the use of liquid hydrogen cold heat, studies are conducted about the emergency stop of an air separating device for a 1,000MW power plant and about a backup system, various details and specifications are defined, and a tentative design is prepared for the whole system. Studies are made about economic efficiency, which lands on a oxygen production cost of 10.92 yen/Nm{sup 3}. In the development of high-temperature heat exchangers, the results are evaluated of the competition which has been under way since 1997 between two entrusted corporations over the topping regeneration cycle technology. In this fiscal year, the evaluation is accomplished by the main accessories development subcommittee, and the Toshiba Corporation wins first place, and the Mitsubishi Heavy Industries, Ltd., second place. It is found, however, that the conceptual designs are both feasible from the technological point of view. In addition, tasks to study for the next project are put together. (NEDO)

  20. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen (WE-NET) (Sub-task 5. Development of hydrogen transportation and storage technology) (Edition 5. Development of hydrogen absorbing alloys for discrete transportation and storage); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) . Sub tusk 5. Suiso yuso chozo gijutsu no kaihatsu - Dai 5 hen. Bunsan yuso chozo you suiso kyuzo gokin no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Surveys and researches have been performed with an objective to accumulate knowledge required for R and D of a hydrogen transportation and storage technology. With respect to the hydrogen absorbing alloys for hydrogen transportation and storage, surveys have been carried out on the rare earth-nickel based alloy, magnesium based alloy, titanium/zirconium based alloy, vanadium based alloy, and other alloys. Regarding the hydrogen transportation and storage technology using hydrogen absorbing alloys, surveys have been made on R and D cases for hydrogen transporting containers, stationary hydrogen storing equipment, and hydrogen fuel tank for mobile equipment such as automobiles. For the R and D situation in overseas countries, site surveys have been executed on research organizations in Germany and Switzerland, the leader nations in R and D of hydrogen absorbing alloys. As a result of the surveys, the hydrogen absorbing alloys were found to have such R and D assignments as increase of effective hydrogen absorbing quantity, compliance with operating conditions, life extension, development of alloys easy in initial activation and fast in hydrogen discharge speed, and cost reduction. Items of the transportation and storage equipment have such assignments as making them compact, acceleration of heat conduction in alloy filling layers, handling of volume variation and internal stress, and long-term durability. (NEDO)

  1. Hydrogen utilization international clean energy system technology (WE-NET). Subtask 5. Development of technology of hydrogen transportation/storage (3rd edition, development of liquid hydrogen storage equipment, report on results of Air Liquide); Suiso riyo kokusai clean energy system gijutsu (WE-NET). Subtask 5. Suiso yuso chozo gijutsu no kaihatsu (daisanpen ekitai suiso chozo setsubi no kaihatsu Air Liquide sha seika hokoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    In the fiscal 1995 study, items were searched which are keys to the design of a liquid hydrogen tanker of a capacity of 200,000m{sup 3}. Among those, the basic concepts were summarized which are necessary for the design of a liquid hydrogen tanker in terms of safety, and the extraporation of the existing low temperature technology into the large liquid hydrogen tank was studied. When adopting safety conditions of IGC Code applied to LNG to the liquid hydrogen tanker, it is necessary to limit the discharge amount of hydrogen to 3 kg/s. When considering safety at fire, for keeping safety of the same level as that of the LNG tanker, it is not appropriate to adopt the conventional vacuum insulation liquid hydrogen tank. In the fiscal 1995 study, 7 kinds of concept of the insulation structure were assumed, and it was concluded that BOR of 0.04-0.23/d was obtained. Also in fiscal 1996, the large liquid hydrogen tank was studied. For insulation of the large liquid hydrogen tank, the structure is most promising where AEROSIL bag or homogeneous AEROSIL is substituted for a forming heat insulating material of 4 design, but further study is needed for selection of the optimum heat insulating structure. 9 figs., 6 tabs.

  2. Energy conversion using hydrogen PEM fuel cells

    International Nuclear Information System (INIS)

    Stoenescu, D.; Patularu, L.; Culcer, M.; Lazar, R.; Mirica, D.; Varlam, M.; Carcadea, E.; Stefanescu, I.

    2004-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (naphthalene, natural gas, methanol, coal, biomass), solar cells power, etc. It can be burned or chemically reacted having a high yield of energy conversion and is a non-polluted fuel. This paper presents the results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system consisting in a catalytic methane reforming plant for hydrogen production and three synthesis gas purification units in order to get pure hydrogen with a CO level lower than 10 ppm that finally feeds a hydrogen fuel stock. (authors)

  3. Fiscal 1997 survey report. Subtask 2 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (survey/study for the promotion of international cooperation; survey/study on the standardization for hydrogen energy technology); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 2 kokusai kyoryoku suishin no tame no chosa kento (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In relation to the basic study of the standardization for hydrogen energy technology and ISO/TC197, the results of the fiscal 1997 survey were summarized. From fiscal 1994 through 1996, in the wide-range field related to hydrogen energy technology, the survey of the present situation of the related standards/laws was made and the needs/subjects of standardization to be studied in the future were extracted. At the present stage, however, it is still early to enter into the stage of discussing the standardization. Therefore, in this fiscal year, only in the field of the storage/transportation/handling of liquid hydrogen, standards/laws abroad and in Japan were comparatively investigated for the basic study toward the standardization. Further, concerning ISO/TC197, studies were proceeded with of the liquid hydrogen land vehicle fueling system interface/fuel tanks/transportation containers/hydrogen fuel product specifications/airport hydrogen fueling facilities. Some are at the stage of drafting the international standard. Three drafts for the new standard were added such as gaseous hydrogen/hydrogen blend vehicular fuel systems, gaseous hydrogen fuel tanks, and basic requirements for safety of hydrogen systems. The standardization is indispensable to introducing the developed technology to the commercialization. 9 refs., 5 figs., 13 tabs.

  4. Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 3. Survey and research on international cooperation (Hydrogen energy technology standardization); 2000 nendo suiro riyo kokusai clean energy sytem gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. 3. Kokusai kyoryoku ni kansuru chosa kenkyu (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts were made to establish standards necessary to promote the research and development of hydrogen energy technology and the practical application and popularization of the technology. In the study of the base of hydrogen energy technology standardization, research was conducted about Japan's difference from other countries and tasks to discharge and problems to solve in this country, relative to laws and regulations governing the construction of 'hydrogen supply stations' constituting the core of studies in the above-mentioned phase II research and development efforts. Studies conducted toward diffusion into the general public included rules and regulations over the size of hydrogen storage and the distance between dangerous matters and fire. ISO/TC197 (hydrogen technology) was established with the aim of achieving standardization of the system and equipment pertaining to the production, storage, transportation, measurement, and utilization of hydrogen for energy purposes. In fiscal 2000, Working Group 1 registered an 'interface for automated liquid hydrogen fuel delivery system' and 'hydrogen product specifications.' Moreover, Working Groups 2 through 7 were also engaged in their activities, respectively. (NEDO)

  5. Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 3. Survey and research on international cooperation (Hydrogen energy technology standardization); 2000 nendo suiro riyo kokusai clean energy sytem gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. 3. Kokusai kyoryoku ni kansuru chosa kenkyu (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts were made to establish standards necessary to promote the research and development of hydrogen energy technology and the practical application and popularization of the technology. In the study of the base of hydrogen energy technology standardization, research was conducted about Japan's difference from other countries and tasks to discharge and problems to solve in this country, relative to laws and regulations governing the construction of 'hydrogen supply stations' constituting the core of studies in the above-mentioned phase II research and development efforts. Studies conducted toward diffusion into the general public included rules and regulations over the size of hydrogen storage and the distance between dangerous matters and fire. ISO/TC197 (hydrogen technology) was established with the aim of achieving standardization of the system and equipment pertaining to the production, storage, transportation, measurement, and utilization of hydrogen for energy purposes. In fiscal 2000, Working Group 1 registered an 'interface for automated liquid hydrogen fuel delivery system' and 'hydrogen product specifications.' Moreover, Working Groups 2 through 7 were also engaged in their activities, respectively. (NEDO)

  6. Tritiated hydrogen conversion on heated metallic surfaces

    International Nuclear Information System (INIS)

    Ionita, G.; Mihaila, V.; Purghel, L.; Rebigan, F.

    1995-01-01

    This work reports investigations on tritiated hydrogen conversion to tritiated water on heated metallic surfaces. The HT conversion process has been revealed for copper, aluminium and stainless steel W4541 surfaces in the temperature range 150 to 300 o C, in case of the static regime and in the range 250 to 400 o C for the dynamic case. The most significant catalytic activity was shown by the copper sample. Studies on this subject are used as input information for different nuclear accident scenarios implying tritium leakage

  7. A feasibility study of conceptual design for international clean energy network using hydrogen conversion technology

    International Nuclear Information System (INIS)

    Sato, Takashi; Hamada, Akiyoshi; Kitamura, Kazuhiro

    1998-01-01

    Clean energy is more and more required worldwide in proportion to actualization of global environmental issues including global warming. Therefore, it is an urgent task to realize promotion of worldwide introduction of clean energy which exists abundantly and is widely distributed in the world, such as hydropower and solar energy, while reducing the dependence on fossil fuel. However, since the renewable energy, differing from so called fossil fuel, is impossible to transport for long distance and store as it is, its utilization is subject to be limited. As one possible resolution of this kind of issues, 'International clean energy network using hydrogen conversion technology' which enables conversion of renewable energy from low cost hydropower into hydrogen energy and also into the transportable and storable form, is a meaningful concept. This system technology enables dealing of this hydrogen energy in international market as in the same manner as fossil fuel. It is considered to enable promotion of international and large scale introduction of such clean energy, along with the contribution to diversified and stabilized international energy supply. In this study, based upon the above-mentioned point of view and assumption of two sites, one on supply side and another on demand side of hydrogen energy, three systems are presumed. One of the systems consists of liquid hydrogen as transportation and storage medium of hydrogen, and the others intermediately convert hydrogen into methanol or ammonia as an energy carrier. A overall conceptual design of each system spanning from hydrogen production to its utilization, is conducted in practical way in order to review the general technical aspects and economical aspects through cost analysis. This study is administrated through the New Energy and Industrial Technology Development Organization (NEDO) as a part of the International Clean Energy Network Using Hydrogen Conversion (so-called WE-NET) Program with funding from

  8. Plasma thermal conversion of bio-oil for hydrogen production

    International Nuclear Information System (INIS)

    Guenadou, David; Lorcet, Helene; Peybernes, Jean; Catoire, Laurent; Osmont, Antoine; Gokalp, Iskender

    2012-01-01

    Numerous processes exist or are proposed for the energetic conversion of biomass. The use of thermal plasma is proposed in the frame of the GALACSY project for the conversion of bio-oil to hydrogen and carbon monoxide. For this purpose, an experimental apparatus has been built. The feasibility of this conversion at very high temperature, as encountered in thermal plasma, is examined both experimentally and numerically. This zero dimensional study tends to show that a high temperature (around 2500 K or above) is needed to ensure a high yield of hydrogen (about 50 mol%) and about 95 mol% of CO+H 2 . Predicted CO+H 2 yield and CO/H 2 ratio are consistent with measurements. It is also expected that the formation of particles and tars is hampered. Thermodynamic data of selected bio-oil components are provided in the CHEMKINNASA format. (authors)

  9. Conversion of methane to hydrogen by a pulsed plasma reactor

    International Nuclear Information System (INIS)

    Ghorbanzadeh, A. M.; Matin, N.; Parandvar, M. R.; Rasouli, C.; Mazouchi, A. M.

    2003-01-01

    A pulsed atmospheric glow discharge, employing corona as a preionization, was used to convert methane to hydrogen and higher hydrocarbons. The experimental results showed that the overall conversion and specific energy, defined as energy needed to dissociate one mole methane, was mainly dependent on E/P, banking capacitance, repetition rate and flow rate. The dependence on E/P, especially, is more pronounced. The minimum specific energy was less than 1 MJ and it is expected that it could be further lowered by choosing higher E/P, lower banking capacitance and introducing an oxidizer to enhance the conversion efficiency

  10. Photoelectrochemical based direct conversion systems for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Peterson, M.; Arent, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Photon driven, direct conversion systems consist of a light absorber and a water splitting catalyst as a monolithic system; water is split directly upon illumination. This one-step process eliminates the need to generate electricity externally and subsequently feed it to an electrolyzer. These configurations require only the piping necessary for transport of hydrogen to an external storage system or gas pipeline. This work is focused on multiphoton photoelectrochemical devices for production of hydrogen directly using sunlight and water. Two types of multijunction cells, one consisting of a-Si triple junctions and the other GaInP{sub 2}/GaAs homojunctions, were studied for the photoelectrochemical decomposition of water into hydrogen and oxygen from an aqueous electrolyte solution. To catalyze the water decomposition process, the illuminated surface of the device was modified either by addition of platinum colloids or by coating with ruthenium dioxide. These colloids have been characterized by gel electrophoresis.

  11. Conversion of carbon monoxide intensities tomolecular hydrogen abundances

    International Nuclear Information System (INIS)

    Kutner, M.L.; Leung, C.M.

    1985-01-01

    We present results of theoretical models (static spherical clouds with a microturbulent velocity field) to study the conversion of carbon monoxide (CO) line parameters into molecular hydrogen (H 2 ) column densities, N2. The three potential H 2 tracers that we investigate are the integrated 12 CO and 13 CO intensities, I 12 and I 13 , and the 13 CO LTE column density, N( 13 . We find that I 12 may be a reasonable tracer of N2 under conditions appropriate to the envelopes of giant molecular clouds and for studies involving cloud ensembles of different cloud sizes and velocity dispersions. However, it saturates under higher density conditions. It is important that empirical conversion factors be set using the types of objects to which they will be applied. For this reason, our analysis suggests that the conversion factor N2/I 12 for giant molecular clouds in the molecular ring of our galaxy may be a factor of 2 lower than the average used by many observers. This lower value is supported by some recent empirical determinations. The quantity I 13 is a good tracer of N2 over a wide range of densities but it is more sensitive to the actual 13 CO abundance. The quantity N( 13 is similar to I 13 as a good tracer of N2 except at low densities and temperatures. The ratio I 12 /I 13 may be used to delineate temperature and column density effects. Finally, we find a strong temperature dependence in the various conversion factors, with N2/I 12 scaling with gas temperature (T/sub k/ approximately as (T/sub k/)/sup -1.3/

  12. Biological conversion of hydrogen to electricity for energy storage

    International Nuclear Information System (INIS)

    Karamanev, Dimitre; Pupkevich, Victor; Penev, Kalin; Glibin, Vassili; Gohil, Jay; Vajihinejad, Vahid

    2017-01-01

    Energy storage is currently one of the most significant problems associated with mass-scale usage of renewable (i.e. wind and solar) power sources. The use of hydrogen as an energy storage medium is very promising, but is hampered by the lack of commercially available hydrogen-to-electricity (H2e) converters. Here we are presenting the first commercially viable, biologically based technology for H2e conversion named the BioGenerator. It is a microbial fuel cell based on electron consumption resulting from the respiration of chemolithoautotrophic microorganisms. The results obtained during the scale-up study of the BioGenerator showed a maximum specific current of 1.35 A/cm 2 , maximum power density of 1800 W/m 2 and stable electricity generation over a period spanning longer than four years. The largest unit studied so far has a volume of 600 L and a power output of 0.3 kW. - Highlights: • A commercially viable biological convertor of H 2 to electricity (BioGenerator) is proposed. • It has a short-term commercial potential and its economic analysis is quite promising. • The BioGenerator is the first commercially viable bio-technology for energy storage. • It is a power generation technology of which has a negative CO 2 emission.

  13. Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization.

    Science.gov (United States)

    Wagner, Shawn

    2014-06-01

    To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.

  14. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plechac, Petr [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mathematics; Univ. of Delaware, Newark, DE (United States). Dept. of Mathematics; Vlachos, Dionisios [Univ. of Delaware, Newark, DE (United States). Dept. of Chemical and Biomolecular Engineering; Katsoulakis, Markos [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Mathematics

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomass transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.

  15. Experimental-demonstrative system for energy conversion using hydrogen fuel cell - preliminary results

    International Nuclear Information System (INIS)

    Stoenescu, D.; Stefanescu, I.; Patularu, I.; Culcer, M.; Lazar, R.E.; Carcadea, E.; Mirica, D. . E-mail address of corresponding author: daniela@icsi.ro; Stoenescu, D.)

    2005-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (natural gas, methane, biomass, etc.), it can be burned or chemically react having a high yield of energy conversion, being a non-polluted fuel. This paper presents the preliminary results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system made by a sequence of hydrogen purification units and a CO removing reactors until a CO level lower than 10ppm, that finally feeds a hydrogen fuel stack. (author)

  16. Utilizing hydrogen in aqueous phase conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Baoxiang; Zhao, Chen; Li, Xuebing; Lercher, Johannes A. [Technische Univ. Muenchen, Garching (Germany). Technische Chemie II

    2010-12-30

    Hydrogen generation and selective hydrodeoxygenation of biomass are the key for the successful integration of biogenic carbon resources for energy carriers and intermediates. This includes the generation of hydrogen from biomass in the liquid phase and more importantly, for the direct utilization of the hydrogen generated into the molecules. We will outline this strategy with two groups of oxofunctionalized molecules, i.e., glycerol as example for the aliphatic group and substituted phenols as the aromatic group. (orig.)

  17. A rationale plan for conversion of Malaysia for solar hydrogen energy system and its benefits

    International Nuclear Information System (INIS)

    Ludin, N.A.; Kamaruddin, W.N.; Kamaruzzaman Sopian; Verizoglu, T.N.

    2006-01-01

    It expected that early in the next century, Malaysia production of petroleum and natural gas will peak, and thereafter production will decline. In parallel with this production decline, Malaysia income from fossil fuels will start to decline, which would hurt the economy. One possible solution for Malaysia is the of Malaysia is the conversion to a hydrogen energy system. In order to move towards a sustainable hydrogen energy system, a future strategy must be outlined, followed, and continually revised. This paper will underline the available hydrogen technologies for production, storage, delivery, conversion, transportation and end use energy applications for the implementation of hydrogen energy system. Therefore, this paper will also emphasis the key success factors to drive the rationale plan for conversion to hydrogen energy system for Malaysia

  18. Energy conversion, storage and transportation by means of hydrogen

    International Nuclear Information System (INIS)

    Friedlmeier, G; Mateos, P; Bolcich, J.C.

    1988-01-01

    Data concerning the present consumption of energy indicate that the industrialized countries (representing 25% of the world's population) consume almost 75% of the world's energy production, while the need for energy aimed at maintaining the growth of non-industrialized countries increases day after day. Since estimations indicate that the fossil reverses will exhaust within frightening terms, the production of hydrogen from fossil fuels and, fundamentally, from renewable sources constitute a response to future energy demand. The production of hydrogen from water is performed by four different methods: direct thermal, thermochemical, electrolysis and photolysis. Finally, different ways of storaging and using hydrogen are proposed. (Author)

  19. Photobiological production of hydrogen: a solar energy conversion option

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Lien, S.; Seibert, M.

    1979-01-01

    This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

  20. WE-NET substask 3. Conceptual design of total system (Safety measures and evaluation techniques); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 3. Zentai system gainen sekkei anzen taisaku hyoka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Under the hydrogen-utilizing international clean energy system technology project WE-NET (World Energy NET Work) in fiscal 1998, researches and studies were conducted to clearly define safety designs and to improve on accident-and-safety analyses. In relation with system safety design, investigations continued into Japanese and foreign manuals and regulations about the handling of hydrogen and its peripherals, and safe design guidelines (draft) were compiled. Anomalies and accidents supposed to be typical of each of the systems concerned were investigated. As for accident-and-safety analyses, incorporation of a turbulence model was studied in relation to models representing the leak, evaporation, and diffusion of liquid hydrogen, and improvement was achieved when the scope of evaluation was enlarged concerning the hydrogen detonation model. The integration of the two models was discussed for the due evaluation of a series of processes of liquid hydrogen leak, evaporation, diffusion, and detonation. Calculation was performed for two assumed accidents, and the results were found to justify the integration of the two models. (NEDO)

  1. Hydrogen production from biomass by thermochemical recuperative energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. [Tokyo Univ. (Japan). Dept. of Chemical System Engineering

    2002-07-01

    The authors conducted, using a thermogravimetric reactor, a kinetic study of production of thermochemical recuperative hydrogen from biomass. The four different biomass materials used were: cellulose, lignin, metroxylon stem, and coconut husk. Under both rapid heating and slow heating conditions, the weight changes of the biomass samples during the steam gasification or pyrolysis were measured at 973 Kelvin. Simultaneously, measurements of the evolution rates of low-molecular-weight gas products such as hydrogen, methane, carbon monoxide, and carbon dioxide were taken with the help of a mass spectrometer and a micro gas chromatograph (GC). The steam gasification of char significantly increased the amount of hydrogen and carbon dioxide production. The results also indicated that at higher heating rate, the cold gas efficiency of steam gasification was increased. This can be explained by the suppression of the tar production at lower temperature. 25 refs., 2 tabs., 10 figs.

  2. Anomalous ortho-para conversion of solid hydrogen in constrained geometries

    International Nuclear Information System (INIS)

    Rall, M.; Brison, J.P.; Sullivan, N.S.

    1991-01-01

    Using cw NMR techniques, we have measured the ortho-para conversion of solid hydrogen constrained to the interior of the molecular cages of zeolite. The conversion observed in the constrained geometry is very different from that of bulk solid hydrogen. Two distinct conversion rates were observed for short and long times. An apparently bimolecular conversion rate of 0.43% h -1 (one-fourth of the bulk value) dominates during the first 500 h, and the rate then increases to 2.2% h -1 . The initial slow rate is explained in terms of a reduced number of nearest neighbors and possible wall effects, and the fast rate is attributed to the formation of small ortho-H 2 Rclusters at later times. Surface effects due to magnetic impurities do not appear to determine the conversion rate in the samples studied

  3. Conversion of a gasoline internal combustion engine to operate on hydrogen fuel

    International Nuclear Information System (INIS)

    Bates, M.; Dincer, I.

    2009-01-01

    This study deals with the conversion of a gasoline spark ignition internal combustion engine to operate on hydrogen fuel while producing similar power, economy and reliability as gasoline. The conversion engine will have the fuel system redesigned and ignition and fuel timing changed. Engine construction material is of great importance due to the low ignition energy of hydrogen, making aluminum a desirable material in the intake manifold and combustion chamber. The engine selected to convert is a 3400 SFI dual over head cam General Motors engine. Hydrogen reacts with metals causing hydrogen embrittlement which leads to failure due to cracking. There are standards published by American Society of Mechanical Engineers (ASME) to avoid such a problem. Tuning of the hydrogen engine proved to be challenging due to the basic tuning tools of a gasoline engine such as a wide band oxygen sensor that could not measure the 34:1 fuel air mixture needed for the hydrogen engine. Once the conversion was complete the engine was tested on a chassis dynamometer to compare the hydrogen horsepower and torque produced to that of a gasoline engine. Results showed that the engine is not operating correctly. The engine is not getting the proper amount of fuel needed for complete combustion when operated in a loaded state over 3000 rpm. The problem was found to be the use of the stock injector driver that could not deliver enough power for the proper operation of the larger CM4980 injectors. (author)

  4. A Preliminary Neutral Framework for the Accident Sequence Evaluation for a Hydrogen Conversion Reactor

    International Nuclear Information System (INIS)

    Han, Seok Jung; Yang, Joon Eon

    2005-01-01

    A framework for an early stage PSA for a hydrogen conversion reactor has been proposed in this paper. The approach is based on a functional and top-down approach. A main concerning point of this approach is to use a design neutral framework. A design neutral framework of PSA can provide a flexibility to apply to several candidate design concepts or options. This neutral-framework idea was borrowed from a proposed regulatory framework in US NRC. The feasibility of our proposed approach has been assessed to be applied in an accident sequence analysis for a hydrogen conversion reactor

  5. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    Science.gov (United States)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  6. Mixed conductor anodes: Ni as electrocatalyst for hydrogen conversion

    DEFF Research Database (Denmark)

    Primdahl, S.; Mogensen, Mogens Bjerg

    2002-01-01

    Five types of anodes for solid oxide fuel cells (SOFC) are examined on an yttria-stabilised zirconia (YSZ) electrolyte by impedance spectroscopy at 850 degreesC in hydrogen. The examined porous anodes are a Ni/Zr(0.92)Y(0.16)O(2.08) (Ni/YSZ) cermet, a Ni/Ce(0.9)Gd(0.1)O(1.95) (Ni/CGI) cermet, a Ce......(0.6)Gd(0.4)O(1.8) (CG4) ceramic, a La(0.75)Sr(0.25)Cr(0.97)V(0.03)O(3) (LSCV) ceramic and a Ti(0.22) Y(0.16)Zr(0.92)O(2.52) (TiYSZ) ceramic, Addition of small amounts ( approximate to I w/o) of Ni to the electrode surface is found to improve electrode performance on mixed electronic and ionic...

  7. High Conversion of Styrene, Ethylene, and Hydrogen to Linear Monoalkylbenzenes

    Directory of Open Access Journals (Sweden)

    David Hermann Lamparelli

    2018-05-01

    Full Text Available 1-Alkylbenzenes as a precursor of surfactants, can be produced from ethylene, styrene, and hydrogen. These intermediates, lacking tertiary carbons, are environmentally more benign than commercial ones that bear the aromatic ring linked to an internal carbon of the aliphatic chain. The one-pot synthesis of highly linear 1-alkylbenzenes (LABs through the homogeneous catalysis of olefin poly-insertion from cheap and largely available reagents can be carried out with a high turnover and selectivity. A purposely designed reactor that allows for the fine control of the three components feed, along with temperature, plays a key role in this achievement. A turnover of 194 g of LABs per mmol of catalyst per hour can be obtained with the simultaneous removal of polyethylene as a by-product.

  8. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.

    Science.gov (United States)

    Wang, Ke-Yao; Foster, Amy C

    2012-04-15

    We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America

  9. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, T; Sakata, T

    1980-01-01

    The conversion of carbohydrates into H by a photocatalytic process is described. Powders of RuO/sub 2/, TiO/sub 2/, and Pt (weight ratio 10:100:5) were dissolved in H/sub 2/O containing sugar, starch, or cellulose and irradiated with UV. The cellulose reaction was also performed in 6M NaOH. The RuO/sub 2/-TiO/sub 2/-Pt powder acts as an electrochemical microcell; light of energy larger than the band gap of TiO/sub 2/ produces electron-hole pairs which separate and produce redox reactions at the particle-solution interface. The gases evolved using H/sub 2/O were mainly H and CO/sub 2/. H and Na/sub 2/CO/sub 3/ or NaHCO/sub 3/ were produced on irradiation of the NaOH solution at increased rates with respect to reactions in water.

  10. Carbon dioxide management by chemical conversion to methanol: HYDROGENATION and BI-REFORMING

    International Nuclear Information System (INIS)

    Wiesberg, Igor L.; Medeiros, José Luiz de; Alves, Rita M.B.; Coutinho, Paulo L.A.; Araújo, Ofélia Q.F.

    2016-01-01

    Highlights: • Evaluation of carbon dioxide conversion to methanol by two chemical routes. • HYDROGENATION: conversion via catalytic hydrogenation at high pressure. • BI-REFORMING: conversion via syngas from bi-reforming of natural gas. • HYDROGENATION is viable for hydrogen price inferior to 1000 US$/t. • BI-REFORMING is unable to avoid emissions; viable only if gas price is very low. - Abstract: Chemical conversion of carbon dioxide to methanol has the potential to address two relevant sustainability issues: economically feasible replacement of fossil raw materials and avoidance of greenhouse gas emissions. However, chemical stability of carbon dioxide is a challenging impediment to conversion requiring severe reaction conditions at the expense of increased energy input, therefore adding capital, operation and environmental costs, which could result in partial or total override of its potential sustainability as feedstock to the chemical and energy industries. This work investigates two innovative chemical destinations of carbon dioxide to methanol, namely a direct conversion through carbon dioxide hydrogenation (HYDROGENATION), and an indirect via carbon dioxide conversion to syngas through bi-reforming (BI-REFORMING). Process simulation is used to obtain mass and energy balances needed to support assessment of economic and environmental performance. A business scenario is considered where an industrial source of nearly pure carbon dioxide exists and an investment decision for utilization of carbon dioxide is faced. Due to uncertainties in prices of the raw materials, hydrogen (HYDROGENATION) and natural gas (BI-REFORMING), the decision procedure includes the definition of price thresholds to reach profitability. Sensitivity analyses are performed varying costs with greater uncertainty, i.e., carbon dioxide and methanol, and recalculating maximum allowable prices of raw materials. The analyses show that in a Brazilian scenario, BI-REFORMING is unlikely

  11. Development of a fermentation-based process for biomass conversion to hydrogen gas

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.; Urbaniec, K.; Grabarczyk, R.

    2010-01-01

    The production of hydrogen gas from biomass to meet the foreseen demand arising from the expected introduction of fuel cells is envisaged. Apart from the well-known gasification method, fermentative conversion can also be applied for this purpose. Two options of the latter method, that is,

  12. Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants

    Science.gov (United States)

    Awais Salman, Chaudhary; Schwede, Sebastian; Thorin, Eva; Yan, Jinyue

    2017-11-01

    Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc.) and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents the simulation model to predict the amount of biomethane produced by injecting the hydrogen and syngas. Hydrogen injection is modelled both in-situ and ex-situ while for syngas solely the ex-situ case has been studied. The results showed that 85% of the hydrogen conversion was achieved for the ex-situ reactor while 81% conversion rate was achieved for the in-situ reactor. The syngas could be converted completely in the bio-reactor. However, the addition of syngas resulted in an increase of carbon dioxide. Simulation of biomethanation of gas addition showed a biomethane concentration of 87% while for hydrogen addition an increase of 74% and 80% for in-situ and ex-situ addition respectively.

  13. Broadband wavelength conversion in hydrogenated amorphous silicon waveguide with silicon nitride layer

    Science.gov (United States)

    Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun

    2018-01-01

    Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.

  14. Ortho-para-H2 conversion by hydrogen exchange: comparison of theory and experiment.

    Science.gov (United States)

    Lique, François; Honvault, Pascal; Faure, Alexandre

    2012-10-21

    We report fully-quantum time-independent calculations of cross sections and rate coefficients for the collisional (de)excitation of H(2) by H. Our calculations are based on the H(3) global potential energy surface of Mielke et al. [J. Chem. Phys. 116, 4142 (2002)]. The reactive hydrogen exchange channels are taken into account. We show that the ortho-para and para-ortho conversion of H(2) are significant processes at temperatures above ~300 K and for the last process we provide the first comparison with available experimental rate coefficients between 300 and 444 K. The good agreement between theory and experiment is a new illustration of our detailed understanding of the simplest chemical reaction. The importance of the ortho-para-H(2) conversion by hydrogen exchange in astrophysics is discussed.

  15. Effect of chemically reduced palladium supported catalyst on sunflower oil hydrogenation conversion and selectivity

    Directory of Open Access Journals (Sweden)

    Abdulmajid Alshaibani

    2017-02-01

    Full Text Available Catalytic hydrogenation of sunflower oil was studied in order to improve the conversion and to reduce the trans-isomerization selectivity. The hydrogenation was performed using Pd–B/γ-Al2O3 prepared catalyst and Pd/Al2O3 commercial catalyst under similar conditions. The Pd–B/γ-Al2O3 catalyst was prepared by wet impregnation and chemical reduction processes. It was characterized by Brunauer–Emmett–Teller surface area analysis (BET, X-ray powder diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The result of sunflower oil hydrogenation on Pd–B/γ-Al2O3 catalyst showed a 17% higher conversion and a 23% lower trans-isomerization selectivity compared to the commercial Pd/Al2O3 catalyst. The chemical reduction of palladium supported catalyst using potassium borohydride (KBH4 has affected the Pd–B/γ-Al2O3 catalyst’s structure and particle size. These most likely influenced its catalytic performance toward higher conversion and lower trans-isomerization selectivity.

  16. Conversion of Claus plants of Kirkuk-Iraq to produce hydrogen and sulfur

    International Nuclear Information System (INIS)

    Naman, S.A.; Veziroglu, A.

