WorldWideScience

Sample records for hydrogen abstraction reaction

  1. Hydrogen abstraction reactions by amide electron adducts

    International Nuclear Information System (INIS)

    Sevilla, M.D.; Sevilla, C.L.; Swarts, S.

    1982-01-01

    Electron reactions with a number of peptide model compounds (amides and N-acetylamino acids) in aqueous glasses at low temperature have been investigated using ESR spectroscopy. The radicals produced by electron attachment to amides, RC(OD)NDR', are found to act as hydrogen abstracting agents. For example, the propionamide electron adduct is found to abstract from its parent propionamide. Electron adducts of other amides investigated show similar behavior except for acetamide electron adduct which does not abstract from its parent compound, but does abstract from other amides. The tendency toward abstraction for amide electron adducts are compared to electron adducts of several carboxylic acids, ketones, aldehydes and esters. The comparison suggests the hydrogen abstraction tendency of the various deuterated electron adducts (DEAs) to be in the following order: aldehyde DEA > acid DEA = approximately ester DEA > ketone DEA > amide DEA. In basic glasses the hydrogen abstraction ability of the amide electron adducts is maintained until the concentration of base is increased sufficiently to convert the DEA to its anionic form, RC(O - )ND 2 . In this form the hydrogen abstracting ability of the radical is greatly diminished. Similar results were found for the ester and carboxylic acid DEA's tested. (author)

  2. Rate coefficients for hydrogen abstraction reaction of pinonaldehyde

    Indian Academy of Sciences (India)

    The H abstraction reaction from the –CHO group was found to be the most dominant reaction channelamong all the possible reaction pathways and its corresponding rate coefficient at 300 K is kEckart's unsymmetrical= 3.86 ×10-10 cm3 molecule-1 s-1. Whereas the channel with immediate lower activation energy is the ...

  3. F/Cl + C2H2 reactions: Are the addition and hydrogen abstraction direct processes?

    International Nuclear Information System (INIS)

    Li Jilai; Geng Caiyun; Huang Xuri; Zhan Jinhui; Sun Chiachung

    2006-01-01

    The reactions of atomic radical F and Cl with acetylene have been studied theoretically using ab initio quantum chemistry methods and transition state theory. The doublet potential energy surfaces were calculated at the CCSD(T)/aug-cc-pVDZ//CCSD/6-31G(d,p), CCSD(T)/aug-cc-pVDZ//UMP2/6-311++G(d,p) and compound method Gaussian-3 levels. Two reaction mechanisms including the addition-elimination and the hydrogen abstraction reaction mechanisms are considered. In the addition-elimination reactions, the halogen atoms approach C 2 H 2 , perpendicular to the C≡C triple bond, forming the pre-reactive complex C1 at the reaction entrance. C1 transforms to intermediate isomer I1 via transition state TSC1/1 with a negative/small barrier for C 2 H 2 F/C 2 H 2 Cl system, which can proceed by further eliminating H atom endothermally. While the hydrogen abstraction reactions also involve C1 for the fluorine atom abstraction of hydrogen, yet the hydrogen abstraction by chlorine atom first forms a collinear hydrogen-bonded complex C2. The other reaction pathways on the doublet PES are less competitive due to thermodynamical or kinetic factors. According to our results, the presence of pre-reactive complexes indicates that the simple hydrogen abstraction and addition in the halogen atoms reaction with unsaturated hydrocarbon should be more complex. Furthermore, based on the analysis of the kinetics of all channels through which the addition and abstraction reactions proceed, we expect that the actual feasibility of the reaction channels may depend on the reaction conditions in the experiment. The present study may be helpful for probing the mechanisms of the title reactions and understanding the halogen chemistry

  4. Learning about Regiochemistry from a Hydrogen-Atom Abstraction Reaction in Water

    Science.gov (United States)

    Sears-Dundes, Christopher; Huon, Yoeup; Hotz, Richard P.; Pinhas, Allan R.

    2011-01-01

    An experiment has been developed in which the hydrogen-atom abstraction and the coupling of propionitrile, using Fenton's reagent, are investigated. Students learn about the regiochemistry of radical formation, the stereochemistry of product formation, and the interpretation of GC-MS data, in a safe reaction that can be easily completed in one…

  5. Alkyl hydrogen atom abstraction reactions of the CN radical with ethanol

    Science.gov (United States)

    Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2018-04-01

    We present a study of the abstraction of alkyl hydrogen atoms from the β and α positions of ethanol by the CN radical in solution using the Empirical Valence Bond (EVB) method. We have built separate 2 × 2 EVB models for the Hβ and Hα reactions, where the atom transfer is parameterized using ab initio calculations. The intra- and intermolecular potentials of the reactant and product molecules were modelled with the General AMBER Force Field, with some modifications. We have carried out the dynamics in water and chloroform, which are solvents of contrasting polarity. We have computed the potential of mean force for both abstractions in each of the solvents. They are found to have a small and early barrier along the reaction coordinate with a large energy release. Analyzing the solvent structure around the reaction system, we have found two solvents to have little effect on either reaction. Simulating the dynamics from the transition state, we also study the fate of the energies in the HCN vibrational modes. The HCN molecule is born vibrationally hot in the CH stretch in both reactions and additionally in the HCN bends for the Hα abstraction reaction. In the early stage of the dynamics, we find that the CN stretch mode gains energy at the expense of the energy in CH stretch mode.

  6. When hydroquinone meets methoxy radical: Hydrogen abstraction reaction from the viewpoint of interacting quantum atoms.

    Science.gov (United States)

    Petković, Milena; Nakarada, Đura; Etinski, Mihajlo

    2018-05-25

    Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra-atomic and inter-atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra-atomic and inter-atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange-correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange-correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  7. Reaction kinetics of hydrogen atom abstraction from isopentanol by the H atom and HO2˙ radical.

    Science.gov (United States)

    Parab, Prajakta Rajaram; Heufer, K Alexander; Fernandes, Ravi Xavier

    2018-04-25

    Isopentanol is a potential next-generation biofuel for future applications to Homogeneous Charge Compression Ignition (HCCI) engine concepts. To provide insights into the combustion behavior of isopentanol, especially to its auto-ignition behavior which is linked both to efficiency and pollutant formation in real combustion systems, detailed quantum chemical studies for crucial reactions are desired. H-Abstraction reaction rates from fuel molecules are key initiation steps for chain branching required for auto-ignition. In this study, rate constants are determined for the hydrogen atom abstraction reactions from isopentanol by the H atom and HO2˙ radical by implementing the CBS-QB3 composite method. For the treatment of the internal rotors, a Pitzer-Gwinn-like approximation is applied. On comparing the computed reaction energies, the highest exothermicity (ΔE = -46 kJ mol-1) is depicted for Hα abstraction by the H atom whereas the lowest endothermicity (ΔE = 29 kJ mol-1) is shown for the abstraction of Hα by the HO2˙ radical. The formation of hydrogen bonding is found to affect the kinetics of the H atom abstraction reactions by the HO2˙ radical. Further above 750 K, the calculated high pressure limit rate constants indicate that the total contribution from delta carbon sites (Cδ) is predominant for hydrogen atom abstraction by the H atom and HO2˙ radical.

  8. Quadrupole type mass spectrometric study of the abstraction reaction between hydrogen atoms and ethane.

    Science.gov (United States)

    Bayrakçeken, Fuat

    2008-02-01

    The reactions of photochemically generated deuterium atoms of selected initial translational energy with ethane have been investigated. At each initial energy the relative probability of the atoms undergoing reaction or energy loss on collision with ethane was investigated, and the phenomenological threshold energy was measured as 30+/-5kJmol(-1) for the abstraction from the secondary C-H bonds. The ratio of relative yields per bond, secondary:primary was approximately 3 at the higher energies studied. The correlation of threshold energies with bond dissociation energies, heats of reaction and activation energies is discussed for abstraction reactions with several hydrocarbons.

  9. Kinetics of Hydrogen Abstraction and Addition Reactions of 3-Hexene by ȮH Radicals.

    Science.gov (United States)

    Yang, Feiyu; Deng, Fuquan; Pan, Youshun; Zhang, Yingjia; Tang, Chenglong; Huang, Zuohua

    2017-03-09

    Rate coefficients of H atom abstraction and H atom addition reactions of 3-hexene by the hydroxyl radicals were determined using both conventional transition-state theory and canonical variational transition-state theory, with the potential energy surface (PES) evaluated at the CCSD(T)/CBS//BHandHLYP/6-311G(d,p) level and quantum mechanical effect corrected by the compounded methods including one-dimensional Wigner method, multidimensional zero-curvature tunneling method, and small-curvature tunneling method. Results reveal that accounting for approximate 70% of the overall H atom abstractions occur in the allylic site via both direct and indirect channels. The indirect channel containing two van der Waals prereactive complexes exhibits two times larger rate coefficient relative to the direct one. The OH addition reaction also contains two van der Waals complexes, and its submerged barrier results in a negative temperature coefficient behavior at low temperatures. In contrast, The OH addition pathway dominates only at temperatures below 450 K whereas the H atom abstraction reactions dominate overwhelmingly at temperature over 1000 K. All of the rate coefficients calculated with an uncertainty of a factor of 5 were fitted in a quasi-Arrhenius formula. Analyses on the PES, minimum reaction path and activation free Gibbs energy were also performed in this study.

  10. Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate

    KAUST Repository

    Wu, Junjun; Khaled, Fathi; Ning, Hongbo; Ma, Liuhao; Farooq, Aamir; Ren, Wei

    2017-01-01

    We report a systematic chemical kinetics study of the H-atom abstractions from ethyl formate (EF) by H, O(3P), CH3, OH, and HO2 radicals. The geometry optimization and frequency calculation of all the species were conducted using the M06 method and the cc-pVTZ basis set. The one-dimensional hindered rotor treatment of the reactants and transition states and the intrinsic reaction coordinate analysis were also performed at the M06/cc-pVTZ level of theory. The relative electronic energies were calculated at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory and further extrapolated to the complete basis set limit. Rate constants for the tittle reactions were calculated over the temperature range of 500‒2500 K by the transition state theory (TST) in conjunction with asymmetric Eckart tunneling effect. In addition, the rate constants of H-abstraction by hydroxyl radical were measured in shock tube experiments at 900‒1321 K and 1.4‒2.0 atm. Our theoretical rate constants of OH + EF → Products agree well with the experimental results within 15% over the experimental temperature range of 900‒1321 K. Branching ratios for the five types of H-abstraction reactions were also determined from their individual site-specific rate constants.

  11. Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate

    KAUST Repository

    Wu, Junjun

    2017-08-03

    We report a systematic chemical kinetics study of the H-atom abstractions from ethyl formate (EF) by H, O(3P), CH3, OH, and HO2 radicals. The geometry optimization and frequency calculation of all the species were conducted using the M06 method and the cc-pVTZ basis set. The one-dimensional hindered rotor treatment of the reactants and transition states and the intrinsic reaction coordinate analysis were also performed at the M06/cc-pVTZ level of theory. The relative electronic energies were calculated at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory and further extrapolated to the complete basis set limit. Rate constants for the tittle reactions were calculated over the temperature range of 500‒2500 K by the transition state theory (TST) in conjunction with asymmetric Eckart tunneling effect. In addition, the rate constants of H-abstraction by hydroxyl radical were measured in shock tube experiments at 900‒1321 K and 1.4‒2.0 atm. Our theoretical rate constants of OH + EF → Products agree well with the experimental results within 15% over the experimental temperature range of 900‒1321 K. Branching ratios for the five types of H-abstraction reactions were also determined from their individual site-specific rate constants.

  12. Dual-level direct dynamics studies for the hydrogen abstraction reaction of 1,1-difluoroethane with O( 3P)

    Science.gov (United States)

    Liu, Jing-yao; Li, Ze-sheng; Dai, Zhen-wen; Zhang, Gang; Sun, Chia-chung

    2004-01-01

    We present dual-level direct dynamics calculations for the CH 3CHF 2 + O( 3P) hydrogen abstraction reaction in a wide temperature range, based on canonical variational transition-state theory including small curvature tunneling corrections. For this reaction, three distinct transition states, one for α-abstraction and two for β-abstraction, have been located. The potential energy surface information is obtained at the MP2(full)/6-311G(d,p) level of theory, and higher-level single-point calculations for the stationary points are preformed at several levels, namely QCISD(T)/6-311+G(3df,3pd), G2, and G3 using the MP2 geometries, as well as at the G3//MP4SDQ/6-311G(d,p) level. The energy profiles are further refined with the interpolated single-point energies method at the G3//MP2(full)/6-311G(d,p) level. The total rate constants match the experimental data reasonable well in the measured temperature range 1110-1340 K. It is shown that at low temperature α-abstraction may be the major reaction channel, while β-abstraction will have more contribution to the whole reaction rate as the temperature increases.

  13. Photochemical hydrogen abstractions as radiationless transitions

    International Nuclear Information System (INIS)

    Burrows, H.D.; Formosinho, S.J.

    1977-01-01

    The tunnel-effect theory of radiationless transitions is applied to the quenching of the uranyl ion excited state by aliphatic compounds. The most important mechanism kinetically is suggested to involve chemical quenching via hydrogen abstraction, and rates for these reactions are analysed theoretically. Good agreement between theory and experiment is observed for a number of alcohols and ethers, and the reactions are suggested to possess considerable charge-transfer character. With t-butanol it is suggested that abstraction occurs preferentially from the hydroxylic hydrogen. Theoretical analysis of the rates of hydrogen abstraction from carboxylic acids suggests that the reaction geometry in this case may be different from the reaction with alcohols or ethers. The possibility that excited uranyl ion can abstract a hydrogen atom from water is examined, and theoretical evidence is presented to suggest that this is the main route for deactivation of uranyl ion lowest excited state in water at room temperature. (author)

  14. Reduced-Dimensionality Semiclassical Transition State Theory: Application to Hydrogen Atom Abstraction and Exchange Reactions of Hydrocarbons.

    Science.gov (United States)

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2015-12-17

    Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems.

  15. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  16. Molecular beam scattering experiments on the abstraction and exchange reactions of deuterium atoms with the hydrogen halides HCl, HBr, and HI

    International Nuclear Information System (INIS)

    Bauer, W.; Rusin, L.Y.; Toennies, J.P.

    1978-01-01

    Molecular beam scattering experiments have been carried out on the abstraction and exchange reactions of deuterium atoms (T=2600 K) with the hydrogen halides HX(T=300 K) in the range of scattering angles: 0 0 0 (theta/sub cm/=0 0 is the direction of the incident D-atom beam). The apparatus employed a very sensitive electron bombardment detector with a sufficiently low H 2 background to make possible the measurement of differential cross sections of about 0.1 A 2 /sr for reactively scattered HD and H and nonreactively scattered D-atoms. The measured HD signal can be largely attributed to various background sources and only serves to establish a rough upper limit on the abstraction cross section in the angular range investigated. The H-atom signal was more intense. The observed angular distribution was forward peaked, and is attributed to the exchange reaction. The nonreactively scattered D-atom signal was used in conjunction with a recently reported effective spherically symmetric potential to provide an absolute calibration of the detector sensitivity. The measured integral cross sections for the exchange reactions are 2.3 A 2 (D+HCl), 1.3 A 2 (D+HBr) and 1.6 A 2 (D+HI) with an estimated error of about +- 30%. The absolute cross sections and the H-atom angular distributions are consistent with the DX distributions measured by McDonald and Herschbach. Both experimental angular distributions are considerably narrower than those predicted by the recent classical trajectory calculations of Raff, Suzukawa, and Thompson. The implications of the new data for the activation energies for the exchange reactions are discussed

  17. The hydrogen abstraction reaction O(3P) + CH4: A new analytical potential energy surface based on fit to ab initio calculations

    International Nuclear Information System (INIS)

    González-Lavado, Eloisa; Corchado, Jose C.; Espinosa-Garcia, Joaquin

    2014-01-01

    Based exclusively on high-level ab initio calculations, a new full-dimensional analytical potential energy surface (PES-2014) for the gas-phase reaction of hydrogen abstraction from methane by an oxygen atom is developed. The ab initio information employed in the fit includes properties (equilibrium geometries, relative energies, and vibrational frequencies) of the reactants, products, saddle point, points on the reaction path, and points on the reaction swath, taking especial caution respecting the location and characterization of the intermediate complexes in the entrance and exit channels. By comparing with the reference results we show that the resulting PES-2014 reproduces reasonably well the whole set of ab initio data used in the fitting, obtained at the CCSD(T) = FULL/aug-cc-pVQZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical surface we perform an extensive dynamics study using quasi-classical trajectory calculations, comparing the results with recent experimental and theoretical data. The excitation function increases with energy (concave-up) reproducing experimental and theoretical information, although our values are somewhat larger. The OH rotovibrational distribution is cold in agreement with experiment. Finally, our results reproduce experimental backward scattering distribution, associated to a rebound mechanism. These results lend confidence to the accuracy of the new surface, which substantially improves the results obtained with our previous surface (PES-2000) for the same system

  18. Ab Initio Theoretical Studies on the Kinetics of Hydrogen Abstraction Type Reactions of Hydroxyl Radicals with CH3CCl2F and CH3CClF2

    Science.gov (United States)

    Saheb, Vahid; Maleki, Samira

    2018-03-01

    The hydrogen abstraction reactions from CH3Cl2F (R-141b) and CH3CClF2 (R-142b) by OH radicals are studied theoretically by semi-classical transition state theory. The stationary points for the reactions are located by using KMLYP density functional method along with 6-311++G(2 d,2 p) basis set and MP2 method along with 6-311+G( d, p) basis set. Single-point energy calculations are performed by the CBS-Q and G4 combination methods on the geometries optimized at the KMLYP/6-311++G(2 d,2 p) level of theory. Vibrational anharmonicity coefficients, x ij , which are needed for semi-classical transition state theory calculations, are computed at the KMLYP/6-311++G(2 d,2 p) and MP2/6-311+G( d, p) levels of theory. The computed barrier heights are slightly sensitive to the quantum-chemical method. Thermal rate coefficients are computed over the temperature range from 200 to 2000 K and they are shown to be in accordance with available experimental data. On the basis of the computed rate coefficients, the tropospheric lifetime of the CH3CCl2F and CH3CClF2 are estimated to be about 6.5 and 12.0 years, respectively.

  19. Kinetic Study of the Aroxyl-Radical-Scavenging Activity of Five Fatty Acid Esters and Six Carotenoids in Toluene Solution: Structure-Activity Relationship for the Hydrogen Abstraction Reaction.

    Science.gov (United States)

    Mukai, Kazuo; Yoshimoto, Maya; Ishikura, Masaharu; Nagaoka, Shin-Ichi

    2017-08-17

    A kinetic study of the reaction between an aroxyl radical (ArO • ) and fatty acid esters (LHs 1-5, ethyl stearate 1, ethyl oleate 2, ethyl linoleate 3, ethyl linolenate 4, and ethyl arachidonate 5) has been undertaken. The second-order rate constants (k s ) for the reaction of ArO • with LHs 1-5 in toluene at 25.0 °C have been determined spectrophotometrically. The k s values obtained increased in the order of LH 1 LHs 1-5. The k s value for LH 5 was 2.93 × 10 -3 M -1 s -1 . From the result, it has been clarified that the reaction of ArO • with LHs 1-5 was explained by an allylic hydrogen abstraction reaction. A similar kinetic study was performed for the reaction of ArO • with six carotenoids (Car-Hs 1-6, astaxanthin 1, β-carotene 2, lycopene 3, capsanthin 4, zeaxanthin 5, and lutein 6). The k s values obtained increased in the order of Car-H 1 LHs 1-5. The results of detailed analyses of the k s values for the above reaction indicated that the reaction was also explained by an allylic hydrogen abstraction reaction. Furthermore, the structure-activity relationship for the reaction was discussed by taking the result of density functional theory calculation reported by Martinez and Barbosa into account.

  20. Kinetic Isotope Effect Determination Probes the Spin of the Transition State, Its Stereochemistry, and Its Ligand Sphere in Hydrogen Abstraction Reactions of Oxoiron(IV) Complexes.

    Science.gov (United States)

    Mandal, Debasish; Mallick, Dibyendu; Shaik, Sason

    2018-01-16

    This Account outlines interplay of theory and experiment in the quest to identify the reactive-spin-state in chemical reactions that possess a few spin-dependent routes. Metalloenzymes and synthetic models have forged in recent decades an area of increasing appeal, in which oxometal species bring about functionalization of hydrocarbons under mild conditions and via intriguing mechanisms that provide a glimpse of Nature's designs to harness these reactions. Prominent among these are oxoiron(IV) complexes, which are potent H-abstractors. One of the key properties of oxoirons is the presence of close-lying spin-states, which can mediate H-abstractions. As such, these complexes form a fascinating chapter of spin-state chemistry, in which chemical reactivity involves spin-state interchange, so-called two-state reactivity (TSR) and multistate reactivity (MSR). TSR and MSR pose mechanistic challenges. How can one determine the structure of the reactive transition state (TS) and its spin state for these mechanisms? Calculations can do it for us, but the challenge is to find experimental probes. There are, however, no clear kinetic signatures for the reactive-spin-state in such reactions. This is the paucity that our group has been trying to fill for sometime. Hence, it is timely to demonstrate how theory joins experiment in realizing this quest. This Account uses a set of the H-abstraction reactions of 24 synthetic oxoiron(IV) complexes and 11 hydrocarbons, together undergoing H-abstraction reactions with TSR/MSR options, which provide experimentally determined kinetic isotope effect (KIE exp ) data. For this set, we demonstrate that comparing KIE exp results with calculated tunneling-augmented KIE (KIE TC ) data leads to a clear identification of the reactive spin-state during H-abstraction reactions. In addition, generating KIE exp data for a reaction of interest, and comparing these to KIE TC values, provides the mechanistic chemist with a powerful capability to

  1. Free radical hydrogen atom abstraction from saturated hydrocarbons: A crossed-molecular-beams study of the reaction Cl + C{sub 3}H{sub 8} {yields} HCl + C{sub 3}H{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; Hemmi, N.; Suits, A.G.; Lee, Y.T. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    The abstraction of hydrogen atoms from saturated hydrocarbons are reactions of fundamental importance in combustion as well as often being the rate limiting step in free radical substitution reactions. The authors have begun studying these reactions under single collision conditions using the crossed molecular beam technique on beamline 9.0.2.1, utilizing VUV undulator radiation to selectively ionize the scattered hydrocarbon free radical products (C{sub x}H{sub 2x+1}). The crossed molecular beam technique involves two reactant molecular beams fixed at 90{degrees}. The molecular beam sources are rotatable in the plane defined by the two beams. The scattered neutral products travel 12.0 cm where they are photoionized using the VUV undulator radiation, mass selected, and counted as a function of time. In the authors initial investigations they are using halogen atoms as protypical free radicals to abstract hydrogen atoms from small alkanes. Their first study has been looking at the reaction of Cl + propane {r_arrow} HCl + propyl radical. In their preliminary efforts the authors have measured the laboratory scattering angular distribution and time of flight spectra for the propyl radical products at collision energies of 9.6 kcal/mol and 14.9 kcal/mol.

  2. Selective hydrogen atom abstraction by hydrogen atoms in photolysis and radiolysis of alkane mixtures at 770 K

    International Nuclear Information System (INIS)

    Miyazaki, T.; Kinugawa, K.; Eguchi, M.; Guedes, S.M.L.

    1977-01-01

    Selective hydrogen atom abstraction reaction by H atoms, has been found in Isobutane, 2,2,3,3-tetramethylbutane(TMB), cyclopropane matrices besides neopentane matrix. The selective hydrogen atom abstraction reaction in neopentane-isobutane mixture is affected by the difference of kinetic energies of H atoms. The reaction occurs more favorably with decreasing the kinetic energy of H atoms. Competitive reaction between c-C 6 H 12 and Hi for H atoms has been studied in the radiolysis and photolysis of neo-C 5 H 12 HI mixture at 77 K. The rate constants of these reactions in neopentane matrix are quite different from these of thermal H atom reaction, but similar to those of hot H atom reaction. Importance of the selective hydrogen atom abstraction reaction by H atoms is pointed out in the radical formation in the radiolysis of pure TMB at 77 K [pt

  3. Competition between abstraction and exchange channels in H + HCN reaction: Full-dimensional quantum dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-12-14

    Dynamics of the title reaction is investigated on an ab initio based potential energy surface using a full-dimensional quantum wave packet method within the centrifugal sudden approximation. It is shown that the reaction between H and HCN leads to both the hydrogen exchange and hydrogen abstraction channels. The exchange channel has a lower threshold and larger cross section than the abstraction channel. It also has more oscillations due apparently to quantum resonances. Both channels are affected by long-lived resonances supported by potential wells. Comparison with experimental cross sections indicates underestimation of the abstraction barrier height.

  4. Reaction of hydrogen atoms with acrylaldehyde

    International Nuclear Information System (INIS)

    Koda, Seiichiro; Nakamura, Kazumoto; Hoshino, Takashi; Hikita, Tsutomu

    1978-01-01

    The reaction of hydrogen atoms with acrylaldehyde was investigated in a fast flow reactor equipped with a time-of-flight type mass spectrometer under reduced pressure. Main reaction products were carbon monoxide, ethylene, ethane, methane, and propanal. Consideration of the distributions of the reaction products under various reaction conditions showed that hydrogen atoms attacked the C=C double bond, especially its inner carbon side under reduced pressure. Resulting hot radicals caused subsequent reactions. The relative value of the apparent bimolecular rate constant of the reaction against that of trans-2-butene with hydrogen atoms was 1.6+-0.2, which supported the above-mentioned initial reaction. (auth.)

  5. Theoretical studies of the reactions of HCN with atomic hydrogen

    International Nuclear Information System (INIS)

    Bair, R.A.; Dunning, T.H. Jr.

    1985-01-01

    A comprehensive theoretical study has been made of the energetics of the important pathways involved in the reaction of hydrogen atoms with hydrogen cyanide. For each reaction ab initio GVB-CI calculations were carried out to determine the structures and vibrational frequencies of the reactants, transition states, and products; then POL-CI calculations were carried out to more accurately estimate the electronic contribution to the energetics of the reactions. The hydrogen abstraction reaction is calculated to be endoergic by 24 kcal/mol [expt. ΔH (0 K) = 16--19 kcal/mol] with a barrier of 31 kcal/mol in the forward direction and 6 kcal/mol in the reverse direction. For the hydrogen addition reactions, addition to the carbon atom is calculated to be exoergic by 19 kcal/mol with a barrier of 11 kcal/mol, while addition to the nitrogen center is essentially thermoneutral with a barrier of 17 kcal/mol. Calculations were also carried out on the isomerization reactions of the addition products. The cis→trans isomerization of HCNH has a barrier of only 10 kcal/mol with the trans isomer being more stable by 5 kcal/mol. The (1,2)-hydrogen migration reaction, converting H 2 CN to trans-HCNH, is endoergic by only 14 kcal/mol, but the calculated barrier for the transfer is 52 kcal/mol. The energy of the migration pathway thus lies above that of the dissociation--recombination pathway

  6. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    Generation of hydrogen through water splitting is an impor- tant area of research. ... Splitting of water using electricity makes this reaction feasible, but requires a catalyst to overcome .... The obtained product was dried in air and heated at 700.

  7. Hydrogen transfer reactions of interstellar Complex Organic Molecules

    Science.gov (United States)

    Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.

    2018-06-01

    Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.

  8. Hydrogen/Chlorine exchange reactions of gaseous carbanions.

    Science.gov (United States)

    Chen, Hao; Cooks, R Graham; Meurer, Eduardo C; Eberlin, Marcos N

    2005-12-01

    Gas-phase reactions of three typical carbanions CH(2)NO(2)(-), CH(2)CN(-), and CH(2)S(O)CH(3)(-) with the chloromethanes CH(2)Cl(2), CHCl(3), and CCl(4), examined by tandem mass spectrometry, show a novel hydrogen/chlorine exchange reaction. For example, reaction between the nitromethyl anion CH(2)NO(2)(-) and carbon tetrachloride CCl(4) forms the ion CHClNO(2)(-). The suggested reaction mechanism involves nucleophilic attack by CH(2)NO(2)(-) at the chlorine of CCl(4) followed by proton transfer within the resulting complex [CH(2)ClNO(2) + CCl(3)(-)] to form CHClNO(2)(-) and CHCl(3). Two other carbanions CH(2)CN(-) and CH(2)S(O)CH(3)(-) also undergo the novel hydrogen/chlorine exchange reactions with CCl(4) but to a much smaller extent, their higher nucleophilicities favoring competitive nucleophilic attack reactions. Proton abstraction is the exclusive pathway in the reactions of these carbanions with CHCl(3). While CH(2)CN(-) and CH(2)S(O)CH(3)(-) promote mainly proton abstraction and nucleophilic displacement in reactions with CH(2)Cl(2), CH(2)NO(2)(-) does not react.

  9. The reaction of uranium with moist hydrogen

    International Nuclear Information System (INIS)

    Pearce, R.J.; Kay, P.

    1987-10-01

    The reaction of uranium in moist hydrogen at a total pressure of 101 kPa over the temperature range 105 0 -200 0 C and water vapour pressures in the range 5-100 kPa has been examined in a limited thermogravimetric study. It has been shown that initially there is a period during which only linear kinetics are observed with a rate similar to that exhibited in similarly moist argon, i.e. hydrogen has no apparent effect on the reaction. At water vapour pressures of and above 49 kPa, corresponding to hydrogen:water vapour pressure ratios in the range 1:1 to 1:100, over the exposure times studied (not > 20h) only such linear kinetics are observed. Below this water vapour pressure and after an initial period of linear kinetics a continuously increasing reaction rate was observed in some instances resulting from rapid attach on localised areas. The localised reaction rates were approximately 2-3 orders of magnitude faster than the original linear reaction kinetics and the interaction rates in either moist argon or moist air. Comparison with a single experiment carried out at 150 0 C indicated that breakaway rates were approaching that in dry hydrogen. During breakaway attack there was a significant increase in the relative amounts of uranium hydride formed. The duration of the linear kinetics phase was extended by pre-oxidation of the uranium surface, decreasing temperature at a constant water vapour pressure, or increasing water vapour pressure (or water vapour: hydrogen pressure ratio) at a constant temperature. (author)

  10. Hydrogen electrode reaction: A complete kinetic description

    International Nuclear Information System (INIS)

    Quaino, P.M.; Gennero de Chialvo, M.R.; Chialvo, A.C.

    2007-01-01

    The kinetic description of the hydrogen electrode reaction (HER) in the whole range of overpotentials (-0.2 < η (V) < 0.40) is presented. The Volmer-Heyrovsky-Tafel mechanism was solved considering simultaneously the following items: (i) the diffusional contribution of the molecular hydrogen from and towards the electrode surface, (ii) the forward and backward reaction rates of each elementary step and (iii) a Frumkin type adsorption for the reaction intermediate. In order to verify the descriptive capability of the kinetic expressions derived, an experimental study of the HER was carried out on a rotating platinum disc electrode in acid solution. From the correlation of these results the elementary kinetic parameters were evaluated and several aspects related to the kinetic mechanism were discussed. Finally, the use of these kinetic expressions to interpret results obtained on microelectrodes is also analysed

  11. A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate.

    Science.gov (United States)

    Ning, Hongbo; Liu, Dapeng; Wu, Junjun; Ma, Liuhao; Ren, Wei; Farooq, Aamir

    2018-06-12

    The hydrogen abstraction reactions of phenyl formate (PF) by different radicals (H/O(3P)/OH/HO2) were theoretically investigated. We calculated the reaction energetics for PF + H/O/OH using the composite method ROCBS-QB3//M06-2X/cc-pVTZ and that for PF + HO2 at the M06-2X/cc-pVTZ level of theory. The high-pressure limit rate constants were calculated using the transition state theory in conjunction with the 1-D hindered rotor approximation and tunneling correction. Three-parameter Arrhenius expressions of rate constants were provided over the temperature range of 500-2000 K. To validate the theoretical calculations, the overall rate constants of PF + OH → Products were measured in shock tube experiments at 968-1128 K and 1.16-1.25 atm using OH laser absorption. The predicted overall rate constants agree well with the shock tube data (within 15%) over the entire experimental conditions. Rate constant analysis indicates that the H-abstraction at the formic acid site dominates the PF consumption, whereas the contribution of H-abstractions at the aromatic ring increases with temperature. Additionally, comparisons of site-specific H-abstractions from PF with methyl formate, ethyl formate, benzene, and toluene were performed to understand the effects of the aromatic ring and side-chain substituent on H-abstraction rate constants.

  12. N-Alkylation by Hydrogen Autotransfer Reactions.

    Science.gov (United States)

    Ma, Xiantao; Su, Chenliang; Xu, Qing

    2016-06-01

    Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed.

  13. Kinetics of hydrogen isotope exchange reactions

    International Nuclear Information System (INIS)

    Gold, V.; McAdam, M.E.

    1975-01-01

    Under the influence of tritium β-radiation, 1,4-dioxan undergoes hydrogen exchange with the solvent water. The inhibition of the reaction by known electron scavengers (Ag + , Cu 2+ , Ni 2+ , Co 2+ , Zn 2+ , H 3 + O) and also by species with high reactivity towards hydroxyl radicals but negligible reactivity towards solvated electrons (N 3 - , Br - , SCN - ) has been examined in detail. γ-irradiation similarly induces hydrogen exchange. The action of scavengers is interpreted as requiring the involvement of two separately scavengeable primary radiolysis products in the sequence of reactions leading to exchange. The presence of electron scavengers, even at high concentration, does not totally inhibit the exchange, and a secondary exchange route, involving a low vacancy state of inhibitor cations, is considered responsible for the 'unscavengeable' portion of the reaction, by providing an alternative exchange route. Analogies are drawn between the exchange reaction and other radiation-induced reactions that are thought to involve spur processes. Some implication of radiation-chemical studies in water-alcohol mixtures are indicated. (author)

  14. Reaction of dimethyl hydrogen phosphite with acecyclone

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Fuzhenkova, A.V.; Tyryshkin, N.I.

    1987-01-01

    In the presence of bases acecyclone reacts with dimethyl hydrogen phosphite with the formation of gamma-keto phosphonates with conjugated and unconjugated structures, and also an enol phosphate, a product containing a bond between oxygen of the cyclone and phosphorus. In the absence of bases, as well as the beta-keto phosphonate, gamma-keto phosphonates of cis and trans structure are formed; they are products of the 1,4 addition of dimethyl hydrogen phosphite to the conjugated fragment C=C-C=O of the cyclone. The compositions of the reaction mixture were determined by IR and NMR spectroscopy and TLC. Full-scale analysis of chemical shifts and spin-spin coupling constants was performed

  15. Facile Hydrogen Evolution Reaction on WO3Nanorods

    Directory of Open Access Journals (Sweden)

    Rajeswari Janarthanan

    2007-01-01

    Full Text Available AbstractTungsten trioxide nanorods have been generated by the thermal decomposition (450 °C of tetrabutylammonium decatungstate. The synthesized tungsten trioxide (WO3 nanorods have been characterized by XRD, Raman, SEM, TEM, HRTEM and cyclic voltammetry. High resolution transmission electron microscopy and X-ray diffraction analysis showed that the synthesized WO3nanorods are crystalline in nature with monoclinic structure. The electrochemical experiments showed that they constitute a better electrocatalytic system for hydrogen evolution reaction in acid medium compared to their bulk counterpart.

  16. Cathodic over-potential and hydrogen partial pressure coupling in hydrogen evolution reaction of marine steel under hydrostatic pressure

    International Nuclear Information System (INIS)

    Xiong, X.L.; Zhou, Q.J.; Li, J.X.; Volinsky, Alex A.; Su, Y.J.

    2017-01-01

    Highlights: •Hydrostatic pressure increases the Volmer and the Heyrovsky reactions rates. •Hydrostatic pressure decreases the Tafel reaction rate. •Hydrogen adsorption conditions change with pressure under −1.2 and −1.3 V SSE . •Under −1.2 and −1.3 V SSE , the Heyrovsky reaction dominates the hydrogen recombination. •Under −1.0 and −1.1 V SSE , the Tafel reaction dominates the hydrogen recombination. -- Abstract: A new electrochemical impedance spectroscopy (EIS) model, which considers both the Tafel recombination and the Heyrovsky reaction under permeable boundary conditions, was developed to characterize the kinetic parameters of the hydrogen evolution reaction (HER) under hydrostatic pressure. The effect of the hydrostatic pressure on the kinetic parameters of the HER and the permeation of A514 steel in alkaline solution were measured using potentiodynamic polarization, the Devanathan cell hydrogen permeation, and EIS. The hydrostatic pressure accelerates the Volmer reaction and inhibits the Tafel recombination, which increases the number of adsorbed hydrogen atoms. On the other hand, the pressure accelerates the Heyrovsky reaction, which decreases the amount of adsorbed hydrogen atoms. At 10 to 40 MPa hydrostatic pressure within the −1.0 to −1.1 V SSE cathodic potential region, the HER is controlled by hydrogen partial pressure, and hydrogen adsorption is the Langmuir type. Within the −1.2 to −1.3 V SSE cathodic potential region, the HER is controlled by the potential, and hydrogen adsorption gradually transfers from the Langmuir type to the Temkin type with increasing hydrostatic pressure.

  17. Chemical reaction between single hydrogen atom and graphene

    International Nuclear Information System (INIS)

    Ito, Atsushi; Nakamura, Hiroaki; Takayama, Arimichi

    2007-04-01

    We study chemical reaction between a single hydrogen atom and a graphene, which is the elemental reaction between hydrogen and graphitic carbon materials. In the present work, classical molecular dynamics simulation is used with modified Brenner's empirical bond order potential. The three reactions, that is, absorption reaction, reflection reaction and penetration reaction, are observed in our simulation. Reaction rates depend on the incident energy of the hydrogen atom and the graphene temperature. The dependence can be explained by the following mechanisms: (1) The hydrogen atom receives repulsive force by π-electrons in addition to nuclear repulsion. (2) Absorbing the hydrogen atom, the graphene transforms its structure to the 'overhand' configuration such as sp 3 state. (3) The hexagonal hole of the graphene is expanded during the penetration of the hydrogen atom. (author)

  18. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  19. Photoreduction of Azoalkanes by Direct Hydrogen Abstraction from 1,4-Cyclohexadiene, Alcohols, Stannanes, and Silanes.

    Science.gov (United States)

    Adam, Waldemar; Moorthy, Jarugu N.; Nau, Werner M.; Scaiano, J. C.

    1997-11-14

    A mechanistic investigation of the photoreduction of the n,pi triplet-excited azo chromophore has been carried out on azoalkanes 1, which exhibit efficient intersystem-crossing quantum yields (ca. 0.5). The azoalkanes 1a and 1b undergo facile photoreduction to the corresponding hydrazines in the presence of a variety of hydrogen donors, which include 2-propanol, benzhydrol, 1,4-cyclohexadiene, tributylstannane, and tris(trimethylsilyl)silane. In contrast, the hydrazine yields derived for the azoalkanes 1c and 1d are significantly lower even at high hydrogen donor concentrations due to their lower triplet yields and shorter triplet lifetimes. A clear dependence of the hydrazine yields on the bond dissociation energies of the hydrogen donors has been observed, which is reflected in the quenching rate constants obtained from time-resolved transient absorption spectroscopy. The absolute rate constants for interaction of the triplet azoalkane 1a with hydrogen donors are generally lower (ca. 10-100-fold) than for benzophenone, in line with the less favorable reaction thermodynamics. The comparison of the rate constants for quenching of the triplet-excited azoalkane 1a and of the singlet-excited state of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) reveals a similar reactivity of excited azoalkanes toward hydrogen donors; differences can be accounted for in terms of variations in the energies of the excited states. The interactions of the excited azoalkanes with tributylstannane and benzhydrol produce the radicals characteristic for hydrogen abstraction from these substrates, namely tributylstannyl and hydroxydiphenylmethyl radicals, which were detected through their transient absorptions at 390 and 550 nm, respectively. Interestingly, compared to the photoreduction of benzophenone with benzhydrol, for which the quantum yield for conversion to radicals is unity, between the azoalkane 1a and benzhydrol this efficiency is only ca. 12%. An associative effect through N.H-O bonding

  20. Hydrogen abstraction from n-butanol by the methyl radical: high level ab initio study of abstraction pathways and the importance of low energy rotational conformers.

    Science.gov (United States)

    Katsikadakos, D; Hardalupas, Y; Taylor, A M K P; Hunt, P A

    2012-07-21

    Hydrogen abstraction reactions by the methyl radical from n-butanol have been investigated at the ROCBS-QB3 level of theory. Reaction energies and product geometries for the most stable conformer of n-butanol (ROH) have been computed, the reaction energies order α channel more stable than the β-channel? Why do the two C(γ)-H H-abstraction TS differ in energy? The method and basis set dependence of the TS barriers is investigated. The Boltzmann probability distribution for the n-butanol conformers suggests that low energy conformers are present in approximately equal proportions to the most stable conformer at combustion temperatures where ĊH(3) radicals are present. Thus, the relative significance of the various H-abstraction channels has been assessed for a selection of higher energy conformers (ROH'). Key results include finding that higher energy n-butanol conformers (E(ROH') > E(ROH)) can generate lower energy product radicals, E(ROH') < E(ROH). Moreover, higher energy conformers can also have a globally competitive TS energy for H-abstraction.

  1. Reactions of butadiyne. 1: The reaction with hydrogen atoms

    Science.gov (United States)

    Schwanebeck, W.; Warnatz, J.

    1984-01-01

    The reaction of hydrogen (H) atoms with butadiene (C4H2) was studied at room temperature in a pressure range between w mbar and 10 mbar. The primary step was an addition of H to C4H2 which is in its high pressure range at p 1 mbar. Under these conditions the following addition of a second H atom lies in the transition region between low and high pressure range. Vibrationally excited C4H4 can be deactivated to form buten-(1)-yne-(3)(C4H4) or decomposes into two C2H2 molecules. The rate constant at room temperature for primary step is given. The second order rate constant for the consumption of buten-(1)-yne-(3) is an H atom excess at room temperature is given.

  2. Hydrogen embrittlement of metals. A bibliography with abstracts. Search period covered: 1964--August 1975

    International Nuclear Information System (INIS)

    Smith, M.F.

    1975-10-01

    The research covers the hydrogen embrittlement of both ferrous and nonferrous metals and alloys and includes nuclear technology, aircraft metallurgy, mechanical properties, testing, electroplating, fatigue, corrosion and fracture. Contains 230 abstracts

  3. Hydrogen production via thermochemical water-splitting by lithium redox reaction

    International Nuclear Information System (INIS)

    Nakamura, Naoya; Miyaoka, Hiroki; Ichikawa, Takayuki; Kojima, Yoshitsugu

    2013-01-01

    Highlights: •Hydrogen production via water-splitting by lithium redox reactions possibly proceeds below 800 °C. •Entropy control by using nonequilibrium technique successfully reduces the reaction temperature. •The operating temperature should be further reduced by optimizing the nonequilibrium condition to control the cycle. -- Abstracts: Hydrogen production via thermochemical water-splitting by lithium redox reactions was investigated as energy conversion technique. The reaction system consists of three reactions, which are hydrogen generation by the reaction of lithium and lithium hydroxide, metal separation by thermolysis of lithium oxide, and oxygen generation by hydrolysis of lithium peroxide. The hydrogen generation reaction completed at 500 °C. The metal separation reaction is thermodynamically difficult because it requires about 3400 °C in equilibrium condition. However, it was indicated from experimental results that the reaction temperature was drastically reduced to 800 °C by using nonequilibrium technique. The hydrolysis reaction was exothermic reaction, and completed by heating up to 300 °C. Therefore, it was expected that the water-splitting by lithium redox reactions was possibly operated below 800 °C under nonequilibrium condition

  4. [Extended abstractCutaneous Adverse Reactions to Tattoos].

    Science.gov (United States)

    van der Bent, S A S; Wolkerstorfer, A; Rustemeyer, T

    2016-01-01

    Tattooing involves the introduction of exogenous pigment into the dermis. Worldwide, tattoos are one of the most popular forms of permanent body art. In the Netherlands, 8-10% of the population older than 12 years old has a tattoo. A wide variety of cutaneous adverse effects can occur in tattoos, these can cause serious symptoms. However, recognition and appropriate knowledge of diagnosis and treatment is still frequently insufficient in many medical practitioners. The first case concerns a 57-year-old female, who developed an itching swelling in the red part of a tattoo on the left arm. Histology of a punch biopsy showed a pseudolymphomatous reaction. This plaque-like allergic reaction was successfully treated with intralesional injection of corticosteroids. Here we described four cases of cutaneous adverse reactions to tattoos. Allergic reactions in tattoos can present in a wide variety of clinical and histological patterns. The symptoms are often chronic itch and can appear weeks, months or years after placing the tattoo. Allergic reactions are uniformly manifested in one particular colour. Clinically, the reactions can present in a plaque-like, hyperkeratotic or rarely ulcerative or generalised reaction. In spite of changes to the compounds in tattoo inks, allergic reactions are still mostly observed to red ink. Treatment options are topical corticosteroids, intralesional injection of corticosteroids, laser treatment or dermatome shaving.

  5. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by 3O2; Implications for Combustion Modeling and Simulation.

    Science.gov (United States)

    Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J

    2017-03-09

    Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O 2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants

  6. Nuclear reaction analysis of hydrogen in materials: Principals and applications

    International Nuclear Information System (INIS)

    Lanford, W.A.

    1991-01-01

    Analysis for hydrogen in materials is difficult by most traditional analytic methods. Because hydrogen has no Auger transitions, no X-ray transitions, does not neutron activate, and does not backscatter ions, it is invisible in analytical methods based on these effects. In addition, since hydrogen is a universal contaminant in vacuum systems, techniques based on mass spectrometry are difficult unless extreme measures are taken to reduce hydrogen backgrounds. Because of this situation, methods have been developed for analyzing for hydrogen in solid materials based on nuclear reactions between bombarding ions and hydrogen atoms (protons) in the samples. The nuclear reaction methods are now practiced at laboratories around the world. The basic principals of nuclear reaction analysis will be briefly presented. This method will be illustrated by applications to problems ranging from basic physics, to geology, to materials science, and to art history and archeology

  7. Third international workshop on compound nuclear reactions and related topics. Book of abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    The conference was divided into the following sections: Fission; Surrogate reactions; Heavy ion reactions; Neutron-induced reactions; Gamma-ray strength functions; Nuclear astrophysics; Superheavy nuclei; Nuclear level density; Various nuclear reactions; Optical model simulations; and Pre-equilibrium. The publication contains 82 abstracts. (P.A.)

  8. Abstracts

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Western Theories of War Ethics and Contemporary Controversies Li Xiaodong U Ruijing (4) [ Abstract] In the field of international relations, war ethics is a concept with distinct westem ideological color. Due to factors of history and reality, the in

  9. ESR study on hydrogen-atom abstraction in cryogenic organic solids

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki

    1995-01-01

    The present paper summarizes our recent results on the hydrogen-atom abstraction from protiated alkane molecule by deuterium atoms in cryogenic deuterated organic solids, obtained by the X-band ESR and electron spin-echo measurements of the product alkyl radicals at cryogenic temperatures. (J.P.N.)

  10. Abstracts

    Institute of Scientific and Technical Information of China (English)

    2017-01-01

    Supplementary Short Board: Orderly Cultivate Housing Leasing Market WANG Guangtao (Former Minister of Ministry of Construction) Abstract: In December 2016, Central Economic Work Conference proposed that to promote the steady and healthy development of the real estate market, it should adhere to the “house is used to live, not used to speculate” position. At present, the development of housing leasing market in China is lagging behind. It is urgent to improve the housing conditions of large cities and promote the urbanization of small and medium-sized cities. Therefore, it is imperative to innovate and supplement the short board to accelerate the development of housing leasing market.

  11. Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thomas, George [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-06-01

    A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the production of hydrogen for on-board hydrogen-powered vehicle applications. Although the concept of reacting aluminum metal with water to produce hydrogen is not new, there have been a number of recent claims that such aluminum-water reactions might be employed to power fuel cell devices for portable applications such as emergency generators and laptop computers, and might even be considered for possible use as the hydrogen source for fuel cell-powered vehicles.

  12. Reaction between Hydrogen Sulfide and Limestone Calcines

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Trnka, Otakar; Čermák, Jiří

    2002-01-01

    Roč. 41, č. 10 (2002), s. 2392-2398 ISSN 0888-5885 R&D Projects: GA AV ČR IAA4072711; GA AV ČR IAA4072801 Keywords : hydrogen sulfide * limestone calcines * desulfurization Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.247, year: 2002

  13. Isotope exchange reactions in hydrogen mixtures

    International Nuclear Information System (INIS)

    Czaplinski, W.; Gula, A.; Kravtsov, A.; Mikhailov, A.; Popov, N.

    1990-12-01

    The rates of isotopic exchange for the excited states of muonic hydrogen are calculated as functions of collision energy. Ground state population q 1s for different collision energies, target densities and isotope concentrations is obtained. It is shown that for principal quantum numbers n > 5 the isotopic exchange still considerably influences the value of q 1s . (author)

  14. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    Science.gov (United States)

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  15. Diels-Alder reactions onto fluorinated and hydrogenated graphene

    Science.gov (United States)

    Denis, Pablo A.

    2017-09-01

    We studied Diels-Alder (DA) reactions onto functionalized graphene. When fluorine, hydrogen or oxygen functional groups are present on one side of the sheet, the DA cycloadditions become significantly more exergonic when performed on the opposite side. Hydrogen is more effective than fluorine and oxygen to promote these cycloadditions. In contrast with the results obtained for perfect graphene, the functionalization with H, F or O turns the DA reactions exergonic, with ΔG°298 = -127.2 kcal/mol. The reaction barriers are expected to be considerably lowered with respect to perfect graphene because the functional groups significantly reduce the distortion energy.

  16. Abstracts

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Strategic Realism: An Option for China' s Grand Strategy Song Dexing (4) [ Abstract] As a non-Western emerging power, China should positively adapt its grand strategy to the strategic psychological traits in the 21st century, maintain a realist tone consistent with the national conditions of China, and avoid adventurist policies while awaring both strategic strength and weakness. In the 21st century, China' s grand strategy should be based on such core values as security, development, peace and justice, especially focusing on development in particular, which we named "strategic realism". Given the profound changes in China and the world, strategic realism encourages active foreign policy to safe- guard the long-term national interests of China. Following the self-help logic and the fun- damental values of security and prosperity, strategic realism concerns national interests as its top-priority. It advocates smart use of power, and aims to achieve its objectives by optimizing both domestic and international conditions. From the perspective of diplomatic phi- losophy, strategic realism is not a summarization of concrete policies but a description of China' s grand strategy orientations in the new century. [ Key Words] China, grand strategy, strategic realism [ Author]Song Dexing, Professor, Ph.D. Supervisor, and Director of the Center for International Strategic Studies, University of International Studies of PLA.

  17. Overview of Light Hydrogen-Based Low Energy Nuclear Reactions

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading.

  18. Reaction of O+, CO+, and CH+ ions with atomic hydrogen

    International Nuclear Information System (INIS)

    Federer, W.; Villinger, H.; Howorka, F.; Lindinger, W.; Tosis, P.; Bassi, D.; Ferguson, E.

    1984-01-01

    Rate coefficients for reactions of the ions O + , CO + , and CH + with atomic hydrogen have been measured for the first time at 300 K. This provides basic data for the ion chemistry of planetary atmospheres, cometary atmospheres, and interstellar molecular clouds. The O + +H measurement supports quantal calculations of this reaction. The CO + +H reaction provides an example of partial spin nonconservation in a charge-transfer reaction occurring in a deep potential well. Reactions of the same ions with H 2 that have been measured elsewhere are also reported

  19. Exchange reaction between tritiated hydrogen and water vapor

    International Nuclear Information System (INIS)

    Yamada, Koichi; Takano, Kenichi; Watanabe, Tamaki.

    1979-01-01

    Exchange reaction of tritiated hydrogen to water vapor under the condition of tritium gas concentration between 1 μCi/l and 1 mCi/l was studied. Tritium gas with hydrogen gas of 5 Torr and water of 20 mg were enclosed in a Pyrex glass ampule with volume of about 100 ml. The mixed gas with water vapor was heated with electric furnace. The heating time was between 2 and 100 hr, and the temperature was 776, 725, 675, 621, and 570.5 0 K. After heating, tritiated water was trapped with liquid nitrogen, and counted with a liquid scintillation counter. The radioactive concentration of initial tritiated hydrogen was measured with a calibrated ionization chamber. The main results obtained are as follows; 1) the concentration of produced tritiated water is well proportioned to that of initial tritiated hydrogen, 2) the activation energy of exchange reaction from tritiated hydrogen to tritiated water is 26.2 kcal/mol and that of inverse reaction is 27.4 kcal/mol, 3) the reaction rate at room temperature which calculated with activation energy is 1.04 x 10 -13 day -1 , and then exchange reaction at room temperature is negligible. (author)

  20. Hydrogen addition reactions of aliphatic hydrocarbons in comets

    Science.gov (United States)

    Kobayashi, Hitomi; Watanabe, N.; Watanabe, Y.; Fukushima, T.; Kawakita, H.

    2013-10-01

    Comets are thought as remnants of early solar nebula. Their chemical compositions are precious clue to chemical and physical evolution of the proto-planetary disk. Some hydrocarbons such as C2H6, C2H2 and CH4 in comets have been observed by using near-infrared spectroscopy. Although the compositions of C2H6 were about 1% relative to the water in normal comets, there are few reports on the detection of C2H6 in ISM. Some formation mechanisms of C2H6 in ISM have been proposed, and there are two leading hypotheses; one is the dimerizations of CH3 and another is the hydrogen addition reactions of C2H2 on cold icy grains. To evaluate these formation mechanisms for cometary C2H6 quantitatively, it is important to search the C2H4 in comets, which is the intermediate product of the hydrogen addition reactions toward C2H6. However, it is very difficult to detect the C2H4 in comets in NIR (3 microns) regions because of observing circumstances. The hydrogen addition reactions of C2H2 at low temperature conditions are not well characterized both theoretically and experimentally. For example, there are no reports on the reaction rate coefficients of those reaction system. To determine the production rates of those hydrogen addition reactions, we performed the laboratory experiments of the hydrogenation of C2H2 and C2H4. We used four types of the initial composition of the ices: pure C2H4, pure C2H2, C2H2 on amorphous solid water (ASW) and C2H4 on ASW at three different temperatures of 10, 20, and 30K. We found 1) reactions are more efficient when there are ASW in the initial compositions of the ice; 2) hydrogenation of C2H4 occur more rapid than that of C2H2.

  1. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China); Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States); Liu, Yinhe, E-mail: yinheliu@mail.xjtu.edu.cn [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China)

    2017-11-20

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C{sub hydrogen} < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C{sub hydrogen} > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  2. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    International Nuclear Information System (INIS)

    Zhang, Yun; Liu, Yinhe

    2017-01-01

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C hydrogen < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C hydrogen > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  3. Density functional theory study on the formation of reactive benzoquinone imines by hydrogen abstraction

    DEFF Research Database (Denmark)

    Leth, Rasmus; Rydberg, Patrik; Jørgensen, Flemming Steen

    2015-01-01

    Many drug compounds are oxidized by cytochrome P450 (CYP) enzymes to form reactive metabolites. This study presents density functional theory calculations of the CYP-mediated metabolism of acetaminophen and a series of related compounds that can form reactive metabolites by hydrogen abstraction....... The substitution pattern affects the activation barrier for hydrogen abstraction by up to 30 kJ/mol. A correlation (R(2) = 0.72) between the transition-state energies and the corresponding substrate radical energies has been established. Using this correlation is significantly less time-demanding than using...... the porphyrin model to determine the activation energies. We have used this correlation on monosubstituted phenols to rationalize the effect of the various substituents in the drug compounds. In addition to facilitating a chemical interpretation, the approach is sufficiently fast and reliable to be used...

  4. Core-shell rhodium sulfide catalyst for hydrogen evolution reaction / hydrogen oxidation reaction in hydrogen-bromine reversible fuel cell

    Science.gov (United States)

    Li, Yuanchao; Nguyen, Trung Van

    2018-04-01

    Synthesis and characterization of high electrochemical active surface area (ECSA) core-shell RhxSy catalysts for hydrogen evolution oxidation (HER)/hydrogen oxidation reaction (HOR) in H2-Br2 fuel cell are discussed. Catalysts with RhxSy as shell and different percentages (5%, 10%, and 20%) of platinum on carbon as core materials are synthesized. Cyclic voltammetry is used to evaluate the Pt-equivalent mass specific ECSA and durability of these catalysts. Transmission electron microscopy (TEM), X-ray Photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX) techniques are utilized to characterize the bulk and surface compositions and to confirm the core-shell structure of the catalysts, respectively. Cycling test and polarization curve measurements in the H2-Br2 fuel cell are used to assess the catalyst stability and performance in a fuel cell. The results show that the catalysts with core-shell structure have higher mass specific ECSA (50 m2 gm-Rh-1) compared to a commercial catalyst (RhxSy/C catalyst from BASF, 6.9 m2 gm-Rh-1). It also shows better HOR/HER performance in the fuel cell. Compared to the platinum catalyst, the core-shell catalysts show more stable performance in the fuel cell cycling test.

  5. Prediction of activation energies for hydrogen abstraction by cytochrome p450

    DEFF Research Database (Denmark)

    Olsen, Lars; Rydberg, Patrik; Rod, Thomas Holm

    2006-01-01

    We have estimated the activation energy for hydrogen abstraction by compound I in cytochrome P450 for a diverse set of 24 small organic substrates using state-of-the-art density functional theory (B3LYP). We then show that these results can be reproduced by computationally less demanding methods,...... of the less demanding methods are applied to study the CYP3A4 metabolism of progesterone and dextromethorphan....

  6. The reactions of oxygen and hydrogen with liquid sodium

    International Nuclear Information System (INIS)

    Ullmann, H.

    1981-01-01

    Results so far available as to the reactions and chemical equilibrium of oxygen and hydrogen with liquid sodium have been analyzed critically. The enthalpy values of the reactions have been discussed and supplemented on the basis of corresponding BORN-HABER cycles. The concentration and temperature functions of the hydrogen equilibrium pressure were deduced from experimental results. In relation to the solubility data the solid phases coexisting with liquid sodium in the ternary system Na-O-H have been discussed. The reaction of oxygen with hydrogen in diluted solution in liquid sodium has been investigated in more detail. Interaction coefficients, and the temperature functions of the free energy of formation and the equilibrium constant have been determined. (orig.)

  7. Destruction of oxalate by reaction with hydrogen peroxide. [Hydrazine oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Mailen, J.C.; Tallent, O.K.; Arwood, P.C.

    1981-09-01

    The destruction of oxalate by oxidation to carbon dioxide using hydrogen peroxide was studied as an alternative method for the disposal of oxalate in connection with the possible use of an aqueous hydrazine oxalate solution as a scrubbing agent for solvent cleanup in processes for the recovery of uranium, plutonium, and thorium by solvent extraction. The rate of oxidation of oxalate by hydrogen peroxide in acid solution at the reflux temperature was adequate for process application; reaction half-times at 100/sup 0/C were less than one hour when the hydrogen peroxide concentration was greater than 0.5 M. The reaction was first order with respect to both the oxalate and hydrogen peroxide concentrations and had an activation energy of 58.7 kJ/g-mol. The rate increased with the hydrogen ion concentration as (H/sup +/)/sup 0/ /sup 3/ but was not significantly affected by the presence of 100 ppM of uranium or copper in solution. In the near-neutral hydrazine oxalate solutions, the reaction of either component with hydrogen peroxide was too slow for process application.

