WorldWideScience

Sample records for hydrofluoric acid chemical

  1. Hydrofluoric acid on dentin should be avoided.

    NARCIS (Netherlands)

    Loomans, B.A.C.; Mine, A.; Roeters, F.J.M.; Opdam, N.J.M.; Munck, J. De; Huysmans, M.C.D.N.J.M.; Meerbeek, B. Van

    2010-01-01

    Hydrofluoric acid can be used for intra-oral repair of restorations. Contamination of tooth substrate with hydrofluoric acid cannot always be avoided. OBJECTIVES: To investigate the bonding effectiveness to hydrofluoric acid contaminated dentin by, micro-tensile bond strength testing, SEM and TEM.

  2. Chemical resistivity of self-assembled monolayer covalently attached to silicon substrate to hydrofluoric acid and ammonium fluoride

    Science.gov (United States)

    Saito, N.; Youda, S.; Hayashi, K.; Sugimura, H.; Takai, O.

    2003-06-01

    Self-assembled monolayers (SAMs) were prepared on hydrogen-terminated silicon substrates through chemical vapor deposition using 1-hexadecene (HD) as a precursor. The HD-SAMs prepared in an atmosphere under a reduced pressure (≈50 Pa) showed better chemical resistivities to hydrofluoric acid and ammonium fluoride (NH 4F) solutions than that of an organosilane SAM formed on oxide-covered silicon substrates. The surface covered with the HD-SAM was micro-patterned by vacuum ultraviolet photolithography and consequently divided into two areas terminated with HD-SAM or silicon dioxide. This micro-patterned sample was immersed in a 40 vol.% NH 4F aqueous solution. Surface images obtained by an optical microscopy clearly show that the micro-patterns of HD-SAM/silicon dioxide were successfully transferred into the silicon substrate.

  3. In hydrofluoric acid corrosion-resistant materials

    International Nuclear Information System (INIS)

    Hauffe, K.

    1985-01-01

    Copper, red brass (Cu-15 Zn), special treated carbon steel and chromium-nickel-molybdenum steel represent materials of high resistivity against concentrated hydrofluoric acid ( 2 O 3 ) are employed for windows in the presence of hydrogen fluoride and/or hydrofluoric acid because of their superior optical properties and their excellent corrosion resistance. Polyethylen, polypropylene and polyvinyl chloride (PVC) belong to the cheapest corrosion resistant material for container and for coatings in the presence of hydrofluoric acid. Special polyester resins reinforced by glass or graphite fibers have been successfully employed as material for production units with hydrofluoric acid containing liquids up to 330 K. By carbon reinforced epoxy resin represents a corrosion resistant coating. Because of their excellent friction and corrosion resistance against concentrated hot hydrofluoric acid and HNO 3 -HF-solutions, PTFE and polyvinylidene fluoride are used as material for valves and axles in such environment. The expensive alloys, as for instance hastelloy and monel, are substituted more and more by fiber-reinfored polyolefins, PVC and fluorine containing polymers. (orig.) [de

  4. Chemical exchange between UF6 and UF6- ion in anhydrous hydrofluoric acid

    International Nuclear Information System (INIS)

    Chatelet, J.; Luce, M.; Plurien, P.; Rigny, P.

    1975-01-01

    The chemical exchange between UF 6 and the UF 6 - ion is of potential interest for the separation of U isotopes. In this paper, results concerning the value of the separation factor and the kinetics of the homogeneous exchange are given [fr

  5. Frequent occurrence of Osteomalacia among grazing cattle caused by hydrofluoric acid contained in the flue gas discharged by a chemical plant

    Energy Technology Data Exchange (ETDEWEB)

    Hupka, E; Luy, P

    1929-01-01

    In 1928 a number of animals grazing in the vicinity of a chemical plant fell ill to a disease which was diagnosed as fluorosis. But the symptoms shown by the diseased animals were in many respects different from those commonly associated with such cases. The two front legs became lame, toes and ankles were swollen. The pulse rate was higher, an increased body temperature was measured and pain was felt. In some cases the hind legs became stiff. Furthermore, an enormous loss of weight was observed and swellings appeared along the ribs. The milk production decreased. All these symptoms indicate osteomalacia. The grass on which these animals fed was examined but it was found lush and in no way lacking in Ca and phosphoric acid (osteomalacia is a deficiency of these two minerals). The toxicant was found to be the fluorine deposited on the grass and plants. Hydrofluoric acid attacks the calcium in the bones and dissolves it. The consequence is osteoporosis. The fluorine is discharged with the flue gas of the nearby chemical plant. The disease did not occur outside the range of the chemical plant. The condition of the animals visibly improved during winter time when they were fed with fodder coming from an unpolluted area. The chemical physiological examinations which were conducted showed that the calcium of the bones is used to neutralize the hydrofluoric acid. The by-product of this neutralizing process, phosphoric acid, is discharged with the urine. 12 references.

  6. Evaluation of optimal reuse system for hydrofluoric acid wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Won, Chan-Hee [Department of Environmental Engineering, Chonbuk National University, 567 Bakje-daero, Deokjin-Gu, Jeonju, Jeollabuk-Do, 561-756 (Korea, Republic of); Choi, Jeongyun [R and D Center, Samsung Engineering Co. Ltd., 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do, 443-823 (Korea, Republic of); Chung, Jinwook, E-mail: jin-wook.chung@samsung.com [R and D Center, Samsung Engineering Co. Ltd., 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do, 443-823 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Coagulation and ion exchange technologies were ineffective in removing fluoride. Black-Right-Pointing-Pointer Polyamide RO was more efficacious than cellulose RO due to its high flux and rejection. Black-Right-Pointing-Pointer Spiral wound RO system was more preferential to disc tube RO system for reusing raw hydrofluoric acid wastewater. Black-Right-Pointing-Pointer Combined coagulation and RO technology can be applied to reuse raw hydrofluoric acid wastewater. - Abstract: The treatment of hydrofluoric acid (HF) wastewater has been an important environmental issue in recent years due to the extensive use of hydrofluoric acid in the chemical and electronics industries, such as semiconductor manufacturers. Coagulation/precipitation and ion exchange technologies have been used to treat HF wastewater, but these conventional methods are ineffective in removing organics, salts, and fluorides, limiting its reuse for water quality and economic feasibility. One promising alternative is reverse osmosis (RO) after lime treatment. Based on pilot-scale experiment using real HF wastewater discharged from semiconductor facility, the spiral wound module equipped with polyamide membranes has shown excellent flux and chemical cleaning cycles. Our results suggest that coagulation/precipitation and spiral wound RO constitute the optimal combination to reuse HF wastewater.

  7. Neutralization method for a hydrofluoric acid release

    International Nuclear Information System (INIS)

    Williams, D.L.; Deacon, L.E.

    1976-01-01

    A laboratory investigation of methods for neutralizing a release at the hydrofluoric acid tank farm at the Portsmouth Gaseous Diffusion Plant has revealed that the best neutralization method incorporates the use of a lime/water slurry. In this method, settling of suspended solids in the liquid is enhanced by the application of sodium dodecyl sulfate, which causes immediate flocculation and settling. Dilution and expulsion of the supernatant liquid above the flocculated solids result in an effluent which meets the one part per million fluoride limit established by the U.S. Environmental Protection Agency. A fluoride specific ion electrode is used to determine fluoride concentration. This method presently is being adapted for use in the hydrofluoric acid tank farm and is being considered for use at the plant's fluorine generation facility. It could be adapted for use in any facility that contains fluoride in aqueous solution

  8. Why is hydrofluoric acid a weak acid?

    Science.gov (United States)

    Ayotte, Patrick; Hébert, Martin; Marchand, Patrick

    2005-11-08

    The infrared vibrational spectra of amorphous solid water thin films doped with HF at 40 K reveal a strong continuous absorbance in the 1000-3275 cm(-1) range. This so-called Zundel continuum is the spectroscopic hallmark for aqueous protons. The extensive ionic dissociation of HF at such low temperature suggests that the reaction enthalpy remains negative down to 40 K. These observations support the interpretation that dilute HF aqueous solutions behave as weak acids largely due to the large positive reaction entropy resulting from the structure making character of the hydrated fluoride ion.

  9. Characterization of the silicon/hydrofluoric acid interface: electrochemical processes under weak potential disturbance

    International Nuclear Information System (INIS)

    Bertagna, Valerie

    1996-01-01

    Within the frame of the increase of the density of integrated circuits, of simplification of cleaning processes and of improvement of control of surface reactions (for a better control of the elimination of defects and contamination risks), this research thesis first gives a large overview of previous works in the fields of silicon electrochemistry in hydrofluoric environment, of silicon chemical condition after treatment by a diluted hydrofluoric acid, of metallic contamination of silicon during cleaning with a diluted hydrofluoric acid, and of theoretical models of interpretation. Then, the author reports the development of a new electrochemical cell, and the detailed study of mono-crystalline silicon in a diluted hydrofluoric environment (electrochemical investigation, modelling of charge transfer at the interface, studies by atomic force microscopy, contamination of silicon by copper)

  10. Calorimetric study of interaction of barium hydroxide with diluted solutions of hydrofluoric acid

    International Nuclear Information System (INIS)

    Kurbanov, A.R.; Sharipov, D.Sh.

    1993-01-01

    Present article is devoted to calorimetric study of interaction of barium hydroxide with diluted solutions of hydrofluoric acid. The calorimetric study of interaction of barium hydroxide with diluted solutions of hydrofluoric acid was carried out in order to determine the thermal effects of reactions. The results of interaction of Ba(OH) 4 ·8H 2 O with 5, 10, and 20% solution of hydrofluoric acid were considered.

  11. Fabrication of biconical tapered optical fibers using hydrofluoric acid

    International Nuclear Information System (INIS)

    Haddock, Hong S.; Shankar, P.M.; Mutharasan, R.

    2003-01-01

    An easy to implement procedure for etching silica fibers in biconical form useful in sensing applications is described. A simple etching reactor was developed to obtain reproducible tapers of desired diameter and length. An approach for on-line monitoring of etching using a commonly used fluorometer is demonstrated. A mathematical model describing the light power transmission is proposed, and is validated using experimental data. The data and the model indicate that the diameter of the silica fiber decreases linearly with time with hydrofluoric acid (HF, 49.5% w/w) used as etchant at room temperature. The observed etching rate was 0.0023±0.00019 s -1 , which was repeatable using the procedure developed in this study. Method to arrest etching and subsequent preservation of the small diameter taper in mildly alkaline solution was found to be successful

  12. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    Science.gov (United States)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  13. Hydrofluoric Acid Corrosion Study of High-Alloy Materials

    International Nuclear Information System (INIS)

    Osborne, P.E.

    2002-01-01

    A corrosion study involving high-alloy materials and concentrated hydrofluoric acid (HF) was conducted in support of the Molten Salt Reactor Experiment Conversion Project (CP). The purpose of the test was to obtain a greater understanding of the corrosion rates of materials of construction currently used in the CP vs those of proposed replacement parts. Results of the study will help formulate a change-out schedule for CP parts. The CP will convert slightly less than 40 kg of 233 U from a gas (UF 6 ) sorbed on sodium fluoride pellets to a more stable oxide (U 3 O 8 ). One by-product of the conversion is the formation of concentrated HF. Six moles of highly corrosive HF are produced for each mole of UF 6 converted. This acid is particularly corrosive to most metals, elastomers, and silica-containing materials. A common impurity found in 233 U is 232 U. This impurity isotope has several daughters that make the handling of the 233 U difficult. Traps of 233 U may have radiation fields of up to 400 R at contact, a situation that makes the process of changing valves or working on the CP more challenging. It is also for this reason that a comprehensive part change-out schedule must be established. Laboratory experiments involving the repeated transfer of HF through 1/2-in. metal tubing and valves have proven difficult due to the corrosivity of the HF upon contact with all wetted parts. Each batch of HF is approximately 1.5 L of 33 wt% HF and is transferred most often as a vapor under vacuum and at temperatures of up to 250 C. Materials used in the HF side of the CP include Hastelloy C-276 and Monel 400 tubing, Haynes 230 and alloy C-276 vessels, and alloy 400 valve bodies with Inconel (alloy 600) bellows. The chemical compositions of the metals discussed in this report are displayed in Table 1. Of particular concern are the almost 30 vendor-supplied UG valves that have the potential for exposure to HF. These valves have been proven to have a finite life due to failure

  14. Hydrofluoric Acid Corrosion Study of High-Alloy Materials

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, P.E.