    2009-01-01

    'Full text': Hydrogen production from rich sub-quality natural gas (SQNG) is visible technically with assessment of cost, safety and environmental toxicology analysis of hydrogen sulfide, is summarized. There are two Claus plants in Kirkuk-Iraq, converting hydrogen sulfide to elemental sulfur capacity of 2200 ton/day. One of these plants is working with only 400 ton/day and it is an old Claus process. The other is a modified Claus sulfur recovery process with a capacity of 1800 ton/day. Both of these plants operate with low efficiency due to lack of maintenance and the present situation in Iraq. Therefore, the agricultural area around Kirkuk is very polluted by this gas. Two pilot plants have been constructed inside the modified Claus plant in Kirkuk The first one is based on the flow system tube furnace reactor containing mixed Titanium oxide/sulfide with a cold trap for sulfur separation and a bath of 30% dithanolamine to separate and recycle H 2 S from hydrogen. The second pilot plant consists of a thermal diffusion ceramic rod inside a silica column containing Zeolit 5A as a catalyst. This pilot plant also consists of a trap for continuous separation of sulfur and a system for separation of hydrogen from unreacted H 2 S to recycle. The efficiency of conversion of H 2 S to hydrogen and sulfur has been optimized as a function of catalyst type and mixture, temperature of furnace, flow rate of gas and reactor materials until the efficiency reaches more than 97%. The Kirkuk natural gas consists of a mixture of CO 2 10% and H 2 S 12%. We found that these pilot plants were suitable with Cadmium chalcogens catalysts to produce hydrogen, methane, ethane and sulphur, but with lower efficiency than H 2 S decomposition only. Our aim in the second pilot plant, which consists of a silica column, was to supply the heat by solar energy concentrator instead of electricity as our catalyst needs 450 o C. and the solar intensity is about 1000 w/m 2 during the summer. The idea of

  17. Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor

    International Nuclear Information System (INIS)

    Hu Shuanghui; Wang Baowei; Lv Yijun; Yan Wenjuan

    2013-01-01

    Methane conversion has been studied using gliding arc plasma in the presence of argon. The process was conducted at atmospheric pressure and ambient temperature. The focus of this research was to develop a process of converting methane to C 2 hydrocarbons and hydrogen. The main parameters, including the CH 4 /Ar mole ratio, the CH 4 flow rate, the input voltage, and the minimum electrode gap, were varied to investigate their effects on methane conversion rate, product distribution, energy consumption, carbon deposit, and reaction stability. The specific energy requirement (SER) was used to express the energy utilization efficiency of the process and provided a practical guidance for optimizing reaction conditions for improving energy efficiency. It was found that the carbon deposition was not conducive to methane conversion, and the gliding arc plasma discharge reached a stable state twelve minutes later. Optimum conditions for methane conversion were suggested. The maximum methane conversion rate of 43.39% was obtained under the optimum conditions. Also, C 2 hydrocarbons selectivity, C 2 hydrocarbons yield, H 2 selectivity, H 2 yield and SER were 87.20%, 37.83%, 81.28%, 35.27%, and 2.09 MJ/mol, respectively.

  18. Low-energy hydrogen flux measurements at the TORTUR tokamak with negative ion conversion

    International Nuclear Information System (INIS)

    Toledo, Wiebo van.

    1990-01-01

    The interaction of a tokamak plasma with the vessel wall is one of the most important subjects in thermonuclear research. The information about this interaction is not complete without direct detection of the outward stream of low-energy, down to a few electronvolts, neutral hydrogen or deuterium atoms. The detection of these atoms is the subject of this thesis. An appropriate method to analyse the atoms which are emitted from the edge plasma is to use a time-of-flight analyser. This kind of apparatus selects particles according to their velocities with-out distinguishing between different masses. If these analysers use the Daly-method the lowest measurable energy of the hydrogen atoms is approximately 25 electronvolts. To increase the detection efficiency a new detection method was developed. This new method uses the conversion of hydrogen atoms into H- ions on a cesiated tungsten surface. By this conversion the lowest measurable energy is decreased down to 5 electron-volt. (author). 93 refs.; 44 figs.; 7 tabs

  19. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    OpenAIRE

    Henstra, Anne M.; Stams, Alfons J. M.

    2011-01-01

    Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial catalytic processes, makes this organism an interesting alternative for production of cheap hydrogen gas suitable to fuel CO-sensitive fuel cells in a future hydrogen economy, provided sufficiently lo...

  20. Zinc oxide and chromia as catalysts for the isomerization of butene, the hydrogenation of ethylene, and the isotopic exchange and allotropic conversion of hydrogen

    International Nuclear Information System (INIS)

    Conner, W.C. Jr.

    1973-01-01

    Hydrogenation of olefins has been studied over metals and metal oxides. Over metals the following observations generalize the characteristics of hydrogenation and isomerization. Metal hydrogenation catalysts are effective for H 2 -D 2 exchange (and para hydrogen conversion) under the same conditions as they effect olefin hydrogenation. This suggests that hydrogen ''activation'' involves formation of hydrogen atoms as a surface intermediate. Addition of deuterium to light ethylene leads to ethane products of the form C 2 H/sub 6-x/D/sub x/ (where 0 less than or equal to x less than or equal to 6). This is a result of the reversal of the alkyl (C 2 H 5 *) formation on the surface. Moreover, efficient isomerization of olefins require hydrogen as a co-catalyst. Both these observations suggest that alkyl formation and its reversal play a major role in hydrogenation and related reactions over metals. In this work it is found that zinc oxide catalyzes the deuteration of ethylene to dideuterioethane selectivity. Furthermore, the hydrogenation of ethylene using mixtures of hydrogen and deuterium indicate that hydrogenation occurs in such a manner as to reflect the molecular identity of the gas phase in the product ethane

  1. Multisample conversion of water to hydrogen by zinc for stable isotope determination

    Science.gov (United States)

    Kendall, C.; Coplen, T.B.

    1985-01-01

    Two techniques for the conversion of water to hydrogen for stable isotope ratio determination have been developed that are especially suited for automated multisample analysis. Both procedures involve reaction of zinc shot with a water sample at 450 ??C. in one method designed for water samples in bottles, the water is put in capillaries and is reduced by zinc in reaction vessels; overall savings in sample preparation labor of 75% have been realized over the standard uranium reduction technique. The second technique is for waters evolved under vacuum and is a sealed-tube method employing 9 mm o.d. quartz tubing. Problems inherent with zinc reduction include surface inhomogeneity of the zinc and exchange of hydrogen both with the zinc and with the glass walls of the vessels. For best results, water/zinc and water/glass surface area ratios of vessels should be kept as large as possible.

  2. Ortho-para-conversion of hydrogen in films of rare earth metals

    International Nuclear Information System (INIS)

    Zhavoronkova, K.N.; Peshkov, A.V.

    1979-01-01

    Investigated is specific catalytic activity of REE to clarify to what an extent the change of electron structure of the metals might influence their catalytic properties. Conducted is investigation of Sc, It, La and other lanthanides, except Eu amd Pm prepared in the form of metallic films, impowdered in vacuum of 10 -7 torr. It is established, that pape earth elements as catalysts of low-temperature ortho-para-conversion od hydrogen are divided into 2 groups, differing by mechanism of the reaction. Comparison of experimental results with the calculation results of absolute rates of paramagnetic conversion and also with investigation results of isotopjc exchange on these metals showed, that on the metals of group 1 conversjon proceeds according to chemical mechanism, and on the metals of group 2 - according to oscillating magnetic mechanism

  3. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades.

    Science.gov (United States)

    Mutti, Francesco G; Knaus, Tanja; Scrutton, Nigel S; Breuer, Michael; Turner, Nicholas J

    2015-09-25

    α-Chiral amines are key intermediates for the synthesis of a plethora of chemical compounds at industrial scale. We present a biocatalytic hydrogen-borrowing amination of primary and secondary alcohols that allows for the efficient and environmentally benign production of enantiopure amines. The method relies on a combination of two enzymes: an alcohol dehydrogenase (from Aromatoleum sp., Lactobacillus sp., or Bacillus sp.) operating in tandem with an amine dehydrogenase (engineered from Bacillus sp.) to aminate a structurally diverse range of aromatic and aliphatic alcohols, yielding up to 96% conversion and 99% enantiomeric excess. Primary alcohols were aminated with high conversion (up to 99%). This redox self-sufficient cascade possesses high atom efficiency, sourcing nitrogen from ammonium and generating water as the sole by-product. Copyright © 2015, American Association for the Advancement of Science.

  4. Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation

    International Nuclear Information System (INIS)

    Ju, HyungKuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S.; Mulder, Roger J.

    2016-01-01

    Highlights: • Ethanol assisted water electrolysis reduces electric energy input by more than 50%. • Partial oxidation of ethanol leads to formation of undesired chemicals. • Degradation occurs due to formation of by-products and poisoning of catalyst. • Better catalyst has the potential to increase ethanol to H_2 conversion efficiency. • A plausible ethanol electro-oxidation mechanism has been proposed - Abstract: The global interest in hydrogen/fuel cell systems for distributed power generation and transport applications is rapidly increasing. Many automotive companies are now bringing their pre-commercial fuel cell vehicles in the market, which will need extensive hydrogen generation, distribution and storage infrastructure for fueling of these vehicles. Electrolytic water splitting coupled to renewable sources offers clean on-site hydrogen generation option. However, the process is energy intensive requiring electric energy >4.2 kWh for the electrolysis stack and >6 kWh for the complete system per m"3 of hydrogen produced. This paper investigates using ethanol as a renewable fuel to assist with water electrolysis process to substantially reduce the energy input. A zero-gap cell consisting of polymer electrolyte membrane electrolytic cells with Pt/C and PtSn/C as anode catalysts were employed. Current densities up to 200 mA cm"−"2 at 70 °C were achieved at less than 0.75 V corresponding to an energy consumption of about 1.62 kWh m"−"3 compared with >4.2 kWh m"−"3 required for conventional water electrolysis. Thus, this approach for hydrogen generation has the potential to substantially reduce the electric energy input to less than 40% with the remaining energy provided by ethanol. However, due to performance degradation over time, the energy consumption increased and partial oxidation of ethanol led to lower conversion efficiency. A plausible ethanol electro-oxidation mechanism has been proposed based on the Faradaic conversion of ethanol and

  5. Catalytic activity of mono and bimetallic Zn/Cu/MWCNTs catalysts for the thermocatalyzed conversion of methane to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Erdelyi, B. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelium 9, 040 01 Košice (Slovakia); Oriňak, A., E-mail: andrej.orinak@upjs.sk [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Oriňaková, R. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Lorinčík, J. [Research Center Rez, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Jerigová, M. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); Velič, D. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); International Laser Centre, Ilkovičová 3, 841 01 Bratislava (Slovakia); Mičušík, M. [Polymer institute, Slovak Academy of Sciences, Dubravská cesta 9, 84541 Bratislava (Slovakia); and others

    2017-02-28

    Highlights: • Zn/Cu/MWCNTs catalyst with good activity. • Methane conversion to hydrogen with high effectivity. • ZnO/Cu responsible for catalytic activity. - Abstract: Mono and bimetallic multiwalled carbon nanotubes (MWCNTs) fortified with Cu and Zn metal particles were studied to improve the efficiency of the thermocatalytic conversion of methane to hydrogen. The surface of the catalyst and the dispersion of the metal particles were studied by scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS) and with energy-dispersive X-ray spectroscopy (EDS). It was confirmed that the metal particles were successfully dispersed on the MWCNT surface and XPS analysis showed that the Zn was oxidised to ZnO at high temperatures. The conversion of methane to hydrogen during the catalytic pyrolysis was studied by pyrolysis gas chromatography using different amounts of catalyst. The best yields of hydrogen were obtained using pyrolysis conditions of 900 °C and 1.2 mg of Zn/Cu/MWCNT catalyst for 1.5 mL of methane.The initial conversion of methane to hydrogen obtained with Zn/Cu/MWCNTs was 49%, which represent a good conversion rate of methane to hydrogen for a non-noble metal catalyst.

  6. Mechanochemical activation and synthesis of nanomaterials for hydrogen storage and conversion in electrochemical power sources.

    Science.gov (United States)

    Wronski, Zbigniew S; Varin, Robert A; Czujko, Tom

    2009-07-01

    In this study we discuss a process of mechanical activation employed in place of chemical or thermal activation to improve the mobility and reactivity of hydrogen atoms and ions in nanomaterials for energy applications: rechargeable batteries and hydrogen storage for fuel cell systems. Two materials are discussed. Both are used or intended for use in power sources. One is nickel hydroxide, Ni(OH)2, which converts to oxyhydroxide in the positive Ni electrode of rechargeable metal hydride batteries. The other is a complex hydride, Mg(AIH4)2, intended for use in reversible, solid-state hydrogen storage for fuel cells. The feature shared by these unlikely materials (hydroxide and hydride) is a sheet-like hexagonal crystal structure. The mechanical activation was conducted in high-energy ball mills. We discuss and demonstrate that the mechanical excitation of atoms and ions imparted on these powders stems from the same class of phenomena. These are (i) proliferation of structural defects, in particular stacking faults in a sheet-like structure of hexagonal crystals, and (ii) possible fragmentation of a faulted structure into a mosaic of layered nanocrystals. The hydrogen atoms bonded in such nanocrystals may be inserted and abstracted more easily from OH- hydroxyl group in Ni(OH)2 and AlH4- hydride complex in Mg(AlH4)2 during hydrogen charge and discharge reactions. However, the effects of mechanical excitation imparted on these powders are different. While the Ni(OH)2 powder is greatly activated for cycling in batteries, the Mg(AlH4)2 complex hydride phase is greatly destabilized for use in reversible hydrogen storage. Such a "synchronic" view of the structure-property relationship in respect to materials involved in hydrogen energy storage and conversion is supported in experiments employing X-ray diffraction (XRD), differential scanning calorimetry (DSC) and direct imaging of the structure with a high-resolution transmission-electron microscope (HREM), as well as in

  7. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad

    2018-03-22

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  8. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad; Shahzad, Muhammad Wakil; Oh, Seung Jin; Ng, Kim Choon

    2018-01-01

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  9. Hydrogen activated axial inter-conversion in SiC nanowires

    International Nuclear Information System (INIS)

    Ruemmeli, Mark H.; Adebimpe, David B.; Borowiak-Palen, Ewa; Gemming, Thomas; Ayala, Paola; Ioannides, Nicholas; Pichler, Thomas; Huczko, Andrzej; Cudzilo, Stanislaw; Knupfer, Martin; Buechner, Bernd

    2009-01-01

    A facile low pressure annealing route using NH 3 as a hydrogen source for the structural and chemical modification of SiC nanowires (SiCNWs) is presented. The developed route transforms SiCNWs into tubular SiC nanostructures while coaxial SiO 2 /SiCNWs reverse their sheath/core structure. Our findings suggest a decomposition process induced via the preferential substitution of silicon by hydrogen and via the difference in diffusion rates of available atomic species, which leads to axial structural rearrangement. In addition to these effects, the procedure improves the crystallinity of the samples. The process could be exploited as a viable route to manipulate a variety of nanostructures and films for doping and etching and structural manipulation. - Graphical abstract: SiC and SiO 2 /SiCNWs are shown to be structurally modified through a hydrogen activated replacement route which can even lead to the axial inter-conversion of species. The process could be exploited as a viable route to manipulate a variety of nanostructures and films for doping and etching and structural manipulation

  10. Thermally-induced ortho-para conversion anomaly in solid hydrogen under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J K; Swenson, C A

    1979-01-01

    The spontaneous ortho-para conversion rate in solid hydrogen under pressure has been observed to increase by approximately an order of magnitude at temperatures greater than 0.08 theta/sub 0/ and for molar volumes less than 19.7 cm/sup 3/. This effect, which disappears upon cooling below these temperatures, cannot be understood in terms of present theoretical models. The heat capacity experiment (C/sub V/(V,T)) in which these effects were observed gives an equation of state for parahydrogen for pressures less than 2 kbar which agrees with previous high pressure work at 4.2/sup 0/K, and a T=O equilibrium molar volume of 23.20 +- 0.05 cm/sup 3/. 2 figures.

  11. Proton conducting polymeric materials for hydrogen based electrochemical energy conversion technologies

    DEFF Research Database (Denmark)

    Aili, David

    on the development and characterization of polymer based proton conducting membranes for operation at temperatures above 100 °C. The most frequently recurring experimental methods and techniques are described in Chapter 2. For PEM steam and liquid water electrolysis at temperatures up to 130 °C (Chapter 3 and 4...... and water electrolyzers. This thesis gives an overview of the principles and the current state-of-the-art technology of the hydrogen based electrochemical energy conversion technologies, with special emphasis on the PEM based water electrolyzers and fuel cells (Chapter 1). The fundamental thermodynamics...... of the recast Nafion® membranes at elevated temperature could be slightly improved by annealing the membrane in order to increase its degree of crystallinity. Short side chain (SSC) PFSA membranes such as Aquivion™ (Solvey Solexis), on the other hand, are generally characterized by a considerably higher degree...

  12. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production.

    Science.gov (United States)

    Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo

    2017-12-01

    Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  13. Thermodynamic analysis on the CO2 conversion processes of methane dry reforming for hydrogen production and CO2 hydrogenation to dimethyl ether

    Science.gov (United States)

    He, Xinyi; Liu, Liping

    2017-12-01

    Based on the principle of Gibbs free energy minimization, the thermodynamic analysis on the CO2 conversion processes of dry reforming of methane for H2 and CO2 hydrogenation to dimethyl ether was carried out. The composition of the reaction system was determined on the basis of reaction mechanism. The effects of reaction temperature, pressure and raw material composition on the equilibrium conversion and the selectivity of products were analyzed. The results show that high temperature, low pressure, CO2/CH4 molar ratio of 1.0-1.5 and appropriate amount of oxygen are beneficial to the dry reforming of methane. For CO2 hydrogenation to dimethyl ether, low temperature, high pressure, the appropriate H2/CO2 and the proper CO addition in feed are favorable. The calculated results are compared with the relevant studies, indicating that industrial catalytic technology needs further improvement.

  14. Direct observation and modelling of ordered hydrogen adsorption and catalyzed ortho-para conversion on ETS-10 titanosilicate material.

    Science.gov (United States)

    Ricchiardi, Gabriele; Vitillo, Jenny G; Cocina, Donato; Gribov, Evgueni N; Zecchina, Adriano

    2007-06-07

    Hydrogen physisorption on porous high surface materials is investigated for the purpose of hydrogen storage and hydrogen separation, because of its simplicity and intrinsic reversibility. For these purposes, the understanding of the binding of dihydrogen to materials, of the structure of the adsorbed phase and of the ortho-para conversion during thermal and pressure cycles are crucial for the development of new hydrogen adsorbents. We report the direct observation by IR spectroscopic methods of structured hydrogen adsorption on a porous titanosilicate (ETS-10), with resolution of the kinetics of the ortho-para transition, and an interpretation of the structure of the adsorbed phase based on classical atomistic simulations. Distinct infrared signals of o- and p-H2 in different adsorbed states are measured, and the conversion of o- to p-H2 is monitored over a timescale of hours, indicating the presence of a catalyzed reaction. Hydrogen adsorption occurs in three different regimes characterized by well separated IR manifestations: at low pressures ordered 1:1 adducts with Na and K ions exposed in the channels of the material are formed, which gradually convert into ordered 2:1 adducts. Further addition of H2 occurs only through the formation of a disordered condensed phase. The binding enthalpy of the Na+-H2 1:1 adduct is of -8.7+/-0.1 kJ mol(-1), as measured spectroscopically. Modeling of the weak interaction of H2 with the materials requires an accurate force field with a precise description of both dispersion and electrostatics. A novel three body force field for molecular hydrogen is presented, based on the fitting of an accurate PES for the H2-H2 interaction to the experimental dipole polarizability and quadrupole moment. Molecular mechanics simulations of hydrogen adsorption at different coverages confirm the three regimes of adsorption and the structure of the adsorbed phase.

  15. Revamping of existent chlor-alkali plants for conversion of hydrogen to electricity, hydrogen community germination step

    Energy Technology Data Exchange (ETDEWEB)

    Iordache, Ioan; Laurentiu, Patularu [National R and D Institute for Cryogenics and Isotopic Technologies - ICSI, Rm. Valcea (Romania); Delfrate, Alessandro [UHDENORA SpA (Italy); Iordache, Mihaela [National R and D Institute for Industrial Ecology - ECOIND, Rm. Valcea (Romania)

    2010-07-01

    The transition towards hydrogen becoming widespread in future energy systems and may be one of the greatest social and technical challenges facing society. A wide range of stakeholders will need to work together over extended periods of time to make the sustainable hydrogen ''vision'' a reality. Community-based projects are seen as a route to stimulate the start of the transformation, leading to more widespread early adoption of these new technologies. Valcea have premises to develop some local projects in order to become a Hydrogen Community. This ''Community'' fulfills both an economic-technical background and a scientifically potential. (orig.)

  16. Direct formation of gasoline hydrocarbons from cellulose by hydrothermal conversion with in situ hydrogen

    International Nuclear Information System (INIS)

    Yin, Sudong; Mehrotra, Anil Kumar; Tan, Zhongchao

    2012-01-01

    A new process based on aqueous-phase dehydration/hydrogenation (APD/H) has been developed to directly produce liquid alkanes (C 7–9 ), which are the main components of fossil gasoline, from cellulose in one single batch reactor without the consumption of external hydrogen (H 2 ). In this new process, part of the cellulose is first converted to in situ H 2 by steam reforming (SR) in the steam gas phase mainly; and, in the liquid water phase, cellulose is converted to an alkane precursor, such as 5-(hydroxymethyl)furfural (HMF). In the final reaction step, in situ H 2 reacts with HMF to form liquid alkanes through APD/H. Accordingly, this new process has been named SR(H 2 )-APD/H. Experimental results show that the volumetric ratio of the reactor headspace to the reactor (H/R) and an initial weakly alkaline condition are the two key parameters for SR(H 2 )-APD/H. With proper H/R ratios (e.g., 0.84) and initial weakly alkaline conditions (e.g., pH = 7.5), liquid alkanes are directly formed from the SR(H 2 )-APD/H of cellulose using in situ H 2 instead of external H 2 . In this study, compared with pyrolysis and hydrothermal liquefaction of cellulose at the same temperatures with same retetion time, SR(H 2 )-APD/H greatly increased the liquid alkane yields, by approximately 700 times and 35 times, respectively. Based on this process, direct formation of fossil gasoline from renewable biomass resources without using external H 2 becomes possible. -- Highlights: ► A process of producing gasoline alkanes from cellulose was proposed and studied. ► Alkane precursors and in situ H 2 were formed simultaneously in a single reactor. ► Alkanes subsequently formed by reactions between in situ H 2 and alkane precursors. ► The yields were 700 and 35 times higher than pyrolysis and hydrothermal conversion.

  17. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Vanessa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamelyn D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krause, Theodore R. [Argonne National Lab. (ANL), Argonne, IL (United States); Ahmed, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-16

    This report was prepared in response to the U.S. Department of Energy Fuel Cell Technologies Office Congressional Appropriation language to support research on carbon-free production of hydrogen using new chemical processes that utilize natural gas to produce solid carbon and hydrogen. The U.S. produces 9-10 million tons of hydrogen annually with more than 95% of the hydrogen produced by steam-methane reforming (SMR) of natural gas. SMR is attractive because of its high hydrogen yield; but it also converts the carbon to carbon dioxide. Non-oxidative thermal decomposition of methane to carbon and hydrogen is an alternative to SMR and produces CO2-free hydrogen. The produced carbon can be sold as a co-product, thus providing economic credit that reduces the delivered net cost of hydrogen. The combination of producing hydrogen with potentially valuable carbon byproducts has market value in that this allows greater flexibility to match the market prices of hydrogen and carbon. That is, the higher value product can subsidize the other in pricing decisions. In this report we highlight the relevant technologies reported in the literature—primarily thermochemical and plasma conversion processes—and recent research progress and commercial activities. Longstanding technical challenges include the high energetic requirements (e.g., high temperatures and/or electricity requirements) necessary for methane activation and, for some catalytic processes, the separation of solid carbon product from the spent catalyst. We assess current and new carbon product markets that could be served given technological advances, and we discuss technical barriers and potential areas of research to address these needs. We provide preliminary economic analysis for these processes and compare to other emerging (e.g., electrolysis) and conventional (e.g., SMR) processes for hydrogen production. The overarching conclusion of this study is that the cost of hydrogen can be potentially

  18. Feasibility of an energy conversion system in Canada involving large-scale integrated hydrogen production using solid fuels

    International Nuclear Information System (INIS)

    Gnanapragasam, Nirmal V.; Reddy, Bale V.; Rosen, Marc A.

    2010-01-01

    A large-scale hydrogen production system is proposed using solid fuels and designed to increase the sustainability of alternative energy forms in Canada, and the technical and economic aspects of the system within the Canadian energy market are examined. The work investigates the feasibility and constraints in implementing such a system within the energy infrastructure of Canada. The proposed multi-conversion and single-function system produces hydrogen in large quantities using energy from solid fuels such as coal, tar sands, biomass, municipal solid waste (MSW) and agricultural/forest/industrial residue. The proposed system involves significant technology integration, with various energy conversion processes (such as gasification, chemical looping combustion, anaerobic digestion, combustion power cycles-electrolysis and solar-thermal converters) interconnected to increase the utilization of solid fuels as much as feasible within cost, environmental and other constraints. The analysis involves quantitative and qualitative assessments based on (i) energy resources availability and demand for hydrogen, (ii) commercial viability of primary energy conversion technologies, (iii) academia, industry and government participation, (iv) sustainability and (v) economics. An illustrative example provides an initial road map for implementing such a system. (author)

  19. Current Development in Treatment and Hydrogen Energy Conversion of Organic Solid Waste

    Science.gov (United States)

    Shin, Hang-Sik

    2008-02-01

    This manuscript summarized current developments on continuous hydrogen production technologies researched in Korea advanced institute of science and technology (KAIST). Long-term continuous pilot-scale operation of hydrogen producing processes fed with non-sterile food waste exhibited successful results. Experimental findings obtained by the optimization processes of growth environments for hydrogen producing bacteria, the development of high-rate hydrogen producing strategies, and the feasibility tests for real field application could contribute to the progress of fermentative hydrogen production technologies. Three major technologies such as controlling dilution rate depending on the progress of acidogenesis, maintaining solid retention time independently from hydraulic retention time, and decreasing hydrogen partial pressure by carbon dioxide sparging could enhance hydrogen production using anaerobic leaching beds reactors and anaerobic sequencing batch reactors. These findings could contribute to stable, reliable and effective performances of pilot-scale reactors treating organic wastes.

  20. Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal: Homogeneous-heterogeneous methane reaction pathways

    International Nuclear Information System (INIS)

    Li, Lin; Borry, Richard W.; Iglesia, Enrique

    2000-01-01

    Detailed kinetic-transport models were used to explore thermodynamic and kinetic barriers in the non-oxidative conversion of CH4 via homogeneous and homogeneous-heterogeneous pathways and the effects of continuous hydrogen removal and of catalytic sites on attainable yields of useful C2-C10 products. The homogeneous kinetic model combines separately developed models for low-conversion pyrolysis and for chain growth to form large aromatics and carbon. The H2 formed in the reaction decreases CH4 pyrolysis rates and equilibrium conversions and it favors the formation of lighter products. The removal of H2 along tubular reactors with permeable walls increases reaction rates and equilibrium CH4 conversions. C2-C10 yields reach values greater than 90 percent at intermediate values of dimensionless transport rates (delta=1-10), defined as the ratio hydrogen transport and methane conversion rates. Homogeneous reactions require impractical residence times, even with H2 removal, because of slow initiation and chain transfer rates. The introduction of heterogeneous chain initiation pathways using surface sites that form methyl radicals eliminates the induction period without influencing the homogeneous product distribution. Methane conversion, however, occurs predominately in the chain transfer regime, within which individual transfer steps and the formation of C2 intermediates become limited by thermodynamic constraints. Catalytic sites alone cannot overcome these constraints. Catalytic membrane reactors with continuous H2 removal remove these thermodynamic obstacles and decrease the required residence time. Reaction rates become limited by homogeneous reactions of C2 products to form C6+ aromatics. Higher delta values lead to subsequent conversion of the desired C2-C10 products to larger polynuclear aromatics. We conclude that catalytic methane pyrolysis at the low temperatures required for restricted chain growth and the elimination of thermodynamics constraints via

  1. A supramolecular structure insight for conversion property of cellulose in hot compressed water: Polymorphs and hydrogen bonds changes.

    Science.gov (United States)

    Wang, Yan; Lian, Jie; Wan, Jinquan; Ma, Yongwen; Zhang, Yingshi

    2015-11-20

    Waste paper samples with different cellulose supramolecular structure were treated in hot compressed water (HCW) at 375°C and 22.5MPa within 200s to evaluate the specific effect mechanism of cellulose supramolecular structure on the conversion of waste paper to reusable resource. Although the distribution of liquid products and the oligosaccharides were related to reaction time, depolymerization and decrystallization of the cellulose, the characteristics absorption peak of cellulose from FTIR analysis and crystal structure of the cellulose detected in the residues with hydrolysis rate up 96.5% indicated crystal structure was the dominant factor that affect conversion behavior of waste paper. The conversion of cellulose Iβ to cellulose Iα or cellulose I(α+β) in HCW demonstrated that the recrystallization occurred during the decrystallization of cellulose through the rearrangement of hydrogen bonds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Hydrogen Production from Water by Photosynthesis System I for Use as Fuel in Energy Conversion Devices (a.k.a. Understanding Photosystem I as a Biomolecular Reactor for Energy Conversion)

    Science.gov (United States)

    2014-04-01

    Hydrogen Production from Water by Photosynthesis System I for Use as Fuel in Energy Conversion Devices (a.k.a. Understanding Photosystem I as...Laboratory Adelphi, MD 20783-1197 ARL-TR-6904 April 2014 Hydrogen Production from Water by Photosynthesis System I for Use as Fuel in Energy...Final 3. DATES COVERED (From - To) 10/1/2010–10/1/2013 4. TITLE AND SUBTITLE Hydrogen Production from Water by Photosynthesis System I for Use as Fuel

  3. Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO(2) capture.

    Science.gov (United States)

    Naqvi, M; Yan, J; Dahlquist, E

    2012-04-01

    This paper estimates potential hydrogen production via dry black liquor gasification system with direct causticization integrated with a reference pulp mill. The advantage of using direct causticization is elimination of energy intensive lime kiln. Pressure swing adsorption is integrated in the carbon capture process for hydrogen upgrading. The energy conversion performance of the integrated system is compared with other bio-fuel alternatives and evaluated based on system performance indicators. The results indicated a significant hydrogen production potential (about 141MW) with an energy ratio of about 0.74 from the reference black liquor capacity (about 243.5MW) and extra biomass import (about 50MW) to compensate total energy deficit. About 867,000tonnes of CO(2) abatement per year is estimated i.e. combining CO(2) capture and CO(2) offset from hydrogen replacing motor gasoline. The hydrogen production offers a substantial motor fuel replacement especially in regions with large pulp and paper industry e.g. about 63% of domestic gasoline replacement in Sweden. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Ortho-para conversion in the solid hydrogens at high pressures

    International Nuclear Information System (INIS)

    Strzhemechny; Hemley, R.J.

    2003-01-01

    At low pressures the ortho-para conversion in H 2 and D 2 is a slow process governed by the magnetic dipole interaction of nuclear magnetic moments, phonons being the main energy sink. As the pressure is raised to a few GPa and the Debye temperature increases substantially, the conversion energy finds itself in an area where phonon states are depleted and conversion slows down. The recent Raman and NMR experiments showed that the conversion rate in H 2 after an initial slowdown predicted by theory increases immensely. As for solid D 2 , conversion rates have apparently not yet been directly measured under pressure. In order to explain the anomaly observed in H 2 , we have suggested a new conversion mechanism, in which the basic conversion-producing interaction only initiates conversion whereas the energy is removed by rotational excitations via the stronger electric quadrupole-quadrupole interaction. Estimated conversion rates are in good qualitative agreement with available experimental observations. Here we extend the theory to solid D 2 taking into account the differences between H 2 and D 2 in the molecular and solid-state parameters. The new libron-mediated channel is predicted to result for D 2 in conversion rates under pressure that are by an order of magnitude larger than at P = 0

  5. Sunlight to hydrogen conversion: Design optimization and energy management of concentrated photovoltaic (CPV-Hydrogen) system using micro genetic algorithm

    KAUST Repository

    Burhan, Muhammad

    2016-02-14

    Owing to the intermittent solar irradiance from cloud cover in the diurnal period and unavailability at night time, the practical design of a solar system requires energy backup storage for an uninterrupted supply or for off-grid operation. However, for highly efficient CPV (concentrated photovoltaic) system, the literature is lacking for energy management and optimization algorithm and tool for standalone operation. In this paper, a system with CPV and electrolyser is presented where beam irradiance of sunlight is harnessed to convert the instantaneously generated electricity into useful Hydrogen/Oxygen gas, where they can be stored and re-used for downstream applications such as the fuel cells, etc. The multi-variable design and multi-objective optimization strategies are proposed and presented for a standalone operation of the CPV-Hydrogen system as well as their system performances, particularly electrical rating of CPV based upon the real weather data of Singapore. © 2016 Elsevier Ltd.