  8. A Recyclable Nanoparticle-Supported Rhodium Catalyst for Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Maria Michela Dell’Anna

    2010-05-01

    Full Text Available Catalytic hydrogenation under mild conditions of olefins, unsaturated aldeydes and ketones, nitriles and nitroarenes was investigated, using a supported rhodium complex obtained by copolymerization of Rh(cod(aaema [cod: 1,5-cyclooctadiene, aaema–: deprotonated form of 2-(acetoacetoxyethyl methacrylate] with acrylamides. In particular, the hydrogenation reaction of halonitroarenes was carried out under 20 bar hydrogen pressure with ethanol as solvent at room temperature, in order to minimize hydro-dehalogenation. The yields in haloanilines ranged from 85% (bromoaniline to 98% (chloroaniline.

  9. Hydrogen release from irradiated elastomers measured by Nuclear Reaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jagielski, J., E-mail: jacek.jagielski@itme.edu.pl [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland); Ostaszewska, U. [Institute for Engineering of Polymer Materials & Dyes, Division of Elastomers & Rubber Technology, Harcerska 30, 05-820 Piastow (Poland); Bielinski, D.M. [Technical University of Lodz, Institute of Polymer & Dye Technology, Stefanowskiego 12/16, 90-924 Lodz (Poland); Grambole, D. [Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden Rossendorf, PO Box 51 01 19, D-01314 Dresden (Germany); Romaniec, M.; Jozwik, I.; Kozinski, R. [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); Kosinska, A. [National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland)

    2016-03-15

    Ion irradiation appears as an interesting method of modification of elastomers, especially friction and wear properties. Main structural effect caused by heavy ions is a massive loss of hydrogen from the surface layer leading to its smoothening and shrinking. The paper presents the results of hydrogen release from various elastomers upon irradiation with H{sup +}, He{sup +} and Ar{sup +} studied by using Nuclear Reaction Analysis (NRA) method. The analysis of the experimental data indicates that the hydrogen release is controlled by inelastic collisions between ions and target electrons. The last part of the study was focused on preliminary analysis of mechanical properties of irradiated rubbers.

  10. Searching out the hydrogen absorption/desorption limiting reaction factors: Strategies allowing to increase kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zeaiter, Ali, E-mail: ali.zeaiter@femto-st.fr; Chapelle, David; Nardin, Philippe

    2015-10-05

    Highlights: • A macro scale thermodynamic model that simulates the response of a FeTi-X hydride tank is performed, and validated experimentally. • A sensibility study to identify the most influent input variables that can changes very largely the reaction rate. - Abstract: Hydrogen gas has become one of the most promising energy carriers. Main breakthrough concerns hydrogen solid storage, specially based on intermetallic material use. Regarding the raw material abundance and cost, the AB type alloy FeTi is an auspicious candidate to store hydrogen. Its absorption/desorption kinetics is a basic hindrance to common use, compared with more usual hydrides. First, discussions based on literature help us identifying the successive steps leading to metal hydriding, and allow to introduce the physical parameters which drive or limit the reaction. This analysis leads us to suggest strategies in order to increase absorption/desorption kinetics. Attention is then paid to a thermofluidodynamic model, allowing to describe a macroscopic solid storage reactor. Thus, we can achieve a simulation which describes the overall reaction inside the hydrogen reactor and, by varying the sub-mentioned parameters (thermal conductivity, the powder granularity, environment heat exchange…), we attempt to hierarchy the reaction limiting factors. These simulations are correlated to absorption/desorption experiments for which pressure, temperature and hydrogen flow are recorded.

  11. Reactions on carbonaceous materials with hydrogenating gases

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Simon, W; Kronig, W

    1933-02-08

    A process is given for the production of valuable hydrocarbons by treatment of distillable carbonaceous materials with added hydrogenating gases under pressure in contact with catalysts. The process comprises adding to the initial materials before or during the said treatment organic sulphonic acids together with metals of groups 4 to 8 of the periodic system or compounds thereof, or free organic carboxylic acids which when inorganic salts are simultaneously present do not combine therewith to form complex ansolvo acids, or acid salts of strong acids or acid salts of heavy metals, lithium, magnesium, and aluminum, with the exception of aluminum hydrosilicates, or inorganic oxygen containing acids of sulfur or nitrogen or the anhydrides of said inorganic oxygen-containing acids.

  12. Kinetics of gaseous uranium hexafluoride reaction with hydrogen chloride

    International Nuclear Information System (INIS)

    Ezubchenko, A.N.; Ilyukhin, A.I.; Merzlyakov, A.V.

    1993-01-01

    Kinetics of decrease of concentration of gaseous uranium hexafluoride in reaction with hydrogen chloride at temperatures close to room ones, was investigated by the method of IR spectroscopy. It was established that the process represented the first order reaction by both UF 6 and HCl. Activation energy of the reaction was determined: 7.6 ± 0.7 kcal/mol. Specific feature of reaction kinetics was noted: inversely proportional dependence of effective constant on UF 6 initial pressure. 5 refs., 3 figs

  13. Reaction between vanadium trichloride oxide and hydrogen sulfide

    International Nuclear Information System (INIS)

    Yajima, Akimasa; Matsuzaki, Ryoko; Saeki, Yuzo

    1978-01-01

    The details of the reaction between vanadium trichloride oxide and hydrogen sulfide were examined at 20 and 60 0 C. The main products by the reaction were vanadium dichloride oxide, sulfur, and hydrogen chloride. In addition to these products, small amounts of vanadium trichloride, vanadium tetrachloride, disulfur dichloride, and sulfur dioxide were formed. The formations of the above-mentioned reaction products can be explained as follows: The first stage is the reaction between vanadium trichloride oxide and hydrogen sulfide, 2VOCl 3 (l) + H 2 S(g)→2VOCl 2 (s) + S(s) + 2HCl(g). Then the resulting sulfur reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + 2S(s)→2VOCl 2 (s) + S 2 Cl 2 (l). The resulting disulfur dichloride subsequently reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + S 2 Cl 2 (l)→2VCl 4 (l) + S(s) + SO 2 (g). The resulting vanadium tetrachloride reacts with the sulfur formed during the reaction, 2VCl 4 (l) + 2S(s)→2VCl 3 (s) + S 2 Cl 2 (l), and also reacts with hydrogen sulfide, 2VCl 4 (l) + H 2 S(g)→2VCl 3 (s) + S(s) + 2HCl(g). (auth.)

  14. Measurement of hydrogen in BCN films by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko [Kanazawa Univ. (Japan); Awazu, Kaoru [Industrial Research Inst., of Ishikawa, Kanazawa (Japan); Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-07-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influence on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem produce the films with the properties required. Ion beam techniques using nuclear reactions are effective for the quantitative determination of hydrogen concentration. A specially designed spectrometer is employed for the detailed determination of hydrogen concentrations by detecting 4.43MeV {gamma}-rays from the resonant nuclear reactions {sup 1}H({sup 15}N, {alpha}{gamma}){sup 12}C at the 6.385MeV. In this study, the BCN films were formed on silicon substrate by ion beam assisted deposition (IBAD), in which boron and carbon were deposited by electron beam heating of B{sub 4}C solid and nitrogen was supplied by ion implantation simultaneously. The concentrations of hydrogen in BCN films were measured using RNRA. The mechanical properties of BCN films were evaluated using an ultra-micro-hardness tester. It was confirmed that the hardness of BCN films increased with increasing the concentration of hydrogen. (author)

  15. Filtration and Hydrogen Reaction Modeling in a Depleted Uranium Bed

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kwang Jin; Kim, Yean Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Seok [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The storage and delivery system (SDS) stores the hydrogen isotopes and delivers them to the fuel injection system. Depleted uranium (DU) was chosen as a hydrogen isotope storage material. The hydrogen isotopes stored in the SDS are in the form of DU hydride confined in the primary and secondary containment within a glove box with an argon atmosphere. In this study, we performed a modeling study of the SDS. A modeling study is practically important because an experimental study requires comparatively more money and time. We estimated the hydrogen atomic ratio in DU hydride by two empirical equations we formulated. Two empirical equations are used to determine Pressure-Composition-Temperature (PCT) curves and the hydrogen atomic ratio in DU hydride. In addition, we present the effect of pressure and temperature in the hydriding and dehydriding. A modeling study of the SDS was performed in this study. It is practically important to save more money and time. The hydrogen atomic ratio in the DU hydride was estimated using two empirical equations. The two empirical equations are modified and reformulated to determine PCT curves and the hydrogen atomic ratio in DU hydride. All parameters that are required to solve two empirical equations are obtained from the experimental data. The derived parameters are utilized for the numerical simulations. In the numerical simulations, the effects of pressure and temperature on both the hydriding and dehydriding reaction rates are confirmed.

  16. Hydrogen isotope exchange reaction rates in tritium, hydrogen and deuterium mixed gases

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko

    1992-01-01

    Hydrogen isotope exchange reaction rates in H 2 +T 2 , D 2 +T 2 and H 2 +D 2 +T 2 mixed gases, as induced by tritium decay and beta radiation, were experimentally measured by laser Raman spectrometry. Initially a glass cell was filled with T 2 gas to a pressure of 30-40 kPa, and an equivalent partial pressure of H 2 and/or D 2 was added. The first-order hydrogen isotope exchange reaction rates were 5.54x10 -2 h -1 for H 2 +T 2 mixed gas and 4.76x10 -2 h -1 for D 2 +T 2 . The actual HT producing rate was nearly equivalent to the rate of DT, but the reverse reaction rate of HT was faster than that of DT. The exchange reaction rates between H, D and T showed the isotope effect, HD>HT>DT. The hydrogen isotope exchange reaction rates observed were about twenty times larger than ion formation rates by beta radiation. This result suggests that a free radical chain reaction in hydrogen isotopes is occurring. (orig.)

  17. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krier, James M. [Univ. of California, Berkeley, CA (United States)

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  18. The electrochemical Peltier heat of the standard hydrogen electrode reaction

    International Nuclear Information System (INIS)

    Fang Zheng; Wang Shaofen; Zhang Zhenghua; Qiu Guanzhou

    2008-01-01

    A method for measuring the electrochemical Peltier heat (EPH) of a single electrode reaction has been developed and an absolute scale is suggested to obtain EPH of the standard hydrogen electrode. The scale is based on φ 0 * = 0 and ΔS 0 * = 0 for any electrode reaction at zero Kelvin, in accord with the third law of thermodynamics. The relationships between entropy, enthalpy and free energy changes on this scale and on the conventional scale are derived. Calorimetric experiments were made on the Fe(CN) 6 3- /Fe(CN) 6 4- system at five different concentrations at 298.15 K, and EPH for the standard hydrogen electrode reaction is obtained. EPHs and the entropy change on the absolute scale for the studied redox are linearly related to concentration of electrolyte. The reversible electric work is almost concentration independent in the range of concentration studied

  19. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, David; Warringham, Robbie [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Guidi, Tatiana [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Parker, Stewart F., E-mail: stewart.parker@stfc.ac.uk [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2013-12-12

    Highlights: • Inelastic neutron scattering spectroscopy of a commercial dehydrogenation catalyst. • The overlayer present on the catalyst is predominantly aliphatic. • A population of strongly hydrogen bonded hydroxyls is also present. - Abstract: The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al{sub 2}O{sub 3} catalyst. Inelastic neutron scattering studies show that the C–H stretching mode ranges from 2850 to 3063 cm{sup −1}, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al{sub 2}O{sub 3} catalysts during methane reforming.

  20. Purification of free hydrogen or hydrogen combined in a gaseous mixture by chemical reactions with uranium

    International Nuclear Information System (INIS)

    Caron-Charles, M.; Gilot, B.

    1989-01-01

    Within the framework of the European fusion program, the authors are dealing with the tritium technology aspect. Hydrogen, free or under a combined form within a H 2 , N 2 , NH 3 , O 2 , gaseous mixture, can be purified by chemical reactions with uranium metal. The resulting reactions consist in absorbing the impurities without holding back H 2 . Working conditions have been defined according to two main goals: the formation of stable solid products, especially under hydrogenated atmosphere and the optimization of the material quantities to be used. Thermodynamical considerations have shown that the 950-1300 K temperature range should be suitable for this chemical process. Experiments performed with massive uranium set in a closed reactor at 973 K, have produced hydrogen according to the predicted reactions rates. But they have also pointed out the importance of interferences that might occur in the uranium-gas system, on the gases conversion rates. The comparison between the chemical kinetic ratings of the reactions of pure gases and the chemical kinetic ratings of the reactions of the same gases in mixture, has been set up. It proves that simultaneous reactions can modify the working conditions of the solid products formation, and particularly modify their structure. In this case, chemical kinetic ratings are increased up to their maximal value; that means surface phenomena are favoured as with uranium powder gases reactions. (orig.)

  1. Applications of heavy-ion reactions on hydrogen isotopes

    International Nuclear Information System (INIS)

    Evers, E.J.

    1987-01-01

    This thesis describes various aspects of 'inverse' reactions between the lightest nuclides, hydrogen and deuterium, and heavy ions in the range from carbon to phosphorus. The reactions studied in this thesis always result in one light ejectile and one excited heavy nucleus. Coincidence experiments have been performed in which both the emitted light particle and the gamma radiation emitted by the excited heavy nucleus produced, are detected. Ch. 1 describes the system built for the acquisition of data obtained in such coincidence experiments. Ch. 2 describes precision measurements of nuclear lifetimes and stopping powers. Coincident Doppler shift attenuation (DSA) experiments were performed with the reaction 2 H( 31 P,pγ) 32 P at E( 31 P 7+ )=50 MeV and thin Ti 2 H targets on Au, Ag and Cu backings. Mean lifetimes of the E x =513, 1150, 1323 and 1755 levels were determined with experimental stopping powers of Forster et al. These lifetimes were used as input in further analysis of the experimental data and of an additional experiment with a target on Mg backing to determine a consistent set of stopping power data for P ions with a velocity in the range 0-8(c/137) in the four materials mentioned. Ch.'s 3 and 4 deal with narrow resonances in reactions of nitrogen and fluorine beams with hydrogen targets. In Ch. 3 a method is described for the calibration of analyzing-magnet systems of heavy-ions accelerators. Ch. 4 describes an experiment to investigate the hydrogen concentration in silicon nitride films using a resonant inverse nuclear reaction. This method turns out to be a very suitable one for determining hydrogen concentration profiles with a good depth resolution over a large depth. 69 refs.; 23 figs.; 7 tabs

  2. Is H Atom Abstraction Important in the Reaction of Cl with 1-Alkenes?

    Science.gov (United States)

    Walavalkar, M P; Vijayakumar, S; Sharma, A; Rajakumar, B; Dhanya, S

    2016-06-23

    The relative yields of products of the reaction of Cl atoms with 1-alkenes (C4-C9) were determined to see whether H atom abstraction is an important channel and if it is to identify the preferred position of abstraction. The presence of all the possible positional isomers of long chain alkenones and alkenols among the products, along with chloroketones and chloroalcohols, confirms the occurrence of H atom abstraction. A consistent pattern of distribution of abstraction products is observed with oxidation at C4 (next to allyl) being the lowest and that at CH2 groups away from the double bond being the highest. This contradicts with the higher stability of allyl (C3) radical. For a better understanding of the relative reactivity, ab initio calculations at MP2/6-311+G (d,p) level of theory are carried out in the case of 1-heptene. The total rate coefficient, calculated using conventional transition state theory, was found to be in good agreement with the experimental value at room temperature. The preferred position of Cl atom addition is predicted to be the terminal carbon atom, which matches with the experimental observation, whereas the rate coefficients calculated for individual channels of H atom abstraction do not explain the observed pattern of products. The distribution of abstraction products except at C4 is found to be better explained by reported structure activity relationship, developed from experimental rate coefficient data. This implies the reactions to be kinetically dictated and emphasizes the importance of secondary reactions.

  3. Reaction-diffusion modeling of hydrogen in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Wensing, Mirko; Matveev, Dmitry; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)

    2016-07-01

    Beryllium will be used as first-wall material for the future fusion reactor ITER as well as in the breeding blanket of DEMO. In both cases it is important to understand the mechanisms of hydrogen retention in beryllium. In earlier experiments with beryllium low-energy binding states of hydrogen were observed by thermal desorption spectroscopy (TDS) which are not yet well understood. Two candidates for these states are considered: beryllium-hydride phases within the bulk and surface effects. The retention of deuterium in beryllium is studied by a reaction rate approach using a coupled reaction diffusion system (CRDS)-model relying on ab initio data from density functional theory calculations (DFT). In this contribution we try to assess the influence of surface recombination.

  4. Use of Heterogenized Metal Complexes in Hydrogenation Reactions: Comparison of Hydrogenation and CTH Reactions.

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Zsigmond, A.; Gyémánt, M.; Czeglédi, A.; Klusoň, Petr

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9281-9294 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Castle Trest, 16.09.2014-20.09.2014] Institutional support: RVO:67985858 Keywords : catalytic transfer hydrogenation * iron-phthalocyanine catalyst * chemoselectivity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.833, year: 2015

  5. Investigation of polar and stereoelectronic effects on pure excited-state hydrogen atom abstractions from phenols and alkylbenzenes.

    Science.gov (United States)

    Pischel, Uwe; Patra, Digambara; Koner, Apurba L; Nau, Werner M

    2006-01-01

    The fluorescence quenching of singlet-excited 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by 22 phenols and 12 alkylbenzenes has been investigated. Quenching rate constants in acetonitrile are in the range of 10(8)-10(9) M(-1)s(-1) for phenols and 10(5)-10(6) M(-1)s(-1) for alkylbenzenes. In contrast to the quenching of triplet-excited benzophenone, no exciplexes are involved, so that a pure hydrogen atom transfer is proposed as quenching mechanism. This is supported by (1) pronounced deuterium isotope effects (kH/kD ca 4-6), which were observed for phenols and alkylbenzenes, and (2) a strongly endergonic thermodynamics for charge transfer processes (electron transfer, exciplex formation). In the case of phenols, linear free energy relationships applied, which led to a reaction constant of rho = -0.40, suggesting a lower electrophilicity of singlet-excited DBO than that of triplet-excited ketones and alkoxyl radicals. The reactivity of singlet-excited DBO exposes statistical, steric, polar and stereoelectronic effects on the hydrogen atom abstraction process in the absence of complications because of competitive exciplex formation.

  6. Hydrogen desorption reactions of Li-N-H hydrogen storage system: Estimation of activation free energy

    International Nuclear Information System (INIS)

    Matsumoto, Mitsuru; Haga, Tetsuya; Kawai, Yasuaki; Kojima, Yoshitsugu

    2007-01-01

    The dehydrogenation reactions of the mixtures of lithium amide (LiNH 2 ) and lithium hydride (LiH) were studied under an Ar atmosphere by means of temperature programmed desorption (TPD) technique. The dehydrogenation reaction of the LiNH 2 /LiH mixture was accelerated by addition of 1 mol% Ti(III) species (k = 3.1 x 10 -4 s -1 at 493 K), and prolonged ball-milling time (16 h) further enhanced reaction rate (k = 1.1 x 10 -3 s -1 at 493 K). For the hydrogen desorption reaction of Ti(III) doped samples, the activation energies estimated by Kissinger plot (95 kJ mol -1 ) and Arrhenius plot (110 kJ mol -1 ) were in reasonable agreement. The LiNH 2 /LiH mixture without Ti(III) species, exhibited slower hydrogen desorption process and the kinetic traces deviated from single exponential behavior. The results indicated the Ti(III) additives change the hydrogen desorption reaction mechanism of the LiNH 2 /LiH mixture

  7. Rapid Hydrogen Shift Reactions in Acyl Peroxy Radicals

    DEFF Research Database (Denmark)

    Knap, Hasse Christian; Jørgensen, Solvejg

    2017-01-01

    -shift with X = 6, 7, 8, or 9) in the hydroperoxy acyl peroxy radicals, this H-shift is a reversible reaction and it scrambles between two peroxides, hydroperoxy acyl peroxy and peroxy peroxoic acid radicals. The forward reaction rate constants of the 1,X-OOH H-shift reactions are estimated to be above 103 s–1...... with transition state theory corrected with Eckart quantum tunnelling correction. The ratio between the forward and reverse reaction rate constant of the 1,X-OOH H-shift reactions is around ∼105. Therefore, the equilibrium is pushed toward the production of peroxy peroxoic acid radicals. These very fast 1,X-OOH H......We have used quantum mechanical chemical calculations (CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/aug-cc-pVTZ) to investigate the hydrogen shift (H-shift) reactions in acyl peroxy and hydroperoxy acyl peroxy radicals. We have focused on the H-shift reactions from a hydroperoxy group (OOH) (1,X-OOH H...

  8. Hydrogen Abstraction Acetylene Addition and Diels-Alder Mechanisms of PAH Formation:  A Detailed Study Using First Principles Calculations.

    Science.gov (United States)

    Kislov, V V; Islamova, N I; Kolker, A M; Lin, S H; Mebel, A M

    2005-09-01

    Extensive ab initio Gaussian-3-type calculations of potential energy surfaces (PES), which are expected to be accurate within 1-2 kcal/mol, combined with statistical theory calculations of reaction rate constants have been applied to study various possible pathways in the hydrogen abstraction acetylene addition (HACA) mechanism of naphthalene and acenaphthalene formation as well as Diels-Alder pathways to acenaphthalene, phenanthrene, and pyrene. The barrier heights; reaction energies; and molecular parameters of the reactants, products, intermediates, and transition states have been generated for all types of reactions involved in the HACA and Diels-Alder mechanisms, including H abstraction from various aromatic intermediates, acetylene addition to radical sites, ring closures leading to the formation of additional aromatic rings, elimination of hydrogen atoms, H disproportionation, C2H2 cycloaddition, and H2 loss. The reactions participating in various HACA sequences (e.g., Frenklach's, alternative Frenklach's, and Bittner and Howard's routes) are demonstrated to have relatively low barriers and high rate constants under combustion conditions. A comparison of the significance of different HACA mechanisms in PAH growth can be made in the future using PES and molecular parameters obtained in the present work. The results show that the Diels-Alder mechanism cannot compete with the HACA pathways even at high combustion temperatures, because of high barriers and consequently low reaction rate constants. The calculated energetic parameters and rate constants have been compared with experimental and theoretical data available in the literature.

  9. Reaction path sampling of the reaction between iron(II) and hydrogen peroxide in aqueous solution

    NARCIS (Netherlands)

    Ensing, B.; Baerends, E.J.

    2002-01-01

    Previously, we have studied the coordination and dissociation of hydrogen peroxide with iron(II) in aqueous solution by Car-Parrinello molecular dynamics at room temperature. We presented a few illustrative reaction events, in which the ferryl ion ([Fe(IV)O

  10. Signatures of a quantum diffusion limited hydrogen atom tunneling reaction.

    Science.gov (United States)

    Balabanoff, Morgan E; Ruzi, Mahmut; Anderson, David T

    2017-12-20

    We are studying the details of hydrogen atom (H atom) quantum diffusion in highly enriched parahydrogen (pH 2 ) quantum solids doped with chemical species in an effort to better understand H atom transport and reactivity under these conditions. In this work we present kinetic studies of the 193 nm photo-induced chemistry of methanol (CH 3 OH) isolated in solid pH 2 . Short-term irradiation of CH 3 OH at 1.8 K readily produces CH 2 O and CO which we detect using FTIR spectroscopy. The in situ photochemistry also produces CH 3 O and H atoms which we can infer from the post-photolysis reaction kinetics that display significant CH 2 OH growth. The CH 2 OH growth kinetics indicate at least three separate tunneling reactions contribute; (i) reactions of photoproduced CH 3 O with the pH 2 host, (ii) H atom reactions with the CH 2 O photofragment, and (iii) long-range migration of H atoms and reaction with CH 3 OH. We assign the rapid CH 2 OH growth to the following CH 3 O + H 2 → CH 3 OH + H → CH 2 OH + H 2 two-step sequential tunneling mechanism by conducting analogous kinetic measurements using deuterated methanol (CD 3 OD). By performing photolysis experiments at 1.8 and 4.3 K, we show the post-photolysis reaction kinetics change qualitatively over this small temperature range. We use this qualitative change in the reaction kinetics with temperature to identify reactions that are quantum diffusion limited. While these results are specific to the conditions that exist in pH 2 quantum solids, they have direct implications on the analogous low temperature H atom tunneling reactions that occur on metal surfaces and on interstellar grains.

  11. Two dimensional simulation of hydrogen iodide decomposition reaction using fluent code for hydrogen production using nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Jung Sik [The Institute of Machinery and Electronic Technology, Mokpo National Maritime University, Mokpo (Korea, Republic of); Shin, Young Joon; Lee, Ki Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Jae Hyuk [Division of Marine Engineering System, Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-06-15

    The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of H2O was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

  12. Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl

    Directory of Open Access Journals (Sweden)

    F. Keppler

    2018-05-01

    Full Text Available Chloromethane (CH3Cl is an important provider of chlorine to the stratosphere but detailed knowledge of its budget is missing. Stable isotope analysis is a potentially powerful tool to constrain CH3Cl flux estimates. The largest degree of isotope fractionation is expected to occur for deuterium in CH3Cl in the hydrogen abstraction reactions with its main sink reactant tropospheric OH and its minor sink reactant Cl atoms. We determined the isotope fractionation by stable hydrogen isotope analysis of the fraction of CH3Cl remaining after reaction with hydroxyl and chlorine radicals in a 3.5 m3 Teflon smog chamber at 293 ± 1 K. We measured the stable hydrogen isotope values of the unreacted CH3Cl using compound-specific thermal conversion isotope ratio mass spectrometry. The isotope fractionations of CH3Cl for the reactions with hydroxyl and chlorine radicals were found to be −264±45 and −280±11 ‰, respectively. For comparison, we performed similar experiments using methane (CH4 as the target compound with OH and obtained a fractionation constant of −205±6 ‰ which is in good agreement with values previously reported. The observed large kinetic isotope effects are helpful when employing isotopic analyses of CH3Cl in the atmosphere to improve our knowledge of its atmospheric budget.

  13. Rydberg phases of Hydrogen and low energy nuclear reactions

    Science.gov (United States)

    Olafsson, Sveinn; Holmlid, Leif

    2016-03-01

    For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.

  14. Radical Abstraction Reactions with Concerted Fragmentation in the Chain Decay of Nitroalkanes

    Science.gov (United States)

    Denisov, E. T.; Shestakov, A. F.

    2018-05-01

    Reactions of the type X• + HCR2CH2NO2 → XH + R2C=CH2 + N•O2 are exothermic, due to the breaking of weak C-N bonds and the formation of energy-intensive C=C bonds. Quantum chemistry calculations of the transition state using the reactions of Et• and EtO• with 2-nitrobutane shows that such reactions can be categorized as one-step, due to the extreme instability of the intermediate nitrobutyl radical toward decay with the formation of N•O2. Kinetic parameters that allow us to calculate the energy of activation and rate constant of such a reaction from its enthalpy are estimated using a model of intersecting parabolas. Enthalpies, energies of activation, and rate constants are calculated for a series of reactions with the participation of Et•, EtO•, RO•2, N•O2 radicals on the one hand and a series of nitroalkanes on the other. A new kinetic scheme of the chain decay of nitroalkanes with the participation of abstraction reactions with concerted fragmentation is proposed on the basis of the obtained data.

  15. Redox and oxo-abstraction reactions of silylamine with MoOCl4

    International Nuclear Information System (INIS)

    Vasisht, S.K.; Singh, G.

    1985-01-01

    Trimethylsilyldiethylamine Me 3 SiNEt 2 and MoOCl 4 (1:1) undergo a free radical redox reaction in CH 2 Cl 2 or Et 2 O to form MoCl 3 O(HNEt 2 ). Reduction occurs even in aprotic media like CCl 4 and CS 2 to give Mo(V) complexes Mo 2 Cl 6 O 2 (N 2 Et 4 ) and Mo 2 Cl 6 O 2 [(SCNEt 2 ) 2 S 2 ], respectively. A 2:1 reaction in nonionizing protic solvents undergoes redox cum cleavage to provide MoCl 2 O(NEt 2 )(HNEt 2 ) but a reaction at reflux temperature in 1,2-dichloroethane leads to diethylammonium salt, [Et 2 NH 2 ][MoCl 4 O(HNEt 2 )]. Higher molar reactions (3:1, 4:1) in CH 2 Cl 2 or Et 2 O are associated with redox reaction as well as oxygen atom abstraction to form de-oxo Mo(IV) complex MoCl 3 (NEt 2 )(HNEt 2 ) 2 , whereas, a 3:1 reaction in CS 2 forms Mo 2 Cl 4 O(S 2 CNEt 2 ) 4 . Compounds have been characterized by elemental analyses, redox titration, magnetic moment, conductance, infrared, electronic absorption and 1 H-NMR measurements. (author)

  16. Electrocatalysis of the hydrogen evolution reaction by rhenium oxides electrodeposited by pulsed-current

    International Nuclear Information System (INIS)

    Vargas-Uscategui, Alejandro; Mosquera, Edgar; Chornik, Boris; Cifuentes, Luis

    2015-01-01

    Highlights: • Rhenium oxides were produced by means of pulsed current electrodeposition over ITO. • The electrocatalytic behavior of rhenium oxides electrodeposited over ITO was studied. • Electrodeposited rhenium oxides showed electrocatalytic behavior increasing the rate of the hydrogen evolution reaction. • The electrocatalysis behavior was explained considering the relative abundance of Re species on the surface of the electrodeposited material. - Abstract: Rhenium oxides are materials of interest for applications in the catalysis of reactions such as those occurring in fuel cells and photoelectrochemical cells. This research work was devoted to the production of rhenium oxide by means of pulsed current electrodeposition for the electrocatalysis of the hydrogen evolution reaction (HER). Rhenium oxides were electrodeposited over a transparent conductive oxide substrate (Indium Tin-doped Oxide – ITO) in an alkaline aqueous electrolyte. The electrodeposition process allowed the production of rhenium oxides islands (200–600 nm) with the presence of three oxidized rhenium species: Re"I"V associated to ReO_2, Re"V"I associated to ReO_3 and Re"V"I"I associated to H(ReO_4)H_2O. Electrodeposited rhenium oxides showed electrocatalytic behavior over the HER and an increase of one order of magnitude of the exchange current density was observed compared to the reaction taking place on the bare substrate. The electrocatalytic behavior varied with the morphology and relative abundance of oxidized rhenium species in the electrodeposits. Finally, two mechanisms of electrocatalysis were proposed to explain experimental results.

  17. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Anand, M.; Hufton, J.; Mayorga, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  18. Modeling of Syngas Reactions and Hydrogen Generation Over Sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Klier; Jeffery A. Spirko; Michael L. Neiman

    2002-09-17

    The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. In this first year of study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The geometries and strengths of the adsorption sites are described and the methods used in the study are described. An exposed MO{sup IV} species modeled as a bent MoS{sub 2} molecule is capable of homopolar dissociative chemisorption of H{sub 2} into a dihydride S{sub 2}MoH{sub 2}. Among the periodic edge structures of hexagonal MoS{sub 2}, the (1{bar 2}11) edge is most stable but still capable of dissociating H{sub 2}, while the basal plane (0001) is not. A challenging task of theoretically accounting for weak bonding of MoS{sub 2} sheets across the Van der Waals gap has been addressed, resulting in a weak attraction of 0.028 eV/MoS{sub 2} unit, compared to the experimental value of 0.013 eV/MoS{sub 2} unit.

  19. Intermolecula transfer and elimination of molecular hydrogen in thermal reactions of unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Suria, Sabartanty [Iowa State Univ., Ames, IA (United States)

    1995-02-10

    Two reactions which are important to coal liquefaction include intermolecular transfer and the elimination of two hydrogen atoms. We have designed several model reactions to probe the viability of several hydrogen transfer and elimination pathways. This report described studies on these reactions using organic model compounds.

  20. α-, β-, and δ-Hydrogen Abstraction in the Thermolysis of Paramagnetic Vanadium(III) Dialkyl Complexes

    NARCIS (Netherlands)

    Hessen, Bart; Buijink, Jan-Karel F.; Meetsma, Auke; Teuben, Jan H.; Helgesson, Göran; Håkansson, Mikael; Jagner, Susan; Spek, Anthony L.

    1993-01-01

    Electron deficient paramagnetic vanadium(III) diakyls CpV(CH2CMe2R)2(PMe3) (14 electron, R = Me (2), Ph (3)) and CpV[CH(SiMe3)2]2 (12 electron, 4) have been synthesized. At ambient temperature 2 decomposes through α-hydrogen abstraction to produce, in the presence of dmpe

  1. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.

    Science.gov (United States)

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar

    2015-08-14

    The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect.

  2. Experimental evaluation of improved dual temperature hydrogen isotopic exchange reaction system

    International Nuclear Information System (INIS)

    Asakura, Yamato; Uchida, Shunsuke

    1984-01-01

    A proposed dual temperature hydrogen isotopic exchange reaction system between water and hydrogen gas is evaluated experimentally. The proposed system is composed of low temperature co-current reactors for reaction between water mists and hydrogen gas and high temperature co-current reactors for reaction between water vapor and hydrogen gas. Thus, operation is possible under atmospheric pressure with high reaction efficiency. Using the pilot test system which is composed of ten low temperature (30 0 C) reaction units and ten high temperature (200 0 C) reaction units, an experimental separation of deuterium from light water is carried out. The enrichment factor under steady state conditions, its dependency on operating time, and the reaction period necessary to obtain the steady state enrichment factor are determined experimentally and compared with calculations. It is shown that separation ability in a multistage reaction system can be estimated by numerical calculation using actual reaction efficiency in a unit reactor. (author)

  3. Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction

    Science.gov (United States)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2017-10-01

    Graphite oxide and molybdenum disulfide (GO-MoS2) composite is prepared through a wet process by using hydrolysis of ammonium tetrathiomolybdate, and it exhibits excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of -0.47 V, which is almost two and three times lower than those of precursor MoS2 and GO. The high performance of HER of the composite attributes to the reduced GO supporting MoS2, providing a conducting network for fast electron transport from MoS2 to electrodes. The composite also shows high stability after 500 cycles, demonstrating a synergistic effect of MoS2 and GO for efficient HER.

  4. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M., E-mail: fattah@cnu.edu

    2016-11-01

    Highlights: • Co films deposition via aqueous and ionic liquid Precursors. • Hydrogen evolution produced from reactive surfaces. • Co deposited films characterized by SEM, AFM, EDX and XRD techniques. - Abstract: Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH{sub 4}) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm{sup 2} catalytic surface with aqueous NaBH{sub 4} solutions generated rate constants (K) = equal to 4.9 × 10{sup −3} min{sup −1}, 4.6 × 10{sup −3} min{sup −1}, and 3.3 × 10{sup −3} min{sup −1} for ACoF, NCoF, and copper substrate respectively.

  5. Tungsten deposition by hydrogen-atom reaction with tungsten hexafluoride

    International Nuclear Information System (INIS)

    Lee, W.W.

    1991-01-01

    Using gaseous hydrogen atoms with WF 6 , tungsten atoms can be produced in a gas-phase reaction. The atoms then deposit in a near-room temperature process, which results in the formation of tungsten films. The W atoms (10 10 -10 11 /cm 3 ) were measured in situ by atomic absorption spectroscopy during the CVD process. Deposited W films were characterized by Auger electron spectroscopy, Rutherford backscattering, and X-ray diffraction. The surface morphology of the deposited films and filled holes was studied using scanning electron microscopy. The deposited films were highly adherent to different substrates, such as Si, SiO 2 , Ti/Si, TiN/Si and Teflon. The reaction mechanism and kinetics were studied. The experimental results indicated that this method has three advantages compared to conventional CVD or PECVD: (1) film growth occurs at low temperatures; (2) deposition takes place in a plasma-free environment; and (3) a low level of impurities results in high-quality adherent films

  6. Mechanistic study of the isotopic-exchange reaction between gaseous hydrogen and palladium hydride powder

    International Nuclear Information System (INIS)

    Outka, D.A.; Foltz, G.W.

    1991-01-01

    A detailed mechanism for the isotopic-exchange reaction between gaseous hydrogen and solid palladium hydride is developed which extends previous model for this reaction by specifically including surface reactions. The modeling indicates that there are two surface-related processes that contribute to the overall rate of exchange: the desorption of hydrogen from the surface and the exchange between surface hydrogen and bulk hydrogen. This conclusion is based upon measurements examining the effect of small concentrations of carbon monoxide were helpful in elucidating the mechanism. Carbon monoxide reversibly inhibits certain steps in the exchange; this slows the overall rate of exchange and changes the distribution of products from the reactor

  7. Quantum chemistry and dynamics of the abstraction reaction of H atoms from formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Siaï, A. [Faculté des Sciences de Tunis, Département de Physique, (LPMC), Université de Tunis El Manar, 2092 Tunis (Tunisia); Oueslati, I. [Faculté des Sciences de Tunis, Département de Physique, (LPMC), Université de Tunis El Manar, 2092 Tunis (Tunisia); Observatoire de Paris-Meudon, Sorbonne Universités, UPMC Univ Paris 06, UMR8112 du CNRS, LERMA, 5 Place Jules Janssen, 92195 Meudon cedex (France); Académie Militaire, Fondouk Jedid, 8012 Nabeul (Tunisia); Kerkeni, Boutheïna, E-mail: Boutheina.kerkeni@obspm.fr [Faculté des Sciences de Tunis, Département de Physique, (LPMC), Université de Tunis El Manar, 2092 Tunis (Tunisia); Observatoire de Paris-Meudon, Sorbonne Universités, UPMC Univ Paris 06, UMR8112 du CNRS, LERMA, 5 Place Jules Janssen, 92195 Meudon cedex (France); Institut Supérieur des Arts Multimédia de la Manouba, Université de la Manouba, 2010 la Manouba (Tunisia)

    2016-08-02

    This work reports a reduced dimensionality rate constant calculation of the H-abstraction reaction from formaldehyde. Quantum scattering calculations are performed treating explicitly the bonds being broken and formed. Geometry optimisations and frequency calculations are done at the MP2/cc-pVTZ level while energies are calculated with the CCSD(T) method. An analytical potential energy surface was developed from a relatively small number of grid points. When compared to semi-classical approaches, the quantum scattering calculations show that quantum tunnelling yields large contributions at low temperatures. At 200 K, we note a difference of about 5 orders of magnitude between transition state theory (TST) and quantum rate constants. Our predicted results show that the quantum and the CVT/SCT rate constants are in reasonable agreement with the available experiment at high temperatures, but that the last one gives better agreement to experimental results at low temperatures.

  8. Correlation of magnetic and mechanical properties of hydrogenated, compositionally modulated, amorphous Fe80Zr20 films (abstract)

    International Nuclear Information System (INIS)

    Rengarajan, S.; Yun, E.J.; Lee, B.H.; Cho, B.I.; Walser, R.M.

    1996-01-01

    Recent research has demonstrated that large amounts of hydrogen can be electrolytically incorporated in amorphous, compositionally modulated (CM) FeZr films. The first irreversible changes in the magnetic state of an electrolytically hydrogenated iron-rich amorphous alloy were observed. The hydrogen-induced changes in the magnetization were interpreted in terms of specific structural rearrangements. In this work, simultaneous measurements of the variations in the magnetization and mechanical properties of these films were measured as a function of hydrogen charging to further clarify the hydrogen-induced structure changes. The Young close-quote s moduli E and internal friction d of as-deposited, and as-hydrogenated CM Fe 80 Zr 20 thin films were calculated from the displacements of a vibrating composite cantilever, measured using a laser heterodyne interferometer (LHI) having a displacement sensitivity of ∼0.01 A. E and d were measured using the resonant frequency method. CM films with thickness 1390 A and modulation wavelength ∼10 A were deposited on glass cantilevers (5 mm long, 2 mm wide, and 150 μm thick) by sequentially sputtering (rf diode) elemental Fe and Zr targets. The samples were electrolytically hydrogenated for various times in 2 N phosphoric acid with a current density of 26.3 mA/cm 2 . The maximum change in magnetization of the film (from 71.5 to 551 emu/cm 3 ) was observed after 5 min. During this time, E increased 18-fold from 535 GPa to 9.63 TPa. The unusually high Young close-quote s modulus of the as-deposited CM film is comparable to those previously observed in other CM films. The change is three times larger than the change in the E of carbon steel at the martensitic transformation, and nine times larger than the hydrogen induced increase in E of pure single crystals of iron. (Abstract Truncated)

  9. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  10. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen: Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.; Hayden, H.

    2005-05-01

    The International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen provides an opportunity to learn about current significant research on solar concentrators for generating electricity or hydrogen. The conference will emphasize in-depth technical discussions of recent achievements in technologies that convert concentrated solar radiation to electricity or hydrogen, with primary emphasis on photovoltaic (PV) technologies. Very high-efficiency solar cells--above 37%--were recently developed, and are now widely used for powering satellites. This development demands that we take a fresh look at the potential of solar concentrators for generating low-cost electricity or hydrogen. Solar electric concentrators could dramatically overtake other PV technologies in the electric utility marketplace because of the low capital cost of concentrator manufacturing facilities and the larger module size of concentrators. Concentrating solar energy also has advantages for th e solar generation of hydrogen. Around the world, researchers and engineers are developing solar concentrator technologies for entry into the electricity generation market and several have explored the use of concentrators for hydrogen production. The last conference on the subject of solar electric concentrators was held in November of 2003 and proved to be an important opportunity for researchers and developers to share new and crucial information that is helping to stimulate projects in their countries.

  11. Sorption enhanced reaction process (SERP) for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hufton, J.; Mayorga, S.; Gaffney, T.; Nataraj, S.; Rao, M.; Sircar, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1998-08-01

    The novel Sorption Enhanced Reaction Process has the potential to decrease the cost of hydrogen production by steam methane reforming. Current effort for development of this technology has focused on adsorbent development, experimental process concept testing, and process development and design. A preferred CO{sub 2} adsorbent, K{sub 2}CO{sub 3} promoted hydrotalcite, satisfies all of the performance targets and it has been scaled up for process testing. A separate class of adsorbents has been identified which could potentially improve the performance of the H{sub 2}-SER process. Although this material exhibits improved CO{sub 2} adsorption capacity compared to the HTC adsorbent, its hydrothermal stability must be improved. Single-step process experiments (not cyclic) indicate that the H{sub 2}-SER reactor performance during the reaction step improves with decreasing pressure and increasing temperature and steam to methane ratio in the feed. Methane conversion in the H{sub 2}-SER reactor is higher than for a conventional catalyst-only reactor operated at similar temperature and pressure. The reactor effluent gas consists of 90+% H{sub 2}, balance CH{sub 4}, with only trace levels (< 50 ppm) of carbon oxides. A best-case process design (2.5 MMSCFD of 99.9+% H{sub 2}) based on the HTC adsorbent properties and a revised SER process cycle has been generated. Economic analysis of this design indicates the process has the potential to reduce the H{sub 2} product cost by 25--31% compared to conventional steam methane reforming.

  12. Site-specific reaction rate constant measurements for various secondary and tertiary H-abstraction by OH radicals

    KAUST Repository

    Badra, Jihad

    2015-02-01

    Reaction rate constants for nine site-specific hydrogen atom (H) abstraction by hydroxyl radicals (OH) have been determined using experimental measurements of the rate constants of Alkane+OH→Products reactions. Seven secondary (S 20, S 21, S 22, S 30, S 31, S 32, and S 33) and two tertiary (T 100 and T 101) site-specific rate constants, where the subscripts refer to the number of carbon atoms (C) connected to the next-nearest-neighbor (N-N-N) C atom, were obtained for a wide temperature range (250-1450K). This was done by measuring the reaction rate constants for H abstraction by OH from a series of carefully selected large branched alkanes. The rate constant of OH with four different alkanes, namely 2,2-dimethyl-pentane, 2,4-dimethyl-pentane, 2,2,4-trimethyl-pentane (iso-octane), and 2,2,4,4-tetramethyl-pentane were measured at high temperatures (822-1367K) using a shock tube and OH absorption diagnostic. Hydroxyl radicals were detected using the narrow-line-width ring-dye laser absorption of the R1(5) transition of OH spectrum near 306.69nm.Previous low-temperature rate constant measurements are added to the current data to generate three-parameter rate expressions that successfully represent the available direct measurements over a wide temperature range (250-1450. K). Similarly, literature values of the low-temperature rate constants for the reaction of OH with seven normal and branched alkanes are combined with the recently measured high-temperature rate constants from our group [1]. Subsequent to that, site-specific rate constants for abstractions from various types of secondary and tertiary H atoms by OH radicals are derived and have the following modified Arrhenius expressions:. S20=8.49×10-17T1.52exp(73.4K/T)cm3molecule-1s-1(250-1450K) S21=1.07×10-15T1.07exp(208.3K/T)cm3molecule-1s-1(296-1440K) S22=2.88×10-13T0.41exp(-291.5K/T)cm3molecule-1s-1(272-1311K) S30=3.35×10-18T1.97exp(323.1K/T)cm3molecule-1s-1(250-1366K) S31=1.60×10-18T2.0exp(500.0K/T)cm3

  13. Vocal reaction times to unilaterally presented concrete and abstract words: towards a theory of differential right hemispheric semantic processing.

    Science.gov (United States)

    Rastatter, M; Dell, C W; McGuire, R A; Loren, C

    1987-03-01

    Previous studies investigating hemispheric organization for processing concrete and abstract nouns have provided conflicting results. Using manual reaction time tasks some studies have shown that the right hemisphere is capable of analyzing concrete words but not abstract. Others, however, have inferred that the left hemisphere is the sole analyzer of both types of lexicon. The present study tested these issues further by measuring vocal reaction times of normal subjects to unilaterally presented concrete and abstract items. Results were consistent with a model of functional localization which suggests that the minor hemisphere is capable of differentially processing both types of lexicon in the presence of a dominant left hemisphere.

  14. Abstracts of the 1. National congress of hydrogen and sustainable energy sources

    International Nuclear Information System (INIS)

    2005-01-01

    The First Argentine National Congress of Hydrogen and Sustainable Energy Sources was organized by the Instituto of Sustainable Energy and Development CNEA, in San Carlos de Bariloche, between the 8th and 10th of June of 2005. In this event 88 papers were presented in the following sessions, on these subjects: 1.-Hydrogen-Materials Interaction. 2.-Materials Damage. 3.-Production and Purification. 4.-Storage and Transportation. 5.-Fuel Cells. 6.-Prototypes and Demonstration Plants. 7.-Eolic Energy. 8.-Solar Energy. 9.-Biomass. 10.-Small Hydroelectric Plants. 11.-Other Activities. 12.-Hybrid Fuels. 13.- Reforming, Materials, Catalysis, Processes. 14.-Projections and Energy Prospective

  15. Studies of the surface of titanium dioxide. IV. The hydrogen-deuterium equilibration reaction

    International Nuclear Information System (INIS)

    Iwaki, T.; Katsuta, K.; Miura, M.

    1981-01-01

    The interaction of hydrogen with the surface of titanium dioxide has been studied in connection with the hydrogen-reduction mechanism of titanium dioxide, by means of such measurements as weight decrease, magnetic susceptibility, hydrogen uptake, and electrical conductance. It was postulated in the previous study that the rate-determining step of the hydrogen-reduction reaction may be the formation of surface hydroxyl groups, followed by the rapid removal of water molecules from the surface. In this study, the interactions between hydrogen and the surface of titanium dioxide were investigated by measuring the hydrogen-deuterium equilibration reaction, H 2 + D 2 = 2HD, at temperatures above 200 0 C on both surfaces before and after hydrogen reduction to compare the differences in the reactivities

  16. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  17. Mechanism of the electrochemical hydrogen reaction on smooth tungsten carbide and tungsten electrodes

    International Nuclear Information System (INIS)

    Wiesener, K.; Winkler, E.; Schneider, W.

    1985-01-01

    The course of the electrochemical hydrogen reaction on smooth tungsten-carbide electrodes in hydrogen saturated 2.25 M H 2 SO 4 follows a electrochemical sorption-desorption mechanism in the potential range of -0.4 to +0.1 V. At potentials greater than +0.1 V the hydrogen oxidation is controlled by a preliminary chemical sorption step. Concluding from the similar behaviour of tungsten-carbide and tungsten electrodes after cathodic pretreatment, different tungsten oxides should be involved in the course of the hydrogen reaction on tungsten carbide electrodes. (author)

  18. Hydrogen from nuclear plus wind using real-time electricity prices. Abstract 154

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.; Fairlie, M.

    2004-01-01

    'Full text:' During the early years of hydrogen's use as a vehicle fuel, penetration of the market will be small. This favours distributed production by electrolysis, which avoids the scale-dependent costs of distribution from centralized plants. For electrolysis actually to be the preferred option, capital equipment for electrolysis must be reasonably cheap but the dominant cost component is the electricity price. By about 2006, advanced designs of nuclear reactors should be available to produce electricity at around 30 US$/MW.h. The best approach to producing low-cost electrolytic hydrogen is shown to be use of such reactors to supply electricity to the grid at times of peak price and demand and to make hydrogen at other times. This model has been analysed using the actual prices of electricity paid by the Alberta Power Pool in 2002 and 2003 and by the Ontario Grid for 2003. The analysis shows clearly that this route electrolytic hydrogen can comfortably meet the US Department of Energy's hydrogen production-cost target of 2000$/t. Because of its low availability wind-produced electricity cannot meet this cost target. However, if wind availability can reach 35% availability, an intermittent supplementary current of wind-generated electricity may economically be fed to an electrolytic plant primarily supplied by nuclear power. Additional current raises the voltage for electrolysis but there would be only small additional capital costs. The two non-CO 2 -emitting sources, nuclear and wind (or other intermittent renewables with costs comparable to advanced nuclear) could become complementary, providing an affordable way of storing wind-generated electricity. (author)

  19. Presolvated Electron Reaction with Methylacetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-atom Abstraction

    Science.gov (United States)

    Petrovici, Alex; Adhikary, Amitava; Kumar, Anil; Sevilla, Michael D.

    2015-01-01

    Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methylacetoacetate (MAA, CH3-CO-CH2-CO-OCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-CO-OCH3) in the temperature range (77 to ca. 170 K) have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-CO-OCH3. The ESR spectrum of CH3-C(•)OH-CH2-CO-OCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-CO-OCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylen protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-CO-OCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-CO-OCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments. PMID:25255751

  20. The effect of urea on microstructures of Ni{sub 3}S{sub 2} on nickel foam and its hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljltsinghua@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Tongxiang, Liang, E-mail: txliang@mail.tsinghua.edu.cn [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2016-11-15

    The effects of urea concentration on microstructures of Ni{sub 3}S{sub 2}formed on nickel foam and its hydrogen evolution reaction were investigated. The Ni{sub 3}S{sub 2} nanosheets with porous structure were formed on nickel foam during hydrothermal process due to low urea concentration. While high urea concentration facilitated the forming of Ni{sub 3}S{sub 2} nanotube arrays. The resulting Ni{sub 3}S{sub 2} nanotube arrays exhibited higher catalytic activity than Ni3S2nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction. - Graphical abstract: The resulting Ni{sub 3}S{sub 2} nanotube arrays exhibited higher catalytic activity than Ni{sub 3}S{sub 2} nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction and hydrogen evolution. - Highlights: • Urea promoted to forming more Ni{sub 3}S{sub 2} nanotube arrays on nickel foam. • Ni{sub 3}S{sub 2} nanotube arrays showed higher catalytic activity in alkaline solution. • Ni{sub 3}S{sub 2} nanotube arrays promoted electron transport and reaction during the HER.

  1. Medium temperature reaction between lanthanide and actinide carbides and hydrogen

    International Nuclear Information System (INIS)

    Dean, G.; Lorenzelli, R.; Pascard, R.

    1964-01-01

    Hydrogen is fixed reversibly by the lanthanide and actinide mono carbides in the range 25 - 400 C, as for pure corresponding metals. Hydrogen goes into the carbides lattice through carbon vacancies and the total fixed amount is approximately equal to two hydrogen atoms per initial vacancy. Final products c.n thus be considered as carbo-hydrides of general formula M(C 1-x , H 2x ). The primitive CFC, NaCl type, structure remains unchanged but expands strongly in the case of actinide carbides. With lanthanide carbides, hydrogenation induces a phase transformation with reappearance of the metal structure (HCP). Hydrogen decomposition pressures of all the studied carbo-hydrides are greater than those of the corresponding di-hydrides. (authors) [fr

  2. Quasiclassical trajectory study of the molecular beam kinetics of the deuterium atom--hydrogen halide exchange reactions

    International Nuclear Information System (INIS)

    Raff, L.M.; Suzukawa, H.H. Jr.; Thompson, D.L.

    1975-01-01

    Unadjusted quasiclassical trajectory computations have been carried out to simulate the molecular beam scattering of thermal D atom beams at 2800 degreeK crossed with beams of HCl and HI at 250 degreeK. Total reaction cross sections, energy partitioning distributions, and differential scattering cross sections have been computed for the exchange reactions D+HCl → DCl+H and D+HI → DI+H while total reaction cross sections are reported for the corresponding abstractions, i.e., D+HCl → HD+Cl and D+HI → HD+I. For the exchange reactions, the computed reaction cross sections are within the range estimated from the crossed beam experiments. The calculated average energy partitioned into relative translational motion of products is in near quantitative agreement with the beam results, and the predicted differential scattering cross sections appear to be in qualitative accord with the beam experiments. The over-all agreement between theory and experiment indicates that previously computed values for the thermal rate coefficients for the exchange reactions are of the right order and that a systematic error exists in the interpretation of photolysis data in the hydrogen--hydrogen halide systems

  3. Selective hydrogen atom abstraction by hydrogen atoms in photolysis of cyclohexane-normal pentane mixtures at 77 K

    International Nuclear Information System (INIS)

    Miyazaky, T.; Guedes, S.M.L.; Andrade e Silva, L.G. de; Fernandes, L.

    1977-01-01

    The reaction of H atoms, produced by the photolysis of HI, has been studied in c-C 6 H 12 -n-C 5 H 12 mixtures at 77K. H atoms in c-C 6 H 12 matrix react more effectively with solute n-C 5 H 12 than solvent c-C 6 H 12 , while H atoms in n-C 5 H 12 matrix react more effectively with solute c-C 6 H 12 than solvent n-C 5 H 12 [pt

  4. Study of the selective abstration reaction of the hydrogen atom in the radiolysis and photolysis of alkane mixture at 77 K

    International Nuclear Information System (INIS)

    Guedes, S.M.L.

    1979-01-01

    The occurence of the selective abstraction reaction of the solute hydrogen atom by hydrogen atom produced during radiolysis or photolysis of the systems such as neopentane/cyclo-hexane/HI, neopentane/2,3 dimethylbutane, n-pentane/HI/cyclo-hexane and cyclo-hexane/HI/n-pentane, at 77 K is studied. Experiments have been undertaken on the kinetics nature of the active species, the H atom, during radiolysis and photolysis of the neopentane/cyclo-hexane/HI system at 77 K, presenting competitive reactions. Studies have also been made on the occurrence of the selective abstraction reaction in inverted systems, in which the concentrations of the components of a system are so much altered that the solute becomes the solvent and vice-versa, in the other system. By means of photolysis at 77 K, it has been observed that for the two systems constitued by the cyclo-hexane and n-pentane the selective abstraction reaction occurs. However, for radiolysis of that same two systems it has been observed that only the hydrogen atom abstraction reaction corresponding to the solvent occurs. (Author) [pt

  5. High Electrocatalytic Response of a Mechanically Enhanced NbC Nanocomposite Electrode Towards Hydrogen Evolution Reaction

    KAUST Repository

    Coy, Emerson; Yate, Luis; Valencia, Drochss P; Aperador, Willian; Siuzdak, Katarzyna; Torruella, Pau; Azanza, Eduardo; Estrade, Sonia; Iatsunskyi, Igor; Peiró , Francesca; Zhang, Xixiang; Tejada, Javier; Ziolo, Ronald F.

    2017-01-01

    Resistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin film electrodes of metal-carbides are a promising alternative due to their reduced

  6. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    Science.gov (United States)

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  7. Hydrogenation Reactions in Ionic Liquids. The Efficient Reduction of ...

    African Journals Online (AJOL)

    NJD

    2008-12-09

    Dec 9, 2008 ... Volatile organic solvents such as ethanol, methanol and THF are often used for the ... remained consistently high and only declined markedly on the fifth cycle. ... transferral of the viscous liquid from the hydrogenation reactor.

  8. Amorphous nickel/cobalt tungsten sulfide electrocatalysts for high-efficiency hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lun [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Wu, Xinglong, E-mail: hkxlwu@nju.edu.cn [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Department of Physics, NingBo University, NingBo 315001 (China); Zhu, Xiaoshu [Center for Analysis and Testing, Nanjing Normal University, Nanjing 210093 (China); He, Chengyu; Meng, Ming; Gan, Zhixing [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-06-30

    Graphical abstract: - Highlights: • Amorphous nickel/cobalt tungsten sulfides were synthesized by a thermolytic process. • Amorphous NiWS and CoWS could realize hydrogen evolution efficiently. • Ni/Co promotion and annealing alter the porous structure and chemical bonding states. • Active sites on the surface of amorphous WS{sub x} are increased with Ni or Co doping. • Amorphous NiWS and CoWS have immense potentials in water splitting devices. - Abstract: The hydrogen evolution reaction (HER), an appealing solution for future energy supply, requires efficient and inexpensive electrocatalysts with abundant active surface sites. Although crystalline MoS{sub 2} and WS{sub 2} are promising candidates, their activity is dominated by edge sites. Amorphous tungsten sulfide prepared so far lacks the required active sites and its application has thus been hampered. In this work, nickel and cobalt incorporated amorphous tungsten sulfide synthesized by a thermolytic process is demonstrated to enhance the HER efficiency dramatically. The amorphous nickel tungsten sulfide (amorphous NiWS) annealed at 210 °C delivers the best HER performance in this system boasting a Tafel slope of 55 mV per decade and current density of 8.6 mA cm{sup −2} at 250 mV overpotential in a sustained test for 24 h. The introduction of Ni or Co into the catalyst and subsequent thermal treatment alters the porous structure and chemical bonding states thereby increasing the density of active sites on the surface.

  9. Reactions of oxygen and hydrogen with liquid sodium - a critical survey

    International Nuclear Information System (INIS)

    Ullmann, H.

    1982-01-01

    The fundamentals of solvation chemistry are presented with appropriate components formulated. Methods of investigation and kinetics of the reactions are described. The hydrogen equilibrium pressure and saturation solubilities are described. The chemical equilibrium between O and H in solution is presented with detailed tabulation of the saturation solutions of oxygen, hydrogen and hydroxide in liquid sodium. Agreements and differences with the literature are presented

  10. Hydrogenation of Phenol over Pt/CNTs: The Effects of Pt Loading and Reaction Solvents

    OpenAIRE

    Feng Li; Bo Cao; Wenxi Zhu; Hua Song; Keliang Wang; Cuiqin Li

    2017-01-01

    Carbon nanotubes (CNTs)-supported Pt nanoparticles were prepared with selective deposition of Pt nanoparticles inside and outside CNTs (Pt–in/CNTs and Pt–out/CNTs). The effects of Pt loading and reaction solvents on phenol hydrogenation were investigated. The Pt nanoparticles in Pt–in/CNTs versus Pt–out/CNTs are smaller and better dispersed. The catalytic activity and reuse stability toward phenol hydrogenation both improved markedly. The dichloromethane–water mixture as the reaction solvent,...