    2002-09-11

    A corrosion study involving high-alloy materials and concentrated hydrofluoric acid (HF) was conducted in support of the Molten Salt Reactor Experiment Conversion Project (CP). The purpose of the test was to obtain a greater understanding of the corrosion rates of materials of construction currently used in the CP vs those of proposed replacement parts. Results of the study will help formulate a change-out schedule for CP parts. The CP will convert slightly less than 40 kg of {sup 233}U from a gas (UF{sub 6}) sorbed on sodium fluoride pellets to a more stable oxide (U{sub 3}O{sub 8}). One by-product of the conversion is the formation of concentrated HF. Six moles of highly corrosive HF are produced for each mole of UF{sub 6} converted. This acid is particularly corrosive to most metals, elastomers, and silica-containing materials. A common impurity found in {sup 233}U is {sup 232}U. This impurity isotope has several daughters that make the handling of the {sup 233}U difficult. Traps of {sup 233}U may have radiation fields of up to 400 R at contact, a situation that makes the process of changing valves or working on the CP more challenging. It is also for this reason that a comprehensive part change-out schedule must be established. Laboratory experiments involving the repeated transfer of HF through 1/2-in. metal tubing and valves have proven difficult due to the corrosivity of the HF upon contact with all wetted parts. Each batch of HF is approximately 1.5 L of 33 wt% HF and is transferred most often as a vapor under vacuum and at temperatures of up to 250 C. Materials used in the HF side of the CP include Hastelloy C-276 and Monel 400 tubing, Haynes 230 and alloy C-276 vessels, and alloy 400 valve bodies with Inconel (alloy 600) bellows. The chemical compositions of the metals discussed in this report are displayed in Table 1. Of particular concern are the almost 30 vendor-supplied UG valves that have the potential for exposure to HF. These valves have been

  15. Hydrofluoric acid burn resulting from ignition of gas from a compressed air duster.

    Science.gov (United States)

    Foster, Kevin N; Jones, LouAnn; Caruso, Daniel M

    2003-01-01

    A young female suffered burns to her hand after the ignition of gas from a compressed air duster. After debridement and dressing, the patient continued to have pain out of proportion to injury that was refractory to intravenous morphine. The material safety data sheet revealed that the chemical used was 1,1-difluoroethane. High temperatures can cause decompensation to form hydrofluoric acid. Calcium gluconate gel was applied topically to the patient's burns, which caused prompt and complete relief of her pain. A review of different compressed air duster products revealed that the main ingredient in each was a halogenated hydrocarbon. Although not considered flammable, all products have warnings regarding the possibility of ignition under various circumstances. Ignition of the gas in compressed air cleaners not only can cause flame burns, it can also cause chemical damage from exposure to hydrogen and fluoride ions. Prompt recognition and treatment is necessary to prevent severe injury.

  16. Studies on the interference of hydrofluoric acid and phosphoric acid in the determination of uranium using Ti(III) reduction method-biamperometry end point

    International Nuclear Information System (INIS)

    Shiny, T.S.; Rajalakshmi, A.; Phal, D.G.; Charyulu, M.M.; Ramakumar, K.L.

    2007-01-01

    Accurate and precise determination of uranium in nuclear materials is necessary for chemical quality control as well as for nuclear material accounting purposes. Different types of uranium samples are received for the measurements. Depending upon the nature of the sample dissolution procedure is selected. Mixed oxide samples of uranium and plutonium, for example, are dissolved in nitric acid containing hydrofluoric acid under IR lamp. The fluoride ions are removed by repeated evaporation of the solution. However, some fluoride ions are left in the solutions depending on the conditions of evaporation. Uranium samples and alloy samples are dissolved in dilute hydrochloric acid. The rate of dissolution depends on concentration of acid. Sometimes a mixture of hydrochloric acid and hydrofluoric acid is used for the dissolution metal alloy samples, which may contain silica. Another method of dissolution of these samples is using a mixture of phosphoric acid and 1% hydrofluoric acid. It is necessary to study the interference of hydrofluoric acid and phosphoric acid on the determination of uranium

  17. Occupational Hydrofluoric Acid Injury from Car and Truck Washing--Washington State, 2001-2013.

    Science.gov (United States)

    Reeb-Whitaker, Carolyn K; Eckert, Carly M; Anderson, Naomi J; Bonauto, David K

    2015-08-21

    Exposure to hydrofluoric acid (HF) causes corrosive chemical burns and potentially fatal systemic toxicity. Car and truck wash cleaning products, rust removers, and aluminum brighteners often contain HF because it is efficient in breaking down roadway matter. The death of a truck wash worker from ingestion of an HF-based wash product and 48 occupational HF burn cases associated with car and truck washing in Washington State during 2001-2013 are summarized in this report. Among seven hospitalized workers, two required surgery, and all but one worker returned to the job. Among 48 injured workers, job titles were primarily auto detailer, car wash worker, truck wash worker, and truck driver. Because HF exposure can result in potentially severe health outcomes, efforts to identify less hazardous alternatives to HF-based industrial wash products are warranted.

  18. Investigation of Enhanced Leaching of Lithium from α-Spodumene Using Hydrofluoric and Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Hui Guo

    2017-10-01

    Full Text Available An effective method using hydrofluoric and sulfuric acid was proposed to enhance the leaching of lithium from α-spodumene, without calcination that is subjected to 1000 °C for phase transformation. The thermodynamic feasibility of the reactions was firstly verified. Dissolution conditions were tested to maximize the leaching efficiency of lithium and with efficient utilization of hydrofluoric acid (HF served as evaluation criteria. The results showed that 96% of lithium could be transferred into lixivium with an ore/HF/H2SO4 ratio of 1:3:2 (g/mL/mL, at 100 °C for 3 h. Due to the fact that HF molecules were the main reaction form, the dissolution behaviors were theoretically represented and investigated by dissolution in HF/H2SO4. When combined with chemical elements analyses and characterizations, the results of the dissolution behaviors revealed that α-spodumene and albite were preferentially dissolved over quartz. Insoluble fluoroaluminates, such as AlF3, cryolite (Na3AlF6 and cryolithionite (Na3Li3Al2F12, were generated and might be further partially dissolved by H2SO4. Fluorosilicates, such as K2SiF6, Na2SiF6, or KNaSiF6, were also generated as a part of the insoluble residues. This work provides fundamental insight into the role of HF/H2SO4 played in the dissolution of α-spodumene, and sheds light on a novel and promising process to efficiently extract lithium.

  19. Alternate method of source preparation for alpha spectrometry: No electrodeposition, no hydrofluoric acid

    International Nuclear Information System (INIS)

    Kurosaki, Hiromu; Mueller, Rebecca J.; Lambert, Susan B.; Rao, Govind R.

    2016-01-01

    An alternate method of preparing actinide alpha counting sources was developed in place of electrodeposition or lanthanide fluoride micro-precipitation. The method uses lanthanide hydroxide micro-precipitation to avoid the use of hazardous hydrofluoric acid. Lastly, it provides a quicker, simpler, and safer way of preparing actinide alpha counting sources in routine, production-type laboratories that process many samples daily.

  20. Alternate method of source preparation for alpha spectrometry: no electrodeposition, no hydrofluoric acid

    International Nuclear Information System (INIS)

    Hiromu Kurosaki; Lambert, S.B.; Rao, G.R.; Mueller, R.J.

    2017-01-01

    An alternate method of preparing actinide alpha counting sources was developed in place of electrodeposition or lanthanide fluoride micro-precipitation. The method uses lanthanide hydroxide micro-precipitation to avoid the use of hazardous hydrofluoric acid. It provides a quicker, simpler, and safer way of preparing actinide alpha counting sources in routine, production-type laboratories that process many samples daily. (author)

  1. Hydrofluoric Acid Corrosion Testing on Unplated and Electroless Gold-Plated Samples

    International Nuclear Information System (INIS)

    Osborne, P.E.; Icenhour, A.S.; Del Cul, G.D.

    2000-01-01

    The Molten Salt Reactor Experiment (MSRE) remediation requires that almost 40 kg of uranium hexafluoride (UF6) be converted to uranium oxide (UO). In the process of this conversion, six moles of hydrofluoric acid (HP) are produced for each mole of UF6 converted

  2. Light Enhanced Hydrofluoric Acid Passivation: A Sensitive Technique for Detecting Bulk Silicon Defects

    Science.gov (United States)

    Grant, Nicholas E.

    2016-01-01

    A procedure to measure the bulk lifetime (>100 µsec) of silicon wafers by temporarily attaining a very high level of surface passivation when immersing the wafers in hydrofluoric acid (HF) is presented. By this procedure three critical steps are required to attain the bulk lifetime. Firstly, prior to immersing silicon wafers into HF, they are chemically cleaned and subsequently etched in 25% tetramethylammonium hydroxide. Secondly, the chemically treated wafers are then placed into a large plastic container filled with a mixture of HF and hydrochloric acid, and then centered over an inductive coil for photoconductance (PC) measurements. Thirdly, to inhibit surface recombination and measure the bulk lifetime, the wafers are illuminated at 0.2 suns for 1 min using a halogen lamp, the illumination is switched off, and a PC measurement is immediately taken. By this procedure, the characteristics of bulk silicon defects can be accurately determined. Furthermore, it is anticipated that a sensitive RT surface passivation technique will be imperative for examining bulk silicon defects when their concentration is low (<1012 cm-3). PMID:26779939

  3. Recovery of metal values and hydrofluoric acid from tantalum and columbium waste sludge

    International Nuclear Information System (INIS)

    Bielecki, E.; Romberger, K.; Bakke, B.; Hobin, M.A.; Clark, C.

    1992-01-01

    A metallurgical processing system for economically recovering metal values, such as columbium, tantalum, thorium, and uranium from dilute source solids, such as digestion sludges, by a series of steps including: (1) slurrying the source solids with dilute hydrofluoric acid to produce a solid phase and a liquid phase containing dissolved tantalum and columbium, then extracting tantalum and/or columbium from the liquid phase by means of a liquid ion-exchange process and then, additionally; (2) roasting the solid phase with sulfuric acid to recover and recycle hydrofluoric acid, leaching the roasted solids with dilute sulfuric acid to produce a disposable solid phase and a liquid phase containing thorium and uranium, and extracting thorium and uranium from the liquid phase by means of a liquid-liquid amine extraction process

  4. Trapping proton transfer intermediates in the disordered hydrogen-bonded network of cryogenic hydrofluoric acid solutions.

    Science.gov (United States)

    Ayotte, Patrick; Plessis, Sylvain; Marchand, Patrick

    2008-08-28

    A molecular-level description of the structural and dynamical aspects that are responsible for the weak acid behaviour of dilute hydrofluoric acid solutions and their unusual increased acidity at near equimolar concentrations continues to elude us. We address this problem by reporting reflection-absorption infrared spectra (RAIRS) of cryogenic HF-H(2)O binary mixtures at various compositions prepared as nanoscopic films using molecular beam techniques. Optical constants for these cryogenic solutions [n(omega) and k(omega)] are obtained by iteratively solving Fresnel equations for stratified media. Modeling of the experimental RAIRS spectra allow for a quantitative interpretation of the complex interplay between multiple reflections, optical interference and absorption effects. The evolution of the strong absorption features in the intermediate 1000-3000 cm(-1) range with increasing HF concentration reveals the presence of various ionic dissociation intermediates that are trapped in the disordered H-bonded network of cryogenic hydrofluoric acid solutions. Our findings are discussed in light of the conventional interpretation of why hydrofluoric acid is a weak acid revealing molecular-level details of the mechanism for HF ionization that may be relevant to analogous elementary processes involved in the ionization of weak acids in aqueous solutions.

  5. Can 10% hydrofluoric acid be used for reconditioning of orthodontic brackets?

    Science.gov (United States)

    Pompeo, Daniela D; Rosário, Henrique D; Lopes, Beatriz Mv; Cesar, Paulo F; Paranhos, Luiz Renato

    2016-01-01

    Bracket debonding is a common problem during orthodontic treatment. This type of failure is associated to masticatory forces, poor adhesion, and the need for repositioning the piece. The objective of this work was to compare the shear bond strength of debonded brackets that were reconditioned using different protocols (alumina blasting versus hydrofluoric etching). This was an in vitro experimental study with 45 stainless steel orthodontic brackets. They were randomly divided into three groups: (1) New brackets (n = 15), (2) brackets reconditioned using 10% hydrofluoric acid for 60 s (n = 15), and (3) brackets reconditioned by aluminum oxide blasting until complete removal of the remaining resin (n = 15). In Groups 2 and 3, the insertion of composite resin proceeded in two stages to simulate a type of bracket failure in which the bonding resin was left at the bracket base. For the shear test, the assembly composed by the metallic support, and specimen was taken to the Instron universal testing machine in which the specimens were loaded using a semicircle-shaped active tip in the region of the bonding interface parallel to the surface of the bracket at a speed of 0.5 mm/min. The data were subjected to D'Agostino's normality test to have their distribution checked. Analysis of variance and Tukey's test (P brackets) showed higher bond strength than that obtained for the group treated with hydrofluoric acid (Group 2, P brackets. Nevertheless, the reconditioning technique using 10% fluoridric acid for 60 s was not efficient for clinical use.

  6. Separation of metal ions by anion exchange in mixtures of hydrochloric acid and hydrofluoric acid

    International Nuclear Information System (INIS)

    Faris, J.P.

    1978-12-01

    Distribution coefficients were determined for the adsorption of more than 40 elements on anion-exchange resins from mixtures of HCl (0.1 to 12M) and HF (0.1-8M). Two resins, Dowex 1 x 10, 200 to 400 mesh and Dowex 1 x 4, 100 to 200 mesh, were used. Distribution coefficients were also determined for the adsorption of many elements on both resins from 0.1 to 12M HCl and 0.1 to 12M HF. Anion exchange in the presence of HF was found useful for separating impurities from various materials for their subsequent determination, and specific procedures used in our spectrochemical laboratory for this purpose are outlined. The results of a literature search on the use of anion exchange in hydrofluoric acid and fluoride-containing media are presented in an extensive bibliography. 404 references, 9 tables

  7. Investigation of holmium(5) complexing in hydrofluoric acid solutions in the presence of alkali metal and ammonium fluorides

    International Nuclear Information System (INIS)

    Tsikaeva, D.V.; Agulyanskij, A.I.; Balabanov, Yu.I.; Kuznetsov, V.Ya.; Kalinnikov, V.T.