  6. Sunlight to hydrogen conversion: Design optimization and energy management of concentrated photovoltaic (CPV-Hydrogen) system using micro genetic algorithm

    International Nuclear Information System (INIS)

    Burhan, Muhammad; Chua, Kian Jon Ernest; Ng, Kim Choon

    2016-01-01

    Owing to the intermittent solar irradiance from cloud cover in the diurnal period and unavailability at night time, the practical design of a solar system requires energy backup storage for an uninterrupted supply or for off-grid operation. However, for highly efficient CPV (concentrated photovoltaic) system, the literature is lacking for energy management and optimization algorithm and tool for standalone operation. In this paper, a system with CPV and electrolyser is presented where beam irradiance of sunlight is harnessed to convert the instantaneously generated electricity into useful Hydrogen/Oxygen gas, where they can be stored and re-used for downstream applications such as the fuel cells, etc. The multi-variable design and multi-objective optimization strategies are proposed and presented for a standalone operation of the CPV-Hydrogen system as well as their system performances, particularly electrical rating of CPV based upon the real weather data of Singapore. - Highlights: • Design modelling and energy management strategy is proposed for CPV-Hydrogen system. • Micro GA does multi-variable and multi-objective optimization for standalone operation. • Design is verified and analysed for minimum cost, zero PSFT and optimal storage. • Performance of each component is presented for different real weather data conditions. • Proposed design approach is applicable in all regions with low and high DNI.

  7. Stereoselective Hydrogenation and Ozonolysis of Iridoids. Conversion into Carbocyclic Nucleoside Analogues

    DEFF Research Database (Denmark)

    Franzyk, Henrik; Stermitz, Frank R.

    1999-01-01

    Stereoselective hydrogenation of the iridoids geniposide (9) and aucubin (19) was achieved by using the 1-methyl-1-methoxyethyl ether (MIP) as protecting group for the allylic alcohol, as it enhanced the stereoselectivity and prevented undesired hydrogenolysis. Ozonolysis of the hydrogenation...

  8. Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes

    Directory of Open Access Journals (Sweden)

    Chen Yubin

    2016-09-01

    Full Text Available Photoelectrochemical (PEC water splitting for hydrogen generation has been considered as a promising route to convert and store solar energy into chemical fuels. In terms of its large-scale application, seeking semiconductor photoelectrodes with high efficiency and good stability should be essential. Although an enormous number of materials have been explored for solar water splitting in the last several decades, challenges still remain for the practical application. P-type copper-based chalcogenides, such as Cu(In, GaSe2 and Cu2ZnSnS4, have shown impressive performance in photovoltaics due to narrow bandgaps, high absorption coefficients, and good carrier transport properties. The obtained high efficiencies in photovoltaics have promoted the utilization of these materials into the field of PEC water splitting. A comprehensive review on copper-based chalcogenides for solar-to-hydrogen conversion would help advance the research in this expanding area. This review will cover the physicochemical properties of copper-based chalco-genides, developments of various photocathodes, strategies to enhance the PEC activity and stability, introductions of tandem PEC cells, and finally, prospects on their potential for the practical solar-to-hydrogen conversion. We believe this review article can provide some insights of fundamentals and applications of copper-based chalco-genide thin films for PEC water splitting.

  9. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    Science.gov (United States)

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Turning cellulose waste into electricity: hydrogen conversion by a hydrogenase electrode.

    Directory of Open Access Journals (Sweden)

    Sergey M Abramov

    Full Text Available Hydrogen-producing thermophilic cellulolytic microorganisms were isolated from cow faeces. Rates of cellulose hydrolysis and hydrogen formation were 0.2 mM L(-1 h(-1 and 1 mM L(-1 h(-1, respectively. An enzymatic fuel cell (EFC with a hydrogenase anode was used to oxidise hydrogen produced in a microbial bioreactor. The hydrogenase electrode was exposed for 38 days (912 h to a thermophilic fermentation medium. The hydrogenase activity remaining after continuous operation under load was 73% of the initial value.

  11. Turning Cellulose Waste Into Electricity: Hydrogen Conversion by a Hydrogenase Electrode

    Science.gov (United States)

    Abramov, Sergey M.; Sadraddinova, Elmira R.; Shestakov, Andrey I.; Voronin, Oleg G.; Karyakin, Arkadiy A.; Zorin, Nikolay A.; Netrusov, Alexander I.

    2013-01-01

    Hydrogen-producing thermophilic cellulolytic microorganisms were isolated from cow faeces. Rates of cellulose hydrolysis and hydrogen formation were 0.2 mM L-1 h-1 and 1 mM L-1 h-1, respectively. An enzymatic fuel cell (EFC) with a hydrogenase anode was used to oxidise hydrogen produced in a microbial bioreactor. The hydrogenase electrode was exposed for 38 days (912 h) to a thermophilic fermentation medium. The hydrogenase activity remaining after continuous operation under load was 73% of the initial value. PMID:24312437

  12. Multi-objective technico-economic optimization of energy conversion systems: hydrogen and electricity cogeneration from Generation IV nuclear reactor

    International Nuclear Information System (INIS)

    Gomez, A.

    2008-01-01

    production costs, which constitutes a multi criteria problem, solved by the so-called MULTIGEN, i.e. a library of genetic algorithms designed with modular and extensible properties, based on the well-known NSGA II algorithm. Several procedures have been implemented, adapted to both mono and multi criteria problems case, to their type (structural optimization for example) and to nature of the considered variables (continuous, binary, integer or mixed). The main innovations related to the reliability of the algorithms involve the constraints treatment, the structural variables and the development of a stop criterion, based on the stagnation of the Pareto front. A generic multi criteria technico-economic methodology was applied to three conversion systems by a VHTR reactor: electrical production, electricity/hydrogen cogeneration and, finally, hydrogen production. Among the most significant results, it can be highlighted that exclusively dedicated hydrogen production sites are comparable with cogeneration sites from production costs point of view, within the range of french electrical network production costs. The cogeneration sites exhibit an increased economic interest from hydrogen cost point of view, but the number of sites will have to be multiplied, so that a series effect is observed. This methodology is still valid for the production of hydrogen by high temperature electrolysis, or by other existing production cycles of hydrogen, in particular hybrid cycles. (author) [fr

  13. Production of hydrogen via conversion of hydrocarbons using a microwave plasma

    International Nuclear Information System (INIS)

    Jasinski, Mariusz; Dors, Miroslaw; Nowakowska, Helena; Mizeraczyk, Jerzy; Nichipor, Gerietta V

    2011-01-01

    In this paper, results of hydrogen production from hydrocarbons in an atmospheric pressure microwave plasma are presented. As sources of hydrogen, both methane CH 4 and tetrafluoroethane C 2 H 2 F 4 were tested. A new waveguide-based nozzleless cylinder-type microwave plasma source was used to convert hydrocarbons into hydrogen. The processed gaseous hydrocarbons were introduced into the plasma by four gas ducts which formed a swirl flow in the plasma reactor. The absorbed microwave power was up to 5 kW. The gas flow rate was up to 212 L min -1 . The hydrogen mass yield rate and the corresponding energetic hydrogen mass yield were up to 866 g[H 2 ] h -1 and 577 g [H 2 ] kWh -1 of microwave energy absorbed by the plasma, respectively. These parameters are better than our previous results when nitrogen was used as a swirl gas and much better than those typical for other plasma methods of hydrogen production (electron beam, gliding arc, plasmatron).

  14. Production of hydrogen via conversion of hydrocarbons using a microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, Mariusz; Dors, Miroslaw; Nowakowska, Helena; Mizeraczyk, Jerzy [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland); Nichipor, Gerietta V, E-mail: mj@imp.gda.pl [Joint Institute of Power and Nuclear Research, Academy of Sciences of Belarus, Minsk, Sosny 220109 (Belarus)

    2011-05-18

    In this paper, results of hydrogen production from hydrocarbons in an atmospheric pressure microwave plasma are presented. As sources of hydrogen, both methane CH{sub 4} and tetrafluoroethane C{sub 2}H{sub 2}F{sub 4} were tested. A new waveguide-based nozzleless cylinder-type microwave plasma source was used to convert hydrocarbons into hydrogen. The processed gaseous hydrocarbons were introduced into the plasma by four gas ducts which formed a swirl flow in the plasma reactor. The absorbed microwave power was up to 5 kW. The gas flow rate was up to 212 L min{sup -1}. The hydrogen mass yield rate and the corresponding energetic hydrogen mass yield were up to 866 g[H{sub 2}] h{sup -1} and 577 g [H{sub 2}] kWh{sup -1} of microwave energy absorbed by the plasma, respectively. These parameters are better than our previous results when nitrogen was used as a swirl gas and much better than those typical for other plasma methods of hydrogen production (electron beam, gliding arc, plasmatron).

  15. Stabilization of Wind Energy Conversion System with Hydrogen Generator by Using EDLC Energy Storage System

    Science.gov (United States)

    Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa

    The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.

  16. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

    Science.gov (United States)

    May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas

    2015-09-01

    Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.

  17. WE-NET substask 3. Conceptual design of the total system (City-level energy estimation and assessment); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 3. Zentai system gainen sekkei (toshi kibo deno yosoku hyoka)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The effort of fiscal 1997 at isolating the best way to introduce a relatively small amount of hydrogen into urban fuel economy was carried over to fiscal 1998. In the research of fiscal 1998, comparison was made between Tokyo and London in connection with hydrogen introduction, and a transition scenario was proposed for introducing hydrogen into Tokyo. Models were built for Tokyo and London, and studied. The result of this study was different from that obtained in the previous study, and places the two cities under similar conditions. The difference is attributed to the rapid progress in the development of the fuel cell and to the resultant reduction in cost. It is inferred that, in consideration of the transportation situation, the introduction of pure hydrogen will be the most cost-effective for both cities at least for some time to come. According to the revised data, natural gas may be procured in Tokyo as in London but the size of supply available in Tokyo is fairly smaller than that in London. Several transition scenarios covering the period up to 2025 were subjected to discussion. (NEDO)

  18. Conversion of tritiated hydrogen to tritiated water on heated metal surfaces

    International Nuclear Information System (INIS)

    Dickson, R.S.

    1993-05-01

    The conversion of tritium to tritiated water on metal surfaces was studied under conditions relevant to releases into a fusion reactor hall (metal temperatures between 473 K and 623 K, air or inert gas atmospheres). The rate constant of oxidation per unit geometric surface area was found to be about a factor of ten higher than the rate constant per unit gas adsorption surface area for H 2 to H 2 O conversion on metal oxides in excess oxygen, probably because of the roughness of the metal surfaces on a gas adsorption scale. Surface roughness and oxides were found to have a major influence on the reaction rate. The reaction exhibited a first-order dependence on Q 2 concentration. Changing the dew point of the atmosphere did not affect the rate significantly, and rate constants for most metals were independent of whether the atmosphere was argon or air. Coatings of hydrocarbon and silicone polymers did not significantly affect the reaction rate on carbon steel and ferrous metals and brass all had about the same conversion rate constant. Aluminum alloy gave about three times lower and copper in Ar gave ten times higher conversion rate constants. Based on these data, an accident scenario involving exposure of 1000 m 2 of stainless steel at 573 K to a 10 4 m 3 room would cause conversion of ca. 0.1% of the Q 2 present to Q 2 O in 24 hours, while air ingress to the torus without leakage of the tritium into the room would cause 1.2% conversion in that time. The rate values are only accurate within a multiplicative factor of three, so they should be applied cautiously in model calculations. (author). 27 refs., 4 tabs., 4 figs

  19. Infrared studies of ortho-para conversion at Cl-atom and H-atom impurity centers in cryogenic solid hydrogen

    International Nuclear Information System (INIS)

    Raston, P.L.; Kettwich, S.C.; Anderson, D.T.

    2010-01-01

    We report infrared spectroscopic studies of H 2 ortho-para (o/p) conversion in solid hydrogen doped with Cl-atoms at 2 K while the Cl + H 2 (υ = 1) → HCl + H infrared-induced chemical reaction is occurring. The Cl-atom doped hydrogen crystals are synthesized using 355 nm in situ photodissociation of Cl 2 precursor molecules. For hydrogen solids with high ortho-H 2 fractional concentrations (X o = 0.55), the o/p conversion kinetics is dominated by Cl-atom catalyzed conversion with a catalyzed conversion rate constant K cc = 1.16(11) min -1 and the process is rate-limited by ortho-H 2 quantum diffusion. For hydrogen crystals with low ortho-H2 concentrations (X o = 0.03), single-exponential decay of the ortho-H 2 concentration with time is observed which is attributed to H-atom catalyzed o/p conversion by the H-atoms produced during the infrared-induced Cl + H 2 reaction. The measured H-atom catalyzed o/p conversion kinetics indicates the H-atoms are mobile under these conditions in agreement with previous ESR measurements.

  20. Hydrogen/Denterium exchange during n.butane conversion on H-ZSM-5

    NARCIS (Netherlands)

    Narbeshuber, T.; Narbeshuber, Thomas F.; Stockenhuber, Michael; Brait, Axel; Brait, A.; Seshan, Kulathuiyer; Lercher, J.A.

    1996-01-01

    Steady-state isotope tracer studies and isotope transient response experiments ofn-butane conversion on H-ZSM-5 (Si/Al = 35) were carried out between 673 and 823 K. Among the three main reactions, the rate of H/D-exchange is at least one order of magnitude higher compared to the rates of cracking or

  1. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals.

    Science.gov (United States)

    Hawkins, Aaron S; McTernan, Patrick M; Lian, Hong; Kelly, Robert M; Adams, Michael W W

    2013-06-01

    Non-photosynthetic routes for biological fixation of carbon dioxide into valuable industrial chemical precursors and fuels are moving from concept to reality. The development of 'electrofuel'-producing microorganisms leverages techniques in synthetic biology, genetic and metabolic engineering, as well as systems-level multi-omic analysis, directed evolution, and in silico modeling. Electrofuel processes are being developed for a range of microorganisms and energy sources (e.g. hydrogen, formate, electricity) to produce a variety of target molecules (e.g. alcohols, terpenes, alkenes). This review examines the current landscape of electrofuel projects with a focus on hydrogen-utilizing organisms covering the biochemistry of hydrogenases and carbonic anhydrases, kinetic and energetic analyses of the known carbon fixation pathways, and the state of genetic systems for current and prospective electrofuel-producing microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Hydrothermal conversion of cellulose to alkanes with in-situ hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Sudong; Tan, Zhongchao [Department of Mechanical and Mechatronics Engineering, University of Waterloo (Canada)], Email: tanz@uwaterloo.ca

    2011-07-01

    A recently study examined the probability of hydrothermal conversion of cellulose to alkanes with in-situ H2 instead of external H2. This paper discusses the results of that study. The study researched the effects of volumetric ratios of initial input water to the reactor (W/R) and of selected catalysts on the alkane yields and composition. It was found that with the proper W/R ratios, the reforming of steam in the steam gas phase would automatically produce in-situ H2 and the key was to maintain the right balance of steam phase and liquid phase in the reactor. All the study results conclude that direct hydrothermal conversion of cellulose to alkanes with in-situ H2 is technically feasible. In addition, the application of this technology would protect the alkane bio-oil production biomass from the impact of unstable external supply of H2.

  3. Selective conversion of carbon monoxide to hydrogen by anaerobic mixed culture.

    Science.gov (United States)

    Liu, Yafeng; Wan, Jingjing; Han, Sheng; Zhang, Shicheng; Luo, Gang

    2016-02-01

    A new method for the conversion of CO to H2 was developed by anaerobic mixed culture in the current study. Higher CO consumption rate was obtained by anaerobic granular sludge (AGS) compared to waste activated sludge (WAS) at 55 °C and pH 7.5. However, H2 was the intermediate and CH4 was the final product. Fermentation at pH 5.5 by AGS inhibited CH4 production, while the lower CO consumption rate (50% of that at pH 7.5) and the production of acetate were found. Fermentation at pH 7.5 with the addition of chloroform achieved efficient and selective conversion of CO to H2. Stable and efficient H2 production was achieved in a continuous reactor inoculated with AGS, and gas recirculation was crucial to increase the CO conversion efficiency. Microbial community analysis showed that high abundance (44%) of unclassified sequences and low relative abundance (1%) of known CO-utilizing bacteria Desulfotomaculum were enriched in the reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Energy conversion, storage and balancing. Great potential of hydrogen and fuel cells; Energikonvertering, lagring og balancering. Stort potentiale i brint og braendselsceller

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    This document is the Danish strategy for hydrogen technology research, development and demonstration. Work on a new strategy was launched in early 2012 by the Partnership for hydrogen and fuel cells. The new national strategy complements the Partnership's former national strategy ''Hydrogen Technologies - strategy for research, development and demonstration in Denmark'' from June 2005. The former strategy describes the challenges and costs by the technological development of hydrogen and fuel cells until 2016 - and is valid until 2016. The Partnership's strategy anno 2012 describes the energy technology challenges for hydrogen technology development until 2016 - and in some years thereafter. The strategy provides an updated status of hydrogen and fuel cells, describes the area's future potential, and specifies future needs for technological development. The strategy's main focus is to define how electrolysis, hydrogen and fuel cells can help to meet Denmark's future energy policy objectives. In the strategy the term ''hydrogen technologies'' overall means: Electrolysis and fuel cells as conversion technologies, and hydrogen and hydrogen-containing fuels, such as methanol, as energy carriers. (LN)

  5. Thermodynamics of the conversion of calcium and magnesium fluorides to the parent metal oxides and hydrogen fluoride

    International Nuclear Information System (INIS)

    West, M.H.; Axler, K.M.

    1997-02-01

    The authors have used thermodynamic modeling to examine the reaction of calcium fluoride (CaF 2 ) and magnesium fluoride (MgF 2 ) with water (H 2 O) at elevated temperatures. The calculated, equilibrium composition corresponds to the global free-energy minimum for the system. Optimum, predicted reaction temperatures and reactant mole ratios are reported for the recovery of hydrogen fluoride (HF), a valuable industrial feedstock. Complete conversion of MgF 2 is found at 1,000 C and a ratio of 40 moles of H 2 O per 1 mole of MgF 2 . For CaF 2 , temperatures as high as 1,400 C are required for complete conversion at a corresponding mole ratio of 40 moles of H 2 O per 1 mole of CaF 2 . The authors discuss the presence of minor chemical constituents as well as the stability of various potential container materials for the pyrohydrolysis reactions at elevated temperatures. CaF 2 and MgF 2 slags are available as wastes at former uranium production facilities within the Department of Energy Complex and other facilities regulated by the Nuclear Regulatory Commission. Recovery of HF from these wastes is an example of environmental remediation at such facilities

  6. Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion.

    Science.gov (United States)

    Wang, Peng; Chang, Angela Y; Novosad, Valentyn; Chupin, Vladimir V; Schaller, Richard D; Rozhkova, Elena A

    2017-07-25

    We report on an entirely man-made nano-bio architecture fabricated through noncovalent assembly of a cell-free expressed transmembrane proton pump and TiO 2 semiconductor nanoparticles as an efficient nanophotocatalyst for H 2 evolution. The system produces hydrogen at a turnover of about 240 μmol of H 2 (μmol protein) -1 h -1 and 17.74 mmol of H 2 (μmol protein) -1 h -1 under monochromatic green and white light, respectively, at ambient conditions, in water at neutral pH and room temperature, with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allow for systemic manipulation at the nanoparticle-bio interface toward directed evolution of energy transformation materials and artificial systems.

  7. Energy supply and conversion to hydrogen: how to improve the air quality in Buenos Aires city

    International Nuclear Information System (INIS)

    Venturini, Nestor R.; Bergallo, Juan E.; Corso, Hugo L.; Bolcich, Juan C.

    1998-01-01

    The regional power distribution and the market free regulation, take the companies of this sector to an increasing competition by the supply. This situation induces conceptual and technical changes, that seem oriented to a greater complementation of power menu, with consequent structuring of power chains of better economic management. In the case of electrical park, they exist power stations nonsintonizables with the fluctuations of demand, those that noticeably alter the prices to which energy can be sold. In these cases, the strategy is oriented to accumulation, to supply energy deferred in time, or in the form and place that greater rent offers. Multinational programs that illustrate these situations, with long trajectory and important resources exist, like the EUROQUEBEC, that contemplates the hydroelectricity surplus export from Canada to Europe in hydrogen form. (author)

  8. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    Science.gov (United States)

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  9. A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield

    International Nuclear Information System (INIS)

    Wang, Hsueh-Sheng; Huang, Kuo-Yang; Huang, Yuh-Jeen; Su, Yu-Chuan; Tseng, Fan-Gang

    2015-01-01

    Highlights: • A low-operating temperature of the POM-mode micro methanol reformer is obtained. • The effect of channel design on the performance is studied. • The effect of solid content and binder’ ratio on the performance is studied. • The centrifugal process is benefit for the modification of performance. • 98% of methanol conversion rate of the micro reformer can be obtained at 180 °C. - Abstract: A partial oxidation methanol micro reformer (POM-μReformer) with finger-shaped channels for low operating temperature and high conversing efficiency is proposed in this study. The micro reformer employs POM reaction for low temperature operation (less than 200 °C), exothermic reaction, and quick start-up, as well as air feeding capability; and the finger type reaction chambers for increasing catalyst loading as well as reaction area for performance enhancement. In this study, centrifugal technique was introduced to assist on the catalyst loading with high amount and uniform distribution. The solid content (S), binder’s ratio (B), and channel design (the ratio between channel’s length and width, R) were investigated in detail to optimize the design parameters. Scanning electron microscopy (SEM), gas chromatography (GC), and inductively coupled plasma-mass spectrometer (ICP-MS) were employed to analyze the performance of the POM-μReformer. The result depicted that the catalyst content and reactive area could be much improved at the optimized condition, and the conversion rate and hydrogen selectivity approached 97.9% and 97.4%, respectively, at a very low operating temperature of 180 °C with scarce or no binder in catalyst. The POM-μReformer can supply hydrogen to fuel cells by generating 2.23 J/min for 80% H 2 utilization and 60% fuel cell efficiency at 2 ml/min of supplied reactant gas, including methanol, oxygen and argon at a mixing ratio of 12.2%, 6.1% and 81.7%, respectively

  10. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2005-02-03

    solved by finite difference method. The solution of the model equations is complicated by the coupled reactions. At the inlet, if there is no hydrogen, rate expressions become singular. To overcome this problem, the first element of the reactor was treated as a continuous stirred tank reactor (CSTR). Several alternative numerical schemes were implemented in the solution algorithm to get a converged, stable solution. The model was also capable of handling steam-methane reforming reactions under non-membrane condition and equilibrium reaction conversions. Some of the numerical results were presented in the previous report. To test the membrane reactor model, we fabricated Pd-stainless steel membranes in tubular configuration using electroless plating method coupled with osmotic pressure. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) were used to characterize the fabricated Pd-film composite membranes. Gas-permeation tests were performed to measure the permeability of hydrogen, nitrogen and helium using pure gas. The membranes showed excellent perm-selectivity for hydrogen. This makes the Pd-composite membrane attractive for selective separation and recovery of H{sub 2} from mixed gases at elevated temperature.

  11. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Andrew Kramer [Gas Technology Inst., Des Plaines, IL (United States)

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  12. Conversion from carbon dioxide to organic materials by RF impulse discharges with hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, G.; Kano, M.; Iizuka, S. [Tohoku Univ., Sendai (Japan). Dept. of Electrical Engineering

    2010-07-01

    Carbon dioxide (CO{sub 2}) is among the most serious greenhouse gases emitted from the burning of fossil fuels. The objective of this study was to investigate the fundamental process of reducing CO{sub 2} to generate beneficial and reusable organic materials like methane (CH{sub 4}) and alcohol (CH{sub 3}OH) by using RF impulse discharges in a low gas pressure regime. A low-pressure glow discharge was used to investigate the fundamental processes without catalysts. The discharge took place inside a glass tube by changing the discharge parameters such as voltage, gas flow rate and gas residence time, where the CO{sub 2} was reduced by hydrogen (H{sub 2}). Fourier transform infrared spectroscopy (FTIR) was used to analyze the gas species. Several organic materials were observed, including methane and methanol. The study focused primarily on the reduction of CO{sub 2} by using only H{sub 2}. Carbon monoxide (CO) was clearly a major product from CO{sub 2}, but CH{sub 4} was the most dominant organic species in this experiment. The density of CH{sub 4} increased with the discharge power, and eventually its volume ratio was about 20 percent among the gas species containing carbon via decomposition of CO{sub 2}. This ratio was dependent on the mixing ratio of CO{sub 2} and H{sub 2}. It was concluded that the total pressure is an important factor for efficient production. CH{sub 3}OH formation was observed, but its concentration was low in comparison to CH{sub 4}. 5 refs., 6 figs.

  13. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K.

    Science.gov (United States)

    Tian, Bin; Tian, Bining; Smith, Bethany; Scott, M C; Hua, Ruinian; Lei, Qin; Tian, Yue

    2018-04-11

    Solar-driven water splitting using powdered catalysts is considered as the most economical means for hydrogen generation. However, four-electron-driven oxidation half-reaction showing slow kinetics, accompanying with insufficient light absorption and rapid carrier combination in photocatalysts leads to low solar-to-hydrogen energy conversion efficiency. Here, we report amorphous cobalt phosphide (Co-P)-supported black phosphorus nanosheets employed as photocatalysts can simultaneously address these issues. The nanosheets exhibit robust hydrogen evolution from pure water (pH = 6.8) without bias and hole scavengers, achieving an apparent quantum efficiency of 42.55% at 430 nm and energy conversion efficiency of over 5.4% at 353 K. This photocatalytic activity is attributed to extremely efficient utilization of solar energy (~75% of solar energy) by black phosphorus nanosheets and high-carrier separation efficiency by amorphous Co-P. The hybrid material design realizes efficient solar-to-chemical energy conversion in suspension, demonstrating the potential of black phosphorus-based materials as catalysts for solar hydrogen production.

  14. CONTAIN code calculations of the effects on the source term of CsI to I/sub 2/ conversion due to severe hydrogen burns

    International Nuclear Information System (INIS)

    Valdez, G.D.; Williams, D.C.

    1986-01-01

    In experiments conducted at Sandia National Laboratories large amounts of elemental iodine were produced when CsI-Al 2 O 3 aerosol was exposed to hydrogen/air combustion. To evaluate some of the implications of the iodide conversion (observed to occur with up to 75% efficiency) for the severe accident source term, computational simulations of representative accident sequences were conducted with the CONTAIN code. The following conclusions can be drawn from this preliminary source term assessment: (1) If the containment sprays are inoperative during the accident, or failed by the hydrogen burn, the late-time source term is almost tripled when the iodide is converted to I 2 . (2) With the sprays active, the amount released without conversion of the CsI aerosol is 63% higher than for the case when conversion occurs. (3) For the case where CsI is converted to I 2 continued operation of the sprays reduces the release by a factor of 40, relative to the case in which the sprays fail at the time of the hydrogen burn. When there is no conversion, the reduction factor for continued spray operation is about a factor of 9, relative to the failed spray case

  15. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  16. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts.

    Science.gov (United States)

    Horiuchi, Yu; Toyao, Takashi; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu

    2013-08-28

    The present perspective describes recent advances in visible-light-responsive photocatalysts intended to develop novel and efficient solar energy conversion technologies, including water splitting and photofuel cells. Water splitting is recognized as one of the most promising techniques to convert solar energy as a clean and abundant energy resource into chemical energy in the form of hydrogen. In recent years, increasing concern is directed to not only the development of new photocatalytic materials but also the importance of technologies to produce hydrogen and oxygen separately. Photofuel cells can convert solar energy into electrical energy by decomposing bio-related compounds and livestock waste as fuels. The advances of photocatalysts enabling these solar energy conversion technologies have been going on since the discovery of semiconducting titanium dioxide materials and have extended to organic-inorganic hybrid materials, such as metal-organic frameworks and porous coordination polymers (MOF/PCP).

  17. Catalytic steam gasification of biomass in fluidized bed at low temperature: Conversion from livestock manure compost to hydrogen-rich syngas

    International Nuclear Information System (INIS)

    Xiao, Xianbin; Le, Duc Dung; Li, Liuyun; Meng, Xianliang; Cao, Jingpei; Morishita, Kayoko; Takarada, Takayuki

    2010-01-01

    Utilizing large amounts of animal waste as a source of renewable energy has the potential to reduce its disposal problems and associated pollution issues. Gasification characteristics of the manure compost make it possible for low temperature gasification. In this paper, an energy efficient approach to hydrogen-rich syngas from manure compost is represented at relatively low temperature, around 600 o C, in a continuous-feeding fluidized bed reactor. The effects of catalyst performance, reactor temperature, steam, and reaction type on gas yield, gas composition, and carbon conversion efficiency are discussed. The Ni-Al 2 O 3 catalyst simultaneously promotes tar cracking and steam reforming. Higher temperature contributes to higher gas yield and carbon conversion. The steam introduction increases hydrogen yield, by steam reforming and water-gas shift reaction. Two-stage gasification is also tried, showing the advantage of better catalyst utilization and enhancing the catalytic reactions to some extent.

  18. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  19. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  20. Conversion of excess wind energy into hydrogen for fuel cell applications. A system analysis within the context of the Dutch energy system

    International Nuclear Information System (INIS)

    Kraaij, G.J.; Weeda, M.

    2008-09-01

    For reduction of greenhouse gas emissions, an increased use of renewable energy sources in the electricity sector is planned. The amount of excess wind power from an increase of offshore wind power capacity is calculated for an isolated Dutch society. The excess wind power is converted into hydrogen by electrolysis and the subsequent use of the hydrogen in residential applications as well as transport applications is investigated for economic, environmental and storage aspects. At an equivalent of 8 GW offshore wind power in 2020 the wind power contributes around 20% to the electricity demand, with an excess wind power amounting to approx. 4% of the Dutch electricity consumption. Excess wind occurs during 20% of the time. Conversion of this electricity to hydrogen requires 6 GW of electrolyser capacity with an average load factor of 10%, leading to high depreciation costs of the electrolysers and subsequent high hydrogen costs. For economic as well as environmental reasons the use of hydrogen in transport applications is more beneficial than in residential applications

  1. A Theoretical Study of two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Directory of Open Access Journals (Sweden)

    Jacob N. Chung

    2014-01-01

    Full Text Available Two concept systems that are based on the thermochemical process of high-temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are 1 to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest and municipal waste to clean energy (pure hydrogen fuel, and 2 to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming. The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO2 sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  2. A Theoretical Study of Two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Chung, J. N., E-mail: jnchung@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL (United States)

    2014-01-02

    Two concept systems that are based on the thermochemical process of high temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are (1) to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest, and municipal waste to clean energy (pure hydrogen fuel), and (2) to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming). The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO{sub 2} sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  3. High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics

    DEFF Research Database (Denmark)

    Pinilla-Herrero, Irene; Borfecchia, Elisa; Holzinger, Julian

    2018-01-01

    suggest that catalytic activity is associated with [Zn(H2O)n(OH)]+ species located in the exchange positions of the materials with little or no contribution of ZnO or metallic Zn. The effect of Zn/Al ratio on their catalytic performance in methanol conversion to aromatics has been investigated. In all...... cases, higher Zn content causes an increase in the yield of aromatics while keeping the production of alkanes low. For similar Zn contents, high densities of Al sites favour the hydrogen transfer reactions and alkane formation whereas in samples with low Al contents, and thus higher Zn/Al ratio...

  4. Mode Conversion of High-Field-Side-Launched Fast Waves at the Second Harmonic of Minority Hydrogen in Advanced Tokamak Reactors

    International Nuclear Information System (INIS)

    Sund, R.; Scharer, J.