  11. Ab initio study on the paths of oxygen abstraction of hydrogen trioxide

    Indian Academy of Sciences (India)

    bDepartment of Chemistry, Malayer Branch, Islamic Azad University, Malayer, Iran. cDepartment of ... at the PMP2(FC)/cc-pVDZ computational level. Energetic data have been ... To the best of our knowledge, the reaction mecha- nism of SO2 + ...

  12. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  13. The energy dependence of selective hydrogen atom abstraction by H(D) atoms in the photolysis of neopentane - ethane mixtures at 77 K

    International Nuclear Information System (INIS)

    Miyazaki, T.; Fueki, K.

    1980-01-01

    Selective hydrogen - atom - abstraction reaction by H or D atom has been studied in a neo C 5 H 12 - C 2 H 6 (less than 1 mol %) mixture at 77 K by ESR spectroscopy. The H (or D) atom produced by the photolysis of HI (or DI) reacts with neo - C 2 H 12 and C 2 H 6 to form neo - C 5 H 11 and C 2 H 5 radicals. In order to obtain H atoms with different kinetic energies, the photolysis was performed with different lights of 313, 254 and 229 nm. The selective formation of the C 2 H 5 radical by the reaction of the H (or D) atom with C 2 H 6 becomes more effective with the decrease in the energy of the H (or D) atom. The formation of the neo - C 5 H 11 radical by the reaction of the H (or D) atom with neo - C 2 H 12 becomes more effective with the increase in the energy of the H (or D) atom. (A.R.H.) [pt

  14. Hydrogen storage by reaction between metallic amides and imides

    International Nuclear Information System (INIS)

    Eymery, J.B.; Cahen, S.; Tarascon, J.M.; Janot, R.

    2007-01-01

    This paper details the various metal-N-H systems reported in the literature as possible hydrogen storage materials. In a first part, we discuss the hydrogen storage performances of the Li-N-H system and the desorption mechanism of the LiH-LiNH 2 mixture is especially presented. The possibility of storing hydrogen using two other binary systems (Mg-N-H and Ca-N-H) is described in a second part. In the third part of the paper, we discuss about the performances of the highly promising Li-Mg-N-H system, for which a nice reversibility is obtained at 200 C with an experimental hydrogen capacity of about 5.0 wt.%. Other ternary systems, as Li-B-N-H and Li-Al-N-H, are presented in the last part of this review paper. We especially emphasize the performances obtained in our Laboratory at Amiens with a LiAl(NH 2 ) 4 -LiH mixture able to desorb around 6.0 wt.% of hydrogen at only 130 C. (authors)

  15. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  16. Nuclear reaction analysis of hydrogen in amorphous silicon and silicon carbide films

    International Nuclear Information System (INIS)

    Guivarc'h, A.; Le Contellec, M.; Richard, J.; Ligeon, E.; Fontenille, J.; Danielou, R.

    1980-01-01

    The 1 H( 11 B, α)αα nuclear reaction is used to determine the H content and the density of amorphous semiconductor Si 1 -sub(x)Csub(x)H 2 and SiHsub(z) thin films. Rutherford backscattering is used to determine the x values and infrared transmission to study the hydrogen bonds. We have observed a transfer or/and a release of hydrogen under bombardment by various ions and we show that this last effect must be taken into account for a correct determination of the hydrogen content. An attempt is made to correlate the hydrogen release with electronic and nuclear energy losses. (orig.)

  17. Reaction of hydrogen sulfide with oxygen in the presence of sulfite

    Energy Technology Data Exchange (ETDEWEB)

    Weres, O.; Tsao, L.

    1983-01-14

    Commonly, abatement of hydrogen sulfide emission from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. We studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDTA are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use. 33 figures, 9 tables.

  18. Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite

    Energy Technology Data Exchange (ETDEWEB)

    Weres, Oleh; Tsao, Leon

    1983-01-01

    Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

  19. Diels-Alder reactions in water : Enforced hydrophobic interaction and hydrogen bonding

    NARCIS (Netherlands)

    Engberts, Jan B.F.N.

    1995-01-01

    Second-order rate constants have been measured for the Diels-Alder (DA) reactions of cyclopentadiene with dienophiles of varying hydrophobicity and hydrogen-bond acceptor capacity in water, in a series of organic solvents and in alcohol-water mixtures. The intramolecular DA reaction of

  20. DIELS-ALDER REACTIONS IN WATER - ENFORCED HYDROPHOBIC INTERACTION AND HYDROGEN-BONDING

    NARCIS (Netherlands)

    Engberts, J.B.F.N.

    Second-order rate constants have been measured for the Diels-Alder (DA) reactions of cyclopentadiene with dienophiles of varying hydrophobicity and hydrogen-bond acceptor capacity in water, in a series of organic solvents and in alcohol-water mixtures. The intramolecular DA reaction of

  1. Book of abstracts of the Fifth International School for young scientists and specialists Interaction of hydrogen isotopes with structural materials. IHISM-09 JUNIOR

    International Nuclear Information System (INIS)

    2009-01-01

    The book includes abstracts of presentations at the Fifth International School for young scientists and specialists Interaction of hydrogen isotopes with structural materials (IHISM-09 JUNIOR). Abstracts of lecture faculty and reports of young scientists and specialists covering the use of hydrogen isotopes in energetics, national economy and fundamental researches are given. Papers presented on the following topics: mechanical properties and structural transformations; kinetics and thermodynamics of interaction between hydrogen isotopes and solids including effects of radiogenic helium accumulation, hydrides and hydride transformations; equipment and research techniques

  2. Exchange reaction between hydrogen and deuterium. I. Importance of surface reactions in the steady-state mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, C; Gaillard-Cusin, F; James, H [Centre National de la Recherche Scientifique, 45 - Orleans-la-Source (France). Centre de Recherches sur la Chimie de Combustion et des Hautes Temperatures

    1978-05-01

    Investigation of heterogeneous initiation process of gas phase linear chain reactions is carried out through the study of H/sub 2/-D/sub 2/ exchange reaction. Experimental data under study concern mainly the stationary rate of HD formation and the prestationary proceeding. Steady-state method accounts for the first one of these data; it allows to clearly compare the wall process part to the part played by the homogeneous chain reaction towards HD formation. Activation energy of exchange elementary step between chemisorbed hydrogen (on silica) and gaseous deuterium has been evaluated: Esub(e1)=52+-1 Kcal/mole.

  3. Rate constant for reaction of atomic hydrogen with germane

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  4. GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium

    International Nuclear Information System (INIS)

    Bartram, Michael E.; Creighton, J. Randall

    1999-01-01

    Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(0001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N 15 H 3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N 2 of mixed isotopes below the onset of GaN sublimation, This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence G-aN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia

  5. Overview of light water/hydrogen-based low energy nuclear reactions

    International Nuclear Information System (INIS)

    Miley, George H.; Shrestha, Prajakti J.

    2006-01-01

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading. (author)

  6. An investigation of one- versus two-dimensional semiclassical transition state theory for H atom abstraction and exchange reactions.

    Science.gov (United States)

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-02-28

    We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.

  7. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1992-01-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM

  8. Reaction of hydrogen atoms produced by radiolysis and photolysis in solid phase at 4 and 77 K

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo

    1991-01-01

    The behavior of H atoms in the solid phase has been reviewed with special attention to comparison of H atoms produced by radiolysis with those produced by photolysis. The paper consists of three parts. I -Production of H atoms: (1) the experimental results which indicate H-atom formation in the radiolysis of solid alkane are summarized; (2) ESR saturation behavior of trapped H atoms depends upon the method of H-atom-production, i.e. photolysis or radiolysis, and upon the initial energy of H atoms in the photolysis. II - Diffusion of H atoms: (1) activation energies for thermally-activated diffusion of H atoms are shown; (2) quantum diffusion of H atoms in solid H 2 is explained in terms of repetition of tunneling reaction H 2 + H → H + H 2 . III -Reaction of H atoms: (1) reactions and trapping processes of hot H atoms have been shown in solid methane and argon by use of hot H atoms with specified initial energy; (2) when H atoms are produced by the radiolysis of solvent alkane or by the photolysis of HI in the alkane mixtures at 77 K, the H atoms react very selectively with solute alkane at low concentration. The selective reaction of the H atom has been found in eight matrices; (3) activation energy for a hydrogen-atom-abstraction reaction by thermal H atoms at low temperatures is less than than several kJ mol -1 because of quantum tunneling. The absolute rate constants for H 2 (D 2 , HD) + H(D) tunneling reactions have been determined experimentally in solid hydrogen at 4.2K; (4) theoretical studies for tunneling reactions H 2 (D 2 ,HD) + H(D) at ultralow temperatures were reviewed. The calculated rate constants were compared with the rate constants obtained experimentally. (author)

  9. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    Science.gov (United States)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  10. Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules

    International Nuclear Information System (INIS)

    Garrett, B.C.; Truhlar, D.G.

    1979-01-01

    Canonical variational transition state theory, microcanonical variational transition state theory, and Miller's unified statistical theory were used in an attempt to correct two major deficiencies of the conventional transition state theory. These are: (1) the necessity of extra assumptions to include quantum mechanical tunneling effects and (2) the fundamental assumption that trajectories crossing a dividing surface in phase space proceed directly to products. The accuracy of these approximate methods were tested by performing calculations for several collinear reactions of hydrogen, deuterium, chlorine, or iodine, with five isotopes of hydrogen molecules and comparison of these results with those from accurate quantitative calculations of the reaction probabilities as functions of energy and of the thermal rate constants as functions of temperature. 49 references, 28 figures, 17 tables

  11. MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Raoof, Jahan-Bakhsh; Hosseini, Sayed Reza; Ojani, Reza; Mandegarzad, Sakineh

    2015-01-01

    In this work, metal-organic framework Cu_3(BTC)_2 [BTC = 1,3,5-benzenetricarboxylate] (commonly known as MOF-199 or HKUST-1), is used as porous template for preparation of a Cu/nanoporous carbon composite. The MOF-derived Cu/nanoporous carbon composite (Cu/NPC composite) is synthesized by direct carbonization of the MOF-199 without any carbon precursor additive. The physical characterization of the solid catalyst is achieved by using a variety of different techniques, including XRD (X-ray powder diffraction), scanning electron microscopy, thermo-gravimetric analysis, and nitrogen physisorption measurements. The electrochemical results have shown that the Cu/NPC composite modified glassy carbon electrode (Cu/NPC/GCE) as a non-platinum electrocatalyst exhibited favorable catalytic activity for hydrogen evolution reaction, in spite of high resistance to faradic process. This behavior can be attributed to existence of Cu metal confirmed by XRD and/or high effective pore surface area (1025 m"2 g"−"1) in the Cu/NPC composite. The electron transfer coefficient and exchange current density for the Cu/NPC/GCE is calculated by Tafel plot at about 0.34 and 1.2 × 0"−"3 mAcm"−"2, respectively. - Graphical abstract: Metal organic framework-derived Cu/nanoporous carbon composite (Cu/NPC composite) was prepared by direct carbonization of MOF-199 without addition of any carbon source at 900 °C. The Cu/NPC/GCE demonstrated an excellent electrocatalytic activity towards hydrogen evolution reaction compared with bare GCE. - Highlights: • MDNPC (MOF-199 derived nanoporous carbon) is prepared by direct carbonization. • MOF-199 is utilized as a template without addition of carbon resource. • The MDNPC has a good electrocatalytic activity in hydrogen evolution reaction. • High BET surface area and hydrogen adsorption property improved catalyst activity.

  12. Reactions of dialkyl hydrogen phosphites with 2,3-diphenylindone

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Fuzhenkova, A.V.; Banderova, N.A.

    1987-01-01

    Dialkyl hydrogen phosphites are found to add to 2,3-diphenylindone at the carbonyl group with the formation of dialkyl 1-hydroxy-2,3-diphenylinden-1-yl phosphonates, which, under conditions of basic catalysis, are rearranged into diakyl 2,3-diphenylinden-1-yl phosphates, presumably as a result of phosphonate-phosphate rearrangement. Data derived by IR and NMR spectroscopy are included on the electronic and molecular structure of the resulting isomers. Electron density and spin-spin coupling constants are also determined

  13. Process of producing carbonaceous materials; reaction with hydrogen gases

    Energy Technology Data Exchange (ETDEWEB)

    1933-01-13

    A process is described for the production of valuable hydrocarbons by treating distillable carbonaceous materials together with hydrogen gases, under pressure and in contact with catalysts, the process consisting in adding to the original materials, first or during treatment, organic sulfonic acids together with metals from the fourth or eighth groups of the periodic system or a combination of these, or organic carbosilicic acids or inorganic acids containing oxides of sulfur or nitrogen or the anhydrides of these inorganic acids or variation of these compounds.

  14. Gas-Phase Reaction Pathways and Rate Coefficients for the Dichlorosilane-Hydrogen and Trichlorosilane-Hydrogen Systems

    Science.gov (United States)

    Dateo, Christopher E.; Walch, Stephen P.

    2002-01-01

    As part of NASA Ames Research Center's Integrated Process Team on Device/Process Modeling and Nanotechnology our goal is to create/contribute to a gas-phase chemical database for use in modeling microelectronics devices. In particular, we use ab initio methods to determine chemical reaction pathways and to evaluate reaction rate coefficients. Our initial studies concern reactions involved in the dichlorosilane-hydrogen (SiCl2H2--H2) and trichlorosilane-hydrogen (SiCl2H-H2) systems. Reactant, saddle point (transition state), and product geometries and their vibrational harmonic frequencies are determined using the complete-active-space self-consistent-field (CASSCF) electronic structure method with the correlation consistent polarized valence double-zeta basis set (cc-pVDZ). Reaction pathways are constructed by following the imaginary frequency mode of the saddle point to both the reactant and product. Accurate energetics are determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations (CCSD(T)) extrapolated to the complete basis set limit. Using the data from the electronic structure calculations, reaction rate coefficients are obtained using conventional and variational transition state and RRKM theories.

  15. Hydrogen-Bonding Catalysis of Tetraalkylammonium Salts in an Aza-Diels-Alder Reaction.

    Science.gov (United States)

    Kumatabara, Yusuke; Kaneko, Shiho; Nakata, Satoshi; Shirakawa, Seiji; Maruoka, Keiji

    2016-08-05

    A piperidine-derived tetraalkylammonium salt with a non-coordinating counteranion worked as an effective hydrogen-bonding catalyst in an aza-Diels-Alder reaction of imines and a Danishefsky diene. The hydrogen-bonding interaction between the ammonium salt and an imine was observed as part of a (1) H NMR titration study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Gaseous exchange reaction of deuterium between hydrogen and water on hydrophobic catalyst supporting platinum

    International Nuclear Information System (INIS)

    Izawa, Hirozumi; Isomura, Shohei; Nakane, Ryohei.

    1979-01-01

    The deuterium exchange reaction between hydrogen and water in the gas phase where the fed hydrogen gas is saturated with water vapor is studied experimentally by use of the proper hydrophobic catalysts supporting platinum. It is found that the activities of those catalysts for this reaction system are very high compared with the other known ones for the systems in which gas and liquid should coexist on catalyst surfaces, and that the apparent catalytic activity becomes larger as the amount of platinum supported on a catalyst particle increases. By analyses of the data the following informations are obtained. The exchange reaction can be expressed by a first order reversible reaction kinetics. The pore diffusion in the catalyst particles has significant effect on the overall reaction mechanisms. (author)

  17. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  18. Hydrogen isotopic exchange reaction in a trickle-bed

    International Nuclear Information System (INIS)

    Paek, Seung Woo; Ahn, Do Hee; Kim, Kwang Rag; Lee, Min Soo; Yim, Sung Paal; Chung, Hong Suk

    2005-01-01

    The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is ideally suited for extracting tritium from water because of its high separation factor and mild operating conditions. This process for different hydrogen isotope applications has been developed by AECL. A laboratory scale CECE was built and operated at Mound Laboratory. Belgium and Japan have also developed independently similar processes which are based on a hydrophobic catalyst. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. The liquid phase catalytic exchange columns having various structures were developed; and it has been recognized that a multistage type and a trickle-bed type are promising. The multistage type gave more successful results than the trickle-bed type. However, the structure of the column is complicated. The trickle-bed type has a significant advantage in that the structure of the column is quite simple: the hydrophobic catalysts or the catalysts and packings are packed within the column. This structure would lead us to a smaller column height than the multistage type. This paper deals with the experiment for the hydrogen isotope exchange in a trickle-bed reactor packed with a hydrophobic catalyst and the design of the catalytic column for the CECE to tritium recovery from light water

  19. Hydrogen isotopic exchange reaction in a trickle-bed

    Energy Technology Data Exchange (ETDEWEB)

    Paek, Seung Woo; Ahn, Do Hee; Kim, Kwang Rag; Lee, Min Soo; Yim, Sung Paal; Chung, Hong Suk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is ideally suited for extracting tritium from water because of its high separation factor and mild operating conditions. This process for different hydrogen isotope applications has been developed by AECL. A laboratory scale CECE was built and operated at Mound Laboratory. Belgium and Japan have also developed independently similar processes which are based on a hydrophobic catalyst. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. The liquid phase catalytic exchange columns having various structures were developed; and it has been recognized that a multistage type and a trickle-bed type are promising. The multistage type gave more successful results than the trickle-bed type. However, the structure of the column is complicated. The trickle-bed type has a significant advantage in that the structure of the column is quite simple: the hydrophobic catalysts or the catalysts and packings are packed within the column. This structure would lead us to a smaller column height than the multistage type. This paper deals with the experiment for the hydrogen isotope exchange in a trickle-bed reactor packed with a hydrophobic catalyst and the design of the catalytic column for the CECE to tritium recovery from light water.

  20. On line determination of deuterium in hydrogen water exchange reaction by mass spectrometry. IRP-10

    International Nuclear Information System (INIS)

    Sharma, J.D.; Alphonse, K.P.; Mishra, Sushama; Prabhu, S.A.; Mohan, Sadhana; Tangri, V.K.

    2007-01-01

    The Deuterium (D)/Hydrogen (H) analysis at low Concentration is generally carried out by Mass Spectrometry. Mass Spectrometer is specially designed for the measurement of Mass 2 and 3 ratio. The Deuterium analysis of water and hydrogen in concentration range of a few ppm to about 1% plays an important role in the Heavy Water Production Plants. For the enrichment of the Deuterium concentration in H 2 O by H 2 - H 2 O exchange a catalyst is essential as reaction is relatively slow. Heavy Water Division has developed in house Platinum based catalyst for the isotopic exchange of Hydrogen and Water

  1. Cycloaddition Reaction of Hydrogen-Bonded Zn(II)

    Indian Academy of Sciences (India)

    Solid-state Photochemical [2+2] Cycloaddition Reaction of ... and free bpe and lattice water molecules shows face-to-face, π ··· π stacking of two of the four free bpe molecules with coordinated .... were decanted and dried in air. [Yield: 0.068 g ...

  2. Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules.

    Science.gov (United States)

    Badra, Jihad; Elwardany, Ahmed E; Farooq, Aamir

    2014-06-28

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (C=O) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (C=O), and the prime is used to differentiate different neighboring environments of a methylene group):

  3. Reaction dynamics of molecular hydrogen on silicon surfaces

    DEFF Research Database (Denmark)

    Bratu, P.; Brenig, W.; Gross, A.

    1996-01-01

    of the preexponential factor by about one order of magnitude per lateral degree of freedom. Molecular vibrations have practically no effect on the adsorption/desorption dynamics itself, but lead to vibrational heating in desorption with a strong isotope effect. Ab initio calculations for the H-2 interaction...... between the two surfaces. These results indicate that tunneling, molecular vibrations, and the structural details of the surface play only a minor role for the adsorption dynamics. Instead, they appear to be governed by the localized H-Si bonding and Si-Si lattice vibrations. Theoretically, an effective......Experimental and theoretical results on the dynamics of dissociative adsorption and recombinative desorption of hydrogen on silicon are presented. Using optical second-harmonic generation, extremely small sticking probabilities in the range 10(-9)-10(-5) could be measured for H-2 and D-2 on Si(111...

  4. Ultrafine Iridium Oxide Nanorods Synthesized by Molten Salt Method toward Electrocatalytic Oxygen and Hydrogen Evolution Reactions

    International Nuclear Information System (INIS)

    Ahmed, Jahangeer; Mao, Yuanbing

    2016-01-01

    Highlights: • Ultrafine iridium oxide nanorods were synthesized by a molten salt method at 650 °C. • They show enhanced electrocatalytic activity to oxygen and hydrogen evolution reactions. • These results are comparable with, and in most cases, higher than reported data in the literature. • This study reports a novel synthetic process for IrO_2 but also a high efficient IrO_2 nanostructure. • These IrO_2 NRs are expected to serve as a benchmark to develop active electrocatalysts. - Abstract: Ultrafine iridium oxide nanorods (IrO_2 NRs) were successfully synthesized using a molten salt method at 650 °C. The structural and morphological characterizations of these IrO_2 NRs were carried out by powder X-ray diffraction, Raman spectroscopy and electron microscopic techniques. Compared to commercial IrO_2 nanoparticles (IrO_2 NPs) and previous reports, these IrO_2 NRs show enhanced electrocatalytic activity to oxygen and hydrogen evolution reactions by passing either N_2 or O_2 gas in a 0.5 M KOH electrolyte before electrochemical measurements, including cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Specifically, the current densities from the as-synthesized IrO_2 NRs and commercial IrO_2 NPs were measured in 0.5 M KOH electrolyte to be 70 and 58 (OER, deaerated, at 0.6 V versus Ag/AgCl), 71 and 61 (OER, O_2, from −0.10 to 1.0 V versus Ag/AgCl at 50 mV/s), and 25 and 14 (HER, deaerated, at −1.4 V versus Ag/AgCl) mA/cm"2, respectively. These results are comparable with, and in most cases, higher than reported data in the literature. Therefore, the current study reports not only a novel synthetic process for IrO_2 but also a high efficient IrO_2 nanostructure, and it is expected that these IrO_2 NRs can serve as a benchmark in the development of active OER and HER (photo)electrocatalysts for various applications.

  5. Book of abstracts of the 3rd International conference and the 3rd International School for young scientists Interaction of hydrogen isotopes with structural materials. IHISM-07

    International Nuclear Information System (INIS)

    2007-01-01

    The book involves abstracts of presentations at the 3rd International Conference and the 3rd International School for Young Scientists Interaction of Hydrogen Isotopes with Structural Materials (IHISM-07). The activities of Russian and foreign scientific centers associated with the use of hydrogen isotopes in power engineering, national economy and basic research are considered. The presentations cover the following areas: kinetics and interaction between hydrogen isotopes and solids including effects of radiogenic helium accumulation, hydrides and hydride transformations; structural transformations and mechanical properties; equipment and research techniques [ru

  6. Book of abstracts of the fourth international school for young scientists and specialists Interaction of hydrogen isotopes with structural materials (IHISM-08)

    International Nuclear Information System (INIS)

    2008-01-01

    The book includes abstracts of presentations at the 4th International School for young scientists and specialists Interaction of hydrogen isotopes with structural materials (IHISM-08). The lectures of lecturer and presentations of young scientists associated with the use of hydrogen isotopes in power engineering, national economy and basic research are considered. The presentations cover the following areas: kinetics and thermodynamics of interaction between hydrogen isotopes and solids including effects of radiogenic helium accumulation; hydrides and hydride transformations; structural transformations and mechanical properties; equipment and research techniques [ru

  7. Radiation induced chemical reaction of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Sugimoto, Shun-ichi; Nishii, Masanobu

    1985-01-01

    Previous studies of radiation induced chemical reactions of CO-H 2 mixture have revealed that the yields of oxygen containing products were larger than those of hydrocarbons. In the present study, methane was added to CO-H 2 mixture in order to increase further the yields of the oxygen containing products. The yields of most products except a few products such as formaldehyde increased with the addition of small amount of methane. Especially, the yields of trioxane and tetraoxane gave the maximum values when CO-H 2 mixture containing 1 mol% methane was irradiated. When large amounts of methane were added to the mixture, the yields of aldehydes and carboxylic acids having more than two carbon atoms increased, whereas those of trioxane and tetraoxane decreased. From the study at reaction temperature over the range of 200 to 473 K, it was found that the yields of aldehydes and carboxylic acids showed maxima at 323 K. The studies on the effects of addition of cationic scavenger (NH 3 ) and radical scavenger (O 2 ) on the products yields were also carried out on the CO-H 2 -CH 4 mixture. (author)

  8. Reaction of hydroborate anions with liquid hydrogen fluoride

    International Nuclear Information System (INIS)

    Volkov, V.V.; Myakishev, K.G.

    1978-01-01

    The reaction of anhydrous liquid HF with salts of the decahydro-closodecarborate (2) ion B 10 H 10 2- at room temperature or a decreased temperature leads to the formation of complex mixtures of high-molecular boranes with yields of 88 to 92 %. This solid, yellow, nonvolatile product contains traces of B 10 H 14 and B 18 H 22 . The average molecular masses of the borane mixtures obtained are in the range of 438 - 992. The complex composition of the mixtures was confirmed by thin-layer chromatography on silica gel. The IR and NMR spectra of the products are presented. The possible mechanism of the reaction between HF and B 10 H 10 2- with the formation of higher boron hydrides is discussed. Salts of B 12 H 10 2- and B 10 Cl 10 2- do not react with HF; KBF 4 and CsB 9 H 14 are decomposed by HF with the formation of MBF 4

  9. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-01

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load

  10. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-15

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load.

  11. Electrocatalytic oxygen reduction and hydrogen evolution reactions on phthalocyanine modified electrodes: Electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif, E-mail: akoca@eng.marmara.edu.tr [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey); Kalkan, Ayfer; Bayir, Zehra Altuntas [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey)

    2011-06-30

    Highlights: > Electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines were performed. > The presence of O{sub 2} influences both oxygen reduction reaction and the electrochemical behaviors of the complexes. > Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. > CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. - Abstract: This study describes electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring of the electrocatalytic reduction of molecular oxygen and hydronium ion on the phthalocyanine-modified electrodes. For this purpose, electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines (MPc) bearing tetrakis-[4-((4'-trifluoromethyl)phenoxy)phenoxy] groups were performed. While CoPc gives both metal-based and ring-based redox processes, H{sub 2}Pc, ZnPc and CuPc show only ring-based electron transfer processes. In situ electrocolorimetric method was applied to investigate the color of the electrogenerated anionic and cationic forms of the complexes. The presence of O{sub 2} in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes, which indicate electrocatalytic activity of the complexes for the oxygen reduction reaction. Perchloric acid titrations monitored by voltammetry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. The nature of the metal center changes the electrocatalytic activities for hydrogen evolution reaction in aqueous solution. Although CuPc has an inactive metal center, its electrocatalytic activity is recorded more than CoPc for H{sup +} reduction in aqueous

  12. The reaction of hydrogen atoms with hydrogen peroxide as a function of temperature

    DEFF Research Database (Denmark)

    Lundström, T.; Christensen, H.; Sehested, K.

    2001-01-01

    The temperature dependence for the reaction of H atoms with H2O2 at pH 1 has been determined using pulse radiolysis technique. The reaction was studied in the temperature range 10-120 degreesC. The rate constant at 25 degreesC was found to be 5.1 +/- 0.5 x 10(7) dm(3) mol(-1) s(-1) and the activa......The temperature dependence for the reaction of H atoms with H2O2 at pH 1 has been determined using pulse radiolysis technique. The reaction was studied in the temperature range 10-120 degreesC. The rate constant at 25 degreesC was found to be 5.1 +/- 0.5 x 10(7) dm(3) mol(-1) s(-1...

  13. High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ruquan; Liu, Yuanyue; Peng, Zhiwei; Wang, Tuo; Jalilov, Almaz S.; Yakobson, Boris I.; Wei, Su-Huai; Tour, James M.

    2017-01-18

    The development of catalytic materials for the hydrogen oxidation, hydrogen evolution, oxygen reduction or oxygen evolution reactions with high reaction rates and low overpotentials are key goals for the development of renewable energy. We report here Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution. For HER performance in alkaline media, sample Ru/NG-750 reaches 10 mA cm-2 at an overpotential of 8 mV with a Tafel slope of 30 mV dec-1. The high HER performance in alkaline solution is advantageous because most catalysts for ORR and oxygen evolution reaction (OER) also prefer alkaline solution environment whereas degrade in acidic electrolytes. For ORR performance, Ru/NG effectively catalyzes the conversion of O2 into OH- via a 4e process at a current density comparable to that of Pt/C. The unusual catalytic activities of Ru(0) nanoclusters reported here are important discoveries for the advancement of renewable energy conversion reactions.

  14. Shell and explosive hydrogen burning. Nuclear reaction rates for hydrogen burning in RGB, AGB and Novae

    Energy Technology Data Exchange (ETDEWEB)

    Boeltzig, A. [Gran Sasso Science Institute, L' Aquila (Italy); Bruno, C.G.; Davinson, T. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Cavanna, F.; Ferraro, F. [Dipartimento di Fisica, Universita di Genova (Italy); INFN, Genova (Italy); Cristallo, S. [Osservatorio Astronomico di Collurania, INAF, Teramo (Italy); INFN, Napoli (Italy); Depalo, R. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN, Padova (Italy); DeBoer, R.J.; Wiescher, M. [University of Notre Dame, Institute for Structure and Nuclear Astrophysics, Joint Institute for Nuclear Astrophysics, Notre Dame, Indiana (United States); Di Leva, A.; Imbriani, G. [Dipartimento di Fisica, Universita di Napoli Federico II, Napoli (Italy); INFN, Napoli (Italy); Marigo, P. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Terrasi, F. [Dipartimento di Matematica e Fisica Seconda Universita di Napoli, Caserta (Italy); INFN, Napoli (Italy)

    2016-04-15

    The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this paper, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions. (orig.)

  15. Exchange reaction of acetylene-d2 with hydrogen chloride

    International Nuclear Information System (INIS)

    Bopp, A.F.; Kern, R.D.

    1975-01-01

    A mixture containing 3 percent each of the reactants C 2 D 2 and HCl in an Ne--Ar diluent was studied over the temperature range 1650 to 2600 0 K utilizing a shock tube coupled to a time-of-flight mass spectrometer. Plots of the mole fractions f of the exchange products, DCl and C 2 HD, revealed two distinct regions of growth: (a) an initial low conversion region characterized by an induction period t/sub i/; and (b) a region of accelerated exchange during which exchange products were formed with a quadratic dependence of the reaction time. These two regions labeled a and b were combined using two empirical equations, 1 - f/sub a//f/sub eq,a/ = exp [-k/sub a/[M]t], where t less than or equal to t/sub i/, and 1 - f/sub b//f/sub eq,b/ = exp [-k/sub b/[M](t - t/sub i/) 2 ], in order to represent the entire reaction profile at any given temperature within the interval investigated. The Arrhenius parameters for k/sub a/ and k/sub b/ were determined to be 10 11 . 15+-0 . 30 exp (-19990 +- 2850/RT) and 10 16 . 40+-0 . 41 exp (-31480 +- 4200/RT), respectively, for DCl and 10 11 . 69+-0 . 29 exp (-19150 +- 2740/RT) and 10 15 . 24+-0 . 34 exp (-17620 +- 3480/RT) for C 2 HD. The units for k/sub a/ are cm 3 mol -1 sec -1 and cm 3 mol -1 sec -2 for k/sub b/. Activation energies are reported in cal mol -1 . Comparison with the profiles obtained for acetylene pyrolysis strongly suggests that the mechanism for the exchange is atomic. Furthermore, the exchange experiments indicate that the initial step in the pyrolysis of acetylene is the disproportionation reaction, 2C 2 H 2 → C 2 H + C 2 H 3

  16. Silicon Nano wires with MoS_x and Pt as Electrocatalysts for Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Hsieh, S.H.; Ho, S.T.; Chen, W.J.

    2016-01-01

    A convenient method was used for synthesizing Pt-nanoparticle//silicon nano wires nano composites. Obtained Pt-/silicon nano wires electrocatalysts were characterized by transmission electron microscopy (TEM). The hydrogen evolution reaction efficiency of the Pt-/silicon nano wire nano composite catalysts was assessed by examining polarization and electrolysis measurements under solar light irradiations. The electrochemical characterizations demonstrate that Pt-/silicon nano wire electrodes exhibited an excellent catalytic activity for hydrogen evolution reaction in an acidic electrolyte. The hydrogen production capability of Pt-/silicon nano wires is also comparable to /silicon nano wires and Pt/silicon nano wires. Electrochemical impedance spectroscopy experiments suggest that the enhanced performance of Pt-/silicon nano wires can be attributed to the fast electron transfer between Pt-/silicon nano wire electrodes and electrolyte interfaces.

  17. Selected specific rates of reactions of transients from water in aqueous solution. II. Hydrogen atom

    International Nuclear Information System (INIS)

    Anbar, M.; Farhataziz; Ross, A.B.

    1975-05-01

    Rates of reactions of hydrogen atoms (from radiolysis of water and other sources) with organic and inorganic molecules, ions, and transients in aqueous solution were tabulated. Directly measured rates obtained by kinetic spectroscopy or conductimetric methods, and relative rates determined by competition kinetics are included. (U.S.)

  18. Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng; Yang, Xiulin; Hedhili, Mohamed N.; Li, Henan; Min, Shixiong; Ming, Jun; Huang, Kuo-Wei; Zhang, Wenjing; Li, Lain-Jong

    2017-01-01

    There exists a strong demand to replace expensive noble metal catalysts with efficient and earth-abundant catalysts for hydrogen evolution reaction (HER). Recently the Co- and Mo-based sulfides such as CoS2, Co9S8, and MoSx have been considered

  19. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    Science.gov (United States)

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  20. Numerical comparison of hydrogen-air reaction mechanisms for unsteady shockinduced combustion applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Pradeep; Kim, Kui Soon; Oh, Se Jong; Choi, Jeong Yeol [Pusan National University, Busan (Korea, Republic of)

    2015-03-15

    An unsteady shock-induced combustion (SIC) is characterized by the regularly oscillating combustion phenomenon behind the shock wave supported by the blunt projectile flying around the speed of Chapman-Jouguet detonation wave. The SIC is the coupling phenomenon between the hypersonic flow and the chemical kinetics, but the effects of chemical kinetics have been rarely reported. We compared hydrogen-air reaction mechanisms for the shock-induced combustion to demonstrate the importance of considering the reaction mechanisms for such complex flows. Seven hydrogen-air reaction mechanisms were considered, those available publically and used in other researches. As a first step in the comparison of the hydrogen combustion, ignition delay time of hydrogen-oxygen mixtures was compared at various initial conditions. Laminar premixed flame speed was also compared with available experimental data and at high pressure conditions. In addition, half-reaction length of ZND (Zeldovich-Neumann-Doering) detonation structure accounts for the length scale in SIC phenomena. Oscillation frequency of the SIC is compared by running the time-accurate 3rd-order Navier-Stokes CFD code fully coupled with the detailed chemistry by using four levels of grid resolutions.

  1. Numerical comparison of hydrogen-air reaction mechanisms for unsteady shockinduced combustion applications

    International Nuclear Information System (INIS)

    Kumar, P. Pradeep; Kim, Kui Soon; Oh, Se Jong; Choi, Jeong Yeol

    2015-01-01

    An unsteady shock-induced combustion (SIC) is characterized by the regularly oscillating combustion phenomenon behind the shock wave supported by the blunt projectile flying around the speed of Chapman-Jouguet detonation wave. The SIC is the coupling phenomenon between the hypersonic flow and the chemical kinetics, but the effects of chemical kinetics have been rarely reported. We compared hydrogen-air reaction mechanisms for the shock-induced combustion to demonstrate the importance of considering the reaction mechanisms for such complex flows. Seven hydrogen-air reaction mechanisms were considered, those available publically and used in other researches. As a first step in the comparison of the hydrogen combustion, ignition delay time of hydrogen-oxygen mixtures was compared at various initial conditions. Laminar premixed flame speed was also compared with available experimental data and at high pressure conditions. In addition, half-reaction length of ZND (Zeldovich-Neumann-Doering) detonation structure accounts for the length scale in SIC phenomena. Oscillation frequency of the SIC is compared by running the time-accurate 3rd-order Navier-Stokes CFD code fully coupled with the detailed chemistry by using four levels of grid resolutions.

  2. Industrial applications of plasma, microwave and ultrasound techniques : nitrogen-fixation and hydrogenation reactions

    NARCIS (Netherlands)

    Hessel, V.; Cravotto, G.; Fitzpatrick, P.; Patil, B.S.; Lang, J.; Bonrath, W.

    2013-01-01

    The MAPSYN project (Microwave, Acoustic and Plasma assisted SYNtheses) aims at nitrogen-fixation reactions intensified by plasma catalysis and selective hydrogenations intensified by microwaves, possibly assisted by ultrasound. Energy efficiency is the key motif of the project and the call of the

  3. Thermometric titration of cadmium with sodium diethyldithiocarbamate, with oxidation by hydrogen peroxide as indicator reaction.

    Science.gov (United States)

    Hattori, T; Yoshida, H

    1987-08-01

    A new method of end-point indication is described for thermometric titration of cadmium with sodium diethyldithiocarbamate (DDTC). It is based on the redox reaction between hydrogen peroxide added to the system before titration, and the first excess of DDTC. Amounts of cadmium in the range 10-50 mumoles are titrated within 1% error.

  4. Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction

    DEFF Research Database (Denmark)

    Kemppainen, Erno; Halme, Janne; Hansen, Ole

    2016-01-01

    is the evolution and transport of gaseous H2, since HER leads to the continuous formation of H2 bubbles near the electrode. We present a numerical model that includes the transport of both gaseous and dissolved H2, as well as mass exchange between them, and combine it with a kinetic model of HER at platinum (Pt......) nanoparticle electrodes. We study the effect of the diffusion layer thickness and H2 dissolution rate constant on the importance of gaseous transport, and the effect of equilibrium hydrogen coverage and Pt loading on the kinetic and mass transport overpotentials. Gaseous transport becomes significant when...

  5. A Fluorescent Molecular Probe for the Detection of Hydrogen Based on Oxidative Addition Reactions with Crabtree-Type Hydrogenation Catalysts.

    Science.gov (United States)

    Kos, Pavlo; Plenio, Herbert

    2015-11-02

    A Crabtree-type Ir(I) complex tagged with a fluorescent dye (bodipy) was synthesized. The oxidative addition of H2 converts the weakly fluorescent Ir(I) complex (Φ=0.038) into a highly fluorescent Ir(III) species (Φ=0.51). This fluorogenic reaction can be utilized for the detection of H2 and to probe the oxidative addition step in the catalytic hydrogenation of olefins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-01-01

    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cycle (ηcycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  7. The effect of moderators on the reactions of hot hydrogen atoms with methane

    CERN Document Server

    Estrup, Peder J.

    1960-01-01

    The reaction of recoil tritium with methane has been examined in further detail. The previous hypothesis that this system involves a hot displacement reaction of high kinetic energy hydrogen to give CH$_{3}$T, CH$_{2}$T and HT is confirmed. The effect of moderator on this process is studied by the addition of noble gases. As predicted these gases inhibit the hot reaction action, their efficiency in this respect being He > Ne > A > Se. The data are quantitatively in accord with a theory of hot atom kinetics. The mechanism of the hot displacement process is briefly discussed.

  8. Ion cyclotron resonance study of reactions of ions with hydrogen atoms

    International Nuclear Information System (INIS)

    Karpas, Z.; Anicich, V.; Huntress, W.T. Jr.

    1979-01-01

    Reactions of H 2 + , HeH + , and CO 2 + ions with hydrogen atoms, and the reactions of D 2 + , CO 2 + , CO + , N 2 + and HCN + with deuterium atoms, were studied using ion cyclotron resonance techniques. These reactions proceed predominantly via a charge transfer mechanism. The rate constants measured are: 6.4, 9.1, 1.1, 5.0, 0.84, 0.90, 1.2, and 0.37 x 10 -10 cm 3 /sec, respectively. Hydrocarbon ions of the types CH/sub n/ + and C 2 H/sub n/ + , where n=2--4, do not react with H or D atoms

  9. Chemical interesterification of soybean oil and fully hydrogenated soybean oil: Influence of the reaction time

    International Nuclear Information System (INIS)

    Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Grimaldi, Renato; Goncalves, Lireny Aparecida Guaraldo

    2009-01-01

    Chemical interesterification is an important alternative to produce zero trans fats. In practice, however, excessive reaction times are used to ensure complete randomization. This work evaluated the influence of the reaction time on the interesterification of soybean oil/fully hydrogenated soybean oil blend, carried out in the following conditions: 100 deg C, 500 rpm stirring speed, 0.4% (w/w) sodium methoxide catalyst. The triacylglycerol composition, solid fat content and melting point analysis showed that the reaction was very fast, reaching the equilibrium within 5 min. This result suggests the interesterification can be performed in substantially lower times, with reduction in process costs. (author)

  10. Electrochemical behavior of NixW1−x materials as catalyst for hydrogen evolution reaction in alkaline media

    International Nuclear Information System (INIS)

    Oliver-Tolentino, Miguel A.; Arce-Estrada, Elsa M.; Cortés-Escobedo, Claudia A.; Bolarín-Miro, Ana M.; Sánchez-De Jesús, Félix; González-Huerta, Rosa de G.; Manzo-Robledo, Arturo

    2012-01-01

    Highlights: ► The electrochemical techniques used in this study elucidated the Ni–W surface state. ► The Ni–W materials were effective for the hydrogen evolution reaction. ► The prepared alloys exhibited higher catalytic activity than their precursors. ► The preparation method is relatively simple and effective procedure. - Abstract: In the present work, results of electrochemical evaluation, as well as morphological and structural characterization of Ni x W 1−x materials with x = 0.77, 0.64, 0.4, 0.19 and 0.07 processed by means of high energy ball milling from high purity powders are presented. Also, the electrocatalytic performance on the hydrogen evolution reaction (HER) of the Ni x W 1−x materials evaluated by linear polarization and cyclic voltammetry techniques in alkaline media at room temperature is discussed. The structural and morphological characterization of the as-prepared materials was carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results indicated a small-particle clusters and solid solution formation. According to the kinetics parameters the best electrocatalytic activity was observed at Ni 64 W 36 .

  11. Evaluation of a commercial packed bed flow hydrogenator for reaction screening, optimization, and synthesis

    Directory of Open Access Journals (Sweden)

    Marian C. Bryan

    2011-08-01

    Full Text Available The performance of the ThalesNano H-Cube®, a commercial packed bed flow hydrogenator, was evaluated in the context of small scale reaction screening and optimization. A model reaction, the reduction of styrene to ethylbenzene through a 10% Pd/C catalyst bed, was used to examine performance at various pressure settings, over sequential runs, and with commercial catalyst cartridges. In addition, the consistency of the hydrogen flow was indirectly measured by in-line UV spectroscopy. Finally, system contamination due to catalyst leaching, and the resolution of this issue, is described. The impact of these factors on the run-to-run reproducibility of the H-Cube® reactor for screening and reaction optimization is discussed.

  12. Electronic interactions decreasing the activation barrier for the hydrogen electro-oxidation reaction

    International Nuclear Information System (INIS)

    Santos, Elizabeth; Schmickler, Wolfgang

    2008-01-01

    A unified model for electrochemical electron transfer reactions which explicitly accounts for the electronic structure of the electrode recently proposed by us is applied to the hydrogen oxidation reaction at different metal electrocatalysts. We focus on the changes produced in the transition state (saddle point) as a consequence of the interactions with d-bands. We discuss different empirical correlations between properties of the metal and catalytic activity proposed in the past. We show which role is played by the band structure of the different metals and its interaction with the molecule for decreasing the activation barrier. Finally, we demonstrate why some metals are better electrocatalysts for the hydrogen electro-oxidation reaction than others

  13. Incident angle dependence of reactions between graphene and hydrogen atom by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Saito, Seiki; Nakamura, Hiroaki; Ito, Atsushi

    2010-01-01

    Incident angle dependence of reactions between graphene and hydrogen atoms are obtained qualitatively by classical molecular dynamics simulation under the NVE condition with modified Brenner reactive empirical bond order (REBO) potential. Chemical reaction depends on two parameters, i.e., polar angle θ and azimuthal angle φ of the incident hydrogen. From the simulation results, it is found that the reaction rates strongly depend on polar angle θ. Reflection rate becomes larger with increasing θ, and the θ dependence of adsorption rate is also found. The θ dependence is caused by three dimensional structure of the small potential barrier which covers adsorption sites. φ dependence of penetration rate is also found for large θ. (author)

  14. MRI of Heterogeneous Hydrogenation Reactions Using Parahydrogen Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Burt, Scott Russell [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    The power of magnetic resonance imaging (MRI) is its ability to image the internal structure of optically opaque samples and provide detailed maps of a variety of important parameters, such as density, diffusion, velocity and temperature. However, one of the fundamental limitations of this technique is its inherent low sensitivity. For example, the low signal to noise ratio (SNR) is particularly problematic for imaging gases in porous materials due to the low density of the gas and the large volume occluded by the porous material. This is unfortunate, as many industrially relevant chemical reactions take place at gas-surface interfaces in porous media, such as packed catalyst beds. Because of this severe SNR problem, many techniques have been developed to directly increase the signal strength. These techniques work by manipulating the nuclear spin populations to produce polarized} (i.e., non-equilibrium) states with resulting signal strengths that are orders of magnitude larger than those available at thermal equilibrium. This dissertation is concerned with an extension of a polarization technique based on the properties of parahydrogen. Specifically, I report on the novel use of heterogeneous catalysis to produce parahydrogen induced polarization and applications of this new technique to gas phase MRI and the characterization of micro-reactors. First, I provide an overview of nuclear magnetic resonance (NMR) and how parahydrogen is used to improve the SNR of the NMR signal. I then present experimental results demonstrating that it is possible to use heterogeneous catalysis to produce parahydrogen-induced polarization. These results are extended to imaging void spaces using a parahydrogen polarized gas. In the second half of this dissertation, I demonstrate the use of parahydrogen-polarized gas-phase MRI for characterizing catalytic microreactors. Specifically, I show how the improved SNR allows one to map parameters important for characterizing the heat and mass

  15. Kinetics of the hydrogen production reaction in a copper-chlorine water splitting plant

    International Nuclear Information System (INIS)

    Zamfirescu, C.; Naterer, G.F.; Dincer, I.

    2009-01-01

    The exothermic reaction of HCl with particulate Cu occurs during hydrogen production step in the thermochemical copper-chlorine (Cu-Cl) water splitting cycle. In this paper, this chemical reaction is modeled kinetically, and a parametric study is performed to determine the influences of particle size, temperature and molar ratios on the reaction kinetics. It is determined that the residence time of copper particles varies between 10 and 100 s, depending on the operating conditions. The hydrogen conversion at equilibrium varies between 55 and 85%, depending on the reaction temperature. The heat flux at the particle surface, caused by the exothermic enthalpy of reaction, reaches about 3,000 W/m 2 when the particle shrinks to 0.1% from its initial size. A numerical algorithm is developed to solve the moving boundary Stefan problem with a chemical reaction. It predicts the shrinking of copper particles based on the hypothesis that the chemical reaction and heat transfer are decoupled. The model allows for estimation of the temperature of the copper particle, assumed spherical, in the radial direction. The maximum temperature at the interface is higher than the melting point of CuCl by 10-50 o C, depending on the assumed operating conditions. (author)

  16. Decarbonylation and hydrogenation reactions of allyl alcohol and acrolein on Pd(110)

    Science.gov (United States)

    Shekhar, Ratna; Barteau, Mark A.

    1994-11-01

    Allyl alcohol and acrolein reactions on the Pd(110) surface were investigated using temperature programmed desorption. For both unsaturated oxygenates, three coverage-dependent reaction pathways were observed. At low coverages, allyl alcohol decomposed completely to CO, hydrogen and carbonaceous species on the surface. For θ > 0.15 monolayer, ethylene (and small amounts of ethane) desorbed at ca. 295 K. Near saturation coverages, desorption of propanal was detected at ca. 235 K. The parent molecule, allyl alcohol, desorbed only after exposures sufficient to saturate these channels. Acrolein decomposition spectra were similar to those observed for allyl alcohol decomposition on the clean surface. Additional experiments with allyl alcohol on hydrogen- and deuterium-precoveredPd(110) surfaces demonstrated increased hydrogenation of the C 2-hydrocarbon products along with hydrogenation of allyl alcohol to 1-propanol. However, in contrast to previous results for allyl alcohol on the Pd(111) surface, there was no evidence for C-O scission reactions of any C 3 oxygenate on Pd(110).

  17. Study on the surface reaction of uranium metal in hydrogen atmosphere with XPS

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1998-01-01

    The surface reactions of uranium metal in hydrogen atmosphere at 25 degree C and 200 degree C and effects of temperature and carbon monoxide to the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between H 2 and uranium metal at 25 degree C leads to the further oxidation of surface layer of metal due to traces of water vapor. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing exposure to H 2 in the initial stages. The U4f 7/2 binding energy of UH 3 has been found to be 378.6 eV. Investigation indicates carbon monoxide inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmosphere

  18. Molybdenum acetate like precursor of molybdenum carburized supported on alumina: a catalyst for hydrogenation reactions

    International Nuclear Information System (INIS)

    Petkovic, Lucia M; Parra, Ruben D; Marquez Manuel; Larsen, Gustavo

    1994-01-01

    The stability of the Al203 supported dimers under relatively high temperatures and hydrocarbon/H2 (carburizing) atmospheres is reported also, it has been developed a new method for Mo2 loading of the support based on the wet impregnation of the latter. Since carbided Mo is active for hydrogenations, the isobutene/H2 has been chosen as the probe reaction. Al203 supported Mo2(Ac)4 results in a catalyst active for isobutene hydrogenation after treatment with a H2/C2H6 2:1 mixture at 753 k

  19. Regularities of catalytic reactions of hydrogen, ethane and ethylene with elementary sulfur

    International Nuclear Information System (INIS)

    Zazhigalov, V.A.

    1978-01-01

    Shown is the decisive role of metal-sulfur bond stability for activity determination of metal sulfides (WS 2 , MoS 2 , CdS) in interaction reactions of elementary sulfur and hydrogen, ethane and ethylene. Found is the regularity of changing the relative reactiveness of the given substances and a conclusion is made about uniformity of the investigated catalyst processes. The results of hydrogen, ethane and ethylene oxidation by oxygen and sulfur are compared, the semilarity of these processes being pointed out

  20. New method for the hydrogen isotope exchange reaction in a hydrophobic catalyst bed

    International Nuclear Information System (INIS)

    Asakura, Y.; Kikuchi, M.; Yusa, H.

    1982-01-01

    To improve the isotope exchange reaction efficiency between water and hydrogen, a new reactor in which water mists and hydrogen gas react cocurrently was studied. To apply this to the enrichment of tritium in heavy water, a dual temperature isotope exchange reactor which is composed of cocurrent low temperature reactors and the usual countercurrent high temperature reactor was proposed and analyzed using a McCabe-Thiele diagram. By utilizing cocurrent reactors, in combination, the necessary catalyst volume can be reduced to one-tenth as compared with the usual countercurrent low temperature reactor. 17 refs

  1. Hydrogen evolution reaction on electrodes with different PT/C loadings by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Chavez, L. [Inst. Tecnologico de Chihuahua 2, Chihuahua, Chih (Mexico); Ortega-Chavez, L.; Herrera-Peraza, E. [Centro de Investigacion en Materiales Avanzados, Chiuahua, Chih (Mexico); Verde, Y. [Inst. Tecnologico de Cancun, Cancun, Quintana Roo (Mexico)

    2008-04-15

    One of the most widely studied reactions in electrochemistry is the hydrogen evolution reaction (HER). HER is important for the development of water hydrolysis and fuel cell technologies. Because hydrogen-substrate interaction determines oxygen reduction efficiency, an understanding of the chemical and electronic state of hydrogen adsorbed on the electrocatalyst surface is required. Electrochemical impedance spectroscopy (EIS) is a proven highly efficient technique for interface characterization and kinetic parameter determination for different reactions carried out on interfaces. This article presented a study that utilized EIS for characterizing electrodes under HER by implementing a rotating disc electrode with different carbon supported platinum nanoparticles loadings and different potentials in acidic solutions. The results collected by EIS were analyzed in terms of equivalent circuits to calculate different parameters which were compared by statistical analysis. The study also considered the Volmer, Heyrovsky and Tafel steps in the HER reaction as well as a single electro-absorbed intermediate species. The article discussed the experimental set-up with reference to measurements, simulation and fitting. Parameters analysis using ANOVA were reviewed. It was concluded that an increase in impedance occurs when platinum loading decreases in both high and low frequencies. 22 refs., 1 tab., 5 figs.

  2. Numerical simulation of hydrogen-air reacting flows in rectangular channels with catalytic surface reactions

    Science.gov (United States)

    Amano, Ryoichi S.; Abou-Ellail, Mohsen M.; Elhaw, Samer; Saeed Ibrahim, Mohamed

    2013-09-01

    In this work a prediction was numerically modeled for a catalytically stabilized thermal combustion of a lean homogeneous mixture of air and hydrogen. The mixture flows in a narrow rectangular channel lined with a thin coating of platinum catalyst. The solution using an in-house code is based on the steady state partial differential continuity, momentum and energy conservation equations for the mixture and species involved in the reactions. A marching technique is used along the streamwise direction to solve the 2-D plane-symmetric laminar flow of the gas. Two chemical kinetic reaction mechanisms were included; one for the gas phase reactions consisting of 17 elementary reactions; of which 7 are forward-backward reactions while the other mechanism is for the surface reactions—which are the prime mover of the combustion under a lean mixture condition—consisting of 16 elementary reactions. The results were compared with a former congruent experimental work where temperature was measured using thermocouples, while using PLIF laser for measuring water and hydrogen mole fractions. The comparison showed good agreement. More results for the velocities, mole fractions of other species were carried out across the transverse and along the streamwise directions providing a complete picture of overall mechanism—gas and surface—and on the production, consumptions and travel of the different species. The variations of the average OH mole fraction with the streamwise direction showed a sudden increase in the region where the ignition occurred. Also the rate of reactions of the entire surface species were calculated along the streamwise direction and a surface water production flux equation was derived by calculating the law of mass action's constants from the concentrations of hydrogen, oxygen and the rate of formation of water near the surface.

  3. Ab initio molecular dynamics simulations for the role of hydrogen in catalytic reactions of furfural on Pd(111)

    Science.gov (United States)

    Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  4. Enhanced Hydrogen Evolution Reactions on Nanostructured Cu{sub 2}ZnSnS{sub 4} (CZTS) Electrocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Digraskar, Renuka V.; Mulik, Balaji B. [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MH (India); Walke, Pravin S. [National Centre for Nanosciences and Nanotechnology, University of Mumbai, Mumbai 400098, MH (India); Ghule, Anil V. [Department of Chemistry, Shivaji University, Kolhapur, 416004, MH (India); Sathe, Bhaskar R., E-mail: bhaskarsathe@gmail.com [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MH (India)

    2017-08-01

    Graphical abstract: CZTS nano-electrocatalyst (2.6 ± 0.4 nm) for HER is synthesized by one step sonochemical method with uniform size distribution, which shows promisingly lower onset potential with higher current density and longer stability. - Highlights: • The nanostructured Cu{sub 2}ZnSnS{sub 4} (CZTS; ∼3 nm) based electrocatalytic systems were developed by facile sonochemical method. • The novel Cu{sub 2}ZnSnS{sub 4} based nanoclustered cathode improves the electrocatalytic performance toward hydrogen generation reaction (HER). • The electrocatalytic result exhibits lower Tafel slope, higher exchange current density, excellent current stability and lower charge transfer resistance. • The high activity due to synergetic effect of Cu, Zn, Sn and S from their internal cooperative supports. - Abstract: A novel and facile one-step sonochemical method is used to synthesize Cu{sub 2}ZnSnS{sub 4} (CZTS) nanoparticles (2.6 ± 0.4 nm) as cathode electrocatalyst for hydrogen evolution reactions. The detailed morphology, crystal and surface structure, and composition of the CZTS nanostructures were characterized by high resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), X-ray diffraction, Raman spectroscopy, FTIR analysis, Brunauer−Emmett−Teller (BET) surface area measurements, Electron dispersive analysis, X-ray photoelectron spectroscopy respectively. Electrocatalytic abilities of the nanoparticles toward Hydrogen Evolution Reactions (HER) were verified through cyclic voltammograms (CV) and Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements. It reveals enhanced activity at lower onset potential 300 mV v/s RHE, achieved at exceptionally high current density −130 mA/cm{sup 2}, which is higher than the existing non-nobel metal based cathodes. Further result exhibits Tafel slope of 85 mV/dec, exchange current density of 882 mA/cm{sup 2}, excellent

  5. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.

    Science.gov (United States)

    Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min

    2017-02-09

    The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.