    1989-01-01

    Method of vibrational spectroscopy is used to study niobium-containing solutions of hydrofluoric acid in the presence of alkali metal and ammonium fluorides. It is shown that NbF 6 - and NbOF 5 2- ions co-exists in solutions, therewith, additions shift equilibrium to the second complex side. Methods of IR spectroscopy, roentgenometry, crystal optics and chemical analysis are used to identify precipitated from solutions solid phases. Three new phases, which composition by chemical analysis corresponds to M 3 Nb 2 OF 11 , where M=NH 4 , K, Rb, are detected. Their roentgenometric data displayed in tetragonal crystal system with a and c parameters equalling 15,710 and 7,744; 14,877 and 7,697; 15,511 and 7,785 A respectively, are presented

  8. Determination of traces of fluorine and hydrofluoric acid in the atmosphere

    International Nuclear Information System (INIS)

    Francois, H.; Grand-Clement, A.M.; Faltot, G.

    1963-01-01

    As some publications highlighted hazards related to the presence of dispersed fluorine and hydrofluoric acid in the atmosphere, the authors, after a brief recall of some measurement devices presented in some publications, present an experimental set-up which aims at measuring traces of these compounds in the atmosphere. They notably describe the preparation of a controlled fluorine atmosphere, discuss the efficiency of the absorption-based trap, report the study of the electrolytic analysis cell, discuss its calibration. They also report the study of the influence of temperature and of the presence of disturbing ions

  9. Liquid droplet sensing using twisted optical fiber couplers fabricated by hydrofluoric acid flow etching

    Science.gov (United States)

    Son, Gyeongho; Jung, Youngho; Yu, Kyoungsik

    2017-04-01

    We report a directional-coupler-based refractive index sensor and its cost-effective fabrication method using hydrofluoric acid droplet wet-etching and surface-tension-driven liquid flows. The proposed fiber sensor consists of a pair of twisted tapered optical fibers with low excess losses. The fiber cores in the etched microfiber region are exposed to the surrounding medium for efficient interaction with the guided light. We observe that the etching-based low-loss fiber-optic sensors can measure the water droplet volume by detecting the refractive index changes of the surrounding medium around the etched fiber core region.

  10. Self-etching ceramic primer versus hydrofluoric acid etching: Etching efficacy and bonding performance.

    Science.gov (United States)

    El-Damanhoury, Hatem M; Gaintantzopoulou, Maria D

    2018-01-01

    This study assessed the effect of pretreatment of hybrid and glass ceramics using a self-etching primer on the shear bond strength (SBS) and surface topography, in comparison to pretreatment with hydrofluoric acid and silane. 40 rectangular discs from each ceramic material (IPS e.max CAD;EM, Vita Mark II;VM, Vita Enamic;VE), were equally divided (n=10) and assigned to one of four surface pretreatment methods; etching with 4.8% hydrofluoric acid followed by Monobond plus (HFMP), Monobond etch & prime (Ivoclar Vivadent) (MEP), No treatment (NT) as negative control and Monobond plus (Ivoclar Vivadent) with no etching (MP) as positive control. SBS of resin cement (Multilink-N, Ivoclar Vivadent) to ceramic surfaces was tested following a standard protocol. Surface roughness was evaluated using an Atomic force microscope (AFM). Surface topography and elemental analysis were analyzed using SEM/EDX. Data were analyzed with two-way analysis of variance (ANOVA) and post-hoc Bonferroni test at a significance level of α=0.05. Pretreatment with HFMP resulted in higher SBS and increased surface roughness in comparison to MEP and MP. Regardless the method of surface pretreatment, the mean SBS values of EM ceramic was significantly higher (pceramics for resin-luting cementation. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  11. Rolled-Up Nanotech: Illumination-Controlled Hydrofluoric Acid Etching of AlAs Sacrificial Layers

    Directory of Open Access Journals (Sweden)

    Costescu Ruxandra

    2009-01-01

    Full Text Available Abstract The effect of illumination on the hydrofluoric acid etching of AlAs sacrificial layers with systematically varied thicknesses in order to release and roll up InGaAs/GaAs bilayers was studied. For thicknesses of AlAs below 10 nm, there were two etching regimes for the area under illumination: one at low illumination intensities, in which the etching and releasing proceeds as expected and one at higher intensities in which the etching and any releasing are completely suppressed. The “etch suppression” area is well defined by the illumination spot, a feature that can be used to create heterogeneously etched regions with a high degree of control, shown here on patterned samples. Together with the studied self-limitation effect, the technique offers a way to determine the position of rolled-up micro- and nanotubes independently from the predefined lithographic pattern.

  12. Kinetic of the COLUMBO-TANTALITE dissolution in aqueous solutions of hydrofluoric acid

    International Nuclear Information System (INIS)

    Rodriguez, Mario; Quiroga, Oscar; Ruiz, Maria del Carmen

    2003-01-01

    The dissolution rate of a columbo-tantalite of the San Luis Province in aqueous solutions of hydrofluoric acid has been studied.Experiments at different temperatures were carried out in a pressure reactor.The experimental results show that the mineral dissolution increases with the reaction time.This effect is greater when the temperature increases from 348 up to 396 K, but it is little 493 K. The experimental data were treated with different models, which have been deduced for the kinetic study of solid-fluid non-catalytic heterogeneous reactions. As a result, the better model that fit the experimental data is a model based on the nucleation and growth theory.This model is physically according to the attack observed by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDXS) on the mineral residues.These residues show an irregular located-type attack

  13. Hydrofluoric Acid-Based Derivatization Strategy To Profile PARP-1 ADP-Ribosylation by LC-MS/MS.

    Science.gov (United States)

    Gagné, Jean-Philippe; Langelier, Marie-France; Pascal, John M; Poirier, Guy G

    2018-06-11

    Despite significant advances in the development of mass spectrometry-based methods for the identification of protein ADP-ribosylation, current protocols suffer from several drawbacks that preclude their widespread applicability. Given the intrinsic heterogeneous nature of poly(ADP-ribose), a number of strategies have been developed to generate simple derivatives for effective interrogation of protein databases and site-specific localization of the modified residues. Currently, the generation of spectral signatures indicative of ADP-ribosylation rely on chemical or enzymatic conversion of the modification to a single mass increment. Still, limitations arise from the lability of the poly(ADP-ribose) remnant during tandem mass spectrometry, the varying susceptibilities of different ADP-ribose-protein bonds to chemical hydrolysis, or the context dependence of enzyme-catalyzed reactions. Here, we present a chemical-based derivatization method applicable to the confident identification of site-specific ADP-ribosylation by conventional mass spectrometry on any targeted amino acid residue. Using PARP-1 as a model protein, we report that treatment of ADP-ribosylated peptides with hydrofluoric acid generates a specific +132 Da mass signature that corresponds to the decomposition of mono- and poly(ADP-ribosylated) peptides into ribose adducts as a consequence of the cleavage of the phosphorus-oxygen bonds.

  14. Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    R Zahran

    Full Text Available Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5-7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time.

  15. A review of treatment strategies for hydrofluoric acid burns: current status and future prospects.

    Science.gov (United States)

    Wang, Xingang; Zhang, Yuanhai; Ni, Liangfang; You, Chuangang; Ye, Chunjiang; Jiang, Ruiming; Liu, Liping; Liu, Jia; Han, Chunmao

    2014-12-01

    Hydrofluoric acid (HF), a dangerous inorganic acid, can cause severe corrosive effects and systemic toxicity. HF enters the human body via where it contacts, such as skin and mucosa, alimentary and respiratory tracts, and ocular surfaces. In the recent years, the incidence of HF burn has tended to increase over time. The injury mechanism of HF is associated primarily with the massive absorption of HF and the release of hydrogen ions. Correct diagnosis and timely treatment are especially important for HF burns. The critical procedure to treat HF burn is to prevent on-going HF absorption, and block the progressive destruction caused by fluoride ions. Due to the distinct characteristics of HF burns, the topical treatment, as well as systemic support, has been emphasised. Whereas, management of patients with HF burns remains a great challenge in some situations. To date, there has been no widely accepted protocol for the rescue of HF burns, partly due to the diversity of HF burns. This paper overviews the current status and problems of treatment strategies for HF burns, for the purpose of promoting the future researches and improvement. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  16. Study of the Extraction Kinetics of Lithium by Leaching β-Spodumene with Hydrofluoric Acid

    Directory of Open Access Journals (Sweden)

    Gustavo D. Rosales

    2016-09-01

    Full Text Available Parameters affecting the kinetics of the dissolution of β-spodumene with hydrofluoric acid have been investigated. The experimental tests were carried out in a closed vessel. The influence of several parameters, such as stirring speed, temperature, and reaction time were studied in order to deduce the kinetics of the dissolution reaction. The other parameters, particle size −45 μm; HF concentration 4% v/v, and the solid–liquid ratio 0.95% w/v were kept constant. The results indicate that the stirring speed does not have an important effect on the dissolution of the mineral above 330 rpm. The extent of the leaching of β-spodumene increases with temperature and reaction time augmentations. Scanning electron microscope (SEM analyses of some residues in which the conversion was lower than 30% indicated a selective attack on certain zones of the particle. The treatment of the experimental data was carried out using the Modelado software. The model that best represents the dissolution of the mineral is the following: ln(1 − X = −b1 [ln(1 + b2t − b2t/(1 + b2t]. This model is based on “nucleation and growth of nuclei” theory, and describes the style of attack physically observed by SEM on the residues.

  17. Osteogenic activity of titanium surfaces with hierarchical micro/nano-structures obtained by hydrofluoric acid treatment

    Directory of Open Access Journals (Sweden)

    Liang J

    2017-02-01

    Full Text Available Jianfei Liang,1,* Shanshan Xu,1,* Mingming Shen,2,* Bingkun Cheng,3 Yongfeng Li,4 Xiangwei Liu,1 Dongze Qin,1 Anuj Bellare,5 Liang Kong1 1State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, 2Department of Stomatology, Xinhua Hospital of Beijing, Beijing, 3Department of Oral and Maxillofacial Surgery, School of Stomatology, The Second Hospital of Hebei Medical University, Shijiazhuang, 4Department of Stomatology, Chinese PLA 532 Hospital, Huangshan, People’s Republic of China; 5Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA *These authors contributed equally to this work Abstract: An easier method for constructing the hierarchical micro-/nano-structures on the surface of dental implants in the clinic is needed. In this study, three different titanium surfaces with microscale grooves (width 0.5–1, 1–1.5, and 1.5–2 µm and nanoscale nanoparticles (diameter 20–30, 30–50, and 50–100 nm, respectively were obtained by treatment with different concentrations of hydrofluoric acid (HF and at different etching times (1%, 3 min; 0.5%, 12 min; and 1.5%, 12 min, respectively; denoted as groups HF1, HF2, and HF3. The biological response to the three different titanium surfaces was evaluated by in vitro human bone marrow-derived mesenchymal stem cell (hBMMSC experiments and in vivo animal experiments. The results showed that cell adhesion, proliferation, alkaline phosphatase activity, and mineralization of hBMMSCs were increased in the HF3 group. After the different surface implants were inserted into the distal femurs of 40 rats, the bone–implant contact in groups HF1, HF2, and HF3 was 33.17%±2.2%, 33.82%±3.42%, and 41.04%±3.08%, respectively. Moreover, the maximal pullout

  18. Influence of hydrofluoric acid treatment on electroless deposition of Au clusters

    Directory of Open Access Journals (Sweden)

    Rachela G. Milazzo

    2017-01-01

    Full Text Available The morphology of gold nanoparticles (AuNPs deposited on a (100 silicon wafer by simple immersion in a solution containing a metal salt and hydrofluoric acid (HF is altered by HF treatment both before and after deposition. The gold clusters are characterized by the presence of flat regions and quasispherical particles consistent with the layer-by-layer or island growth modes, respectively. The cleaning procedure, including HF immersion prior to deposition, affects the predominantly occurring gold structures. Flat regions, which are of a few tens of nanometers long, are present after immersion for 10 s. The three-dimensional (3D clusters are formed after a cleaning procedure of 4 min, which results in a large amount of spherical particles with a diameter of ≈15 nm and in a small percentage of residual square layers of a few nanometers in length. The samples were also treated with HF after the deposition and we found out a general thickening of flat regions, as revealed by TEM and AFM analysis. This result is in contrast to the coalescence observed in similar experiments performed with Ag. It is suggested that the HF dissolves the silicon oxide layer formed on top of the thin flat clusters and promotes the partial atomic rearrangement of the layered gold atoms, driven by a reduction of the surface energy. The X-ray diffraction investigation indicated changes in the crystalline orientation of the flat regions, which partially lose their initially heteroepitaxial relationship with the substrate. A postdeposition HF treatment for almost 70 s has nearly the same effect of long duration, high temperature annealing. The process presented herein could be beneficial to change the spectral response of nanoparticle arrays and to improve the conversion efficiency of hybrid photovoltaic devices.

  19. Corrosion of stainless steels and nickel-base alloys in solutions of nitric acid and hydrofluoric acid

    International Nuclear Information System (INIS)

    Horn, E.M.; Renner, M.

    1992-01-01

    Reactions involving nitric acid may always result in the contamination of this acid with fluorides. In highly concentrted nitric acid, the presence of small amounts of HF will substantially reduce the corrosion of metallic materials. Mixtures consisting of hydrofluoric acid and hypo-azeotropic nitric acid on the other hand will strongly attack: the metal loss will markedly increase with increasing HNO 3 and HF concentrations as well as with rising temperatures. The investigation covered 12 stainless steel grades and nickel-base alloys. With constant HNO 3 content, corrosion rates will rise linearly when increasing the HF concentration. With constant HF concentration (0,25 M), corrosion rates will increase rapidly with increasing nitric acid concentration (from 0.3 M to 14.8 M). This can best be described by superimposing a linear function and a hyperbolic function that is reflecting the change in the HNO 3 content. Alloys containing as much chromium as possible (up to 46 wt.%) will exhibit the best corrosion resistance. Alloy NiCr30FeMo (Hastelloy alloy G-30) proved to be well suitable in this investigation. (orig.) [de

  20. Development of a continuous process for adjusting nitrate, zirconium, and free hydrofluoric acid concentrations in zirconium fuel dissolver product

    International Nuclear Information System (INIS)

    Cresap, D.A.; Halverson, D.S.