    2003-01-01

    Under advanced tokamak reactor conditions, the Ion-Bernstein wave (IBW) can be generated by mode conversion of a fast magnetosonic wave incident from the high-field side on the second harmonic resonance of a minority hydrogen component, with near 100% efficiency. IBWs have the recognized capacity to create internal transport barriers through sheared plasma flows resulting from ion absorption. The relatively high frequency (around 200 MHz) minimizes parasitic electron absorption and permits the converted IBW to approach the 5th tritium harmonic. It also facilitates compact antennas and feeds, and efficient fast wave launch. The scheme is applicable to reactors with aspect ratios < 3 such that the conversion and absorption layers are both on the high field side of the magnetic axis. Large machine size and adequate separation of the mode conversion layer from the magnetic axis minimize poloidal field effects in the conversion zone and permit a 1-D full-wave analysis. 2-D ray tracing of the IBW indicates a slightly bean-shaped equilibrium allows access to the tritium resonance

  5. Improved cellulose conversion to bio-hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor

    International Nuclear Information System (INIS)

    Jiang, Hongyu; Gadow, Samir I.; Tanaka, Yasumitsu; Cheng, Jun; Li, Yu-You

    2015-01-01

    Thermophilic hydrogen fermentation of cellulose was evaluated by a long term continuous experiment and batch experiments. The continuous experiment was conducted under 55 °C using a continuously stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 10 day. A stable hydrogen yield of 15.4 ± 0.23 mol kg −1 of cellulose consumed was maintained for 190 days with acetate and butyrate as the main soluble byproducts. An analysis of the 16S rRNA sequences showed that the hydrogen-producing thermophilic cellulolytic microorganisms (HPTCM) were close to Thermoanaerobacterium thermosaccharolyticum, Clostridium sp. and Enterobacter cloacae. Batch experiment demonstrated that the highest H 2 producing activity was obtained at 55 °C and the ultimate hydrogen yield and the metabolic by-products were influenced greatly by temperatures. The effect of temperature variation showed that the activation energy for cellulose and glucose were estimated at 103 and 98.8 kJ mol −1 , respectively. - Highlights: • Continuous cellulosic-hydrogen fermentation was conducted at 55 °C. • Hydrogen yield was improved to 15.4 mol kg −1 of consumed-cellulose. • The cellulosic hydrogen bacteria were close to Clostridia and Enterobacter genus. • The mixed microflora produced H 2 within a wide range of temperatures (35 °C–65 °C). • Activation energy of cellulose and glucose were 103 and 98.8 kJ mol −1 , respectively

  6. Theory of ortho-para conversion in hydrogen adsorbed on metal and paramagnetic surfaces at low temperatures

    International Nuclear Information System (INIS)

    Yucel, S.

    1989-01-01

    In order to explain the experimental results on Cu(100), Ag(111), Ag thin films, graphite, and H 2 bubbles in Cu, the ortho-para conversion rates of H 2 and D 2 adsorbed on metal and paramagnetic surfaces at low temperatures have been considered. The conversion rates due to magnetic dipole-dipole, Fermi contact, and spin-orbit interaction between the conduction electrons, and nuclear spins of H 2 (D 2 ) are calculated to elucidate the role of the metal surface. Although the rates on clean metal surfaces are found to be too slow to account for the observed rates on Ag, they may explain the catalytic conversion on H 2 bubble surfaces at 1.3 K. Additionally, effects of impurities and defects on the surface are investigated by calculating the conversion rate in two-dimensional solid D 2 (H 2 ) by emission of one (two) phonon(s). Fast conversion rates observed on Ag and graphite surfaces as well as on the surfaces of H 2 bubbles may be accounted for by paramagnetic impurities or defects. On Grafoil, both in (√3 x √3)R30 0 commensurate and incommensurate solid phase, a temperature-independent conversion rate is predicted if the mobility of the molecules is high enough to prevent concentration gradients

  7. Calculation of the ortho–para conversion of hydrogen in a p–type silicon lattice using a dwell time approach

    International Nuclear Information System (INIS)

    Herman, R M; Suarez, A; Sofo, J; Lewis, J C

    2012-01-01

    Quantitative spectroscopic studies of hydrogen in a p–type silicon lattice at room temperature and at reduced temperature have led to rates for the ortho-para conversion process. The characteristic relaxation time at room temperature is about 8 hours. Explanations of this rate on the basis of the interaction between the interstitial H 2 and naturally occurring 29 Si using the Wigner rate expression encounter several difficulties, the principal being that the decay would involve multiexponential decay, in contradiction to observation. In an earlier work we calculated the rate assuming that the ortho–para conversion was effected during scattering of holes from the hydrogen molecules. The result was smaller than observed by several orders of magnitude. In the present work it is assumed that sp z holes diffuse randomly throughout the Si lattice, dwelling on effective areas associated with sp z sites. The transition matrix elements are the same as for the scattering mechanism. The resultant characteristic time at room temperature we find to be 1000 hr. Considering the uncertainties in the calculation the discrepancy between our result and observation is not sufficient as to negate our physical picture.

  8. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.

    2016-03-07

    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  9. Self-Sustained Oscillations of Temperature and Conversion in a Packed Bed Microreactor during 2-Methylpropene (Isobutene) Hydrogenation

    Czech Academy of Sciences Publication Activity Database

    Stavárek, Petr; Vajglová, Zuzana; Křišťál, Jiří; Jiřičný, Vladimír; Kolena, J.

    2015-01-01

    Roč. 256, NOV 1 (2015), s. 250-260 ISSN 0920-5861. [InternationalCongress of Chemical and Process Engineering CHISA 2014 /21./. Prague, 23.08.2014-27.08.2014] Institutional support: RVO:67985858 Keywords : hydrogenation * microreactor * oscillation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.312, year: 2015

  10. Hydrogen perspectives in Japan

    International Nuclear Information System (INIS)

    Furutani, H.

    2000-01-01

    Hydrogen energy is considered to present a potential effective options for achieving the greenhouse gas minimization. The MITI (Ministry of International Trade and Industry) of Japanese Government is promoting the WE-NET (World Energy Network System) Project which envisions (1) construction of a global energy network for effective supply, transportation, storage and utilization of renewable energy using hydrogen as an energy carrier as a long-term options of sustainable energy economy, and (2) promotion of market entry of hydrogen energy in near and/or mid future even before construction of a WE-NET system. In this paper, I would like to report how far the hydrogen energy technology development addressed under Phase I has progressed, and describe the outline of the Phase II Plan. (author)

  11. High efficient conversion of furfural to 2-methylfuran over Ni-Cu/Al2O3 catalyst with formic acid as a hydrogen donor

    DEFF Research Database (Denmark)

    Fu, Zhaolin; Wang, Ze; Lin, Weigang

    2017-01-01

    Conversion of furfural to 2-methylfuran over Cu/Al2O3, Ni/Al2O3 and Ni-Cu/Al2O3 catalysts were investigated with formic acid as a hydrogen donor. Ni/Al2O3 showed a high catalytic activity but a moderate selectivity to 2-methylfuran. Contrarily, Cu/Al2O3 showed a low catalytic activity but a high...... selectivity for carbonyl reduction. Over the bimetallic catalysts Ni-10%Cu/Al2O3, by increasing Ni content, more furfural was converted with the reduction of carbonyl primarily. The effect of reaction solvent and the fraction of formic acid were also studied. The result showed that isopropanol solvent could...

  12. The microalga Chlamydomonas reinhardtii CW-15 as a solar cell for hydrogen peroxide photoproduction. Comparison between free and immobilized cells and thylakoids for energy conversion efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, W.; Galvan, F.; Rosa, F.F. de la [Instituto de Bioquimica Vegetal y Fotosintesis, Universidad de Sevilla y CSIC, Sevilla (Spain)

    1995-11-28

    Immobilized cells and thylakoid vesicles of the microalga Chlamydomonas reinhardtii CW-15 have been developed as a solar cell because of their capabilities of producing hydrogen peroxide. This compound is an efficient and clean fuel used for rocket propulsion, motors and for heating. Hydrogen peroxide is produced by the photosystem in a catalyst cycle in which a redox mediator (methyl viologen) is reduced by electrons obtained from water by the photosynthetic apparatus of the microalga and it is re-oxidized by the oxygen dissolved in the solution. The photoproduction has been investigated using a discontinuous system with whole cells, or thylakoid vesicles, free or immobilized on alginate. The stimulation by azide as an inhibitor of catalase has also been analyzed. Under determined optimum conditions, the photoproduction by Ca-alginate entrapped cells, with a rate of 33 {mu}mol H{sub 2}O{sub 2}/mg Chl.h, was maintained for several hours with an energy conversion efficiency of 0.25%

  13. Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core-shell heterojunction nanorods

    Science.gov (United States)

    Kosar, Sonya; Pihosh, Yuriy; Bekarevich, Raman; Mitsuishi, Kazutaka; Mawatari, Kazuma; Kazoe, Yutaka; Kitamori, Takehiko; Tosa, Masahiro; Tarasov, Alexey B.; Goodilin, Eugene A.; Struk, Yaroslav M.; Kondo, Michio; Turkevych, Ivan

    2018-04-01

    Photocatalytic splitting of water under solar light has proved itself to be a promising approach toward the utilization of solar energy and the generation of environmentally friendly fuel in a form of hydrogen. In this work, we demonstrate highly efficient solar-to-hydrogen conversion efficiency of 7.7% by photovoltaic-photoelectrochemical (PV-PEC) device based on hybrid MAPbI3 perovskite PV cell and WO3/BiVO4 core-shell nanorods PEC cell tandem that utilizes spectral splitting approach. Although BiVO4 is characterized by intrinsically high recombination rate of photogenerated carriers, this is not an issue for WO3/BiVO4 core-shell nanorods, where highly conductive WO3 cores are combined with extremely thin absorber BiVO4 shell layer. Since the BiVO4 layer is thinner than the characteristic carrier diffusion length, the photogenerated charge carriers are separated at the WO3/BiVO4 heterojunction before their recombination. Also, such architecture provides sufficient optical thickness even for extremely thin BiVO4 layer due to efficient light trapping in the core-shell WO3/BiVO4 nanorods with high aspect ratio. We also demonstrate that the concept of fill factor can be used to compare I-V characteristics of different photoanodes regarding their optimization for PV/PEC tandem devices.

  14. Ortho-para forms of hydrogen, deuterium, and tritium: radiation and self-induced conversion kinetics and equilibria

    International Nuclear Information System (INIS)

    Pyper, J.W.; Briggs, C.K.

    1977-01-01

    The theory of the ortho-para transitions in H 2 , D 2 , and T 2 is developed. Experimental and calculated values of the ortho-para compositions of the three hydrogen isotopes mentioned in the literature are correlated as a function of temperature, and are discussed critically. The kinetics of the radiation and self-induced ortho-para transitions are reviewed. In general, the radiation-induced transitions are more rapid than the self-induced transitions. We estimate (based on data for other systems) that the β-ray-induced ortho-para transitions in liquid D 2 or T 2 would be fast, with a half time on the order of a few minutes. Experiments are proposed to study these transitions in the liquid phase using infrared spectroscopy

  15. The analysis of mixtures of ortho and para-hydrogen and the catalytic conversion o.H{sub 2} {yields} p.H{sub 2}; Analyse des melanges d'ortho et para-hydrogenes et conversion catalytique o.H{sub 2} {yields} p.H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F; Dirian, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    This report describes experiments undertaken to measure the catalytic activity at - 195 deg. C of different types of absorbents for the heterogeneous conversion o.H{sub 2} {yields} p.H{sub 2}. The analytical method employed is a differential measurement of the thermal conductivity of the gas. In contrast to the classic method of FARKAS we have worked at room temperature (the difference of several per cent between the thermal conductivities of ortho and para-hydrogen at this temperature being found sufficiently great) and with a continuously recording system. The gas is at atmospheric pressure. We have investigated also the possibilities of an industrial katharometer which would allow a great extension to be given to this method of analysis. The instrument proved satisfactory. It has been checked that the paramagnetic conversion obeys first order kinetics. A certain number of absorbing substances were tested and amongst them, the active carbons, often used in the laboratory for the production of para-hydrogen, were shown to be the least active. A chromium oxide-aluminium oxide catalyst prepared from data available in the literature had a very great activity. In addition, some observations of the influence of adsorbed gases on the catalytic activity are reported: the comparison with the literature data is not easy due to the uncertainty in the physico-chemical nature of the absorbents used in the two cases. Finally, some bibliographic data relative to the properties of the two forms of hydrogen, their measurement, and the different mechanisms of interconversion are given. (author) [French] Le present rapport rend compte des essais entrepris en vue de determiner l'activite catalytique a - 195 deg. C de differents types d'absorbants vis-a-vis de la reaction de conversion heterogene o.H{sub 2} {yields} p.H{sub 2}. Le procede analytique utilise est la mesure differentielle de la conductibilite thermique du gas. Contrairement a la classique methode de FARKAS, on a opere d

  16. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung

    DEFF Research Database (Denmark)

    Mathee, Kalai; Ciofu, Oana; Sternberg, Claus

    1999-01-01

    leukocytes (PMNs), which release free oxygen radicals such as H(2)O(2) The mucoid phenotype among the strains infecting CF patients indicates overproduction of a linear polysaccharide called alginate. To mimic the inflammatory environment of the CF lung, P. aeruginosa PAO1, a typical non-mucoid strain....... These findings indicate that gene activation in bacteria by toxic oxygen radicals, similar to that found in plants and mammalian cells, may serve as a defence mechanism for the bacteria. This suggests that mucoid conversion is a response to oxygen radical exposure and that this response is a mechanism of defence...... by the bacteria. This is the first report to show that PMNs and their oxygen radicals can cause this phenotypic and genotypic change which is so typical of the intractable form of P. aeruginosa in the CF lung. These findings may provide a basis for the development of anti-oxidant and anti-inflammatory therapy...

  17. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer-chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS).

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A; Schimmelmann, Arndt

    2017-03-30

    Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H 2 ) is responsible for non-quantitative H 2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer-Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems. The EA-Cr/HTC reactor was substantially modified for the conversion of halogen- and sulfur-bearing samples. The performance of the novel conversion setup for solid and liquid samples was monitored and optimized using a simultaneously operating dual-detection system of IRMS and ion trap MS. The method with several variants in the reactor, including the addition of manganese metal chips, was evaluated in three laboratories using EA-Cr/HTC-IRMS (on-line method) and compared with traditional uranium-reduction-based conversion combined with manual dual-inlet IRMS analysis (off-line method) in one laboratory. The modified EA-Cr/HTC reactor setup showed an overall H 2 -recovery of more than 96% for all halogen- and sulfur-bearing organic compounds. All results were successfully normalized via two-point calibration with VSMOW-SLAP reference waters. Precise and accurate hydrogen isotopic analysis was achieved for a variety of organics containing F-, Cl-, Br-, I-, and S-bearing heteroelements. The robust nature of the on-line EA-Cr/HTC technique was demonstrated by a series of 196 consecutive measurements with a single reactor filling. The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and

  18. Hydrogen fuel. Uses

    International Nuclear Information System (INIS)

    Darkrim-Lamari, F.; Malbrunot, P.

    2006-01-01

    Hydrogen is a very energetic fuel which can be used in combustion to generate heat and mechanical energy or which can be used to generate electricity and heat through an electrochemical reaction with oxygen. This article deals with the energy conversion, the availability and safety problems linked with the use of hydrogen, and with the socio-economical consequences of a generalized use of hydrogen: 1 - hydrogen energy conversion: hydrogen engines, aerospace applications, fuel cells (principle, different types, domains of application); 2 - hydrogen energy availability: transport and storage (gas pipelines, liquid hydrogen, adsorbed and absorbed hydrogen in solid materials), service stations; 3 - hazards and safety: flammability, explosibility, storage and transport safety, standards and regulations; 4 - hydrogen economy; 5 - conclusion. (J.S.)

  19. Production of hydrogen from organic waste via hydrogen sulfide

    International Nuclear Information System (INIS)

    McMahon, M.; Davis, B.R.; Roy, A.; Daugulis, A.

    2007-01-01

    In this paper an integrated process is proposed that converts organic waste to hydrogen via hydrogen sulphide. The designed bioreactor has achieved high volumetric productivities comparable to methanogenic bioreactors. Proposed process has advantages of bio-methane production and is more resilient to process upset. Thermochemical conversion of hydrogen sulphide to hydrogen is exothermic and also requires smaller plant infrastructure

  20. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  1. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2014-01-01

    Full Text Available We report the semicontinuous, direct (anaerobic sequencing batch reactor operation hydrogen fermentation of de-oiled jatropha waste (DJW. The effect of hydraulic retention time (HRT was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L*d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L*d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR.

  2. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts.

    Science.gov (United States)

    Taylor, Martin J; Jiang, Li; Reichert, Joachim; Papageorgiou, Anthoula C; Beaumont, Simon K; Wilson, Karen; Lee, Adam F; Barth, Johannes V; Kyriakou, Georgios

    2017-04-20

    Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer. This switch in adsorption geometry strongly influences product selectivity. STM reveals the formation of hydrogen-bonded networks for planar furfural, which favor decarbonylation on clean Pt(111) and hydrogenolysis in the presence of coadsorbed hydrogen. Preadsorbed hydrogen promotes furfural hydrogenation to furfuryl alcohol and its subsequent hydrogenolysis to methyl furan, while suppressing residual surface carbon. Furfural chemistry over Pt is markedly different from that over Pd, with weaker adsorption over the former affording a simpler product distribution than the latter; Pd catalyzes a wider range of chemistry, including ring-opening to form propene. Insight into the role of molecular orientation in controlling product selectivity will guide the design and operation of more selective and stable Pt catalysts for furfural hydrogenation.

  3. Development of methane conversion improvement method by recycling of residual methane for steam reforming as a part of R and D of HTGR-hydrogen production system

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Haga, Katsuhiro; Aita, Hideki; Sekita, Kenji; Hino, Ryutaro; Koiso, Hiroshi.

    1998-01-01

    The purpose of the present study is to improve methane conversion for an HTGR-steam reforming system by recycling of residual methane. The residual methane in a product gas after steam reforming was recycled with a gas separator of polyimide membrane. Gas separation characteristics of the separator were investigated experimentally and numerically, and an experimental study on recycling system was carried out. The results showed that the recycling system improves apparent methane conversion, ratio of methane conversion to methane supply from a cylinder, from 20 to 32% compared with those without recycling. (author)

  4. Conversion of Aryl Iodides into Aryliodine(III Dichlorides by an Oxidative Halogenation Strategy Using 30% Aqueous Hydrogen Peroxide in Fluorinated Alcohol

    Directory of Open Access Journals (Sweden)

    Ajda Podgoršek

    2010-04-01

    Full Text Available Oxidative chlorination with HCl/H2O2 in 1,1,1-trifluoroethanol was used to transform aryl iodides into aryliodine(III dihalides. In this instance 1,1,1-trifluoroethanol is not only the reaction medium, but is also an activator of hydrogen peroxide for the oxidation of hydrochloric acid to molecular chlorine. Aryliodine(III dichlorides were formed in 72–91% isolated yields in the reaction of aryl iodides with 30% aqueous hydrogen peroxide and hydrochloric acid at ambient temperature. A study of the effect that substituents on the aromatic ring have on the formation and stability of aryliodine(III dichlorides shows that the transformation is easier to achieve in the presence of the electron-donating groups (i.e. methoxy, but in this case the products rapidly decompose under the reported reaction conditions to form chlorinated arenes. The results suggest that oxidation of hydrogen chloride with hydrogen peroxide is the initial reaction step, while direct oxidation of aryl iodide with hydrogen peroxide is less likely to occur.

  5. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...

  6. Hydrogen-atom tunneling through a very high barrier; spontaneous thiol → thione conversion in thiourea isolated in low-temperature Ar, Ne, H2 and D2 matrices.

    Science.gov (United States)

    Rostkowska, Hanna; Lapinski, Leszek; Nowak, Maciej J

    2018-05-23

    Spontaneous thiol → thione hydrogen-atom transfer has been investigated for molecules of thiourea trapped in Ar, Ne, normal-H2 (n-H2) and normal-D2 (n-D2) low-temperature matrices. The most stable thione isomer was the only form of the compound present in the matrices after their deposition. According to MP2/6-311++G(2d,p) calculations, the thiol tautomer should be higher in energy by 62.5 kJ mol-1. This less stable thiol form of the compound was photochemically generated in a thione → thiol process, occurring upon UV irradiation of the matrix. Subsequently, a very slow spontaneous conversion of the thiol tautomer into the thione form was observed for the molecules isolated in Ar, Ne, n-H2 and n-D2 matrices kept at 3.5 K and in the dark. Since the thiol → thione transformation in thiourea is a process involving the dissociation of a chemical bond, the barrier for this hydrogen-atom transfer is very high (104-181 kJ mol-1). Crossing such a high potential-energy barrier at a temperature as low as 3.5 K, is possible only by hydrogen-atom tunneling. The experimentally measured time constants of this tunneling process: 52 h (Ar), 76 h (Ne), 94 h (n-H2) and 94 h (n-D2), do not differ much from one another. Hence, the dependence of the tunneling rate on the matrix environment is not drastic. The progress of the thiol → thione conversion was also monitored for Ar matrices at different temperature: 3.5 K, 9 K and 15 K. For this temperature range, the experiments revealed no detectable temperature dependence of the rate of the tunneling process.

  7. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts

    OpenAIRE

    Taylor, Martin J.; Jiang, Li; Reichert, Joachim; Papageorgiou, Anthoula C.; Beaumont, Simon K.; Wilson, Karen; Lee, Adam F.; Barth, Johannes V.; Kyriakou, Georgios

    2017-01-01

    Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfur...

  8. A Series of Supramolecular Complexes for Solar Energy Conversion via Water Reduction to Produce Hydrogen: An Excited State Kinetic Analysis of Ru(II,Rh(III,Ru(II Photoinitiated Electron Collectors

    Directory of Open Access Journals (Sweden)

    Shamindri M. Arachchige

    2011-12-01

    Full Text Available Mixed-metal supramolecular complexes have been designed that photochemically absorb solar light, undergo photoinitiated electron collection and reduce water to produce hydrogen fuel using low energy visible light. This manuscript describes these systems with an analysis of the photophysics of a series of six supramolecular complexes, [{(TL2Ru(dpp}2RhX2](PF65 with TL = bpy, phen or Ph2phen with X = Cl or Br. The process of light conversion to a fuel requires a system to perform a number of complicated steps including the absorption of light, the generation of charge separation on a molecular level, the reduction by one and then two electrons and the interaction with the water substrate to produce hydrogen. The manuscript explores the rate of intramolecular electron transfer, rate of quenching of the supramolecules by the DMA electron donor, rate of reduction of the complex by DMA from the 3MLCT excited state, as well as overall rate of reduction of the complex via visible light excitation. Probing a series of complexes in detail exploring the variation of rates of important reactions as a function of sub-unit modification provides insight into the role of each process in the overall efficiency of water reduction to produce hydrogen. The kinetic analysis shows that the complexes display different rates of excited state reactions that vary with TL and halide. The role of the MLCT excited state is elucidated by this kinetic study which shows that the 3MLCT state and not the 3MMCT is likely that key contributor to the photoreduction of these complexes. The kinetic analysis of the excited state dynamics and reactions of the complexes are important as this class of supramolecules behaves as photoinitiated electron collectors and photocatalysts for the reduction of water to hydrogen.

  9. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  10. Low-Temperature Growth of Hydrogenated Amorphous Silicon Carbide Solar Cell by Inductively Coupled Plasma Deposition Toward High Conversion Efficiency in Indoor Lighting.

    Science.gov (United States)

    Kao, Ming-Hsuan; Shen, Chang-Hong; Yu, Pei-Chen; Huang, Wen-Hsien; Chueh, Yu-Lun; Shieh, Jia-Min

    2017-10-05

    A p-a-SiC:H window layer was used in amorphous Si thin film solar cells to boost the conversion efficiency in an indoor lighting of 500 lx. The p-a-SiC:H window layer/p-a-Si:H buffer layer scheme moderates the abrupt band bending across the p/i interface for the enhancement of V OC , J SC and FF in the solar spectra of short wavelengths. The optimized thickness of i-a-Si:H absorber layer is 400 nm to achieve the conversion efficiency of ~9.58% in an AM1.5 G solar spectrum. However, the optimized thickness of the absorber layer can be changed from 400 to 600 nm in the indoor lighting of 500 lx, exhibiting the maximum output power of 25.56 μW/cm 2 . Furthermore, various durability tests with excellent performance were investigated, which are significantly beneficial to harvest the indoor lights for applications in the self-powered internet of thing (IoT).

  11. Innovative direct energy conversion systems using electronic adiabatic processes of electron fluid in solid conductors: new plants of electrical power and hydrogen gas resources without environmental pollutions

    International Nuclear Information System (INIS)

    Kondoh, Y.; Kondo, M.; Shimoda, K.; Takahashi, T.

    2001-07-01

    It is shown that using a novel recycling process of the environmental thermal energy, innovative permanent auto-working direct energy converter systems (PA-DEC systems) from the environmental thermal to electrical and/or chemical potential (TE/CP) energies, abbreviated as PA-TE/CP-DEC systems, can be used for new auto-working electrical power plants and the plants of the compressible and conveyable hydrogen gas resources at various regions in the whole world, with contributions to the world peace and the economical development in the south part of the world. It is shown that the same physical mechanism by free electrons and electrical potential determined by temperature in conductors, which include semiconductors, leads to the Peltier effect and the Seebeck one. It is experimentally clarified that the long distance separation between two π type elements of the heat absorption (HAS) and the production one (HPS) of the Peltier effect circuit system or between the higher temperature side (HTS) and the lower one (LTS) of the Seebeck effect circuit one does not change in the whole for the both effects. By using present systems, we do not need to use petrified fuels such as coals, oils, and natural gases in order to decrease the greenhouse effect by the CO 2 surrounding the earth. Furthermore, we do not need plats of nuclear fissions that left radiating wastes, i.e., with no environmental pollutions. The PA-TE/CP-DEC systems can be applicable for several km scale systems to the micro ones, such as the plants of the electrical power, the compact transportable hydrogen gas resources, a large heat energy container, which can be settled at far place from thermal energy absorbing area, the refrigerators, the air conditioners, home electrical apparatuses, and further the computer elements. It is shown that the simplest PA-TE/CP-DEC system can be established by using only the Seebeck effect components and the resolving water ones. It is clarified that the externally applied

  12. Hydrogen gains further momentum

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    As first industrial production projects should become a reality in the next few years, hydrogen as a source of energy will find important applications with mobility, which momentum is rapid and irresistible. Next steps will be the (large capacity) storage of hydrogen associated to power-to-gas systems and the generalization of renewable energies. This document presents 5 articles, which themes are: Description and explanation of the process of hydrogen production; Presentation of the H2V project for the construction, in Normandy, of the first operational industrial hydrogen production plant using electric power 100 pc generated by renewable energies; The conversion of electric power from renewable energies through hydrogen storage and fuel cells for buildings applications (Sylfen project); The development of a reversible fuel cell at Mines-Paris Tech University, that will be adapted to the storage of renewable electric power; Hydrogen as a lever for the development of zero-emission vehicles, from trucks to cars and bicycles

  13. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  14. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  15. Hydrogen research and development in Hawaii: Hawaii natural energy institute's hydrogen from renewable resources research program

    International Nuclear Information System (INIS)

    McKinley, K.R.; Rocheleau, R.E.; Takahashi, P.K.; Jensen, C.M.

    1993-01-01

    Hawaii, an energy-vulnerable state, has launched a Renewable Resources Research Program, focusing on hydrogen production and storage; the main tasks of this effort are: photoelectrochemical production of hydrogen through the use of coated silicon electrodes; solar conversion and the production of hydrogen with cyanobacteria; improved hydrogen storage through the use of nonclassical poly-hydride metal complexes. 10 refs

  16. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  17. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M; Lien, S; Weaver, P F

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  18. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M.; Lien, S.; Weaver, P.F.

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  19. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  20. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  1. Hydrogen Bonded Supramolecular Polymers in Both Apolar and Aqueous Media: Self-Assembly and Reversible Conversion of Vesicles and Gels%Hydrogen Bonded Supramolecular Polymers in Both Apolar and Aqueous Media: Self-Assembly and Reversible Conversion of Vesicles and Gels

    Institute of Scientific and Technical Information of China (English)

    杜平; 孔军; 王贵涛; 赵新; 李光玉; 蒋锡夔; 黎占亭

    2011-01-01

    In a preliminary letter (Tetrahedron Lett. 2010, 51, 188), we reported two new hydrazide-based quadruple hydrogen-bonding motifs, this is, two monopodal (la and lb) and five dipodal (2a, 2b and 3a--3c) aromatic hydrazide derivatives, and the formation of supramolecular polymers and vesicles from the dipodal motifs in hydrocarbons. In this paper, we present a full picture on the properties of these hydrogen-bonding motifs with an emphasis on their self-assembling behaviors in aqueous media. SEM, AFM, TEM and fluorescent micrographs indicate that all the dipodal compounds also form vesicles in polar methanol and water-methanol (up to 50% of water) mixtures. Control experiments show that lb does not form vesicles in same media. Addition of lb to the solution of the dipodal compounds inhibits the latter's capacity of forming vesicles. At high concentrations, 3b and 3c also gelate discrete solvents, including hydrocarbons, esters, methanol, and methanol-water mixture. Concentration-dependent SEM investigations reveal that the vesicles of 3b and 3c fuse to form gels and the gel of 3c can de-aggregate to form the vesicles reversibly.

  2. Report of National Research Institute for Pollution and Resources for fiscal 1979. Research on conversion of coal to petroleum, research on coal liquefaction, high pressure liquid phase hydrogenation of coal by continuous test equipment, and manufacture of coal chemicals; 1979 nendo sekitan no yuka no kenkyu / sekitan no ekika no kenkyu / renzoku shiken sochi ni yoru sekitan no koatsu ekiso suisoka bunkai / coal chemicals no seizo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    Research was conducted on conversion of coal to petroleum for the purpose of securing substitute liquid fuel. Recovery of hydrogen from the waste gas from the conversion process was explained, as were the conversion results from various coals produced in Japan. In coal liquefaction researches with the aim of manufacturing artificial petroleum, a report was made on each of the researches, i.e., the experiment results of coal liquefaction using various catalysts, manufacture of hydrogen by water gas reaction, catalytic action against coal paste, action of mixed oil and pressure against coal paste, result of hydrogen adding test for coal paste using an intermediate scale device, test result of secondary hydrogen addition for coal liquefied oil, and the test result of continuous secondary hydrogen addition for the liquefied oil. In the manufacture of fuel oil by hydro-cracking of coal or tar, a report was made on high pressure liquid phase hydrogenation of coal using a continuous testing device. Aromatic chemicals useful as chemical materials are supposed to be obtained by cutting inter-polymerized-unit bonding to make low molecules from the chemical structure of coal, removing surrounding radicals and simplifying it. A report was also made on the experiment of manufacturing coal chemicals by combination of high pressure liquid phase hydrogenation and hydro-dealkylation. (NEDO)

  3. Conversation Analysis.

    Science.gov (United States)

    Schiffrin, Deborah

    1990-01-01

    Summarizes the current state of research in conversation analysis, referring primarily to six different perspectives that have developed from the philosophy, sociology, anthropology, and linguistics disciplines. These include pragmatics; speech act theory; interactional sociolinguistics; ethnomethodology; ethnography of communication; and…

  4. Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance

    Science.gov (United States)

    Hosseini, M. G.; Mahmoodi, R.

    2017-12-01

    In this study, core@shell nanoparticles with Ni as a core material and Pt, Pd and Ru as shell materials are synthesized on multiwalled carbon nanotube (MWCNT) as catalyst support using the sequence reduction method. The influence of Ni@Pt, Ni@Pd and Ni@Ru core@shell nanoparticles on MWCNT toward borohydride oxidation in alkaline solution is investigated by various three-electrode electrochemical techniques. Also, the impact of these anodic electrocatalysts on the performance of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) is evaluated. The structural and morphological properties of electrocatalysts are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results of three electrode investigations show that Ni@Pd/MWCNT has excellent catalytic activity since borohydride oxidation current density on Ni@Pd/MWCNT (34773.27 A g-1) is 1.37 and 9.19 times higher than those of Ni@Pt/MWCNT (25347.27 A g-1) and Ni@Ru/MWCNT (3782.83 A g-1), respectively. Also, the energy conversion efficiency and power density of DBHPFC with Ni@Pd/MWCNT (246.82 mW cm-2) increase to 34.27% and 51.53% respect to Ni@Pt/MWCNT (162.24 mW cm-2) and Ni@Ru/MWCNT (119.62 mW cm-2), respectively. This study reveals that Ni@Pd/MWCNT has highest activity toward borohydride oxidation and stability in fuel cell.