  6. Theoretical study on platinum-catalyzed isotope exchange reaction mechanism of hydrogen and liquid water

    International Nuclear Information System (INIS)

    Hu Sheng; Wang Heyi; Luo Shunzhong

    2009-04-01

    Based on electron and vibration approximate means and the density function theory B3LYP, the ΔG degree and equilibrium pressures of adsorption and dissociation reactions of H 2 and water vapor on Pt surface have been calculated. The adsorption, dissociation and coadsorption actions of H 2 and water were analyzed. According to the ΔG degree, hydrogen molecule combines with metal atoms in single atom, and water vapor molecule has no tendency to dissociate on Pt surface. The dissociation of hydrogen molecule would hold back the direct adsorption of water vapor molecules on Pt surface. The structures of Pt-H (OH 2 ) n + (n=1, 2, 3) hydroniums were optimized. According to the mulliken overlap populations, Pt-H (OH 2 ) + is not stable or produced. Hydrogen isotope exchange occurs between hydration layer and D atoms which adsorb on Pt surface via intermediates (H 2 O) n D + (ads) (n≥2). (authors)

  7. Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal: Homogeneous-heterogeneous methane reaction pathways

    International Nuclear Information System (INIS)

    Li, Lin; Borry, Richard W.; Iglesia, Enrique

    2000-01-01

    Detailed kinetic-transport models were used to explore thermodynamic and kinetic barriers in the non-oxidative conversion of CH4 via homogeneous and homogeneous-heterogeneous pathways and the effects of continuous hydrogen removal and of catalytic sites on attainable yields of useful C2-C10 products. The homogeneous kinetic model combines separately developed models for low-conversion pyrolysis and for chain growth to form large aromatics and carbon. The H2 formed in the reaction decreases CH4 pyrolysis rates and equilibrium conversions and it favors the formation of lighter products. The removal of H2 along tubular reactors with permeable walls increases reaction rates and equilibrium CH4 conversions. C2-C10 yields reach values greater than 90 percent at intermediate values of dimensionless transport rates (delta=1-10), defined as the ratio hydrogen transport and methane conversion rates. Homogeneous reactions require impractical residence times, even with H2 removal, because of slow initiation and chain transfer rates. The introduction of heterogeneous chain initiation pathways using surface sites that form methyl radicals eliminates the induction period without influencing the homogeneous product distribution. Methane conversion, however, occurs predominately in the chain transfer regime, within which individual transfer steps and the formation of C2 intermediates become limited by thermodynamic constraints. Catalytic sites alone cannot overcome these constraints. Catalytic membrane reactors with continuous H2 removal remove these thermodynamic obstacles and decrease the required residence time. Reaction rates become limited by homogeneous reactions of C2 products to form C6+ aromatics. Higher delta values lead to subsequent conversion of the desired C2-C10 products to larger polynuclear aromatics. We conclude that catalytic methane pyrolysis at the low temperatures required for restricted chain growth and the elimination of thermodynamics constraints via

  8. Role of hydrogen bonds in the reaction mechanism of chalcone isomerase.

    Science.gov (United States)

    Jez, Joseph M; Bowman, Marianne E; Noel, Joseph P

    2002-04-23

    In flavonoid, isoflavonoid, and anthocyanin biosynthesis, chalcone isomerase (CHI) catalyzes the intramolecular cyclization of chalcones into (S)-flavanones with a second-order rate constant that approaches the diffusion-controlled limit. The three-dimensional structures of alfalfa CHI complexed with different flavanones indicate that two sets of hydrogen bonds may possess critical roles in catalysis. The first set of interactions includes two conserved amino acids (Thr48 and Tyr106) that mediate a hydrogen bond network with two active site water molecules. The second set of hydrogen bonds occurs between the flavanone 7-hydroxyl group and two active site residues (Asn113 and Thr190). Comparison of the steady-state kinetic parameters of wild-type and mutant CHIs demonstrates that efficient cyclization of various chalcones into their respective flavanones requires both sets of contacts. For example, the T48A, T48S, Y106F, N113A, and T190A mutants exhibit 1550-, 3-, 30-, 7-, and 6-fold reductions in k(cat) and 2-3-fold changes in K(m) with 4,2',4'-trihydroxychalcone as a substrate. Kinetic comparisons of the pH-dependence of the reactions catalyzed by wild-type and mutant enzymes indicate that the active site hydrogen bonds contributed by these four residues do not significantly alter the pK(a) of the intramolecular cyclization reaction. Determinations of solvent kinetic isotope and solvent viscosity effects for wild-type and mutant enzymes reveal a change from a diffusion-controlled reaction to one limited by chemistry in the T48A and Y106F mutants. The X-ray crystal structures of the T48A and Y106F mutants support the assertion that the observed kinetic effects result from the loss of key hydrogen bonds at the CHI active site. Our results are consistent with a reaction mechanism for CHI in which Thr48 polarizes the ketone of the substrate and Tyr106 stabilizes a key catalytic water molecule. Hydrogen bonds contributed by Asn113 and Thr190 provide additional

  9. Hydrogen Transfer during Liquefaction of Elbistan Lignite to Biomass; Total Reaction Transformation Approach

    Science.gov (United States)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    Given the high cost of the tetraline solvent commonly used in liquefaction, the use of manure with EL is an important factor when considering the high cost of using tetraline as a hydrogen transfer source. In addition, due to the another cost factor which is the catalyst prices, red mud (commonly used, produced as a byproduct in the production of aluminium) is reduced cost in the work of liquefaction of coal, biomass, even coal combined biomass, corresponding that making the EL liquefaction an agenda for our country is another important factor. Conditions for liquefaction experiments conducted for hydrogen transfer from manure to coal; Catalyst concentration of 9%, liquid/solid ratio of 3/1, reaction time of 60 min, fertilizer/lignite ratio of 1/3, and the reaction temperature of 400 °C, the stirred speed of 400 rpm and the initial nitrogen pressure of 20 bar was fixed. In order to demonstrate the hydrogen, transfer from manure to coal, coal is used solely, by using tetraline (also known as a hydrogen carrier) and distilled water which is not hydrogen donor as a solvent in the co-liquefaction of experiments, and also the liquefaction conditions are carried out under an inert (N2) gas atmosphere. According to the results of the obtained liquefaction test; using tetraline solvent the total liquid product conversion percentage of the oil + gas conversion was 38.3 %, however, the results of oil+gas conversion obtained using distilled water and EL combined with manure the total liquid product conversion percentage was 7.4 %. According to the results of calorific value and elemental analysis, only the ratio of (H/C)atomic of coal obtained by using tetraline increased with the liquefaction of manure and distilled water. The reason of the increase in the amount of hydrogen due to hydrogen transfer from the manure on the solid surface of the coal, and also on the surface of the inner pore of the coal during the liquefaction, brings about the evaluation of the coal as a

  10. Experimental determination of reaction rates of water. Hydrogen exchange of tritium with hydrophobic catalysts

    International Nuclear Information System (INIS)

    Bixel, J.C.; Hartzell, B.W.; Park, W.K.

    1976-01-01

    This study was undertaken to obtain data needed for further development of a process for the enrichment and removal of tritium from the water associated with light-water reactors, fuel-reprocessing plants, and tritium-handling laboratories. The approach is based on the use of antiwetting, hydrophobic catalysts which permit the chemical exchange reactions between liquid water and gaseous hydrogen in direct contact, thus eliminating problems of catalyst deactivation and the complexity of reactor design normally associated with current catalytic-detritiation techniques involving gas-phase catalysis. An apparatus and procedure were developed for measuring reaction rates of water-hydrogen chemical exchange with hydrophobic catalysts. Preliminary economic evaluations of the process were made as it might apply to the AGNS fuel reprocessing plant

  11. Probing the Surface of Platinum during the Hydrogen Evolution Reaction in Alkaline Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Stoerzinger, Kelsey A. [Physical; Favaro, Marco [Advanced; Joint; Chemical; Ross, Philip N. [Materials; Yano, Junko [Joint; Molecular; Liu, Zhi [State; Division; Hussain, Zahid [Advanced; Crumlin, Ethan J. [Advanced; Joint Center

    2017-11-02

    Understanding the surface chemistry of electrocatalysts in operando can bring insight into the reaction mechanism, and ultimately the design of more efficient materials for sustainable energy storage and conversion. Recent progress in synchrotron based X-ray spectroscopies for in operando characterization allows us to probe the solid/liquid interface directly while applying an external potential, applied here to the model system of Pt in alkaline electrolyte for the hydrogen evolution reaction (HER). We employ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to identify the oxidation and reduction of Pt-oxides and hydroxides on the surface as a function of applied potential, and further assess the potential for hydrogen adsorption and absorption (hydride formation) during and after the HER. This new window into the surface chemistry of Pt in alkaline brings insight into the nature of the rate limiting step, the extent of H ad/absorption and it’s persistence at more anodic potentials.

  12. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mir, Showkat H. [Centre for Nano Science, Central University of Gujarat, Gandhinagar 382030 (India); Chakraborty, Sudip, E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in; Wärnå, John [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Uppsala 75120 (Sweden); Jha, Prakash C., E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in [School of Applied Material Sciences, Central University of Gujarat, Gandhinagar 382030 (India); Soni, Himadri [Lehrstuhl für Theoretische Chemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen (Germany); Jha, Prafulla K. [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002 (India); Ahuja, Rajeev [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Uppsala 75120 (Sweden); Department of Materials and Engineering, Royal Institute of Technology (KTH), 10044 Stockholm (Sweden)

    2016-08-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of the boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.

  13. Influence of sodium dodecyl sulfate on the reaction between Nile Blue A and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    IVANA A. JANKOVIC

    1999-05-01

    Full Text Available The influence of the anionic surfactant sodium dodecyl sulfate on the rate of the reaction between the cationic form of Nile Blue A and hydrogen peroxide was investigated in the pH range from 5 to 8.5. A retardation of the oxidation of Nile Blue A with hydrogen peroxide of three orders of magnitude was observed at pH 8.5 in the presence of anionic micelles compared to the kinetic data in water. The retardation effect was less pronounced at lower pH values. These effects were explained by the electrostatic interaction of the species involved in the reaction with the negatively charged micellar surface and their effective separation in the vicinity of the micellar surface.

  14. Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction

    Science.gov (United States)

    Dundálek, Jan; Šnajdr, Ivo; Libánský, Ondřej; Vrána, Jiří; Pocedič, Jaromír; Mazúr, Petr; Kosek, Juraj

    2017-12-01

    The hydrogen evolution reaction is known as a parasitic reaction during the zinc electrodeposition from alkaline zincate solutions and is thus responsible for current efficiency losses during the electrolysis. Besides that, the rising hydrogen bubbles may cause an extra convection within a diffusion layer, which leads to an enhanced mass transport of zincate ions to an electrode surface. In this work, the mentioned phenomena were studied experimentally in a flow through electrolyzer and the obtained data were subsequently evaluated by mathematical models. The results prove the indisputable influence of the rising hydrogen bubbles on the additional mixing of the diffusion layer, which partially compensates the drop of the current efficiency of the zinc deposition at higher current flows. Moreover, the results show that the current density ratio (i.e., the ratio of an overall current density to a zinc limiting current density) is not suitable for the description of the zinc deposition, because the hydrogen evolution current density is always involved in the overall current density.

  15. Hydrogen poisoning of the CO oxidation reaction on Pt and Pd under ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Strozier, J.A.

    1977-01-01

    The poisoning by hydrogen of the catalyzed oxidation of CO on Pt and Pd under ultrahigh vacuum conditions was investigated. ac pulsing techniques are used in which the pressure of the reactant CO in the reaction chamber is modulated periodically by means of a fast piezoelectric ultrahigh vacuum valve, and the ac component of the product CO 2 is recorded mass spectroscopically by phase-sensitive techniques. The ac CO 2 production rate is measured as a function of hydrogen pressure (1 - 10 x 10 -9 toor) at constant CO and O 2 pressures (approximately equal to 5 x 10 -8 torr), and constant temperature (approximately equal to 700 K). Exact theoretical calculations of CO 2 production rates were carried out employing several models, i.e., oxygen burn-off by hydrogen, incorporating both the Eley-Rideal and Langmuir-Hinshelwood mechanisms. From a comparison with the experimental results, the probable reaction is of the Langmuir-Hinshelwood type and the relevant rate constant is also determined. These results are compared with other results in the literature on hydrogen oxidation on the surface of Pt

  16. Reaction rate constants of H-abstraction by OH from large ketones: Measurements and site-specific rate rules

    KAUST Repository

    Badra, Jihad

    2014-01-01

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (CO) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (CO), and the prime is used to differentiate different neighboring environments of a methylene group):P1,CO = 7.38 × 10-14 exp(-274 K/T) + 9.17 × 10-12 exp(-2499 K/T) (285-1355 K)S10,CO = 1.20 × 10-11 exp(-2046 K/T) + 2.20 × 10-13 exp(160 K/T) (222-1464 K)S11,CO = 4.50 × 10-11 exp(-3000 K/T) + 8.50 × 10-15 exp(1440 K/T) (248-1302 K)S11′,CO = 3.80 × 10-11 exp(-2500 K/T) + 8.50 × 10-15 exp(1550 K/T) (263-1370 K)S 21,CO = 5.00 × 10-11 exp(-2500 K/T) + 4.00 × 10-13 exp(775 K/T) (297-1376 K) © 2014 the Partner Organisations.

  17. Neutron Scattering in Hydrogenous Moderators, Studied by Time Dependent Reaction Rate Method

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L G; Moeller, E; Purohit, S N

    1966-03-15

    The moderation and absorption of a neutron burst in water, poisoned with the non-1/v absorbers cadmium and gadolinium, has been followed on the time scale by multigroup calculations, using scattering kernels for the proton gas and the Nelkin model. The time dependent reaction rate curves for each absorber display clear differences for the two models, and the separation between the curves does not depend much on the absorber concentration. An experimental method for the measurement of infinite medium reaction rate curves in a limited geometry has been investigated. This method makes the measurement of the time dependent reaction rate generally useful for thermalization studies in a small geometry of a liquid hydrogenous moderator, provided that the experiment is coupled to programs for the calculation of scattering kernels and time dependent neutron spectra. Good agreement has been found between the reaction rate curve, measured with cadmium in water, and a calculated curve, where the Haywood kernel has been used.

  18. Measure of hydrogen concentration profile in materials by resonant nuclear reactions

    International Nuclear Information System (INIS)

    Livi, R.P.; Zawislak, F.C.; Acquadro, J.C.

    1986-01-01

    The technique for determining the profile of hydrogen concentration in proximities of the surface of materials, is presented. The preliminary measurements were done, using the Pelletron accelerator at Sao Paulo University (USP), in Brazil, for the resonant-nuclear reaction 1 H( 19 F, α γ) 16 O. By using this reaction the technique is sensitive for concentrations above 500 ppm, which could be reduced to 100 ppm through special shieldings and other techniques to reduce the background radiation. (M.C.K.) [pt

  19. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    Directory of Open Access Journals (Sweden)

    Carmen Moreno-Marrodan

    2017-04-01

    Full Text Available The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.

  20. Ruthenium(II) pincer complexes with oxazoline arms for efficient transfer hydrogenation reactions

    KAUST Repository

    Chen, Tao

    2012-08-01

    Well-defined P NN CN pincer ruthenium complexes bearing both strong phosphine and weak oxazoline donors were developed. These easily accessible complexes exhibit significantly better catalytic activity in transfer hydrogenation of ketones compared to their PN 3P analogs. These reactions proceed under mild and base-free conditions via protonation- deprotonation of the \\'NH\\' group in the aromatization-dearomatization process. © 2012 Elsevier Ltd. All rights reserved.

  1. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    Energy Technology Data Exchange (ETDEWEB)

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H. [KAERI, Taejon (Korea, Republic of)

    2005-11-15

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities.

  2. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    International Nuclear Information System (INIS)

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H.

    2005-01-01

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities

  3. Lattice-enabled nuclear reactions in the nickel and hydrogen gas system

    International Nuclear Information System (INIS)

    Nagel, David J.

    2015-01-01

    Thousands of lattice-enabled nuclear reaction (LENR) experiments involving electrochemical loading of deuterium into palladium have been conducted and reported in hundreds of papers. But, it appears that the first commercial LENR power generators will employ gas loading of hydrogen onto nickel. This article reviews the scientific base for LENR in the gas-loaded Ni-H system, and some of the tests of pre-commercial prototype generators based on this combination. (author)

  4. Applications of nuclear reaction analysis for determining hydrogen and deuterium distribution in metals

    International Nuclear Information System (INIS)

    Altstetter, C.J.

    1981-01-01

    The use of ion beams for materials analysis has made a successful transition from the domain of the particle physicist to that of the materials scientist. The subcategory of this field, nuclear reaction analysis, is just now undergoing the transition, particularly in applications to hydrogen in materials. The materials scientist must locate the nearest accelerator, because now he will find that using it can solve mysteries that do not yield to other techniques. 9 figures

  5. Hydrodesulphurization of Light Gas Oil using hydrogen from the Water Gas Shift Reaction

    Science.gov (United States)

    Alghamdi, Abdulaziz

    2009-12-01

    The production of clean fuel faces the challenges of high production cost and complying with stricter environmental regulations. In this research, the ability of using a novel technology of upgrading heavy oil to treat Light Gas Oil (LGO) will be investigated. The target of this project is to produce cleaner transportation fuel with much lower cost of production. Recently, a novel process for upgrading of heavy oil has been developed at University of Waterloo. It is combining the two essential processes in bitumen upgrading; emulsion breaking and hydroprocessing into one process. The water in the emulsion is used to generate in situ hydrogen from the Water Gas Shift Reaction (WGSR). This hydrogen can be used for the hydrogenation and hydrotreating reaction which includes sulfur removal instead of the expensive molecular hydrogen. This process can be carried out for the upgrading of the bitumen emulsion which would improve its quality. In this study, the hydrodesulphurization (HDS) of LGO was conducted using in situ hydrogen produced via the Water Gas Shift Reaction (WGSR). The main objective of this experimental study is to evaluate the possibility of producing clean LGO over dispersed molybdenum sulphide catalyst and to evaluate the effect of different promoters and syn-gas on the activity of the dispersed Mo catalyst. Experiments were carried out in a 300 ml Autoclave batch reactor under 600 psi (initially) at 391°C for 1 to 3 hours and different amounts of water. After the hydrotreating reaction, the gas samples were collected and the conversion of carbon monoxide to hydrogen via WGSR was determined using a refinery gas analyzer. The sulphur content in liquid sample was analyzed via X-Ray Fluorescence. Experimental results showed that using more water will enhance WGSR but at the same time inhibits the HDS reaction. It was also shown that the amount of sulfur removed depends on the reaction time. The plan is to investigate the effect of synthesis gas (syngas

  6. Hydrogen-transfer and charge-transfer in photochemical and radiation induced reactions. Progress report, November 1, 1975--October 31, 1976

    International Nuclear Information System (INIS)

    Cohen, S.G.

    1976-10-01

    The relative importance of light absorption, quenching of triplet, and hydrogen transfer repair has been examined in retardation by mercaptans of photoreduction of aromatic ketones by alcohols. In the reduction of benzophenone by 2-propanol, retardation is efficient and, after correction for the first two effects, is due entirely to hydrogen-transfer repair, as indicated by deuterium labeling. In reduction of acetophenone by α-methylbenzyl alcohol, repair by hydrogen transfer is also operative. In reduction of benzophenone by benzhydrol, retardation is less efficient and is due to quenching, as the ketyl radical does not abstract hydrogen from mercaptan rapidly in competition with coupling. Deuterium isotope effects are discussed in terms of competitive reactions. Photoreduction of benzophenone by 2-butylamine and by triethylamine is retarded by aromatic mercaptans and disulfides. Of the retardation not due to light absorption and triplet quenching by the sulfur compounds, half is due to hydrogen-transfer repair, as indicated by racemization and deuterium labeling. The remainder is attributed to quenching by the sulfur compound of the charge-transfer-complex intermediate. Photoreduction by primary and secondary amines, but not by tertiary amines, is accelerated by aliphatic mercaptans. The acceleration is attributed to catalysis of hydrogen transfer by the mercaptan in the charge-transfer complex. The effect is large in hydrocarbon solvent, less in polar organic solvents and absent in water

  7. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    De Hollander, W.R.; Nivas, Y.

    1975-01-01

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 1599 0 C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10 -4 to 10 -18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)

  8. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    International Nuclear Information System (INIS)

    Esaki, N.; Nakayama, T.; Sawada, S.; Tanaka, H.; Soda, K.

    1985-01-01

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically

  9. Catalytic Activity of Urchin-like Ni nanoparticles Prepared by Solvothermal Method for Hydrogen Evolution Reaction in Alkaline Solution

    International Nuclear Information System (INIS)

    Abbas, Syed Asad; Iqbal, Muhammad Ibrahim; Kim, Seong-Hoon; Jung, Kwang-Deog

    2017-01-01

    Highlights: • Urchin-like Ni is prepared in solvothermal reaction. • Urchin-like Ni is formed via Ni(OH) 2 aggregates in ethanol and oleylamine. • Exchange current density of urchin-like Ni is 0.191 mA cm −2 . • Urchin-like Ni exceeds the catalytic performance of commercial Pt/C in HER. - Abstract: Ni nanoparticles with different morphologies were synthesized for hydrogen evolution reaction (HER) in alkaline solution. Here, Ni(acac) 2 was converted into Ni metal nanoparticles in solvothermal reactions with simple alcohols and oleylamine (OAm). The morphology of the resulting Ni nanoparticles was dependent mainly on the OAm/Ni molar ratio in alcohol solvent. Aggregates of spherical Ni nanoparticles (NiEt-OAm1) were observed at the OAm/Ni molar ratio of 1.0, whereas two echinoid Ni nanoparticles (NiEt-OAm4 and NiEt-OAm6) could be prepared in ethanol at the OAm/Ni molar ratios of 4.0 and 6.0. Ni(OH) 2 formed in ethanol during a reaction time of 5 h was then reduced into echinoid Ni nanoparticles after 8 h. Echinoid Ni nanoparticles were formed by atomic addition on the tops of the multipod Ni particles formed via Ni(OH) 2 /NiO aggregates. Webbed feet-like particles (NiIPA-OAm4) with plate edges were also observed in isopropanol under the same reaction conditions. The catalytic activities of the prepared Ni nanoparticles for the hydrogen evolution reaction were evaluated in alkaline solution. The NiEt-OAm4 with urchin-like morphology was much more active than the NiIPA-OAm4 with webbed feet-like morphology. The exchange current density of Ni catalysts was increased with increasing the OAm/Ni molar ratio. The NiEt-OAm6 exhibited an exchange current of 0.191 mA cm −2 and the NiEt-OAm4 exceeded electrocatalytic performance of a commercial Pt catalysts (40% Pt on Vulcan XC 72) in a stability test for 100 kiloseconds at −1.5 V (vs. Hg/HgO) in 1.0 M NaOH due to its high stability.

  10. Synthesis and characterization of NiFe2O4–Pd magnetically recyclable catalyst for hydrogenation reaction

    International Nuclear Information System (INIS)

    Karaoğlu, E.; Özel, U.; Caner, C.; Baykal, A.; Summak, M.M.; Sözeri, H.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Novel superparamagnetic NiFe 2 O 4 –Pd magnetically recyclable catalyst was fabricated through co-precipitation. ► It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ► No further modification of the NiFe 2 O 4 –Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe 2 O 4 –Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd 2+ was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH 4 ) and NiFe 2 O 4 nanoparticles was prepared by sonochemically using FeCI 3 ·6H 2 O and NiCl 2 . The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe 2 O 4 –Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe 2 O 4 –Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 99–93% and 98–93%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe 2 O 4 –Pd MRCs showed very efficient catalytic activity and multiple usability.

  11. Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Parnklang, Tewarak; Lamlua, Banjongsak; Gatemala, Harnchana; Thammacharoen, Chuchaat [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Kuimalee, Surasak [Industrial Chemistry and Textile Technology Programme, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Lohwongwatana, Boonrat [Metallurgical Engineering Department, Faculty of Engineering, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Ekgasit, Sanong, E-mail: sanong.e@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand)

    2015-03-01

    In this paper we demonstrate a simple and rapid shape transformation of silver nanospheres (AgNSs) to silver nanoplates (AgNPls) using the oxidation and reduction capabilities of hydrogen peroxide. AgNPls having tunable surface plasmon resonance across the visible region with average size of 40–100 nm and thickness of 10–15 nm can be fabricated within 2 min simply by adding H{sub 2}O{sub 2} into a colloid of AgNSs with average particle size of 7 nm. The efficiency of H{sub 2}O{sub 2} as a shape-transforming agent depends strongly on its concentration, pH of the AgNS colloid, and the employed stabilizers. H{sub 2}O{sub 2} oxidizes AgNSs to silver ions while concertedly reduces silver ions to silver atom necessary for the growth of AgNPls. The shape transformation reaction was conducted at a relatively low concentration of H{sub 2}O{sub 2} in order to minimize the oxidative dissolution while facilitating kinetically controlled growth of AgNPls under a near neutral pH. Polyvinyl-pyrrolidone is an effective steric stabilizer preventing aggregation while assisting the growth of AgNPls. Trisodium citrate inhibits the formation of AgNPls under the H{sub 2}O{sub 2} reduction as it forms a stable complex with silver ions capable of withstanding the weakly reducing power of H{sub 2}O{sub 2}. After a complete consumption of AgNSs, large nanoplates grows with an expense of smaller nanoplates. The growth continues until H{sub 2}O{sub 2} is exhausted. A high concentration H{sub 2}O{sub 2} promotes catalytic decomposition of H{sub 2}O{sub 2} on the surface of AgNSs and oxidative dissolution of AgNSs without a formation of AgNPls. - Graphical abstract: Proposed mechanism for the shape transformation of AgNSs to AgNPls induced by the oxidation/reduction of H{sub 2}O{sub 2}. - Highlights: • Rapid shape transformation of silver nanospheres to nanoplates by H{sub 2}O{sub 2}. • Structural change completes in 2 min with a yellow-to-blue color change. • Selective fabrication of

  12. Purification of hydrogen under a free or combined form in a gaseous mixture, by chemical reactions with uranium

    International Nuclear Information System (INIS)

    Caron Charles, M.

    1988-03-01

    Within the framework of the european fusion program, we are dealing with the purification of hydrogen (tritium) under a free or combined form, from a H 2 , N 2 , NH 3 , CH 4 , O 2 , gaseous mixture. The process consists in cracking the hydrogenated molecules and absorbing the impurities by chemical reactions with uranium, without holding back hydrogen. In the temperature range: 950 K [fr

  13. Exchange reaction between hydrogen and deuterium. II - Proposal for an heterogeneous initiation mechanism of gaseous phase reactions

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, Chantal; Gaillard-Cusin, Francoise; James, Henri [Centre National de la Recherche Scientifique, 45 - Orleans-la-Source (France). Centre de Recherches sur la Chimie de Combustion et des Hautes Temperatures

    1978-05-01

    Investigation of experimental data related to evolution period exhibited by H/sub 2/-D/sub 2/ exchange process requires to take into account the variation against time of every atomic species -adsorbed or not- implied in the reaction mechanism. The formation of first chain carriers involves: - chemisorption of either gaseous reactant on the surface active centres (..sigma..), e.g.: ..sigma.. + 1/2 H/sub 2/ reversible ..sigma..H; - consecutive generation of atomic species through hetero-homogeneous transfer between chemisorbed species (..sigma..H) and gaseous molecules: ..sigma..H+H/sub 2/..--> sigma..+H/sub 2/+H/sup 0/, ..sigma..H+D/sub 2/..--> sigma..+HD+D/sup 0/. Therefore, it can be shown that the heterogeneous initiation process of a gas phase reaction identifies to a chain linear mechanism. Such an heterogeneous sequence conditions the further proceeding of the homogeneous chain reaction; both evolutions being kinematically connected. Rate constant of hydrogen adsorption on silica glass: ksub(a1) approximately 10/sup 14/ exp(-47/RT)Isup(0,5).molesup(-0,5).S/sup -1/ has been evaluated.

  14. A contribution to the study of the hydrogen evolution reaction on tungsten under water electrolysis conditions

    International Nuclear Information System (INIS)

    Tanaka, A.A.; Avaca, L.A.; Gonzalez, E.R.

    1984-01-01

    Tungsten, electrodeposited on mild steel from aqueous solutions, has been shown to behave similarly to electroplated nickel when used as a cathode in 28% KOH at 60 0 C and current densities of the order of 135 mA cm -2 . When compared with bare mild steel the tungsten cathodes present an overpotential 50mV higher, but this is largely compensated by the extremely higher chemical stability of the deposits in the electrolyte. This is particularly important when the electrolyzer is going to be used in an intermittent fashion. In the present work, the hydrogen evolution reaction was studied on pure and electrodeposited tungsten electrodes in alkaline solutions through the recording of steady-state polarization curves. By comparison of the experimental electrochemical parameters with those predicted by theory, it was established that the mechanism of the reaction is of the type Volmer-Heyrowsky, with the electrochemical desorption reaction being the rate determining step

  15. Rational design of competitive electrocatalysts for the oxygen reduction reaction in hydrogen fuel cells

    Science.gov (United States)

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2012-02-01

    The large-scale application of one of the most promising clean and renewable sources of energy, hydrogen fuel cells, still awaits efficient and cost-effective electrocatalysts for the oxygen reduction reaction (ORR) occurring on the cathode. We demonstrate that truly rational design renders electrocatalysts possessing both qualities. By unifying the knowledge on surface morphology, composition, electronic structure and reactivity, we solve that sandwich-like structures are an excellent choice for optimization. Their constituting species couple synergistically yielding reaction-environment stability, cost-effectiveness and tunable reactivity. This cooperative-action concept enabled us to predict two advantageous ORR electrocatalysts. Density functional theory calculations of the reaction free-energy diagrams confirm that these materials are more active toward ORR than the so far best Pt-based catalysts. Our designing concept advances also a general approach for engineering materials in heterogeneous catalysis.

  16. The solvation reaction field for a hydrogen atom in a dielectric continuum

    International Nuclear Information System (INIS)

    Chipman, D.M.

    1996-01-01

    A reaction field exists even for a nonpolar solute embedded in a spherical cavity within a surrounding homogeneous dielectric continuum. This arises from the tail of the electronic wave function that penetrates beyond the cavity boundary into the dielectric region. This effect, which is neglected or treated only in cursory fashion in most reaction field implementations, is examined in detail for the simple case of a ground state hydrogen atom, where very accurate solutions of the relevant equations can be obtained. Properties considered include the penetration of the electron outside the cavity, the electronic density at the nucleus, the electron binding energy, the electrostatic free energy of solvation, the polarizability, and the vertical 1s→2p excitation energy. Also, the effect of the common approximation of neglecting the volume polarization and treating only the surface polarization contribution to the reaction field is critically evaluated. copyright 1996 American Institute of Physics

  17. Hydride, hydrogen, proton, and electron affinities of imines and their reaction intermediates in acetonitrile and construction of thermodynamic characteristic graphs (TCGs) of imines as a "molecule ID card".

    Science.gov (United States)

    Zhu, Xiao-Qing; Liu, Qiao-Yun; Chen, Qiang; Mei, Lian-Rui

    2010-02-05

    A series of 61 imines with various typical structures were synthesized, and the thermodynamic affinities (defined as enthalpy changes or redox potentials in this work) of the imines to abstract hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the imines to abstract hydrogen atoms and protons, and the thermodynamic affinities of the hydrogen adducts of the imines to abstract electrons in acetonitrile were determined by using titration calorimetry and electrochemical methods. The pure heterolytic and homolytic dissociation energies of the C=N pi-bond in the imines were estimated. The polarity of the C=N double bond in the imines was examined using a linear free-energy relationship. The idea of a thermodynamic characteristic graph (TCG) of imines as an efficient "Molecule ID Card" was introduced. The TCG can be used to quantitatively diagnose and predict the characteristic chemical properties of imines and their various reaction intermediates as well as the reduction mechanism of the imines. The information disclosed in this work could not only supply a gap of thermodynamics for the chemistry of imines but also strongly promote the fast development of the applications of imines.

  18. MoS2 @HKUST-1 Flower-Like Nanohybrids for Efficient Hydrogen Evolution Reactions.

    Science.gov (United States)

    Wang, Chengli; Su, Yingchun; Zhao, Xiaole; Tong, Shanshan; Han, Xiaojun

    2018-01-24

    A novel MoS 2 -based flower-like nanohybrid for hydrogen evolution was fabricated through coating the Cu-containing metal-organic framework (HKUST-1) onto MoS 2 nanosheets. It is the first time that MoS 2 @HKUST-1 nanohybrids have been reported for the enhanced electrochemical performance of HER. The morphologies and components of the MoS 2 @HKUST-1 flower-like nanohybrids were characterized by scanning electron microscopy, X-ray diffraction analysis and Fourier transform infrared spectroscopy. Compared with pure MoS 2 , the MoS 2 @HKUST-1 hybrids exhibit enhanced performance on hydrogen evolution reaction with an onset potential of -99 mV, a smaller Tafel slope of 69 mV dec -1 , and a Faradaic efficiency of nearly 100 %. The MoS 2 @HKUST-1 flower-like nanohybrids exhibit excellent stability in acidic media. This design opens new possibilities to effectively synthesize non-noble metal catalysts with high performance for the hydrogen evolution reaction (HER). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Production of hydrogen through the carbonation-calcination reaction applied to CH4/CO2 mixtures

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Corradetti, A.; Desideri, U.

    2007-01-01

    The production of hydrogen combined with carbon capture represents a possible option for reducing CO 2 emissions in atmosphere and anthropogenic greenhouse effect. Nowadays the worldwide hydrogen production is based mainly on natural gas reforming, but the attention of the scientific community is focused also on other gas mixtures with significant methane content. In particular mixtures constituted mainly by methane and carbon dioxide are extensively used in energy conversion applications, as they include land-fill gas, digester gas and natural gas. The present paper addresses the development of an innovative system for hydrogen production and CO 2 capture starting from these mixtures. The plant is based on steam methane reforming, coupled with the carbonation and calcination reactions for CO 2 absorption and desorption, respectively. A thermodynamic approach is proposed to investigate the plant performance in relation to the CH 4 content in the feeding gas. The results suggest that, in order to optimize the hydrogen purity and the efficiency, two different methodologies can be adopted involving both the system layout and operating parameters. In particular such methodologies are suitable for a methane content, respectively, higher and lower than 65%

  20. Dinuclear Tetrapyrazolyl Palladium Complexes Exhibiting Facile Tandem Transfer Hydrogenation/Suzuki Coupling Reaction of Fluoroarylketone

    KAUST Repository

    Dehury, Niranjan

    2016-07-18

    Herein, we report an unprecedented example of dinuclear pyrazolyl-based Pd complexes exhibiting facile tandem catalysis for fluoroarylketone: Tetrapyrazolyl di-palladium complexes with varying Pd-Pd distances efficiently catalyze the tandem reaction involving transfer hydrogenation of fluoroarylketone to the corresponding alcohol and Suzuki-Miyaura cross coupling reaction of the resulting fluoroarylalcohol under moderate reaction conditions, to biaryl alcohol. The complex with the shortest Pd-Pd distance exhibits the highest tandem activity among its di-metallic analogues, and exceeds in terms of activity and selectivity the analogous mononuclear compound. The kinetics of the reaction indicates clearly that reductive transformation of haloarylketone into haloaryalcohol is the rate determining step in the tandem reaction. Interestingly while fluoroarylketone undergoes the multistep tandem catalysis, the chloro- and bromo-arylketones undergo only a single step C-C coupling reaction resulting in biarylketone as the final product. Unlike the pyrazole based Pd compounds, the precursor PdCl2 and the phosphine based relevant complexes (PPh3)2PdCl2 and (PPh3)4Pd are found to be unable to exhibit the tandem catalysis.

  1. Presolvated Electron Reactions with Methyl Acetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-Atom Abstraction

    Directory of Open Access Journals (Sweden)

    Alex Petrovici

    2014-09-01

    Full Text Available Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3 at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-COOCH3 in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•OH-CH2-COOCH3. The ESR spectrum of CH3-C(•OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K, CH3-C(•OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT support the radical assignments.

  2. Presolvated electron reactions with methyl acetoacetate: electron localization, proton-deuteron exchange, and H-atom abstraction.

    Science.gov (United States)

    Petrovici, Alex; Adhikary, Amitava; Kumar, Anil; Sevilla, Michael D

    2014-09-01

    Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•--CH2-COOCH3) in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-COOCH3. The ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments.

  3. Reaction rates and electrical resistivities of the hydrogen isotopes with, and their solubilities in, liquid lithium

    International Nuclear Information System (INIS)

    Pulham, R.J.; Adams, P.F.; Hubberstey, P.; Parry, G.; Thunder, A.E.

    1976-01-01

    The rate of reaction, k, of hydrogen and of deuterium with liquid lithium have been determined up to pressures of 20kNm -2 and at temperatures between 230 and 270 0 C. The reaction is first order with an apparent activation energy of 52.8 and 55.2 kJmol -1 for hydrogen and deuterium, respectively. The deuterium isotope effect, k/sub H/k/sub D/, decreases from 2.95 at 230 to 2.83 at 270 0 C. Tritium is predicted to react even more slowly than deuterium. The freezing point of lithium is depressed by 0.082 and 0.075 0 C, respectively, by dissolved hydride and deuteride giving eutectics at 0.016 mol percent H and 0.012 mol percent D in the metal-salt phase diagrams. The depression and eutectic concentration are expected to be less for tritium. The increase in the resistivity of liquid lithium caused by dissolved hydrogen isotopes is linear and relatively large, 5 x 10 -8 Ωm (mol percent H or D) -1 . The solubility of lithium hydride and deuteride was determined from the marked change in resistivity on saturation. The liquidus of the metal-salt phase diagram rises steeply from the eutectic point to meet the two-immiscible liquid region. Tritium is expected to be less soluble than deuterium. The partial molar enthalpies of solution are 44.2 and 55.0 kJmol -1 for hydrogen and deuterium, respectively. These values are used to calculate the solvation enthalpies of the isotope anions in the metal

  4. An efficient route for catalytic activity promotion via hybrid electro-depositional modification on commercial nickel foam for hydrogen evolution reaction in alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guanshui; He, Yongwei; Wang, Mei; Zhu, Fuchun; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); Wang, Xiaoguang, E-mail: wangxiaog1982@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga (Portugal)

    2014-09-15

    Highlights: • Mono-Cu surface modification depress the HER activity of Ni-foam. • Hybrid Ni-foam/Cu0.01/Co0.05 exhibits superior HER performance. • Layer-by-layer structure may contribute to a synergistic promoting effect. - Abstract: In this paper, the single- and hybrid-layered Cu, Ni and Co thin films were electrochemically deposited onto the three-dimensional nickel foam as composite cathode catalyst for hydrogen evolution reaction in alkaline water electrolysis. The morphology, structure and chemical composition of the electrodeposited composite catalysts were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Electrochemical measurement depicted that, for the case of the monometallic layered samples, the general activity for hydrogen evolution reaction followed the sequence: Ni-foam/Ni > Ni-foam/Co > bare Ni-foam > Ni-foam/Cu. It is noteworthy that, the hybrid-layered Ni-foam/Cu0.01/Co0.05 exhibited the highest catalytic activity towards hydrogen evolution reaction with the current density as high as 2.82 times that of the bare Ni-foam. Moreover, both excellent electrochemical and physical stabilities can also be acquired on the Ni-foam/Cu0.01/Co0.05, making this hybrid-layered composite structure as a promising HER electro-catalyst.

  5. Magnetic field effects on geminate reactions. Study of anthraquinone - hydrogen donors systems

    International Nuclear Information System (INIS)

    Vidal, Marie-Helene

    1987-01-01

    This study is devoted to magnetic field effects on chemical reactions which involve a radical pair with correlated spins (radical in a 'cage'). In the first part, the radical pair theory is described: mechanisms of singlet-triplet mixing, the different interactions inside the pair and a quantum mechanical treatment of the radical pair. The details of the experimental method (nanosecond laser flash photolysis) are reported in the second part. In the third part are shown experimental results obtained on Anthraquinone (AQ) - Hydrogen donors systems: - There is no magnetic field effect in homogeneous solution even at a high viscosity. The absorption spectra of the different reaction intermediates are obtained. - However a magnetic field effect is put forward when AQ is introduced in SDS micelles which are hydrogen donors. The absorption spectrum of the AQH · . semi-quinone radical in 'cage' is shown and a mechanism is proposed for its disappearance to generate the AQH-S and AQH 2 species. - The addition of 9, 10 Dihydroanthracene (DH2) inside the micelle near AQ induces an increase of the magnetic field effect by creation of (AQH · . - DH · . ) pairs which diffuse slowly. - Fixed radical pairs in a protein matrix were studied in reaction centers of photosynthetic bacteria: in that case, the half effect field is shifted to low fields when compared to the previously described systems. (author) [fr

  6. Dodecahedral W@WC Composite as Efficient Catalyst for Hydrogen Evolution and Nitrobenzene Reduction Reactions.

    Science.gov (United States)

    Chen, Zhao-Yang; Duan, Long-Fa; Sheng, Tian; Lin, Xiao; Chen, Ya-Feng; Chu, You-Qun; Sun, Shi-Gang; Lin, Wen-Feng

    2017-06-21

    Core-shell composites with strong phase-phase contact could provide an incentive for catalytic activity. A simple, yet efficient, H 2 O-mediated method has been developed to synthesize a mesoscopic core-shell W@WC architecture with a dodecahedral microstructure, via a one-pot reaction. The H 2 O plays an important role in the resistance of carbon diffusion, resulting in the formation of the W core and W-terminated WC shell. Density functional theory (DFT) calculations reveal that adding W as core reduced the oxygen adsorption energy and provided the W-terminated WC surface. The W@WC exhibits significant electrocatalytic activities toward hydrogen evolution and nitrobenzene electroreduction reactions, which are comparable to those found for commercial Pt/C, and substantially higher than those found for meso- and nano-WC materials. The experimental results were explained by DFT calculations based on the energy profiles in the hydrogen evolution reactions over WC, W@WC, and Pt model surfaces. The W@WC also shows a high thermal stability and thus may serve as a promising more economical alternative to Pt catalysts in these important energy conversion and environmental protection applications. The current approach can also be extended or adapted to various metals and carbides, allowing for the design and fabrication of a wide range of catalytic and other multifunctional composites.

  7. Dehydriding reaction of Mg(NH2)2-LiH system under hydrogen pressure

    International Nuclear Information System (INIS)

    Aoki, M.; Noritake, T.; Kitahara, G.; Nakamori, Y.; Towata, S.; Orimo, S.

    2007-01-01

    The dehydriding and structural properties of the 3Mg(NH 2 ) 2 + 12LiH system under hydrogen pressure were investigated using the pressure-composition (p-c) isotherm measurement and X-ray diffraction (XRD) analysis. Two distinct regions, a plateau region and a sloping region, can be seen on the p-c isotherms and the amount of the desorbed hydrogen at 523 K was 4.9 mass%. The enthalpy of hydrogenation calculated using a van't Hoff plot was -46 kJ/mol H 2 . The dehydriding reaction was proposed for the 3Mg(NH 2 ) 2 + 12LiH system based on the obtained p-c isotherms and XRD profiles and chemical valences of Li, Mg, N, and H. In the plateau region on the p-c isotherm, Mg(NH 2 ) 2 , Li 4 Mg 3 (NH 2 ) 2 (NH) 4 (tetragonal), and LiH phases coexist and the molar ratio of the Li 4 Mg 3 (NH 2 ) 2 (NH) 4 phase increases (while those of Mg(NH 2 ) 2 and LiH phases decrease) with the amount of the desorbed hydrogen. On the other hand, the mixture of Li 4+x Mg 3 (NH 2 ) 2-x (NH) 4+x + (8-x)LiH (0 ≤ x ≤ 2) is formed and the lattice volume of the Li 4+x Mg 3 (NH 2 ) 2-x (NH) 4+x phase continuously increases with the amount of the desorbed hydrogen in the sloping region on the p-c isotherm

  8. Tritium-tracer study of catalytic hydrogenation reaction of ethylene on Ni, Pt and Ni-Pt

    International Nuclear Information System (INIS)

    Matsuyama, M.; Yasuda, Y.; Takeuchi, T.

    1978-01-01

    The influence of the pressure of tritiated hydrogen on the rate of the formation of tritiated ethylene, X, and that of tritiated ethane, Z, in the hydrogenation reaction of ethylene on Ni, Pt and Ni-Pt (1:1) alloy catalysts was investigated. The ratio of the rate of the exchange to that of the hydrogenation, selectivity X/Z, decreased markedly with the increase in the pressure of the tritiated hydrogen and the order of X/Z was Ni>Ni-Pt>Pt. These results were interpreted in terms of the difference in the amount of chemisorbed tritium on each metal catalyst. (orig.) [de

  9. Investigation of hydrogenase molecular marker to optimize hydrogen production from organic wastes and effluents of agro-food industries [abstract

    Directory of Open Access Journals (Sweden)

    Hamilton, C.

    2010-01-01

    Full Text Available In recent years policy makers have started looking for alternatives to fossil fuels, not only to counter the threat of global warming, but also to reduce the risk of overdependence on imported oil and gas supplies. By contrast with hydrocarbon fuels, hydrogen (H2, whether burned directly or used in fuel cells, is intrinsically a clean energy vector with near zero emission. However the main current method of producing hydrogen, steam reforming of methane, involves the release of large quantities of greenhouse gases. So although hydrogen already accounts for around 2% of world consumption of energy, its more widespread adoption is limited by several challenges. Therefore new processes are investigated, especially those using renewable raw material, e.g. woods and organic wastes, and/or involving microorganisms. Indeed, for some algae and bacteria, the generation of molecular hydrogen is an essential part of their energy metabolism. The approach with the greatest commercial potential is fermentative hydrogen generation (dark fermentation by bacteria from the Clostridium genus. This biological process, as a part of the methane-producing anaerobic digestion process, is very promising since it allows the production of hydrogen from a wide variety of renewable resources such as carbohydrate waste from the agricultural and agro-food industries or processed urban waste and sewage. To date most publications on hydrogen production by Clostridium strains have focused on the effects of operating parameters (such as temperature, pH, dilution rate, etc.. We now need to extend this knowledge by identifying and monitoring the various different metabolic agents involved in high H2 activity. Consequently the aim of this research at the CWBI in the University of Liege is to investigate the role of [Fe] hydrogenases, the key enzymes that remove excess electrons accumulating during fermentation. Clostridium butyricum CWBI1009, the strain used for these investigations

  10. Modification of molybdenum disulfide in methanol solvent for hydrogen evolution reaction

    Science.gov (United States)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2018-05-01

    Molybdenum disulfide is a promising catalyst to replace the expensive platinum as an electrocatalyst but needs to be modified to present excellent electrocatalytic properties. Herein, we successfully modify molybdenum disulfide in methanol solvent for hydrogen evolution reaction by using a simple hydrothermal method. Overpotential reduced to -0.6 V from -1.5 V, and energy band gap decreased from 1.73 eV to 1.58 eV after the modification. The modified molybdenum disulfide also demonstrated lower resistance (42 Ω) at high frequency (1000 kHz) compared with that (240 Ω) of the precursor, showing that conductivity of the modified molybdenum disulfide has improved.

  11. Photo- and radiation-chemical stability of molecules. Reactions of monomolecular hydrogen atom splitting off

    International Nuclear Information System (INIS)

    Plotnikov, V.G.; Ovchinnikov, A.A.

    1978-01-01

    In the review of works published up to 1978 one of the main problems of radiation chemistry is discussed, namely the relationship between the structure of organic molecules and their resistance to the effect of ionizing radiation. Theoretical aspects of this problem are considered for reactions of monomolecular hydrogen atom splitting off. It is shown that the radical yield in low-temperature radiation-chemical experiments is connected with the position of lower triplet states of molecules, ionization potentials, polarity of medium and the energy of C-H bonds in cation radicals

  12. Factors responsible for activity of catalysts of different chemical types in the reaction of hydrogen oxidation

    International Nuclear Information System (INIS)

    Il'chenko, N.I.; Dolgikh, L.Yu.

    1985-01-01

    Reasons of differences in the kinetics and mechanism of the H 2 oxidation on optimum metallic (Pt), carbide (WC) and oxide (Co 3 O 4 ) catalysts are discussed. These differences lead to unequal specific activity. It is shown that the catalytic activity of the catalysts in question increases with respect to reactions of isotopic exchange and hydrogen oxidation with an increasing electron-donating ability of anat of the transition metal M on which H 2 is adsorbed. The possibility is considered of increasing the transition metal activity by introduction of additions to increase the electron-donating ability of M

  13. Electrodeposition of Amorphous Molybdenum Chalcogenides from Ionic Liquids and Their Activity for the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Redman, Daniel W; Rose, Michael J; Stevenson, Keith J

    2017-09-19

    This work reports on the general electrodeposition mechanism of tetrachalcogenmetallates from 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Both tetrathio- and tetraselenomolybdate underwent anodic electrodeposition and cathodic corrosion reactions as determined by UV-vis spectroelectrochemistry. Electrodeposition was carried out by cycling the potential between the anodic and cathodic regimes. This resulted in a film of densely packed nanoparticles of amorphous MoS x or MoSe x as determined by SEM, Raman, and XPS. The films were shown to have high activity for the hydrogen evolution reaction. The onset potential (J = 1 mA/cm 2 ) of the MoS x film was E = -0.208 V vs RHE, and that of MoSe x was E = -0.230 V vs RHE. The Tafel slope of MoS x was 42 mV/decade, and that of MoSe x was 59 mV/decade.

  14. On the influence of hydronium and hydroxide ion diffusion on the hydrogen and oxygen evolution reactions in aqueous media

    DEFF Research Database (Denmark)

    Wiberg, Gustav Karl Henrik; Arenz, Matthias

    2015-01-01

    We present a study concerning the influence of the diffusion of H+ and OH- ions on the hydrogen and oxygen evolution reactions (HER and OER) in aqueous electrolyte solutions. Using a rotating disk electrode (RDE), it is shown that at certain conditions the observed current, i.e., the reaction rate...

  15. In Vivo Lighted Fluorescence via Fenton Reaction: Approach for Imaging of Hydrogen Peroxide in Living Systems.

    Science.gov (United States)

    Liu, Changhui; Chen, Weiju; Qing, Zhihe; Zheng, Jing; Xiao, Yue; Yang, Sheng; Wang, Lili; Li, Yinhui; Yang, Ronghua

    2016-04-05

    By virtue of its high sensitivity and rapidity, Fenton reaction has been demonstrated as a powerful tool for in vitro biochemical analysis; however, in vivo applications of Fenton reaction still remain to be exploited. Herein, we report, for the first time, the design, formation and testing of Fenton reaction for in vivo fluorescence imaging of hydrogen peroxide (H2O2). To realize in vivo fluorescence imaging of H2O2 via Fenton reaction, a functional nanosphere, Fc@MSN-FDNA/PTAD, is fabricated from mesoporous silica nanoparticle (MSN), a Fenton reagent of ferrocene (Fc), ROX-labeled DNA (FDNA), and a cationic perylene derivative (PTAD). The ferrocene molecules are locked in the pore entrances of MSN, and exterior of MSN is covalently immobilized with FDNA. As a key part, PTAD acts as not only the gatekeeper of MSN but also the efficient quencher of ROX. H2O2 can permeate into the nanosphere and react with ferrocene to product hydroxyl radical (·OH) via Fenton reaction, which cleaves FDNA to detach ROX from PTAD, thus in turn, lights the ROX fluorescence. Under physiological condition, H2O2 can be determined from 5.0 nM to 1.0 μM with a detection limit of 2.4 nM. Because of the rapid kinetics of Fenton reaction and high specificity for H2O2, the proposed method meets the requirement for real applications. The feasibility of Fc@MSN-FDNA/PTAD for in vivo applications is demonstrated for fluorescence imaging of exogenous and endogenous H2O2 in cells and mice. We expect that this work will not only contribute to the H2O2-releated studies but also open up a new way to exploit in vivo Fenton reaction for biochemical research.

  16. Addition of titanium as a potential catalyst for a high-capacity hydrogen storage medium (abstract only)

    International Nuclear Information System (INIS)

    Zuliani, F; Baerends, E J

    2008-01-01

    In recent years there has been increased interest in the characterization of titanium as a catalyst for high-capacity hydrogen storage materials. A first-principles study (Yildirim and Ciraci 2005 Phys. Rev. Lett. 94 175501) demonstrated that a single Ti atom coated on a single-walled nanotube (SWNT) binds up to four hydrogen molecules. The bonding was claimed to be an 'unusual combination of chemisorption and physisorption'. We report an ab initio study by means of the ADF program, which provides a complete insight into the donation/back-donation mechanism characterizing the bond between the Ti atom and the four H 2 molecules, and a full understanding of the catalytic role played by the Ti atom. In addition, we found that the same amount of adsorbed hydrogen can be stored using benzene support for Ti in place of the SWNT, due to the dominant local contribution of the hexagonal carbon ring surrounding the Ti atom. The benzene-Ti-H 2 bonding is discussed on the basis of molecular orbital interaction schemes as provided by ADF. This result advances our insight into the role of titanium as a catalyst and suggests new routes to better storage through different combinations of supports and catalysts

  17. Understanding the reaction between muonium atoms and hydrogen molecules: zero point energy, tunnelling, and vibrational adiabaticity

    Science.gov (United States)

    Aldegunde, J.; Jambrina, P. G.; García, E.; Herrero, V. J.; Sáez-Rábanos, V.; Aoiz, F. J.

    2013-11-01

    The advent of very precise measurements of rate coefficients in reactions of muonium (Mu), the lightest hydrogen isotope, with H2 in its ground and first vibrational state and of kinetic isotope effects with respect to heavier isotopes has triggered a renewed interests in the field of muonic chemistry. The aim of the present article is to review the most recent results about the dynamics and mechanism of the reaction Mu+H2 to shed light on the importance of quantum effects such as tunnelling, the preservation of the zero point energy, and the vibrational adiabaticity. In addition to accurate quantum mechanical (QM) calculations, quasiclassical trajectories (QCT) have been run in order to check the reliability of this method for this isotopic variant. It has been found that the reaction with H2(v=0) is dominated by the high zero point energy (ZPE) of the products and that tunnelling is largely irrelevant. Accordingly, both QCT calculations that preserve the products' ZPE as well as those based on the Ring Polymer Molecular Dynamics methodology can reproduce the QM rate coefficients. However, when the hydrogen molecule is vibrationally excited, QCT calculations fail completely in the prediction of the huge vibrational enhancement of the reactivity. This failure is attributed to tunnelling, which plays a decisive role breaking the vibrational adiabaticity when v=1. By means of the analysis of the results, it can be concluded that the tunnelling takes place through the ν1=1 collinear barrier. Somehow, the tunnelling that is missing in the Mu+H2(v=0) reaction is found in Mu+H2(v=1).

  18. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.

    Science.gov (United States)

    Yuan, Heyang; He, Zhen

    2017-07-01

    Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS 2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrothermal synthesis of 2D MoS 2 nanosheets for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.

    2015-10-20

    Nanostructured molybdenum disulfide (MoS) is a very promising catalyst for producing molecular hydrogen by electrochemical methods. Herein, we have designed and synthesized highly electocatalytically active 2D MoS nanosheets (NS) from molybdenum trioxide (MoO) by a facile hydrothermal method and have compared their electrocatalytic activities for hydrogen evolution reaction (HER). The electrochemical characterization was performed using linear sweep voltammetry (LSV) in acidic medium. The MoS NS show a HER onset potential at about 80 mV vs. reversible hydrogen electrode (RHE) which is much lower than MoO (300 mV). The MoS NS and MoO show a current density of 25 mA cm and 0.3 mA cm, respectively at an overpotential of 280 mV vs. RHE. The MoS NS showed an 83 times higher current density when compared to MoO. The Tafel slopes of the MoS NS and MoO were about 90 mV per dec and 110 mV per dec respectively. This suggests that MoS NS are a better electrocatalyst when compared to MoO and follow the Volmer-Heyrovsky mechanism for HER.

  20. Hydrothermal synthesis of 2D MoS 2 nanosheets for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.; Manjunath, K.; Samrat, D.; Reddy, Viswanath; Ramakrishnappa, T.; Nagaraju, Doddahalli H.

    2015-01-01

    Nanostructured molybdenum disulfide (MoS) is a very promising catalyst for producing molecular hydrogen by electrochemical methods. Herein, we have designed and synthesized highly electocatalytically active 2D MoS nanosheets (NS) from molybdenum trioxide (MoO) by a facile hydrothermal method and have compared their electrocatalytic activities for hydrogen evolution reaction (HER). The electrochemical characterization was performed using linear sweep voltammetry (LSV) in acidic medium. The MoS NS show a HER onset potential at about 80 mV vs. reversible hydrogen electrode (RHE) which is much lower than MoO (300 mV). The MoS NS and MoO show a current density of 25 mA cm and 0.3 mA cm, respectively at an overpotential of 280 mV vs. RHE. The MoS NS showed an 83 times higher current density when compared to MoO. The Tafel slopes of the MoS NS and MoO were about 90 mV per dec and 110 mV per dec respectively. This suggests that MoS NS are a better electrocatalyst when compared to MoO and follow the Volmer-Heyrovsky mechanism for HER.

  1. Catalytic Activities of Noble Metal Phosphides for Hydrogenation and Hydrodesulfurization Reactions

    Directory of Open Access Journals (Sweden)

    Yasuharu Kanda

    2018-04-01

    Full Text Available In this work, the development of a highly active noble metal phosphide (NMXPY-based hydrodesulfurization (HDS catalyst with a high hydrogenating ability for heavy oils was studied. NMXPY catalysts were obtained by reduction of P-added noble metals (NM-P, NM: Rh, Pd, Ru supported on SiO2. The order of activities for the hydrogenation of biphenyl was Rh-P > NiMoS > Pd-P > Ru-P. This order was almost the same as that of the catalytic activities for the HDS of dibenzothiophene. In the HDS of 4,6-dimethyldibenzothiophene (4,6-DMDBT, the HDS activity of the Rh-P catalyst increased with increasing reaction temperature, but the maximum HDS activity for the NiMoS catalyst was observed at 270 °C. The Rh-P catalyst yielded fully hydrogenated products with high selectivity compared with the NiMoS catalyst. Furthermore, XRD analysis of the spent Rh-P catalysts revealed that the Rh2P phase possessed high sulfur tolerance and resistance to sintering.

  2. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-01

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  3. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  4. Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH3 to CN under Extreme Conditions.

    Science.gov (United States)

    Zheng, Haiyan; Li, Kuo; Cody, George D; Tulk, Christopher A; Dong, Xiao; Gao, Guoying; Molaison, Jamie J; Liu, Zhenxian; Feygenson, Mikhail; Yang, Wenge; Ivanov, Ilia N; Basile, Leonardo; Idrobo, Juan-Carlos; Guthrie, Malcolm; Mao, Ho-Kwang

    2016-09-19

    Acetonitrile (CH3 CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. It is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH⋅⋅⋅N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp(2) and sp(3) bonded carbon. Finally, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hydrogen and oxygen isotope exchange reactions over illuminated and nonilluminated TiO2

    International Nuclear Information System (INIS)

    Sato, S.

    1987-01-01

    Hydrogen isotope exchange between H 2 , gaseous H 2 O, and the surface hydroxyls of TiO 2 , and oxygen isotope exchange between O 2 , CO 2 , CO, H 2 O vapor, and the hydroxyls over TiO 3 were studied at room temperature in the dark and under illumination. Hydrogen isotope exchange between H 2 O and the hydroxyls occurred rapidly in the dark, but the exchange involving H 2 did not occur at all even under illumination. Oxygen isotope exchange among H 2 O vapor, CO 2 , and the hydroxyls easily took place in the dark, but the exchange involving O 2 required band-gap illumination. Dioxygen isotope equilibration was much faster than the other photoexchange reactions. Although the oxygen exchange between O 2 and illuminated TiO 2 has been considered to involve lattice-oxygen exchange, the present experiments revealed that the hydroxyls of TiO 2 mainly participate in the exchange reaction. The oxygen exchange between O 2 and H 2 O vapor was strongly inhibited by H 2 O vapor itself probably because oxygen adsorption was retarded by adsorbed water. Oxygen in CO was not exchanged with the other substrates under any conditions tested

  6. Methylation reactions, the redox balance and atherothrombosis: the search for a link with hydrogen sulfide.

    Science.gov (United States)

    Lupoli, Roberta; Di Minno, Alessandro; Spadarella, Gaia; Franchini, Massimo; Sorrentino, Raffaella; Cirino, Giuseppe; Di Minno, Giovanni

    2015-06-01

    It is now clear that homocysteine (Hcy) is irreversibly degraded to hydrogen sulfide (H(2)S), an endogenous gasotransmitter that causes in vivo platelet activation via upregulation of phospholipase A2 and downstream boost of the arachidonate cascade. This mechanism involves a transsulfuration pathway. Based on these new data, clinical and experimental models on the relationships between Hcy and folate pathways in vascular disease and information on the Hcy controversy have been reanalyzed in the present review. Most interventional trials focused on Hcy lowering by folate administration did not exclude patients routinely taking the arachidonate inhibitor aspirin. This may have influenced the results of some of these trials. It is also clear that nutritional intake of folate affects several enzymatic reactions of the methionine-Hcy cycle and associated one-carbon metabolism and, thereby, both methylation reactions and redox balance. Hence, it is conceivable that the abnormally high Hcy levels seen in pathologic states reflect a poorly elucidated perturbation of such reactions and of such balance. While it is unknown whether there is an interplay between H2S, methylation reactions, and redox balance, measuring the sole reduction of blood Hcy that follows folate administration may well be an oversimplified approach to a complex biologic perturbation. The need to investigate this complex framework is thoroughly discussed in this article. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Mechanism and kinetics of the electrocatalytic reaction responsible for the high cost of hydrogen fuel cells.