    1993-04-01

    In the Fluorinel Dissolution Process (FDP) upgrade, excess hydrofluoric acid in the dissolver product must be complexed with aluminum nitrate (ANN) to eliminate corrosion concerns, adjusted with nitrate to facilitate extraction, and diluted with water to ensure solution stability. This is currently accomplished via batch processing in large vessels. However, to accommodate increases in projected throughput and reduce water production in a cost-effective manner, a semi-continuous system (In-line Complexing (ILC)) has been developed. The major conclusions drawn from tests demonstrating the feasibility of this concept are given in this report

  1. Spectrographic determination of lanthanides in high-purity uranium compounds, after chromatographic separation by alumina-hydrofluoric acid

    International Nuclear Information System (INIS)

    Lordello, A.R.; Abrao, A.

    1979-01-01

    A method is presented for the determination of fourteen rare earth elements in high-purity uranium compounds by emission spectrography. The rare earths are chromatographically separated from uranium by using alumina-hydrofluoric acid. Lanthanum is used both as collector and internal standard. The technique of excitation involves a total consumption of the sample in a 17 ampere direct current arc. The range of determination is about 0.005 to 0.5 μg/g uranium. The coefficient of variation for Pr, Ho, Dy, Er, Tm, Lu, Gd and Tb amounts to 10%. (Author) [pt

  2. Dissolution of thorium/uranium mixed oxide in nitric acid-hydrofluoric acid solution

    International Nuclear Information System (INIS)

    Filgueiras, S.A.C.

    1984-01-01

    The dissolution process of thorium oxide and mixed uranium-thorium oxide is studied, as a step of the head-end of the fuel reprocessing. An extensive bibliography was analysed, concerning the main aspects of the system, specially the most important process variables. Proposed mechanisms and models for the thorium oxide dissolution are presented. The laboratory tests were performed in two phases: at first, powdered thoria was used as the material to be dissolved. The objective was to know how changes in he concentrations of the dissolvent solution components HNO 3 , HF and Al(NO 3 ) 3 affect the dissolution rate. The tests were planned according to the fractional factorial method. Thes results showed that it is advantageous to work with powdered material, since the reaction occurs rapidly. And, if the Thorex solution (HNO 3 13M, HF 0.05M and Al(NO 3 ) 3 0.10M) is a suitable dissolvent, it was verified that it is possible to reduce the concentration of either nitric or fluoridric acid, without reducing the reaction rate to an undesirable value. It was also observed significant interaction between the components of the dissolvent solution. In the second phase of the tests, (Th, 5%U)O 2 sintered pellets were used. The main goals were to know the pellets dissolution behaviour and to compare the results for different pellets among themselves. It was observed that the metallurgical history of the material strongly influences its dissolution, specially the density and the microstructure. It was also studied how the (Th,U)O 2 mass/Thorex solution volume ratio affects the time needed to obtain an 1 M Th/liter solution. The activation energy for the reaction was obtained. (Author) [pt

  3. Shear bond strength of metal brackets to feldspathic porcelain treated by Nd:YAG laser and hydrofluoric acid.

    Science.gov (United States)

    Hosseini, Mohammad Hashem; Sobouti, Farhad; Etemadi, Ardavan; Chiniforush, Nasim; Shariati, Mahsa

    2015-02-01

    Adult orthodontic treatment requires bonding orthodontic attachment to dental restorations. Ceramics are commonly used as esthetic restorative materials for the crowns and bridges. The present study evaluated the shear bond strength of metal orthodontic brackets to the feldspathic porcelain surfaces following conditioning by different powers of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser and hydrofluoric acid as a conventional method. Seventy-two glazed porcelain samples were prepared and randomly attributed to six equal groups of 12. In the conventional hydrofluoric (HF) group, the specimens were etched by 9.6% hydrofluoric acid for 4 min. In laser groups, samples were conditioned by 0.75-, 1-, 1.25-, 1.5-, and 2-W Nd:YAG laser for 10 s. Metal brackets were bonded to porcelain samples and after being stored in distilled water for 24 h, they were subjected to thermocycling for 500 cycles. The debonding was carried out by a Zwick testing machine. The data were statistically analyzed by ANOVA and Tamhane multiple comparisons tests. The mean ± SD of the shear bond strength in the laser group 0.75, 1, 1.25, 1.5, and 2 W and HF group was 2.2 ± 0.9, 4.2 ± 1.1, 4.9 ± 2.4, 7 ± 1.7, 9.6 ± 2.7, and 9.4 ± 2.5, respectively. Together with the increased power of laser, the mean shear bond strength was increased continuously and no significant differences were found between the HF group and the laser groups with power of 1.5 or 2 W. Also, there was no significant difference between all test groups in ARI scores. There was no significant difference between bond strength of laser groups with power of 1.5 and 2 W and HF-etched group. So, Nd:YAG laser with appropriate parameters can be used as an alternative method for porcelain etching.

  4. 1 Molar concentration hydrofluoric acid effect at 400 C in the corrosion resistance of alloys containing nickel

    International Nuclear Information System (INIS)

    Contreras P, H.

    1992-01-01

    Corrosion rate for pure nickel, Inconel 600 and Monel alloys in a 1 Molar hydrofluoric acid solution at a 40 0 C temperature were determined. For contrasting purposes both SAE 304 SS and SAE 316 SS were included. As expected these Stainless Steels do not show good corrosion performance in the solution used. Several expressions correlating the weight and thickness loss v/s time were obtained. In the particular case of Monel, up to 2.021 hours, two expressions for the weight loss and three expressions for the thickness loss were obtained with a close to 1,0 correlation coefficient value. The Monel showed the best overall corrosion performance among the tested alloys. (author)

  5. An improved method for the immunological detection of mineral bound protein using hydrofluoric acid and direct capture.

    Science.gov (United States)

    Craig, O E; Collins, M J

    2000-03-06

    Immunological detection of proteins adsorbed to mineral and ceramic surfaces has proved not only difficult but controversial. Unlike the immunological detection of proteins associated with carbonate or phosphate minerals (e.g. shells and bones) proteins adsorbed to siliceous minerals cannot readily be removed by dissolution of the mineral phase. We have previously examined alternative extraction methodologies which claim to bring the protein into solution, but found none of these to be effective. Here we report a novel strategy for immuno-detection of proteins adsorbed to siliceous minerals, the Digestion and Capture Immunoassay (DACIA). The method involves the use of cold, concentrated (4M) hydrofluoric acid (HF) with the simultaneous capture of liberated protein onto a solid phase. The combination of low temperatures and surface stabilisation enables us to detect epitopes from even partially degraded proteins. The method may have a wide application in forensic, archaeological, soil and earth sciences.

  6. Effect of etching with distinct hydrofluoric acid concentrations on the flexural strength of a lithium disilicate-based glass ceramic.

    Science.gov (United States)

    Prochnow, Catina; Venturini, Andressa B; Grasel, Rafaella; Bottino, Marco C; Valandro, Luiz Felipe

    2017-05-01

    This study examined the effects of distinct hydrofluoric acid concentrations on the mechanical behavior of a lithium disilicate-based glass ceramic. Bar-shaped specimens were produced from ceramic blocks (e.max CAD, Ivoclar Vivadent). The specimens were polished, chamfered, and sonically cleaned in distilled water. The specimens were randomly divided into five groups (n = 23). The HF1, HF3, HF5, and HF10 specimens were etched for 20 s with acid concentrations of 1%, 3%, 5%, and 10%, respectively, while the SC (control) sample was untreated. The etched surfaces were evaluated using a scanning electron microscope and an atomic force microscope. Finally, the roughness was measured, and 3-point bending flexural tests were performed. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (α = 0.05). The Weibull modulus and characteristic strength were also determined. No statistical difference in the roughness and flexural strength was determined among the groups. The structural reliabilities (Weilbull moduli) were similar for the tested groups; however, the characteristic strength of the HF1 specimen was greater than that of the HF10 specimen. Compared with the untreated ceramic, the surface roughness and flexural strength of the ceramic were unaffected upon etching, regardless of the acid concentration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 885-891, 2017. © 2016 Wiley Periodicals, Inc.

  7. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics

    Science.gov (United States)

    Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A.; Divakar, Darshan Devang; Matinlinna, Jukka P.; Vallittu, Pekka K.

    2016-01-01

    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces’ microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey’s test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability. PMID:27240353

  8. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Provine, J., E-mail: jprovine@stanford.edu; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Kim, Ki-Hyun [Manufacturing Technology Center, Samsung Electronics, Suwon, Gyeonggi-Do (Korea, Republic of); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-06-15

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiN{sub x}), particularly for use a low k dielectric spacer. One of the key material properties needed for SiN{sub x} films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiN{sub x} and evaluate the film’s WER in 100:1 dilutions of HF in H{sub 2}O. The remote plasma capability available in PEALD, enabled controlling the density of the SiN{sub x} film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiN{sub x} of 6.1 Å/min, which is similar to WER of SiN{sub x} from LPCVD reactions at 850 °C.

  9. Using hydrofluoric acid for morphological investigations of Zoanthids (Cnidaria: Anthozoa): a critical assessment of methodology and necessity.

    Science.gov (United States)

    Reimer, James Davis; Nakachi, Shu; Hirose, Mamiko; Hirose, Euichi; Hashiguchi, Shinji

    2010-10-01

    Zoanthids comprise an order of benthic, generally colonial cnidarians, which can usually be distinguished from other hexacorallians by embedded sand and detritus in their mesoglea to help strengthen their structure. These animals are becoming increasingly important research subjects in biochemistry and other research fields. Their inclusion of both calcium and silica results in the need for both decalcification and desilification for internal morphological examinations. Since the methodology of hydrofluoric acid (HF) desilification has rarely been documented in zoanthids, histological surveys for zoanthid taxonomy have often been abandoned and their taxonomy is often problematic. Recent investigations utilizing molecular methods have brought a clearer understanding of zoanthid diversity, but standardization of HF treatments are still needed to provide a link between molecular and more traditional techniques, and to properly examine specimens for which molecular methods may not be an option (e.g., formalin-preserved specimens, etc.). Here, we use both "straight" HF and, for the first time with zoanthids, buffered HF (BHF) treatments at different treatment lengths (1-48 h) on polyps from three different species of zoanthids for histological examination. Section conditions were judged based on the presence/absence of embedded detritus, drag marks, and tissue condition. Results show that the BHF treatment resulted in slightly better tissue conditions for all specimens, and suggest that desilification works well regardless of treatment time for species with smaller (polyp diameter zoanthid specimens.

  10. Can 10% hydrofluoric acid be used for reconditioning of orthodontic brackets?

    Directory of Open Access Journals (Sweden)

    Daniela D Pompeo

    2016-01-01

    Conclusions: The aluminum oxide blasting technique was effective for the reconditioning of orthodontic brackets. Nevertheless, the reconditioning technique using 10% fluoridric acid for 60 s was not efficient for clinical use.

  11. Improving Corrosion Resistance and Biocompatibility of Magnesium Alloy by Sodium Hydroxide and Hydrofluoric Acid Treatments

    Directory of Open Access Journals (Sweden)

    Chang-Jiang Pan

    2016-12-01

    Full Text Available Owing to excellent mechanical property and biodegradation, magnesium-based alloys have been widely investigated for temporary implants such as cardiovascular stent and bone graft; however, the fast biodegradation in physiological environment and the limited surface biocompatibility hinder their clinical applications. In the present study, magnesium alloy was treated by sodium hydroxide (NaOH and hydrogen fluoride (HF solutions, respectively, to produce the chemical conversion layers with the aim of improving the corrosion resistance and biocompatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR and X-ray photoelectron spectroscopy (XPS indicated that the chemical conversion layers of magnesium hydroxide or magnesium fluoride were obtained successfully. Sodium hydroxide treatment can significantly enhance the surface hydrophilicity while hydrogen fluoride treatment improved the surface hydrophobicity. Both the chemical conversion layers can obviously improve the corrosion resistance of the pristine magnesium alloy. Due to the hydrophobicity of magnesium fluoride, HF-treated magnesium alloy showed the relative better corrosion resistance than that of NaOH-treated substrate. According to the results of hemolysis assay and platelet adhesion, the chemical surface modified samples exhibited improved blood compatibility as compared to the pristine magnesium alloy. Furthermore, the chemical surface modified samples improved cytocompatibility to endothelial cells, the cells had better cell adhesion and proliferative profiles on the modified surfaces. Due to the excellent hydrophilicity, the NaOH-treated substrate displayed better blood compatibility and cytocompatibility to endothelial cells than that of HF-treated sample. It was considered that the method of the present study can be used for the surface modification of the magnesium alloy to enhance the corrosion resistance and biocompatibility.

  12. Study in the behavior of several heavy elements in solvents with hydrofluoric acid base

    International Nuclear Information System (INIS)

    Tarnero, M.