  5. Hydrogenizing oils, asphalts, etc

    Energy Technology Data Exchange (ETDEWEB)

    1925-03-14

    The hydrogenation of carbonaceous solids in presence of combined sulfur, e.g., sulfides as described in the parent specification is applied to the treatment of rock oils, shale oils, resins, ozokerite, asphalt, and the like, or fractions, residues, or acid sludge or other conversion products thereof, alone or mixed. Preferably the hydrogen or other reducing gas is in excess and under pressure, and is either circuited or led through a series of treatment vessels, hydrogen being added for that used. In an example, residues from American crude oil are passed continuously with hydrogen at 200 atmospheres and 450 to 500/sup 0/C over pressed precipitated cobalt sulfide, the issuing gases being cooled to condense the light oil produced.

  6. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  7. Pictorial Conversations.

    Science.gov (United States)

    Hooper, Kristina

    1982-01-01

    Provides the rationale for considering communication in a graphic domain and suggests a specific goal for designing work stations which provide graphic capabilities in educational settings. The central element of this recommendation is the "pictorial conversation", a highly interactive exchange that includes pictures as the central elements.…

  8. Hydrogen assisted diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilik, Gregory K.; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Hedan; Haworth, Daniel C. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Herreros, Jose Martin [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla La-Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-05-15

    that temperature changes alone are not sufficient to explain the observed reduction in NO and increase in NO{sub 2} with increasing H{sub 2}. The CFD results are consistent with the hypothesis that in-cylinder HO{sub 2} levels increase with increasing hydrogen, and that the increase in HO{sub 2} enhances the conversion of NO to NO{sub 2}. Increased aspiration of hydrogen resulted in PM, and HC emissions which were combustion mode dependent. Predominantly, CO and CO{sub 2} decreased with the increase of hydrogen. The aspiration of hydrogen into the engine modestly decreased fuel economy due to reduced volumetric efficiency from the displacement of air in the cylinder by hydrogen. (author)

  9. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  10. Hydrogen technologies and the technology learning curve

    International Nuclear Information System (INIS)

    Rogner, H.-H.

    1998-01-01

    On their bumpy road to commercialization, hydrogen production, delivery and conversion technologies not only require dedicated research, development and demonstration efforts, but also protected niche markets and early adopters. While niche markets utilize the unique technological properties of hydrogen, adopters exhibit a willingness to pay a premium for hydrogen fueled energy services. The concept of the technology learning curve is applied to estimate the capital requirements associated with the commercialization process of several hydrogen technologies. (author)

  11. Quantum conversion

    OpenAIRE

    Mazilu, Michael

    2015-01-01

    ICOAM 2015 The electromagnetic momentum transferred transferred to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ℏk does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the tran...

  12. Conversational sensemaking

    Science.gov (United States)

    Preece, Alun; Webberley, Will; Braines, Dave

    2015-05-01

    Recent advances in natural language question-answering systems and context-aware mobile apps create opportunities for improved sensemaking in a tactical setting. Users equipped with mobile devices act as both sensors (able to acquire information) and effectors (able to act in situ), operating alone or in collectives. The currently- dominant technical approaches follow either a pull model (e.g. Apple's Siri or IBM's Watson which respond to users' natural language queries) or a push model (e.g. Google's Now which sends notifications to a user based on their context). There is growing recognition that users need more flexible styles of conversational interaction, where they are able to freely ask or tell, be asked or told, seek explanations and clarifications. Ideally such conversations should involve a mix of human and machine agents, able to collaborate in collective sensemaking activities with as few barriers as possible. Desirable capabilities include adding new knowledge, collaboratively building models, invoking specific services, and drawing inferences. As a step towards this goal, we collect evidence from a number of recent pilot studies including natural experiments (e.g. situation awareness in the context of organised protests) and synthetic experiments (e.g. human and machine agents collaborating in information seeking and spot reporting). We identify some principles and areas of future research for "conversational sensemaking".

  13. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  14. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  15. The Italian hydrogen programme

    International Nuclear Information System (INIS)

    Raffaele Vellone

    2001-01-01

    Hydrogen could become an important option in the new millennium. It provides the potential for a sustainable energy system as it can be used to meet most energy needs without harming the environment. In fact, hydrogen has the potential for contributing to the reduction of climate-changing emissions and other air pollutants as it exhibits clean combustion with no carbon or sulphur oxide emissions and very low nitrogen oxide emissions. Furthermore, it is capable of direct conversion to electricity in systems such as fuel cells without generating pollution. However, widespread use of hydrogen is not feasible today because of economic and technological barriers. In Italy, there is an ongoing national programme to facilitate the introduction of hydrogen as an energy carrier. This programme aims to promote, in an organic frame, a series of actions regarding the whole hydrogen cycle. It foresees the development of technologies in the areas of production, storage, transport and utilisation. Research addresses the development of technologies for separation and sequestration of CO 2 , The programme is shared by public organisations (research institutions and universities) and national industry (oil companies, electric and gas utilities and research institutions). Hydrogen can be used as a fuel, with significant advantages, both for electric energy generation/ co-generation (thermo-dynamic cycles and fuel cells) and transportation (internal combustion engine and fuel cells). One focus of research will be the development of fuel cell technologies. Fuel cells possess all necessary characteristics to be a key technology in a future economy based on hydrogen. During the initial phase of the project, hydrogen will be derived from fossil sources (natural gas), and in the second phase it will be generated from renewable electricity or nuclear energy. The presentation will provide a review of the hydrogen programme and highlight future goals. (author)

  16. Metylcyclohexane conversion to light olefins

    Directory of Open Access Journals (Sweden)

    SCOFIELD C.F.

    1998-01-01

    Full Text Available This study consists in the evaluation of the catalytic properties of zeolites with different structures in the conversion of methylcyclohexane to light olefins. Results obtained suggest that the steric constrictions of the catalysts used play an important role in hydrogen transfer reactions. Higher selectivities for light olefins (C3= and C4= were observed for zeolites having more closed structures, like MFI and ferrerite, when compared to those having more open ones, like beta, omega and faujasite.

  17. Metylcyclohexane conversion to light olefins

    OpenAIRE

    SCOFIELD, C.F.; BENAZZI, E.; CAUFFRIEZ, H.; MARCILLY, C.

    1998-01-01

    This study consists in the evaluation of the catalytic properties of zeolites with different structures in the conversion of methylcyclohexane to light olefins. Results obtained suggest that the steric constrictions of the catalysts used play an important role in hydrogen transfer reactions. Higher selectivities for light olefins (C3= and C4=) were observed for zeolites having more closed structures, like MFI and ferrerite, when compared to those having more open ones, like beta, omega and fa...

  18. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  19. Conversion of a heme-based oxygen sensor to a heme oxygenase by hydrogen sulfide: effects of mutations in the heme distal side of a heme-based oxygen sensor phosphodiesterase (Ec DOS)

    Czech Academy of Sciences Publication Activity Database

    Du, Y.; Liu, G.; Yan, Y.; Huang, D.; Luo, W.; Martínková, M.; Man, Petr; Shimizu, T.

    2013-01-01

    Roč. 26, č. 5 (2013), s. 839-852 ISSN 0966-0844 Institutional support: RVO:61388971 Keywords : Heme oxygenase * Heme protein * Hydrogen sulfide Subject RIV: CE - Biochemistry Impact factor: 2.689, year: 2013

  20. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  1. Photovoltaic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J. [Univ. of Miami, Coral Gables, FL (United States)

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  2. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  3. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  4. Towards an ammonia-mediated hydrogen economy?

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Johannessen, Tue; Sørensen, Rasmus Zink

    2006-01-01

    Materialization of a hydrogen economy could provide a solution to significant global challenges, In particular. the possibility of improving the efficiency and simultaneously minimizing the environmental impact of energy conversion processes, together with the opportunity to reduce the dependency...

  5. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  6. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  7. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  8. Hydrogen Distribution in the Lunar Polar Regions

    Science.gov (United States)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Bakhtin, B. N.; Bodnarik, J. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshmann, K.; Fedosov, F.; hide

    2016-01-01

    We present a method of conversion of the lunar neutron counting rate measured by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument collimated neutron detectors, to water equivalent hydrogen (WEH) in the top approximately 1 m layer of lunar regolith. Polar maps of the Moon’s inferred hydrogen abundance are presented and discussed.

  9. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  10. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  11. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  12. Nuclear hydrogen production and its safe handling

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Kim, Kwang-Rag; Ahn, Do-Hee; Lee, Minsoo; Chang, Jong Hwa

    2003-01-01

    An overview of the hydrogen related research presently undertaken at the Korea Atomic Energy Research Institute are presented. These encompass nuclear hydrogen production, hydrogen storage, and the safe handling of hydrogen, High temperature gas-cooled reactors can play a significant role, with respect to large-scale hydrogen production, if used as the provider of high temperature heat in fossil fuel conversion or thermochemical cycles. A variety of potential hydrogen production methods for high temperature gas-cooled reactors were analyzed. They are steam reforming of natural gas, thermochemical cycles, etc. The produced hydrogen should be stored safely. Titanium metal was tested primarily because its hydride has very low dissociation pressures at normal storage temperatures and a high capacity for hydrogen, it is easy to prepare and is non-reactive with air in the expected storage conditions. There could be a number of potential sources of hydrogen evolution risk in a nuclear hydrogen production facility. In order to reduce the deflagration detonation it is necessary to develop hydrogen control methods that are capable of dealing with the hydrogen release rate. A series of experiments were conducted to assess the catalytic recombination characteristics of hydrogen in an air stream using palladium catalysts. (author)

  13. Hydrogen: Fueling the Future

    International Nuclear Information System (INIS)

    Leisch, Jennifer

    2007-01-01

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  14. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  15. Saga of hydrogen civilization

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T.N. [Univ. of Miami, Coral Gables, FL (United States). Clean Energy Research Institute

    2008-09-30

    was carried out to determine when the conversion to hydrogen economy could be completed under the existing laws, regulations and rules. For this business as usual case, the model study indicated that the conversion to Hydrogen Economy would take another three quarters of a century, i.e., it would be completed by 2074.

  16. Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell

    DEFF Research Database (Denmark)

    Zong, Xu; Chen, Hongjun; Seger, Brian

    2014-01-01

    A solar-to-chemical conversion process is demonstrated using a photoelectrochemical cell without external bias for selective oxidation of hydrogen sulfide (H2S) to produce hydrogen peroxide (H2O2) and sulfur (S). The process integrates two redox couples anthraquinone/anthrahydroquinone and I−/I3......−, and conceptually illustrates the remediation of a waste product for producing valuable chemicals....

  17. Hydrogen production with effluent from an ethanol–H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell

    KAUST Repository

    Lu, Lu; Ren, Nanqi; Xing, Defeng; Logan, Bruce E.

    2009-01-01

    Hydrogen can be produced by bacterial fermentation of sugars, but substrate conversion to hydrogen is incomplete. Using a single-chamber microbial electrolysis cell (MEC), we show that additional hydrogen can be produced from the effluent

  18. A study on hazard types occurring in hydrogen facilities

    International Nuclear Information System (INIS)

    Cho, Nam Chul; Jae, Moo Sung; Eon, Yang Joon

    2004-01-01

    Hydrogen has ideal characteristics as an energy carrier. Hydrogen can be used as a clean fuel in a variety of energy end-use sectors including the conversion to electricity. After combustion, it produces only water. Therefore, the concept of hydrogen energy system has attracted much interest worldwide. But hydrogen has a defect that the explosion risk is high to an inflammable gas of a colorless, tasteless and odorless. Therefore, to use the hydrogen to the source of energy, hydrogen accident sequences and causes analysis must be needed. For this, hazard types occurring in hydrogen facilities have been considered through the case of domestic and foreign hydrogen accident in this study and hazard types to be considered are ignition, leaks, hydrogen dispersion, fire an explosion, storage vessel failure, vent and exhaust system, purging, condensation of air, hydrogen embrittlement, physiological hazard, and collisions during transportation

  19. Fiscal 2000 collection of manuscripts for technology development committee on hydrogen energy and the like; 2000 nendo suiso energy nado kanren gijutsu kaihatsu iinkai yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-07

    The subjects listed in the collection are (1) the research and development of international clean energy system technology utilizing hydrogen (WE-NET - World Energy Network), including the outline of the project as a whole; research on system evaluation; research and development of safety measures; development of technologies for liquid hydrogen transportation and storage; research on low-temperature materials; development of hydrogen supply station and hydrogen-driven automobile system; development of supply station for hydrogen produced by electrolysis of water; development of hydrogen fuel system; development of hydrogen production technology; development of hydrogen absorbing alloys for dispersed hydrogen transportation and storage; development of polymer electrolyte fuel cell fed with pure hydrogen; and the development of power generation technology, (2) the development of closed type high-efficiency turbine technology capable of carbon dioxide recovery, and (3) the development of frontier technology of carburation using sensible heat in coke oven gas. (NEDO)

  20. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  1. Preparing valuable hydrocarbons by hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1930-08-22

    A process is described for the preparation of valuable hydrocarbons by treatment of carbonaceous materials, like coal, tars, minerals oils, and their distillation and conversion products, and for refining of liquid hydrocarbon mixture obtained at raised temperature and under pressure, preferably in the presence of catalysts, by the use of hydrogen-containing gases, purified and obtained by distilling solid combustibles, characterized by the purification of the hydrogen-containing gases being accomplished for the purpose of practically complete removal of the oxygen by heating at ordinary or higher pressure in the presence of a catalyst containing silver and oxides of metals of group VI of the periodic system.

  2. Solar Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Koval, C. [Univ. of Colorado, Boulder (United States); Sutin, N. [Brookhaven National Lab., Upton, NY (United States); Turner, J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-09-01

    This panel addressed different methods for the photoassisted dissociation of water into its component parts, hydrogen and oxygen. Systems considered include PV-electrolysis, photoelectrochemical cells, and transition-metal based microheterogeneous and homogeneous systems. While none of the systems for water splitting appear economically viable at the present time, the panel identified areas of basic research that could increase the overall efficiency and decrease the costs. Common to all the areas considered was the underlying belief that the water-to-hydrogen half reaction is reasonably well characterized, while the four-electron oxidation of water-to-oxygen is less well understood and represents a significant energy loss. For electrolysis, research in electrocatalysis to reduce overvoltage losses was identified as a key area for increased efficiency. Non-noble metal catalysts and less expensive components would reduce capital costs. While potentially offering higher efficiencies and lower costs, photoelectrochemical-based direct conversion systems undergo corrosion reactions and often have poor energetics for the water reaction. Research is needed to understand the factors that control the interfacial energetics and the photoinduced corrosion. Multi-photon devices were identified as promising systems for high efficiency conversion.

  3. Solar hydrogen for urban trucks

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  4. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  5. Laboratory Validation and Demonstrations of Non-Hexavalent Chromium Conversion Coatings for Steel Substrates (Briefing Charts)

    Science.gov (United States)

    2011-02-01

    UNCLASSIFIED: Approved for public release; distribution unlimited. Laboratory Validation and Demonstrations of Non- Hexavalent Chromium Conversion...00-00-2011 4. TITLE AND SUBTITLE Laboratory Validation and Demonstrations of Non- Hexavalent Chromium Conversion Coatings for Steel Substrates 5a...to MRAP II Acquisition Pretreatment /conversion coatings omitted: • Hex- chrome pretreatments prohibited for new ground vehicles • Hydrogen

  6. Photoelectrochemical water splitting in separate oxygen and hydrogen cells

    Science.gov (United States)

    Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner

    2017-06-01

    Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

  7. Nickel Hydrogen Battery Expert System

    Science.gov (United States)

    Johnson, Yvette B.; Mccall, Kurt E.

    1992-01-01

    The Nickel Cadmium Battery Expert System-2, or 'NICBES-2', which was used by the NASA HST six-battery testbed, was subsequently converted into the Nickel Hydrogen Battery Expert System, or 'NICHES'. Accounts are presently given of this conversion process and future uses being contemplated for NICHES. NICHES will calculate orbital summary data at the end of each orbit, and store these files for trend analyses and rules-generation.

  8. 40-fs hydrogen Raman laser

    Energy Technology Data Exchange (ETDEWEB)

    Didenko, N V; Konyashchenko, A V; Kostryukov, P V; Losev, L L; Pazyuk, V S [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Tenyakov, S Yu [Avesta Ltd., Troitsk, Moscow (Russian Federation); Molchanov, V Ya; Chizhikov, S I; Yushkov, K B [National University of Science and Technology ' MISIS' , Acoustooptical Research Center, Moscow (Russian Federation)

    2015-12-31

    40-fs first Stokes pulses at a wavelength of 1.2 μm were generated in a hydrogen SRS-converter pumped by orthogonally polarised double chirped pulses of a Ti : sapphire laser. To obtain a Stokes pulse close to a transform-limited one, a programmed acousto-optic dispersive delay line was placed between the master oscillator and regenerative amplifier. The energy efficiency of Stokes radiation conversion reached 22%. (lasers)

  9. Microwave Hydrogen Production from Methane

    Science.gov (United States)

    2012-04-01

    combustion NOx control of reciprocating engine exhaust and fuel cell application of biogas . Our target is to obtain the methane conversion efficiency...demonstration of MW technology removing and destroying hydrogen sulfide (H2S) and siloxanes from biogas produced by Sacramento Regional Wastewater...running on biogas and is currently conducting the field demonstration of the unit at Tollenaar Dairy in Elk Grove, CA. SMUD, California Air Resources

  10. 40-fs hydrogen Raman laser

    International Nuclear Information System (INIS)

    Didenko, N V; Konyashchenko, A V; Kostryukov, P V; Losev, L L; Pazyuk, V S; Tenyakov, S Yu; Molchanov, V Ya; Chizhikov, S I; Yushkov, K B

    2015-01-01

    40-fs first Stokes pulses at a wavelength of 1.2 μm were generated in a hydrogen SRS-converter pumped by orthogonally polarised double chirped pulses of a Ti : sapphire laser. To obtain a Stokes pulse close to a transform-limited one, a programmed acousto-optic dispersive delay line was placed between the master oscillator and regenerative amplifier. The energy efficiency of Stokes radiation conversion reached 22%. (lasers)

  11. Development of Advanced Small Hydrogen Engines

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  12. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    International Nuclear Information System (INIS)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-01-01

    Liquid natural rubber (LNR) with molecular weight of lower than 10 5 and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA)

  13. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    Science.gov (United States)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Liquid natural rubber (LNR) with molecular weight of lower than 105 and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA).

  14. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Liquid natural rubber (LNR) with molecular weight of lower than 10{sup 5} and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA)

  15. Special issue: Plasma Conversion

    NARCIS (Netherlands)

    Nozaki, T.; Bogaerts, A.; Tu, X.; van de Sanden, M. C. M.

    2017-01-01

    With growing concern of energy and environmental issues, the combination of plasma and heterogeneous catalysts receives special attention in greenhouse gas conversion, nitrogen fixation and hydrocarbon chemistry. Plasma gas conversion driven by renewable electricity is particularly important for the

  16. Hydrogen Storage and Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Abhijit [Univ. of Arkansas, Little Rock, AR (United States); Biris, A. S. [Univ. of Arkansas, Little Rock, AR (United States); Mazumder, M. K. [Univ. of Arkansas, Little Rock, AR (United States); Karabacak, T. [Univ. of Arkansas, Little Rock, AR (United States); Kannarpady, Ganesh [Univ. of Arkansas, Little Rock, AR (United States); Sharma, R. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  17. Hydrogen. A small molecule with large impact

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, H.; Ruthardt, K.; Mathiak, J.; Roosen, C. [Uhde GmbH, Dortmund (Germany)

    2010-12-30

    The first section of the presentation will provide general information about hydrogen including physical data, natural abundance, production and consumption figures. This will be followed by detailed information about current industrial production routes for hydrogen. Main on-purpose production for hydrogen is by classical steam reforming (SR) of natural gas. A brief overview of most important steps in stream reforming is given including reforming section, CO conversion and gas purification. Also the use of heavier than methane feedstocks and refinery off-gases is discussed. Alternative routes for hydrogen production or production of synthesis gas are autothermal reforming (ATR) or partial oxidation (POX). Pros and Cons for each specific technology are given and discussed. Gasification, especially gasification of renewable feedstocks, is a further possibility to produce hydrogen or synthesis gas. New developments and current commercial processes are presented. Hydrogen from electrolysis plants has only a small share on the hydrogen production slate, but in some cases this hydrogen is a suitable feedstock for niche applications with future potential. Finally, production of hydrogen by solar power as a new route is discussed. The final section focuses on the use of hydrogen. Classical applications are hydrogenation reactions in refineries, like HDS, HDN, hydrocracking and hydrofinishing. But, with an increased demand for liquid fuels for transportation or power supply, hydrogen becomes a key player in future as an energy source. Use of hydrogen in synthesis gas for the production of liquid fuels via Fischer-Tropsch synthesis or coal liquefaction is discussed as well as use of pure hydrogen in fuel cells. Additional, new application for biomass-derived feedstocks are discussed. (orig.)

  18. A Model for Conversation

    DEFF Research Database (Denmark)

    Ayres, Phil

    2012-01-01

    This essay discusses models. It examines what models are, the roles models perform and suggests various intentions that underlie their construction and use. It discusses how models act as a conversational partner, and how they support various forms of conversation within the conversational activity...

  19. Direct Conversion of Energy.

    Science.gov (United States)

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  20. Electrochemistry of Nanocomposite Materials for Energy Conversion

    OpenAIRE

    Boni, Alessandro

    2016-01-01

    Energy is the most relevant technological issue that the world experiences today, and the development of efficient technologies able to store and convert energy in different forms is urgently needed. The storage of electrical energy is of major importance and electrochemical processes are particularly suited for the demanding task of an efficient inter-conversion. A potential strategy is to store electricity into the chemical bonds of electrogenerated fuels, like hydrogen and/or energy-den...

  1. Thermal Conversion of Methane to Acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

    2000-01-01

    This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

  2. Metastable hydrogen

    International Nuclear Information System (INIS)

    Dose, V.

    1982-01-01

    This paper deals with the basic physical properties of the metastable 2 2 sub(1/2) state of atomic hydrogen. Applications relying on its special properties, including measurement of the Lamb shift, production of spin-polarized protons and the measurement of molecular electric moments, are discussed. (author)

  3. HYDROGENATION OF TOLUENE ON Ni-Co-Mo SUPPORTED ...

    African Journals Online (AJOL)

    HOD

    Keywords: Hydro treating catalysts; Hydrogenation; Toluene conversion; Surface area; Pore diameter. 1. ... decades in refineries to upgrade heavy oil fractions and residue. Metals often ...... "Hydroprocessing of heavy petroleum feeds: Tutorial ...

  4. Elements of energy conversion

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Elements of Energy Conversion brings together scattered information on the subject of energy conversion and presents it in terms of the fundamental thermodynamics that apply to energy conversion by any process. Emphasis is given to the development of the theory of heat engines because these are and will remain most important power sources. Descriptive material is then presented to provide elementary information on all important energy conversion devices. The book contains 10 chapters and opens with a discussion of forms of energy, energy sources and storage, and energy conversion. This is foll

  5. Iterated multidimensional wave conversion

    International Nuclear Information System (INIS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-01-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  6. Industrial implications of hydrogen

    International Nuclear Information System (INIS)

    Pressouyre, G.M.

    1982-01-01

    Two major industrial implications of hydrogen are examined: problems related to the effect of hydrogen on materials properties (hydrogen embrittlement), and problems related to the use and production of hydrogen as a future energy vector [fr

  7. Thermal properties of hydrogenated liquid natural rubber

    Science.gov (United States)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  8. Thermal properties of hydrogenated liquid natural rubber

    International Nuclear Information System (INIS)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-01-01

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion

  9. Thermal properties of hydrogenated liquid natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  10. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrogen passivation of multi-crystalline silicon solar cells

    Institute of Scientific and Technical Information of China (English)

    胡志华; 廖显伯; 刘祖明; 夏朝凤; 陈庭金

    2003-01-01

    The effects of hydrogen passivation on multi-crystalline silicon (mc-Si) solar cells are reported in this paper.Hydrogen plasma was generated by means of ac glow discharge in a hydrogen atmosphere. Hydrogen passivation was carried out with three different groups of mc-Si solar cells after finishing contacts. The experimental results demonstrated that the photovoltaic performances of the solar cell samples have been improved after hydrogen plasma treatment, with a relative increase in conversion efficiency up to 10.6%. A calculation modelling has been performed to interpret the experimental results using the model for analysis of microelectronic and photonic structures developed at Pennsylvania State University.

  12. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  13. Japan's New Sunshine Project. 1998 Annual summary of hydrogen energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  14. A green approach to ethyl acetate: Quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor

    KAUST Repository

    Zeng, Gaofeng

    2012-11-07

    Pincers do the trick: The conversion of ethanol to ethyl acetate and hydrogen was achieved using a pincer-Ru catalyst in a Pd-Ag membrane reactor. Near quantitative conversions and yields could be achieved without the need for acid or base promoters or hydrogen acceptors (see scheme). © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A versatile, steam reforming based small-scale hydrogen production process

    International Nuclear Information System (INIS)

    P C Hulteberg; F A Silversand; B Porter; R Woods

    2006-01-01

    In this paper, a new design methodology and process is proposed for small scale pure hydrogen production capable of serving energy markets ranging from distributed generation to vehicular refuelling. The system was designed for producing 7 Nm 3 /hr pure hydrogen (purity of ≤ 1 ppm CO dry), yielding 10 kWe net power from a fuel cell system with an overall parasitic power loss ≤ 10 %. The discussion of this process includes a detailed description of the design methodology and operational results of the catalytic converter, the hydrogen purification system and the fuel cell system. This paper will discuss the design methodology of the overall system, as well as the specific design of the catalytic converter, the catalysts used within, and the hydrogen purification system. It will also report the system performance including gas purity, recovery rate, overall hydrogen production efficiencies, and electrical efficiencies during fuel cell operation. (authors)

  16. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  17. Hydrogen alternatives for a regional upgrader

    International Nuclear Information System (INIS)

    Bailey, R.T.; Padamsey, R.

    1991-01-01

    For a proposed regional upgrader in Alberta, hydrogen will be needed to upgrade the bitumen and heavy oil to be processed by that facility. The upgrader will rely on high conversion hydrocracking which consumes 3.4 wt % hydrogen to produce a 106% volume yield of high quality synthetic crude. The costs of producing hydrogen via steam reforming of methane, partial oxidation of coal or upgrading residues, and electrolysis are compared, showing that steam reforming is the cheapest. However, an even cheaper source of hydrogen is available in the Edmonton and Fort Saskatchewan area as byproducts from petrochemical plants. An economic analysis is presented of a proposed scheme to capture, purify, compress, and transfer hydrogen from one or two such plants to a nearby regional upgrader. The two plants could supply a total of 126.6 million ft 3 /d of hydrogen at a total installed capital cost of about half of that of a steam reforming plant of equivalent size. When operating costs are added (including the cost of replacing the hydrogen, currently used as fuel at the two plants, with natural gas), the total cost of hydrogen is substantially less than the costs for a hydrogen plant within the upgrader. 3 refs., 5 figs., 4 tabs

  18. Hydrogen production by methane reforming based on micro-gap discharge

    International Nuclear Information System (INIS)

    Liu, N N; Wang, M X; Liu, K Y; Bai, M D

    2013-01-01

    Based on micro-gap strong ionization discharge, this paper presents a study of hydrogen production by methane reforming at room temperature and atmospheric pressure without catalyst. Influence rules of conversion of methane and production of hydrogen were studied by changing discharge power and feed gas flow rate. Results show that when the discharge power was about 341 W, the discharge gap was 0.47 mm and the flow rate of feed gas was 100 mL min −1 , the conversion of methane and yield of hydrogen reached optimization. The conversion rate of methane and the highest yield of hydrogen were 68.14 % and 51.34 %, respectively.

  19. Hydrogen energy technology

    International Nuclear Information System (INIS)

    Morovic, T.; Pilhar, R.; Witt, B.

    1988-01-01

    A comprehensive assessment of different energy systems from the economic point of view has to be based on data showing all relevant costs incurred and benefits drawn by the society from the use of such energy systems, i.e. internal costs and benefits visible to the energy consumer as prices paid for power supplied, as well as external costs and benefits. External costs or benefits of energy systems cover among other items employment or wage standard effects, energy-induced environmental impacts, public expenditure for pollution abatement and mitigation of risks and effects of accidents, and the user costs connected with the exploitation of reserves, which are not rated high enough to really reflect and demonstrate the factor of depletion of non-renewable energy sources, as e.g. fossil reserves. Damage to the natural and social environment induced by anthropogenous air pollutants up to about 90% counts among external costs of energy conversion and utilisation. Such damage is considered to be the main factor of external energy costs, while the external benefits of energy systems currently are rated to be relatively unsignificant. This means that an internalisation of external costs would drive up current prices of non-renewable energy sources, which in turn would boost up the economics of renewable energy sources, and the hydrogen produced with their energy. Other advantages attributed to most of the renewable energy sources and to hydrogen energy systems are better environmental compatibility, and no user costs. (orig.) [de

  20. Computers and conversation

    CERN Document Server

    Luff, Paul; Gilbert, Nigel G

    1986-01-01

    In the past few years a branch of sociology, conversation analysis, has begun to have a significant impact on the design of human*b1computer interaction (HCI). The investigation of human*b1human dialogue has emerged as a fruitful foundation for interactive system design.****This book includes eleven original chapters by leading researchers who are applying conversation analysis to HCI. The fundamentals of conversation analysis are outlined, a number of systems are described, and a critical view of their value for HCI is offered.****Computers and Conversation will be of interest to all concerne

  1. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  2. Methanation of hydrogen and carbon dioxide

    International Nuclear Information System (INIS)

    Burkhardt, Marko; Busch, Günter

    2013-01-01

    Highlights: • The biologic methanation of exclusively gases like hydrogen and carbon dioxide is feasible. • Electrical energy can be stored in the established gas grid by conversion to methane. • The quality of produced biogas is very high (c CH4 = 98 vol%). • The conversion rate is depending on H 2 -flow rate. - Abstract: A new method for the methanation of hydrogen and carbon dioxide is presented. In a novel anaerobic trickle-bed reactor, biochemical catalyzed methanation at mesophilic temperatures and ambient pressure can be realized. The conversion of gaseous substrates by immobilized hydrogenotrophic methanogens is a unique feature of this reactor type. The already patented reactor produces biogas which has a very high quality (c CH4 = 97.9 vol%). Therefore, the storage of biogas in the existing natural gas grid is possible without extensive purification. The specific methane production was measured with P = 1.17 Nm CH4 3 /(m R 3 d). It is conceivable to realize the process at sites that generate solar or wind energy and sites subject to the conditions for hydrogen electrolysis (or other methods of hydrogen production). The combination with conventional biogas plants under hydrogen addition to methane enrichment is possible as well. The process enables the coupling of various renewable energy sources

  3. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  4. Effect of hydrogen coverage on hydrogenation of o-cresol on Pt(111)

    Science.gov (United States)

    Li, Yaping; Liu, Zhimin; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu

    2018-06-01

    The conversion of phenolics over metal catalysts is an important process for upgrading biofuels. With density functional calculations, hydrogenation of o-cresol on the hydrogen-covered Pt(111) surface was investigated. The results show that the coverage of hydrogen plays a significant role in the reaction rate while it does not affect the reaction selectivity. The reaction barriers of the hydrogenation process leading to the formation of both 2-methyl-cyclohexanone (the intermediate product) and 2-methyl-cyclohexanol (the final product) at high H coverages (∼1 ML) are found to be smaller by 0.14-0.69 eV than those at lower H coverages (∼1/25 ML). After both hydrogen and cresol are adsorbed on Pt(111) from their initial gas phase state, the reaction energy of each hydrogenation step on the surface is also dependent on the hydrogen coverage. On the H-covered Pt(111) surface, most steps of hydrogenation involve exothermic reactions when the hydrogen coverage is high while they are endothermic reactions at low hydrogen coverages. The differences in reaction rate and reaction energy between high and low H coverages can be understood with the coverage-dependent bonding strength and configurations.