    Science.gov (United States)

    Cheng, Tao; Goddard, William A; An, Qi; Xiao, Hai; Merinov, Boris; Morozov, Sergey

    2017-01-25

    The sluggish oxygen reduction reaction (ORR) is a major impediment to the economic use of hydrogen fuel cells in transportation. In this work, we report the full ORR reaction mechanism for Pt(111) based on Quantum Mechanics (QM) based Reactive metadynamics (RμD) simulations including explicit water to obtain free energy reaction barriers at 298 K. The lowest energy pathway for 4 e - water formation is: first, *OOH formation; second, *OOH reduction to H 2 O and O*; third, O* hydrolysis using surface water to produce two *OH and finally *OH hydration to water. Water formation is the rate-determining step (RDS) for potentials above 0.87 Volt, the normal operating range. Considering the Eley-Rideal (ER) mechanism involving protons from the solvent, we predict the free energy reaction barrier at 298 K for water formation to be 0.25 eV for an external potential below U = 0.87 V and 0.41 eV at U = 1.23 V, in good agreement with experimental values of 0.22 eV and 0.44 eV, respectively. With the mechanism now fully understood, we can use this now validated methodology to examine the changes upon alloying and surface modifications to increase the rate by reducing the barrier for water formation.

  8. The hydrogen atom-deuterium molecule reaction: Experimental determination of product quantum state distributions

    International Nuclear Information System (INIS)

    Rinnen, K.

    1989-01-01

    The H + H 2 atom exchange reaction (and its isotopic analogs) is the simplest neutral bimolecular chemical reaction because of the small number of electrons in the system and the lightness of the nuclei. The H 3 potential energy surface (PES) is the most accurately known reactive surface (LSTH surface); there have been both quasiclassical trajectory (QCT) and quantal calculations performed on it. This is one of the few systems for which theory is ahead of experiment, and many theoretical predictions await experimental comparison. The H + D 2 → HD + D reaction is studied using thermal D 2 (∼298 K) and translationally hot hydrogen atoms. Photolysis of HI at 266 nm generates H atoms with center-of-mass collision energies of 1.3 and 0.55 eV, both of which are above the classical reaction barrier of 0.42 eV. The rovibrational population distribution of the molecular product is measured by (2+1) resonance-enhanced multiphoton ionization (REMPI). A major effort has been directed toward calibrating the (2+1) REMPI detection procedure, to determine quantitatively the relationship between ion signals and relative quantum state populations for HD. An effusive, high-temperature nozzle has been constructed to populate thermally the high rovibrational levels observed in the reaction. The results are compared to theoretical calculations of the E,F 1 Σ g + - X 1 Σ g + two-photon transition moments. For the H + D 2 reaction, the populations of all energetically accessible HD product levels are measured. Specifically, the following levels are observed: HD(v = 0, J = 0-15), HD(v = 1, J = 0-12), and HD(v = 2, J = 0-8). Of the available energy, 73% is partitioned into product translation, 18% into HD rotation, and 9% into HD vibration

  9. High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara

    2018-02-26

    The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.

  10. Anomalous deuteron to hydrogen ratio in naturally occuring fission reactions and the possibility of deuteron disintegration

    International Nuclear Information System (INIS)

    Shaheen, M.; Ragheb, M.

    1992-01-01

    A hypothesis is presented for explaining the experimentally determined anomalous D/H ratio observed in the samples from the naturally occuring fission reaction in the Oklo phenomenon. No other explanation has been given, to the best knowledge, for the large difference between the measured D/H ratio in the Oklo samples and the expected values in a fission neutron spectrum. A multicomponent system consisting of hydrogen, deuterium, tritium and helium nuclei is considered. An analytical solution is derived and solved using as boundary conditions the experimentally determined value of the D/H ratio. The solution of the rate equations for hydrogen and deuteron concentrations, assuming a pure fission process without a deuteron sink term, yields a D/H ratio of 445 ppm for a reaction in which the fluence of neutrons is 10 21 n/cm 2 . This exceeds the experimentally observed value of 127 ppm, and the naturally occuring value of 150 ppm. Solving the same rate equations accounting for a deuterium sink term using a hypothesis of deuteron disintegration, and the experimentally observed value of 127 ppm yields a deuteron disintegration constant of 7.47*10 -14 s -1 . Deuteron disintegration would provide a neutron source, in addition to the fission neutrons, driving a subcritical chain reaction over an extended period of time. Relationship of the presented hypothesis to the Vlasov theory of an annihilation meteorite impact explosion explaining the experimentally observed anomalous 235 U/ 238 U ratio, and to the suggestion of deuteron disintegration as a possible explanation of some observations of deuterium dissociation in palladium and titanium electrodes is discussed. The tritium andhelium-3 rate equations are further solved under the deuteron disintegration hypothesis and the relationship of the present work to the work by JONES et al. is discussed. (author) 16 refs.; 7 figs.; 2 tabs

  11. Boron-Doped Diamond (BDD) Coatings Protect Underlying Silicon in Aqueous Acidic Media–Application to the Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Halima, A.F.; Rana, U.A.; MacFarlane, D.R.

    2014-01-01

    Abstract: Silicon has potential application as a functional semiconductor electrode in proposed solar water splitting cells. It is abundant and has excellent photovoltaic attributes, however it is extremely susceptible to corrosion, even in the dark, resulting in the formation of an electrochemically passive oxide upon interaction with aqueous media. This work investigates the potential for conductive, inert and transparent boron doped diamond (BDD) coatings to protect p-type Silicon (p-Si). The stability and electrochemical performance of p-Si and p-Si|BDD were investigated using voltammetric techniques in 1 M H 2 SO 4 , before and after long-term exposure to the acidic medium (up to 280 hours) under no applied potential bias. Unprotected Si degraded very rapidly whilst BDD was shown to protect the underlying Si, as evident from I-V curves that indicated no increased resistance across the Si-diamond interface. Furthermore, BDD supported facile proton reduction at significantly lower onset potential for the hydrogen evolution reaction (up to -500 mV vs. SCE) compared with bare Si cathode (-850 mV vs. SCE). The activity of the BDD electrode/electrolyte interface was further improved by coating with platinum catalyst particles, to produce a p-Si|BDD|Pt strucure, which reduced the HER onset to nearly zero overpotential. Tafel analysis indicated that desirable electrochemical activity and stability were achieved for p-Si|BDD|Pt, making this a promising electrode for application in water splitting cells

  12. Evidence of 9Be  +  p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas

    Science.gov (United States)

    Krasilnikov, A. V.; Kiptily, V.; Lerche, E.; Van Eester, D.; Afanasyev, V. I.; Giroud, C.; Goloborodko, V.; Hellesen, C.; Popovichev, S. V.; Mironov, M. I.; contributors, JET

    2018-02-01

    The intensity of 9Be  +  p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be  +  p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.

  13. Hydrogen-deuterium exchange reaction of 2-methylpyridine catalyzed by several fatty acids

    International Nuclear Information System (INIS)

    Hirata, Hirohumi; Fukuzumi, Kazuo.

    1976-01-01

    Hydrogen-deuterium exchange reaction of 2-methylpyridine has been studied by using several fatty acids as catalysts. The reaction was carried out in a sealed pyrex tube at 120 0 C, and the contents of the products were determined by mass spectrometry. Reaction of 2-methylpyridine with monodeuteroacetic acid (1 : 1, mol/mol) arrived at a equilibrium (d 0 reversible d 1 reversible d 2 reversible d 3 ) in 2 hr (d 0 41%, d 1 42%, d 2 15%, d 3 2%). No exchange was observed for the reaction of pyridine with monodeuteroacetic acid. The conversion-time curves of typical series reactions (d 0 → d 1 → d 2 → d 3 ) were obtained for the fatty acid catalyzed exchange in deuterium oxide. The effect of the fatty acid RCO 2 H (substrate : fatty acid : D 2 O=1 : 0.86 : 27.6, mol/mol/mol) on the conversion was in the order of R; C 1 --C 3 4 --C 10 , where the reaction mixtures were homogeneous in the case of C 1 --C 3 and were heterogeneous in the case of C 4 --C 10 . The effects of the initial concentration of the substrates and the catalysts (RCO 2 H) on the total conversion were studied by using some fatty acids (R; C 2 , C 4 and C 9 ) in deuterium oxide (for 2 hr). The total conversion of the substrate increases with increasing the concentration of the acids. The total conversion decreases in the case of R=C 9 , but, increases in the case of R=C 2 with increasing the concentration of the substrate. In the case of reactions with low concentrations of the substrate, the reactivity was in the order of C 9 >C 4 >C 2 , while with high concentrations, the reactivity was in the order of C 4 >C 2 >C 9 and C 9 >C 4 >C 2 with high and low concentrations of the acids, respectively. A possible reaction mechanism was proposed and discussed. (auth.)

  14. Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct α-Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis.

    Science.gov (United States)

    Twilton, Jack; Christensen, Melodie; DiRocco, Daniel A; Ruck, Rebecca T; Davies, Ian W; MacMillan, David W C

    2018-05-04

    The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α-hydroxy C-H bonds. This approach employs zinc-mediated alcohol deprotonation to activate α-hydroxy C-H bonds while simultaneously suppressing C-O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn-based Lewis acids also deactivates other hydridic bonds such as α-amino and α-oxy C-H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3-step synthesis of the drug Prozac exemplifies the utility of this new method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Studies of reaction difference between γ-ray and glow discharge on hydrogenation of unsaturated fatty acid esters

    International Nuclear Information System (INIS)

    Sakoda, Tatsuya; Nieda, Hiroshi; Kitahara, Kazuta; Ando, Kiyomi

    2000-01-01

    Hydrogenation of unsaturated fatty acid esters using an inductively coupled plasma at low pressure was performed, and electron temperature and density were measured using a double-probe in order to investigate the reaction difference between γ-ray and glow discharge on hydrogenation. In this experiment, unsaturated fatty acid esters were partly hydrogenated by the hydrogen plasma that had electron temperature of 3.5 eV, which was more efficient than γ-ray irradiation method. As a result, it was found that the plasma can effectively supply electrons that had the optimum energy for hydrogenation at the interface of fatty acids as well as excited atoms and ions. Also, the plasma generated at low pressure would be possible to convert unsaturated fatty acids into saturated fatty acids without breaking the starting monomer. (author)

  16. ChemInform Abstract: The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications.

    KAUST Repository

    Ebner, David C.; Bagdanoff, Jeffrey T.; Ferreira, Eric M.; McFadden, Ryan; Caspi, Daniel D.; Trend, Raissa M.; Stoltz, Brian M.

    2010-01-01

    ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.

  17. ChemInform Abstract: The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications.

    KAUST Repository

    Ebner, David C.

    2010-03-30

    ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.

  18. Development of styrene divinyl benzene catalyst in isotopic exchange reaction of water and hydrogen

    International Nuclear Information System (INIS)

    Morishita, Teizo; Noda, Shigeyuki; Tan, Tsutomu; Noguchi, Hiroshi

    1982-01-01

    Styrene divinyl benzene copolymer (SDBC) is hydrophobic, and porous with large specific surface area. Utilizing these properties, the SDBC was used for the carrier of catalyst in water-hydrogen exchange reaction process, and the hydrophobic platinum catalyst with very high performance was able to be developed. However, the SDBC is usually fine particles smaller than 1 mm, and is not suitable as the filling catalyst for exchange reaction towers. Therefore, in this study, using only platinum as a catalyst metal, the improvement of the property of carriers was emphatically examined, and platinum bearing was proved with an optical or electron microscope. As the result, it was found that the SDBC catalyst showed high activity practically usable as the hydrophobic catalyst for heavy water or tritium exchange reaction. The characteristics of SDBC are explained. The manufacturing processes of the catalyst by making SDBC carriers with fine particles and letting them bear platinum are described. The results of the trial manufacture of spherical, extrusion-formed and honeycomb carrier catalysts are reported. Platinum must be dispersed over the large specific surface area of SDBC carriers. (Kako, I.)

  19. A study on the reaction of Zircaloy-4 tube with hydrogen/steam mixture

    Science.gov (United States)

    Lee, Ji-Min; Kook, Dong-Hak; Cho, Il-Je; Kim, Yong-Soo

    2017-08-01

    In order to fundamentally understand the secondary hydriding mechanism of zirconium alloy cladding, the reaction of commercial Zircaloy-4 tubes with hydrogen and steam mixture was studied using a thermo-gravimetric analyser with two variables, H2/H2O ratio and temperature. Phenomenological analysis revealed that in the steam starvation condition, i.e., when the H2/H2O ratio is greater than 104, hydriding is the dominant reaction and the weight gain increases linearly after a short incubation time. On the other hand, when the gas ratio is 5 × 102 or 103, both hydriding and oxidation reactions take place simultaneously, leading to three distinct regimes: primary hydriding, enhanced oxidation, and massive hydriding. Microstructural changes of oxide demonstrate that when the weight gain exceeds a certain critical value, massive hydriding takes place due to the significant localized crack development within the oxide, which possibly simulates the secondary hydriding failure in a defective fuel operation. This study reveals that the steam starvation condition above the critical H2/H2O ratio is only a necessary condition for the secondary hydriding failure and, as a sufficient condition, oxide needs to grow sufficiently to reach the critical thickness that produces substantial crack development. In other words, in a real defective fuel operation incident, the secondary failure is initiated only when both steam starvation and oxide degradation conditions are simultaneously met. Therefore, it is concluded that the indispensable time for the critical oxide growth primarily determines the triggering time of massive hydriding failure.

  20. Hydrogen incorporation and radiation induced dynamics in metal-oxide-silicon structures. A study using nuclear reaction analysis

    International Nuclear Information System (INIS)

    Briere, M.A.

    1993-07-01

    Resonant nuclear reaction analysis, using the 1 H( 15 N, αγ) 12 C reaction at 6.4 MeV, has been successfully applied to the investigation of hydrogen incorporation and radiation induced migration in metal-oxide-silicon structures. A preliminary study of the influence of processing parameters on the H content of thermal oxides, with and without gate material present, has been performed. It is found that the dominant source of hydrogen in Al gate devices and dry oxides is often contamination, likely in the form of adsorbed water vapor, formed upon exposure to room air after removal from the oxidation furnace. Concentrations of hydrogen in the bulk oxide as high as 3 10 20 cm -3 (Al gate), and as low as 1 10 18 cm -3 (poly Si-gate) have been observed. Hydrogen accumulation at the Si-SiO 2 interface has been reproducibly demonstrated for as-oxidized samples, as well as for oxides exposed to H 2 containing atmospheres during subsequent thermal processing. The migration of hydrogen, from the bulk oxide to the silicon-oxide interface during NRA, has been observed and intensively investigated. A direct correlation between the hydrogen content of the bulk oxide and the radiation generated oxide charges and interface states is presented. These data provide strong support for the important role of hydrogen in determining the radiation sensitivity of electronic devices. (orig.)

  1. Medium temperature reaction between lanthanide and actinide carbides and hydrogen; Reaction a temperature moyenne entre les monocarbures de lanthanides et d'actinides et l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Dean, G; Lorenzelli, R; Pascard, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    Hydrogen is fixed reversibly by the lanthanide and actinide mono carbides in the range 25 - 400 C, as for pure corresponding metals. Hydrogen goes into the carbides lattice through carbon vacancies and the total fixed amount is approximately equal to two hydrogen atoms per initial vacancy. Final products c.n thus be considered as carbo-hydrides of general formula M(C{sub 1-x}, H{sub 2x}). The primitive CFC, NaCl type, structure remains unchanged but expands strongly in the case of actinide carbides. With lanthanide carbides, hydrogenation induces a phase transformation with reappearance of the metal structure (HCP). Hydrogen decomposition pressures of all the studied carbo-hydrides are greater than those of the corresponding di-hydrides. (authors) [French] Les monocarbures d'actinides et de lanthanides fixent reversiblement de l'hydrogene a temperature peu elevee, a peu pres dans les memes conditions que les metaux purs correspondants. L'hydrogene penetre dans le reseau des carbures par l'intermediaire des lacunes de carbone, et la quantite totale fixee est approximativement egale a deux atomes d'hydrogene par lacune initiale. Les produits obtenus peuvent donc etre consideres comme des carbohydrures de formule generale M(C{sub 1-x}, H{sub 2x}). La structure d'origine CFC, type NaCl est conservee, mais avec une forte expansion, dans le cas des carbures d'actinides. En revanche, l'hydrogenation entraine un changement de phase cristalline avec retour a la structure du metal (HC) pour les carbures de lanthanides. Tous les carbohydrures etudies ont des tensions de decomposition en hydrogene superieures a celles des dihydrures correspondants. (auteurs)

  2. Monolithic Laser Scribed Graphene Scaffold with Atomic Layer Deposited Platinum for Hydrogen Evolution Reaction

    KAUST Repository

    Nayak, Pranati; Jiang, Qiu; Kurra, Narendra; Buttner, Ulrich; Wang, Xianbin; Alshareef, Husam N.

    2017-01-01

    The use of three-dimensional (3D) electrode architectures as scaffolds for conformal deposition of catalysts is an emerging research area with significant potential for electrocatalytic applications. In this study, we report the fabrication of monolithic, self-standing, 3D graphitic carbon scaffold with conformally deposited Pt by atomic layer deposition (ALD) as a hydrogen evolution reaction catalyst. Laser scribing is employed to transform polyimide into 3D porous graphitic carbon, which possesses good electronic conductivity and numerous edge plane sites. This laser scribed graphene (LSG) architecture makes it possible to fabricate monolithic electrocatalyst support without any binders or conductive additives. The synergistic effect between ALD of Pt on 3D network of LSG provides an avenue for minimal yet effective Pt usage, leading to an enhanced HER activity. This strategy establish a general approach for inexpensive and large scale HER device fabrication with minimum catalyst cost.

  3. General Tritium Labelling of Gentamicin C by catalytic hydrogen exchange Reaction with Tritiated Water

    International Nuclear Information System (INIS)

    Suarez, C.; Diaz, D.; Paz, D.

    1991-01-01

    Gentamicin C was labelled with tritium by means of a PtO2 catalyzed hydrogen exchange reaction. Under the conditions of the exchange (100 mg of gentamicin, basic form, 0,3 ml H2O-3H, and 50 mg of prereduced PtO2) the radiochemical yield was 0,24, 0,38 and 0,48 % at 120 degree celsius, for 8, 16 and 24 hours respectively. Chemical yield for purified gentamicin was about 60 %. Purification was accomplished with a cellulose column eluted with the lower phase of chloroform-methanol 17 % ammonium hydroxide (2:1:1, v/v) . Chemical purity, determined by HPLC, was 96,5 % and radiochemical one was 95. Main exchange degradation products show biological activity. (Author) 12 refs

  4. General Tritium labelling of gentamicin C by catalytic hydrogen exchange reaction with tritiated water

    International Nuclear Information System (INIS)

    Suarez, C.; Diaz, D.

    1991-01-01

    Gentamicin C was labelled with tritium by means of a PtO 2 catalized hydrogen exchange reaction. Under the conditions of the exchange (100 mg of gentamicin, basic form, 0,3 ml H 2 O- 3 H, and 50 mg of prereduced PtO 2 ) the radiochemical yield was 0,24, 0,38 and 0,48 % at 120 o C, for 8, 16 and 24 hours respectively. Chemical yield for purified gentamicin was about 60 %. Purification was accoumplished with a cellulose column eluted with the lower phase of chloroform-methanol 17 % ammonium hydroxide (2:1:1, v/v). Chemical purity, determined by HPLC, was 96,5 % and radiochemical one was 95 % . Main exchange degradation products show biological activity. (Author). 12 refs

  5. Editors' Choice Growth of Layered WS2Electrocatalysts for Highly Efficient Hydrogen Production Reaction

    KAUST Repository

    Alsabban, Merfat M.

    2016-08-18

    Seeking more economical alternative electrocatalysts without sacrificing much in performance to replace precious metal Pt is one of the major research topics in hydrogen evolution reactions (HER). Tungsten disulfide (WS2) has been recognized as a promising substitute for Pt owing to its high efficiency and low-cost. Since most existing works adopt solution-synthesized WS2 crystallites for HER, direct growth of WS2 layered materials on conducting substrates should offer new opportunities. The growth of WS2 by the thermolysis of ammonium tetrathiotungstate (NH4)(2)WS4 was examined under various gaseous environments. Structural analysis and electrochemical studies show that the H2S environment leads to the WS2 catalysts with superior HER performance with an extremely low overpotential (eta(10) = 184 mV). (C) The Author(s) 2016. Published by ECS. All rights reserved.

  6. Editors' Choice Growth of Layered WS2Electrocatalysts for Highly Efficient Hydrogen Production Reaction

    KAUST Repository

    Alsabban, Merfat M.; Min, Shixiong; Hedhili, Mohamed N.; Ming, Jun; Li, Lain-Jong; Huang, Kuo-Wei

    2016-01-01

    Seeking more economical alternative electrocatalysts without sacrificing much in performance to replace precious metal Pt is one of the major research topics in hydrogen evolution reactions (HER). Tungsten disulfide (WS2) has been recognized as a promising substitute for Pt owing to its high efficiency and low-cost. Since most existing works adopt solution-synthesized WS2 crystallites for HER, direct growth of WS2 layered materials on conducting substrates should offer new opportunities. The growth of WS2 by the thermolysis of ammonium tetrathiotungstate (NH4)(2)WS4 was examined under various gaseous environments. Structural analysis and electrochemical studies show that the H2S environment leads to the WS2 catalysts with superior HER performance with an extremely low overpotential (eta(10) = 184 mV). (C) The Author(s) 2016. Published by ECS. All rights reserved.

  7. Monolithic Laser Scribed Graphene Scaffold with Atomic Layer Deposited Platinum for Hydrogen Evolution Reaction

    KAUST Repository

    Nayak, Pranati

    2017-09-01

    The use of three-dimensional (3D) electrode architectures as scaffolds for conformal deposition of catalysts is an emerging research area with significant potential for electrocatalytic applications. In this study, we report the fabrication of monolithic, self-standing, 3D graphitic carbon scaffold with conformally deposited Pt by atomic layer deposition (ALD) as a hydrogen evolution reaction catalyst. Laser scribing is employed to transform polyimide into 3D porous graphitic carbon, which possesses good electronic conductivity and numerous edge plane sites. This laser scribed graphene (LSG) architecture makes it possible to fabricate monolithic electrocatalyst support without any binders or conductive additives. The synergistic effect between ALD of Pt on 3D network of LSG provides an avenue for minimal yet effective Pt usage, leading to an enhanced HER activity. This strategy establish a general approach for inexpensive and large scale HER device fabrication with minimum catalyst cost.

  8. Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction

    KAUST Repository

    Zhang, Junjun; Zhang, Chenhui; Wang, Zhenyu; Zhu, Jian; Wen, Zhiwei; Zhao, Xingzhong; Zhang, Xixiang; Xu, Jun; Lu, Zhouguang

    2017-01-01

    A simple one-pot solvothermal method is reported to synthesize VS2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer-expanded VS2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm-2 , a small Tafel slope of 36 mV dec-1 , and long-term stability of 60 h without any current fading. The performance is much better than that of the pristine VS2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (∆GH ) from density functional theory calculations. This work opens up a new door for developing transition-metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.

  9. Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction

    KAUST Repository

    Zhang, Junjun

    2017-12-27

    A simple one-pot solvothermal method is reported to synthesize VS2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer-expanded VS2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm-2 , a small Tafel slope of 36 mV dec-1 , and long-term stability of 60 h without any current fading. The performance is much better than that of the pristine VS2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (∆GH ) from density functional theory calculations. This work opens up a new door for developing transition-metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.

  10. Synthesis and structures of Al–Ti nanoparticles by hydrogen plasma-metal reaction

    International Nuclear Information System (INIS)

    Liu Tong; Zhang Tongwen; Zhu Mu; Qin Chenggong

    2012-01-01

    Three kinds of Al–Ti nanoparticles (7.7, 27.8, and 42.6 at.% Ti) have been prepared from Al–65, Al–85, and Al–88 at.% Ti master alloys by hydrogen plasma-metal reaction, with average particle sizes of 30, 25, and 80 nm, respectively. The higher evaporation rate of Al than Ti resulted in the low Ti contents in the nanoparticles than those in the master alloys. Microscopy observation revealed that the primary nanoparticles are spherical in shape, and occur as chain aggregates of several individual nanoparticles due to the faster collision rate than the coalescence rate. All the Al–Ti nanoparticles contain amorphous alumina layers of about 2–3 nm in thickness surrounding the crystalline core. AlTi intermetallic nanoparticles were successfully produced for Al–27.8 at.% Ti, with a single crystal of AlTi in one chain aggregate. The composite nanoparticles of Al together with some Al 3 Ti phases are prepared for Al–7.7 at.% Ti, with each phase in the individual particle of one chain aggregate. The composite nanoparticles of AlTi with some AlTi 3 were produced for Al–42.6 at.% Ti, with each phase in the individual particle of one chain aggregate. The formation mechanism of Al–Ti nanoparticles was interpreted in terms of phase transition and the effect of hydrogen.

  11. Dynamics of the reaction of the N+ ion with hydrogen isotopes and helium

    International Nuclear Information System (INIS)

    Ruska, W.E.W.

    1976-01-01

    Molecular beam techniques were used to study the reactive and non-reactive scattering of the nitrogen positive ion from hydrogen isotopes and helium, at energies above the stability limit for spectator stripping. Reactive scattering was observed from H 2 and HD targets. Non-reactive scattering was observed from H 2 and D 2 targets, and from He at one energy. A correlation diagram for the system is presented and compared with the available a priori calculations. Two surfaces are expected to lead to reaction. One is a 3 A 2 - 3 PI surface, the other, a 3 B 1 - 3 Σ - surface. Collinear approaches are expected to be most reactive on the 3 B 1 - 3 Σ - surface; noncollinear, on the 3 A 1 - 3 PI surface. Theoretical models are presented in which an incident hard sphere A, representing the projectile ion, strikes one of a pair of hard spheres B-C representing the B hydrogen molecule. After an impulsive A-B collision, an impulsive B-C collision may take place. The relative energy of A to B is then examined, and a reactive event is considered to have occurred if the energy is less than the dissociation energy for the A-B molecule. This model is treated both in the collinear case and in three dimensions. A graphical technique for the collinear case is summarized and applied to reaction on the 3 B 1 - 3 Σ - surface. An integral equation for the three-dimensional case is developed. A synthesis of two treatments, representing the behavior of the system on both reactive surfaces, and considering the charge-exchange channel, correctly predicts the observed product distribution. Predictions are also presented for the as yet unobserved case of reactive scattering from a D 2 target

  12. Electrodeposition of Nickel Nanoparticles for the Alkaline Hydrogen Evolution Reaction: Correlating Electrocatalytic Behavior and Chemical Composition.

    Science.gov (United States)

    Tao, Shasha; Yang, Florent; Schuch, Jona; Jaegermann, Wolfram; Kaiser, Bernhard

    2018-03-09

    Ni nanoparticles (NPs) consisting of Ni, NiO, and Ni(OH) 2 were formed on Ti substrates by electrodeposition as electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution. Additionally, the deposition parameters including the potential range and the scan rate were varied, and the resulting NPs were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. The chemical composition of the NPs changed upon using different conditions, and it was found that the catalytic activity increased with an increase in the amount of NiO. From these data, optimized NPs were synthesized; the best sample showed an onset potential of approximately 0 V and an overpotential of 197 mV at a cathodic current density of 10 mA cm -2 as well as a small Tafel slope of 88 mV dec -1 in 1 m KOH, values that are comparable to those of Pt foil. These NPs consist of approximately 25 % Ni and Ni(OH) 2 each, as well as approximately 50 % NiO. This implies that to obtain a successful HER electrocatalyst, active sites with differing compositions have to be close to each other to promote the different reaction steps. Long-time measurements (30 h) showed almost complete transformation of the highly active catalyst compound consisting of Ni 0 , NiO, and Ni(OH) 2 into the less active Ni(OH) 2 phase. Nevertheless, the here-employed electrodeposition of nonprecious metal/metal-oxide combination compounds represents a promising alternative to Pt-based electrocatalysts for water reduction to hydrogen. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction

    KAUST Repository

    Chang, Yunghuang

    2014-10-22

    Molybdenum sulfide has recently attracted much attention because of its low cost and excellent catalytical effects in the application of hydrogen evolution reaction (HER). To improve the HER efficiency, many researchers have extensively explored various avenues such as material modification, forming hybrid structures or modifying geometric morphology. In this work, we reported a significant enhancement in the electrocatalytic activity of the MoSx via growing on Tetracyanoquinodimethane (TCNQ) treated carbon cloth, where the MoSx was synthesized by thermolysis from the ammonium tetrathiomolybdate ((NH4)2MoS4) precursor at 170 °C. The pyridinic N- and graphitic N-like species on the surface of carbon cloth arising from the TCNQ treatment facilitate the formation of Mo5+ and S2 2- species in the MoSx, especially with S2 2- serving as an active site for HER. In addition, the smaller particle size of the MoSx grown on TCNQ-treated carbon cloth reveals a high ratio of edge sites relative to basal plane sites, indicating the richer effective reaction sites and superior electrocatalytic characteristics. Hence, we reported a high hydrogen evolution rate for MoSx on TCNQ-treated carbon cloth of 6408 mL g-1 cm-2 h-1 (286 mmol g-1 cm-2 h-1) at an overpotential of V = 0.2 V. This study provides the fundamental concepts useful in the design and preparation of transition metal dichalcogenide catalysts, beneficial in the development in clean energy.

  14. Advances in interactive supported electro-catalysis for hydrogen and oxygen electrode reactions

    Energy Technology Data Exchange (ETDEWEB)

    Nedeljko V Krstajic; Ljiljana M Vracar; Jelena M Jaksic; Milan M Jaksic [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia and Montenegro (Yugoslavia); Stelios G Neophytides; Miranda Labou; Jelena M Jaksic; Milan M Jaksic [Institute of Chemical Engineering and High Temperature Chemical Processes FORTH, and Department of Chemistry, University of Patras, 26500 Patras, (Greece); Reidar Tunold [University of Trondheim, NTNU, Institute of Industrial Electrochemistry, Trondheim, (Norway); Polycarpos Falaras [Institute of Physical Chemistry, NCSR Demokritos, Attikis, Athens, (Greece)

    2006-07-01

    Magneli phases have been introduced as an unique electron conductive and interactive support for electro-catalysis both in hydrogen (HELR) and oxygen (OELR) electrode reactions in water electrolysis and Low Temperature PEM Fuel Cells (LT PEM FC). The Strong Metal-Support Interaction (SMSI) that imposes the former implies: (i) the hypo-hyper-d inter-bonding effect and its catalytic consequences, and (ii) the interactive primary oxide (M-OH) spillover from the hypo-d-oxide support as a dynamic electrocatalytic contribution. The stronger the bonding, the more strained appear d-orbitals, thereby the less strong the intermediate adsorptive strength in the rate determining step (RDS), and consequently, the faster the facilitated catalytic electrode reaction arises. At the same time the primary oxide spillover transferred from the hypo-d-oxide support directly interferes and reacts either individually and directly to contribute to finish the oxygen reduction, or with other interactive species, like CO to contribute to the CO tolerance. In such a respect, the conditions to provide Au to act as the reversible hydrogen electrode have been proved either by its potentiodynamic surface reconstruction in a heavy water solution, or by the nano-structured SMSI Au on anatase titania with characteristic strained d-orbitals in such a hypo-hyper-d-interactive bonding (Au/TiO{sub 2}). In the same context, the monoatomic network dispersion of Pt upon Magneli phases makes it possible to produce an advanced interactive supported electro-catalyst for cathodic oxygen reduction (ORR). The strained hypo-hyper-d-inter-electronic and inter-d-orbital metal/hypo-d-oxide support bonding relative to the strength of the latter, has been inferred to be the basis of the synergistic electrocatalytic effect both in the HELR and ORR. (authors)

  15. Dechlorination of chloropicrin and 1,3-dichloropropene by hydrogen sulfide species: redox and nucleophilic substitution reactions.

    Science.gov (United States)

    Zheng, Wei; Yates, Scott R; Papiernik, Sharon K; Guo, Mingxin; Gan, Jianying

    2006-03-22

    The chlorinated fumigants chloropicrin (trichloronitromethane) and 1,3-dichloropropene (1,3-D) are extensively used in agricultural production for the control of soilborne pests. The reaction of these two fumigants with hydrogen sulfide species (H2S and HS-) was examined in well-defined anoxic aqueous solutions. Chloropicrin underwent an extremely rapid redox reaction in the hydrogen sulfide solution. Transformation products indicated reductive dechlorination of chloropicrin by hydrogen sulfide species to produce dichloro- and chloronitromethane. The transformation of chloropicrin in hydrogen sulfide solution significantly increased with increasing pH, indicating that H2S is less reactive toward chloropicrin than HS- is. For both 1,3-D isomers, kinetics and transformation products analysis revealed that the reaction between 1,3-D and hydrogen sulfide species is an S(N)2 nucleophilic substitution process, in which the chlorine at C3 of 1,3-D is substituted by the sulfur nucleophile to form corresponding mercaptans. The 50% disappearance time (DT50) of 1,3-D decreased with increasing hydrogen sulfide species concentration at a constant pH. Transformation of 1,3-D was more rapid at high pH, suggesting that the reactivity of hydrogen sulfide species in the experimental system stems primarily from HS-. Because of the relatively low smell threshold values and potential environmental persistence of organic sulfur products yielded by the reaction of 1,3-D and HS-, the effects of reduced sulfide species should be considered in the development of alternative fumigation practices, especially in the integrated application of sulfur-containing fertilizers.

  16. The Synthesis and Electrocatalytic Activities of Molybdenum Sulfide for Hydrogen Evolution Reaction

    KAUST Repository

    Li, Zhengxing

    2014-07-01

    In the context of the future hydrogen economy, effective production of hydrogen (H2) from readily available and sustainable resources is of crucial importance. Hydrogen generation via water splitting by solar energy or electricity has attracted great attention in recent years. In comparison with photocatalytic water-splitting directly using solar light, which is ideal but the relevant technologies are not yet mature, electrolysis of water with catalyst is more practical at the current stage. The Pt-group noble metals are the most effective electrocatalysts for hydrogen evolution reaction (HER) from water, but their high costs limit their applications. Due to the earth-abundance and low price, MoS2 is expected to be a good alternative of the Pt-group metals for HER. Plenty of researches have been conducted for improving the HER activities of MoS2 by optimizing its synthesis method. However, it remains challenging to prepare MoS2 catalysts with high and controllable activity, and more investigations are still needed to better understand the structure-performance correlation in this system. In this thesis, we report a new strategy for fabricating MoS2 eletrocatalysts which gives rise to much improved HER performance and allows us to tune the electrocatalytic activity by varying the preparation conditions. Specifically, we sulfurized molybdenum oxide on the surface of a Ti foil electrode via a facile chemical vapor deposition (CVD) method, and directly used the electrode for HER testing. Depending on the CVD temperature, the MoO2-MoS2 nanocomposites show different HER activities. Under the optimal synthesis condition (400ºC), the resulting catalyst exhibited excellent HER activity: an onset potential (overpotential) of 0.095 V versus RHE and the Tafel slope of 40 mv/dec. Such a performance exceeds those of most reported MoS2 based HER electrocatalysts. We demonstrated that the CVD temperature has significant influence on the catalysts in crystallinity degree, particle

  17. Relationship Between Equilibrium Hydrogen Pressure and Exchange Current for the Hydrogen Electrode-Reaction at Mmni(3.9-X)Mn(0.4)A1(X)Co(0.7) Alloy Electrodes

    NARCIS (Netherlands)

    Senoh, H.; Morimoto, K.; Inoue, H.; Iwakura, C.; Notten, P.H.L.

    2000-01-01

    We present a theoretical relationship between equilibrium hydrogen pressure and exchange current for the hydrogen electrode reaction which considers the degree of hydrogen coverage at the electrode surface. Electrochemical measurements at MmNi3.9–xMn0.4AlxCo0.7 (0 x 0.8) electrodes were performed to

  18. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    Science.gov (United States)

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  19. The deuterium-exchange reaction between water and hydrogen with the thin-film hydrophobic catalyst

    International Nuclear Information System (INIS)

    Yamashita, Hisao; Mizumoto, Mamoru; Matsuda, Shimpei

    1985-01-01

    The deuterium-exchange reaction between water and hydrogen with a hydrophobic catalyst was studied. The hydrophobic catalyst was composed of platinum as an active component and porous poly(tetrafluoroethylene) (PTFE) as a support. The PTFE support was in two forms, i.e., (a) a pellet and (b) a thin-film with the thickness of 50 μm. The primary purpose of the thin film hydrophobic catalyst was to reduce the platinum usage in the reactor. The activity of the catalyst was measured in a trickle bed reactor at atmospheric pressure and temperature of 20 ∼ 70 deg C. It has been found that the employment of the thin-film catalyst reduced the platinum usage to 1/5 of the reactor in the case of using a conventional catalyst. Platinum particles on the thin-film catalyst work efficiently because the reactants were easily diffused to the active sites. It has also been found that the isotopic exchange rate with the thin-film catalyst increased with the increase in the ratio of liquid/gas and increased with the rise of the reaction temperature. It was found from an endurance test that the activity of the thin-film catalyst decreased gradually due to the condensation of water vapor in the catalyst, but was regenarated by heating the catalyst to remove the condensed water. (author)

  20. Kinetics of Hydrogen Radical Reactions with Toluene Including Chemical Activation Theory Employing System-Specific Quantum RRK Theory Calibrated by Variational Transition State Theory.

    Science.gov (United States)

    Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G

    2016-03-02

    Pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice-Ramsperger-Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition state theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional-potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.

  1. ICENES 2007 Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, S [Gazi University, Technical Education Faculty, Ankara (Turkey)

    2007-07-01

    In this book Conference Program and Abstracts were included 13th International Conference on Emerging Nuclear Energy Systems which held between 03-08 June 2007 in Istanbul, Turkey. The main objective of International Conference series on Emerging Nuclear Energy Systems (ICENES) is to provide an international scientific and technical forum for scientists, engineers, industry leaders, policy makers, decision makers and young professionals who will shape future energy supply and technology , for a broad review and discussion of various advanced, innovative and non-conventional nuclear energy production systems. The main topics of 159 accepted papers from 35 countries are fusion science and technology, fission reactors, accelerator driven systems, transmutation, laser in nuclear technology, radiation shielding, nuclear reactions, hydrogen energy, solar energy, low energy physics and societal issues.

  2. ICENES 2007 Abstracts

    International Nuclear Information System (INIS)

    Sahin, S.

    2007-01-01

    In this book Conference Program and Abstracts were included 13th International Conference on Emerging Nuclear Energy Systems which held between 03-08 June 2007 in Istanbul, Turkey. The main objective of International Conference series on Emerging Nuclear Energy Systems (ICENES) is to provide an international scientific and technical forum for scientists, engineers, industry leaders, policy makers, decision makers and young professionals who will shape future energy supply and technology , for a broad review and discussion of various advanced, innovative and non-conventional nuclear energy production systems. The main topics of 159 accepted papers from 35 countries are fusion science and technology, fission reactors, accelerator driven systems, transmutation, laser in nuclear technology, radiation shielding, nuclear reactions, hydrogen energy, solar energy, low energy physics and societal issues

  3. Generation of Hydrogen and Methane during Experimental Low-Temperature Reaction of Ultramafic Rocks with Water

    Science.gov (United States)

    McCollom, Thomas M.; Donaldson, Christopher

    2016-06-01

    Serpentinization of ultramafic rocks is widely recognized as a source of molecular hydrogen (H2) and methane (CH4) to support microbial activity, but the extent and rates of formation of these compounds in low-temperature, near-surface environments are poorly understood. Laboratory experiments were conducted to examine the production of H2 and CH4 during low-temperature reaction of water with ultramafic rocks and minerals. Experiments were performed by heating olivine or harzburgite with aqueous solutions at 90°C for up to 213 days in glass bottles sealed with butyl rubber stoppers. Although H2 and CH4 increased steadily throughout the experiments, the levels were very similar to those found in mineral-free controls, indicating that the rubber stoppers were the predominant source of these compounds. Levels of H2 above background were observed only during the first few days of reaction of harzburgite when CO2 was added to the headspace, with no detectable production of H2 or CH4 above background during further heating of the harzburgite or in experiments with other mineral reactants. Consequently, our results indicate that production of H2 and CH4 during low-temperature alteration of ultramafic rocks may be much more limited than some recent experimental studies have suggested. We also found no evidence to support a recent report suggesting that spinels in ultramafic rocks may stimulate H2 production. While secondary silicates were observed to precipitate during the experiments, formation of these deposits was dominated by Si released by dissolution of the glass bottles, and reaction of the primary silicate minerals appeared to be very limited. While use of glass bottles and rubber stoppers has become commonplace in experiments intended to study processes that occur during serpentinization of ultramafic rocks at low temperatures, the high levels of H2, CH4, and SiO2 released during heating indicate that these reactor materials are unsuitable for this purpose.

  4. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.; Ravishankar, T.N.; Ramakrishnappa, T.; Nagaraju, Doddahalli H.; Krishna Pai, Ranjith

    2015-01-01

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic

  5. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values

    Czech Academy of Sciences Publication Activity Database

    Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, Eliška; Asefa, T.

    2014-01-01

    Roč. 53, č. 17 (2014), s. 4372-4376 ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : carbon nanotubes * cobalt nanoparticles * electrocatalysis * hydrogen evolution reaction * water splitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 11.261, year: 2014

  6. The influence of reaction time on hydrogen sulphide removal from air by means of Fe(III)-EDTA/Fiban catalysts

    Science.gov (United States)

    Wasag, H.; Cel, W.; Chomczynska, M.; Kujawska, J.

    2018-05-01

    The paper deals with a new method of hydrogen sulphide removal from air by its filtration and selective catalytic oxidation with the use of fibrous carriers of Fe(III)-EDTA complex. The basis of these filtering materials includes fibrous ion exchangers with the complex immobilized on their functional groups. It has been established that the degree of catalytic hydrogen sulphide decomposition depends on the reaction time. Thus, the required degree of hydrogen sulphide removal from air could be easily controlled by applying appropriate thickness of the filtering layer under a given filtering velocity. It allows applying very thin filtering layers of the Fe(III)-EDTA/Fiban AK-22 or Fiban A-6 catalysts. The obtained results of the research confirm the applicability of these materials for deep air purification from hydrogen sulphide.

  7. Development of the work function approach to the underpotential deposition of metals. Application to the hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Trasatti, S.

    1975-01-01

    A theory is developed for the underpotential deposition of metals. Concepts are then extended to oxygen and hydrogen adsorption. Analysis of results shows that, unlike oxygen adsorption, hydrogen adsorption in solution probably follows a different pattern with respect to the gas phase situation. The hydrogen evolution reaction is discussed in the light of the above findings and it is shown that usual concepts regarding the reactivity scale of metals towards hydrogen should be reconsidered taking into account solvent and entropy effects. The latters can account for the behaviour of sp-metals. The formers are important with transition metals. The final picture is consistent with the idea that M-H 2 O interactions are much stronger on transition than on sp-metals. (orig.) [de

  8. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    Science.gov (United States)

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen

  9. Flow injection determination of hydrogen peroxide using catalytic effect of cobalt(II) ion on a dye formation reaction.

    Science.gov (United States)

    Kurihara, Makoto; Muramatsu, Miyuki; Yamada, Mari; Kitamura, Naoya

    2012-07-15

    A novel flow injection photometric method was developed for the determination of hydrogen peroxide in rainwater. This method is based on a cobalt(II)-catalyzed oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone (MBTH) with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline (DAOS) as a modified Trinder's reagent to produce intensely colored dye (λ(max)=530nm) in the presence of hydrogen peroxide at pH 8.4. In this method, 1,2-dihydroxy-3,5-benzenedisulfonic acid (Tiron) acted as an activator for the cobalt(II)-catalyzed reaction and effectively increased the peak height for hydrogen peroxide. The linear calibration graphs were obtained in the hydrogen peroxide concentration range 5×10(-8) to 2.2×10(-6)mol dm(-3) at a sampling rate of 20h(-1). The relative standard deviations for ten determinations of 2.2×10(-6) and 2×10(-7)mol dm(-3) hydrogen peroxide were 1.1% and 3.7%, respectively. The proposed method was successfully applied to the determination of hydrogen peroxide in rainwater samples and the analytical results agreed fairly well with the results obtained by different two reference methods; peroxidase method and hydrogen peroxide electrode method. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions

    Science.gov (United States)

    Zhang, Rui; El-Refaei, Sayed M.; Russo, Patrícia A.; Pinna, Nicola

    2018-05-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) play key roles in the conversion of energy derived from renewable energy sources into chemical energy. Efficient, robust, and inexpensive electrocatalysts are necessary for driving these reactions at high rates at low overpotentials and minimize energetic losses. Recently, electrocatalysts derived from hybrid metal phosphonate compounds have shown high activity for the HER or OER. We review here the utilization of metal phosphonate coordination networks and metal-organic frameworks as precursors/templates for transition-metal phosphides, phosphates, or oxyhydroxides generated in situ in alkaline solutions, and their electrocatalytic performance in HER or OER.

  11. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.

    Science.gov (United States)

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-12-25

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2.

  12. Electrochemical behavior of Ni{sub x}W{sub 1-x} materials as catalyst for hydrogen evolution reaction in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Oliver-Tolentino, Miguel A. [UPIBI-IPN, Departamento de Ciencias Basicas, Av. Acueducto s/n, Barrio La Laguna, Col. Ticoman, Mexico D.F. 07340 (Mexico); Arce-Estrada, Elsa M. [ESIQIE-IPN Departamento de Ingenieria en Metalurgia y Materiales, UPALM, UPALM, Mexico D.F. 07738 (Mexico); Cortes-Escobedo, Claudia A. [Centro de Investigacion e Innovacion Tecnologica del IPN, Cda. Cecati s/n, Col. Sta. Catarina, CP 02250 Azcapotzalco D.F. (Mexico); Bolarin-Miro, Ana M.; Sanchez-De Jesus, Felix [Area Academica de Ciencias de la Tierra y Materiales, Universidad Autonoma del Estado de Hidalgo, CU, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, CP 42184 Hidalgo (Mexico); Gonzalez-Huerta, Rosa de G. [ESIQIE-IPN, Departamento de Ingenieria Quimica - Laboratorio de Electroquimica y Corrosion, Edif. Z-5 3er piso, UPALM, Mexico D.F. 07738 (Mexico); Manzo-Robledo, Arturo, E-mail: amanzor@ipn.mx [ESIQIE-IPN, Departamento de Ingenieria Quimica - Laboratorio de Electroquimica y Corrosion, Edif. Z-5 3er piso, UPALM, Mexico D.F. 07738 (Mexico)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer The electrochemical techniques used in this study elucidated the Ni-W surface state. Black-Right-Pointing-Pointer The Ni-W materials were effective for the hydrogen evolution reaction. Black-Right-Pointing-Pointer The prepared alloys exhibited higher catalytic activity than their precursors. Black-Right-Pointing-Pointer The preparation method is relatively simple and effective procedure. - Abstract: In the present work, results of electrochemical evaluation, as well as morphological and structural characterization of Ni{sub x}W{sub 1-x} materials with x = 0.77, 0.64, 0.4, 0.19 and 0.07 processed by means of high energy ball milling from high purity powders are presented. Also, the electrocatalytic performance on the hydrogen evolution reaction (HER) of the Ni{sub x}W{sub 1-x} materials evaluated by linear polarization and cyclic voltammetry techniques in alkaline media at room temperature is discussed. The structural and morphological characterization of the as-prepared materials was carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results indicated a small-particle clusters and solid solution formation. According to the kinetics parameters the best electrocatalytic activity was observed at Ni{sub 64}W{sub 36}.

  13. Dynamics of the reaction of the N/sup +/ ion with hydrogen isotopes and helium

    Energy Technology Data Exchange (ETDEWEB)

    Ruska, W.E.W.

    1976-06-28

    Molecular beam techniques were used to study the reactive and non-reactive scattering of the nitrogen positive ion from hydrogen isotopes and helium, at energies above the stability limit for spectator stripping. Reactive scattering was observed from H/sub 2/ and HD targets. Non-reactive scattering was observed from H/sub 2/ and D/sub 2/ targets, and from He at one energy. A correlation diagram for the system is presented and compared with the available a priori calculations. Two surfaces are expected to lead to reaction. One is a /sup 3/A/sub 2/ - /sup 3/PI surface, the other, a /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface. Collinear approaches are expected to be most reactive on the /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface; noncollinear, on the /sup 3/A/sub 1/ - /sup 3/PI surface. Theoretical models are presented in which an incident hard sphere A, representing the projectile ion, strikes one of a pair of hard spheres B-C representing the B hydrogen molecule. After an impulsive A-B collision, an impulsive B-C collision may take place. The relative energy of A to B is then examined, and a reactive event is considered to have occurred if the energy is less than the dissociation energy for the A-B molecule. This model is treated both in the collinear case and in three dimensions. A graphical technique for the collinear case is summarized and applied to reaction on the /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface. An integral equation for the three-dimensional case is developed. A synthesis of two treatments, representing the behavior of the system on both reactive surfaces, and considering the charge-exchange channel, correctly predicts the observed product distribution. Predictions are also presented for the as yet unobserved case of reactive scattering from a D/sub 2/ target.

  14. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction

    Science.gov (United States)

    Mahmood, Javeed; Li, Feng; Jung, Sun-Min; Okyay, Mahmut Sait; Ahmad, Ishfaq; Kim, Seok-Jin; Park, Noejung; Jeong, Hu Young; Baek, Jong-Beom

    2017-05-01

    The hydrogen evolution reaction (HER) is a crucial step in electrochemical water splitting and demands an efficient, durable and cheap catalyst if it is to succeed in real applications. For an energy-efficient HER, a catalyst must be able to trigger proton reduction with minimal overpotential and have fast kinetics. The most efficient catalysts in acidic media are platinum-based, as the strength of the Pt-H bond is associated with the fastest reaction rate for the HER. The use of platinum, however, raises issues linked to cost and stability in non-acidic media. Recently, non-precious-metal-based catalysts have been reported, but these are susceptible to acid corrosion and are typically much inferior to Pt-based catalysts, exhibiting higher overpotentials and lower stability. As a cheaper alternative to platinum, ruthenium possesses a similar bond strength with hydrogen (˜65 kcal mol-1), but has never been studied as a viable alternative for a HER catalyst. Here, we report a Ru-based catalyst for the HER that can operate both in acidic and alkaline media. Our catalyst is made of Ru nanoparticles dispersed within a nitrogenated holey two-dimensional carbon structure (Ru@C2N). The Ru@C2N electrocatalyst exhibits high turnover frequencies at 25 mV (0.67 H2 s-1 in 0.5 M H2SO4 solution; 0.75 H2 s-1 in 1.0 M KOH solution) and small overpotentials at 10 mA cm-2 (13.5 mV in 0.5 M H2SO4 solution; 17.0 mV in 1.0 M KOH solution) as well as superior stability in both acidic and alkaline media. These performances are comparable to, or even better than, the Pt/C catalyst for the HER.

  15. Phenomena and significance of intermediate spillover in electrocatalysis of oxygen and hydrogen electrode reactions

    Directory of Open Access Journals (Sweden)

    Jakšić Jelena M.

    2012-01-01

    Full Text Available Altervalent hypo-d-oxides of transition metal series impose spontaneous dissociative adsorption of water molecules and pronounced membrane spillover transferring properties instantaneously resulting with corresponding bronze type (Pt/HxWO3 under cathodic, and/or its hydrated state (Pt/W(OH6 responsible for the primary oxide (Pt-OH effusion, under anodic polarization, this way establishing instantaneous reversibly revertible alterpolar bronze features (Pt/H0.35WO3 Pt/W(OH6, and substantially advanced electrocatalytic properties of these composite interactive electrocatalysts. As the consequence, the new striking and unpredictable prospects both in law and medium temperature proton exchange membrane fuell cell (L&MT PEMFC and water electrolysis (WE have been opened by the interactive supported individual (Pt, Pd, Ni or prevailing hyper-d-electronic nanostructured intermetallic phase clusters (WPt3, NbPt3, HfPd3, ZrNi3, grafted upon and within high altervalent capacity hypo-d-oxides (WO3, Nb2O5, Ta2O5, TiO2 and their proper mixed valence compounds, to create a novel type of alterpolar interchangeable composite electrocatalysts for hydrogen and oxygen electrode reactions. Whereas in aqueous media Pt (Pt/C features either chemisorbed catalytic surface properties of H-adatoms (Pt-H, or surface oxide (Pt=O, missing any effusion of other interacting species, new generation and selection of composite and interactive strong metal-support interaction (SMSI electrocatalysts in condensed wet state primarily characterizes interchangeable extremely fast reversible spillover of either H-adatoms, or the primary oxides (Pt-OH, Au-OH, or the invertible bronze type behavior of these significant interactive electrocatalytic ingredients. Such nanostructured type electrocatalysts, even of mixed hypo-d-oxide structure (Pt/H0.35WO3/TiO2/C, Pt/HxNbO3/TiO2/C, have for the first time been synthesized by the sol-gel methods and shown rather high stability, electron

  16. Hydrogen atom transfer reactions in thiophenol: photogeneration of two new thione isomers.

    Science.gov (United States)

    Reva, Igor; Nowak, Maciej J; Lapinski, Leszek; Fausto, Rui

    2015-02-21

    Photoisomerization reactions of monomeric thiophenol have been investigated for the compound isolated in low-temperature argon matrices. The initial thiophenol population consists exclusively of the thermodynamically most stable thiol form. Phototransformations were induced by irradiation of the matrices with narrowband tunable UV light. Irradiation at λ > 290 nm did not induce any changes in isolated thiophenol molecules. Upon irradiation at 290-285 nm, the initial thiol form of thiophenol converted into its thione isomer, cyclohexa-2,4-diene-1-thione. This conversion occurs by transfer of an H atom from the SH group to a carbon atom at the ortho position of the ring. Subsequent irradiation at longer wavelengths (300-427 nm) demonstrated that this UV-induced hydrogen-atom transfer is photoreversible. Moreover, upon irradiation at 400-425 nm, the cyclohexa-2,4-diene-1-thione product converts, by transfer of a hydrogen atom from the ortho to para position, into another thione isomer, cyclohexa-2,5-diene-1-thione. The latter thione isomer is also photoreactive and is consumed if irradiated at λ atom-transfer isomerization reactions dominate the unimolecular photochemistry of thiophenol confined in a solid argon matrix. A set of low-intensity infrared bands, observed in the spectra of UV irradiated thiophenol, indicates the presence of a phenylthiyl radical with an H- atom detached from the SH group. Alongside the H-atom-transfer and H-atom-detachment processes, the ring-opening photoreaction occurred in cyclohexa-2,4-diene-1-thione by the cleavage of the C-C bond at the alpha position with respect to the thiocarbonyl C[double bond, length as m-dash]S group. The resulting open-ring conjugated thioketene adopts several isomeric forms, differing by orientations around single and double bonds. The species photogenerated upon UV irradiation of thiophenol were identified by comparison of their experimental infrared spectra with the spectra theoretically calculated for

  17. Chemicals from Biomass: Combining Ring-Opening Tautomerization and Hydrogenation Reactions to Produce 1,5-Pentanediol from Furfural.

    Science.gov (United States)

    Brentzel, Zachary J; Barnett, Kevin J; Huang, Kefeng; Maravelias, Christos T; Dumesic, James A; Huber, George W

    2017-04-10

    A process for the synthesis of 1,5-pentanediol (1,5-PD) with 84 % yield from furfural is developed, utilizing dehydration/hydration, ring-opening tautomerization, and hydrogenation reactions. Although this process has more reaction steps than the traditional direct hydrogenolysis of tetrahydrofurfuryl alcohol (THFA), techno-economic analyses demonstrate that this process is the economically preferred route for the synthesis of biorenewable 1,5-PD. 2-Hydroxytetrahydropyran (2-HY-THP) is the key reaction pathway intermediate that allows for a decrease in the minimum selling price of 1,5-PD. The reactivity of 2-HY-THP is 80 times greater than that of THFA over a bimetallic hydrogenolysis catalyst. This enhanced reactivity is a result of the ring-opening tautomerization to 5-hydoxyvaleraldehyde and subsequent hydrogenation to 1,5-PD. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Free-polymer controlling morphology of α-MoO3 nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties

    International Nuclear Information System (INIS)

    Sinaim, Hathai; Ham, Dong Jin; Lee, Jae Sung; Phuruangrat, Anukorn; Thongtem, Somchai; Thongtem, Titipun

    2012-01-01

    Highlights: ► MoO 3 nanobelts as an n-type semiconducting material. ► It was successfully synthesized by a facile hydrothermal reaction. ► A promising material with 3.75 eV band gap for hydrogen evolution reaction (HER). - Abstract: Orthorhombic molybdenum oxide (α-MoO 3 ) nanobelts were successfully synthesized by the 100–180 °C and 2–20 h hydrothermal reactions of (NH 4 ) 6 Mo 7 O 24 ·4H 2 O solutions containing 15 ml 2 M acid (HNO 3 , H 2 SO 4 or HCl) with no surfactant and template adding. These products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopy, and electron microscopy (EM). In the present research, the product synthesized by the 180 °C and 20 h hydrothermal reaction of the solution containing HNO 3 was α-MoO 3 nanobelts with >10 μm long and 3 nanobelts were characterized by linear sweep voltammetry (LSV) and Tafel plot, including UV–vis and photoluminescence (PL) spectroscopy. These imply that α-MoO 3 nanobelts show satisfied performance for HER, with the 3.75 eV direct allowed band gap (E g ) due to the charged transition of O 2p → Mo 4d , including the emission of 437 nm wavelength at room temperature.

  19. Synthesis and characterization of Ni-P-Ag composite coating as efficient electrocatalyst for alkaline hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Elias, Liju; Hegde, A. Chitharanjan

    2016-01-01

    Highlights: • Electrocatalytic activity of Ni-P alloy is improved by Ag nanoparticle incorporation. • Ni-P-Ag electrode is developed through sol-enhanced electrodeposition. • Ni-P-Ag composite coating shows better electrocatalytic efficiency for HER. - Abstract: The effect of addition of silver nanoparticle sol (SNS) into Ni-P plating bath was studied in terms of the variation in electrocatalytic behavior of the developed coatings in 1.0 M KOH. Ni-P-Ag composite coating was achieved through direct electrolysis by adding a known quantity of the conventionally prepared SNS into Ni-P bath. Ni-P-Ag coatings electrodeposited galvanostatically on copper under different conditions of the bath was used as electrode material for alkaline hydrogen evolution reaction (HER). The optimal concentration of the SNS required for maximum electrocatalytic activity towards HER was obtained by adding different volumes of SNS (from 0 to 50 mL L −1 ) into the bath. The HER efficiency of the test electrodes in 1.0 M KOH medium was examined using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. The kinetics of HER on the alloy and composite electrodes were established through Tafel polarization and electrochemical impedance spectroscopy (EIS) analyses. Energy dispersive spectroscopy (EDS) was used to confirm the incorporation of Ag nanoparticles into the Ni-P alloy matrix. The microstructure and morphology of the alloy and composite coatings were analyzed by Scanning Electron Microscopy (SEM). A significant improvement in the electrocatalytic property of nano-Ag derived composite coatings was found, and was attributed to the enhanced electroactive sites of Ag particles. Deposition conditions to maximize the electrocatalytic activity of Ni-P-Ag nanocomposite coatings in relation to traditional Ni-P alloy coatings was arrived, and results are discussed.