    1988-01-01

    Initial goal was the study of two nonaqueous solvents with an HF base, one with an oxidizing character, N 2 O 4 -HF, the other with an acid character, SbF 5 -HF. For the N 2 O 4 -HF mixtures, nitric acid and NO 2 + ions exist in these media, nitric acid is dissociated for concentrations of N 2 O 4 2 + ions. Results for the dissolution of metals agree with those of Brookhaven. For uranium, the speed did not increase in clear fashion from 60-70/degree/C, but that it obeyed Arrhenius' law between 40 and 115/degree/C. UF 4 was more soluble than ZrF 4 . U(IV) passed to U(V) after dissolution. The compound obtained from UF 4 was the same as that obtained from the metal uranium, i.e., NOUF 6 . U(VI)appeared to be poorly soluble, the uranium passes into solution particularly at valence 5. For SbF 5 -HF mixtures, the corrosion speeds were much lower than in N 2 O 4 -HF mixtures. For Zr, rates of dissolution are very low, while they are very high with N 2 O 4 -HF. Th is practically not corroded at all. Al was not corroded at all up to 90/degree/C. Only U was dissolved at higher rates than Th and Zr; however, the corrosion speeds at 90/degree/C are equal to those with the N 2 O 4 -HF mixtures at 50/degree/C. This shows that U passed into solution in the trivalent state, and that the product was U(SbF 6 ) 3 . The trivalent uranium compounds were more soluble than the others. Addition of N 2 O 4 to SbF 5 -HF induces acid-base reactions between the NO + and NO 2 /sup /minus// on the one hand, and SbF 6 /sup /minus// on the other hand, reactions accompanying the formation of a precipitate, probably a NOSbF 6 and NO 2 SbF 6 mixture. 66 refs., 34 figs., 23 tabs

  13. The impact of hydrofluoric acid etching followed by unfilled resin on the biaxial strength of a glass-ceramic.

    Science.gov (United States)

    Posritong, Sumana; Borges, Alexandre Luiz Souto; Chu, Tien-Min Gabriel; Eckert, George J; Bottino, Marco A; Bottino, Marco C

    2013-11-01

    To evaluate the null hypotheses that hydrofluoric (HF) acid etching time would neither decrease the biaxial flexural strength of a glass-based veneering ceramic nor enhance it after silane and unfilled resin (UR) applications. Disc-shaped IPS e.max ZirPress specimens were allocated into 12 groups: G1-control (no-etching), G2-30 s, G3-60 s, G4-90 s, G5-120 s, G6-60 s+60 s. Groups (G7-G12) were treated in the same fashion as G1-G6, but followed by silane and UR applications. Surface morphology and roughness (Ra and Rq) of the ceramics were assessed by means of scanning electron microscopy (SEM) and profilometry, respectively. Flexural strength was determined by biaxial testing. Data were analyzed by two-way ANOVA and the Sidak test (α=0.05). Weibull statistics were estimated and finite element analysis (FEA) was carried out to verify the stress concentration end areas of fracture. The interaction (etching time vs. surface treatment) was significant for Ra (p=0.008) and Rq (0.0075). Resin-treated groups presented significantly lower Ra and Rq than non-treated groups, except for the 60s group (pceramic microstructure and that the UR was able to penetrate into the irregularities. A significant effect of etching time (p=0.029) on flexural strength was seen. G7-G12 presented higher strength than G1-G6 (pceramic flexural strength. Moreover, the flexural strength could be enhanced after UR treatment. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. [Effect of hydrofluoric acid concentration on the surface morphology and bonding effectiveness of lithium disilicate glass ceramics to resin composites].

    Science.gov (United States)

    Hailan, Qian; Lingyan, Ren; Rongrong, Nie; Xiangfeng, Meng

    2017-12-01

    This study aimed at determining the influence of hydrofluoric acid (HF) in varied concentrations on the surface morphology of lithium disilicate glass ceramics and bond durability between resin composites and post-treated lithium disilicate glass ceramics. After being sintered, ground, and washed, 72 as-prepared specimens of lithium disilicate glass ceramics with dimensions of 11 mm×13 mm×2 mm were randomly divided into three groups. Each group was treated with acid solution [32% phosphoric acid (PA) or 4% or 9.5% HF] for 20 s. Then, four acidified specimens from each group were randomly selected. One of the specimens was used to observe the surface morphology using scanning electron microscopy, and the others were used to observe the surface roughness using a surface roughness meter (including Ra, Rz, and Rmax). After treatment with different acid solutions in each group, 20 samples were further treated with silane coupling agent/resin adhesive/resin cement (Monobond S/Multilink Primer A&B/Multilink N), followed by bonding to a composite resin column (Filtek™ Z350) with a diameter of 3 mm. A total of 20 specimens in each group were randomly divided into two subgroups, which were used for measuring the microshear bond strength, with one of them subjected to cool-thermal cycle for 20 000 times. The surface roughness (Ra, Rz, and Rmax) of lithium disilicate glass ceramics treated with 4% or 9.5% HF was significantly higher than that of the ceramic treated with PA (Pglass ceramics treated with 9.5% HF also demonstrated better surface roughness (Rz and Rmax) than that of the ceramics treated with 4% HF. Cool-thermal cycle treatment reduced the bond strength of lithium disilicate glass ceramics in all groups (Pglass ceramics treated with HF had higher bond strength than that of the ceramics treated with PA. The lithium disilicate glass ceramics treated with 4% HF had higher bond strength than that of the ceramics treated with 9.5% HF (Pglass ceramics treated with 4

  15. Determination of vanadium in stainless steel and Ni-base alloys by NBPHA spectrophotometric method combined with chloroform extraction separation in media of sulfuric-hydrofluoric acid

    International Nuclear Information System (INIS)

    Sakai, Fumiaki; Ohuchi, Yoshifusa; Ochiai, Kenichi; Motoyama, Sigeji; Tsutsumi, Ken-ichi

    1975-01-01

    A new method of rapid vanadium analysis was proposed. In this method, vanadium is directly extracted and determined from sample solutions in sulfuric-hydrofluoric acid. The interference of the coexisting elements can be ignored in this method. Take one gram of sample into a 200 ml beaker, and add 30 ml of aqua regia. Then heat and dissolve it, and add 14 ml of sulfuric acid (1+1) and 5 ml of phosphoric acid. After cooling, dissolve the salts with a small amount of water. Thereafter, transfer it with use of water into a polyethylene separatory funnel, add 10 ml of 46% hydrofluoric acid, and dilute to 50 ml. Then, add 4 ml iron (II) ammonium sulfate solution (10%) and mix it thoroughly. Allow to stand for two or three minutes, add 10 ml of 45% ammonium persulfate solution and mix it thoroughly again. Allow to stand for about five minutes. Then, add exactly 20 ml of BPHA-chloroform solution (0.1%) and shake and mix it vigorously for two minutes. After a while, transfer the chloroform complex into a 10 mm cell through a piece of absorbent cotton. Then, determine vanadium by measuring the absorbance at the wave length of 530 nm against a chloroform reference. This method can be applicable to the analysis of vanadium in other metals and alloys than stainless steel and Ni-base alloys. (Iwakiri, K.)

  16. The effect of Laser Shock Peening on Fatigue Life Using Pure Water and Hydrofluoric Acid As a Confining Layer of Al – Alloy 7075-T6

    Directory of Open Access Journals (Sweden)

    Shaker Sakran Hassan

    2018-01-01

    Full Text Available Laser shock peening (LSP is deemed as a deep-rooted technology for stimulating compressive residual stresses below the surface of metallic elements. As a result, fatigue lifespan is improved, and the substance properties become further resistant to wear and corrosion. The LSP provides more unfailing surface treatment and a potential decrease in microstructural damage. Laser shock peening is a well-organized method measured up to the mechanical shoot peening. This kind of surface handling can be fulfilled via an intense laser pulse focused on a substantial surface in extremely shorter intervals. In this work, Hydrofluoric Acid (HF and pure water as a coating layer were utilized as a new technique to improve the properties and to harden the treated surface of the Al -alloy 7075-T6. Fatigue life by means of laser peened workpieces was improved to 154.3%, 9.78%, respectively, for Hydrofluoric (HF and pure water compared to un-peened specimens. And the outcomes of Vickers hardness test for laser shock peening with acid and pure water as well as un-peened specimens were 165.2HV30, 143.95HV30 and 134.7HV30, respectively showed a significant improvement in the hardness property.

  17. Effect of hydrofluoric acid on acid decomposition mixtures for determining iron and other metallic elements in green vegetables

    International Nuclear Information System (INIS)

    Dogbe, S.A.; Afful, S.; Debrah, C.

    2007-01-01

    The efficiency of acid mixtures, HNO 3 - HCI0 4 -HF, HNO 3 - HCI - HF, HNO 3 - HCIO 4 and HNO 3 - HCI in the decomposition of four edible green vegetables, Gboma (Solanum macrocarpon), Aleefu (Amaranttius hibiridus), Shoeley (Hibiscus sabdariffa) and Ademe (Corchorus olitorius), for flame Atomic Absorption Spectrometer analysis of Fe, Mn, Mg, Cu, Zn and Ca was studied. The concentrations of Fe were higher (120.61 -710.10 mg/kg), while the values of Cu were lower (2.31 - 4.84 mg/kg) in all the samples. The values of concentration for Fe were more reproducible when HF was included in the decomposition mixtures. There were no significant differences in the concentrations of the other elements when HF was included in the acid mixture as compared to the acid mixtures without HF. Therefore, the inclusion of HF in the acid decomposition mixtures would ensure total and precise estimation of Fe in plant materials, but not critical for analysis of Mn, Mg, Cu, Zn and Ca. Performance of the decomposition procedures was verified by applying the methods to analyse Standard Reference Material IAEA-V-10 Hay Powder. (au)

  18. An investigation of the pathophysiological mechanisms of hydrofluoric acid intoxication in rats and pigs. Interim report concerning the results of phase 2.1: The effect of sodium fluoride infusion on the plasma concentrations of lactate and magnesium

    NARCIS (Netherlands)

    Boink ABTJ; de Wildt DJ; de Jong Y; de Groot G; Vaessen HAMG; Meulenbelt J; van Dijk A; Vosmeer H

    1990-01-01

    From a previous study it was concluded that intravenous infusion of sodium fluoride (NaF) in rats is a suitable model to study the toxicity of hydrofluoric acid. In this supplementary study we investigated the effect of intravenous infusion of a high and low dose of NaF (120 and 25 mg.kg -1.hr

  19. Distribution of Components in Ion Exchange Materials Taken from the K East Basin and Leaching of Ion Exchange Materials by Nitric/Hydrofluoric Acid and Nitric/Oxalic Acid

    International Nuclear Information System (INIS)

    Delegard, C.H.; Rinehart, D.E.; Hoopes, F.V.

    1998-01-01

    Laboratory tests were performed to examine the efficacy of mixed nitric/hydrofluoric acid followed by mixed nitric/oxalic acid leach treatments to decontaminate ion exchange materials that have been found in a number of samples retrieved from K East (KE)Basin sludge. The ion exchange materials contain organic ion exchange resins and zeolite inorganic ion exchange material. Based on process records, the ion exchange resins found in the K Basins is a mixed-bed, strong acid/strong base material marketed as Purolite NRW-037. The zeolite material is Zeolon-900, a granular material composed of the mineral mordenite. Radionuclides sorbed or associated with the ion exchange material can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). Elutriation and washing steps are designed to remove the organic resins from the K Basin sludge. To help understand the effects of the anticipated separation steps, tests were performed with well-rinsed ion exchange (IX) material from KE Basin floor sludge (sample H-08 BEAD G) and with well-rinsed IX having small quantities of added KE canister composite sludge (sample KECOMP). Tests also were performed to determine the relative quantities of organic and inorganic IX materials present in the H-08 K Basin sludge material. Based on chemical analyses of the separated fractions, the rinsed and dry IX material H-08 BEAD G was found to contain 36 weight percent inorganic material (primarily zeolite). The as-received (unrinsed) and dried H-08 material was estimated to contain 45 weight percent inorganic material

  20. Characterization of Group V Dubnium Homologs on DGA Extraction Chromatography Resin from Nitric and Hydrofluoric Acid Matrices

    Energy Technology Data Exchange (ETDEWEB)

    Despotopulos, J D; Sudowe, R

    2012-02-21

    somewhere between Nb and Pa. Much more recent studies have examined the properties of Db from HNO{sub 3}/HF matrices, and suggest Db forms complexes similar to those of Pa. Very little experimental work into the behavior of element 114 has been performed. Thermochromatography experiments of three atoms of element 114 indicate that the element 114 is at least as volatile as Hg, At, and element 112. Lead was shown to deposit on gold at temperatures about 1000 C higher than the atoms of element 114. Results indicate a substantially increased stability of element 114. No liquid phase studies of element 114 or its homologs (Pb, Sn, Ge) or pseudo-homologs (Hg, Cd) have been performed. Theoretical predictions indicate that element 114 is should have a much more stable +2 oxidation state and neutral state than Pb, which would result in element 114 being less reactive and less metallic than Pb. The relativistic effects on the 7p{sub 1/2} electrons are predicted to cause a diagonal relationship to be introduced into the periodic table. Therefore, 114{sup 2+} is expected to behave as if it were somewhere between Hg{sup 2+}, Cd{sup 2+}, and Pb{sup 2+}. In this work two commercially available extraction chromatography resins are evaluated, one for the separation of Db homologs and pseudo?homologs from each other as well as from potential interfering elements such as Group IV Rf homologs and actinides, and the other for separation of element 114 homologs. One resin, Eichrom's DGA resin, contains a N,N,N',N'-tetra-n-octyldiglycolamide extractant, which separates analytes based on both size and charge characteristics of the solvated metal species, coated on an inert support. The DGA resin was examined for Db chemical systems, and shows a high degree of selectivity for tri-, tetra-, and hexavalent metal ions in multiple acid matrices with fast kinetics. The other resin, Eichrom's Pb resin, contains a di-t-butylcyclohexano 18-crown-6 extractant with isodecanol solvent

  1. Effect of hydrofluoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted electroless etching method

    KAUST Repository

    Najar, Adel

    2012-01-01

    We report on the structural and optical properties of porous silicon nanowires (PSiNWs) fabricated using silver (Ag) ions assisted electroless etching method. Silicon nanocrystallites with sizes <5 nm embedded in amorphous silica have been observed from PSiNW samples etched using the optimum hydrofluoric acid (HF) concentration. The strongest photoluminescence (PL) signal has been measured from samples etched with 4.8 M of HF, beyond which a significant decreasing in PL emission intensity has been observed. A qualitative model is proposed for the formation of PSiNWs in the presence of Ag catalyst. This model affirms our observations in PL enhancement for samples etched using HF <4.8 M and the eventual PL reduction for samples etched beyond 4.8 M of HF concentration. The enhancement in PL signals has been associated to the formation of PSiNWs and the quantum confinement effect in the Si nanocrystallites. Compared to PSiNWs without Si-O x, the HF treated samples exhibited significant blue PL peak shift of 100 nm. This effect has been correlated to the formation of defect states in the surface oxide. PSiNWs fabricated using the electroless etching method can find useful applications in optical sensors and as anti-reflection layer in silicon-based solar cells. © 2012 American Institute of Physics.