  5. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  6. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  7. Solar and Hydrogen

    International Nuclear Information System (INIS)

    Kadirgan, F.; Beyhan, S.; Oezenler, S.

    2006-01-01

    It has been widely accepted that the only sustainable and environmentally friendly energy is the solar energy and hydrogen energy, which can meet the increasing energy demand in the future. Solar Energy may be used either for solar thermal or for solar electricity conversion. Solar thermal collectors represent a wide-spread type of system for the conversion of solar energy. Radiation, convection and conduction are strongly coupled energy transport mechanisms in solar collector systems. The economic viability of lower temperature applications of solar energy may be improved by increasing the quantity of usable energy delivered per unit area of collector. This can be achieved by the use of selective black coatings which have a high degree of solar absorption, maintaining high energy input to the solar system while simultaneously suppressing the emission of thermal infrared radiation. Photovoltaic solar cells and modules are produced for: (1) large scale power generation, most commonly when modules are incorporated as part of a building (building integrated photovoltaic s) but also in centralised power stations, (2) supplying power to villages and towns in developing countries that are not connected to the supply grid, e.g. for lighting and water pumping systems, (3) supplying power in remote locations, e.g. for communications or weather monitoring equipment, (4) supplying power for satellites and space vehicles, (5) supplying power for consumer products, e.g. calculators, clocks, toys and night lights. In hydrogen energy systems, Proton exchange membrane (PEMFC) fuel cells are promising candidates for applications ranging from portable power sources (battery replacement applications) to power sources for future electric vehicles because of their safety, elimination of fuel processor system, thus, simple device fabrication and low cost. Although major steps forward have been achieved in terms of PEMFC design since the onset of research in this area, further

  8. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  9. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  10. Conversations in African Philosophy

    African Journals Online (AJOL)

    JONATHAN

    Conversational philosophy is articulated by Jonathan O. Chimakonam as the new wave of philosophical practice both in “place” and in “space”. This journal adopts and promotes this approach to philosophizing for African philosophy. Readers are encouraged to submit their conversational piece (maximum of 2000 words) ...

  11. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  12. Political conversations on Facebook

    DEFF Research Database (Denmark)

    Sørensen, Mads P.

    2016-01-01

    Political conversations are according to theories on deliberative democracy essential to well-functioning democracies. Traditionally these conversations have taken place in face-to-face settings, in e.g. party meetings and town meetings. However, social media such as Facebook and Twitter offers new...... possibilities for online political conversations between citizens and politicians. This paper examines the presence on Facebook and Twitter of Members of the Danish national Parliament, the Folketing, and focusses on a quantitative mapping of the political conversation activities taking place in the threads...... following Facebook posts from Danish Members of Parliament (MPs). The paper shows that, in comparison with previous findings from other countries, Danish MPs have a relatively high degree of engagement in political conversations with citizens on Facebook – and that a large number of citizens follow MPs...

  13. Derivation of dose conversion factors for tritium

    Energy Technology Data Exchange (ETDEWEB)

    Killough, G. G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed.

  14. Derivation of dose conversion factors for tritium

    International Nuclear Information System (INIS)

    Killough, G.G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed

  15. Development and Improvement of Devices for Hydrogen Generation and Oxidation in Water Detritiation Facility Based on CECE Technology

    International Nuclear Information System (INIS)

    Rozenkevich, M.; Andreev, B.; Magomedbekov, E.; Park, Yu.; Sakharovsky, Yu.; Perevezentsev, A.

    2005-01-01

    Water detritiation facility based on CECE (Combined Electrolysis and Catalytic Exchange) technology needs an electrolyser for water conversion to hydrogen. Use of a conventional alkali electrolyser requires a very deep purification of hydrogen stream from alkali prior to injection to LPCE (Liquid Phase Catalytic Exchange) column. In some applications conversion of detritiated hydrogen back into water is required. This is usually performed via hydrogen catalytic oxidation in a recombiner. This paper presents results of study to improve hydrogen and oxygen purification for alkali electrolysers and develop a hydrogen recombiner based on use of hydrophobic catalyst

  16. Comparative costs and benefits of hydrogen vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  17. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  18. Hydrogen storage and fuel cells

    Science.gov (United States)

    Liu, Di-Jia

    2018-01-01

    Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.

  19. The National Center For Hydrogen And Fuel Cells. Jump-starting the hydrogen economy through research

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Varlam, Mihai; Carcadea, Elena

    2010-01-01

    Full text: The research, design and implementation of hydrogen-based economy must consider each of the segments of the hydrogen energy system - production, supply, storage, conversion. The National Center for Hydrogen and Fuel Cells has the experience, expertise, facilities and instrumentation necessary to have a key role in developing any aspect of hydrogen-based economy, aiming to integrate technologies for producing and using hydrogen as an 'energy vector'. This paper presents a simulation of the applied 'learning curve' concept, NCHFC being the key element of R and D in the field in comparing the costs involved. It also presents the short and medium term research program of NCHFC, the main research and development directions being specified. (authors)

  20. Destructive hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; Dufour, L

    1929-01-21

    Oils of high boiling point, e.g. gas oil, lamp oil, schist oil, brown coal tar etc., are converted into motor benzine by heating them at 200 to 500/sup 0/C under pressure of 5 to 40 kilograms/cm/sup 2/ in the presence of ferrous chloride and gases such as hydrogen, or water gas, the desulfurization of the oils proceeding simultaneously. One kilogram of lamp oil and 100 g. ferrous chloride are heated in an autoclave in the presence of water gas under a pressure of 18 kg/cm/sup 2/ to 380 to 400/sup 0/C. The gaseous products are allowed to escape intermittently and are replaced by fresh water gas. A product distilling between 35 and 270/sup 0/C is obtained.

  1. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  2. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  3. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  4. Postoperative conversion disorder.

    Science.gov (United States)

    Afolabi, Kola; Ali, Sameer; Gahtan, Vivian; Gorji, Reza; Li, Fenghua; Nussmeier, Nancy A

    2016-05-01

    Conversion disorder is a psychiatric disorder in which psychological stress causes neurologic deficits. A 28-year-old female surgical patient had uneventful general anesthesia and emergence but developed conversion disorder 1 hour postoperatively. She reported difficulty speaking, right-hand numbness and weakness, and right-leg paralysis. Neurologic examination and imaging revealed no neuronal damage, herniation, hemorrhage, or stroke. The patient mentioned failing examinations the day before surgery and discontinuing her prescribed antidepressant medication, leading us to diagnose conversion disorder, with eventual confirmation by neuroimaging and follow-up examinations. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Uranium conversion wastes

    International Nuclear Information System (INIS)

    Vicente, R.; Dellamano, J.C.

    1989-12-01

    A set of mathematical equations was developed and used to estimate the radiological significance of each radionuclide potentially present in the uranium refining industry effluents. The equations described the evolution in time of the radionuclides activities in the uranium fuel cycle, from mining and milling, through the yellowcake, till the conversion effluents. Some radionuclides that are not usually monitored in conversion effluents (e.g. Pa-231 and Ac-227) were found to be potentially relevant from the radiological point of view in conversion facilities, and are certainly relevant in mining and milling industry, at least in a few waste streams. (author) [pt

  6. Freely flowing conversations

    DEFF Research Database (Denmark)

    Aakjær, Marie Kirstejn; Andrade, David; Dexters, Peter

    and in regards to rehabilitation efforts. In the context of prisons UDI is inspired by the complexity approach (Stacey 2005). We seek to facilitate freely flowing conversations between inmates, staff and managers – pushing the boundaries of existing norms, roles and beliefs. In the end however we rely...... relations by changing conversations. Through the theoretical framework of the complexity approach, we discuss how this may lead to organizational change. Finally we suggest that inviting inmates to take part in conversations about core organizational development may be a fundamental strategy in trying...

  7. Hydrogen yield from low temperature steam reforming of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Das, N.K.; Dalai, A.K. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering, Catalysis and Chemical Reaction Engineering Laboratories; Ranganathan, R. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2007-02-15

    Interest in the use of ethanol for fuel cell hydrogen production was discussed with particular reference to a study in which the production of hydrogen was maximized through low temperature steam reforming of ethanol in the temperature range of 200 to 360 degrees C. The primary objective of this study was to determine the effect of Mn concentration on a Cu/Al{sub 2}O{sub 3} catalyst for steam reforming of ethanol to produce hydrogen. The purpose was to maximize ethanol conversion and hydrogen selectivity in the lowest possible reaction temperature for the ideal catalyst activity. The optimum reaction conditions in the presence of a suitable catalyst can produce the desired products of hydrogen and carbon dioxide. Cu/Al{sub 2}O{sub 3} catalysts with six different concentrations ranging from 0 to 10 weight per cent Mn, were prepared, characterized and studied for the ethanol-steam reforming reaction. The effects of different process variables were studied, including water-to-ethanol feed ratio, space time and catalyst reduction temperatures on ethanol conversion and hydrogen yield. Maximum ethanol conversion of 60.7 per cent and hydrogen yield of 3.74 (mol of hydrogen per mol of ethanol converted) were observed at 360 degrees C for a catalyst with 2.5 weight per cent Mn loading. 29 refs., 3 tabs., 12 figs.

  8. Photoproduction of hydrogen - A potential system of solar energy bioconversion

    Energy Technology Data Exchange (ETDEWEB)

    Das, V S.R.

    1979-10-01

    The photoproduction of hydrogen from water utilizing the photosynthetic capacity of green plants is discussed as a possible means of solar energy conversion. Advantages of the biological production of H/sub 2/ over various physical and chemical processes are pointed out, and the system used for the production of hydrogen by biological agents, which comprises the photosynthetic electron transport chain, ferredoxin and hydrogenase, is examined in detail. The various types of biological hydrogen production systems in bacteria, algae, symbiotic systems and isolated chloroplast-ferredoxin-hydrogenase systems are reviewed. The limitations and the scope for further improvement of the promising symbiotic Azolli-Anabena azollae and chloroplast-ferredoxin-hydrogenase are discussed, and it is concluded that future research should concern itself with the identification of the environmental conditions that would maximize solar energy conversion efficiency, the elimination of the oxygen inhibition of biological hydrogen production, and the definition of the metabolic state for the maximal production of hydrogen.

  9. Evaluation of hydrogen demonstration systems (Task 18 of IEA Implementing Agreement on Hydrogen)

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J N; Carter, S

    2005-07-01

    Task 18 aims to gather information about the integration of hydrogen into society around the world. As part of subtask B (demonstration projects), EA Technology Limited collected information and data on specific UK hydrogen demonstration projects and case studies. The work involved desk research, a literature review, telephone conversations and meetings with developers and operators of hydrogen-related projects in the UK. Various examples were identified in phase 1 that were either proposed, planned, under construction, commissioned or operational. The main demonstration activities described in the report are: the Clean Urban Transport for Europe (CUTE) refuelling station at Hornchurch in Essex; the Hydrogen and Renewables Integration (HARI) project at West Beacon Farm, Leicestershire; the Promoting Unst Renewable Energy (PURE) project on Unst in the Shetland Isles; the Hunterston Hydrogen Project in North Ayrshire, Scotland; and the Tees Valley Hydrogen Project. The CUTE, HARI and PURE projects were selected for inclusion in the overall Task 18 workplan. The report also covers developments associated with the Fuel Cell House, the Hydrogen Office, INEOS Chlor, the London Hydrogen Partnership and the Wales Hydrogen Project.

  10. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Katsoulakis, Markos [Univ. of Massachusetts, Amherst, MA (United States)

    2014-08-09

    Our two key accomplishments in the first three years were towards the development of, (1) a mathematically rigorous and at the same time computationally flexible framework for parallelization of Kinetic Monte Carlo methods, and its implementation on GPUs, and (2) spatial multilevel coarse-graining methods for Monte Carlo sampling and molecular simulation. A common underlying theme in both these lines of our work is the development of numerical methods which are at the same time both computationally efficient and reliable, the latter in the sense that they provide controlled-error approximations for coarse observables of the simulated molecular systems. Finally, our key accomplishment in the last year of the grant is that we started developing (3) pathwise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of nonequilibrium extended (high-dimensional) systems. We discuss these three research directions in some detail below, along with the related publications.

  11. Mining Conversational Social Video

    OpenAIRE

    Biel, Joan-Isaac

    2013-01-01

    The ubiquity of social media in our daily life, the intense user participation, and the explo- sion of multimedia content have generated an extraordinary interest from computer and social scientists to investigate the traces left by users to understand human behavior online. From this perspective, YouTube can be seen as the largest collection of audiovisual human behavioral data, among which conversational video blogs (vlogs) are one of the basic formats. Conversational vlogs have evolved fro...

  12. Persuasion detection in conversation

    OpenAIRE

    Gilbert, Henry T.

    2010-01-01

    Approved for public release; distribution is unlimited In this thesis, we present a system for annotating persuasion in conversation based on a social-psychological model. We augmented the social model developed by James Cialdini with some of our own categories for annotators to label. The conversations consisted of 37 hostage negotiation transcripts from private and public sources, with all personal information removed from the private source transcripts. We evaluated the level of agre...

  13. Perspective on direct conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1963-10-15

    The objective of direct conversion is high electrical output for minimum total cost, and not always high conversion efficiency. The wide range of techniques embracing cryogenics and hot plasma derives from the special requirements of source, environment, and application. Sources include solar and other radiation, nuclear fission and fusion, chemical energy, and heat. Environments and applications range from space vehicles to submarines and from giant power networks to isolated buoys and pocket devices. (auth)

  14. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Andre Boehman; Daniel Haworth

    2008-09-30

    The 'Freedom Car' Initiative announced by the Bush Administration has placed a significant emphasis on development of a hydrogen economy in the United States. While the hydrogen-fueled fuel-cell vehicle that is the focus of the 'Freedom Car' program would rely on electrochemical energy conversion, and despite the large amount of resources being devoted to its objectives, near-term implementation of hydrogen in the transportation sector is not likely to arise from fuel cell cars. Instead, fuel blending and ''hydrogen-assisted'' combustion are more realizable pathways for wide-scale hydrogen utilization within the next ten years. Thus, a large potential avenue for utilization of hydrogen in transportation applications is through blending with natural gas, since there is an existing market for natural-gas vehicles of various classes, and since hydrogen can provide a means of achieving even stricter emissions standards. Another potential avenue is through use of hydrogen to 'assist' diesel combustion to permit alternate combustion strategies that can achieve lower emissions and higher efficiency. This project focused on developing the underlying fundamental information to support technologies that will facilitate the introduction of coal-derived hydrogen into the market. Two paths were envisioned for hydrogen utilization in transportation applications. One is for hydrogen to be mixed with other fuels, specifically natural gas, to enhance performance in existing natural gas-fueled vehicles (e.g., transit buses) and provide a practical and marketable avenue to begin using hydrogen in the field. A second is to use hydrogen to enable alternative combustion modes in existing diesel engines, such as homogeneous charge compression ignition, to permit enhanced efficiency and reduced emissions. Thus, this project on hydrogen-assisted combustion encompassed two major objectives: (1) Optimization of hydrogen-natural gas mixture

  15. Conversational flow promotes solidarity.

    Science.gov (United States)

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H

    2013-01-01

    Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  16. Conversational flow promotes solidarity.

    Directory of Open Access Journals (Sweden)

    Namkje Koudenburg

    Full Text Available Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here. The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay. Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  17. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  18. Organometallics and related molecules for energy conversion

    CERN Document Server

    Wong, Wai-Yeung

    2015-01-01

    This book presents a critical perspective of the applications of organometallic compounds (including those with metal or metalloid elements) and other related metal complexes as versatile functional materials in the transformation of light into electricity (solar energy conversion) and electricity into light (light generation in light emitting diode), in the reduction of carbon dioxide to useful chemicals, as well as in the safe and efficient production and utilization of hydrogen, which serves as an energy storage medium (i.e. energy carrier). This book focuses on recent research developmen

  19. Exploiting Synergies in European Wind and Hydrogen Sectors: A Cost-benefit Assessment

    OpenAIRE

    SHAW SUZANNE; PETEVES ESTATHIOS

    2007-01-01

    This article outlines an assessment of the perspectives for exploiting synergies between European wind and hydrogen energy sectors, where wind energy conversion to hydrogen is used as a common strategy for reducing network management costs in high wind energy penetration situations, and for production of renewable hydrogen. The attractiveness of this approach, referred to here as a ¿¿wind-hydrogen strategy¿¿, is analysed using a costbenefit approach to evaluate the final impact...

  20. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    Science.gov (United States)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  1. The evolution of hydrogen and iodine by the decomposition of ammonium iodide and hydrogen iodide

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Nakane, Masanori; Ishii, Eiichi; Uehara, Itsuki; Miyake, Yoshizo

    1977-01-01

    As a fundamental study on thermochemical production of hydrogen from water, the evolution of hydrogen and iodine from ammonium iodide and hydrogen iodide was investigated. Hydrogen was evolved by the reaction of nickel with ammonium iodide or with hydrogen iodide, and the resulting nickel(II) iodide was decomposed thermally at 600 -- 700 0 C to form nickel. First, the iodination of powdered nickel with ammonium iodide was studied by heating their powder mixture. The maximum yield of hydrogen was obtained at a temperature near 430 0 C. The iodination of powdered nickel with gaseous ammonium iodide or with dry hydrogen iodide gas was also investigated. In this case, coating of nickel particles with a layer of resulting nickel(II) iodide prevented further conversion of nickel and lowered the reaction rate. Such a retardation effect was appreciably lessened by use of carrier. When nickel was supported on such a carrier as ''isolite'', the nickel was converted into nickel(II) iodide easily. In a reaction temperature from 400 to 500 0 C, the rate of reaction between nickel and hydrogen iodide increased slightly with the elevation of the reaction temperature. In the case of ammonium iodide, the reaction rate was higher than that for hydrogen iodide and decreased apparently with the elevation of the reaction temperature, because ammonium iodide decomposed to ammonia and hydrogen iodide. Tests using a fixed bed reactor charged with 8 -- 10 mesh ''isolite''-nickel (30 wt%) were also carried out. The maximum yield of hydrogen was about 80% for ammonium iodide at 430 0 C of reaction temperature and 60% for hydrogen iodide at 500 0 C. (auth.)

  2. Japan's Sunshine Project. 1991 Annual Summary of Hydrogen Energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    In the study of hydrogen production, tests and experiments were conducted concerning electrolysis of water in solid polymer electrolytes and electrolysis of high-temperature steam. In the study of hydrogen storage and transportation, use of metal hydrides for these purposes was tested with attention paid to CaNi{sub 5} degradation and metal element substitution in ZrMn{sub 2}. In the study of hydrogen application, electrodes in hydrogen storage alloy-aided energy conversion were investigated and hydrogen-oxygen combustion systems were experimented. In the study of hydrogen safety, a fracture in a heat affected weld and fatigue crack propagation therein were simulated, and the effect of hydrogen on the episode was investigated. Investigated in the study of a hydrogen-fired turbine were hydrogen combustion, hydrogen-fired power generation thermal efficiency, fuel cost, power generation cost, etc. (NEDO)

  3. Photocatalytic conversion of methane to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifier product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.

  4. Hydrogen converters

    International Nuclear Information System (INIS)

    Mondino, Angel V.

    2003-01-01

    The National Atomic Energy Commission of Argentina developed a process of 99 Mo production from fission, based on irradiation of uranium aluminide targets with thermal neutrons in the RA-3 reactor of the Ezeiza Atomic Centre. These targets are afterwards dissolved in an alkaline solution, with the consequent liberation of hydrogen as the main gaseous residue. This work deals with the use of a first model of metallic converter and a later prototype of glass converter at laboratory scale, adjusted to the requirements and conditions of the specific redox process. Oxidized copper wires were used, which were reduced to elementary copper at 400 C degrees and then regenerated by oxidation with hot air. Details of the bed structure and the operation conditions are also provided. The equipment required for the assembling in cells is minimal and, taking into account the operation final temperature and the purge with nitrogen, the procedure is totally safe. Finally, the results are extrapolated for the design of a converter to be used in a hot cell. (author)

  5. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  6. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J [Tampella Power Inc., Tampere (Finland)

    1997-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  7. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  8. Motor fuels by hydrogenation of liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1938-05-07

    A process is disclosed for the production of knock-stable low-boiling motor fuels by conversion of liquid hydrocarbons which are vaporizable under the reaction conditions, which comprises passing the initial material at a temperature above 380/sup 0/C in a true vapor phase under pressure of more than 40 atmospheres together with hydrogen and gaseous hydrocarbons containing more than 1 carbon atom in the molecule in an amount by volume larger than that of the hydrogen over catalysts stable to poisoning stationarily confined in the reaction vessel.

  9. Electric arc hydrogen heaters

    International Nuclear Information System (INIS)

    Zasypin, I.M.

    2000-01-01

    The experimental data on the electric arc burning in hydrogen are presented. Empirical and semiempirical dependences for calculating the arc characteristics are derived. An engineering method of calculating plasma torches for hydrogen heating is proposed. A model of interaction of a hydrogen arc with a gas flow is outlined. The characteristics of plasma torches for heating hydrogen and hydrogen-bearing gases are described. (author)

  10. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  11. Catalytic Conversion of Carbohydrates

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup

    a renewable route to aromatics. The conversion of biomass by high temperature processes is a desirable prospect due to the high volumetric production rates which can be achieved, and the ability of these types of processes to convert a wide range of substrates. Current processes however typically have rather...... with the production of commodity chemicals from the most abundantly available renewable source of carbon, carbohydrates. The production of alkyl lactates by the Lewis acid catalyzed conversion of hexoses is an interesting alternative to current fermentation based processes. A range of stannosilicates were...... to be an efficient initial conversion step in the utilization of biomass for chemicals production. The shift from an oil based chemical industry to one based on renewable resources is bound to happen sooner or later, however the environmental problems associated with the burning of fossil resources means...

  12. Predictability of Conversation Partners

    Science.gov (United States)

    Takaguchi, Taro; Nakamura, Mitsuhiro; Sato, Nobuo; Yano, Kazuo; Masuda, Naoki

    2011-08-01

    Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song , ScienceSCIEAS0036-8075 327, 1018 (2010)] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  13. Predictability of Conversation Partners

    Directory of Open Access Journals (Sweden)

    Taro Takaguchi

    2011-09-01

    Full Text Available Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song et al., Science 327, 1018 (2010SCIEAS0036-8075] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  14. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work...

  15. Dose conversion factors

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1992-01-01

    The following is discussed in this report: concepts and quantities used in calculating radiation dose from internal and external exposure. Tabulations of dose conversion factor for internal and external exposure to radionuclides. Dose conversion factors give dose per unit intake (internal) or dose per unit concentration in environment (external). Intakes of radionuclides for internal exposure and concentrations of radionuclides in environment for external exposure are assumed to be known. Intakes and concentrations are obtained, e.g., from analyses of environmental transport and exposure pathways. differences between dosimetry methods for radionuclides and hazardous chemicals are highlighted

  16. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  17. Magnetohydrodynamic energy conversion

    International Nuclear Information System (INIS)

    Rosa, R.J.

    1987-01-01

    The object of this book is to present a review of the basic principles and practical aspects of magnetohydrodynamic (MHD) energy conversion. The author has tried to give qualitative semiphysical arguments where possible for the benefit of the reader who is unfamiliar with plasma physics. The aim of MHD energy conversion is to apply to a specific practical goal a part of what has become a vast area of science called plasma physics. The author has attempted to note in the text where a broader view might be fruitful and to give appropriate references

  18. Methods and systems for the production of hydrogen

    Science.gov (United States)

    Oh, Chang H [Idaho Falls, ID; Kim, Eung S [Ammon, ID; Sherman, Steven R [Augusta, GA

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  19. Proceedings of the 14. world hydrogen energy conference 2002 : The hydrogen planet. CD-ROM ed.

    Energy Technology Data Exchange (ETDEWEB)

    Venter, R.D.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene; Veziroglu, N. [International Association for Hydrogen Energy, Coral Gables, FL (United States)] (eds.)

    2002-07-01

    Hydrogen has often been named as the ultimate fuel because it can be generated from a variety of renewable and non-renewable fuels and its direct conversion to electricity in fuel cells is efficient and results in no emissions other than water vapour. The opportunities and issues associated with the use of hydrogen as the energy carrier of the future were presented at this conference which addressed all aspects of hydrogen and fuel cell development including hydrogen production, storage, hydrogen-fuelled internal combustion engines, hydrogen infrastructure, economics, and the environment. Hydrogen is currently used as a chemical feedstock and a space fuel, but it is receiving considerable attention for bring renewable energy into the transportation and power generation sectors with little or no environmental impact at the point of end use. Canada leads the way in innovative ideas for a hydrogen infrastructure, one of the most challenging tasks for the transportation sector along with hydrogen storage. Major vehicle manufacturers have announced that they will have hydrogen-fueled cars and buses on the market beginning in 2003 and 2004. Solid oxide fuel cells will be used for generating electricity with efficiencies of 70 per cent, and proton exchange membrane (PEM) and other fuel cells are being tested for residential power supply with efficiencies of 85 per cent. The conference included an industrial exposition which demonstrated the latest developments in hydrogen and fuel cell research. More than 300 papers were presented at various oral and poster sessions, of which 172 papers have been indexed separately for inclusion in the database.

  20. Environmental, social and economic measures for introducing hydrogen to city centres

    International Nuclear Information System (INIS)

    Hart, D.; Lucas, N.; Hutchinson, D.

    1997-01-01

    A conceptual design of a total system of hydrogen use in an urban area is being developed as part of the Japanese WE-NET Program. This paper describes the methodology used in developing the concept and provides details of some of the initial findings of the research project. Several energy scenarios involving hydrogen have been subjected to cost-benefit analysis, and assessed against a reference scenario. The reference scenario is based on expectations of energy demand in the year 2015, although some assumptions have been time-frozen. (These, however, are factors that do not affect the outcomes). One of the considerations in examining various scenarios was to propose transitional strategies for achieving hydrogen penetration in urban areas. Niche market areas appear to offer the greatest cost or emission advantage at present, therefore, the alternative energy supply scenarios have been designed to target particular niche areas for the use of hydrogen. These niches include decentralized power generation using fuel cells, fuel cell-equipped buses and the mixing of hydrogen with natural gas for both vehicular and power generating equipment use. Externality costing has been used to compare technology costs and environmental benefits. Results suggest that it may be valuable to mix hydrogen with natural gas and deliver it to all users of natural gas. Targeting pure hydrogen may not be cost-effective in the short term due to the high cost associated with developing a hydrogen infrastructure

  1. Hydrogen Production for Refuelling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hulteberg, Christian; Aagesen, Diane (Intelligent Energy, Long Beach, CA (United States))

    2009-08-15

    /day); Feedstock Cost (USD 0.15 - USD 0.45 per kg); Availability (85% - 95%). The return-on-investment is between USD 90 000 and USD 180 000 in 60 % of the 5 000 simulation runs, which leads to the conclusion that given these assumptions the owning and operation of such a unit can be profitable. As for the performance of the system, it is concluded to be within targets based on the different performance measures reported above. The conversion is in the expected range (80-85%), given the throughput of 16 kg of hydrogen per day. The efficiency as reported is in the acceptable range (approx65%), with some room for improvement within the given system architecture, if desired. However, there is a trade-off between throughput, efficiency and cost that will have to be considered in every redesign of the system. The PSA chosen for the task has performed well during the 200+ hours of operation and there is no doubt that it will be sufficient for the task. The same thing can be said with respect to the system performance with respect to thermo-mechanical stress; which was proven by operating the system for more than 500 hours and performing 58 start-and-stop cycles during the testing. There does not seem to be any major differences between operating on natural gas or methane, based on the testing performed. The slight decrease in hydrogen production can be due to a difference in the H{sub 2}/CO ratio between the various fuels. As expected the efficiency increases with load as well as the hydrogen production rate. Based on the results disseminated above, there is no indication why the current reactor system cannot be configured into a field deployable system. The operation of the system has given valuable experience that will be embedded into any field deployed unit

  2. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  3. Converse Barrier Certificate Theorems

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2016-01-01

    This paper shows that a barrier certificate exists for any safe dynamical system. Specifically, we prove converse barrier certificate theorems for a class of structurally stable dynamical systems. Other authors have developed a related result by assuming that the dynamical system has neither...

  4. Wavelength conversion devices

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    system requirements. The ideal wavelength converter should be transparent to the bit rate and signal format and provide an unchirped output signal with both a high extinction ratio and a large signal-to-noise ratio. It should allow conversion to both shorter and longer wavelengths with equal performance...

  5. Conversation and research

    NARCIS (Netherlands)

    Schuurman, Jan Gerrit; Veermans, K.H.

    2001-01-01

    Gordon Pask’s conversation theory was created in the 1970s. The theory encompasses a high-level framework for studying interactions between actors in artificial situations where people co-operate, have conflicts, follow rules, negotiate outcomes, invent new rules together, etc. Sadly, the theory is

  6. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  7. The Nanticoke conversion study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    A study was conducted to assess the conversion of the Nanticoke coal-fired power plant to cleaner burning natural gas combined-cycle gas turbines. The Nanticoke Generating Station on Lake Erie is responsible for more than 50 per cent of Ontario Power Generation's (OPG) coal-fired electricity production. The OPG is proposing to work towards compliance with the newly signed Ozone Annex to the 1991 Canada-United States Air Quality Agreement which will require fossil-fueled power plants in southern Ontario to reduce their smog-causing nitrogen oxides emissions by about 50 per cent by 2007. This study assessed the emission reduction benefits and financial costs of conversion compared to continuing to operate Nanticoke as a coal-fired plant. The analysis includes a base case set of data on fuel prices, retrofit costs, fuel efficiencies, annual capacity factors and other parameters. It was determined that conversion would cost the average household less than $3 per month on their electricity bill. Conversion would also reduce emissions nitrogen oxide, a major smog pollutant, by 83 per cent and the particulates that form the most health-threatening portion of smog would be reduced by 100 per cent. 15 tabs., 1 fig.

  8. Leadership is a conversation.

    Science.gov (United States)

    Groysberg, Boris; Slind, Michael

    2012-06-01

    Globalization and new technologies have sharply reduced the efficacy of command-and-control management and its accompanying forms of corporate communication. In the course of a recent research project, the authors concluded that by talking with employees, rather than simply issuing orders, leaders can promote operational flexibility, employee engagement, and tight strategic alignment. Groysberg and Slind have identified four elements of organizational conversation that reflect the essential attributes of interpersonal conversation: intimacy, interactivity, inclusion, and intentionality. Intimacy shifts the focus from a top-down distribution of information to a bottom-up exchange of ideas. Organizational conversation is less corporate in tone and more casual. And it's less about issuing and taking orders than about asking and answering questions. Interactivity entails shunning the simplicity of monologue and embracing the unpredictable vitality of dialogue. Traditional one-way media-print and broadcast, in particular-give way to social media buttressed by social thinking. Inclusion turns employees into full-fledged conversation partners, entitling them to provide their own ideas, often on company channels. They can create content and act as brand ambassadors, thought leaders, and storytellers. Intentionality enables leaders and employees to derive strategically relevant action from the push and pull of discussion and debate.

  9. Predicting AD conversion

    DEFF Research Database (Denmark)

    Liu, Yawu; Mattila, Jussi; Ruiz, Miguel �ngel Mu�oz

    2013-01-01

    To compare the accuracies of predicting AD conversion by using a decision support system (PredictAD tool) and current research criteria of prodromal AD as identified by combinations of episodic memory impairment of hippocampal type and visual assessment of medial temporal lobe atrophy (MTA) on MRI...

  10. Conversion tables. Appendix I

    International Nuclear Information System (INIS)

    McKerrell, H.

    1975-01-01

    Tables are presented for the conversion of standard (5568 year half-life) C-14 dates to calendar years. The major part of the data converts C-14 dates to tree-ring years: additional data are given, based on the Egyptian historical curve. (U.K.)

  11. Wavelength conversion technology

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  12. Our Digital Conversion

    Science.gov (United States)

    Edwards, Mark

    2012-01-01

    In this article, the author describes their digital conversion initiative at Mooresville Graded School District. The project has placed a MacBook Air laptop in the hands of every 3rd through 12th grader and their teachers in the district over the past four years, with over 5,000 computers distributed. But they believe their academic successes have…

  13. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  14. Benchmarking the internal combustion engine and hydrogen

    International Nuclear Information System (INIS)

    Wallace, J.S.