  20. Use of nuclear reactions and ion channeling techniques for depth profiling hydrogen isotopes in solids

    International Nuclear Information System (INIS)

    Appleton, B.R.

    1979-01-01

    Hydrogen has always played a preeminent role in materials science because it so readily alters the physical and chemical properties of materials. However, it is often difficult to determine its role because it is one of the most elusive constituents to detect. More recently hydrogen detection has become necessary in numerous energy-related fields. In fusion energy one must understand plasma particle (hydrogen isotope) recycling, trapping and reemission, as well as the effects of hydrogen on the materials properties of first wall structures in plasma devices (i.e., hydrogen embrittlement, sputtering, blistering, etc.). In geology the presence of hydrogen in various forms alters the mechanical properties of many minerals in the earth's crust and enters directly into studies of tectonic processes. Evaluation of hydrogen in moon rocks increases our understanding of solar wind activity. In solar energy, hydrogen plays an important role in amorphous silicon used in fabricating solar cells. Detection of hydrogen is clearly important in the fossil fuel area. Many of the conventional elemental analysis techniques are not directly applicable to hydrogen determination and others can only detect hydrogen when it is in combination with other elements (i.e., H 2 O, OH, etc.). In this paper we discuss the use of ion beam techniques for obtaining quantitative depth information on hydrogen in materials and discuss the application of these techniques to several problems important in some of the areas mentioned

  1. SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION; F

    International Nuclear Information System (INIS)

    Paul K.T. Liu

    2001-01-01

    This technical report summarizes our activities conducted in Yr II. In Yr I we successfully demonstrated the feasibility of preparing the hydrogen selective SiC membrane with a chemical vapor deposition (CVD) technique. In addition, a SiC macroporous membrane was fabricated as a substrate candidate for the proposed SiC membrane. In Yr II we have focused on the development of a microporous SiC membrane as an intermediate layer between the substrate and the final membrane layer prepared from CVD. Powders and supported thin silicon carbide films (membranes) were prepared by a sol-gel technique using silica sol precursors as the source of silicon, and phenolic resin as the source of carbon. The powders and films were prepared by the carbothermal reduction reaction between the silica and the carbon source. The XRD analysis indicates that the powders and films consist of SiC, while the surface area measurement indicates that they contain micropores. SEM and AFM studies of the same films also validate this observation. The powders and membranes were also stable under different corrosive and harsh environments. The effects of these different treatments on the internal surface area, pore size distribution, and transport properties, were studied for both the powders and the membranes using the aforementioned techniques and XPS. Finally the SiC membrane materials are shown to have satisfactory hydrothermal stability for the proposed application. In Yr III, we will focus on the demonstration of the potential benefit using the SiC membrane developed from Yr I and II for the water-gas-shift (WGS) reaction

  2. Redox reactions induced by hydrogen in deep geological nuclear waste disposal

    International Nuclear Information System (INIS)

    Truche, L.

    2009-10-01

    The aim of this study is to evaluate the abiotic hydrogen reactivity in deep geological nuclear waste storage. One crucial research interest concerns the role of H 2 as a reducing agent for the aqueous/mineral oxidised species present in the site. Preliminary batch experiments carried out with Callovo-Oxfordian argillite, synthetic pore water and H 2 gas lead to an important H 2 S production, in only few hours at 250 C to few months at 90 C. In order to explore whether H 2 S can originate from sulphate or pyrite (few percents of the argillite) reduction we performed dedicated experiments. Sulphate reduction experimented in di-phasic systems (water+gas) at 250-300 C and under 4 to 16 bar H 2 partial pressure exhibits a high activation energy (131 kJ/mol) and requires H 2 S initiation and low pH condition as already observed in other published TSR experiments. The corresponding half-life is 210,000 yr at 90 C (thermal peak of the site). On the contrary, pyrite reduction into pyrrhotite by H 2 occurs in few days at temperature as low as 90 C at pH buffered by calcite. The rate of the reaction could be described by a diffusion-like rate law in the 90-180 C temperature interval. The obtained results suggest that pyrite reduction is a process controlled both by the H 2 diffusion across the pyrrhotite pits increasing during reaction progress and the reductive dissolution of pyrite. These new kinetics data can be applied in computation modelling, to evaluate the degree and extent of gas pressure buildup by taking into account the H 2 reactive geochemistry. (author)

  3. Effect of addition of water-soluble salts on the hydrogen generation of aluminum in reaction with hot water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2016-01-01

    Aluminum powder was ball milled for different durations of time with different weight percentages of water-soluble salts (NaCl and KCl). The hydrogen generation of each mixture in reaction with hot water was measured. A scanning electron microscope (SEM) as well as energy-dispersive spectroscopy (EDS) were used to investigate the morphology, surfaces and cross sections of the produced particles. The results show that the presence of salts in the microstructure of the aluminum considerably increases the hydrogen generation rate. At shorter milling times, the salt covers the aluminum particles and becomes embedded in layers within the aluminum matrix. At higher milling durations, salt and aluminum phases form composite particles. A higher percentage of the second phase significantly decreases the milling time needed for activation of the aluminum particles. Based on the EDS results from cross sections of the milled particles, a mechanism for improvement of the hydrogen generation rate in the presence of salts is suggested. - Highlights: • Milling and water soluble salts have a synergic effect on hydrogen generation. • Salt and aluminum form composite particles by milling. • Salt is dissolved in water leaving aluminum with much fresh surfaces for the reaction. • The chemical effect of salt on the reaction is negligible compared to its structural effect.

  4. Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions.

    Science.gov (United States)

    Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2018-05-22

    Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.

  5. Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2017-01-07

    There exists a strong demand to replace expensive noble metal catalysts with efficient and earth-abundant catalysts for hydrogen evolution reaction (HER). Recently the Co- and Mo-based sulfides such as CoS2, Co9S8, and MoSx have been considered as several promising HER candidates. Here, a highly active and stable hybrid electrocatalyst 3D flower-like hierarchical Co9S8 nanosheets incorporated with MoSx has been developed via a one-step sulfurization method. Since the amounts of Co9S8 and MoSx are easily adjustable, we verify that small amounts of MoSx promotes the HER activity of Co9S8, and vise versa. In other words, we validate that symmetric synergy for HER in the Co- and Mo-based sulfide hybrid catalysts, a long-standing question requiring clear experimental proofs. Meanwhile, the best electrocatalyst Co9S8-30@MoSx/CC in this study exhibits excellent HER performance with an overpotential of −98 mV at −10 mA/cm2, a small Tafel slope of 64.8 mV/dec, and prominent electrochemical stability.

  6. Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyounmyung; Encinas, Andrew; Fokwa, Boniface P.T. [Department of Chemistry, University of California, Riverside, CA (United States); Department of Chemical and Environmental Engineering, University of California, Riverside, CA (United States); Scheifers, Jan P.; Zhang, Yuemei [Department of Chemistry, University of California, Riverside, CA (United States)

    2017-05-08

    Molybdenum-based materials have been considered as alternative catalysts to noble metals, such as platinum, for the hydrogen evolution reaction (HER). We have synthesized four binary bulk molybdenum borides Mo{sub 2}B, α-MoB, β-MoB, and MoB{sub 2} by arc-melting. All four phases were tested for their electrocatalytic activity (linear sweep voltammetry) and stability (cyclic voltammetry) with respect to the HER in acidic conditions. Three of these phases were studied for their HER activity and by X-ray photoelectron spectroscopy (XPS) for the first time; MoB{sub 2} and β-MoB show excellent activity in the same range as the recently reported α-MoB and β-Mo{sub 2}C phases, while the molybdenum richest phase Mo{sub 2}B show significantly lower HER activity, indicating a strong boron-dependency of these borides for the HER. In addition, MoB{sub 2} and β-MoB show long-term cycle stability in acidic solution. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Synthesis of Fe-Al nanoparticles by hydrogen plasma-metal reaction

    CERN Document Server

    Liu Tong; Li Xing Guo

    2003-01-01

    Fe-Al nanoparticles of eight kinds have been prepared by hydrogen plasma-metal reaction. The morphology, crystal structure, and chemical composition of the nanoparticles obtained were investigated by transmission electron microscopy (TEM), x-ray diffractometry (XRD), and induction-coupled plasma spectroscopy. The particle size was determined by TEM and Brunaumer-Emmet-Teller gas adsorption. It was found that all the nanoparticles have spherical shapes, with average particle size in the range of 29-46 nm. The oxide layer in nanoparticles containing Al after passivation is not observable by XRD and TEM. The Al contents in Fe-Al ultrafine particles are about 1.2-1.5 times those in the master alloys. The evaporation speeds of Al and Fe in Fe-Al alloys are mutually accelerated at a certain composition. The crystal structures of the Fe-Al nanoparticles vary with the composition of the master alloys. Pure Fe sub 3 Al (D0 sub 3) and FeAl (B2) structures are successfully produced with 15 and 25 at.% Al in bulks, respe...

  8. Symmetrical synergy of hybrid CoS2-WS2 electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng; Yang, Xiulin; Li, Henan; Hedhili, Mohamed N.; Huang, Kuo-Wei; Li, Lain-Jong; Zhang, Wenjing

    2017-01-01

    A highly active and stable hybrid electrocatalyst 3D hierarchical CoS2 nanosheets incorporated with WS2 (CoS2@WS2) has been developed via a one-step sulfurization method for the first time, where the contents of WS2 can be adjusted easily. We first prove the addition of small amounts of WS2 enhances the hydrogen evolution reaction (HER) performance of CoS2, and vise versa. In other words, we validated the symmetric synergy for HER between the Co- and W-based sulfide hybrid catalysts. In addition, we confirmed that the formation of nanointerfaces of Co-S-W between CoS2 and WS2 was responsible for the excellent HER activity (an overpotential of -97.2 mV at -10 mA/cm2, a small Tafel slope of 66.0 mV/dec, and prominent electrochemical stability) of hybrid electrocatalyst CoS2@WS2.

  9. WS{sub 2} nanosheets based on liquid exfoliation as effective electrocatalysts for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guan-Qun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Yan-Ru; Hu, Wen-Hui [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Dong, Bin, E-mail: dongbin@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Li, Xiao; Chai, Yong-Ming; Liu, Yun-Qi [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chen-Guang, E-mail: cgliu@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China)

    2015-11-01

    WS{sub 2} nanosheets (WS{sub 2} NSs) as electrocatalysts for hydrogen evolution reaction (HER) have been prepared based on liquid exfoliation in dimethyl-formamide (DMF) via a direct dispersion and ultrasonication method. X-ray diffraction (XRD) shows the decreasing crystalline of the exfoliated WS{sub 2} (E-WS{sub 2}). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the as prepared E-WS{sub 2} consists of a few two-dimensional nanosheets, with large wrinkles on the surface. Electrochemical measurements show an excellent activity and stability of the E-WS{sub 2}, with a low overpotential of 80 mV and high current density (10 mA cm{sup −2}, at η = 205 mV), which indicates that through the process of exfoliation in DMF, both the dispersion and the amount of active sites have been improved greatly. Therefore, DMF is a promising alternative for exfoliating two-dimensional nanomaterials for highly efficient HER electrocatalysts. - Highlights: • A facile exfoliation process in DMF has been used to prepare E-WS{sub 2} for HER. • E-WS{sub 2} shows the better electrocatalytic activity than bulk WS{sub 2}. • DMF provides a promising alternative for enhancing exfoliation of 2D materials.

  10. Dealloyed Pt3Co nanoparticles with higher geometric strain for superior hydrogen evolution reaction

    Science.gov (United States)

    Saquib, Mohammad; Halder, Aditi

    2018-06-01

    In the present work, the effect of surface strain in the carbon supported Pt3Co dealloy catalyst towards hydrogen evolution reaction (HER) has been reported. Dealloying process is adopted to generate the geometric strain in Pt3Co/C alloy by preferential dissolution of non-noble metal (Co) from the alloy. The developed geometric strain has been estimated by different microstructural characterization techniques. Electrochemical studies showed that the highest current density for HER was obtained for Pt3Co/C dealloy catalyst and it was nearly 2 and 5 times higher than Pt3Co/C alloy and Pt/C respectively. Tafel slope for HER was improved from 49 (Pt/C) to 34 mV dec-1 (Pt3Co/C dealloy), indicating that the surface strain plays important role in the improvement of the catalytic activity of Pt3Co catalyst. The chronoamperometry data, LSV curves and ECSA values before and after chronoamperometry confirmed that Pt3Co/C dealloy catalyst was a stable as well as a durable electrocatalyst for HER.

  11. Electrolytic Synthesis of Ni-W-MWCNT Composite Coating for Alkaline Hydrogen Evolution Reaction

    Science.gov (United States)

    Elias, Liju; Hegde, A. Chitharanjan

    2018-03-01

    Nickel-tungsten multi-walled carbon nanotube (Ni-W-MWCNT) composite films were fabricated by an electrodeposition technique, and their electrocatalytic activity toward hydrogen evolution reaction (HER) was studied. Ni-W-MWCNT composite films with a homogeneous dispersion of MWCNTs were deposited from an optimal Ni-W plating bath containing functionalized MWCNTs, under galvanostatic condition. The presence of functionalized MWCNT was found to enhance the induced codeposition of the reluctant metal W and resulted in a W-rich composite coating with improved properties. The electrocatalytic behaviors of Ni-W-MWCNT composite coating toward HER were studied by cyclic voltammetry (CV) and chronopotentiometry techniques in 1.0 M KOH medium. Further, Tafel polarization and electrochemical impedance spectroscopy (EIS) studies were carried out to establish the kinetics of HER on the alloy and composite electrodes. The experimental results revealed that the addition of MWCNTs (having a diameter of around 10-15 nm) into the alloy plating bath has a significant effect on the electrocatalytic behavior of Ni-W alloy deposit. The Ni-W-MWCNT composite coating was found to show better HER activity than the conventional Ni-W alloy coating. The enhanced electrocatalytic activity of Ni-W-MWCNT composite coating is attributed to the MWCNT intersticed in the deposit matrix, evidenced by surface morphology, composition and phase structure of the coating through SEM, EDS and XRD analyses, respectively.

  12. Ruthenium/Graphene-like Layered Carbon Composite as an Efficient Hydrogen Evolution Reaction Electrocatalyst.

    Science.gov (United States)

    Chen, Zhe; Lu, Jinfeng; Ai, Yuejie; Ji, Yongfei; Adschiri, Tadafumi; Wan, Lijun

    2016-12-28

    Efficient water splitting through electrocatalysis has been studied extensively in modern energy devices, while the development of catalysts with activity and stability comparable to those of Pt is still a great challenge. In this work, we successfully developed a facile route to synthesize graphene-like layered carbon (GLC) from a layered silicate template. The obtained GLC has layered structure similar to that of the template and can be used as support to load ultrasmall Ru nanoparticles on it in supercritical water. The specific structure and surface properties of GLC enable Ru nanoparticles to disperse highly uniformly on it even at a large loading amount (62 wt %). When the novel Ru/GLC was used as catalyst on a glass carbon electrode for hydrogen evolution reaction (HER) in a 0.5 M H 2 SO 4 solution, it exhibits an extremely low onset potential of only 3 mV and a small Tafel slope of 46 mV/decade. The outstanding performance proved that Ru/GLC is highly active catalyst for HER, comparable with transition-metal dichalcogenides or selenides. As the price of ruthenium is much lower than platinum, our study shows that Ru/GLC might be a promising candidate as an HER catalyst in future energy applications.

  13. High Electrocatalytic Response of a Mechanically Enhanced NbC Nanocomposite Electrode Towards Hydrogen Evolution Reaction

    KAUST Repository

    Coy, Emerson

    2017-08-22

    Resistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin film electrodes of metal-carbides are a promising alternative due to their reduced price and similar catalytic properties. However, most of the studied structures to date neglect long lasting chemical and structural stability, focusing only on electrochemical efficiency. Herein we report on a new approach to easily deposit and control the micro/nanostructure of thin film electrodes based on niobium carbide (NbC) and their electrocatalytic response. We will show that, by improving the mechanical properties of the NbC electrodes, microstructure and mechanical resilience can be obtained whilst maintaining high electro catalytic response. We also address the influence of other parameters such as conductivity and chemical composition on the overall performance of the thin film electrodes. Finally, we show that nanocomposite NbC electrodes are promising candidates towards HER , and furthermore, that the methodology presented here is suitable to produce other transition metal carbides (TM-C) with improved catalytic and mechanical properties.

  14. Improving the catalytic activity of amorphous molybdenum sulfide for hydrogen evolution reaction using polydihydroxyphenylalanine modified MWCNTs

    Science.gov (United States)

    Li, Maoguo; Yu, Muping; Li, Xiang

    2018-05-01

    Molybdenum sulfides are promising electrocatalysts for hydrogen evolution reaction (HER) in acid medium due to their unique properties. In order to improve their HER activity, different strategies have been developed. In this study, amorphous molybdenum sulfide was prepared by a simple wet chemical method and its HER activity was further improved by using polydihydroxyphenylalanine (PDOPA) modified MWCNTs as supports. It was found that the PDOPA can effectively improve the hydrophilic properties of multiwalled carbon nanotubes (MWCNTs) and amorphous MoSx can uniformly grow on the surface of PDOPA@MWCNTs. Compared with MoSx and MoSx/MWCNTs, MoSx/PDOPA@MWCNTs show obviously enhanced HER activities due to the superior electrical conductivity and more exposed active sites. In addition, the effect of the ratio of MoSx and PDOPA@MWCNTs and the loading amount of catalysts on the electrodes are also investigated in detail. At the optimum conditions, MoSx/PDOPA@MWCNTs display an overpotential of 198 mV at 10 mA/cm2, a Tafel slope of 53 mV/dec and a good long-term stability in 0.5 M H2SO4, which make them promising candidates for HER application.

  15. WS_2 nanosheets based on liquid exfoliation as effective electrocatalysts for hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Han, Guan-Qun; Liu, Yan-Ru; Hu, Wen-Hui; Dong, Bin; Li, Xiao; Chai, Yong-Ming; Liu, Yun-Qi; Liu, Chen-Guang

    2015-01-01

    WS_2 nanosheets (WS_2 NSs) as electrocatalysts for hydrogen evolution reaction (HER) have been prepared based on liquid exfoliation in dimethyl-formamide (DMF) via a direct dispersion and ultrasonication method. X-ray diffraction (XRD) shows the decreasing crystalline of the exfoliated WS_2 (E-WS_2). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the as prepared E-WS_2 consists of a few two-dimensional nanosheets, with large wrinkles on the surface. Electrochemical measurements show an excellent activity and stability of the E-WS_2, with a low overpotential of 80 mV and high current density (10 mA cm"−"2, at η = 205 mV), which indicates that through the process of exfoliation in DMF, both the dispersion and the amount of active sites have been improved greatly. Therefore, DMF is a promising alternative for exfoliating two-dimensional nanomaterials for highly efficient HER electrocatalysts. - Highlights: • A facile exfoliation process in DMF has been used to prepare E-WS_2 for HER. • E-WS_2 shows the better electrocatalytic activity than bulk WS_2. • DMF provides a promising alternative for enhancing exfoliation of 2D materials.

  16. Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Park, Hyounmyung; Encinas, Andrew; Fokwa, Boniface P.T.; Scheifers, Jan P.; Zhang, Yuemei

    2017-01-01

    Molybdenum-based materials have been considered as alternative catalysts to noble metals, such as platinum, for the hydrogen evolution reaction (HER). We have synthesized four binary bulk molybdenum borides Mo_2B, α-MoB, β-MoB, and MoB_2 by arc-melting. All four phases were tested for their electrocatalytic activity (linear sweep voltammetry) and stability (cyclic voltammetry) with respect to the HER in acidic conditions. Three of these phases were studied for their HER activity and by X-ray photoelectron spectroscopy (XPS) for the first time; MoB_2 and β-MoB show excellent activity in the same range as the recently reported α-MoB and β-Mo_2C phases, while the molybdenum richest phase Mo_2B show significantly lower HER activity, indicating a strong boron-dependency of these borides for the HER. In addition, MoB_2 and β-MoB show long-term cycle stability in acidic solution. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Correlation between Gas Bubble Formation and Hydrogen Evolution Reaction Kinetics at Nanoelectrodes.

    Science.gov (United States)

    Chen, Qianjin; Luo, Long

    2018-04-17

    We report the correlation between H 2 gas bubble formation potential and hydrogen evolution reaction (HER) activity for Au and Pt nanodisk electrodes (NEs). Microkinetic models were formulated to obtain the HER kinetic information for individual Au and Pt NEs. We found that the rate-determining steps for the HER at Au and Pt NEs were the Volmer step and the Heyrovsky step, respectively. More interestingly, the standard rate constant ( k 0 ) of the rate-determining step was found to vary over 2 orders of magnitude for the same type of NEs. The observed variations indicate the HER activity heterogeneity at the nanoscale. Furthermore, we discovered a linear relationship between bubble formation potential ( E bubble ) and log( k 0 ) with a slope of 125 mV/decade for both Au and Pt NEs. As log ( k 0 ) increases, E bubble shifts linearly to more positive potentials, meaning NEs with higher HER activities form H 2 bubbles at less negative potentials. Our theoretical model suggests that such linear relationship is caused by the similar critical bubble formation condition for Au and Pt NEs with varied sizes. Our results have potential implications for using gas bubble formation to evaluate the HER activity distribution of nanoparticles in an ensemble.

  18. Symmetrical synergy of hybrid CoS2-WS2 electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2017-06-05

    A highly active and stable hybrid electrocatalyst 3D hierarchical CoS2 nanosheets incorporated with WS2 (CoS2@WS2) has been developed via a one-step sulfurization method for the first time, where the contents of WS2 can be adjusted easily. We first prove the addition of small amounts of WS2 enhances the hydrogen evolution reaction (HER) performance of CoS2, and vise versa. In other words, we validated the symmetric synergy for HER between the Co- and W-based sulfide hybrid catalysts. In addition, we confirmed that the formation of nanointerfaces of Co-S-W between CoS2 and WS2 was responsible for the excellent HER activity (an overpotential of -97.2 mV at -10 mA/cm2, a small Tafel slope of 66.0 mV/dec, and prominent electrochemical stability) of hybrid electrocatalyst CoS2@WS2.

  19. Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kunchan; Xia, Ming [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Weishan [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-01-15

    Ni−Cu bimetallic alloys with Cu content of 5, 10, 20, 30 and 50 wt% are prepared by powder metallurgy method, which consisted of powder mixing, pressing and sintering processes. The X-ray diffraction (XRD) measurement confirms that all the five Ni−Cu alloys possess the f.c.c. structure. The hydrogen evolution reaction (HER) activity of the prepared Ni−Cu alloy electrodes was studied in 6 M KOH solution by cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that the electrocatalytic activity for the HER depended on the composition of Ni−Cu alloys, where Ni−10Cu alloy exhibited considerably higher HER activity than Ni plate and other Ni−Cu alloys, indicative of its chemical composition related intrinsic activity. - Highlights: • Ni−Cu alloys with various Cu contents were prepared by powder metallurgy method. • Ni−Cu alloy exhibits chemical composition related synergistic effect for HER activity. • Ni−10Cu alloy electrode presents a most efficient activity for HER. • Two time constants are observed in Nyquist curve and both of them related to the kinetics of HER.

  20. Hollow Pd/MOF Nanosphere with Double Shells as Multifunctional Catalyst for Hydrogenation Reaction.

    Science.gov (United States)

    Wan, Mingming; Zhang, Xinlu; Li, Meiyan; Chen, Bo; Yin, Jie; Jin, Haichao; Lin, Lin; Chen, Chao; Zhang, Ning

    2017-10-01

    A new type of hollow nanostructure featured double metal-organic frameworks shells with metal nanoparticles (MNPs) is designed and fabricated by the methods of ship in a bottle and bottle around the ship. The nanostructure material, hereinafter denoted as Void@HKUST-1/Pd@ZIF-8, is confirmed by the analyses of photograph, transmission electron microscopy, scanning electron microscopy, powder X-ray diffraction, inductively coupled plasma, and N 2 sorption. It possesses various multifunctionally structural characteristics such as hollow cavity which can improve mass transfer, the adjacent of the inner HKUST-1 shell to the void which enables the matrix of the shell to host and well disperse MNPs, and an outer ZIF-8 shell which acts as protective layer against the leaching of MNPs and a sieve to guarantee molecular-size selectivity. This makes the material eligible candidates for the heterogeneous catalyst. As a proof of concept, the liquid-phase hydrogenation of olefins with different molecular sizes as a model reaction is employed. It demonstrates the efficient catalytic activity and size-selectivity of Void@HKUST-1/Pd@ZIF-8. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Wang, Kunchan; Xia, Ming; Xiao, Tao; Lei, Ting; Yan, Weishan

    2017-01-01

    Ni−Cu bimetallic alloys with Cu content of 5, 10, 20, 30 and 50 wt% are prepared by powder metallurgy method, which consisted of powder mixing, pressing and sintering processes. The X-ray diffraction (XRD) measurement confirms that all the five Ni−Cu alloys possess the f.c.c. structure. The hydrogen evolution reaction (HER) activity of the prepared Ni−Cu alloy electrodes was studied in 6 M KOH solution by cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that the electrocatalytic activity for the HER depended on the composition of Ni−Cu alloys, where Ni−10Cu alloy exhibited considerably higher HER activity than Ni plate and other Ni−Cu alloys, indicative of its chemical composition related intrinsic activity. - Highlights: • Ni−Cu alloys with various Cu contents were prepared by powder metallurgy method. • Ni−Cu alloy exhibits chemical composition related synergistic effect for HER activity. • Ni−10Cu alloy electrode presents a most efficient activity for HER. • Two time constants are observed in Nyquist curve and both of them related to the kinetics of HER.

  2. Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH

    Directory of Open Access Journals (Sweden)

    C. B. Porciúncula

    2012-06-01

    Full Text Available The objective of this work is to investigate the production of hydrogen as an energy source by means of the reaction of aluminum with water. This reaction only occurs in the presence of NaOH and KOH, which behave as catalysts. The main advantages of using aluminum for indirect energy storage are: recyclability, non-toxicity and easiness to shape. Alkali concentrations varying from 1 to 3 mol.L-1 were applied to different metallic samples, either foil (0.02 mm thick or plates (0.5 and 1 mm thick, and reaction temperatures between 295 and 345 K were tested. The results show that the reaction is strongly influenced by temperature, alkali concentration and metal shape. NaOH commonly promotes faster reactions and higher real yields than KOH.

  3. Adsorption of cadmium ions on nickel surface skeleton catalysts and its effect on reaction of cathodic hydrogen evolution

    International Nuclear Information System (INIS)

    Korovin, N.V.; Udris, E.Ya.; Savel'eva, O.N.

    1986-01-01

    Cadmium adsorption from different concentration CdSO 4 solutions on nickel surface skeleton catalysts (Ni ssc ) is studied by recording of polarization and potentiodynamic curves using electron microscopy and X-ray spectrometry. Main regularities of cadmium adsorption on Ni ssc are shown to be similar to those on smooth and skeleton nickel. A conclusion is drawn that increase of catalytic activity in reaction of cathodic hydrogen evolution from alkali solutions of Ni ssc base electrodes after their treatment in solutions containing Cd 2+ ions is due to irreversible desorption of strongly and averagely bound hydrogen from electrode surface at cadmium adsorption on them

  4. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy.

    Science.gov (United States)

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-03-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER.

  5. Hydrogen Production From Water By Thermo-Chemical Methods (UT-3): Evaluation of Side Reactions By Simulation Process

    International Nuclear Information System (INIS)

    Rusli, A.

    1997-01-01

    Hydogen fuel with its advantages will be able to replace all the positions of fossil fuels post o il and gas or migas . Among the advantages of hydrogen fuel are pollution free, abundant of raw material in the form of water molecule, flexible in application, able to stroge and transport as well as fossil energy sources (oil and gas). Hydogen could be produced from water by means of thermochemical, thermolysis, photolysis and electrolysis. Nuclear heat (HTGR), solar heat or waste heat from steel industry can be used as energy source for these processes. In case of thermochemical method, some problems realated to production process should be studied and evaluated. Simulation is considered can be applied to study the effects of side reactions and also to resolve its problems in hydrogen production process. In this paper is reported the evalution results of hydrogen production process by thermochemical (UT-3) through both of the experimental and computer simulation. It has been proposed a new flow chart of hydrogen production to achieve the hydrogen production continuously. A simulator has been developed based on experimental data and related mathematical equations. This simulator can be used to scle-up the UT-3 thermochemical cycle for hydrogen production process

  6. Nonmonotonic Temperature Dependence of the Pressure-Dependent Reaction Rate Constant and Kinetic Isotope Effect of Hydrogen Radical Reaction with Benzene Calculated by Variational Transition-State Theory.

    Science.gov (United States)

    Zhang, Hui; Zhang, Xin; Truhlar, Donald G; Xu, Xuefei

    2017-11-30

    The reaction between H and benzene is a prototype for reactions of radicals with aromatic hydrocarbons. Here we report calculations of the reaction rate constants and the branching ratios of the two channels of the reaction (H addition and H abstraction) over a wide temperature and pressure range. Our calculations, obtained with an accurate potential energy surface, are based on variational transition-state theory for the high-pressure limit of the addition reaction and for the abstraction reaction and on system-specific quantum Rice-Ramsperger-Kassel theory calibrated by variational transition-state theory for pressure effects on the addition reaction. The latter is a very convenient way to include variational effects, corner-cutting tunneling, and anharmonicity in falloff calculations. Our results are in very good agreement with the limited experimental data and show the importance of including pressure effects in the temperature interval where the mechanism changes from addition to abstraction. We found a negative temperature effect of the total reaction rate constants at 1 atm pressure in the temperature region where experimental data are missing and accurate theoretical data were previously missing as well. We also calculated the H + C 6 H 6 /C 6 D 6 and D + C 6 H 6 /C 6 D 6 kinetic isotope effects, and we compared our H + C 6 H 6 results to previous theoretical data for H + toluene. We report a very novel nonmonotonic dependence of the kinetic isotope effect on temperature. A particularly striking effect is the prediction of a negative temperature dependence of the total rate constant over 300-500 K wide temperature ranges, depending on the pressure but generally in the range from 600 to 1700 K, which includes the temperature range of ignition in gasoline engines, which is important because aromatics are important components of common fuels.

  7. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  8. Hydrogen production from water gas shift reaction in a high gravity (Higee) environment using a rotating packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Hsin; Syu, Yu-Jhih [Department of Greenergy, National University of Tainan, Tainan 700 (China)

    2010-10-15

    Hydrogen production via the water gas shift reaction (WGSR) was investigated in a high gravity environment. A rotating packed bed (RPB) reactor containing a Cu-Zn catalyst and spinning in the range of 0-1800 rpm was used to create high centrifugal force. The reaction temperature and the steam/CO ratio ranged from 250 to 350 C and 2 to 8, respectively. A dimensionless parameter, the G number, was derived to account for the effect of centrifugal force on the enhancement of the WGSR. With the rotor speed of 1800 rpm, the induced centrifugal force acting on the reactants was as high as 234 g on average in the RPB. As a result, the CO conversion from the WGSR was increased up to 70% compared to that without rotation. This clearly revealed that the centrifugal force was conducive to hydrogen production, resulting from intensifying mass transfer and elongating the path of the reactants in the catalyst bed. From Le Chatelier's principle, a higher reaction temperature or a lower steam/CO ratio disfavors CO conversion; however, under such a situation the enhancement of the centrifugal force on hydrogen production from the WGSR tended to become more significant. Accordingly, a correlation between the enhancement of CO conversion and the G number was established. As a whole, the higher the reaction temperature and the lower the steam/CO ratio, the higher the exponent of the G number function and the better the centrifugal force on the WGSR. (author)

  9. Isotopes in oxidation reactions

    International Nuclear Information System (INIS)

    Stewart, R.

    1976-01-01

    The use of isotopes in the study of organic oxidation mechanisms is discussed. The help provided by tracer studies to demonstrate the two-equivalent path - hydride transfer, is illustrated by the examples of carbonium oxidants and the Wacker reaction. The role of kinetic isotope effects in the study of the scission of carbon-hydrogen bonds is illustrated by hydride abstraction, hydrogen atom abstraction, proton abstraction and quantum mechanical tunnelling. Isotopic studies on the oxidation of alcohols, carbonyl compounds, amines and hydrocarbons are discussed. The role of isotopes in the study of biochemical oxidation is illustrated with a discussion on nicotinamide and flavin coenzymes. (B.R.H.)

  10. Enhanced hydrogen reaction kinetics of nanostructured Mg-based composites with nanoparticle metal catalysts dispersed on supports

    International Nuclear Information System (INIS)

    Yoo, Yeong; Tuck, Mark; Kondakindi, Rajender; Seo, Chan-Yeol; Dehouche, Zahir; Belkacemi, Khaled

    2007-01-01

    Hydrogen reaction kinetics of nanocrystalline MgH 2 co-catalyzed with Ba 3 (Ca 1+x Nb 2-x )O 9-δ (BCN) proton conductive ceramics and nanoparticle bimetallic catalyst of Ni/Pd dispersed on single wall carbon nanotubes (SWNTs) support has been investigated. The nanoparticle bimetallic catalysts of Ni/Pd supported by SWNTs were synthesized based on a novel polyol method using NiCl 2 .6H 2 O, PdCl 2 , NaOH and ethylene glycol (EG). The nanostructured Mg composites co-catalyzed with BCN and bimetallic supported catalysts exhibited stable hydrogen desorption capacity of 6.3-6.7 wt.% H 2 and the significant enhancement of hydrogen desorption kinetics at 230-300 deg. C in comparison to either non-catalyzed MgH 2 or the nanocomposite of MgH 2 catalyzed with BCN

  11. Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium Borohydride-Water Reaction

    Science.gov (United States)

    2015-07-01

    already use hydrogen for weather balloons . Besides cost, hydrogen has other advantages over helium. Hydrogen has more lift than helium, so larger...of water vapor entering the gas stream, and avoid damaging the balloon /aerostat (aerostats typically have an operational temperature range of -50 to...Aerostats: “Gepard” Tethered Aerostats with Mobile Mooring Systems. Available at http://rosaerosystems.com/aero/obj7. Accessed June 4, 2015. 11

  12. Hydrogen evolution reaction at Ru-modified nickel-coated carbon fibre in 0.1 M NaOH

    Directory of Open Access Journals (Sweden)

    Pierożyński Bogusław

    2015-03-01

    Full Text Available The electrochemical activity towards hydrogen evolution reaction (HER was studied on commercially available (Toho-Tenax and Ru-modified nickel-coated carbon fibre (NiCCF materials. Quality and extent of Ru electrodeposition on NiCCF tows were examined by means of scanning electron microscopy (SEM. Kinetics of the hydrogen evolution reaction were investigated at room temperature, as well as over the temperature range: 20-50°C in 0.1 M NaOH solution for the cathodic overpotential range: -100 to -300 mV vs. RHE. Corresponding values of charge-transfer resistance, exchange current-density for the HER and other electrochemical parameters for the examined fibre tow composites were recorded.

  13. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  14. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  15. Spillover Phenomena and Its Striking Impacts in Electrocatalysis for Hydrogen and Oxygen Electrode Reactions

    Directory of Open Access Journals (Sweden)

    Georgios D. Papakonstantinou

    2011-01-01

    striking target issue of the present paper, has been shown to be the superior for substantiation of the revertible cell assembly for spontaneous reversible alterpolar interchanges between PEMFC and WE. The main target of the present thorough review study has been to throw some specific insight light on the overall spillover phenomena and their effects in electrocatalysis of oxygen and hydrogen electrode reactions from diverse angles of view and broad contemporary experimental methods and approaches (XPS, FTIR, DRIFT, XRD, potentiodynamic spectra, UHRTEM.

  16. The evaluation of the polarization resistance in a tubular electrode and its application to the hydrogen electrode reaction

    International Nuclear Information System (INIS)

    Montero, M.A.; Marozzi, C.A.; Chialvo, M.R. Gennero de; Chialvo, A.C.

    2007-01-01

    An alternative method for the determination of the kinetic parameters involved in the elementary steps of the reaction mechanism of the hydrogen electrode reaction is proposed. It is based on the determination of the variation of the polarization resistance in a tubular platinum electrode with a laminar flow of electrolyte as a function of the activity of protons of the electrolyte solution. A theoretical expression that relates the experimental variables and the equilibrium polarization resistance is developed, which takes into account the current distribution along the electrode surface. The results are compared with others obtained previously, contributing to the verification of the kinetic mechanism through a completely different experimental procedure

  17. Friedel-Crafts reaction of benzyl fluorides: selective activation of C-F bonds as enabled by hydrogen bonding.

    Science.gov (United States)

    Champagne, Pier Alexandre; Benhassine, Yasmine; Desroches, Justine; Paquin, Jean-François

    2014-12-08

    A Friedel-Crafts benzylation of arenes with benzyl fluorides has been developed. The reaction produces 1,1-diaryl alkanes in good yield under mild conditions without the need for a transition metal or a strong Lewis acid. A mechanism involving activation of the C-F bond through hydrogen bonding is proposed. This mode of activation enables the selective reaction of benzylic C-F bonds in the presence of other benzylic leaving groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrogen Oxidation Reaction at the Ni/YSZ Anode of Solid Oxide Fuel Cells from First Principles

    Science.gov (United States)

    Cucinotta, Clotilde S.; Bernasconi, Marco; Parrinello, Michele

    2011-11-01

    By means of ab initio simulations we here provide a comprehensive scenario for hydrogen oxidation reactions at the Ni/zirconia anode of solid oxide fuel cells. The simulations have also revealed that in the presence of water chemisorbed at the oxide surface, the active region for H oxidation actually extends beyond the metal/zirconia interface unraveling the role of water partial pressure in the decrease of the polarization resistance observed experimentally.

  19. Coal reactions during shock heating in a hydrogen atmosphere. Reaktionsverhalten von Kohlen bei schockartiger Aufheizung in Wasserstoffatmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, R

    1987-04-30

    The study deals with the hydropyrolysis of coal under shock heating in order to learn more about the elementary reactions, which take place on the coal surface or in the interior of the carbon grain and which determine the product range and product yield. For recording the factors influencing primary cracking of products and the secondary reactions of the crack products, investigations were carried out by varying the particle diameter of the coals used (3 coals of different carbonization degrees) and the hydrogen pressure. For further recording of secondary reactions and thus the mechanism of the hydropyrolysis, typical crack products with primary character were presented on or in the coal; this was done by the absorption of a defined quantity of model compounds from the gas phase. For shock heating, the Curie point method (inductive heating) was used. It turned out that, with increasing H/sub 2/ pressure, the formation of H-transporting compounds and the availability of the molecular hydrogen from the gas phase is increased but the volatility of the reaction products is inhibited by cross-linking reactions of radicals with high-molecular crack products. High temperatures in shock heating can compensate this negative effect.

  20. A Study of the Mechanism of the Hydrogen Evolution Reaction on Nickel by Surface Interrogation Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Liang, Zhenxing; Ahn, Hyun S; Bard, Allen J

    2017-04-05

    The hydrogen evolution reaction (HER) on Ni in alkaline media was investigated by scanning electrochemical microscopy under two operating modes. First, the substrate generation/tip collection mode was employed to extract the "true" cathodic current associated with the HER from the total current in the polarization curve. Compared to metallic Ni, the electrocatalytic activity of the HER is improved in the presence of the low-valence-state oxide of Ni. This result is in agreement with a previous claim that the dissociative adsorption of water can be enhanced at the Ni/Ni oxide interface. Second, the surface-interrogation scanning electrochemical microscopy (SI-SECM) mode was used to directly measure the coverage of the adsorbed hydrogen on Ni at given potentials. Simulation indicates that the hydrogen coverage follows a Frumkin isotherm with respect to the applied potential. On the basis of the combined analysis of the Tafel slope and surface hydrogen coverage, the rate-determining step is suggested to be the adsorption of hydrogen (Volmer step) in the investigated potential window.

  1. Optimization of hydrogen production via coupling of the Fischer-Tropsch synthesis reaction and dehydrogenation of cyclohexane in GTL technology

    International Nuclear Information System (INIS)

    Rahimpour, M.R.; Bahmanpour, A.M.

    2011-01-01

    In this study, a thermally-coupled reactor containing the Fischer-Tropsch synthesis reaction in the exothermic side and dehydrogenation of cyclohexane in the endothermic side has been modified using a hydrogen perm-selective membrane as the shell of the reactor to separate the produced hydrogen from the dehydrogenation process. Permeated hydrogen enters another section called permeation side to be collected by Argon, known as the sweep gas. This three-sided reactor has been optimized using differential evolution (DE) method to predict the conditions at which the reactants' conversion and also the hydrogen recovery yield would be maximized. Minimizing the CO 2 and CH 4 yield in the reactor's outlet as undesired products is also considered in the optimization process. To reach this goal, optimal initial molar flow rate and inlet temperature of three sides as well as pressure of the exothermic side have been calculated. The obtained results have been compared with the conventional reactor data of the Research Institute of Petroleum Industry (RIPI), the membrane dual - type reactor suggested for Fischer-Tropsch synthesis, and the membrane coupled reactor presented for methanol synthesis. The comparison shows acceptable enhancement in the reactor's performance and that the production of hydrogen as a valuable byproduct should also be considered.

  2. Hydrogen depth resolution in multilayer metal structures, comparison of elastic recoil detection and resonant nuclear reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. E-mail: leszekw@optushome.com.au; Grambole, D.; Kreissig, U.; Groetzschel, R.; Harding, G.; Szilagyi, E

    2002-05-01

    Four different metals: Al, Cu, Ag and Au have been used to produce four special multilayer samples to study the depth resolution of hydrogen. The layer structure of each sample was analysed using 2 MeV He Rutherford backscattering spectrometry, 4.5 MeV He elastic recoil detection (ERD) and 30 MeV F{sup 6+} HIERD. Moreover the hydrogen distribution was analysed in all samples using H({sup 15}N, {alpha}{gamma}){sup 12}C nuclear reaction analysis (NRA) with resonance at 6.385 MeV. The results show that the best depth resolution and sensitivity for hydrogen detection are offered by resonance NRA. The He ERD shows good depth resolution only for the near surface hydrogen. In this technique the depth resolution is rapidly reduced with depth due to multiple scattering effects. The 30 MeV F{sup 6+} HIERD demonstrated similar hydrogen depth resolution to He ERD for low mass metals and HIERD resolution is substantially better for heavy metals and deep layers.

  3. The initial stages of the reaction between ZrCo and hydrogen studied by hot-stage microscopy

    International Nuclear Information System (INIS)

    Bloch, J.; Brill, M.; Ben-Eliahu, Y.; Gavra, Z.

    1998-01-01

    The development of hydride phase on the surface of ZrCo under 1 bar of hydrogen was investigated at temperatures between 75 and 300 C. Both surface modifications of the parent alloy and the nucleation and growth of hydride phase were observed. Surface modifications included: grain boundary outgrowth, intra-granular precipitation in the form of fine lamellar hydride phase and micro cracks. It is suggested that the surface modifications result from a combination of hydrogen solubility and the parent metal ductility. These modifications were enhanced near areas which had been previously transformed. The nucleation was self catalyzed, with new nuclei preferentially formed at the vicinity of growing former nuclei. All this suggested that the transport of hydrogen through the hydride phase is faster than its transfer through the surface passivation layer. The growth rate of the nuclei was similar to that of uranium. The activation energy for the growth was E a =24±3 kJ/mol. The results were compared with several other metal-hydrogen systems. It is suggested that the important physical factors controlling the mechanism of the initial hydriding reaction are hydrogen solubility and the brittleness of the parent metal/alloy. These parameters are responsible to the different changes observed during the initial hydriding stages which include: surface modifications, cracking, nucleation and growth. (orig.)

  4. Factors affecting hydrogen-tunneling contribution in hydroxylation reactions promoted by oxoiron(IV) porphyrin π-cation radical complexes.

    Science.gov (United States)

    Cong, Zhiqi; Kinemuchi, Haruki; Kurahashi, Takuya; Fujii, Hiroshi

    2014-10-06

    Hydrogen atom transfer with a tunneling effect (H-tunneling) has been proposed to be involved in aliphatic hydroxylation reactions catalyzed by cytochrome P450 and synthetic heme complexes as a result of the observation of large hydrogen/deuterium kinetic isotope effects (KIEs). In the present work, we investigate the factors controlling the H-tunneling contribution to the H-transfer process in hydroxylation reaction by examining the kinetics of hydroxylation reactions at the benzylic positions of xanthene and 1,2,3,4-tetrahydronaphthalene by oxoiron(IV) 5,10,15,20-tetramesitylporphyrin π-cation radical complexes ((TMP(+•))Fe(IV)O(L)) under single-turnover conditions. The Arrhenius plots for these hydroxylation reactions of H-isotopomers have upwardly concave profiles. The Arrhenius plots of D-isotopomers, clear isosbestic points, and product analysis rule out the participation of thermally dependent other reaction processes in the concave profiles. These results provide evidence for the involvement of H-tunneling in the rate-limiting H-transfer process. These profiles are simulated using an equation derived from Bell's tunneling model. The temperature dependence of the KIE values (k(H)/k(D)) determined for these reactions indicates that the KIE value increases as the reaction temperature becomes lower, the bond dissociation energy (BDE) of the C-H bond of a substrate becomes higher, and the reactivity of (TMP(+•))Fe(IV)O(L) decreases. In addition, we found correlation of the slope of the ln(k(H)/k(D)) - 1/T plot and the bond strengths of the Fe═O bond of (TMP(+•))Fe(IV)O(L) estimated from resonance Raman spectroscopy. These observations indicate that these factors modulate the extent of the H-tunneling contribution by modulating the ratio of the height and thickness of the reaction barrier.

  5. Ab initio calculation of transition state normal mode properties and rate constants for the H(T)+CH4(CD4) abstraction and exchange reactions

    International Nuclear Information System (INIS)

    Schatz, G.C.; Walch, S.P.; Wagner, A.F.

    1980-01-01

    We present ab initio (GVB--POL--CI) calculations for enough of the region about the abstraction and exchange saddle points for H(T)+CH 4 (CD 4 ) to perform a full normal mode analysis of the transition states. The resulting normal mode frequencies are compared to four other published surfaces: an ab initio UHF--SCF calculation by Carsky and Zahradnik, a semiempirical surface by Raff, and two semiempirical surfaces by Kurylo, Hollinden, and Timmons. Significant quantitative and qualitative differences exist between the POL--CI results and those of the other surfaces. Transition state theory rate constants and vibrationally adiabatic reaction threshold energies were computed for all surfaces and compared to available experimental values. For abstraction, the POL--CI rates are in good agreement with experimental rates and in better agreement than are the rates of any of the other surfaces. For exchange, uncertainties in the experimental values and in the importance of vibrationally nonadiabatic effects cloud the comparison of theory to experiment. Tentative conclusions are that the POL--CI barrier is too low by several kcal. Unless vibrationaly nonadiabatic effects are severe, the POL--CI surface is still in better agreement with experiment than are the other surfaces. The rates for a simple 3-atom transition state theory model (where CH 3 is treated as an atom) are compared to the rates for the full 6-atom model. The kinetic energy coupling of reaction coordinate modes to methyl group modes is identified as being of primary importance in determining the accuracy of the 3-atom model for this system. Substantial coupling in abstraction, but not exchange, causes the model to fail for abstraction but succeed for exchange

  6. Gas-phase ion/molecule isotope-exchange reactions: methodology for counting hydrogen atoms in specific organic structural environments by chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Hunt, D.F.; Sethi, S.K.

    1980-01-01

    Ion/molecule reactions are described which facilitate exchange of hydrogens for deuteriums in a variety of different chemical environments. Aromatic hydrogens in alkylbenzenes, oxygenated benzenes, m-toluidine, m-phenylenediamine, thiophene, and several polycyclic aromatic hydrocarbons and metallocenes are exchanged under positive ion CI conditions by using either D 2 O, EtOD, or ND 3 as the reagent gas. Aromatic hydrogens, benzylic hydrogens, and hydrogens on carbon adjacent to carbonyl groups suffer exchange under negative ion CI conditions in ND 3 , D 2 O, and EtOD, respectively. A possible mechanism for the exchange process is discussed. 1 figure, 2 tables

  7. Study of hydrogen in metal and alloy by nuclear reaction channeling method

    International Nuclear Information System (INIS)

    Yagi, Eiichi

    1998-01-01

    The position of hydrogen in the lattice was determined by the combination method of 1 H( 11 B, α)αα with a channeling effect of 11 B ion in the crystal. When the concentration of hydrogen in V single crystal was VH 0.1 at the room temperature, hydrogen occupied T position in the body-centered cubic lattice. The position was shifted to the displaced-T by the thermal treatment. Hydrogen in V is oversensitive to a stress, so that it located the displaced-T or 4T state under 7 kg/mm 2 of compressive stress. Hydrogen in Nb and Ta located T position, too. But their displaced states were not observed by the thermal treatment. All hydrogen in Nb-3 at % Mo-2 at % H alloy were captured by Mo and they located the positions of 0.62A displaced from T in the direction of Mo. In Nb-3 at % Mo-5 at % H alloy, a part of hydrogen were captured by Mo, but the other located T positions. At 100degC, hydrogen was free from capture of Mo and moved to T position. (S.Y.)

  8. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun

    2012-01-01

    The ruthenium(II) complex [Ru(bpy) 2 -(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  9. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  10. Synthesis and characterization of NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst for hydrogenation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Karaoğlu, E., E-mail: ekaraoglu@fatih.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Fatih University, 34500 B. Cekmece, Istanbul (Turkey); Özel, U.; Caner, C.; Baykal, A.; Summak, M.M. [Department of Chemistry, Faculty of Arts and Sciences, Fatih University, 34500 B. Cekmece, Istanbul (Turkey); Sözeri, H. [TUBITAK-UME, National Metrology Institute, PO Box 54, 41470 Gebze-Kocaeli (Turkey)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Novel superparamagnetic NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst was fabricated through co-precipitation. ► It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ► No further modification of the NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe{sub 2}O{sub 4}–Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd{sup 2+} was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH{sub 4}) and NiFe{sub 2}O{sub 4} nanoparticles was prepared by sonochemically using FeCI{sub 3}·6H{sub 2}O and NiCl{sub 2}. The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe{sub 2}O{sub 4}–Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe{sub 2}O{sub 4}–Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 99–93% and 98–93%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe{sub 2}O{sub 4}–Pd MRCs showed very efficient catalytic activity and multiple usability.

  11. Alternative reaction routes during coal hydrogenation and coal derived oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H.; Kordokuzis, G.; Langner, M. (University of Karlsruhe, Karlsruhe (Germany, F.R.). Engler-Bunte-Institute)

    1989-10-01

    Alternative reaction routes have been traced for the hydrodenitrogenation and hydrodeoxygenation of coal structure related model compounds. Reaction pathways are very structure specific. It is shown how reaction mechanisms switch from one route to another with changes in reaction conditions and catalyst features. Optimization of coal liquefaction processes can make use of this detailed understanding of selectivity. 5 refs., 7 figs.

  12. Isolation of salt stress gene(s) from some haloterant streptomyces strains using polymerase chain reaction (abstract)

    International Nuclear Information System (INIS)

    Mohammad, S.H.

    2005-01-01

    We studied salt tolerance range in sixteen halotolerant streptomyces strains to isolate salt regulated genes using polymerase chain reaction (PCR) technology. A group of these strains was isolated from Sedi-creer (S. niveus Sc-2 and S. sendenensis Sc-II); El-Malahat (Alexndria) (S. graminofaciens Ma-13): Qaroon's lake (S. albovinaceus QA-44, S. luteofluorescens Qa-51, S. albidoflavous Qa-53 and S. erthaeus QA-84). The other group represents the strains isolated from different soils from Damaaita (S. violans Da-3). Ismailia (S. alboflavus-Is-10). Port said (S. bobili Ps-12) and Sinai sandy soil (streptomyces species Si-1, S. truirus Si-4, S. lateritius Si-6, S. hawaiiensis Si-8, S. muavecolor Si-9 and S. melanogenes Si-11). These strains were varied in their salt tolerance range in particular, with increasing NaCl concentration in the growth medium up to 14%. It was also noted that all the applied Streptomyces strains appeared abundant growth at NaCl concentrations of 0.05, 3.5 and 7.0%. When NaCl was added at concentration of 10.5%, all of them except S. melanogenes Si-II strain gave moderate growth. On the contrary, NaCl at concentration of 14% inhibited the growth of 50% of strains under investigation. But the other 50% of these strains gave moderate growth at the same NaCl concentration. At the molecular level, the PCR was successfully used for isolating the mtlD and P5CS genes from 3 (S. alboinaceus Qa-44, S. albidoflavus Qa-53, S. erthraeus QA-84) and 4 (S. albovunaecaus Qa-44, Streptomyces species Si-I, S. luteofluorescens Qa-51, S. latritius Si-6) strains, respectively. As PCR fragments with a size of about 1095 and 2100 bp were amplified from the DNA genome of these strains using the primer pairs (P1 and P2) and (P3 and P4), respectively. These results confirmed the ability to use PCR for isolation or detection of any gene based on its nucleotide sequencing in any microorganism. Furthermore, one can recommended the use of the applied halotolerant

  13. On the importance of hydrogen bonding in the promotion of Diels-Alder reactions of unactivated aldehydes: a computational study

    Science.gov (United States)

    Chemouri, Hafida; Mekelleche, Sidi Mohamed

    2014-03-01

    The kinetic solvent effects on the Diels-Alder (DA) reaction of N,N-dimethylamino-3-trimethylsilyl butadiene with p-anisaldehyde are studied by density functional calculations at the B3LYP/6-31C(d) level of theory. Experimentally, it has been found that the acceleration of this reaction is not due to the increase of the polarity of the solvent but it is rather due to hydrogen bonding (HB). Intrinsic reaction coordinate calculations combined with electron localisation function analysis show that this reaction follows a one-step two-stage mechanism with a highly asynchronous sigma bond formation process. The calculations, performed using an explicit solvent model based on the coordination of the carbonyl group with one molecule of the solvent, show a considerable decrease of the activation energy when going from the gas phase (ɛ = 1) to solution phase and this diminution is found to be more important in isopropyl alcohol (ɛ = 18.3) in comparison with acetonitrile (ɛ = 37.5). Our calculations also show that the acceleration of this DA reaction is due to the increase of the electrophilicity power of the solvated carbonyl compound and consequently the increase of the polarity of the reaction in the presence of protic solvents. The obtained results put in evidence the relevance of HB in the promotion of DA reactions of unactivated ketones as experimentally expected.

  14. Hydrogen oxidation mechanisms on Ni/yttria stabilized zirconia anodes: Separation of reaction pathways by geometry variation of pattern electrodes

    Science.gov (United States)

    Doppler, M. C.; Fleig, J.; Bram, M.; Opitz, A. K.

    2018-03-01

    Nickel/yttria stabilized zirconia (YSZ) electrodes are affecting the overall performance of solid oxide fuel cells (SOFCs) in general and strongly contribute to the cell resistance in case of novel metal supported SOFCs in particular. The electrochemical fuel conversion mechanisms in these electrodes are, however, still only partly understood. In this study, micro-structured Ni thin film electrodes on YSZ with 15 different geometries are utilized to investigate reaction pathways for the hydrogen electro-oxidation at Ni/YSZ anodes. From electrodes with constant area but varying triple phase boundary (TPB) length a contribution to the electro-catalytic activity is found that does not depend on the TPB length. This additional activity could clearly be attributed to a yet unknown reaction pathway scaling with the electrode area. It is shown that this area related pathway has significantly different electrochemical behavior compared to the TPB pathway regarding its thermal activation, sulfur poisoning behavior, and H2/H2O partial pressure dependence. Moreover, possible reaction mechanisms of this reaction pathway are discussed, identifying either a pathway based on hydrogen diffusion through Ni with water release at the TPB or a path with oxygen diffusion through Ni to be a very likely explanation for the experimental results.

  15. Effects of neutral sodium hydrogen phosphate on setting reaction and mechanical strength of hydroxyapatite putty.

    Science.gov (United States)

    Ishikawa, K; Miyamoto, Y; Takechi, M; Ueyama, Y; Suzuki, K; Nagayama, M; Matsumura, T

    1999-03-05

    The setting reaction and mechanical strength in terms of diametral tensile strength (DTS) of hydroxyapatite (HAP) putty made of tetracalcium phosphate, dicalcium phosphate anhydrous, and neutral sodium hydrogen phosphate (Na1.8H1.2PO4) solution containing 8 wt % sodium alginate were evaluated as a function of the Na1.8H1.2PO4 concentration. In one condition, HAP putty was placed in an incubator kept at 37 degrees C and 100% relative humidity. In the other condition, immediately after mixing HAP putty was immersed in serum kept at 37 degrees C. Longer setting times and lower DTS values were observed when HAP putty was immersed in serum regardless of the Na1.8H1.2PO4 concentration. The setting times of the HAP putty in both conditions became shorter with an increase in the Na1. 8H1.2PO4 concentration, reaching approximately 7-13 min when the Na1. 8H1.2PO4 concentration was 0.6 mol/L or higher. The DTS value of HAP putty was relatively constant (10 MPa) regardless of the Na1.8H1. 2PO4 concentration (0.2-1.0 mol/L) when HAP putty was kept in an incubator. In contrast, when HAP putty was immersed in serum, the DTS value was dependent on the Na1.8H1.2PO4 concentration. It increased with the Na1.8H1.2PO4 concentration and reached approximately 5 MPa when the Na1.8H1.2PO4 concentration was 0.6 mol/L, after which it showed a relatively constant DTS value. We therefore would recommend a HAP putty that uses 0.6 mol/L Na1.8H1. 2PO4 since at that concentration the putty's setting time (approximately 10 min) is proper for clinical use and it shows good DTS value (approximately 5 MPa) even when it is immersed in serum immediately after mixing. Copyright 1999 John Wiley & Sons, Inc.

  16. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.; Krier, James M.; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2013-01-01

    hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical

  17. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  18. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-01-01

    Roč. 23, č. 17 (2017), s. 4022-4022 ISSN 1521-3765 Institutional support: RVO:61388955 Keywords : Chemical vapor deposition * Hydrogenation * Graphene Subject RIV: CF - Physical ; Theoretical Chemistry

  19. Deuterium exchange reaction between hydrogen and water in a trickle-bed column packed with novel catalysts

    International Nuclear Information System (INIS)

    Ahn, D. H.; Baek, S. W.; Lee, H. S.; Kim, K. R.; Kang, H. S.; Lee, S. H.; Jeong, H. S.

    1998-01-01

    The activity of a novel catalyst (Pt/SDBC) for deuterium exchange reaction between water and hydrogen streams in a trickle bed was measured. The performance of the catalyst was compared with a commercial catalyst with same metal content. The catalytic activity for the bed of wet-proofed catalyst diluted with hydrophillic packing material also measured. The Pt/SDBC catalyst shows higher activity in the liquid phase reaction than the commercial catalyst as measured in the vapor phase reaction. The performance for 50% dilution of the Pt/SDBC catalyst bed with hydrophillic packing material is better than that of the 100% bed due to more liquid holdup and better water distribution

  20. Fluid phase equilibria of the reaction mixture during the selective hydrogenation of 2-butenal in dense carbon dioxide

    DEFF Research Database (Denmark)

    Musko, Nikolai; Jensen, Anker Degn; Baiker, Alfons

    2012-01-01

    Knowledge of the phase behaviour and composition is of paramount importance for understanding multiphase reactions. We have investigated the effect of the phase behaviour in the palladium-catalysed selective hydrogenation of 2-butenal to saturated butanal in dense carbon dioxide. The reactions were...... cell. The results of the catalytic experiments showed that small amounts of carbon dioxide added to the system significantly decrease the conversion, whereas at higher loadings of CO2 the reaction rate gradually increases reaching a maximum. The CPA calculations revealed that this maximum is achieved...... performed using a 5wt% Pd on activated carbon in custom-designed high pressure autoclaves at 323K. The Cubic-Plus-Association (CPA) equation of state was employed to model the phase behaviour of the experimentally studied systems. CPA binary interaction parameters were estimated based on the experimental...