  2. Corrosion in the presence of a complexing agent - application to the continuous determination of hydrofluoric acid in the atmosphere

    International Nuclear Information System (INIS)

    Chapron, J.

    1966-10-01

    After a presentation of the thermodynamics and kinetics involved during corrosion in the presence of a complexing agent, the first part of this report deals with the electrochemical properties of an aluminium electrode in the presence of fluoride solutions. Various physical and chemical parameters have been studied together with their influence on the aforementioned properties. From this first part are deduced the medium and the various parameters which lead to the maximum efficiency for the detection of fluorides by amperometry. The second part is an application of the results of the above work, which has made it possible to develop a cell having an original design. Its performances are described. They show that the cell has a greater sensitivity and a shorter response time than existing equipment. (author) [fr

  3. Square-wave anodic-stripping voltammetric determination of Cd, Pb, and Cu in a hydrofluoric acid solution of siliceous spicules of marine sponges (from the Ligurian Sea, Italy, and the Ross Sea, Antarctica)

    Energy Technology Data Exchange (ETDEWEB)

    Truzzi, C.; Annibaldi, A.; Illuminati, S.; Bassotti, E.; Scarponi, G. [Polytechnic University of Marche, Ancona (Italy). Department of Marine Science

    2008-09-15

    Square-wave anodic-stripping voltammetry (SWASV) was set up and optimized for simultaneous determination of cadmium, lead, and copper in siliceous spicules of marine sponges, directly in the hydrofluoric acid solution ({proportional_to}0.55 mol L{sup -1} HF, pH {proportional_to}1.9). A thin mercury-film electrode (TMFE) plated on to an HF-resistant epoxy-impregnated graphite rotating-disc support was used. The optimum experimental conditions, evaluated also in terms of the signal-to-noise ratio, were as follows: deposition potential -1100 mV vs. Ag/AgCl, KCl 3 mol L{sup -1}, deposition time 3-10 min, electrode rotation 3000 rpm, SW scan from -1100 mV to +100 mV, SW pulse amplitude 25 mV, frequency 100 Hz, {delta}E{sub step} 8 mV, t{sub step} 100 ms, t{sub wait} 60 ms, t{sub delay} 2 ms, t{sub meas} 3 ms. Under these conditions the metal peak potentials were Cd -654{+-}1 mV, Pb -458 {+-} 1 mV, Cu -198{+-}1 mV. The electrochemical behaviour was reversible for Pb, quasi-reversible for Cd, and kinetically controlled (possibly following chemical reaction) for Cu. The linearity of the response with concentration was verified up to {proportional_to}4 {mu}g L{sup -1} for Cd and Pb and {proportional_to}20 {mu}g L{sup -1} for Cu. The detection limits were 5.8 ng L{sup -1}, 3.6 ng L{sup -1}, and 4.3 ng L{sup -1} for Cd, Pb, and Cu, respectively, with t{sub d}=5 min. The method was applied for determination of the metals in spicules of two specimens of marine sponges (Demosponges) from the Portofino natural reserve (Ligurian Sea, Italy, Petrosia ficiformis) and Terra Nova Bay (Ross Sea, Antarctica, Sphaerotylus antarcticus). The metal contents varied from tens of ng g{sup -1} to {proportional_to}1 {mu}g g{sup -1}, depending on the metal considered and with significant differences between the two sponge species. (orig.)

  4. Study on Corrosion of Materials by Fluoric Acid and Silicofluoric Acid

    International Nuclear Information System (INIS)

    Park, Kun You; Kwon, Yeong Soo; Kuk, Myung Ho; Kim, Myun Sup

    1986-01-01

    The corrosion properties of 304 Stainless steel, Cupro-nickel, NiCrMo alloy in hydrofluoric acid and silicofluoric acid has been studied. The corrosion resistance of NiCrMo alloy and Cupro-nickel in hydrofluoric acid or mixed acid of hydrofluoric and sulfuric acid is excellent. Because of lower corrosion resistance of 304 Stainless steel, it would not be used for these corrosion resistant materials. The corrosion activation energy of 304 Stainless steel, Cupro-nickel and NiCrMo alloy in 40% HF solution are 42.7, 58.9 and 89.7 kJ/mol, respectively. By these values, it is assumed that the corrosion rate determining step is the chemical reaction on surface of metals. In the plastics, Teflon and polychloro tetrafluoroethylene are most excellent for corrosion resistance in hydrofluoric acid

  5. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    Science.gov (United States)

    Hankins, Matthew G [Albuquerque, NM

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  6. Vacuum-jacketed hydrofluoric acid solution calorimeter

    Science.gov (United States)

    Robie, R.A.

    1965-01-01

    A vacuum-jacketed metal calorimeter for determining heats of solution in aqueous HF was constructed. The reaction vessel was made of copper and was heavily gold plated. The calorimeter has a cooling constant of 0.6 cal-deg -1-min-1, approximately 1/4 that of the air-jacketed calorimeters most commonly used with HF. It reaches equilibrium within 10 min after turning off the heater current. Measurements of the heat of solution of reagent grade KCl(-100 mesh dried 2 h at 200??C) at a mole ratio of 1 KCl to 200 H2O gave ??H = 4198??11 cal at 25??C. ?? 1965 The American Institute of Physics.

  7. Chemical immobilisation of humic acid on silica

    NARCIS (Netherlands)

    Koopal, L.K.; Yang, Y.; Minnaard, A.J.; Theunissen, P.L.M.; Riemsdijk, W.H. van

    1998-01-01

    Immobilisation of purified Aldrich humic acid (PAHA) on aminopropyl silica and glutaraldehyde-activated aminopropyl silica has been investigated. In general the humic acid is bound to the solid by both physical and chemical bonds. The physically adsorbed HA can be released to a large extent at high

  8. Chemically milled alpha-case layer from Ti-6Al-4V alloy investment cast

    CSIR Research Space (South Africa)

    Mutombo, K

    2011-06-01

    Full Text Available The as cast Ti6Al4V, obtained after investment casting with yttria stabilized zirconia face-coat, was chemically milled using a mixture of hydrofluoric acid and nitric acid. This process removed completely the alpha-case layer. Lower hardness...

  9. Corrosion in the presence of a complexing agent - application to the continuous determination of hydrofluoric acid in the atmosphere; Corrosion en presence de complexant. - Application a la determination en continu de l'acide fluorhydrique dans l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chapron, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France)

    1966-10-01

    After a presentation of the thermodynamics and kinetics involved during corrosion in the presence of a complexing agent, the first part of this report deals with the electrochemical properties of an aluminium electrode in the presence of fluoride solutions. Various physical and chemical parameters have been studied together with their influence on the aforementioned properties. From this first part are deduced the medium and the various parameters which lead to the maximum efficiency for the detection of fluorides by amperometry. The second part is an application of the results of the above work, which has made it possible to develop a cell having an original design. Its performances are described. They show that the cell has a greater sensitivity and a shorter response time than existing equipment. (author) [French] Apres un rappel sur la thermodynamique et la cinetique de la corrosion en presence de complexant, la premiere partie du memoire est consacree a l'etude des proprietes electrochimiques de l'electrode d'aluminium, en presence de solutions de fluorure. Differents parametres physiques et chimiques ont ete etudies ainsi que leurs influences sur les dites proprietes. De cette premiere partie on en a deduit le milieu et les divers parametres a fixer de facon a obtenir un rendement optimum au vue de la detection des fluorures par amperometrie. La deuxieme partie, qui est l'application des renseignements tires du travail deja cite, a permis de mettre au point une cellule de conception nouvelle. Ses performances sont decrites. Elles indiquent une sensibilite plus grande, un temps de reponse plus court que les appareils existants. (auteur)

  10. Performance of Different Acids on Sandstone Formations

    Directory of Open Access Journals (Sweden)

    M. A. Zaman

    2013-12-01

    Full Text Available Stimulation of sandstone formations is a challenging task, which involves several chemicals and physical interactions of the acid with the formation. Some of these reactions may result in formation damage. Mud acid has been successfully used to stimulate sandstone reservoirs for a number of years. It is a mixture of hydrofluoric (HF and hydrochloric (HCl acids designed to dissolve clays and siliceous fines accumulated in the near-wellbore region. Matrix acidizing may also be used to increase formation permeability in undamaged wells. The change may be up to 50% to 100% with the mud acid. For any acidizing process, the selection of acid (Formulation and Concentration and the design (Pre-flush, Main Acid, After-flush is very important. Different researchers are using different combinations of acids with different concentrations to get the best results for acidization. Mainly the common practice is combination of Hydrochloric AcidHydrofluoric with Concentration (3% HF – 12% HCl. This paper presents the results of a laboratory investigation of Orthophosphoric acid instead of hydrochloric acid in one combination and the second combination is Fluoboric and formic acid and the third one is formic and hydrofluoric acid. The results are compared with the mud acid and the results calculated are porosity, permeability, and FESEM Analysis and Strength tests. All of these new combinations shows that these have the potential to be used as acidizing acids on sandstone formations.

  11. Study on corrosion resistance of high - entropy alloy in medium acid liquid and chemical properties

    International Nuclear Information System (INIS)

    Florea, I; Buluc, G; Florea, R M; Carcea, I; Soare, V

    2015-01-01

    High-entropy alloy is a new alloy which is different from traditional alloys. The high entropy alloys were started in Tsing Hua University of Taiwan since 1995 by Yeh et al. Consisting of a variety of elements, each element occupying a similar compared with other alloy elements to form a high entropy. We could define high entropy alloys as having approximately equal concentrations, made up of a group of 5 to 11 major elements. In general, the content of each element is not more than 35% by weight of the alloy. During the investigation it turned out that this alloy has a high hardness and is also corrosion proof and also strength and good thermal stability. In the experimental area, scientists used different tools, including traditional casting, mechanical alloying, sputtering, splat-quenching to obtain the high entropy alloys with different alloying elements and then to investigate the corresponding microstructures and mechanical, chemical, thermal, and electronic performances. The present study is aimed to investigate the corrosion resistance in a different medium acid and try to put in evidence the mechanical properties. Forasmuch of the wide composition range and the enormous number of alloy systems in high entropy alloys, the mechanical properties of high entropy alloys can vary significantly. In terms of hardness, the most critical factors are: hardness/strength of each composing phase in the alloy, distribution of the composing phases. The corrosion resistance of an high entropy alloy was made in acid liquid such as 10%HNO 3 -3%HF, 10%H 2 SO 4 , 5%HCl and then was investigated, respectively with weight loss experiment. Weight loss test was carried out by put the samples into the acid solution for corrosion. The solution was maintained at a constant room temperature. The liquid formulations used for tests were 3% hydrofluoric acid with 10% nitric acid, 10% sulphuric acid, 5% hydrochloric acid. Weight loss of the samples was measured by electronic scale. (paper)

  12. Chemical Agents

    Science.gov (United States)

    ... CR) see Riot Control Agents Digitalis Distilled mustard (HD) see Sulfur mustard E Ethylene glycol F Fentanyls and other opioids H Hydrazine Hydrofluoric acid (hydrogen fluoride) Hydrogen chloride Hydrogen cyanide (AC) Hydrogen ...

  13. Chemical polymerization of aniline in phenylphosphinic acid

    Directory of Open Access Journals (Sweden)

    NICOLETA PLESU

    2005-10-01

    Full Text Available The chemical polymerization of aniline was performed in phenylphosphinic acid (APP medium using ammonium peroxidisulfate as the oxidizing agent, at 0 ºC and 25 ºC. The yield of polyaniline (PANI was about 60–69 %. The polymerization process required an induction time 8–10 times greater than in other acids (hydrochloric, sulfuric. The average density of the obtained polymer was 1.395 g cm-3 for PANI-salt and 1.203 g cm-3 for PANI-base. The acid capacity of PANI depends on the synthesis parameters and the maximum value was 15.02 meq/g polymer. The inherent viscosity of PANI was 0.662 dl/g at aniline/oxidant molar ratios >2 and 0 ºC. The oxidation state was a function of the synthesis parameters and lay between 0.553–0.625, as determined from UV-VIS and titration with TiCl3 data. The PANI samples were characterized by measurements of their density, inherent viscosity, conductivity, acid capacity, FTIR and UV-VIS spectrum, and thermogravimetric data.