    2006-01-01

    The internal combustion engine is a cost-effective and highly reliable energy conversion technology. Exhaust emission regulations introduced in the 1970's triggered extensive research and development that has significantly improved in-use fuel efficiency and dramatically reduced exhaust emissions. The current level of gasoline vehicle engine development is highlighted and representative emissions and efficiency data are presented as benchmarks. The use of hydrogen fueling for IC engines has been investigated over many decades and the benefits and challenges arising are well-known. The current state of hydrogen-fueled engine development will be reviewed and evaluated against gasoline-fueled benchmarks. The prospects for further improvements to hydrogen-fueled IC engines will be examined. While fuel cells are projected to offer greater energy efficiency than IC engines and zero emissions, the availability of fuel cells in quantity at reasonable cost is a barrier to their widespread adaptation for the near future. In their current state of development, hydrogen fueled IC engines are an effective technology to create demand for hydrogen fueling infrastructure until fuel cells become available in commercial quantities. During this transition period, hydrogen fueled IC engines can achieve PZEV/ULSLEV emissions. (author)

  15. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Carl-Jochen Winter

    2006-01-01

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  16. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available .J. Cartera,*, L.A. Cornishb aAdvanced Engineering & Testing Services, MATTEK, CSIR, Private Bag X28, Auckland Park 2006, South Africa bSchool of Process and Materials Engineering, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, South Africa... are contrasted, and an unusual case study of hydrogen embrittlement of an alloy steel is presented. 7 2001 Published by Elsevier Science Ltd. Keywords: Hydrogen; Hydrogen-assisted cracking; Hydrogen damage; Hydrogen embrittlement 1. Introduction Hydrogen suC128...

  17. Biomass Conversion over Heteropoly Acid Catalysts

    KAUST Repository

    Zhang, Jizhe

    2015-04-01

    Biomass is a natural resource that is both abundant and sustainable. Its efficient utilization has long been the focus of research and development efforts with the aim to substitute it for fossil-based feedstock. In addition to the production of biofuels (e.g., ethanol) from biomass, which has been to some degree successful, its conversion to high value-added chemicals is equally important. Among various biomass conversion pathways, catalytic conversion is usually preferred, as it provides a cost-effective and eco-benign route to the desired products with high selectivities. The research of this thesis is focused on the conversion of biomass to various chemicals of commercial interest by selective catalytic oxidation. Molecular oxygen is chosen as the oxidant considering its low cost and environment friendly features in comparison with commonly used hydrogen peroxide. However, the activation of molecular oxygen usually requires high reaction temperatures, leading to over oxidation and thus lower selectivities. Therefore, it is highly desirable to develop effective catalysts for such conversion systems. We use kegging-type heteropoly acids (HPAs) as a platform for catalysts design because of their high catalytic activities and ease of medication. Using HPA catalysts allows the conversion taking place at relatively low temperature, which is beneficial to saving production cost as well as to improving the reaction selectivity. The strong acidity of HPA promotes the hydrolysis of biomass of giant molecules (e.g. cellulose), which is the first as well as the most difficult step in the conversion process. Under certain circumstances, a HPA combines the merits of homogeneous and heterogeneous catalysts, acting as an efficient homogeneous catalyst during the reaction while being easily separated as a heterogeneous catalyst after the reaction. We have successfully applied HPAs in several biomass conversion systems. Specially, we prepared a HPA-based bi-functional catalyst

  18. Decomposition and reduction of AUC in hydrogen

    International Nuclear Information System (INIS)

    Ge Qingren; Kang Shifang; Zhou Meng

    1987-01-01

    AUC (Ammonium Uranyl Carbonate) conversion processes have been adopted extensively in nuclear fuel cycle. The kinetics investigation of these processes, however, has not yet been reported in detail at the published literatures. In the present work, the decomposition kinetics of AUC in hydrogen has been determined by non-isothermal method. DSC curves are solved with computer by Ge Qingren method. The results show that the kinetics obeys Avrami-Erofeev equation within 90% conversion. The apparent activation energy and preexponent are found to be 113.0 kJ/mol and 7.11 x 10 11 s -1 respectively. The reduction kinetics of AUC decomposition product in hydrogen at the range of 450 - 600 deg C has been determined by isothermal thermogravimetric method. The results show that good linear relationship can be obtained from the plot of conversion vs time, and that the apparent activation energy is found to be 113.9 kJ/mol. The effects of particle size and partial pressure of hydrogen are examined in reduction of AUC decomposition product. The reduction mechanism and the structure of particle are discussed according to the kinetics behaviour and SEM (scanning electron microscope) photograph

  19. Monitoring coal conversion processes by IR-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hobert, H.; Kempe, J.; Stephanowitz, H. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic))

    1990-01-01

    Explains application of infrared spectroscopy combined with multivariate data analysis by an on-line computer system for assessing coal quality and suitability of brown coal for conversion processes. Coal samples were pelletized under addition of KBr and analyzed using an IRF 180 Fourier transform spectrometer in the spectral range of 400 to 2,000 cm{sup -1}. Components of spectra are presented; the oil yield from coal hydrogenation is calculated by regression analysis. Covariance spectra of carbon, organic hydrogen and sulfur are shown. It is concluded that the field of application for the method includes industrial coal liquefaction, gasification as well as briquetting and coking. 8 refs.

  20. Treatment of gas from an in situ conversion process

    Science.gov (United States)

    Diaz, Zaida [Katy, TX; Del Paggio, Alan Anthony [Spring, TX; Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX

    2011-12-06

    A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

  1. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Loubette, N.; Junker, M.

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water biophotolysis, photo- fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are exp/aired. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  2. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Nicolas Loubette; Michel Junker

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water bio-photolysis, photo-fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are explained. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  3. Hydrogen as alternative clean fuel: Economic analysis

    International Nuclear Information System (INIS)

    Coiante, D.

    1995-03-01

    In analogy to biofuel production from biomasses, the electrolytic conversion of other renewable energies into hydrogen as an alternative clean fuel is considered. This solution allows the intermittent renewable energy sources, as photovoltaics and wind energy, to enhance their development and enlarge the role into conventional fuel market. A rough economic analysis of hydrogen production line shows the costs, added by electrolysis and storage stages, can be recovered by properly accounting for social and environmental costs due to whole cycle of conventional fuels, from production to use. So, in a perspective of attaining the economic competitiveness of renewable energy, the hydrogen, arising from intermittent renewable energy sources, will be able to compete in the energy market with conventional fuels, making sure that their substitution will occur in a significant amount and the corresponding environment

  4. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  5. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    is mobile and can easily move through the material). Hydrogen diffuses ... The determination of the relationship of light-enhanced hydrogen motion to ... term is negligible, and using the thermodynamic relation given below f(c) = kBT .... device-applications problematic but the normal state can be recovered by a thermal an-.

  6. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  7. IEA Hydrogen Implementing Agreement: Three Decades of Collaborative Hydrogen R and D

    Energy Technology Data Exchange (ETDEWEB)

    Nick Beck; Mary-Rose de Valladares

    2006-07-01

    Created in 1977 and now in its Second Generation of Hydrogen R, D and D, the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) is the oldest, largest international collaboration on hydrogen Research, Development and Demonstration (RD and D). As a global resource for technical expertise in hydrogen R, D and D, the HIA has expanded worldwide opportunities for hydrogen by undertaking 21 annexes (or tasks) on hydrogen production, storage, analysis of integrated systems and related topics with its 19 member countries. Related topics include hydrogen safety, conversion, economics and markets. The majority of the HIA's R and D portfolio has focused on longer term, pre-competitive R, D and D issues. Of the 21 annexes undertaken by the HIA, 15 are now complete. The HIA is also committed to outreach in support of both its core R and D activities and related issues such as regulation and infrastructure. As ever, the HIA welcomes collaboration and liaison with interested groups in the public and private sectors. (authors)

  8. IEA Hydrogen Implementing Agreement: Three Decades of Collaborative Hydrogen R and D

    International Nuclear Information System (INIS)

    Nick Beck; Mary-Rose de Valladares

    2006-01-01

    Created in 1977 and now in its Second Generation of Hydrogen R, D and D, the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) is the oldest, largest international collaboration on hydrogen Research, Development and Demonstration (RD and D). As a global resource for technical expertise in hydrogen R, D and D, the HIA has expanded worldwide opportunities for hydrogen by undertaking 21 annexes (or tasks) on hydrogen production, storage, analysis of integrated systems and related topics with its 19 member countries. Related topics include hydrogen safety, conversion, economics and markets. The majority of the HIA's R and D portfolio has focused on longer term, pre-competitive R, D and D issues. Of the 21 annexes undertaken by the HIA, 15 are now complete. The HIA is also committed to outreach in support of both its core R and D activities and related issues such as regulation and infrastructure. As ever, the HIA welcomes collaboration and liaison with interested groups in the public and private sectors. (authors)

  9. Handbook of hydrogen energy

    CERN Document Server

    Sherif, SA; Stefanakos, EK; Steinfeld, Aldo

    2014-01-01

    ""This book provides an excellent overview of the hydrogen economy and a thorough and comprehensive presentation of hydrogen production and storage methods.""-Scott E. Grasman, Rochester Institute of Technology, New York, USA

  10. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  11. Center for Hydrogen Storage.

    Science.gov (United States)

    2013-06-01

    The main goals of this project were to (1) Establish a Center for Hydrogen Storage Research at Delaware State University for the preparation and characterization of selected complex metal hydrides and the determination their suitability for hydrogen ...

  12. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  13. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  14. Green technology for conversion of renewable hydrocarbon based on plasma-catalytic approach

    Science.gov (United States)

    Fedirchyk, Igor; Nedybaliuk, Oleg; Chernyak, Valeriy; Demchina, Valentina

    2016-09-01

    The ability to convert renewable biomass into fuels and chemicals is one of the most important steps on our path to green technology and sustainable development. However, the complex composition of biomass poses a major problem for established conversion technologies. The high temperature of thermochemical biomass conversion often leads to the appearance of undesirable byproducts and waste. The catalytic conversion has reduced yield and feedstock range. Plasma-catalytic reforming technology opens a new path for biomass conversion by replacing feedstock-specific catalysts with free radicals generated in the plasma. We studied the plasma-catalytic conversion of several renewable hydrocarbons using the air plasma created by rotating gliding discharge. We found that plasma-catalytic hydrocarbon conversion can be conducted at significantly lower temperatures (500 K) than during the thermochemical ( 1000 K) and catalytic (800 K) conversion. By using gas chromatography, we determined conversion products and found that conversion efficiency of plasma-catalytic conversion reaches over 85%. We used obtained data to determine the energy yield of hydrogen in case of plasma-catalytic reforming of ethanol and compared it with other plasma-based hydrogen-generating systems.

  15. Clinical linguistics: conversational reflections.

    Science.gov (United States)

    Crystal, David

    2013-04-01

    This is a report of the main points I made in an informal "conversation" with Paul Fletcher and the audience at the 14th ICPLA conference in Cork. The observations arose randomly, as part of an unstructured 1-h Q&A, so they do not provide a systematic account of the subject, but simply reflect the issues which were raised by the conference participants during that time.

  16. Conversations with Miss Jane

    Directory of Open Access Journals (Sweden)

    Geneviève Fabre

    2006-05-01

    Full Text Available Considering the wide range of conversations in the autobiography, this essay will attempt to appraise the importance of these verbal exchanges in relation to the overall narrative structure of the book and to the prevalent oral tradition in Louisiana culture, as both an individual and communal expression. The variety of circumstances, the setting and staging, the interlocutors , and the complex intersection of time and place, of stories and History, will be examined; in these conversations with Miss Jane many actors participate, from  the interviewer-narrator, to most characters; even the reader becomes involved.Speaking, hearing, listening, keeping silent is an elaborate ritual that performs many functions; besides conveying news or rumors, it imparts information on the times and on the life of a “representative” woman whose existence - spanning a whole century- is both singular and emblematic. Most importantly this essay will analyse the resonance of an eventful and often dramatic era on her sensibility and conversely show how her evolving sensibility informs that history and draws attention to aspects that might have passed unnoticed or be forever silenced. Jane’s desire for liberty and justice is often challenged as she faces the possibilities of life or death.Conversations build up a complex, often contradictory, but compelling portrait: torn between silence and vehemence, between memories and the urge to meet the future, Jane summons body and mind to find her way through the maze of a fast changing world; self-willed and obstinate she claims her right to speak, to express with wit and wisdom her firm belief in the word, in the ability to express deep seated convictions and faith and a whole array of feelings and emotions.

  17. The Development of Lifecycle Data for Hydrogen Fuel Production and Delivery

    Science.gov (United States)

    2017-10-01

    An evaluation of renewable hydrogen production technologies anticipated to be available in the short, mid- and long-term timeframes was conducted. Renewable conversion pathways often rely on a combination of renewable and fossil energy sources, with ...

  18. Integrated Microchannel Reformer/Hydrogen Purifier for Fuel Cell Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and Colorado School of Mines (CSM) propose to develop an integrated hydrogen generator and purifier system for conversion of in-situ...

  19. Microwave plasma for hydrogen production from liquids

    Directory of Open Access Journals (Sweden)

    Czylkowski Dariusz

    2016-06-01

    Full Text Available The hydrogen production by conversion of liquid compounds containing hydrogen was investigated experimentally. The waveguide-supplied metal cylinder-based microwave plasma source (MPS operated at frequency of 915 MHz at atmospheric pressure was used. The decomposition of ethanol, isopropanol and kerosene was performed employing plasma dry reforming process. The liquid was introduced into the plasma in the form of vapour. The amount of vapour ranged from 0.4 to 2.4 kg/h. Carbon dioxide with the flow rate ranged from 1200 to 2700 NL/h was used as a working gas. The absorbed microwave power was up to 6 kW. The effect of absorbed microwave power, liquid composition, liquid flow rate and working gas fl ow rate was analysed. All these parameters have a clear influence on the hydrogen production efficiency, which was described with such parameters as the hydrogen production rate [NL(H2/h] and the energy yield of hydrogen production [NL(H2/kWh]. The best achieved experimental results showed that the hydrogen production rate was up to 1116 NL(H2/h and the energy yield was 223 NL(H2 per kWh of absorbed microwave energy. The results were obtained in the case of isopropanol dry reforming. The presented catalyst-free microwave plasma method can be adapted for hydrogen production not only from ethanol, isopropanol and kerosene, but also from different other liquid compounds containing hydrogen, like gasoline, heavy oils and biofuels.

  20. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    Barnstaple, A.G.; Petrella, A.J.

    1982-05-01

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  1. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  2. Hydrogen-metal systems

    International Nuclear Information System (INIS)

    Wenzl, H.; Springer, T.

    1976-01-01

    A survey is given on the alloys of metal crystals with hydrogen. The system niobium-hydrogen and its properties are especially dealt with: diffusion and heat of solution of hydrogen in the host crystal, phase diagram, coherent and incoherent phase separation, application of metal-hydrogen systems in technology. Furthermore, examples from research work in IFF (Institut fuer Festkoerperforschung) of the Nuclear Research Plant, Juelich, in the field of metal-H systems are given in summary form. (GSC) [de

  3. Hydrogenation of passivated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.

    2018-03-06

    Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.

  4. Conversion of Questionnaire Data

    International Nuclear Information System (INIS)

    Powell, Danny H.; Elwood, Robert H. Jr.

    2011-01-01

    During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC and A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC and A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC and A tasks performed in the facility. If a specific material protection, control, and accountability (MPC and A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC and A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC and A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A

  5. IHCE '95. International Hydrogen and Clean Energy Symposium '95. (February 6-8, 1995)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-06

    This is a collection of speeches and lectures delivered at the above-named symposium that took place in Tokyo. Three speakers from Japan, Germany, and the U.S. made remarks about the future energy systems and the role of hydrogen; the hydrogen energy development status and plans in Europe; and the role of hydrogen in meeting southern California's air quality goals, respectively. Technical lectures numbering 22 in total included the photocatalytic reactions - water splitting and environmental applications; realization and operation of SWB's (Solar-Wasserstof-Bayern GmBH) development assembling major industrial-scale components of solar hydrogen technology; hydrogen production by UT-3 (University of Tokyo-3) thermochemical water decomposition cycle; energy and environmental technology in Japan - the New Sunshine Program; and research and development plans for WE-NET (World Energy Network). In the poster session, there were 45 exhibitions, which included development on solid polymer electrolyte water electrolysis in Mitsubishi Heavy Industries, Ltd.; development of environmentally friendly technology for the production of hydrogen; and recent progress of hydrogen storage and transportation technologies in North America. (NEDO)

  6. IHCE '95. International Hydrogen and Clean Energy Symposium '95. (February 6-8, 1995)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-06

    This is a collection of speeches and lectures delivered at the above-named symposium that took place in Tokyo. Three speakers from Japan, Germany, and the U.S. made remarks about the future energy systems and the role of hydrogen; the hydrogen energy development status and plans in Europe; and the role of hydrogen in meeting southern California's air quality goals, respectively. Technical lectures numbering 22 in total included the photocatalytic reactions - water splitting and environmental applications; realization and operation of SWB's (Solar-Wasserstof-Bayern GmBH) development assembling major industrial-scale components of solar hydrogen technology; hydrogen production by UT-3 (University of Tokyo-3) thermochemical water decomposition cycle; energy and environmental technology in Japan - the New Sunshine Program; and research and development plans for WE-NET (World Energy Network). In the poster session, there were 45 exhibitions, which included development on solid polymer electrolyte water electrolysis in Mitsubishi Heavy Industries, Ltd.; development of environmentally friendly technology for the production of hydrogen; and recent progress of hydrogen storage and transportation technologies in North America. (NEDO)

  7. Catalytic production of hydrogen from methanol for mobile, stationary and portable fuel-cell power plants

    International Nuclear Information System (INIS)

    Lukyanov, Boris N

    2008-01-01

    Main catalytic processes for hydrogen production from methanol are considered. Various schemes of fuel processors for hydrogen production in stationary, mobile and portable power plants based on fuel cells are analysed. The attention is focussed on the design of catalytic reactors of fuel processors and on the state-of-the-art in the design of catalysts for methanol conversion, carbon monoxide steam conversion and carbon monoxide selective oxidation. Prospects for the use of methanol in on-board fuel processors are discussed.

  8. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  9. Improvement of ecological characteristics of the hydrogen diesel engine

    Science.gov (United States)

    Natriashvili, T.; Kavtaradze, R.; Glonti, M.

    2018-02-01

    In the article are considered the questions of influence of a swirl intensity of the shot and injector design on the ecological indices of the hydrogen diesel, little-investigated till now. The necessity of solution of these problems arises at conversion of the serial diesel engine into the hydrogen diesel. The mathematical model consists of the three-dimensional non-stationary equations of transfer and also models of turbulence and combustion. The numerical experiments have been carried out with the use of program code FIRE. The optimal values of parameters of the working process, ensuring improvement of the effective and ecological indices of the hydrogen diesel are determined.

  10. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Porter Hill; Michael Penev

    2014-08-01

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  11. Nuclear spin conversion in formaldehyde

    OpenAIRE

    Chapovsky, Pavel L.

    2000-01-01

    Theoretical model of the nuclear spin conversion in formaldehyde (H2CO) has been developed. The conversion is governed by the intramolecular spin-rotation mixing of molecular ortho and para states. The rate of conversion has been found equal 1.4*10^{-4}~1/s*Torr. Temperature dependence of the spin conversion has been predicted to be weak in the wide temperature range T=200-900 K.

  12. Solar Hydrogen Reaching Maturity

    Directory of Open Access Journals (Sweden)

    Rongé Jan

    2015-09-01

    Full Text Available Increasingly vast research efforts are devoted to the development of materials and processes for solar hydrogen production by light-driven dissociation of water into oxygen and hydrogen. Storage of solar energy in chemical bonds resolves the issues associated with the intermittent nature of sunlight, by decoupling energy generation and consumption. This paper investigates recent advances and prospects in solar hydrogen processes that are reaching market readiness. Future energy scenarios involving solar hydrogen are proposed and a case is made for systems producing hydrogen from water vapor present in air, supported by advanced modeling.

  13. Canada's hydrogen energy sector

    International Nuclear Information System (INIS)

    Kimmel, T.B.

    2009-01-01

    Canada produces the most hydrogen per capita of any Organization of Economic Cooperation and Development (OECD) country. The majority of this hydrogen is produced by steam methane reforming for industrial use (predominantly oil upgrading and fertilizer production). Canada also has a world leading hydrogen and fuel cell sector. This sector is seeking new methods for making hydrogen for its future energy needs. The paper will discuss Canada's hydrogen and fuel cell sector in the context of its capabilities, its demonstration and commercialization activities and its stature on the world stage. (author)

  14. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...

  15. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...

  16. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  17. Catalytic Conversion of Syngas into Higher Alcohols over Carbide Catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Duchstein, Linus Daniel Leonhard; Wagner, Jakob Birkedal

    2012-01-01

    This work investigates the use of the bulk carbides Mo2C, WC, and NbC as catalysts for the conversion of syngas into higher alcohols. K2CO3/WC produces mainly CH3OH and CH4 with a low activity. NbC has a very low activity in CO hydrogenation. K2CO3/Mo2C produces mixed alcohols with a reasonable...

  18. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  19. Hydrogen-based power generation from bioethanol steam reforming

    International Nuclear Information System (INIS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-01-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO 2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint

  20. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  1. Hydrogen energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Salzano, F J; Braun, C [eds.

    1977-09-01

    The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

  2. Japan's New Sunshine Project. 1998 annual summary of hydrogen energy R and D; New sunshine keikaku 1998 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  3. OTEC to hydrogen fuel cells - A solar energy breakthrough

    Science.gov (United States)

    Roney, J. R.

    Recent advances in fuel cell technology and development are discussed, which will enhance the Ocean Thermal Energy Conversion (OTEC)-hydrogen-fuel cell mode of energy utilization. Hydrogen obtained from the ocean solar thermal resources can either be liquified or converted to ammonia, thus providing a convenient mode of transport, similar to that of liquid petroleum. The hydrogen fuel cell can convert hydrogen to electric power at a wide range of scale, feeding either centralized or distributed systems. Although this system of hydrogen energy production and delivery has been examined with respect to the U.S.A., the international market, and especially developing countries, may represent the greatest opportunity for these future generating units.

  4. Hydrogen energy for beginners

    CERN Document Server

    2013-01-01

    This book highlights the outstanding role of hydrogen in energy processes, where it is the most functional element due to its unique peculiarities that are highlighted and emphasized in the book. The first half of the book covers the great natural hydrogen processes in biology, chemistry, and physics, showing that hydrogen is a trend that can unite all natural sciences. The second half of the book is devoted to the technological hydrogen processes that are under research and development with the aim to create the infrastructure for hydrogen energetics. The book describes the main features of hydrogen that make it inalienable player in processes such as fusion, photosynthesis, and metabolism. It also covers the methods of hydrogen production and storage, highlighting at the same time the exclusive importance of nanotechnologies in those processes.

  5. Hydrogen peroxide safety issues

    International Nuclear Information System (INIS)

    Conner, W.V.

    1993-01-01

    A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors

  6. Hydrogen and its challenges

    International Nuclear Information System (INIS)

    Schal, M.

    2008-01-01

    The future of hydrogen as a universal fuel is in jeopardy unless we are able to produce it through an environment-friendly way and at a competitive cost. Today almost all the hydrogen used in the world is produced by steam reforming of natural gas. This process releases 8 tonnes of CO 2 per tonne of hydrogen produced. Other means of producing hydrogen are the hydrolysis, the very high temperature hydrolysis, and the direct chemical dissociation of water, these processes are greener than steam reforming but less efficient. About one hundred buses in the world operate on fuel cells fed by hydrogen, but it appears that the first industrial use of hydrogen at great scale will be for the local generation of electricity. Globally the annual budget for research concerning hydrogen is 4.4 milliard (10 9 ) euros worldwide. (A.C.)

  7. The FLIC conversion codes

    International Nuclear Information System (INIS)

    Basher, J.C.

    1965-05-01

    This report describes the FORTRAN programmes, FLIC 1 and FLIC 2. These programmes convert programmes coded in one dialect of FORTRAN to another dialect of the same language. FLIC 1 is a general pattern recognition and replacement programme whereas FLIC 2 contains extensions directed towards the conversion of FORTRAN II and S2 programmes to EGTRAN 1 - the dialect now in use on the Winfrith KDF9. FII or S2 statements are replaced where possible by their E1 equivalents; other statements which may need changing are flagged. (author)

  8. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  9. The FLIC conversion codes

    Energy Technology Data Exchange (ETDEWEB)

    Basher, J C [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1965-05-15

    This report describes the FORTRAN programmes, FLIC 1 and FLIC 2. These programmes convert programmes coded in one dialect of FORTRAN to another dialect of the same language. FLIC 1 is a general pattern recognition and replacement programme whereas FLIC 2 contains extensions directed towards the conversion of FORTRAN II and S2 programmes to EGTRAN 1 - the dialect now in use on the Winfrith KDF9. FII or S2 statements are replaced where possible by their E1 equivalents; other statements which may need changing are flagged. (author)

  10. Moodle 20 Course Conversion

    CERN Document Server

    Wild, Ian

    2011-01-01

    With clear instructions and plenty of screenshots, this book provides all the support and guidance you will need as you begin to convert your teaching to Moodle. Step-by-step tutorials use real-world examples to show you how to convert to Moodle in the most efficient and effective ways possible. Moodle Course Conversion carefully illustrates how Moodle can be used to teach content and ideas and clearly demonstrates the advantages of doing so. This book is for teachers, tutors, and lecturers who already have a large body of teaching material and want to use Moodle to enhance their course, rathe

  11. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  12. Coal pyrolysis under hydrogen-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Sun, C.; Li, B.; Liu, Z. [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion, Institute of Coal Chemistry

    1998-04-01

    To improve the economy of the pyrolysis process by reducing the hydrogen cost, it is suggested to use cheaper hydrogen-rich gases such as coke-oven gas (COG) or synthesis gas (SG) instead of pure hydrogen. The pyrolysis of Chinese Xianfeng lignite which was carried out with real COG and SG at 3-5 MPa, a final temperature of 650{degree}C and a heating rate of 5{degree}C/min in a 10g fixed-bed reactor is compared with coal pyrolysis with pure hydrogen and nitrogen under the same conditions. The results indicate that compared with hydropyrolysis at the same total pressure, the total conversion and tar yields from coal pyrolysis with COG and SG decreases while the unwanted water increases. However, at the same H{sub 2} partial pressure, the tar yields and yields of BBTX, PCX and naphthalene from the pyrolysis of coal with COG and SG are all significantly higher than those of hydropyrolysis. Therefore, it is possible to use COG and SG instead of pure hydrogen. 8 refs., 3 figs., 6 tabs.

  13. Economically viable large-scale hydrogen liquefaction

    Science.gov (United States)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  14. Fullerene hydride - A potential hydrogen storage material

    International Nuclear Information System (INIS)

    Nai Xing Wang; Jun Ping Zhang; An Guang Yu; Yun Xu Yang; Wu Wei Wang; Rui long Sheng; Jia Zhao

    2005-01-01

    Hydrogen, as a clean, convenient, versatile fuel source, is considered to be an ideal energy carrier in the foreseeable future. Hydrogen storage must be solved in using of hydrogen energy. To date, much effort has been put into storage of hydrogen including physical storage via compression or liquefaction, chemical storage in hydrogen carriers, metal hydrides and gas-on-solid adsorption. But no one satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. C 60 H 36 , firstly synthesized by the method of the Birch reduction, was loaded with 4.8 wt% hydrogen indicating [60]fullerene might be as a potential hydrogen storage material. If a 100% conversion of C 60 H 36 is achieved, 18 moles of H 2 gas would be liberated from each mole of fullerene hydride. Pure C 60 H 36 is very stable below 500 C under nitrogen atmosphere and it releases hydrogen accompanying by other hydrocarbons under high temperature. But C 60 H 36 can be decomposed to generate H 2 under effective catalyst. We have reported that hydrogen can be produced catalytically from C 60 H 36 by Vasks's compound (IrCl(CO)(PPh 3 ) 2 ) under mild conditions. (RhCl(CO)(PPh 3 ) 2 ) having similar structure to (IrCl(CO)(PPh 3 ) 2 ), was also examined for thermal dehydrogenation of C 60 H 36 ; but it showed low catalytic activity. To search better catalyst, palladium carbon (Pd/C) and platinum carbon (Pt/C) catalysts, which were known for catalytic hydrogenation of aromatic compounds, were tried and good results were obtained. A very big peak of hydrogen appeared at δ=5.2 ppm in 1 H NMR spectrum based on Evans'work (fig 1) at 100 C over a Pd/C catalyst for 16 hours. It is shown that hydrogen can be produced from C 60 H 36 using a catalytic amount of Pd/C. Comparing with Pd/C, Pt/C catalyst showed lower activity. The high cost and limited availability of Vaska's compounds, Pd and Pt make it advantageous to develop less expensive catalysts for our process based on

  15. Hydrogen patent portfolios in the automotive industry - the search for promising storage methods

    NARCIS (Netherlands)

    Bakker, S.

    2010-01-01

    In the development of hydrogen vehicle technologies, the automotive industry adopts a portfolio approach; a multitude of technological options is developed for hydrogen storage and conversion. Patent portfolios of car manufacturers are used as indicators of the variation and selection dynamics of

  16. Photocatalytic methanol assisted production of hydrogen with simultaneous degradation of methyl orange

    NARCIS (Netherlands)

    Sobral Romao, J.I.; Salata, Rafal; Park, Sun-Young; Mul, Guido

    2016-01-01

    Platinized TiO2 prepared by photodeposition was evaluated for activity in the simultaneous conversion of methyl orange (MO), and methanol assisted formation of hydrogen. Low concentrations of MO were found ineffective for generation of hydrogen in measurable quantities upon illumination of Pt/TiO2

  17. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  18. NEDO Forum 2001. Session on hydrogen/PEFC (Toward realization of hydrogen/fuel cell society); NEDO Forum 2001. Suiso PEFC session (suiso nenryo denchi shakai no jitsugen ni mukete)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-20

    The presentations made at the above-named session of the NEDO (New Energy and Industrial Technology Development Organization) forum held in Tokyo on September 20, 2001, are collected in this report. Introduced in a lecture entitled 'March toward hydrogen/fuel cell society' were NEDO's PEFC (polymer electrolyte fuel cell) related project of its hydrogen energy technology development office and the WE-NET (World Energy Network) hydrogen program. Reported in a lecture entitled 'Toward the practical application of PEFC' were Yamanashi University Clean Energy Center's achievements in the study of polymer electrolyte film, electrodes and separators for PEFC, removal of carbon monoxide by selective oxidation, and so forth. Discussed in a lecture entitled 'Development of high efficiency energy system technologies for transportation and residential/commercial sectors' were the development of a hydrogen-fueled 1kW stack and the result of efforts to develop element technologies for power generation systems fueled by natural gas, methanol, etc. Explained also were the outline and the progress of the project in relation with the fuel cell popularization infrastructure construction project and the fiscal 2001 research and development and the future outlook in relation with the 2nd-phase technology development for WE-NET. (NEDO)

  19. Conversion program in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, E.B. [Studsvik Nuclear AB, Nykoeping (Sweden)

    1997-08-01

    The conversion of the Swedish 50 MW R2 reactor from HEU to LEU fuel has been successfully accomplished over a 16 cycles long process. The conversion started in January 1991 with the introduction of 6 LEU assemblies in the 8*8 core. The first all LEU core was loaded in March 1993 and physics measurements were performed for the final licensing reports. A total of 142 LEU fuel assemblies have been irradiated up until September 1994 without any fuel incident. The operating licence for the R2 reactor was renewed in mid 1994 taking into account new fuel type. The Swedish Nuclear Inspectorate (SKI) pointed out one crucial problem with the LEU operation, that the back end of the LEU fuel cycle has not yet been solved. For the HEU fuel Sweden had the reprocessing alternative. The country is now relying heavily on the success of the USDOEs Off Site Fuels Policy to take back the spent fuel from the research reactors. They have in the meantime increased their intermediate storage facilities. There is, however, a limit both in time and space for storage of MTR-type of assemblies in water. The penalty of the lower thermal neutron flux in LEU cores has been reduced by improvements of the new irradiation rigs and by fine tuning the core calculations. The Studsvik code package, CASMO-SIMULATE, widely used for ICFM in LWRs has been modified to suit the compact MTR type of core.