  1. Hydrotreating NiMo/sepiolite catalysts: influence of catalyst preparation on activity for HDS, hydrogenation and chain isomerization reactions

    International Nuclear Information System (INIS)

    Melo, F.V.; Sanz, E.; Corma, A.; Mifsud, A.

    1987-01-01

    A series of NiMo catalysts supported on a sepiolite: a) in its natural state, b) modified by acid leaching, and c) modified by cation exchange, have been prepared. The preparation variables studied were: Method of metal deposition, amount of active phase, sepiolite pretreatment, and temperature and time of sulfurization. The catalytic activity for HDS, hydrogenation, and cracking-isomerization has been studied by feeding a thiophene-cyclohexene-cyclohexane mixture and carrying out the reaction in the following conditions: 300 0 and 400 0 C reaction temperature, 20 Kg.cm -2 total pressure, and 3 to 1 molar ratio of H 2 to hydrocarbons. An optimium for HDS and hydrogenation activity was found for a 12% wt MoO 3 , and 5% wt NiO, prepared by simultaneous impregnation by the pore volume method at Ph = 5.0. The optimum conditions with these catalysts are 400 0 C and 3 hours of sulfurization. An increase in the acidity of the support produces a decrease of HDS and hydrogenation and an increase of the cracking-isomerization activities. A good correlation between HDS and the concentration of an XNiO.MoO 3 phase is found. The XNiO.MoO 3 phase is completely sulfurized to a modified MoS 2 , while NiMoO 4 and MoO 3 are only slightly sulfurized. 31 refs.; 7 figs.; 1 table

  2. The Atmospheric Oxidation of Volatile Organic Compounds Through Hydrogen Shift Reactions

    DEFF Research Database (Denmark)

    Knap, Hasse Christian

    a radical is denoted as a H-shift reaction. Quantum chemical calculations were carried out to investigate the potential energy surface of the H-shift reactions and the subsequent decomposition pathways. The transition state theory including the Eckart quantum tunneling correction have been used to calculate...... the reaction rate constants of the H-shift reactions. The autoxidation of volatile organic compounds is an important oxidation mechanism that produces secondary organic aerosols (SOA) and recycles hydroxyl (OH) radicals. The autoxidation cycle produces a second generation peroxy radical (OOQOOH) through...... a series of H-shift reactions and O2 attachments. I have investigated the H-shift reactions in two OOQOOH radicals (hydroperoxy peroxy radicals and hydroperoxy acyl peroxy radicals). The H-shift reaction rate constants have been compared with the bimolecular reaction rate constants of the peroxy radicals...

  3. A Study on the Pressure-Composition Isotherm for the Reaction of ZrCo with Hydrogen

    International Nuclear Information System (INIS)

    Kim, Sunmi; Paek, Seungwoo; Lee, Minsoo; Kim, Sihyung; Kim, Kwangrag; Ahn, Dohee; Sohn, Soonhwan; Song, Kyumin

    2007-01-01

    The intermetallic compound of ZrCo which is one of the promising getters for the handling, transport, and storage of tritium has been extensively studied and widely used due to its attractive properties as a tritium getter. At a typical storage temperature of room temperature, the ZrCo-H system has an equilibrium pressure of about 10 -3 Pa for an absorption. The immobilized gas can be recovered at a moderate temperature. Also, from the point of view of safety, the ZrCo and its hydrides have proven to be much less pyrophoric than uranium and its hydrides are the most widely used as a tritium getter. In the current study, the pressure-composition isotherm for the reaction of ZrCo with hydrogen was derived to evaluate its absorption and release characteristics. This provides useful information on the stability and the storage capabilities of ZrCo and the subsequent release of the hydrogen on a heating

  4. A Study on the Pressure-Composition Isotherm for the Reaction of ZrCo with Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunmi; Paek, Seungwoo; Lee, Minsoo; Kim, Sihyung; Kim, Kwangrag; Ahn, Dohee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sohn, Soonhwan; Song, Kyumin [Electric Power Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    The intermetallic compound of ZrCo which is one of the promising getters for the handling, transport, and storage of tritium has been extensively studied and widely used due to its attractive properties as a tritium getter. At a typical storage temperature of room temperature, the ZrCo-H system has an equilibrium pressure of about 10{sup -3} Pa for an absorption. The immobilized gas can be recovered at a moderate temperature. Also, from the point of view of safety, the ZrCo and its hydrides have proven to be much less pyrophoric than uranium and its hydrides are the most widely used as a tritium getter. In the current study, the pressure-composition isotherm for the reaction of ZrCo with hydrogen was derived to evaluate its absorption and release characteristics. This provides useful information on the stability and the storage capabilities of ZrCo and the subsequent release of the hydrogen on a heating.

  5. Sorption-enhanced water gas shift reaction for high-purity hydrogen production: Application of a Na-Mg double salt-based sorbent and the divided section packing concept

    International Nuclear Information System (INIS)

    Lee, Chan Hyun; Lee, Ki Bong

    2017-01-01

    Highlights: •Na-Mg double salt-based sorbent was used for high-temperature CO 2 sorption. •Divided section packing concept was applied to the SE-WGS reaction. •High-purity H 2 was produced from the SE-WGS reaction with divided section packing. •High-purity H 2 productivity could be further enhanced by modifying packing method. -- Abstract: Hydrogen is considered a promising environmentally benign energy carrier because it has high energy density and produces no pollutants when it is converted into other types of energy. The sorption-enhanced water gas shift (SE-WGS) reaction, where the catalytic WGS reaction and byproduct CO 2 removal are carried out simultaneously in a single reactor, has received considerable attention as a novel method for high-purity hydrogen production. Since the high-purity hydrogen productivity of the SE-WGS reaction is largely dependent on the performance of the CO 2 sorbent, the development of sorbents having high CO 2 sorption capacity is crucial. Recently, a Na-Mg double salt-based sorbent has been considered for high-temperature CO 2 capture since it has been reported to have a high sorption capacity and fast sorption kinetics. In this study, the SE-WGS reaction was experimentally demonstrated using a commercial catalyst and a Na-Mg double salt-based sorbent. However, the SE-WGS reaction with a one-body hybrid solid, a physical admixture of catalyst and sorbent, showed poor reactivity and reduced CO 2 sorption uptake. As a result, a divided section packing concept was suggested as a solution. In the divided section packing method, the degree of mixing for the catalyst and sorbent in a column can be controlled by the number of sections. High-purity hydrogen (<10 ppm CO) was produced directly from the SE-WGS reaction with divided section packing, and the hydrogen productivity was further improved when the reactor column was divided into more sections and packed with more sorbent.

  6. First Principles Based Simulation of Reaction-Induced Phase Transition in Hydrogen Storage and Other Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Qingfeng [Southern Illinois Univ., Carbondale, IL (United States)

    2014-08-31

    This major part of this proposal is simulating hydrogen interactions in the complex metal hydrides. Over the period of DOE BES support, key achievements include (i) Predicted TiAl3Hx as a precursor state for forming TiAl3 through analyzing the Ti-doped NaAlH4 and demonstrated its catalytic role for hydrogen release; (ii) Explored the possibility of forming similar complex structures with other 3d transition metals in NaAlH4 as well as the impact of such complex structures on hydrogen release/uptake; (iii) Demonstrated the role of TiAl3 in hydriding process; (iv) Predicted a new phase of NaAlH4 that links to Na3AlH6 using first-principles metadynamics; (v) Examined support effect on hydrogen release from supported/encapsulated NaAlH4; and (vi) Expanded research scope beyond hydrogen storage. The success of our research is documented by the peer-reviewed publications.

  7. Kinetic Models Study of Hydrogenation of Aromatic Hydrocarbons in Vacuum Gas Oil and Basrah Crude Oil Reaction

    Directory of Open Access Journals (Sweden)

    Muzher M. Ibraheem

    2013-05-01

    Full Text Available             The aim of this research is to study the kinetic reaction models for catalytic hydrogenation of aromatic content for Basrah crude oil (BCO and vacuum gas oil (VGO derived from Kirkuk crude oil which has the boiling point rang of (611-833K.            This work is performed using a hydrodesulphurization (HDS pilot plant unit located in AL-Basil Company. A commercial (HDS catalyst cobalt-molybdenum (Co-Mo supported in alumina (γ-Al2O3 is used in this work. The feed is supplied by North Refinery Company in Baiji. The reaction temperatures range is (600-675 K over liquid hourly space velocity (LHSV range of (0.7-2hr-1 and hydrogen pressure is 3 MPa with H2/oil ratio of 300 of Basrah Crude oil (BCO, while the corresponding conditions for vacuum gas oil (VGO are (583-643 K, (1.5-3.75 hr-1, 3.5 MPa and 250  respectively .            The results showed that the reaction kinetics is of second order for both types of feed. Activation energies are found to be 30.396, 38.479 kJ/mole for Basrah Crude Oil (BCO and Vacuum Gas Oil (VGO respectively.

  8. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis.

    Science.gov (United States)

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-03-29

    Nuclear reaction analysis (NRA) via the resonant (1)H((15)N,αγ)(12)C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a (15)N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the (1)H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~10(13) cm(-2) (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~10(18) cm(-3) (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal (15)N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, (1)H((15)N,αγ)(12)C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of (15)N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100).

  9. A Simple, Low-cost, and Robust System to Measure the Volume of Hydrogen Evolved by Chemical Reactions with Aqueous Solutions.

    Science.gov (United States)

    Brack, Paul; Dann, Sandie; Wijayantha, K G Upul; Adcock, Paul; Foster, Simon

    2016-08-17

    There is a growing research interest in the development of portable systems which can deliver hydrogen on-demand to proton exchange membrane (PEM) hydrogen fuel cells. Researchers seeking to develop such systems require a method of measuring the generated hydrogen. Herein, we describe a simple, low-cost, and robust method to measure the hydrogen generated from the reaction of solids with aqueous solutions. The reactions are conducted in a conventional one-necked round-bottomed flask placed in a temperature controlled water bath. The hydrogen generated from the reaction in the flask is channeled through tubing into a water-filled inverted measuring cylinder. The water displaced from the measuring cylinder by the incoming gas is diverted into a beaker on a balance. The balance is connected to a computer, and the change in the mass reading of the balance over time is recorded using data collection and spreadsheet software programs. The data can then be approximately corrected for water vapor using the method described herein, and parameters such as the total hydrogen yield, the hydrogen generation rate, and the induction period can also be deduced. The size of the measuring cylinder and the resolution of the balance can be changed to adapt the setup to different hydrogen volumes and flow rates.

  10. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions.

    Science.gov (United States)

    Ferrini, Paola; Rinaldi, Roberto

    2014-08-11

    Through catalytic hydrogen transfer reactions, a new biorefining method results in the isolation of depolymerized lignin--a non-pyrolytic lignin bio-oil--in addition to pulps that are amenable to enzymatic hydrolysis. Compared with organosolv lignin, the lignin bio-oil is highly susceptible to further hydrodeoxygenation under low-severity conditions and therefore establishes a unique platform for lignin valorization by heterogeneous catalysis. Overall, the potential of a catalytic biorefining method designed from the perspective of lignin utilization is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 31S(p,γ)32Cl reaction in explosive hydrogen burning

    International Nuclear Information System (INIS)

    Lefebvre, A.; Vouzoukas, S.; Aguer, P.; Bogaert, G.; Coc, A.; Denker, A.; De Oliveira, F.; Fortier, S.; Goerres, J.; Kiener, J.; Maison, J.M.; Porquet, M.G.; Rosier, L.; Tatischeff, V.; Thibaud, J.P.; Wiescher, M.

    1997-01-01

    In the present work we attempted to determine excitation energies and widths of proton unbound states in 32 Cl. These states may contribute as resonances to the 31 S(p,γ) reaction and will determine the reaction rate. Results were used to evaluate the reaction flow in the Si to Ar region obtained by nova outbursts in the case of an ONeMg white dwarf of 1.35 M odot . (orig.)

  12. Reactions of Hydrogen Sulfide with Singly and Doubly Tucked-in Titanocenes

    Czech Academy of Sciences Publication Activity Database

    Pinkas, Jiří; Císařová, I.; Horáček, Michal; Kubišta, Jiří; Mach, Karel

    2011-01-01

    Roč. 30, č. 5 (2011), s. 1034-1045 ISSN 0276-7333 R&D Projects: GA AV ČR IAA400400708; GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40400503 Keywords : hydrogen sulphide * titanocene * chemical structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.963, year: 2011

  13. Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.F.; Roman, S.; Bragado, D. [Departamento de Fisica Aplicada, University of Extremadura, 06071 (Spain); Calderon, M. [Departamento de Electronica e Ingenieria Electromecanica, University of Extremadura, 06071 (Spain)

    2008-08-15

    Hydrogen could be the energy carrier of the next world scene provided that its production, transportation and storage are solved. In this work the production of an hydrogen-rich gas by air/steam and air gasification of olive oil waste was investigated. The study was carried out in a laboratory reactor at atmospheric pressure over a temperature range of 700 - 900 C using a steam/biomass ratio of 1.2 w/w. The influence of the catalysts ZnCl{sub 2} and dolomite was also studied at 800 and 900 C. The solid, energy and carbon yield (%), gas molar composition and high heating value of the gas (kJ NL{sup -} {sup 1}), were determined for all cases and the differences between the gasification process with and without steam were established. Also, this work studies the different equilibria taking place, their predominance in each process and how the variables considered affect the final gas hydrogen concentration. The results obtained suggest that the operating conditions were optimized at 900 C in steam gasification (a hydrogen molar fraction of 0.70 was obtained at a residence time of 7 min). The use of both catalysts resulted positive at 800 C, especially in the case of ZnCl{sub 2} (attaining a H{sub 2} molar fraction of 0.69 at a residence time of 5 min). (author)

  14. Theoretical investigation of the hydrogen shift reactions in peroxy radicals derived from the atmospheric decomposition of 3-methyl-3-buten-1-ol (MBO331)

    DEFF Research Database (Denmark)

    Knap, Hasse Christian; Jørgensen, Solvejg; Kjærgaard, Henrik Grum

    2015-01-01

    The hydroxy peroxy radical derived from the oxidation of 3-methyl-3-buten-1-ol (MBO331), can undergo four different hydrogen shift (H-shift) reactions. We have compared optimized geometries, barrier heights and reaction rate constants obtained with five different DFT functionals (BLYP, B3LYP, BHand...

  15. Facile Synthesis of In–Situ Nitrogenated Graphene Decorated by Few–Layer MoS2 for Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Dai, Xiaoping; Li, Zhanzhao; Du, Kangli; Sun, Hui; Yang, Ying; Zhang, Xin; Ma, Xingyu; Wang, Jie

    2015-01-01

    Graphical abstract: In–situ nitrogenated graphene–few layer MoS 2 composites are fabricated by combinating chemical and hydrothermal reduction. The resulting MoS 2 /N–rGO–HA by N 2 H 4 ·H 2 O and NH 3 ·H 2 O as co-reductant exhibits high activity and remarkable stability for hydrogen evolution reaction (HER). The excellent electro-catalytic performance is ascribed to the synergistic effects, confinement effects and highly dispersed MoS 2 nanosheets on N-doping rGO. Display Omitted -- Highlights: • In–situ nitrogenated graphene–few layer MoS 2 composites are fabricated by combinating chemical and hydrothermal co-reduction. • The resulting MoS 2 /N–rGO–HA exhibits high activity and remarkable stability for HER. • The excellent electro-catalytic performance is ascribed to the synergistic effects, confinement effects and highly dispersed MoS 2 nanosheets on N-doping rGO. -- Abstract: A facile one–step synthetic strategy by combinating chemical and hydrothermal reduction of graphene oxide and Mo precursor is proposed to fabricate in–situ nitrogenated graphene–few layer MoS 2 composite (MoS 2 /N–rGO–HA) for hydrogen evolution reaction (HER). The N–doping graphene nanosheets and highly dispersed MoS 2 nanosheets by ammonia and hydrozine as co–reductant have greatly promoted the N content, concentrations of pyridinic and graphitic N, the electron transport in electrodes, and assure high catalytic efficiency. The MoS 2 /N–rGO–HA composite exhibits extremely high activity in acidic solutions with a small onset potential of 100 mV and Tafel slope of 45 mV/dec, as well as a current density about 32.4 mA cm −2 at overpotential about 0.2 V. Moreover, such MoS 2 /N–rGO–HA electroncatalyst also shows an excellent stability during 1000 cycles with negligible loss of the cathodic current. This facile hydrothermal method could provide a promising strategy for the synthesis of in–situ nitrogen–doping graphene sheets and few

  16. First Nuclear Reaction Experiment with Stored Radioactive 56Ni Beam and Internal Hydrogen and Helium Targets

    NARCIS (Netherlands)

    Egelhof, P.; Bagchi, Soumya; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Furuno, T; Geissel, H.; Gernhauser, R.; Kalantar-Nayestanaki, Nasser; Kuilman, M.; Mahjour-Shafiei, M.; Najafi, M.A.; Rigollet, C.; Streicher, B.

    2014-01-01

    The investigation of light-ion induced direct reactions using stored and cooled radioactive beams, interacting with internal targets of storage rings, can lead to substantial advantages over external target experiments, in particular for direct reaction experiments in inverse kinematics at very low

  17. Multidentate Di-N-heterocyclic carbene ligands for transition metal catalyzed hydrogenation reactions

    NARCIS (Netherlands)

    Sluijter, S.N.

    2015-01-01

    Synthetic catalysts play an important role in creating a more sustainable society. The use of catalysts has environmental as well as economic advantages. They speed up reactions without being consumed in the reaction itself. Moreover, they reduce the amount of byproducts and waste significantly.

  18. Femtosecond laser control of chemical reaction of carbon monoxide and hydrogen

    CSIR Research Space (South Africa)

    Du Plessis, A

    2010-09-01

    Full Text Available Femtosecond laser control of chemical reactions is made possible through the use of pulse-shaping techniques coupled to a learning algorithm feedback loop – teaching the laser pulse to control the chemical reaction. This can result in controllable...

  19. Femtosecond laser induced and controlled chemical reaction of carbon monoxide and hydrogen

    CSIR Research Space (South Africa)

    Du Plessis, A

    2011-07-01

    Full Text Available Results from experiments aimed at bimolecular chemical reaction control of CO and H2 at room temperature and pressure, without any catalyst, using shaped femtosecond laser pulses are presented. A stable reaction product (CO2) was measured after...

  20. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination

    Science.gov (United States)

    Tao, Zhimin; Raffel, Ryan A.; Souid, Abdul-Kader; Goodisman, Jerry

    2009-01-01

    The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 ± 0.7) ×104 M−1s−1 at 37°C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37°C and well above unity at 25°C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s−1 and 0.090 s−1 respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain. PMID:19348778

  1. Superaerophobic Ultrathin Ni-Mo Alloy Nanosheet Array from In Situ Topotactic Reduction for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Zhang, Qian; Li, Pengsong; Zhou, Daojin; Chang, Zheng; Kuang, Yun; Sun, Xiaoming

    2017-11-01

    Hydrogen evolution reaction (HER) has prospect to becoming clean and renewable technology for hydrogen production and Ni-Mo alloy is among the best HER catalysts in alkaline electrolytes. Here, an in situ topotactic reduction method to synthesize ultrathin 2D Ni-Mo alloy nanosheets for electrocatalytic hydrogen evolution is reported. Due to its ultrathin structure and tailored composition, the as-synthesized Ni-Mo alloy shows an overpotential of 35 mV to reach a current density of 10 mA cm -2 , along with a Tafel slope of 45 mV decade -1 , demonstrating a comparable intrinsic activity to state-of-art commercial Pt/C catalyst. Besides, the vertically aligned assemble structure of the 2D NiMo nanosheets on conductive substrate makes the electrode "superaerophobic," thus leading to much faster bubble releasing during HER process and therefore shows faster mass transfer behavior at high current density as compared with drop drying Pt/C catalyst on the same substrate. Such in situ topotactic conversion finds a way to design and fabricate low-cost, earth-abundant non-noble metal based ultrathin 2D nanostructures for electrocatalytic issues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Project of CO{sub 2} fixation and utilization using catalytic hydrogenation reaction for coping with the global environment issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Discussions were given on a carbon dioxide fixing and utilizing project utilizing hydrogenating reaction by means of a catalytic method. In the discussions, development was made on such foundation technologies as CO2 separation by using Cardo type CO2 membrane, a technology to synthesize methanol through hydrogen addition by means of the catalytic method, and an electrolytic technology of membrane-electrode mixed type, as well as a methanol synthesis bench test of 50 kg/d scale. In order to develop this result into specific applications, demonstration tests are required that use methanol synthesizing pilot plants of 4 t/d and 80 t/d capacities. In addition, for the electric power to produce a huge amount of hydrogen, development is necessary on a solar energy utilizing technology of large scale and low cost. Furthermore, from the economic and social viewpoints, the achievements of this project are regarded to depend on understanding of the necessity of a policy of putting a large number of methanol fuel cell automobiles into use, and dealing with the global warming problem. Energy required to change CO2 into useful chemical substance requires five times as much energy as has been produced, hence prevention of the global warming through this channel is difficult. (NEDO)

  3. Synthesis of high-purity Li{sub 8}ZrO{sub 6} powder by solid state reaction under hydrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Shin-mura, Kiyoto; Otani, Yu; Ogawa, Seiya [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Niwa, Eiki; Hashimoto, Takuya [Department of Physics, College of Humanities and Sciences, Nihon University, 3-8-1 Sakurajousui, Setagaya-ku, Tokyo 156-8550 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuchi, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Sasaki, Kazuya, E-mail: k_sasaki@tokai-u.ac.jp [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-11-01

    Highlights: • A fine pure Li{sub 8}ZrO{sub 6} powder was synthesized by using Li{sub 2}CO{sub 3} and ZrO{sub 2} via a solid state reaction. • Influences on the purity of product powder, lattice defect, and crystal orientation were revealed. • The suitable synthesis conditions of the fine and high purity Li{sub 8}ZrO{sub 6} powder were found. • The reaction process of the synthesis of Li{sub 8}ZrO{sub 6} was estimated. - Abstract: Li{sub 8}ZrO{sub 6} contains a large amount of Li and has a significant potential as a tritium breeder. However, few syntheses of fine-grain, high-purity Li{sub 8}ZrO{sub 6} powder have been reported. In this study, a high-purity powder of Li{sub 8}ZrO{sub 6} was synthesized by solid state reaction under hydrogen atmosphere combined with an effective lithium source and a suitable initial Li:Zr molar ratio. Mixed powders of Li{sub 2}CO{sub 3} and ZrO{sub 2} were fired at around 630 °C in H{sub 2} for several hours and several firing cycles. The low firing temperature inhibited the vaporization of Li during the heating, so that excessive amounts of Li were not needed for the synthesis, and the Li:Zr ratio in the starting material was 10:1 (mol:mol). In this synthesis, Li{sub 2}O was generated via the decomposition of Li{sub 2}CO{sub 3} during firing in H{sub 2}, and reacted with ZrO{sub 2} to form Li{sub 6}Zr{sub 2}O{sub 7}, which reacted with itself to form Li{sub 8}ZrO{sub 6}.

  4. Kinetics and mechanism of the furan peroxide formation in the reaction of furfural with hydrogen peroxide in the presence and absence of sodium molybdate

    International Nuclear Information System (INIS)

    Grunskaya, E.P.; Badovskaya, L.A.; Kaklyugina, T.Ya.; Poskonin, V.V.

    2000-01-01

    Kinetics of the initial stage of the reaction of furfural with hydrogen peroxide are studied in the presence of Na 2 MoO 4 in water and without catalytic additions in n-butanol. Organic peroxide having in its disposal Mo(6), which is the only product on the initial stage of the reaction, is formed since the first minutes of oxidation of furfural by hydrogen peroxide with the presence of Na 2 MoO 4 . The mechanisms of conversion of furfural in the Na 2 MoO 4 - H 2 O system and its oxidation by peroxide without sodium molybdate are discussed. Schemes of formation of furfural complexes based on the results of kinetic studies are suggested. Comparison of obtained data demonstrates that presence of the sodium molybdates in the reaction medium trends to change of reaction procedure in the hydrogen peroxide [ru

  5. Reforming and filtration Dual membrane for the production of hydrogen by cracking reaction

    International Nuclear Information System (INIS)

    Hafsaoui, J.

    2009-02-01

    In a context of rarefaction and increasing of prices of fossil energetic resources, it is necessary to diversify the energetic offer. Hydrogen seems to be one of the most promising vectors, although technological matters associated to its production slow down its development. In this context, the present work aims at elaborating a system able to produce pure hydrogen from hydrocarbon, and in particularly from methane. It is constituted of three membranes, which specific roles are reforming, separation and restitution of molecular hydrogen. The first membrane is porous and is made of a cermet BaCe 0.85 Y 0.15 O 3-α / nickel. The second one is dense and is elaborated either simply from BaCe 0.85 Y 0.15 O 3-α , or from the same cermet as the first membrane, depending whether the system operates in a galvanic or in a non-galvanic mode. The last one is of the same nature and morphology as the first one. The three membranes are fabricated and coupled one with the others by the process called co-tape-casting in organic solvent followed by a step of co-sintering. Hydrogen enters then in the porosity of the first membrane where it is oxidized when meeting with triple phases boundaries. In a non-galvanic system, protons and electrons can go through the second membrane, following the percolating proton and ion conducting paths, to reach the third membrane. In a galvanic system, electrons are transported toward the third membrane via an external circuit, which imposes a voltage. At the third membrane triple phase boundaries, electrons and protons recombine to form pure molecular hydrogen. These two systems galvanic and non galvanic have been designed and fabricated, and the motivation that has led to the choice of the materials used was given at each step of the process. Thanks to the comprehension of the different phenomena taking place during operating conditions, a rather optimized process leading to a system of production and purification of hydrogen was realized

  6. Dynamical resonances in the fluorine atom reaction with the hydrogen molecule.

    Science.gov (United States)

    Yang, Xueming; Zhang, Dong H

    2008-08-01

    [Reaction: see text]. The concept of transition state has played a crucial role in the field of chemical kinetics and reaction dynamics. Resonances in the transition state region are important in many chemical reactions at reaction energies near the thresholds. Detecting and characterizing isolated reaction resonances, however, have been a major challenge in both experiment and theory. In this Account, we review the most recent developments in the study of reaction resonances in the benchmark F + H 2 --> HF + H reaction. Crossed molecular beam scattering experiments on the F + H 2 reaction have been carried out recently using the high-resolution, highly sensitive H-atom Rydberg tagging technique with HF rovibrational states almost fully resolved. Pronounced forward scattering for the HF (nu' = 2) product has been observed at the collision energy of 0.52 kcal/mol in the F + H 2 (j = 0) reaction. Quantum dynamical calculations based on two new potential energy surfaces, the Xu-Xie-Zhang (XXZ) surface and the Fu-Xu-Zhang (FXZ) surface, show that the observed forward scattering of HF (nu' = 2) in the F + H 2 reaction is caused by two Feshbach resonances (the ground resonance and first excited resonance). More interestingly, the pronounced forward scattering of HF (nu' = 2) at 0.52 kcal/mol is enhanced considerably by the constructive interference between the two resonances. In order to probe the resonance potential more accurately, the isotope substituted F + HD --> HF + D reaction has been studied using the D-atom Rydberg tagging technique. A remarkable and fast changing dynamical picture has been mapped out in the collision energy range of 0.3-1.2 kcal/mol for this reaction. Quantum dynamical calculations based on the XXZ surface suggest that the ground resonance on this potential is too high in comparison with the experimental results of the F + HD reaction. However, quantum scattering calculations on the FXZ surface can reproduce nearly quantitatively the resonance

  7. Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production

    International Nuclear Information System (INIS)

    Ni, Meng; Leung, Michael K.H.; Leung, Dennis Y.C.

    2007-01-01

    A mathematical model was developed to simulate the coupled transport/electrochemical reaction phenomena in a solid oxide steam electrolyzer (SOSE) at the micro-scale level. Ohm's law, dusty gas model (DGM), Darcy's law, and the generalized Butler Volmer equation were employed to determine the transport of electronic/ionic charges and gas species as well as the electrochemical reactions. Parametric analyses were performed to investigate the effects of operating parameters and micro-structural parameters on SOSE potential. The results substantiated the fact that SOSE potential could be effectively decreased by increasing the operating temperature. In addition, higher steam molar fraction would enhance the operation of SOSE with lower potential. The effect of particle sizes on SOSE potential was studied with due consideration on the SOSE activation and concentration overpotentials. Optimal particle sizes that could minimize the SOSE potential were obtained. It was also found that decreasing electrode porosity could monotonically decrease the SOSE potential. Besides, optimal values of volumetric fraction of electronic particles were found to minimize electrode total overpotentials. In order to optimize electrode microstructure to minimize SOSE electricity consumption, the concept of 'functionally graded materials (FGM)' was introduced to lower the SOSE potential. The advanced design of particle size graded SOSE was found effective for minimizing electrical energy consumption resulting in efficient SOSE hydrogen production. The micro-scale model was capable of predicting SOSE hydrogen production performance and would be a useful tool for design optimization

  8. Reaction of intermetallic compounds of the ScT composition (T=Ag, Cu, Zn, Ni) with hydrogen

    International Nuclear Information System (INIS)

    Shilkin, S.P.; Volkova, L.S.; Tarasov, B.P.

    1995-01-01

    Reaction of intermetallic compounds of ScT composition (T=Ag, Cu, Zn, Ni), crystallized in CsCl structural type, with hydrogen at 0.2-10 MPa pressure and 293-673 K temperature is studied by chemical, x-ray phase and complex thermogravimetry analysis methods. It is shown that under such conditions hydrogen absorption by ScAg and ScCu is accompanied by the decay of their source matrices into scandium dihydride and metal silver and copper respectively. For ScZn a fine-dispersion mixture of scandium dihydride with zinc and hydride phase of a new zinc-containing intermetallic compound appears to be the finite reaction product. In case of ScNi a hydride phase of ScNiH 2.6 composition is produced, which is crystallized in a rhombic syngony with the lattice periods: a=0.5281±0.0007, b=0.7393±0.0009 and c=0.3327±0.0004 nm. 9 refs.; 2 tabs

  9. Use of portable analytical methods to determine the stoichiometry of reaction for hexahydrotriazine-based hydrogen sulfide scavenger operations.

    Science.gov (United States)

    Taylor, Grahame N; Matherly, Ron

    2014-05-20

    During the reaction between 1,3,5-tris(2-hydroxyethyl)hexahydro-s-triazine and hydrogen sulphide, the principle by-product is the organic sulphide 5-(2-hydroxyethyl)dithiazine. It can be determined by a novel, portable, field-capable ion mobility spectrometry method described herein and enables the "degree spent" to be determined. Dependant upon the level of carbon dioxide in the produced gas, a mixture of ethanolaminium bicarbonate and ethanolamine bisulphide is also produced. Using a field capable spectrophotometric method the level of inorganic sulphide can be determined, thus allowing the ethanolaminium bisulphide concentration to be calculated. Provided the fluid is only partially spent, and there is some unreacted 1,3,5-tris(2-hydroxyethyl)hexahydro-s-triazine remaining; the only source of inorganic sulphide is the amine salt. From a knowledge of the original fluid concentration, the combination of these two methods allows the effective stoichiometry, or observed molar reaction proportions between 1,3,5-tris(2-hydroxyethyl)hexahydro-s-triazine and hydrogen sulphide, to be measured for a specific field location.

  10. Gaseous anion chemistry. Hydrogen-deuterium exchange in mono- and dialcohol alkoxide ions: ionization reactions in dialcohols

    International Nuclear Information System (INIS)

    Lloyd, J.R.; Agosta, W.C.; Field, F.H.

    1980-01-01

    The subject of this work is H-D exchange in certain gaseous anions using D 2 as the exchanging agent. The anions involved are produced from ethylene glycol, 1,3-propanediol, 1,4-butanediol, ethanol, 1-propanol, and 1-butanol. Spectra and postulated ionization reactions for these mono- and dialcohols are given. Hydrogen-deuterium exchange occurs in the (M - 1) - and (2M - 1) - ions of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The amount of exchange occurring is 3-8 times greater in (2M - 1) - than in (M - 1) - . The amount of H-D exchange occurring in ethanol, 1-propanol, and 1-butanol is small or zero in the (2M - 1) - ions and in the (M - 1) - ion for 1-butanol [the only (M - 1) - ion which could be examined experimentally]. The amount of exchange occurring in the (2M - 1) - and (M - 1) - ions from ethylene glycol is not affected by the total pressure or composition of the reaction mixture in the ionization chamber of the mass spectrometer. A novel hydrogen-bridging mechanism is suggested to account for the observed exchange occurring in the dialcohols

  11. Quantum dynamics of the Eley-Rideal hydrogen formation reaction on graphite at typical interstellar cloud conditions.

    Science.gov (United States)

    Casolo, Simone; Martinazzo, Rocco; Bonfanti, Matteo; Tantardini, Gian Franco

    2009-12-31

    Eley-Rideal formation of hydrogen molecules on graphite, as well as competing collision induced processes, are investigated quantum dynamically at typical interstellar cloud conditions, focusing in particular on gas-phase temperatures below 100 K, where much of the chemistry of the so-called diffuse clouds takes place on the surface of bare carbonaceous dust grains. Collisions of gas-phase hydrogen atoms with both chemisorbed and physisorbed species are considered using available potential energy surfaces (Sha et al., J. Chem. Phys.2002 116, 7158), and state-to-state, energy-resolved cross sections are computed for a number of initial vibrational states of the hydrogen atoms bound to the surface. Results show that (i) product molecules are internally hot in both cases, with vibrational distributions sharply peaked around few (one or two) vibrational levels, and (ii) cross sections for chemisorbed species are 2-3x smaller than those for physisorbed ones. In particular, we find that H(2) formation cross sections out of chemically bound species decrease steadily when the temperature drops below approximately 1000 K, and this is likely due to a quantum reflection phenomenon. This suggests that such Eley-Rideal reaction is all but efficient in the relevant gas-phase temperature range, even when gas-phase H atoms happen to chemisorb barrierless to the surface as observed, e.g., for forming so-called para dimers. Comparison with results from classical trajectory calculations highlights the need of a quantum description of the dynamics in the astrophysically relevant energy range, whereas preliminary results of an extensive first-principles investigation of the reaction energetics reveal the importance of the adopted substrate model.

  12. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    A series of experimental and numerical investigations into hydrogen oxidation at high pressures and intermediate temperatures has been conducted. The experiments were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The equivalence ratio......, the mechanism is used to simulate published data on ignition delay time and laminar burning velocity of hydrogen. The flow reactor results show that at reducing, stoichiometric, and oxidizing conditions, conversion starts at temperatures of 750–775 K, 800–825 K, and 800–825 K, respectively. In oxygen atmosphere......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time....

  13. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH{sub 4} + H{sub 2}O {yields} 3H{sub 2}O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m{sup 3}{sub N}/h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  14. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH 4 + H 2 O → 3H 2 O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m 3 N /h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  15. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-01-01

    Roč. 23, č. 17 (2017), s. 4073-4078 ISSN 0947-6539 R&D Projects: GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : functionalization * graphene * hydrogen ation * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.317, year: 2016

  16. Intensification of the Use of Ionic Liquids as Efficient Reaction Co-Solvents in Asymmetric Hydrogenations

    Czech Academy of Sciences Publication Activity Database

    Černá, I.; Klusoň, Petr; Bendová, Magdalena; Floriš, Tomáš; Pelantová, Helena; Pekárek, T.

    2011-01-01

    Roč. 50, č. 3 (2011), s. 264-272 ISSN 0255-2701 R&D Projects: GA AV ČR KAN400720701; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : Ionic liquids * asymmetric hydrogenations * BmimPF6 Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.924, year: 2011

  17. Visible-light-induced hydrogen evolution reaction with WS x Se 2

    Indian Academy of Sciences (India)

    ... of ternary sulphoselenides of tungsten (WS x Se 2 − x ) by the dye-sensitized hydrogen evolution.WSxSe2−x solidsolutions are found to exhibit high activity reaching 2339 μ mol h − 1 g − 1 for WSSe, which is three times higher than that of WS2 alone (866 μ mol h − 1 g − 1 ). The turnover frequency is also high (0.7 h − 1 ).

  18. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-01-01

    Roč. 23, č. 17 (2017), s. 4073-4078 ISSN 0947-6539 R&D Projects: GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : functionalization * graphene * hydrogenation * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.317, year: 2016

  19. Reaction of chlorine nitrate with hydrogen chloride and water at Antarctic stratospheric temperatures

    Science.gov (United States)

    Tolbert, Margaret A.; Rossi, Michel J.; Malhotra, Ripudaman; Golden, David M.

    1987-01-01

    Laboratory studies of heterogeneous reactions important for ozone depletion over Antarctica are reported. The reaction of chlorine nitrate (ClONO2) with H2O and HCl on surfacers that simulate polar stratospheric clouds are studied at temperatures relevant to the Antarctic stratosphere. The gaseous products of the resulting reactions, HOCl, Cl2O, and Cl2, could readily photolyze in the Antarctic spring to produce active chlorine for ozone depletion. Furthermore, the additional formation of condensed-phase HNO3 could serve as a sink for odd nitrogen species that would otherwise scavenge the active chlorine.

  20. Development of a Hydrogen Uptake-Release Mg-Based Alloy by Adding a Polymer CMC (Carboxymethylcellulose, Sodium Salt) via Reaction-Accompanying Milling

    Science.gov (United States)

    Kwak, Young Jun; Choi, Eunho; Song, Myoung Youp

    2018-03-01

    The addition of carboxymethylcellulose, sodium salt (CMC) might improve the hydrogen uptake and release properties of Mg since it has a relatively low melting point and the melting of CMC during milling in hydrogen (reaction-accompanying milling) may make the milled samples be in good states to absorb and release hydrogen rapidly and to have a large hydrogen-storage capacity. Samples with compositions of 95 w/o Mg + 5 w/o CMC (named Mg-5CMC) and 90 w/o Mg + 10 w/o CMC (named Mg-10CMC) were prepared by adding CMC via reaction-accompanying milling. Activation of Mg-10CMC was completed after about 3 hydrogen uptake-release cycles. Mg-10CMC had a higher initial hydrogen uptake rate and a larger amount of hydrogen absorbed in 60 min, U (60 min), than Mg-5CMC before and after activation. At the cycle number of three (CN = 3), Mg-10CMC had a very high initial hydrogen uptake rate (1.56 w/o H/min) and a large U (60 min) (5.57 w/o H) at 593 K in hydrogen of 12 bar, showing that the activated Mg-10CMC has an effective hydrogen-storage capacity of about 5.6 w/o at 593 K in hydrogen of 12 bar at CN = 3. At CN = 2, Mg-10CMC released 1.00 w/o H in 2.5 min, 4.67 w/o H in 10 min, and 4.76 w/o H in 60 min at 648 K in hydrogen of 1.0 bar. The milling in hydrogen of Mg with CMC is believed to generate imperfections and cracks and reduce the particle size. The addition of 10 w/o CMC was more effective on the initial hydrogen uptake rate and U (60 min) compared with the 10 w/o additions of NbF5, TaF5, Fe2O3, and MnO, and the 10 w/o simultaneous addition of Ni, Fe, and Ti. To the best of our knowledge, this study is the first in which a polymer CMC is added to Mg by reaction-accompanying milling to improve the hydrogen storage properties of Mg.

  1. The reaction of nitromethane with hydrogen and deuterium atoms in the gas phase. A mechanistic study

    DEFF Research Database (Denmark)

    Lund Thomsen, E.; Nielsen, O.J.; Egsgaard, H.

    1993-01-01

    The mechanism of the reaction between H and CH3NO2, has been studied in a discharge flow system using electron paramagnetic resonance and modulated molecular beam mass spectrometry for the detection of reactants and products. Deuterium atoms have, in addition to CD3NO2, been used to support...... the proposed reaction mechanism. The reaction was studied with the atomic reactant in slight excess at 298 K and a total pressure of 2 Torr. Two concurrent reaction channels: (1a) H+CH3NO2-->HONO+.CH3 and (1b) H+CH3NO2-->CH3NO+.OH were observed. The branching ratio, k1a/(k1a+k1b), is 0.7+/-0.2....

  2. Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations

    DEFF Research Database (Denmark)

    Skulason, Egill; Tripkovic, Vladimir; Björketun, Mårten

    2010-01-01

    charged Pt(111) slab and solvated protons in up to three water bilayers is considered and reaction energies and activation barriers are determined by using a newly developed computational scheme where the potential can be kept constant during a charge transfer reaction. We determine the rate limiting...... reaction on Pt(111) to be Tafel−Volmer for HOR and Volmer−Tafel for HER. Calculated rates agree well with experimental data. Both the H adsorption energy and the energy barrier for the Tafel reaction are then calculated for a range of metal electrodes, including Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Ru, Re......, W, Mo, and Nb, different facets, and step of surfaces. We compare the results for different facets of the Pt electrode to experimental data. Our results suggest that the most important parameter for describing the HOR or the HER activity of an electrode is its binding free energy of H. We present...

  3. Dinuclear Tetrapyrazolyl Palladium Complexes Exhibiting Facile Tandem Transfer Hydrogenation/Suzuki Coupling Reaction of Fluoroarylketone

    KAUST Repository

    Dehury, Niranjan; Maity, Niladri; Tripathy, Suman Kumar; Basset, Jean-Marie; Patra, Srikanta

    2016-01-01

    Herein, we report an unprecedented example of dinuclear pyrazolyl-based Pd complexes exhibiting facile tandem catalysis for fluoroarylketone: Tetrapyrazolyl di-palladium complexes with varying Pd-Pd distances efficiently catalyze the tandem reaction

  4. Enabling nucleophilic substitution reactions of activated alkyl fluorides through hydrogen bonding.

    Science.gov (United States)

    Champagne, Pier Alexandre; Pomarole, Julien; Thérien, Marie-Ève; Benhassine, Yasmine; Beaulieu, Samuel; Legault, Claude Y; Paquin, Jean-François

    2013-05-03

    It was discovered that the presence of water as a cosolvent enables the reaction of activated alkyl fluorides for bimolecular nucleophilic substitution reactions. DFT calculations show that activation proceeds through stabilization of the transition structure by a stronger F···H2O interaction and diminishing C-F bond elongation, and not simple transition state electrostatic stabilization. Overall, the findings put forward a distinct strategy for C-F bond activation through H-bonding.

  5. Ratio of tritiated water and hydrogen generated in mercury through a nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, K. [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Naka-gun, Ibaraki 319-1195 (Japan)], E-mail: manabe.kentaro@jaea.go.jp; Yokoyama, S. [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Naka-gun, Ibaraki 319-1195 (Japan)

    2008-02-15

    Tritium generated in a mercury target is a source of potential exposure of personnel at high-energy accelerator facilities. Knowledge of the chemical form of tritium is necessary to estimate the internal doses. We studied the tritium generation upon thermal neutron irradiation of a mercury target modified into liquid lithium amalgam to examine the ratio of tritiated water ([{sup 3}H]H{sub 2}O) and tritiated hydrogen ([{sup 3}H]H{sub 2}). The ratio between [{sup 3}H]H{sub 2}O and [{sup 3}H]H{sub 2} generated in lithium amalgam was 4:6 under these experimental conditions.

  6. A facile lyophilization synthesis of MoS{sub 2} QDs@graphene as a highly active electrocatalyst for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenzhu; Li, Feng; Wang, Xiang; Tang, Yu; Yang, Yuanyuan; Gao, Wenbin [State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Li, Rong, E-mail: liyirong@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2017-04-15

    Highlights: • The target catalyst was prepared by a facile and novel lyophilization method. • The HER activity of various morphologies of MoS{sub 2}-based catalysts were studied. • The catalyst owns superior dispersion, large active sites and high conductivity. • The catalyst exhibits superior HER activity and long-term stability. - Abstract: The development of robust, active and nonprecious electrocatalysts for hydrogen evolution reaction is quite urgent but still challenging. Here MoS{sub 2} QDs@Graphene is prepared via a facile lyophilization method, which leads to a better dispersion of MoS{sub 2} QDs on the graphene and optimizes the electronic mobility between the MoS{sub 2} layers. Impressively, the electrocatalyst MoS{sub 2} QDs@Graphene demonstrates the remarkable activity for HER in 0.5 M H{sub 2}SO{sub 4} solution, with a current density of 10 mA cm{sup −2} at a low overpotential of 140 mV and strong stability in acid condition. The achieved excellent performance is attributed to its morphology with large amount of active sites fabricated by the lyophilization method. This new method opens new pathway for the fabrication of non-precious metal electrocatalysts achieving high activity.

  7. Radiation-induced chemical reactions of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Sugimoto, S.; Nishii, M.; Sugiura, T.

    1984-01-01

    The radiation chemical reaction of CO-H 2 mixture has been studied in the pressure range from 10 4 to 1.3 x 10 5 Pa using 7 l. reaction vessel made of stainless steel. Various hydrocarbons and oxygen containing compounds such as methane, formaldehyde, acetaldehyde, and methanol have been obtained as radiolytic products. The amounts and the G values of these products depended upon the irradiation conditions such as composition of reactant, total pressure, reaction temperature, and dose. It was found that the irradiation at low dose produced small amounts of trioxane and tetraoxane, which have not yet been reported in literature. The yields of these cyclic ethers increased at high pressure and at low temperature. An experiment was also made on CO-H 2 mixture containing ammonia as a cation scavenger to investigate the precursor of these products. (author)

  8. Reaction of hydrogen peroxide with uranium zirconium oxide solid solution - Zirconium hinders oxidative uranium dissolution

    Science.gov (United States)

    Kumagai, Yuta; Takano, Masahide; Watanabe, Masayuki

    2017-12-01

    We studied oxidative dissolution of uranium and zirconium oxide [(U,Zr)O2] in aqueous H2O2 solution to estimate (U,Zr)O2 stability to interfacial reactions with H2O2. Studies on the interfacial reactions are essential for anticipating how a (U,Zr)O2-based molten fuel may chemically degrade after a severe accident. The fuel's high radioactivity induces water radiolysis and continuous H2O2 generation. Subsequent reaction of the fuel with H2O2 may oxidize the fuel surface and facilitate U dissolution. We conducted our experiments with (U,Zr)O2 powder (comprising Zr:U mole ratios of 25:75, 40:60, and 50:50) and quantitated the H2O2 reaction via dissolved U and H2O2 concentrations. Although (U,Zr)O2 reacted more quickly than UO2, the dissolution yield relative to H2O2 consumption was far less for (U,Zr)O2 compared to that of UO2. The reaction kinetics indicates that most of the H2O2 catalytically decomposed to O2 at the surface of (U,Zr)O2. We confirmed the H2O2 catalytic decomposition via O2 production (quantitative stoichiometric agreement). In addition, post-reaction Raman scattering spectra of the undissolved (U,Zr)O2 showed no additional peaks (indicating a lack of secondary phase formation). The (U,Zr)O2 matrix is much more stable than UO2 against H2O2-induced oxidative dissolution. Our findings will improve understanding on the molten fuels and provide an insight into decommissioning activities after a severe accident.

  9. Reaction mechanisms and evaluation of effective process operation for catalytic oxidation and coagulation by ferrous solution and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Moon, H.J.; Kim, Y.M. [Dept. of Environmental Engineering, Sangmyung Univ., Cheonan (Korea); Bae, W.K. [Dept. of Civil and Environmental Engineering, Hanyang Univ., Ansan, Kyounggi (Korea)

    2003-07-01

    This research was carried out to evaluate the removal efficiencies of COD{sub cr} and colour for the dyeing wastewater by ferrous solution and the different dosage of H{sub 2}O{sub 2} in Fenton process. In the case of H{sub 2}O{sub 2} divided dosage, 7:3 was more effective than 3:7 to remove COD{sub cr} and colour. The results showed that COD was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand colour was removed by Fenton oxidation rather than Fenton coagulation. This paper also aims at pursuing to investigate the effective removal mechanisms using ferrous ion coagulation, ferric ion coagulation and Fenton oxidation process. The removal mechanism of COD{sub cr} and colour was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However the final removal efficiency of COD and colour was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide. (orig.)

  10. Study of hydrogen consumption reaction catalyzed by Pd ions in the simulated high-level liquid waste

    International Nuclear Information System (INIS)

    Kodama, Takashi

    2013-01-01

    To ensure the safety for storage of high-level liquid waste (HLLW) in tanks is one of the most important safety issues in a reprocessing plant since almost all radioactive materials under processing are collected in these tanks. Accordingly the behavior of radiolytically formed hydrogen (H 2 ) in these tanks is one of key issues and has been studied by several researchers because it might cause an explosion. They reported that not all of H 2 formed in HLLW comes out in the gas phase because H 2 is consumed by some un-clarified secondary reaction which may be caused by the irradiation and/or by the catalytic effect of certain fission product (FP) in HLLW. In order to clarify such effect, we carried out the experiments using the simulated high level liquid waste (SHLLW) with and without palladium (Pd) group ions under irradiation and non-irradiation conditions. As a result, it was found that H 2 consumption reaction is not caused by radiation as was understood so far but is caused by a catalytic effect of Pd ion in SHLLW. That is, H 2 is reacting with HNO 3 and forming H 2 O and NOx. Using the catalytic reaction rate constant measured in the experiments, the analysis showed that the H 2 concentration in the gas phase of an HLLW tank does not reach its explosion limit of 4% even if the sweeping air stops for a long time. (authors)

  11. Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber

    KAUST Repository

    Shi, Xian

    2017-01-05

    Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber are numerically investigated using an 1-D unsteady, shock-capturing, compressible and reacting flow solver. Different combinations of reaction front propagation and end-gas combustion modes are observed, i.e., 1) deflagration without end-gas combustion, 2) deflagration to end-gas autoignition, 3) deflagration to end-gas detonation, 4) developing or developed detonation, occurring in the sequence of increasing initial temperatures. Effects of ignition location and chamber size are evaluated: the asymmetric ignition is found to promote the reactivity of unburnt mixture compared to ignitions at center/wall, due to additional heating from asymmetric pressure waves. End-gas combustion occurs earlier in smaller chambers, where end-gas temperature rise due to compression heating from the deflagration is faster. According to the ξ−ε regime diagram based on Zeldovich theory, modes of reaction front propagation are primarily determined by reactivity gradients introduced by initial ignition, while modes of end-gas combustion are influenced by the total amount of unburnt mixture at the time when autoignition occurs. A transient reactivity gradient method is provided and able to capture the occurrence of detonation.

  12. Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber

    KAUST Repository

    Shi, Xian; Ryu, Je Ir; Chen, Jyh-Yuan; Dibble, Robert W.

    2017-01-01

    Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber are numerically investigated using an 1-D unsteady, shock-capturing, compressible and reacting flow solver. Different combinations of reaction front propagation and end-gas combustion modes are observed, i.e., 1) deflagration without end-gas combustion, 2) deflagration to end-gas autoignition, 3) deflagration to end-gas detonation, 4) developing or developed detonation, occurring in the sequence of increasing initial temperatures. Effects of ignition location and chamber size are evaluated: the asymmetric ignition is found to promote the reactivity of unburnt mixture compared to ignitions at center/wall, due to additional heating from asymmetric pressure waves. End-gas combustion occurs earlier in smaller chambers, where end-gas temperature rise due to compression heating from the deflagration is faster. According to the ξ−ε regime diagram based on Zeldovich theory, modes of reaction front propagation are primarily determined by reactivity gradients introduced by initial ignition, while modes of end-gas combustion are influenced by the total amount of unburnt mixture at the time when autoignition occurs. A transient reactivity gradient method is provided and able to capture the occurrence of detonation.

  13. Bond cleavage reactions of the bridge structure in coal in the presence of hydrogen donating compounds; Suiso kyoyosei kagobutsu sonzaika deno sekitanchu no kakyo kozo no kairetsu hanno

    Energy Technology Data Exchange (ETDEWEB)

    Bando, N.; Kidena, K.; Murata, S.; Nomura, M. [Osaka University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    In this paper, bond cleavage reactions are discussed in relation to the softening and solubilization of coal. Were used 9,10-dihydroanthracene (DHA) and 9,10-dihydrophenanthrene (DHP) as models of hydrogen donating compounds in coal, and bibenzyl, 1,2-diethane, benzylphenylether, and 1,5-dibenzylnaphthalene were used as models of bridge structure compounds. They were compared mutually, as to reactivity of coal against DHA and DHP. For the homolytic cleavage of bridges, DHA with excellent radical supplement performance provided excellent hydrogen donating performance. While, for the ipso-position cleavage of bridges, it was found that DHP can act as an effective hydrogen donor. For the reaction between coal and hydrogenated aromatic compounds, cleavage of relatively weak bonds, such as ether linkage and dimethylene linkage, occurred at about 380{degree}C, and hydrogen from DHA or DHP was consumed. On the other hand, the results suggested that the cleavage reaction at ipso-position affected by hydrogen donating solvent is also important at temperature range around 420{degree}C. 2 refs., 3 figs., 1 tab.

  14. Diels-Alder Reactions in Water. Effects of Hydrophobicity and Hydrogen Bonding

    NARCIS (Netherlands)

    Otto, Sijbren; Blokzijl, Wilfried; Engberts, Jan B.F.N.

    1994-01-01

    In order to check whether the activated complex for the Diels-Alder reactions of 5-substituted 1,4-naphthoquinones with cyclopentadiene is more polar in water than in other solvents, we have determined the substituent effects in seven different solvents. The substituent effects gradually decrease

  15. Studies of the reactions of hydrogen atoms by time-resolved E. S. R. spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, R W; Verma, N C [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1977-01-01

    Time-resolved e.s.r. spectroscopy has been used to follow directly the reactions of H atoms produced by pulse radiolysis of acid solutions. Detailed analysis of the time profile of the e.s.r. signal was carried out by means of modified Bloch equations. The increased signal found when a scavenger for OH such as t-butyl alcohol is present is shown to be mainly the result of slower H atom decay by radical-radical reaction. The reaction H + OH does not appear to produce any signal polarization. The decay curves observed in the presence of solute are readily accounted for by the treatment, and good plots of pseudo first-order rate constant against solute concentration are obtained. The absolute rate constants for reaction with H atoms are for methanol 2.5 x10/sup 6/, for ethanol 2.1 X 10/sup 7/, for isopropanol 6.8 x 10/sup 7/, and for succinic acid 3.0 x 10/sup 6/ dm/sup 3/ mol/sup -1/s/sup -1/. These values are in good agreement with the earlier chemical measurements.

  16. (SalenMn(III Catalyzed Asymmetric Epoxidation Reactions by Hydrogen Peroxide in Water: A Green Protocol

    Directory of Open Access Journals (Sweden)

    Francesco Paolo Ballistreri

    2016-07-01

    Full Text Available Enantioselective epoxidation reactions of some chosen reactive alkenes by a chiral Mn(III salen catalyst were performed in H2O employing H2O2 as oxidant and diethyltetradecylamine N-oxide (AOE-14 as surfactant. This procedure represents an environmentally benign protocol which leads to e.e. values ranging from good to excellent (up to 95%.

  17. A Dramatic Classroom Demonstration of Limiting Reagent Using the Vinegar and Sodium Hydrogen Carbonate Reaction

    Science.gov (United States)

    Artdej, Romklao; Thongpanchang, Tienthong

    2008-01-01

    This demonstration is designed to illustrate the concept of limiting reagent in a spectacular way. Via a series of experiments where the amount of vinegar is fixed and the amount of NaHCO[subscript 3] is gradually increased, the volume of CO[subscript 2] generated from the reaction varies corresponding to the amount of NaHCO[subscript 3] until it…

  18. Equilibrium chemical reaction of supersonic hydrogen-air jets (the ALMA computer program)

    Science.gov (United States)

    Elghobashi, S.

    1977-01-01

    The ALMA (axi-symmetrical lateral momentum analyzer) program is concerned with the computation of two dimensional coaxial jets with large lateral pressure gradients. The jets may be free or confined, laminar or turbulent, reacting or non-reacting. Reaction chemistry is equilibrium.

  19. Hydrogen storage and carbon dioxide sequestration in TBAF semi-clathrate hydrates: Kinetics and evolution of hydrate-phase composition by in situ raman spectroscopy - Abstract -

    NARCIS (Netherlands)

    Torres Trueba, A.; Radoviæ, I.R.; Zevenbergen, J.F.; Kroon, M.C.; Peters, C.J.

    2012-01-01

    Carbon dioxide (CO2) represents almost one third of the emissions from the combustion of fossil fuels additionally, CO2 has been identified as the mayor contributor of global warming. Hydrogen (H2), on the other hand, due to its properties is considered a promising energy carrier. Clathrate hydrates

  20. Facile solvothermal synthesis of monodisperse Pt2.6Co1 nanoflowers with enhanced electrocatalytic activity towards oxygen reduction and hydrogen evolution reactions

    International Nuclear Information System (INIS)

    Jiang, Liu-Ying; Lin, Xiao-Xiao; Wang, Ai-Jun; Yuan, Junhua; Feng, Jiu-Ju; Li, Xin-Sheng

    2017-01-01

    Highlights: • Uniform Pt 2.6 Co 1 nanoflowers were prepared by a simple solvothermal method. • Glucose and CTAC were used as the green reductant and structure director, respectively. • The architectures had the enlarged ECSA. • The architectures exhibited excellent catalytic performances for HER in acid and alkaline media. • The architectures showed highly catalytic performances for ORR in acid media. - Abstract: Herein, uniform Pt 2.6 Co 1 nanoflowers (NFs) were synthesized in oleylamine by a one-pot solvothermal method, using cetyltrimethylammonium chloride (CTAC) and glucose as the capping agent and green reducing agent. The samples were mainly characterized by transmission electron microscopy (TEM), high angle annular dark-field scanning TEM (HAADF-STEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The architectures had larger electrochemically active surface area (ECSA) of 23.84 m 2 g −1 Pt than Pt 1.2 Co 1 nanocrystals (NCs, 14.96 m 2 g −1 Pt ), Pt 3.7 Co 1 NCs (16.96 m 2 g −1 Pt ) and commercial Pt black (20.35 m 2 g −1 Pt ). And the as-obtained Pt 2.6 Co 1 catalyst displayed superior catalytic performance and better durability for hydrogen evolution reaction (HER) as compared to Pt 1.2 Co 1 NCs, Pt 3.7 Co 1 NCs, commercial 50% Pt/C and Pt black catalysts in acid and alkaline media. Meanwhile, the electrocatalytic performance of Pt 2.6 Co 1 NFs for oxygen reduction reaction (ORR) is better in acid media as compared with that in alkaline media. It indicates the great potential applications of the as-prepared catalyst in fuel cells.