  14. Plutonium determination in solution with excess hydrofluoric acid

    International Nuclear Information System (INIS)

    Krtil, J.; Kuvik, V.; Spevackova, V.

    1975-01-01

    The determination is described of plutonium in solutions in the presence of fluoride ions resulting from the hydrolysis of PuF 6 . The method is based on reduction of Pu(VI) by excess of Fe(II) and on re-titration of Fe(II) with ceric salt. The effect of fluoride ions on plutonium determination was studied. It was found that a 3 mole excess of HF with respect to Pu decreased the results of Pu determination. The interference of fluoride ions was eliminated by a two-fold evaporation of the solution to be titrated with HNO 3 to dryness or by complex formation with boric arid. The amount of 20.50 mg Pu in the presence of a 10 mole excess of fluoride ions (17 mg HF) was determined with an error of +- 0.09 mg ). (author)

  15. Performance studies on hydrofluoric acid fumes scrubbing systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, S; Bhowmik, A; Bera, T K; Sridhar, H; Shanmugavelu, P; Muralidhara, H R [Rare Materials Project, Bhabha Atomic Research Centre, Mysore (India)

    1994-06-01

    Uranium hexafluoride gas is a major process medium for the production of nuclear fuels. Different types of scrubbers suitable for disposal of exhaust gases containing low concentration of HF/UF{sub 6} contaminants, treatment of contaminated air from the working environment of a plant and bulk quantity of HF/UF{sub 6} from storage vessels are described. 8 refs., 3 figs., 3 tabs.

  16. Chemical hazards from acid crater lakes

    Science.gov (United States)

    van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.

    2003-04-01

    Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pHfluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where volatile elements, derived from passively degassing magma, are intercepted by (sub) surface water bodies.

  17. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    Science.gov (United States)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  18. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    Science.gov (United States)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  19. Interference of ascorbic acid with chemical analytes.

    Science.gov (United States)

    Meng, Qing H; Irwin, William C; Fesser, Jennifer; Massey, K Lorne

    2005-11-01

    Ascorbic acid can interfere with methodologies involving redox reactions, while comprehensive studies on main chemistry analysers have not been reported. We therefore attempted to determine the interference of ascorbic acid with analytes on the Beckman Synchron LX20. Various concentrations of ascorbic acid were added to serum, and the serum analytes were measured on the LX20. With a serum ascorbic acid concentration of 12.0 mmol/L, the values for sodium, potassium, calcium and creatinine increased by 43%, 58%, 103% and 26%, respectively (Pascorbic acid concentration of 12.0 mmol/L, the values for chloride, total bilirubin and uric acid decreased by 33%, 62% and 83%, respectively (Pcholesterol, triglyceride, ammonia and lactate. There was no definite influence of ascorbic acid on analytical values for total CO(2), urea, glucose, phosphate, total protein, albumin, amylase, creatine kinase, creatine kinase-MB, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total iron, unbound iron-binding capacity or magnesium. Ascorbic acid causes a false increase in sodium, potassium, calcium and creatinine results and a false decrease in chloride, total bilirubin, uric acid, total cholesterol, triglyceride, ammonia and lactate results.

  20. Acute chemical pneumonitis caused by nitric acid inhalation: case report

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Hyung Shim; Lee, In Jae; Ko, Eun Young; Lee, Jae Young; Kim, Hyun Beom; Hwang, Dae Hyun; Lee, Kwan Seop; Lee, Yul; Bae, Sang Hoon [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of)

    2003-06-01

    Chemical pneumonitis induced by nitric acid inhalation is a rare clinical condition. The previously reported radiologic findings of this disease include acute permeability pulmonary edema, delayed bronchiolitis obliterans, and bronchiectasis. In very few published rare radiologic reports has this disease manifested as acute alveolar injury; we report a case of acute chemical pneumonitis induced by nitric acid inhalation which at radiography manifested as bilateral perihilar consolidation and ground-glass attenuation, suggesting acute alveolar injury.

  1. Fatty acid and cholesterol content, chemical composition and ...

    African Journals Online (AJOL)

    This study aimed to determine the fatty acid and chemical composition and cholesterol concentration of horsemeat, and to evaluate its taste acceptability by the Brazilian population. Horsemeat samples (M. longissimus dorsi) were obtained from a Paraná State slaughterhouse. The chemical composition revealed a low lipid ...

  2. Chemical consequences of irradiating nucleic acids

    International Nuclear Information System (INIS)

    Ward, J.F.

    1976-01-01

    On the basis of literature data, a discussion is presented of the DNA damage which would be produced in a cellular environment and an attempt is made to place this damage in perspective as a potential hazard in food irradiation. The topics discussed are radiation damage mechanisms, OH reactions with DNA, base products, sugar products, and evaluation of damage from irradiated nucleic acids

  3. Physico-Chemical Properties of Kaolin-Organic Acid

    Directory of Open Access Journals (Sweden)

    Yeo S.W.

    2017-01-01

    Full Text Available Soil with more than 20% of organic content is classified as organic soil in Malaysia. Contents of organic soil consist of different types of organic and inorganic matter. Each type of organic matter has its own characteristic and its effect on the properties of the soil is different. Hence, a good understanding on the effect of specific organic and inorganic matter on the physico-chemical characteristic of organic soils can serve as a guide for predicting the properties of organic soils. The main objective is to unveil the effect of organic acid on the physico-chemical properties of soil. Artificial organic soil (kaolin mixed with organic acid was utilized in order to minimize the geochemical variability of studied soil. The organic acid which consists of humic acid and fulvic acid was extracted from highly humificated plant–based compost. The effect of organic acid on the physico-chemical properties of soil was determined by varying the concentration of organic acid. The specific gravity, Atterberg limits, pH, bulk chemical composition and the functional group of kaolin-organic acid were determined. It was found that the plasticity index, specific gravity and pH value were decreased with lowered concentration of organic acid. However, the liquid limits and plastic limits were found to be increased with the concentration decrement of organic acid. The analysis of XRF on the bulk chemical composition and analysis of FTIR spectra on the functional group of artificial organic soils with different concentration have confirmed little geochemical variability between samples.

  4. Nucleic Acid Templated Reactions for Chemical Biology.

    Science.gov (United States)

    Di Pisa, Margherita; Seitz, Oliver

    2017-06-21

    Nucleic acid directed bioorthogonal reactions offer the fascinating opportunity to unveil and redirect a plethora of intracellular mechanisms. Nano- to picomolar amounts of specific RNA molecules serve as templates and catalyze the selective formation of molecules that 1) exert biological effects, or 2) provide measurable signals for RNA detection. Turnover of reactants on the template is a valuable asset when concentrations of RNA templates are low. The idea is to use RNA-templated reactions to fully control the biodistribution of drugs and to push the detection limits of DNA or RNA analytes to extraordinary sensitivities. Herein we review recent and instructive examples of conditional synthesis or release of compounds for in cellulo protein interference and intracellular nucleic acid imaging. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Mercapturic acids as biomarkers of exposure to electrophilic chemicals: applications to environmental and industrial chemicals.

    NARCIS (Netherlands)

    de Rooij, B.M.; Commandeur, J.N.M.; Vermeulen, N.P.E.

    1998-01-01

    The use of mercapturic acids (N-acetyl-L-cysteine S-conjugates, MAs) in the biological monitoring of human exposure to environmental and industrial chemicals is receiving more and more attention. Mercapturic acids (MAs) are formed from glutathione (GSH) S-conjugates via the MA-pathway. Although this

  6. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    International Nuclear Information System (INIS)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research

  7. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research.

  8. Chemical and physical structures of proteinoids and related polyamino acids

    Science.gov (United States)

    Mita, Hajime; Kuwahara, Yusuke; Nomoto, Shinya

    Studies of polyamino acid formation pathways in the prebiotic condition are important for the study of the origins of life. Several pathways of prebiotic polyamino acid formation have been reported. Heating of monoammonium malate [1] and heating of amino acids in molten urea [2] are important pathways of the prebiotic peptide formation. The former case, globular structure called proteinoid microsphere is formed in aqueous conditions. The later case, polyamino acids are formed from unrestricted amino acid species. Heating of aqueous aspargine is also interesting pathway for the prebiotic polyamino acid formation, because polyamino acid formation proceeds in aqueous condition [3]. In this study, we analyzed the chemical structure of the proteinoids and related polyamino acids formed in the above three pathways using with mass spectrometer. In addition, their physical structures are analyzed by the electron and optical microscopes, in order to determine the self-organization abilities. We discuss the relation between the chemical and the physical structures for the origins of life. References [1] Harada, K., J. Org. Chem., 24, 1662 (1959), Fox, S. W., Harada, K., and Kendrick, J., Science, 129, 1221 (1959). [2] Terasaki, M., Nomoto, S., Mita, H., and Shimoyama, A., Chem. Lett., 480 (2002), Mita, H., Nomoto, S., Terasaki, M., Shimoyama, A., and Yamamoto, Y., Int. J. Astrobiol., 4, 145 (2005). [3] Kovacs, K and Nagy, H., Nature, 190, 531 (1961), Munegumi, T., Tanikawa, N., Mita, H. and Harada, K., Viva Origino, 22, 109 (1994).

  9. A nucleic acid dependent chemical photocatalysis in live human cells

    DEFF Research Database (Denmark)

    Arian, Dumitru; Cló, Emiliano; Gothelf, Kurt V

    2010-01-01

    Only two nucleic acid directed chemical reactions that are compatible with live cells have been reported to date. Neither of these processes generate toxic species from nontoxic starting materials. Reactions of the latter type could be applied as gene-specific drugs, for example, in the treatment...

  10. Carcass properties, chemical content and fatty acid composition of ...

    African Journals Online (AJOL)

    The aim of this study was to examine carcass properties and variability in chemical content and fatty acid composition in the musculus longissimus lumborum et thoracis (MLLT) of different genotypes of pigs. Of 36 male castrated animals used in the trial, 24 were from two strains of Mangalitsa pigs (12 Swallow - bellied ...

  11. Rapid chemical analysis of allanite

    International Nuclear Information System (INIS)

    Nishiyama, Goro; Hayashi, Hiroshi

    1981-01-01

    Rapid chemical analysis of allanite was studied by atomic absorption spectrophotometry. Powdered sample was fused with mixture of sodium carbonate anhydrous and borax (4 : 1 weight) in platinum crucible and sample solution was prepared. SiO 2 , Fe 2 O 3 , Al 2 O 3 , MnO and rare earth metals were determined by atomic absorption spectrophotometry, CaO, MgO and Ce 2 O 3 by titration, ThO 2 by colorimetry, and La 2 O 3 by flame photometry respectively. For sample solution treated with hydrofluoric acid and sulfuric acid. Na 2 O and K 2 O were determined by atomic absorption spectrophotometry, TiO 2 and P 2 O 5 by colorimetry. Chemical analyses for four samples were carried out and gave consistent results. (author)

  12. Investigation of virgin coals and coals subjected to a mild acid treatment

    Energy Technology Data Exchange (ETDEWEB)

    Clark, T.M.; Evans, B.J.; Wynter, C.; Pollak, H.; Taole, S.; Radcliffe, D. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemistry

    1998-06-01

    A quantitative determination of the relative marcasite/pyrite contents in virgin coals is possible by means of {sup 57}Fe Moessbauer spectroscopy. Complications arise however, when iron-containing silicates, carbonates, or other salts are present. The application of a mild chemical treatment involving hydrofluoric acid has been employed to remove these Fe-containing phases while leaving the iron-disulfide phases unaffected. Several South African coal samples with non-iron disulfide, Fe-containing phases ranging from 18 to 30 weight percent were subjected to a hydrofluoric acid leaching at room temperature. The loss of mineral matter with HF leaching correlates well with the mineral matter residue following low temperature ashing. The {sup 57}Fe Moessbauer spectra of the resulting coal samples indicate that only FeS{sub 2} phases are present and the absence of appreciable quantities of marcasite in the coals.

  13. Chemical functionalization of hyaluronic acid for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Vasi, Ana-Maria [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. dr. docent Dimitrie Mangeron Street, 700050 Iasi (Romania); Popa, Marcel Ionel, E-mail: mipopa@ch.tuiasi.ro [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. dr. docent Dimitrie Mangeron Street, 700050 Iasi (Romania); Butnaru, Maria [“Grigore T. Popa” University of Medicine Pharmacy, Faculty of Medical Bioengineering, 9-13 Kogalniceanu Street, 700454 Iasi (Romania); Dodi, Gianina [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. dr. docent Dimitrie Mangeron Street, 700050 Iasi (Romania); SCIENT — Research Center for Instrumental Analysis, S.C. CROMATEC PLUS, 18 Sos. Cotroceni, 060114 Bucharest (Romania); Verestiuc, Liliana [“Grigore T. Popa” University of Medicine Pharmacy, Faculty of Medical Bioengineering, 9-13 Kogalniceanu Street, 700454 Iasi (Romania)

    2014-05-01

    Functionalized hyaluronic acid (HA) derivatives were obtained by ring opening mechanism of maleic anhydride (MA). FTIR and H{sup 1} NMR spectroscopy were used to confirm the chemical linkage of MA on the hyaluronic acid chains. Thermal analysis (TG-DTG and DSC) and GPC data for the new products revealed the formation of new functional groups, without significant changes in molecular weight and thermal stability. New gels based on hyaluronic acid modified derivatives were obtained by acrylic acid copolymerization in the presence of a redox initiation system. The resulted circular and interconnected pores of the gels were visualized by SEM. The release profiles of an ophthalmic model drug, pilocarpine from tested gels were studied in simulated media. Evaluation of the cytotoxicity and cell proliferation properties indicates the potential of the new systems to be used in contact with biological media in drug delivery applications. - Highlights: • New functionalized hyaluronic acid was prepared by ring opening of maleic anhydride. • Gels with circular pores based on acrylic acid copolymerization were formulated. • In vitro drug loading/release profile was evaluated in simulated ophthalmic media. • The cytotoxicity indicates the potential of derivatives to be used in vivo.