  20. Microbial conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lau, P. [National Research Council of Canada, Ottawa, ON (Canada). Bioconversion and Sustainable Development

    2006-07-01

    Microbes are a biomass and an valuable resource. This presentation discussed microbial conversion technologies along with background information on microbial cells, their characteristics and microbial diversity. Untapped opportunities for microbial conversion were identified. Metagenomic and genome mining approaches were also discussed, as they can provide access to uncultivated or unculturable microorganisms in communal populations and are an unlimited resource for biocatalysts, novel genes and metabolites. Genome mining was seen as an economical approach. The presentation also emphasized that the development of microbial biorefineries would require significant insights into the relevant microorganisms and that biocatalysts were the ultimate in sustainability. In addition, the presentation discussed the natural fibres initiative for biochemicals and biomaterials. Anticipated outputs were identified and work in progress of a new enzyme-retting cocktail to provide diversity and/or consistency in fibre characteristics for various applications were also presented. It was concluded that it is necessary to leverage understanding of biological processes to produce bioproducts in a clean and sustainable manner. tabs., figs.

  1. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    1991-06-01

    The Coordinating Committee set up by the Danish government in 1986 were given the responsibility of investigating the potentials for biomass conversion plants in Denmark, especially in relation to agricultural, environmental and energy aspects. The results of the Committee's plan of management for this project are presented. This main report covers 13 background reports which deal with special aspects in detail. The report describes the overall plan of management, the demonstration and follow-up programme and the individual biogas demonstration plants. Information gained from these investigations is presented. The current general status, (with emphasis on the technical and economical aspects) and the prospects for the future are discussed. The interest other countries have shown in Danish activities within the field of biogas production is described, and the possibilities for Danish export of technology and know-how in this relation are discussed. It is claimed that Denmark is the first country that has instigated a coordinated development programme for biomass conversion plants. (AB) 24 refs

  2. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  3. A green approach to ethyl acetate: Quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor

    KAUST Repository

    Zeng, Gaofeng; Chen, Tao; He, Lipeng; Pinnau, Ingo; Lai, Zhiping; Huang, Kuo-Wei

    2012-01-01

    Pincers do the trick: The conversion of ethanol to ethyl acetate and hydrogen was achieved using a pincer-Ru catalyst in a Pd-Ag membrane reactor. Near quantitative conversions and yields could be achieved without the need for acid or base promoters

  4. Precursors-Derived Ceramic Membranes for High-Temperature Separation of Hydrogen

    OpenAIRE

    Yuji, Iwamoto

    2007-01-01

    This review describes recent progress in the development of hydrogen-permselective ceramic membranes derived from organometallic precursors. Microstructure and gas transport property of microporous amorphous silica-based membranes are briefly described. Then, high-temperature hydrogen permselectivity, hydrothermal stability as well as hydrogen/steam selectivity of the amorphous silica-based membranes are discussed from a viewpoint of application to membrane reactors for conversion enhancement...

  5. Nanoscale Materials and Architectures for Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, Eric A. [Univ. of Kentucky, Lexington, KY (United States); Sunkara, Mahendra K. [University of Louisville, KY (United States)

    2011-05-25

    The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells, solar fuels, and thermionic energy conversion.

  6. Ultrafine hydrogen storage powders

    Science.gov (United States)

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  7. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  8. High density hydrogen research

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1977-01-01

    The interest in the properties of very dense hydrogen is prompted by its abundance in Saturn and Jupiter and its importance in laser fusion studies. Furthermore, it has been proposed that the metallic form of hydrogen may be a superconductor at relatively high temperatures and/or exist in a metastable phase at ambient pressure. For ten years or more, laboratories have been developing the techniques to study hydrogen in the megabar region (1 megabar = 100 GPa). Three major approaches to study dense hydrogen experimentally have been used, static presses, shockwave compression, and magnetic compression. Static tchniques have crossed the megabar threshold in stiff materials but have not yet been convincingly successful in very compressible hydrogen. Single and double shockwave techniques have improved the precision of the pressure, volume, temperature Equation of State (EOS) of molecular hydrogen (deuterium) up to near 1 Mbar. Multiple shockwave and magnetic techniques have compressed hydrogen to several megabars and densities in the range of the metallic phase. The net result is that hydrogen becomes conducting at a pressure between 2 and 4 megabars. Hence, the possibility of making a significant amount of hydrogen into a metal in a static press remains a formidable challenge. The success of such experiments will hopefully answer the questions about hydrogen's metallic vs. conducting molecular phase, superconductivity, and metastability. 4 figures, 15 references

  9. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  10. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  11. Hydrogen production from high temperature electrolysis and fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

    1978-01-01

    Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented

  12. MiRTH-e: Microreactor technology for hydrogen and electricity

    NARCIS (Netherlands)

    Delsman, E.; Rebrov, J.; de Croon, M.H.J.M.; Schouten, J.C.; Kramer, G.J.; Cominos, V.; Richter, T.; Veenstra, T.T.; van den Berg, Albert; Cobden, P.; de Bruijn, F.J.; Ferret, C.; d'Ortona, U.; Falk, L.; Matlosz, M.; Ehrfeld, W.; Baselt, J.P.

    2002-01-01

    Research groups of six companies, institutes and universities hav joint forces in a European Community funded project, to develop a miniaturized, low-power fuel processor for the conversion of methanol into clean hydrogen for use in a proton exchange membrane (PEM) fuel cell. The integrated unit

  13. Hydrogen from renewable sources. Current and future constraints

    International Nuclear Information System (INIS)

    Falchetta, M.; Galli, S.

    2001-01-01

    Using renewable energy sources to produce hydrogen as an energy vector could assure a fully sustainable renewable energy system with zero emissions. Many conversion technologies (in particular water electrolysis) are already available and proven, but are still far from being economically competitive [it

  14. Integrating Wind And Solar With Hydrogen Producing Fuel Cells

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The often proposed solution for the fluctuating wind energy supply is the conversion of the surplus of wind energy into hydrogen by means of electrolysis. In this paper a patented alternative is proposed consisting of the integration of wind turbines with internal reforming fuel-cells, capable of

  15. Carbon dioxide conversion over carbon-based nanocatalysts.

    Science.gov (United States)

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  16. Controlling system for an experimental demonstration plant for energy conversion using PEMFCs

    International Nuclear Information System (INIS)

    Culcer, Mihail; Iliescu, Mariana; Stefanescu, Ioan; Raceanu, Mircea; Enache, Adrian; Patularu, Laurentiu

    2006-01-01

    Full text: In the last decades of the previous century, due to global environmental problems, energy security and supply issues, many studies were conducted to investigate the uses for hydrogen energy and facilitate its penetration as an energy carrier. Subsequently, many industries worldwide began developing and producing hydrogen, hydrogen-powered vehicles, hydrogen fuel cells, and other hydrogen-based technologies. In view of the substantial long-term public and private benefits arising from hydrogen and fuel cells, the European Union and national governments throughout Europe, including the Romanian one, are working towards developing a consistent policy framework preparing the transition to a hydrogen based economy. ICIT Rm Valcea developed a research program on energy conversion using fuel cells, a project supported by the Romanian Ministry of Education and Research within the National R and D Program. An experimental demonstration pilot plant of energy conversion using PEMFCs and hydrogen producing via steam methane reforming (SMR) was achieved in order to investigate the development of small-scale SMR technologies and to allow testing and developing of specific components. The paper deals with the dedicated controlling system that provides automated data acquisition, manual or 'on line' operational control, gas management, humidification, temperature and flow controls of the pilot plant. (authors)

  17. Hydrogen Fuelling Stations

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard

    . A system consisting of one high pressure storage tank is used to investigate the thermodynamics of fuelling a hydrogen vehicle. The results show that the decisive parameter for how the fuelling proceeds is the pressure loss in the vehicle. The single tank fuelling system is compared to a cascade fuelling......This thesis concerns hydrogen fuelling stations from an overall system perspective. The study investigates thermodynamics and energy consumption of hydrogen fuelling stations for fuelling vehicles for personal transportation. For the study a library concerning the components in a hydrogen fuelling...... station has been developed in Dymola. The models include the fuelling protocol (J2601) for hydrogen vehicles made by Society of Automotive Engineers (SAE) and the thermodynamic property library CoolProp is used for retrieving state point. The components in the hydrogen fuelling library are building up...

  18. Conversation with Meir Sternberg

    Directory of Open Access Journals (Sweden)

    Federico Pianzola

    2011-07-01

    Full Text Available Below are the videos of the interview recorded the 21st May 2011 in Fribourg (CH, in occasion of the first RRN conference. Conversation with Meir Sternberg. Part 1 of 8 - Narratology: classical and postclassical studies. Part 2 of 8 - The development of an original theoretical framework. Part 3 of 8 - Sternberg and Genette: different ways for the same problems. Part 4 of 8 - «There are no forms except in terms of functions». Part 5 of 8 - A life writing articles: so many papers and just four books. Part 6 of 8 - Two arguments against mimetical approaches to narrative. Part 7 of 8 - «Narrative is not given, it is a construct». Part 8 of 8 - The proteus principle. the many-to-many correspondence between forms and functions.

  19. Thermodynamics and energy conversion

    CERN Document Server

    Struchtrup, Henning

    2014-01-01

    This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices.   Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing, and the evaluation of the related work losses. Better use of resources requires high efficiencies, therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools.   Topics include: car and aircraft engines,  including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet;  steam and gas power plants, including advanced regenerative systems, solar tower, and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic powerplants, and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes, and fuel cells; the microscopic definition of entropy.    The book i...

  20. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    Holm-Nielsen, J.B.; Huntingford, S.; Halberg, N.

    1993-03-01

    The aim was to show the agricultural advantages of farmers being in connection with Communal Biogas Plant. Whether a more environmentally protectire distribution of plant nutrients from animal manure takes place through a biogas plants distribution system, whether the nitrogen in the digested slurry is better utilized and whether the connection results in slurry transportation-time reduction, are discussed. The average amount of nitrogen from animal manure used per hectare was reduced. The area of manure distribution was larger. The nitrogen efficiency was increased when using digested slurry and purchase of N mineral fertilizer decreased, resulting in considerable reduction in nitrogen leaching. The amount of slurry delivered to the local storage tanks was approximately 45 per cent of the total amount treated on the biogas plant. Conditions of manure transport improved greatly as this was now the responsibility of the communal biomass conversion plant administrators. (AB) (24 refs.)

  1. Power conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M. A.

    1997-02-01

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  2. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  3. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  4. Hydrogen storage container

    Science.gov (United States)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  5. Hydrogen meter prooftesting

    International Nuclear Information System (INIS)

    McCown, J.J.; Mettler, G.W.

    1976-04-01

    Two diffusion type hydrogen meters have been tested on the Prototype Applications Loop (PAL). The ANL designed unit was used to monitor hydrogen in sodium during FFTF startup and over a wide range of hydrogen concentrations resulting from chemical additions to the sodium and cover gas. A commercially available meter was added and its performance compared with the ANL unit. Details of the test work are described

  6. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Anton Francesch, Judit

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  7. The Role of Conversation Policy in Carrying Out Agent Conversations

    International Nuclear Information System (INIS)

    Link, Hamilton E.; Phillips, Laurence R.

    1999-01-01

    Structured conversation diagrams, or conversation specifications, allow agents to have predictable interactions and achieve predefined information-based goals, but they lack the flexibility needed to function robustly in an unpredictable environment. We propose a mechanism that combines a typical conversation structure with a separately established policy to generate an actual conversation. The word ''policy'' connotes a high-level direction external to a specific planned interaction with the environment. Policies, which describe acceptable procedures and influence decisions, can be applied to broad sets of activity. Based on their observation of issues related to a policy, agents may dynamically adjust their communication patterns. The policy object describes limitations, constraints, and requirements that may affect the conversation in certain circumstances. Using this new mechanism of interaction simplifies the description of individual conversations and allows domain-specific issues to be brought to bear more easily during agent communication. By following the behavior of the conversation specification when possible and deferring to the policy to derive behavior in exceptional circumstances, an agent is able to function predictably under normal situations and still act rationally in abnormal situations. Different conversation policies applied to a given conversation specification can change the nature of the interaction without changing the specification

  8. Status of photoelectrochemical production of hydrogen and electrical energy

    Science.gov (United States)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.

  9. Hydrogen Production by Steam Reforming of Natural Gas Over Vanadium-Nickel-Alumina Catalysts.

    Science.gov (United States)

    Yoo, Jaekyeong; Park, Seungwon; Song, Ji Hwan; Song, In Kyu

    2018-09-01

    A series of vanadium-nickel-alumina (xVNA) catalysts were prepared by a single-step sol-gel method with a variation of vanadium content (x, wt%) for use in the hydrogen production by steam reforming of natural gas. The effect of vanadium content on the physicochemical properties and catalytic activities of xVNA catalysts in the steam reforming of natural gas was investigated. It was found that natural gas conversion and hydrogen yield showed volcano-shaped trends with respect to vanadium content. It was also revealed that natural gas conversion and hydrogen yield increased with decreasing nickel crystallite size.

  10. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  11. Hydrogen gas detector

    International Nuclear Information System (INIS)

    Bohl, T.L.

    1982-01-01

    A differential thermocouple hydrogen gas detector has one thermocouple junction coated with an activated palladium or palladium-silver alloy catalytic material to allow heated hydrogen gas to react with the catalyst and raise the temperature of that junction. The other juction is covered with inert glass or epoxy resin, and does not experience a rise in temperature in the presence of hydrogen gas. A coil heater may be mounted around the thermocouple junctions to heat the hydrogen, or the gas may be passed through a heated block prior to exposing it to the thermocouples

  12. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  13. Purification of hydrogen sulfide

    International Nuclear Information System (INIS)

    Tsao, U.

    1978-01-01

    A process is described for purifying a hydrogen sulfide gas stream containing carbon dioxide, comprising (a) passing the gas stream through a bed of solid hydrated lime to form calcium hydrosulfide and calcium carbonate and (b) regenerating hydrogen sulfide from said calcium hydrosulfide by reacting the calcium hydrosulfide with additional carbon dioxide. The process is especially applicable for use in a heavy water recovery process wherein deuterium is concentrated from a feed water containing carbon dioxide by absorption and stripping using hydrogen sulfide as a circulating medium, and the hydrogen sulfide absorbs a small quantity of carbon dioxide along with deuterium in each circulation

  14. New hydrogen technologies

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents an overview of the overall hydrogen system. There are separate sections for production, distribution, transport, storage; and applications of hydrogen. The most important methods for hydrogen production are steam reformation of natural gas and electrolysis of water. Of the renewable energy options, production of hydrogen by electrolysis using electricity from wind turbines or by gasification of biomass were found to be the most economic for Finland. Direct use of this electricity or the production of liquid fuels from biomass will be competing alternatives. When hydrogen is produced in the solar belt or where there is cheap hydropower it must be transported over long distances. The overall energy consumed for the transport is from 25 to 40 % of the initial available energy. Hydrogen storage can be divided into stationary and mobile types. The most economic, stationary, large scale hydrogen storage for both long and short periods is underground storage. When suitable sites are not available, then pressure vessels are the best for short period and liquid H 2 for long period. Vehicle storage of hydrogen is by either metal hydrides or liquid H 2 . Hydrogen is a very versatile energy carrier. It can be used to produce heat directly in catalytic burners without flame, to produce electricity in fuel cells with high efficiency for use in vehicles or for peak power shaving, as a fuel component with conventional fuels to reduce emissions, as a way to store energy and as a chemical reagent in reactions

  15. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.; Brighigna, M.

    1993-01-01

    Hydrogen fueled vehicles may just be the answer to the air pollution problem in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives. This paper examines the feasibility of hydrogen as an automotive fuel by analyzing the following aspects: the chemical-physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems; current production technologies and commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. With reference to recent trial results being obtained in the USA, an assessment is also made of the feasibility of the use of methane-hydrogen mixtures as automotive fuels. The paper concludes with a review of progress being made by ENEA (the Italian Agency for New Technology, Energy and the Environment) in the development of fuel storage and electronic fuel injection systems for hydrogen powered vehicles

  16. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Dini, D.; Ciancia, A.; Pede, G.; Sglavo, V.; ENEA, Rome

    1992-01-01

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  17. Palladium Nanoparticle Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    I. Pavlovsky

    2006-12-01

    Full Text Available An innovative hydrogen sensor based on palladium (Pd nanoparticle networks is described in the article. Made by Applied Nanotech Inc. sensor has a fast response time, in the range of seconds, which is increased at 80 °C due to higher hydrogen diffusion rates into the palladium lattice. The low detection limit of the sensor is 10 ppm of H2, and the high limit is 40,000 ppm. This is 100% of a lowest flammability level of hydrogen. This range of sensitivities complies with the requirements that one would expect for a reliable hydrogen sensor.

  18. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  19. Overall efficiencies for conversion of solar energy to a chemical fuel

    Science.gov (United States)

    Fish, J. D.

    A complete and consistent scheme for determining the overall efficiency of a generalized process for the conversion of solar energy into a chemical fuel (e.g. hydrogen) is developed and applied to seven conversion processes: thermal, thermochemical, photovoltaic, photogalvanic, photoelectrolysis, photosynthesis and photochemical conversion. It is demonstrated that the overall efficiency of each of these processes is determined by ten common factors: maximum theoretical efficiency, inherent absorption losses, inherent internal losses, rate limiting effects, reflection losses, transmission losses, coverage losses, system construction requirements, parasitic losses and harvesting and conversion losses. Both state-of-the-art and optimistic values are assigned to each factor for each of the seven conversion processes. State-of-the-art overall efficiencies ranged from 5% for thermal conversion down to essentially zero for thermochemical. Optimistic values in the range of about 10 to 15% are calculated for several of the processes.

  20. Silica sodalite without occluded organic matters by topotactic conversion of lamellar precursor.

    Science.gov (United States)

    Moteki, Takahiko; Chaikittisilp, Watcharop; Shimojima, Atsushi; Okubo, Tatsuya

    2008-11-26

    Novel pure silica sodalite with hollow sodalite-cages has been synthesized for the first time by topotactic conversion of layered silicate (RUB-15) precursor. This success has been achieved by stepwise syntheses from silicate monomers, through clusters and layers, to microporous crystals. The pretreatment of layered silicate with small carboxylic acids before conversion is a crucial step. The obtained sodalite possesses accessible micropores, as confirmed by physical adsorption of hydrogen molecules. This plate-like silica sodalite would be very promising as fillers in mixed-matrix membranes for hydrogen separation.

  1. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T [Ann Arbor, MI; Li, Yingwel [Ann Arbor, MI; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  2. Paradoxical therapy in conversion disorder

    OpenAIRE

    ATAOĞLU, Ahmet

    1998-01-01

    Paradoxical therapy consists of suggesting that the patient intentionally engages in the unwanted behaviour, such as performing complusive ritual or bringing on a conversion attack. In this study paradoxical intention (PI) was used with to half of the patients with conversion disorders, while the other half were treated with diazepam in order to examine the efficiency of the PI versus diazepam in conversion disorder. Patients treated with PI appeared to have a greater improvement r...

  3. Methane Conversion to C2 Hydrocarbons by Abnormal Glow Discharge at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Dai Wei; Yu Hui; Chen Qi; Yin Yongxiang; Dai Xiaoyan

    2005-01-01

    Methane conversion to C 2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formation and improve discharge stability. The typical conditions in the experiment are 300 ml of total feed flux and 400 W of discharge power. The experimental results show that methane conversion is from 91.6% to 35.2% in mol, acetylene selectivity is from 90.2% to 57.6%, and ethylene selectivity is approximately from 7.8% to 3.6%, where the coke increases gradually along with the increase of CH 4 /H 2 from 2: 8 to 9: 1. A stable discharge for a considerable running time can be obtained only at a lower ratio of CH 4 /H 2 2: 8 or 3: 7. These phenomena indicate that the coke deposition during methane conversion is obviously reduced by adding a large amount of hydrogen during an abnormal glow discharge. A qualitative interpretation is presented, namely, with abundant hydrogen, the possibility that hydrogen molecules are activated to hydrogen radicals is increased with the help of the abnormal glow discharge. These hydrogen radicals react with carbon radicals to form C 2 hydrocarbon products. Therefore, the deposition of coke is restrained

  4. Hydrogen and syngas production from sewage sludge via steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Nipattummakul, Nimit [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand); Ahmed, Islam I.; Gupta, Ashwani K. [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); Kerdsuwan, Somrat [The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand)

    2010-11-15

    High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for energy recovery. In this investigation, sewage sludge samples were gasified at various temperatures to determine the evolutionary behavior of syngas characteristics and other properties of the syngas produced. The syngas characteristics were evaluated in terms of syngas yield, hydrogen production, syngas chemical analysis, and efficiency of energy conversion. In addition to gasification experiments, pyrolysis experiments were conducted for evaluating the performance of gasification over pyrolysis. The increase in reactor temperature resulted in increased generation of hydrogen. Hydrogen yield at 1000 C was found to be 0.076 g{sub gas} g{sub sample}{sup -1}. Steam as the gasifying agent increased the hydrogen yield three times as compared to air gasification. Sewage sludge gasification results were compared with other samples, such as, paper, food wastes and plastics. The time duration for sewage sludge gasification was longer as compared to other samples. On the other hand sewage sludge yielded more hydrogen than that from paper and food wastes. (author)

  5. DOE-EFRC Center on Nanostructuring for Efficient Energy Conversion (CNEEC)

    Energy Technology Data Exchange (ETDEWEB)

    Prinz, Friedrich B. [Stanford Univ., CA (United States). Mechanical Engineering. Materials Science and Engineering; Bent, Stacey F. [Stanford Univ., CA (United States). Chemical Engineering

    2015-10-22

    CNEEC’s mission has been to understand how nanostructuring of materials can enhance efficiency for solar energy conversion to produce hydrogen fuel and to solve fundamental cross-cutting problems. The overarching hypothesis underlying CNEEC research was that controlling, synthesizing and modifying materials at the nanometer scale increases the efficiency of energy conversion and storage devices and systems. In this pursuit, we emphasized the development of functional nanostructures that are based primarily on earth abundant and inexpensive materials.

  6. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S. G.; Roberts, G. W.

    1980-01-01

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst

  7. Hydrogen from biomass: state of the art and research challenges

    Energy Technology Data Exchange (ETDEWEB)

    Milne, Thomas A; Elam, Carolyn C; Evans, Robert J

    2002-02-01

    The report was prepared for the International Energy Agency (IEA) Agreement on the Production and Utilization of Hydrogen, Task 16, Hydrogen from Carbon-Containing Materials. Hydrogen's share in the energy market is increasing with the implementation of fuel cell systems and the growing demand for zero-emission fuels. Hydrogen production will need to keep pace with this growing market. In the near term, increased production will likely be met by conventional technologies, such as natural gas reforming. In these processes, the carbon is converted to CO2 and released to the atmosphere. However, with the growing concern about global climate change, alternatives to the atmospheric release of CO2 are being investigated. Sequestration of the CO2 is an option that could provide a viable near-term solution. Reducing the demand on fossil resources remains a significant concern for many nations. Renewable-based processes like solar- or wind-driven electrolysis and photobiological water splitting hold great promise for clean hydrogen production; however, advances must still be made before these technologies can be economically competitive. For the near-and mid-term, generating hydrogen from biomass may be the more practical and viable, renewable and potentially carbon-neutral (or even carbon-negative in conjunction with sequestration) option. Recently, the IEA Hydrogen Agreement launched a new task to bring together international experts to investigate some of these near- and mid-term options for producing hydrogen with reduced environmental impacts. This review of the state of the art of hydrogen production from biomass was prepared to facilitate in the planning of work that should be done to achieve the goal of near-term hydrogen energy systems. The relevant technologies that convert biomass to hydrogen, with emphasis on thermochemical routes are described. In evaluating the viability of the conversion routes, each must be put in the context of the availability of

  8. Hydrogen production via catalytic steam reforming of fast pyrolysis oil fractions

    International Nuclear Information System (INIS)

    Wang, D.; Czernik, S.; Montane, D.; Mann, M.; Chornet, E.

    1997-01-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells, and as a co-adjuvant or autonomous transportation fuel in internal combustion engines. The conversion of biomass to hydrogen can be carried out through two distinct thermochemical strategies: (a) gasification followed by shift conversion; (b) catalytic steam reforming and shift conversion of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper shows that fast pyrolysis of biomass results in a bio-oil that can be adequately fractionated into valuable co-products leaving as by-product an aqueous fraction containing soluble organics (a mixture of alcohols, aldehydes and acids). This fraction can be converted to hydrogen by catalytic steam reforming followed by a shift conversion step. The methods used, the yields obtained and their economic significance will be discussed. (author)

  9. Kinetics of Hydrogen Absorption and Desorption in Titanium

    Directory of Open Access Journals (Sweden)

    Suwarno Suwarno

    2017-10-01

    Full Text Available Titanium is reactive toward hydrogen forming metal hydride which has a potential application in      energy storage and conversion. Titanium hydride has been widely studied for hydrogen storage, thermal storage, and battery electrodes applications. A special interest is using titanium for hydrogen production in a hydrogen sorption-enhanced steam reforming of natural gas. In the present work, non-isothermal dehydrogenation kinetics of titanium hydride and kinetics of hydrogenation in gaseous flow at isothermal conditions were investigated. The hydrogen desorption was studied using temperature desorption spectroscopy (TDS while the hydrogen absorption and desorption in gaseous flow were studied by temperature programmed desorption (TPD. The present work showed that the path of dehydrogenation of the TiH2 is d®b®a hydride phase with possible overlapping steps occurred. The fast hydrogen desorption rate observed at the TDS main peak temperature were correlated with the fast transformation of the d-TiH1.41 to b-TiH0.59. In the gaseous flow, hydrogen absorption and desorption were related to the transformation of b-TiH0.59 Û d-TiH1.41 with 2 wt.% hydrogen reversible content. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 20th March 2017; Accepted: 9th April 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Suwarno, S., Yartys, V.A. (2017. Kinetics of Hydrogen Absorption and Desorption in Titanium. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 312-317  (doi:10.9767/bcrec.12.3.810.312-317

  10. Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the hydrogen and fuel cells. It presents the hydrogen technology from the production to the distribution and storage, the issues as motor fuel and fuel cells, the challenge for vehicles applications and the Total commitments in the domain. (A.L.B.)

  11. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  12. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  13. Dark hydrogen fermentations

    NARCIS (Netherlands)

    Vrije, de G.J.; Claassen, P.A.M.

    2003-01-01

    The production of hydrogen is a ubiquitous, natural phenomenon under anoxic or anaerobic conditions. A wide variety of bacteria, in swamps, sewage, hot springs, the rumen of cattle etc. is able to convert organic matter to hydrogen, CO2 and metabolites like acetic acid, lactate, ethanol and alanine.

  14. Hydrogen Storage Tank

    CERN Multimedia

    1983-01-01

    This huge stainless steel reservoir,placed near an end of the East Hall, was part of the safety equipment connected to the 2 Metre liquid hydrogen Bubble Chamber. It could store all the hydrogen in case of an emergency. The picture shows the start of its demolition.

  15. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  16. Hydrogen pellet injection device

    International Nuclear Information System (INIS)

    Kanno, Masahiro.

    1992-01-01

    In a hydrogen pellet injection device, a nozzle block having a hydrogen gas supply channel is disposed at the inner side of a main cryogenic housing, and an electric resistor is attached to the block. Further, a nozzle block and a hydrogen gas introduction pipe are attached by way of a thermal insulating spacer. Electric current is supplied to the resistor to positively heat the nozzle block and melt remaining solid hydrogen in the hydrogen gas supply channel. Further, the effect of temperature elevation due to the resistor is prevented from reaching the side of the hydrogen gas introduction pipe by the thermal insulation spacer. That is, the temperature of the nozzle block is directly and positively elevated, to melt the solid hydrogen rapidly. Preparation operation from the injection of the hydrogen pellet to the next injection can be completed in a shorter period of time compared with a conventional case thereby enabling to make the test more efficient. Further, only the temperature of the nozzle block is elevated with no effect of temperature elevation due to the resistor to other components by the thermal insulation flange. (N.H.)

  17. Hydrogen from biomass

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    Hydrogen is generally regarded as the energy carrier of the future. The development of a process for hydrogen production from biomass complies with the policy of the Dutch government to obtain more renewable energy from biomass. This report describes the progress of the BWP II project, phase 2 of

  18. Coupling renewables via hydrogen into utilities: Temporal and spatial issues, and technology opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Iannucci, J.J.; Horgan, S.A.; Eyer, J.M. [Distributed Utility Associates, San Ramon, CA (United States)] [and others

    1996-10-01

    This paper discusses the technical potential for hydrogen used as an energy storage medium to couple time-dependent renewable energy into time-dependent electric utility loads. This analysis will provide estimates of regional and national opportunities for hydrogen production, storage and conversion, based on current and near-term leading renewable energy and hydrogen production and storage technologies. Appropriate renewable technologies, wind, photovoltaics and solar thermal, are matched to their most viable regional resources. The renewables are assumed to produce electricity which will be instantaneously used by the local utility to meet its loads; any excess electricity will be used to produce hydrogen electrolytically and stored for later use. Results are derived based on a range of assumptions of renewable power plant capacity and fraction of regional electric load to be met (e.g., the amount of hydrogen storage required to meet the Northwest region`s top 10% of electric load). For each renewable technology national and regional totals will be developed for maximum hydrogen production per year and ranges of hydrogen storage capacity needed in each year (hydroelectric case excluded). The sensitivity of the answers to the fraction of peak load to be served and the land area dedicated for renewable resources are investigated. These analyses can serve as a starting point for projecting the market opportunity for hydrogen storage and distribution technologies. Sensitivities will be performed for hydrogen production, conversion. and storage efficiencies representing current and near-term hydrogen technologies.

  19. Nanomaterials for photovoltaic conversion

    International Nuclear Information System (INIS)

    Davenas, J.; Ltaief, A.; Barlier, V.; Boiteux, G.; Bouazizi, A.

    2008-01-01

    A promising route for photovoltaic conversion has emerged from the combination of electroactive nanomaterials and small bandgap polymers. The formation of bulk heterojunctions resulting from the extended interfaces leads to efficient dissociation of the charge pairs generated under sunlight shown by the rapid extinction of the polymer photoluminescence for increasing contents of fullerenes or TiO 2 nanoparticles in MEH-PPV or PVK. Unconventional elaboration routes of the blends have been developed to increase the nanofiller dispersion and inhibit phase separation at high concentration. The size reduction of the acceptor domains led to a complete quenching of the radiative recombinations, obtained by specific solvent processing of MEH-PPV / C 60 nanocomposites or sol gel elaboration of TiO 2 nanoparticles in a PVK film. A simultaneous increase of the photocurrents could be achieved by the dispersion and size optimisation of the nanofillers. In situ generation of silver particles in MEH-PPV provides an example of enhanced charge separation induced by the plasmon resonance at the metal/polymer interface. The strong influence of the molecular morphology on the nanocomposite properties emphasizes the large improvements which can still be gained on the performances of organic solar cells

  20. Overview of fuel conversion

    International Nuclear Information System (INIS)

    Green, A.E.S.

    1991-01-01

    The conversion of solid fuels to cleaner-burning and more user-friendly solid liquid or gaseous fuels spans many technologies. In this paper, the authors consider coal, residual oil, oil shale, tar sends tires, municipal oil waste and biomass as feedstocks and examine the processes which can be used in the production of synthetic fuels for the transportation sector. The products of mechanical processing to potentially usable fuels include coal slurries, micronized coal, solvent refined coal, vegetable oil and powdered biomall. The thermochemical and biochemical processes considered include high temperature carbide production, liquefaction, gasification, pyrolysis, hydrolysis-fermentation and anaerobic digestion. The products include syngas, synthetic natural gas, methanol, ethanol and other hydrocarbon oxygenates synthetic gasoline and diesel and jet engine oils. The authors discuss technical and economic aspects of synthetic fuel production giving particular attention and literature references to technologies not discussed in the five chapters which follow. Finally the authors discuss economic energy, and environmental aspects of synthetic fuels and their relationship to the price of imported oil