  1. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the F{sup −} + CH{sub 3}F S{sub N}2 and proton-abstraction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Szabó, István; Telekes, Hajnalka; Czakó, Gábor, E-mail: czako@chem.elte.hu [Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös University, H-1518 Budapest 112, P.O. Box 32 (Hungary)

    2015-06-28

    We develop a full-dimensional global analytical potential energy surface (PES) for the F{sup −} + CH{sub 3}F reaction by fitting about 50 000 energy points obtained by an explicitly correlated composite method based on the second-order Møller–Plesset perturbation-F12 and coupled-cluster singles, doubles, and perturbative triples-F12a methods and the cc-pVnZ-F12 [n = D, T] basis sets. The PES accurately describes the (a) back-side attack Walden inversion mechanism involving the pre- and post-reaction (b) ion-dipole and (c) hydrogen-bonded complexes, the configuration-retaining (d) front-side attack and (e) double-inversion substitution pathways, as well as (f) the proton-abstraction channel. The benchmark quality relative energies of all the important stationary points are computed using the focal-point analysis (FPA) approach considering electron correlation up to coupled-cluster singles, doubles, triples, and perturbative quadruples method, extrapolation to the complete basis set limit, core-valence correlation, and scalar relativistic effects. The FPA classical(adiabatic) barrier heights of (a), (d), and (e) are −0.45(−0.61), 46.07(45.16), and 29.18(26.07) kcal mol{sup −1}, respectively, the dissociation energies of (b) and (c) are 13.81(13.56) and 13.73(13.52) kcal mol{sup −1}, respectively, and the endothermicity of (f) is 42.54(38.11) kcal mol{sup −1}. Quasiclassical trajectory computations of cross sections, scattering (θ) and initial attack (α) angle distributions, as well as translational and internal energy distributions are performed for the F{sup −} + CH{sub 3}F(v = 0) reaction using the new PES. Apart from low collision energies (E{sub coll}), the S{sub N}2 excitation function is nearly constant, the abstraction cross sections rapidly increase with E{sub coll} from a threshold of ∼40 kcal mol{sup −1}, and retention trajectories via double inversion are found above E{sub coll} = ∼ 30 kcal mol{sup −1}, and at E{sub coll} =

  2. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  3. Preparation of the vulcan XC-72R-supported Pt nanoparticles for the hydrogen evolution reaction in PEM water electrolysers

    International Nuclear Information System (INIS)

    Nguyen, Huy Du; Nguyen, T Thuy Luyen; Nguyen, Khac Manh; Ha, Thuc Huy; Nguyen, Quoc Hien

    2015-01-01

    Pt nanoparticles on vulcan XC-72R support (Pt/vulcan XC-72R) were prepared by the impregnation–reduction method. The Pt content, the morphological properties and the electrochemical catalysis of the Pt/vulcan XC 72R materials have been investigated by ICP-OES analysis, FESEM, TEM, and cyclic voltammetry. These materials were then used as catalyst for hydrogen evolution reaction at the cathode of proton exchange membrane (PEM) water electrolysers. The best catalyst was Pt/vulcan XC-72R prepared by the impregnation–reduction method which is conducted in two reducing steps with the reductants of sodium borohydride and ethylene glycol, respectively. The current density of PEM water electrolysers reached 1.0 A cm"−"2 when applying a voltage of 2.0 V at 25 °C. (paper)

  4. Efficient transfer hydrogenation reaction Catalyzed by a dearomatized PN 3P ruthenium pincer complex under base-free Conditions

    KAUST Repository

    He, Lipeng

    2012-03-01

    A dearomatized complex [RuH(PN 3P)(CO)] (PN 3PN, N′-bis(di-tert-butylphosphino)-2,6-diaminopyridine) (3) was prepared by reaction of the aromatic complex [RuH(Cl)(PN 3P)(CO)] (2) with t-BuOK in THF. Further treatment of 3 with formic acid led to the formation of a rearomatized complex (4). These new complexes were fully characterized and the molecular structure of complex 4 was further confirmed by X-ray crystallography. In complex 4, a distorted square-pyramidal geometry around the ruthenium center was observed, with the CO ligand trans to the pyridinic nitrogen atom and the hydride located in the apical position. The dearomatized complex 3 displays efficient catalytic activity for hydrogen transfer of ketones in isopropanol. © 2011 Elsevier B.V. All rights reserved.

  5. PVP-Stabilized Palladium Nanoparticles in Silica as Effective Catalysts for Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Caroline Pires Ruas

    2013-01-01

    Full Text Available Palladium nanoparticles stabilized by poly (N-vinyl-2-pyrrolidone (PVP can be synthesized by corresponding Pd(acac2 (acac = acetylacetonate as precursor in methanol at 80°C for 2 h followed by reduction with NaBH4 and immobilized onto SiO2 prepared by sol-gel process under acidic conditions (HF or HCl. The PVP/Pd molar ratio is set to 6. The effect of the sol-gel catalyst on the silica morphology and texture and on Pd(0 content was investigated. The catalysts prepared (ca. 2% Pd(0/SiO2/HF and ca. 0,3% Pd(0/SiO2/HCl were characterized by TEM, FAAS, and SEM-EDS. Palladium nanoparticles supported in silica with a size 6.6 ± 1.4 nm were obtained. The catalytic activity was tested in hydrogenation of alkenes.

  6. Solid-state reaction kinetics and optical studies of cadmium doped magnesium hydrogen phosphate crystals

    Science.gov (United States)

    Verma, Madhu; Gupta, Rashmi; Singh, Harjinder; Bamzai, K. K.

    2018-04-01

    The growth of cadmium doped magnesium hydrogen phosphate was successfully carried out by using room temperature solution technique i.e., gel encapsulation technique. Grown crystals were confirmed by single crystal X-ray diffraction (XRD). The structure of the grown crystal belongs to orthorhombic crystal system and crystallizes in centrosymmetric space group. Kinetics of the decomposition of the grown crystals were studied by non-isothermal analysis. Thermo gravimetric / differential thermo analytical (TG/DTA) studies revealed that the grown crystal is stable upto 119 °C. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters. The optical studies shows that the grown crystals possess wide transmittance in the visible region and significant optical band gap of 5.5ev with cut off wavelength of 260 nm.

  7. Solid-state reaction kinetics of neodymium doped magnesium hydrogen phosphate system

    Science.gov (United States)

    Gupta, Rashmi; Slathia, Goldy; Bamzai, K. K.

    2018-05-01

    Neodymium doped magnesium hydrogen phosphate (NdMHP) crystals were grown by using gel encapsulation technique. Structural characterization of the grown crystals has been carried out by single crystal X-ray diffraction (XRD) and it revealed that NdMHP crystals crystallize in orthorhombic crystal system with space group Pbca. Kinetics of the decomposition of the grown crystals has been studied by non-isothermal analysis. The estimation of decomposition temperatures and weight loss has been made from the thermogravimetric/differential thermo analytical (TG/DTA) in conjuncture with DSC studies. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters.

  8. Salt-assisted clean transfer of continuous monolayer MoS2 film for hydrogen evolution reaction

    Science.gov (United States)

    Cho, Heung-Yeol; Nguyen, Tri Khoa; Ullah, Farman; Yun, Jong-Won; Nguyen, Cao Khang; Kim, Yong Soo

    2018-03-01

    The transfer of two-dimensional (2D) materials from one substrate to another is challenging but of great importance for technological applications. Here, we propose a facile etching and residue-free method for transferring a large-area monolayer MoS2 film continuously grown on a SiO2/Si by chemical vapor deposition. Prior to synthesis, the substrate is dropped with water- soluble perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt (PTAS). The as-grown MoS2 on the substrate is simply dipped in water to quickly dissolve PTAS to yield the MoS2 film floating on the water surface, which is subsequently transferred to the desired substrate. The morphological, optical and X-ray photoelectron spectroscopic results show that our method is useful for fast and clean transfer of the MoS2 film. Specially, we demonstrate that monolayer MoS2 film transferred onto a conducting substrate leads to excellent performance for hydrogen evolution reaction with low overpotential (0.29 V vs the reversible hydrogen electrode) and Tafel slope (85.5 mV/decade).

  9. The thermodynamic characteristics of the reaction between vanadium(5) and hydrogen peroxide in concentrated solutions of perchloric acid

    International Nuclear Information System (INIS)

    Vorob'ev, P.N.; Dmitrieva, N.G.; Poteshonkova, T.A.

    2001-01-01

    Stability constants of vanadium(5) complex with hydrogen peroxide and enthalpy of vanadium(5) complexing with hydrogen peroxide are determined at acidity of solution c(H + ) = 5.00 mol/l, temperature T = 298.15 K and values of ionic force: I = 5, 6 and 7. Standard thermodynamic characteristics of vanadium(5) peroxide complex formation were calculated. At zeroth ionic force the value of complexing enthalpy Δ r H 298.15 deg is equal to -48.59 ± 0.33 kJ/mol, standard enthalpy of peroxide vanadium(5) complex formation Δ f H 298.15 deg is equal to -895.49 ± 1.51 kJ/mol; Δ r G 298.15 deg = -36.51 kJ/mol, Δ r S 298.15 deg -40.51 J/(mol K). As it is shown by calculations, standard change in entropy of the reaction has a minus sign, that is unique to complexation with neutral ligand [ru

  10. Use of ESI-MS to determine reaction pathway for hydrogen sulphide scavenging with 1,3,5-tri-(2-hydroxyethyl)-hexahydro-s-triazine

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    2012-01-01

    To study the reaction between hydrogen sulphide and 1,3,5-tri-(2-hydroxyethyl)- hexahydro-s-triazine, which is an often used hydrogen sulphide scavenger, electro spray ionisation mass spectrometry (ESI-MS) was used. The investigation was carried out in positive mode, and tandem mass spectrometry...... the dithiazine species, hereby confirming previously obtained results and showing the ability of the ESI-MS method for studying the scavenging reaction. The final theoretical product s-trithiane was not detected. Furthermore, fragmentation products of thiadiazine and dithiazine were detected in the solution...

  11. Reaction Mechanism of Tar Evolution in Biomass Steam Gasification for Hydrogen Production

    International Nuclear Information System (INIS)

    Shingo Katayama; Masahiro Suzuki; Atsushi Tsutsumi

    2006-01-01

    Reaction mechanism of tar evolution in steam gasification of biomass was investigated with a continuous cross-flow moving bed type differential reactor, in which tar and gases can be fractionated according to reaction time. We estimated that time profile of tar and gas evolution in the gasification of cellulose, xylan, and lignin, and compared it with experimental product time profile of real biomass gasification. The experimental tar evolution rate is different from estimated tar evolution rate. The estimated tar evolution rate has a peak at 20 s. On the other hand, the experimental tar evolution rate at 20 s is little, and tar at initial stage includes more water-soluble and water-insoluble compounds. It can be concluded that in the real biomass steam gasification the evolution of tar from cellulose and lignin component was found to be precipitated by that from hemi-cellulose component. (authors)

  12. The reaction between carbon tetrachloride and hydrogen induced by gamma radiation

    International Nuclear Information System (INIS)

    Molinari, M.A.; Strehar, N.R.; Videla, G.J.

    1975-11-01

    The products observed are HCl (yield G = 27-250), CHCl 3 (G = 1,4-15), C 2 Cl 6 (G = 2,5-4) and C 2 HCl 5 , C 2 Cl 4 and CH 2 Cl 2 (in smaller ammounts). G values change with absorbed energy (total dose) (1-100 . 10 19 eV), dose rate (1,7 . 10 19 to 1,7 . 10 18 eV/g.h.) and proportion of reactants. A possible simplified mechanism is presented, as a chain reaction initiated by free radicals, which only explains cuantitatively some results at high doses. It is evident that the primary mechanisms include several types of cocurrent reactions. (author) [es

  13. Investigation of the kinetics of the reactions of oxidation, nitration, and hydrogenation of uranium

    International Nuclear Information System (INIS)

    Adda, Y.

    1955-06-01

    Various physico-chemical methods have been used to investigate the kinetics of the oxidation hydridation and nitridation of uranium. The experimental results show that the kinetics of these reactions are influenced by many factors also the Pilling and Bedworth rule is valid only under very limited conditions. The disagreement between this rule and the experimental results could be explained by the existence of numerous mechanical faults in the compounds obtained by the dry corrosion of the metal. (author) [fr

  14. Irradiation effect on the reaction of mixture of carbon monoxide and hydrogen, (3)

    International Nuclear Information System (INIS)

    Sugimoto, Shun-ichi; Nishii, Masanobu

    1983-08-01

    A series of our studies on radiation chemical reaction of CO and H 2 mixture indicated that several organic compounds were produced by electron beam irradiation and the amounts of the products increased with increasing pressure and also increased when the irradiation was carried out under circulation. The present study was carried out in an attempt to investigate whether the amounts of the products increase when the mixture is irradiated under circulation at elevated pressure. For this purpose, a reaction apparatus, which can irradiated the mixture up to 10,000 Torr under circulation, was built and the experiments were carried out on the amounts of products as functions of pressure, irradiation time, gas composition, temperature and dose rate. G values of most compounds were found to increased with increasing pressure under circulation. Among the products, the reaction conditions giving high yield of acetaldehyde were studied in detail, since this compound is considered to be one of the most important intermediate compounds in C 1 chemistry. The maximum G value of acetaldehyde was 2.9 which was obtained at 8,000 Torr, 55 CO mol%, 2 x 10 19 eV.g -1 .sec -1 , 1.3 x 10 20 eV.g -1 and 22 0 C. The selectivity favored this compounds in all organic compounds was 57 mol% at the conversion rate of 0.8 %. In order to elucidate the reaction paths of formation and disappearance of acetaldehyde, the amounts of products were determined for the mixture with or without the presence of small amounts of acetadehyde. The results indicate that acetaldehyde formed by irradiation from

  15. The reaction of hydrogen peroxide with Fe(II) ions at elevated temperatures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, K.; Løgager, T.

    1993-01-01

    The rate constant for the reaction between Fe(II) ions and H2O2 has been determined at pH 0.4-2 as a function of temperature in the range 5-300-degrees-C. H2O2 was produced by irradiating the aqueous solution with a pulse of electrons. The rate constants at 20 and 300-degrees-C were determined...

  16. Kinetics of Heterogeneous Reaction of Sulfur Dioxide on Authentic Mineral Dust: Effects of Relative Humidity and Hydrogen Peroxide.

    Science.gov (United States)

    Huang, Liubin; Zhao, Yue; Li, Huan; Chen, Zhongming

    2015-09-15

    Heterogeneous reaction of SO2 on mineral dust seems to be an important sink for SO2. However, kinetic data about this reaction on authentic mineral dust are scarce and are mainly limited to low relative humidity (RH) conditions. In addition, little is known about the role of hydrogen peroxide (H2O2) in this reaction. Here, we investigated the uptake kinetics of SO2 on three authentic mineral dusts (i.e., Asian mineral dust (AMD), Tengger desert dust (TDD), and Arizona test dust (ATD)) in the absence and presence of H2O2 at different RHs using a filter-based flow reactor, and applied a parameter (effectiveness factor) to the estimation of the effective surface area of particles for the calculation of the corrected uptake coefficient (γc). We found that with increasing RH, the γc decreases on AMD particles, but increases on ATD and TDD particles. This discrepancy is probably due to the different mineralogy compositions and aging extents of these dust samples. Furthermore, the presence of H2O2 can promote the uptake of SO2 on mineral dust at different RHs. The probable explanations are that H2O2 rapidly reacts with SO2 on mineral dust in the presence of adsorbed water, and OH radicals, which can be produced from the heterogeneous decomposition of H2O2 on the mineral dust, immediately react with adsorbed SO2 as well. Our results suggest that the removal of SO2 via the heterogeneous reaction on mineral dust is an important sink for SO2 and has the potential to alter the physicochemical properties (e.g., ice nucleation ability) of mineral dust particles in the atmosphere.

  17. Investigation of hydrogen peroxide reduction reaction on graphene and nitrogen doped graphene nanoflakes in neutral solution

    Science.gov (United States)

    Amirfakhri, Seyed Javad; Binny, Dustin; Meunier, Jean-Luc; Berk, Dimitrios

    2014-07-01

    H2O2 reduction reaction (HPRR) is studied on both graphene (GNF) and nitrogen doped graphene nanoflakes in 0.1 M Na2SO4 solution by rotating disk electrode. The XPS results indicate that N-doped graphene nanoflakes with high nitrogen content, 32 at%N (N-GNF32), are synthesised successfully by an inductively-coupled thermal plasma (ICP) reactor. Pyridinic, pyrrolic and graphitic N species contribute up to 67% of the total nitrogen. Kinetic parameters such as Tafel slope and stoichiometric number suggest that HPRR occurs by the same mechanism on both GNF and N-GNF32. Although nitrogen does not change the mechanism of HPRR, the results indicate that the reaction rate of H2O2 reduction is enhanced on N-GNF32. The exchange current density of H2O2 reduction based on the active surface area of N-GNF32 is (8.3 ± 0.3) × 10-9 A cm-2, which is 6 times higher than the value determined for GNF. The apparent number of electrons involved in the process suggests that H2O2 decomposition competes with H2O2 reduction on both catalysts. Evaluation of the apparent heterogeneous reaction rate constant and the Tafel slope indicate that simultaneous reduction of O2 and H2O2 is negligible on the N-GNF32. On the other hand, the reduction of O2 and H2O2 occurs simultaneously on the GNF surface.

  18. Metal nanoparticles/ionic liquid/cellulose: polymeric membrane for hydrogenation reactions

    Directory of Open Access Journals (Sweden)

    Marcos Alexandre Gelesky

    2014-01-01

    Full Text Available Rhodium and platinum nanoparticles were supported in polymeric membranes with 10, 20 and 40 µm thickness. The polymeric membranes were prepared combining cellulose acetate and the ionic liquid (IL 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonylimide (BMI.(NTf2. The presence of metal nanoparticles induced an increase in the polymeric membrane surface areas. The increase of the IL content resulted in an improvement of elasticity and decrease in tenacity and toughness, whereas the stress at break was not affected. The presence of IL probably causes an increase in the separation between the cellulose molecules that result in a higher flexibility and processability of the polymeric membrane. The CA/IL/M(0 combinations exhibit an excellent synergistic effect that enhances the activity and durability of the catalyst for the hydrogenation of cyclohexene. The CA/IL/M(0 polymeric membrane displays higher catalytic activity (up to 7.353 h-1 for the 20 mm of CA/IL/Pt(0 and stability than the nanoparticles dispersed only in the IL.

  19. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells

    KAUST Repository

    Ivanov, Ivan

    2017-06-02

    Nafion is commonly used as a catalyst binder in many types of electrochemical cells, but less expensive binders are needed for the cathodes in microbial electrolysis cells (MECs) which are operated in neutral pH buffers, and reverse electrodialysis stacks (RED),which use thermolytic solutions such as ammonium bicarbonate. Six different binders were examined based on differences in ion exchange properties (anionic: Nafion, BPSH20, BPSH40, S-Radel; cationic: Q-Radel; and neutral: Radel, BAEH) and hydrophobicity based on water uptake (0%, Radel; 17–56% for the other binders). BPSH40 had similar performance to Nafion based on steady-state polarization single electrode experiments in a neutral pH phosphate buffer, and slightly better performance in ammonium bicarbonate. Three different Mo-based catalysts were examined as alternatives to Pt, with MoB showing the best performance under steady-state polarization. In MECs, MoB/BPSH40 performed similarly to Pt with Nafion or Radel binders. The main distinguishing feature of the BPSH40 was that it is very hydrophilic, and thus it had a greater water content (56%) than the other binders (0–44%). These results suggest the binders for hydrogen evolution in MECs should be designed to have a high water content without sacrificing ionic or electronic conductivity in the electrode.

  20. Reaction of hydrogen with Ag(111): binding states, minimum energy paths, and kinetics.

    Science.gov (United States)

    Montoya, Alejandro; Schlunke, Anna; Haynes, Brian S

    2006-08-31

    The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.

  1. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells

    KAUST Repository

    Ivanov, Ivan; Ahn, YongTae; Poirson, Thibault; Hickner, Michael A.; Logan, Bruce

    2017-01-01

    Nafion is commonly used as a catalyst binder in many types of electrochemical cells, but less expensive binders are needed for the cathodes in microbial electrolysis cells (MECs) which are operated in neutral pH buffers, and reverse electrodialysis stacks (RED),which use thermolytic solutions such as ammonium bicarbonate. Six different binders were examined based on differences in ion exchange properties (anionic: Nafion, BPSH20, BPSH40, S-Radel; cationic: Q-Radel; and neutral: Radel, BAEH) and hydrophobicity based on water uptake (0%, Radel; 17–56% for the other binders). BPSH40 had similar performance to Nafion based on steady-state polarization single electrode experiments in a neutral pH phosphate buffer, and slightly better performance in ammonium bicarbonate. Three different Mo-based catalysts were examined as alternatives to Pt, with MoB showing the best performance under steady-state polarization. In MECs, MoB/BPSH40 performed similarly to Pt with Nafion or Radel binders. The main distinguishing feature of the BPSH40 was that it is very hydrophilic, and thus it had a greater water content (56%) than the other binders (0–44%). These results suggest the binders for hydrogen evolution in MECs should be designed to have a high water content without sacrificing ionic or electronic conductivity in the electrode.

  2. Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

    Science.gov (United States)

    Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng

    2016-10-01

    Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm-2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting.

  3. WC Nanocrystals Grown on Vertically Aligned Carbon Nanotubes: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Fan, Xiujun; Zhou, Haiqing; Guo, Xia

    2015-05-26

    Single nanocrystalline tungsten carbide (WC) was first synthesized on the tips of vertically aligned carbon nanotubes (VA-CNTs) with a hot filament chemical vapor deposition (HF-CVD) method through the directly reaction of tungsten metal with carbon source. The VA-CNTs with preservation of vertical structure integrity and alignment play an important role to support the nanocrystalline WC growth. With the high crystallinity, small size, and uniform distribution of WC particles on the carbon support, the formed WC-CNTs material exhibited an excellent catalytic activity for hydrogen evolution reaction (HER), giving a η10 (the overpotential for driving a current of 10 mA cm(-2)) of 145 mV, onset potential of 15 mV, exchange current density@ 300 mV of 117.6 mV and Tafel slope values of 72 mV dec(-1) in acid solution, and η10 of 137 mV, onset potential of 16 mV, exchange current density@ 300 mV of 33.1 mV and Tafel slope values of 106 mV dec(-1) in alkaline media, respectively. Electrochemical stability test further confirms the long-term operation of the catalyst in both acidic and alkaline media.

  4. Sterochemical consequences of hydrogen exchange as a result of tritium atom reactions on solid aliphatic amino acids

    International Nuclear Information System (INIS)

    Ehrenkaufer, R.L.E.; Hembree, W.C.; Lieberman, S.; Wolf, A.P.

    1977-01-01

    The products of stereochemistry resulting from radicals generated by the interaction of tritium atoms with L-isoleucine and L-alloisoleucine in the solid phase were determined. Among the four possible tritiated stereoisomers for each amino acid the major product was the parent L-amino acid (approximately 70 percent in each case) with the major fraction of the labeling being in positions other than the α position. Approximately 30 percent of the labeling resulted in the diastereomeric product by reaction at either the α or β position, with the major pathway being β-inversion. The yield of products from α-carbon attack of L-isoleucine was minor (7.9 percent) and occurred with net retention. Labeling at the α-carbon of alloisoleucine was less than 1 percent. Tritiated glycine was formed from both amino acids by cleavage of the alkyl side chain. This may result from the excitation decomposition of the intermediates formed from recombination of α (or β) amino acid radicals with tritium. Determination of the stereochemical and chemical consequences of radical formation at chiral centers provides a sensitive probe for studying the consequences of tritium (hydrogen or deuterium) atom reactions

  5. Prediction of thermodynamically reversible hydrogen storage reactions utilizing Ca-M(M = Li, Na, K)-B-H systems: a first-principles study.

    Science.gov (United States)

    Guo, Yajuan; Ren, Ying; Wu, Haishun; Jia, Jianfeng

    2013-12-01

    Calcium borohydride is a potential candidate for onboard hydrogen storage because it has a high gravimetric capacity (11.5 wt.%) and a high volumetric hydrogen content (∼130 kg m(-3)). Unfortunately, calcium borohydride suffers from the drawback of having very strongly bound hydrogen. In this study, Ca(BH₄)₂ was predicted to form a destabilized system when it was mixed with LiBH₄, NaBH₄, or KBH₄. The release of hydrogen from Ca(BH₄)₂ was predicted to proceed via two competing reaction pathways (leading to CaB₆ and CaH₂ or CaB₁₂H₁₂ and CaH₂) that were found to have almost equal free energies. Using a set of recently developed theoretical methods derived from first principles, we predicted five new hydrogen storage reactions that are among the most attractive of those presently known. These combine high gravimetric densities (>6.0 wt.% H₂) with have low enthalpies [approximately 35 kJ/(mol(-1) H₂)] and are thermodynamically reversible at low pressure within the target window for onboard storage that is actively being considered for hydrogen storage applications. Thus, the first-principles theoretical design of new materials for energy storage in future research appears to be possible.

  6. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.

    2013-01-31

    The product selectivity during 1,3-butadiene hydrogenation on monodisperse, colloidally synthesized, Pt nanoparticles was studied under reaction conditions with kinetic measurements and in situ sum frequency generation (SFG) vibrational spectroscopy. SFG was performed with the capping ligands intact in order to maintain nanoparticle size by reduced sintering. Four products are formed at 75 C: 1-butene, cis-2-butene, trans-2-butene, and n-butane. Ensembles of Pt nanoparticles with average diameters of 0.9 and 1.8 nm exhibit a ∼30% and ∼20% increase in the full hydrogenation products, respectively, as compared to Pt nanoparticles with average diameters of 4.6 and 6.7 nm. Methyl and methylene vibrational stretches of reaction intermediates observed under working conditions using SFG were used to correlate the stable reaction intermediates with the product distribution. Kinetic and SFG results correlate with previous DFT predictions for two parallel reaction pathways of 1,3-butadiene hydrogenation. Hydrogenation of 1,3-butadiene can initiate with H-addition at internal or terminal carbons leading to the formation of 1-buten-4-yl radical (metallocycle) and 2-buten-1-yl radical intermediates, respectively. Small (0.9 and 1.8 nm) nanoparticles exhibited vibrational resonances originating from both intermediates, while the large (4.6 and 6.7 nm) particles exhibited vibrational resonances originating predominately from the 2-buten-1-yl radical. This suggests each reaction pathway competes for partial and full hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical Society.

  7. Influence of the concentration of borohydride towards hydrogen production and escape for borohydride oxidation reaction on Pt and Au electrodes - experimental and modelling insights

    Science.gov (United States)

    Olu, Pierre-Yves; Bonnefont, Antoine; Braesch, Guillaume; Martin, Vincent; Savinova, Elena R.; Chatenet, Marian

    2018-01-01

    The Borohydride Oxidation Reaction (BOR), the anode reaction in a Direct borohydride fuel cell (DBFC), is complex and still poorly understood, which impedes the development and deployment of the DBFC technology. In particular, no practical electrocatalyst is capable to prevent gaseous hydrogen generation and escape from its anode upon operation, which lowers the fuel-efficiency of the DBFC and raises safety issues in operation. The nature of the anode electrocatalysts strongly influences the hydrogen escape characteristics of the DBFC, which demonstrates how important it is to isolate the BOR mechanism in conditions relevant to DBFC operation. In this paper, from a selected literature review and BOR experiments performed in differential electrochemical mass spectrometry (DEMS) in a wide range of NaBH4 concentration (5-500 mM), a microkinetic model of the BOR for both Pt and Au surfaces is proposed; this model takes into account the hydrogen generation and escape.

  8. Stellar reaction of 14N(p,γ)15O and hydrogen burning in massive stars

    International Nuclear Information System (INIS)

    Schroeder, U.; Becker, H.W.; Bogaert, G.; Goerres, J.; Rolfs, C.; Trautvetter, H.P.; Azuma, R.E.; Campbell, C.; King, J.D.; Vise, J.

    1987-01-01

    The capture reaction 14 N(p,γ) 15 O has been investigated in the energy range E p =0.2 to 3.6 MeV with the use of windowless gas targets as well as implanted 14 N solid targets of high isotopic purity. The measurement of absolute cross sections, γ-ray angular distributions and excitation functions is reported. The data provide information on the capture amplitudes involved in the transitions to all bound states of 15 O. The astrophysical S-factor at stellar energies has been determined by means of theoretical fits. The result of S(0)=3.20 keV . b is in good agreement with the value incorporated in the compilations. Also discussed are the nuclear physics aspects of the data. (orig.)

  9. Use of ESI-MS to determine reaction pathway for hydrogen sulphide scavenging with 1,3,5-tri-(2-hydroxyethyl)-hexahydro-s-triazine.

    Science.gov (United States)

    Madsen, Henrik T; Søgaard, Erik G

    2012-01-01

    To study the reaction between hydrogen sulphide and 1,3,5-tri-(2-hydroxyethyl)-hexahydro-s-triazine, which is an often used hydrogen sulphide scavenger, electro spray ionisation mass spectrometry (ESI-MS) was used. The investigation was carried out in positive mode, and tandem mass spectrometry was used to investigate the nature of unknown peaks in the mass spectra. The reaction was found to proceed as expected from theory with the triazine reacting with hydrogen sulphide to form the corresponding thiadiazine. This species subsequently reacted with a second hydrogen sulphide molecule to form the dithiazine species, hereby confirming previously obtained results and showing the ability of the ESI-MS method for studying the scavenging reaction. The final theoretical product s-trithiane was not detected. Furthermore, fragmentation products of thiadiazine and dithiazine were detected in the solution, and possible pathways and structures were suggested to describe the observed fragments. In these, thiadiazine fragmented to 2-(methylidene amino)-ethanol and 2-(1,3-thiazetidin-3-yl)-ethanol and N-(2-hydroxyethyl)-N-(sulfanylmethyl)-ethaniminium, which underwent a further fragmentation to N-methyl-N-(2-oxoethyl)-methaniminium. Dithiazine fragmented to N-methyl-N-(2-oxoethyl)-methaniminium as well. The by-product from this reaction is methanedithiol, which was not detected due to its low polarity.

  10. Hydrogen bonds in the vicinity of the special pair of the bacterial reaction center probed by hydrostatic high-pressure absorption spectroscopy.

    Science.gov (United States)

    Kangur, Liina; Jones, Michael R; Freiberg, Arvi

    2017-12-01

    Using the native bacteriochlorophyll a pigment cofactors as local probes, we investigated the response to external hydrostatic high pressure of reaction center membrane protein complexes from the photosynthetic bacterium Rhodobacter sphaeroides. Wild-type and engineered complexes were used with a varied number (0, 1 or 2) of hydrogen bonds that bind the reaction center primary donor bacteriochlorophyll cofactors to the surrounding protein scaffold. A pressure-induced breakage of hydrogen bonds was established for both detergent-purified and membrane-embedded reaction centers, but at rather different pressures: between 0.2 and 0.3GPa and at about 0.55GPa, respectively. The free energy change associated with the rupture of the single hydrogen bond present in wild-type reaction centers was estimated to be equal to 13-14kJ/mol. In the mutant with two symmetrical hydrogen bonds (FM197H) a single cooperative rupture of the two bonds was observed corresponding to an about twice stronger bond, rather than a sequential rupture of two individual bonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Low alloy steels that minimize the hydrogen-carbide reaction. Final technical report, October 1, 1978-September 30, 1979. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Kar, R. J.; Parker, E. R.; Zackay, V. F.

    1979-01-01

    This report presents results obtained during the first year of a research program to investigate important metallurgical parameters that control the reactions of hydrogen with carbides in steels. Preliminary work included a detailed literature review of th phenomenon of decarburization and methane bubble formation in steels and a suitable experimental technique for investigating hydrogen attack in laboratory conditions was established. Detailed microstructural-mechanical property evaluations were carried out on two series of alloys; the first was based on a plain carbon steel to which binary and ternary alloy additions were made to vary the carbide structure and morphology and assess these effects on the observed hydrogen attack resistance. The second group of steels consisted of commercial Mn-Mo-Ni (A 533 B) and Cr-Mo (A 542 type) steels and their alloy modifications, with a view towards developing steels with improved hydrogen attack resistance.

  12. Photocatalytic hydrogen production on SOLECTRO {sup registered} titanium dioxide layers. Investigation of reaction processes and of the influence of various reaction parameters; Photokatalytische Wasserstoffgewinnung an SOLECTRO {sup registered} -Titandioxidschichten. Untersuchung der ablaufenden Reaktionsprozesse und des Einflusses verschiedener Reaktionsparameter

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Doreen

    2010-04-14

    The dissertation investigated the reaction processes of photocatalytic hydrogen production on palladium and copper-doped SOLECTRO {sup registered} titanium dioxide layers. Methanol was used as electron donor. [German] In dieser Doktorarbeit werden die ablaufenden Reaktionsprozesse der photokatalytischen Wasserstoffentwicklung an palladium- und kupferbeladenen SOLECTRO {sup registered} -Titandioxidschichten untersucht. Als Elektronendonator wurde Methanol verwendet.

  13. Abstract algebra

    CERN Document Server

    Garrett, Paul B

    2007-01-01

    Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

  14. Finding Furfural Hydrogenation Catalysts via Predictive Modelling

    OpenAIRE

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-01-01

    Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre t...

  15. Enhancing the production of hydrogen via water-gas shift reaction using Pd-based membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Diogo; Chibante, Vania; Mendes, Adelio; Madeira, Luis M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Zheng, Ju-Meng [Dutch Separation Technology Institute (DSTI), 3800 AE Amersfoort (Netherlands); Tosti, Silvano; Borgognoni, Fabio [ENEA, Unita Tecnica Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati (RM) I-00044 (Italy)

    2010-11-15

    In this work, it is described an experimental study regarding the performance of a Pd-Ag membrane reactor recently proposed and suitable for the production of ultra-pure hydrogen. A dense metallic permeator tube was assembled by an innovative annealing and diffusion welding technique from a commercial flat sheet membrane of Pd-Ag. A ''finger-like'' configuration of the self-supported membrane has been designed and used as a packed-bed membrane reactor (MR) for producing ultra-pure hydrogen via water-gas shift reaction (WGS). A CuO/ZnO/Al{sub 2}O{sub 3} catalyst, from REB Research and Consulting, was used for packing the WGS membrane reactor. The performance of the reactor was evaluated in terms of CO conversion and H{sub 2} recovery in a wide range of conditions: temperature from 200 C to 300 C, feed pressure from 1.0 bar to 4.0 bar, vacuum and sweep-gas modes and with a simulated reformate feed (4.70% CO, 34.78% H{sub 2}O, 28.70% H{sub 2}, 10.16% CO{sub 2} balanced in N{sub 2}). Also, the effect of the reactants feed composition was investigated and discussed. CO conversions remained in most conditions above the thermodynamic equilibrium based on feed conditions. In particular, it is worth mentioning that around 100% of CO conversion and almost complete H{sub 2} recovery was achieved when operating the MR at 300 C with a GSHV = 1200 L{sub N} kg{sub cat}{sup -1} h{sup -1}, P{sub feed} = 4 bar, P{sub perm} = 3 bar and using 1000 mL{sub N} min{sup -1} of sweep-gas. (author)

  16. Article Abstract

    African Journals Online (AJOL)

    Abstract. Simple learning tools to improve clinical laboratory practical skills training. B Taye, BSc, MPH. Addis Ababa University, College of Health Sciences, Addis Ababa, ... concerns about the competence of medical laboratory science graduates. ... standardised practical learning guides and assessment checklists would.

  17. Hydrogenation/Deoxygenation (H/D Reaction of Furfural-Acetone Condensation Product using Ni/Al2O3-ZrO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Adam Mahfud

    2016-08-01

    Full Text Available The catalytic hydrogenation/deoxygenation (H/D reaction was carried out using Ni/Al2O3-ZrO2 catalyst. The 10% (wt/wt of Ni were impregnated on Al2O3-ZrO2 (10NiAZ by wet impregnation method followed by calcination and reduction. X-Ray diffraction analysis showed that Nideposited on the surface, with specific surface areas (SBET was 48.616 m2/g. Catalyst performance were evaluated for H/D reaction over furfural-acetone condensation products, mixture of 2-(4-furyl-3-buten-2-on and 1,5-bis-(furan-2-yl-pentan-3-one. The reaction was carried out in a batch, performed at 150°C for 8 hours. The H/D reaction gave alkane derivatives C8 and C10 by hydrogenation process followed by ring opening of furan in 15.2% yield. While, oxygenated product C10-C13 were also detected in 17.2% yield. The increasing of pore volume of 10NiAZ might enhance catalyst activity over H/D reaction. The alkene C=C bond was easy to hydrogenated under this condition by the lower bond energy gap.

  18. Theoretical investigation of molecular hydrogen reactions with active centres in B6H5- and AlB6H5- clusters

    International Nuclear Information System (INIS)

    Mebel', A.M.; Charkin, O.P.

    1991-01-01

    Nonempirical calculations of sections of potential surface (PS) along the shortest way of reaction of hydrogen interaction with different active centres in AlB 5 H 5 - cluster were conducted. Mechanisms of reactions of valent-saturated hydrides (BH, AlH) and clusters (B 6 H 5 - , AlB 5 H 5 - ) with molecular hydrogen are correlated. Qualitative model enabling to form an opinion about the presence or the absence of barrier on PS of the shortest way of reactions of breaking σ-bond of H-H type on the active centre of cluster, is suggested. The model is based on analysis of the character of canonical MO reagents and products

  19. Facile one-pot synthesis of CoS{sub 2}-MoS{sub 2}/CNTs as efficient electrocatalyst for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan-Ru; Hu, Wen-Hui; Li, Xiao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Dong, Bin, E-mail: dongbin@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Shang, Xiao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Han, Guan-Qun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Chai, Yong-Ming [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Yun-Qi, E-mail: liuyq@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chen-Guang [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China)

    2016-10-30

    Highlights: • Ternary hybrid CoS{sub 2}-MoS{sub 2}/CNTs electrocatalysts have been prepared. • CNTs as support may provide good conductivity and low the agglomeration of MoS{sub 2}. • CoS{sub 2} with intrinsic metallic conductivity may enhance the activity for HER. • Ternary CoS{sub 2}-MoS{sub 2}/CNTs have the better activity and stability for HER. - Abstract: Ternary hybrid cobalt disulfide-molybdenum disulfides supported on carbon nanotubes (CoS{sub 2}-MoS{sub 2}/CNTs) electrocatalysts have been prepared via a simple hydrothermal method. CNTs as support may provide good conductivity and low the agglomeration of layered MoS{sub 2} structure. CoS{sub 2} with intrinsic metallic conductivity may enhance the activity of the ternary hybrid electrocatalysts for hydrogen evolution reaction (HER). X-ray diffraction (XRD) data confirm the formation of ternary hybrid nanocomposites composed of CNTs, CoS{sub 2} and amorphous MoS{sub 2}. Scanning electron microscopy (SEM) images show that strong combination between MoS{sub 2}, CNTs and regular orthohexagonal CoS{sub 2} has been obtained. The dispersion of each component is good and no obvious agglomeration can be observed. It is found that compared with CoS{sub 2}/CNTs and MoS{sub 2}/CNTs, the ternary CoS{sub 2}-MoS{sub 2}/CNTs have the better activity for HER with a low onset potential of 70 mV (vs. RHE) and a small Talel slope of 67 mV dec{sup −1}, and are extremely stable after 1000 cycles. In addition, the optimal doping ratio of Co to Mo is 2:1, which have better HER activity. It is proved that the introduction of carbon materials and Co atoms could improve the performances of MoS{sub 2}-based electrocatalysts for HER.

  20. Facile one-pot synthesis of CoS_2-MoS_2/CNTs as efficient electrocatalyst for hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Liu, Yan-Ru; Hu, Wen-Hui; Li, Xiao; Dong, Bin; Shang, Xiao; Han, Guan-Qun; Chai, Yong-Ming; Liu, Yun-Qi; Liu, Chen-Guang

    2016-01-01

    Highlights: • Ternary hybrid CoS_2-MoS_2/CNTs electrocatalysts have been prepared. • CNTs as support may provide good conductivity and low the agglomeration of MoS_2. • CoS_2 with intrinsic metallic conductivity may enhance the activity for HER. • Ternary CoS_2-MoS_2/CNTs have the better activity and stability for HER. - Abstract: Ternary hybrid cobalt disulfide-molybdenum disulfides supported on carbon nanotubes (CoS_2-MoS_2/CNTs) electrocatalysts have been prepared via a simple hydrothermal method. CNTs as support may provide good conductivity and low the agglomeration of layered MoS_2 structure. CoS_2 with intrinsic metallic conductivity may enhance the activity of the ternary hybrid electrocatalysts for hydrogen evolution reaction (HER). X-ray diffraction (XRD) data confirm the formation of ternary hybrid nanocomposites composed of CNTs, CoS_2 and amorphous MoS_2. Scanning electron microscopy (SEM) images show that strong combination between MoS_2, CNTs and regular orthohexagonal CoS_2 has been obtained. The dispersion of each component is good and no obvious agglomeration can be observed. It is found that compared with CoS_2/CNTs and MoS_2/CNTs, the ternary CoS_2-MoS_2/CNTs have the better activity for HER with a low onset potential of 70 mV (vs. RHE) and a small Talel slope of 67 mV dec"−"1, and are extremely stable after 1000 cycles. In addition, the optimal doping ratio of Co to Mo is 2:1, which have better HER activity. It is proved that the introduction of carbon materials and Co atoms could improve the performances of MoS_2-based electrocatalysts for HER.

  1. High-performance liquid chromatographic method to evaluate the hydrogen atom transfer during reaction between 1,1-diphenyl-2-picryl-hydrazyl radical and antioxidants

    International Nuclear Information System (INIS)

    Boudier, Ariane; Tournebize, Juliana; Bartosz, Grzegorz; El Hani, Safae; Bengueddour, Rachid; Sapin-Minet, Anne; Leroy, Pierre

    2012-01-01

    Highlights: ► Both 1,1-diphenyl-2-picrylhydrazyl radical and its product measurement by HPLC. ► Lowest limit of detection by monitoring 1,1-diphenyl-2-picryl-hydrazine. ► Adsorption problem of the radical on HPLC parts have been pointed out. - Abstract: 1,1-Diphenyl-2-picrylhydrazyl (DPPH·) is a stable nitrogen centred radical widely used to evaluate direct radical scavenging properties of various synthetic or natural antioxidants (AOs). The bleaching rate of DPPH· absorbance at 515 nm is usually monitored for this purpose. In order to avoid the interference of complex coloured natural products used as antioxidant supplements or cosmetics, HPLC systems have been reported as alternative techniques to spectrophotometry. They also rely upon measurement of DPPH· quenching rate and none of them permits to identify and measure 1,1-diphenyl-2-picryl-hydrazine (DPPH-H), the reduced product of DPPH· resulting from hydrogen atom transfer (HAT), which is the main mechanism of the reaction between DPPH· and AOs. We presently report an HPLC method devoted to the simultaneous measurement of DPPH· and DPPH-H. Both were fully separated on a C18 column eluted with acetonitrile–10 mM ammonium citrate buffer pH 6.8 (70:30, v/v) and detected at 330 nm. Adsorption process of DPPH· onto materials of the HPLC system was pointed out. Consequently, the linearity range observed for DPPH· was restricted, thus a much lower limit of detection was obtained for DPPH-H than for DPPH· using standards (0.02 and 14 μM, respectively). The method was applied to three commonly used AOs, i.e. Trolox ® , ascorbic acid and GSH, and compared with spectrophotometry. Further application to complex matrices (cell culture media, vegetal extracts) and nanomaterials demonstrated (i) its usefulness because of higher selectivity than colorimetry, and (ii) its help to investigate the mechanisms occurring with the free radical.

  2. A straight forward approach to electrodeposit tungsten disulfide/poly(3,4-ethylenedioxythiophene) composites onto nanoporous gold for the hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xinxin [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engelbrekt, Christian; Zhang, Minwei [Department of Chemistry, Technical University of Denmark (DTU), Kemitorvet 207, DK 2800 Kongens Lyngby (Denmark); Li, Zheshen [ISA, Department of Physics, Aarhus University, 8000 Aarhus (Denmark); Ulstrup, Jens [Department of Chemistry, Technical University of Denmark (DTU), Kemitorvet 207, DK 2800 Kongens Lyngby (Denmark); Zhang, Jingdong, E-mail: jz@kemi.dtu.dk [Department of Chemistry, Technical University of Denmark (DTU), Kemitorvet 207, DK 2800 Kongens Lyngby (Denmark); Si, Pengchao, E-mail: pcsi@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2017-07-15

    Highlights: • Facile electrodeposition of the WS{sub 2} hybrid layer onto nanoporous gold. • Poly(3,4-ethylenedioxythiophene) was approved to enhance the HER efficiency of WS{sub 2}. • The 1.1 nm deposition layer displayed a Tafel slope of 53 mV per decade. - Abstract: 1.1 nm tungsten disulfide/poly(3,4-ethylenedioxythiophene) (PEDOT) was successfully electrodeposited on the surface of dealloyed nanoporous gold (NPG) surface to form uniform nanocomposites and offers an excellent electrocatalysis for the electrochemical dihydrogen evolution reaction (HER) in acidic media. The approach is straight forward and does not require any expensive equipment or intensive energy. The morphology and composition of the nanocomposites were structurally mapped by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometry (FTIR). The roles of both the NPG substrate and PEDOT in the observed enhanced HER activity compared to planar Au-electrode surfaces and pure single-component WS{sub 2} have been deconvoluted experimentally. PEDOT itself is inert for the HER, but was found to improve significantly the conductivity and operating stability of the WS{sub 2} catalyst. The prepared nanocomposites reach the best in 2D WS{sub 2} catalyst family, exhibiting excellent electrochemical catalytic activity for the HER. The optimal electrode showed an onset potential of −164 mV vs. reversible hydrogen electrode (RHE), an apparent exchange current density as high as 0.04 mA cm{sup −2}, and a very low Tafel slope of 53 mV dec{sup −1}. These catalysts are promising electrocatalysts for generation a large amount of H{sub 2} from water.

  3. Relation between Hydrogen Evolution and Hydrodesulfurization Catalysis

    DEFF Research Database (Denmark)

    Šaric, Manuel; Moses, Poul Georg; Rossmeisl, Jan

    2016-01-01

    A relation between hydrogen evolution and hydrodesulfurization catalysis was found by density functional theory calculations. The hydrogen evolution reaction and the hydrogenation reaction in hydrodesulfurization share hydrogen as a surface intermediate and, thus, have a common elementary step...

  4. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    Science.gov (United States)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  5. Hydrogen-Etched TiO2−x as Efficient Support of Gold Catalysts for Water–Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Li Song

    2018-01-01

    Full Text Available Hydrogen-etching technology was used to prepare TiO2−x nanoribbons with abundant stable surface oxygen vacancies. Compared with traditional Au-TiO2, gold supported on hydrogen-etched TiO2−x nanoribbons had been proven to be efficient and stable water–gas shift (WGS catalysts. The disorder layer and abundant stable surface oxygen vacancies of hydrogen-etched TiO2−x nanoribbons lead to higher microstrain and more metallic Au0 species, respectively, which all facilitate the improvement of WGS catalytic activities. Furthermore, we successfully correlated the WGS thermocatalytic activities with their optoelectronic properties, and then tried to understand WGS pathways from the view of electron flow process. Hereinto, the narrowed forbidden band gap leads to the decreased Ohmic barrier, which enhances the transmission efficiency of “hot-electron flow”. Meanwhile, the abundant surface oxygen vacancies are considered as electron traps, thus promoting the flow of “hot-electron” and reduction reaction of H2O. As a result, the WGS catalytic activity was enhanced. The concept involved hydrogen-etching technology leading to abundant surface oxygen vacancies can be attempted on other supported catalysts for WGS reaction or other thermocatalytic reactions.

  6. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    Science.gov (United States)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  7. Self-Supported Biocarbon-Fiber Electrode Decorated with Molybdenum Carbide Nanoparticles for Highly Active Hydrogen-Evolution Reaction.

    Science.gov (United States)

    Xiao, Jian; Zhang, Yan; Zhang, Zheye; Lv, Qiying; Jing, Feng; Chi, Kai; Wang, Shuai

    2017-07-12

    Devising and facilely synthesizing an efficient noble metal-free electrocatalyst for the acceleration of the sluggish kinetics in the hydrogen-evolution reaction (HER) is still a big challenge for electrolytic water splitting. Herein, we present a simple one-step approach for constructing self-supported biocarbon-fiber cloth decorated with molybdenum carbide nanoparticles (BCF/Mo 2 C) electrodes by a direct annealing treatment of the Mo oxyanions loaded cotton T-shirt. The Mo 2 C nanoparticles not only serve as the catalytic active sites toward the HER but also enhance the hydrophilicity and conductivity of resultant electrodes. As an integrated three-dimensional HER cathode catalyst, the BCF/Mo 2 C exhibits outstanding electrocatalytic performance with extremely low overpotentials of 88 and 115 mV to drive a current density of 20 mA cm -2 in alkaline and acidic media, respectively. In addition, it can continuously work for 50 h with little decrease in the cathodic current density in both alkaline and acidic solutions. Even better, self-supported tungsten carbide and vanadium carbide based electrodes also can be prepared by a similar synthesis process. This work will illuminate an entirely new avenue for the preparation of various self-supported three-dimensional electrodes made of transition-metal carbides for various applications.

  8. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction

    KAUST Repository

    Chen, Yen-Chang; Lu, Ang-Yu; Lu, Ping; Yang, Xiulin; Jiang, Chang-Ming; Mariano, Marina; Kaehr, Brian; Lin, Oliver; Taylor, André ; Sharp, Ian D.; Li, Lain-Jong; Chou, Stanley S.; Tung, Vincent

    2017-01-01

    The emerging molybdenum disulfide (MoS2) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.

  9. MoS2 nanosheets direct supported on reduced graphene oxide: An advanced electrocatalyst for hydrogen evolution reaction.

    Directory of Open Access Journals (Sweden)

    Jiamu Cao

    Full Text Available Molybdenum disulfide nanosheets/reduced graphene oxide (MoS2 NSs/rGO nanohybrid as a highly effective catalyst for hydrogen evolution reaction (HER have been successfully synthesized by a facile microwave-assisted method. The results clearly reveal that direct grown of MoS2 NSs on rGO have been achieved. Electrochemical tests show that the as-prepared hybrid material exhibited excellent HER activity, with a small Tafel slope of 57 mV dec-1, an overpotential of 130 mV and remarkable cycling stability. After analysis, the observed outstanding catalytic performance can be attributed to the uniform distribution of the MoS2 NSs, which are characterized by the presence of multiple active sites as well as the effective electron transport route provided by the conductive rGO substrate. Moreover, according to the classic theory, the mechanism governing of the catalytic HER on the MoS2 NSs/rGO nanohybrid has been clarified.

  10. Incorporation of tantalum ions enhances the electrocatalytic activity of hexagonal WO3 nanowires for hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Xie, Xiang; Mu, Wanjun; Li, Xingliang; Wei, Hongyuan; Jian, Yuan; Yu, Qianhong; Zhang, Rui; Lv, Kai; Tang, Hui; Luo, Shunzhong

    2014-01-01

    WO 3 has been identified as a promising candidate electrocatalyst for hydrogen evolution reaction (HER), because it can form a tungsten bronze (HxWO 3 ) which is highly electron and proton conducting. In this paper, we report that the electrocatalytic activity of WO 3 for HER can be enhanced by incorporation of tantalum ions (Ta 5+ ) into the lattice of WO 3 . The most active performance is achieved with the molar ratio of Ta/W being 0.01, which is two times more active than that of undoped WO 3 at an overpotential of -0.52 V. It is shown that incorporation of proper Ta 5+ into WO 3 can induce moderate defects and oxygen vacancies, as well as intercalate a higher amount of protons, which enhance the electron transfer and short the protons diffusion paths. These changes correlated positively with the enhanced catalytic HER activity. This study demonstrates, for the first time, that metal ions-doped WO 3 nanowires are promising electrocatalysts for HER

  11. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    Science.gov (United States)

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.

    2014-01-01

    The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534

  12. Synthesis of a highly active carbon-supported Ir-V/C catalyst for the hydrogen oxidation reaction in PEMFC

    International Nuclear Information System (INIS)

    Li Bing; Qiao Jinli; Yang Daijun; Zheng Junsheng; Ma Jianxin; Zhang Jiujun; Wang Haijiang

    2009-01-01

    The active, carbon-supported Ir and Ir-V nanoclusters with well-controlled particle size, dispersity, and composition uniformity, have been synthesized via an ethylene glycol method using IrCl 3 and NH 4 VO 3 as the Ir and V precursors. The nanostructured catalysts were characterized by X-ray diffraction and high-resolution transmission electron microscopy. The catalytic activities of these carbon-supported nanoclusters were screened by applying on-line cyclic voltammetry and electrochemical impedance spectroscopy techniques, which were used to characterize the electrochemical properties of fuel cells using several anode Ir/C and Ir-V/C catalysts. It was found that Ir/C and Ir-V/C catalysts affect the performance of electrocatalysts significantly based on the discharge characteristics of the fuel cell. The catalyst Ir-V/C at 40 wt.% displayed the highest catalytic activity to hydrogen oxidation reaction and, therefore, high cell performance is achieved which results in a maximum power density of 563 mW cm -2 at 0.512 V and 70 deg. C in a real H 2 /air fuel cell. This performance is 20% higher as compared to the commercial available Pt/C catalyst. Fuel cell life test at a constant current density of 1000 mA cm -2 in a H 2 /O 2 condition shows good stability of anode Ir-V/C after 100 h of continuous operation.

  13. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction

    KAUST Repository

    Chen, Yen-Chang

    2017-10-12

    The emerging molybdenum disulfide (MoS2) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.

  14. Rational Design of Single Molybdenum Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction.

    Science.gov (United States)

    Chen, Wenxing; Pei, Jiajing; He, Chun-Ting; Wan, Jiawei; Ren, Hanlin; Zhu, Youqi; Wang, Yu; Dong, Juncai; Tian, Shubo; Cheong, Weng-Chon; Lu, Siqi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Zhuang, Zhongbin; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong

    2017-12-11

    The highly efficient electrochemical hydrogen evolution reaction (HER) provides a promising pathway to resolve energy and environment problems. An electrocatalyst was designed with single Mo atoms (Mo-SAs) supported on N-doped carbon having outstanding HER performance. The structure of the catalyst was probed by aberration-corrected scanning transmission electron microscopy (AC-STEM) and X-ray absorption fine structure (XAFS) spectroscopy, indicating the formation of Mo-SAs anchored with one nitrogen atom and two carbon atoms (Mo 1 N 1 C 2 ). Importantly, the Mo 1 N 1 C 2 catalyst displayed much more excellent activity compared with Mo 2 C and MoN, and better stability than commercial Pt/C. Density functional theory (DFT) calculation revealed that the unique structure of Mo 1 N 1 C 2 moiety played a crucial effect to improve the HER performance. This work opens up new opportunities for the preparation and application of highly active and stable Mo-based HER catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.

    2015-08-25

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic properties by altering the pH. We have utilized the oxygen functional moieties such as carboxylate, epoxide, and hydroxyl groups on the edge and basal planes of the GO for binding the Cu2+ ions through dative bonds. The GO-Cu2+ hybrid materials were characterized by cyclic voltammetry in sodium acetate buffer solution. The morphology of the hybrid GO-Cu2+ was characterized by atomic force microscopy. The GO-Cu2+ hybrid electrodes show good electrocatalytic activity for HER with low overpotential in acidic solution. The Tafel slope for the GO-Cu2+ hybrid electrode implies that the primary discharge step is the rate determining step and HER proceed with Volmer step. © 2015 American Institute of Chemical Engineers Environ Prog.

  16. Mace-like hierarchical MoS2/NiCo2S4 composites supported by carbon fiber paper: An efficient electrocatalyst for the hydrogen evolution reaction

    Science.gov (United States)

    Sun, Lan; Wang, Tao; Zhang, Long; Sun, Yunjin; Xu, Kewei; Dai, Zhengfei; Ma, Fei

    2018-02-01

    The rational design and preparation of earth-abundant, stable and efficient electrocatalysts for hydrogen production is currently the subject in extensive scientific and technological researches toward the future of a clean-energy society. Herein, a mace-like MoS2/NiCo2S4 hierarchical structure is designed and synthesized on carbon fiber paper via a facile hydrothermal method, and evaluated as electrocatalyst for hydrogen evolution reaction. In the MoS2/NiCo2S4/carbon fiber paper hierarchical structures, MoS2 nanosheets are dispersively distributed on the surface of NiCo2S4 nanowires, which provides an enlarged surface area, abundant interfaces and catalytic active sites. As for hydrogen evolution reaction, such MoS2/NiCo2S4/carbon fiber paper heterostructures give rise to a hydrogen evolution reaction catalytic current density of 10 mA cm-2 with a lower overpotential of 139 mV and a smaller Tafel slope of 37 mV·dec-1 than those of MoS2/carbon fiber paper and NiCo2S4/carbon fiber paper counterparts, exhibiting a prominent electrocatalytic performance. Moreover, the electrocatalytic properties change little after 5000 CV cycles and continual electrolysis for 12 h without obvious decay, respectively, demonstrating high durability and stability. The excellent hydrogen evolution reaction performances endow the hierarchical configuration MoS2/NiCo2S4/carbon fiber paper with promising alternative in HER and other related renewable energy fields.

  17. The reaction of atomic hydrogen with germane - Temperature dependence of the rate constant and implications for germane photochemistry in the atmospheres of Jupiter and Saturn

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1993-01-01

    Studies of the formation and loss processes for GeH4 are required in order to provide data to help determine the major chemical form in which germanium exists in the atmospheres of Jupiter and Saturn. The reaction of hydrogen atoms with germane is one of the most important of these reactions. The absolute rate constant for this reaction as a function of temperature and pressure is studied. Flash photolysis of dilute mixtures of GeH4 in argon, combined with time-resolved detection of H atoms via Lyman alpha resonance fluorescence, is employed to measure the reaction rate. The reaction is shown to be moderately rapid, independent of total pressure, but possessing a positive temperature dependence.

  18. International conference: Features of nuclear excitation states and mechanisms of nuclear reactions. 51. Meeting on nuclear spectroscopy and nuclear structure. The book of abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    Results of the LI Meeting on Nuclear Spectroscopy and Nuclear Structure are presented. Properties of excited states of atomic nuclei and mechanisms of nuclear reactions are considered. Studies on the theory of nucleus and fundamental interactions pertinent to experimental study of nuclei properties and mechanisms of nuclear reactions, technique and methods of experiment, application of nuclear-physical method, are provided [ru

  19. Inventory Abstraction

    International Nuclear Information System (INIS)

    Leigh, C.

    2000-01-01

    The purpose of the inventory abstraction as directed by the development plan (CRWMS M and O 1999b) is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M and O 1999c, 1999d). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) (NRC 1999) key technical issue (KTI): ''The rate at which radionuclides in SNF [Spent Nuclear Fuel] are released from the EBS [Engineered Barrier System] through the oxidation and dissolution of spent fuel'' (Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release to the accessible environment. The inventory abstraction is important in assessing system performance because

  20. INVENTORY ABSTRACTION

    International Nuclear Information System (INIS)

    Ragan, G.

    2001-01-01

    The purpose of the inventory abstraction, which has been prepared in accordance with a technical work plan (CRWMS M andO 2000e for/ICN--02 of the present analysis, and BSC 2001e for ICN 03 of the present analysis), is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M andO 2000c, 2000f). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) key technical issue (KTI): ''The rate at which radionuclides in SNF [spent nuclear fuel] are released from the EBS [engineered barrier system] through the oxidation and dissolution of spent fuel'' (NRC 1999, Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release