  14. Nucleic acid helix structure determination from NMR proton chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Werf, Ramon M. van der; Tessari, Marco; Wijmenga, Sybren S., E-mail: S.Wijmenga@science.ru.nl [Radboud University Nijmegen, Department of Biophysical Chemistry, Institute of Molecules and Materials (Netherlands)

    2013-06-15

    We present a method for de novo derivation of the three-dimensional helix structure of nucleic acids using non-exchangeable proton chemical shifts as sole source of experimental restraints. The method is called chemical shift de novo structure derivation protocol employing singular value decomposition (CHEOPS) and uses iterative singular value decomposition to optimize the structure in helix parameter space. The correct performance of CHEOPS and its range of application are established via an extensive set of structure derivations using either simulated or experimental chemical shifts as input. The simulated input data are used to assess in a defined manner the effect of errors or limitations in the input data on the derived structures. We find that the RNA helix parameters can be determined with high accuracy. We finally demonstrate via three deposited RNA structures that experimental proton chemical shifts suffice to derive RNA helix structures with high precision and accuracy. CHEOPS provides, subject to further development, new directions for high-resolution NMR structure determination of nucleic acids.

  15. Chitosan and chemically modified chitosan beads for acid dyes sorption

    Institute of Scientific and Technical Information of China (English)

    AZLAN Kamari; WAN SAIME Wan Ngah; LAI KEN Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan were comparatively higher than chitosan-EGDE for both acid dyes. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.

  16. Chemical dosimetry by UV spectrophotometry of aqueous ascorbic acid solutions

    International Nuclear Information System (INIS)

    Alian, A.; El-Assay, N.B.; Abdel-Rehim, F.; Amin, N.E.; McLaughlin, W.L.; Roushdy, H.

    1984-01-01

    The decrease in the ultraviolet absorption of aqueous solutions of ascorbic acid brought about by large doses of gamma radiation has been investigated as a means of developing a new chemical dosimeter. Because of spontaneous ring opening under various conditions after dissolution in water, some additives were examined as possible stabilizers against such denaturing of aqueous ascorbic acid. At an ascorbic acid concentration of 10 -4 M, either 1 to 2% glycine or 0.2 M NaCl was found to be a good stabilizer. A mechanism of radiation chemistry has been proposed based on hydroxyl radical and hydroxyl adduct intermediates, leading to dehydroascorbic acid through the ascorbate complex. The optimum dosimeter solution covers an absorbed dose range approx. 50 to 350 Gy, when measured at 264 nm wavelength. The G-values for dehydroascorbic acid production were determined to be 2.94 +- 0.33 and 2.43 +- 0.11 (100 eV) -1 , with glycine and NaCl used respectively as stabilizers. (author)

  17. Justification for Selecting Level A vs. Level B Personal Protective Equipment to Remediate a Room Containing Concentrated Acids, Bases and Radiological Constituents

    International Nuclear Information System (INIS)

    Hylko, J. M.; Thompson, A. L.; Walter, J. F.; Deecke, T. A.

    2002-01-01

    Selecting the appropriate personal protective equipment (PPE) is based on providing an adequate level of employee protection relative to the task-specific conditions and hazards. PPE is categorized into four ensembles, based on the degree of protection afforded; e.g., Levels A (most restrictive), B, C, and D (least restrictive). What is often overlooked in preparing an ensemble is that the PPE itself can create significant worker hazards; i.e., the greater the level of PPE, the greater the associated risks. Furthermore, there is confusion as to whether a more ''conservative approach'' should always be taken since Level B provides the same level of respiratory protection as Level A but less skin protection. This paper summarizes the Occupational Safety and Health Administration regulations addressing Level A versus Level B, and provides justification for selecting Level B over Level A without under-protecting the employee during a particular remediation scenario. The scenario consisted of an entry team performing (1) an initial entry into a room containing concentrated acids (e.g., hydrofluoric acid), bases, and radiological constituents; (2) sampling and characterizing container contents; and (3) retrieving characterized containers. The invasive nature of the hydrofluoric acid sampling and characterization scenario created a high potential for splash, immersion, and exposure to hazardous vapors, requiring additional skin protection. The hazards associated with this scenario and the chemical nature of hydrofluoric acid provided qualitative evidence to justify Level A. Once the hydrofluoric acid was removed from the room, PPE performance was evaluated against the remaining chemical inventory. If chemical breakthrough from direct contact was not expected to occur and instrument readings confirmed the absence of any hazardous vapors, additional skin protection afforded by wearing a vapor-tight, totally-encapsulated suit was not required. Therefore, PPE performance and

  18. Superficial chemical peeling with salicylic acid in facial dermatoses

    International Nuclear Information System (INIS)

    Bari, A.U.; Iqbal, Z.; Rahman, S.B.

    2007-01-01

    To determine the effectiveness of salicylic acid chemical peeling in common dermatological conditions affecting face in people with predominant Fitzpatrick skin type IV and V. A total of 167 patients of either gender, aged between 13 to 60 years, having some facial dermatoses (melasma, acne vulgaris, postinflammatory hyperpigmentations, freckles, fine lines and wrinkles, post-inflammatory scars, actinic keratoses, and plane facial warts) were included. A series of eight weekly hospital based peeling sessions was conducted in all patients under standardized conditions with 30% salicylic acid. Clinical improvement in different disorders was evaluated by change in MASI score, decrease in the size of affected area and % reduction in lesions count. McNemar test was applied for data analysis. Majority of the patients showed moderate to excellent response. There was 35% to 63% improvement (p< 0.05) in all dermatoses. Significant side effects, as feared in Asian skins were not observed. Chemical peeling with salicylic acid is an effective and safe treatment modality in many superficial facial dermatoses. (author)

  19. Corrosion in the presence of a complexing agent - application to the continuous determination of hydrofluoric acid in the atmosphere; Corrosion en presence de complexant. - Application a la determination en continu de l'acide fluorhydrique dans l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chapron, J. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France)

    1966-10-01

    After a presentation of the thermodynamics and kinetics involved during corrosion in the presence of a complexing agent, the first part of this report deals with the electrochemical properties of an aluminium electrode in the presence of fluoride solutions. Various physical and chemical parameters have been studied together with their influence on the aforementioned properties. From this first part are deduced the medium and the various parameters which lead to the maximum efficiency for the detection of fluorides by amperometry. The second part is an application of the results of the above work, which has made it possible to develop a cell having an original design. Its performances are described. They show that the cell has a greater sensitivity and a shorter response time than existing equipment. (author) [French] Apres un rappel sur la thermodynamique et la cinetique de la corrosion en presence de complexant, la premiere partie du memoire est consacree a l'etude des proprietes electrochimiques de l'electrode d'aluminium, en presence de solutions de fluorure. Differents parametres physiques et chimiques ont ete etudies ainsi que leurs influences sur les dites proprietes. De cette premiere partie on en a deduit le milieu et les divers parametres a fixer de facon a obtenir un rendement optimum au vue de la detection des fluorures par amperometrie. La deuxieme partie, qui est l'application des renseignements tires du travail deja cite, a permis de mettre au point une cellule de conception nouvelle. Ses performances sont decrites. Elles indiquent une sensibilite plus grande, un temps de reponse plus court que les appareils existants. (auteur)

  20. Chemical transformations associated with neutronic irradiation of telluric acid

    International Nuclear Information System (INIS)

    Bertet, M.

    1963-01-01

    The chemical transformations which arise from irradiation of telluric acid with neutrons have been studied under several experimental conditions. The effects of the reaction (n, γ ) on Te VI and of the isomeric transitions 131m Te VI → 131 Te and 129m Te VI → 129 Te, and the oxidation states of 131 I formed by β decay of 131 Te have been investigated in detail. The Szilard-Chalmers effect has been put in evidence. Retention (R) depends on the isomeric state of Rd-Te and is higher for the metastable isotopes. R increases with the time of irradiation. R seems to be independent of the medium which is used for dissolving telluric acid irradiated in the solid state. Higher values of R are found if the acid is irradiated in neutral or alkaline solution; irradiation in acid solution leads to lower values for R. Retention for 131 Te VI and 129 Te VI formed by isomeric transition depends on the pH of the solution where this disintegration occurs. For instance, with 129 Te, R is greater in 6 M NaOH (80 per cent) than in 3 M HCI (40 per cent). The relative amounts of the oxidation states of 131 I (reduced fraction (I - , IO - , I 2 ), iodate and periodate) depend on the medium, both if the acid is irradiated in the solid state and it is irradiated in solution. In the first case, the reduced fraction increases from 12 to 89 per cent when the dissolving medium is changed from neutral to 0.8 M HNO 3 . In the second case, the reduced fraction is 90 per cent in neutral or acid solution and 64 per cent in 0.5 M KOH. It has been shown, furthermore, that microamounts of Te VI are formed in certain cases. (author) [fr

  1. Emergency management of chemical weapons injuries.

    Science.gov (United States)

    Anderson, Peter D

    2012-02-01

    The potential for chemical weapons to be used in terrorism is a real possibility. Classes of chemical weapons include nerve agents, vesicants (blister agents), choking agents, incapacitating agents, riot control agents, blood agents, and toxic industrial chemicals. The nerve agents work by blocking the actions of acetylcholinesterase leading to a cholinergic syndrome. Nerve agents include sarin, tabun, VX, cyclosarin, and soman. The vesicants include sulfur mustard and lewisite. The vesicants produce blisters and also damage the upper airways. Choking agents include phosgene and chlorine gas. Choking agents cause pulmonary edema. Incapacitating agents include fentanyl and its derivatives and adamsite. Riot control agents include Mace and pepper spray. Blood agents include cyanide. The mechanism of toxicity for cyanide is blocking oxidative phosphorylation. Toxic industrial chemicals include agents such as formaldehyde, hydrofluoric acid, and ammonia.

  2. Testing and evaluation of eight decontamination chemicals

    International Nuclear Information System (INIS)

    Demmer, R.

    1994-09-01

    This report covers experimental work comparing eight different decontamination chemicals. Seven of these chemicals have some novelty, or are not currently in use at the ICPP. The eighth is a common ICPP decontamination reagent used as a baseline for effective comparison. Decontamination factors, waste generation values, and corrosion rates are tabulated for these chemicals. Recommendations are given for effective methods of non-sodium or low-sodium decontamination chemicals. The two most effective chemical for decontamination found in these test were a dilute hydrofluoric and nitric acid (HF/HNO 3 ) mixture and a fluoroboric acid solution. The fluoroboric acid solution (1 molar) was by far the most effective decontamination reagent, but suffered the problem of generating significant final calcine volume. The HF/HNO 3 solution performed a very good decontamination of the SIMCON coupons while generating only small amounts of calcine volume. Concentration variables were also tested, and optimized for these two solutions. Several oxidation/reduction decon chemical systems were also tested. These systems were similar to the TURCO 4502 and TURCO 4521 solutions used for general decontamination at the ICPP. A low sodium alternative, nitric acid/potassium permanganate, to the ''high sodium'' TURCO 4502 was tested extensively, optimized and recommended for general ICPP use. A reductive chemical solution, oxalic acid/nitric acid was also shown to have significant advantages

  3. Oral omega-3 fatty acids promote resolution in chemical peritonitis.

    Science.gov (United States)

    Chacon, Alexander C; Phillips, Brett E; Chacon, Miranda A; Brunke-Reese, Deborah; Kelleher, Shannon L; Soybel, David I

    2016-11-01

    Recent studies suggest that purified omega-3 fatty acids may attenuate acute inflammation and hasten the transition to healing. In this study, we tested the hypothesis that pretreatment with omega-3-rich fish oil (FO) would promote resolution of peritoneal inflammation through production of specific lipid mediators. C57/BL6 mice were given a daily 200-μL oral gavage of saline (CTL) or FO (1.0-1.5 g/kg/d docosahexaenoic acid and 1.3-2.0 g/kg/d eicosapentaenoic acid) for 7 d before chemical peritonitis was induced with thioglycollate. Peritoneal lavage fluid was collected before induction and at days 2 and 4 after peritonitis onset. Prostaglandin E2 (PGE2), Leukotriene B4 (LTB4), Resolvin D1 (RvD1), and the composition of immune cell populations were examined in peritoneal lavage exudates. Cells harvested from the peritoneum were assessed for macrophage differentiation markers, phagocytosis, and lipopolysaccharide-induced cytokine secretion profiles (interleukin [IL]-6, IL-10, IL-1β, TNFα). The ratio of RvD1 to pro-inflammatory PGE2 and LTB4 was increased in the peritoneal cavity of FO-supplemented animals. FO induced a decrease in the number of monocytes in the lavage fluid, with no change in the number of macrophages, neutrophils, or lymphocytes. Macrophage phagocytosis and M1/M2 messenger RNA markers were unchanged by FO with the exception of decreased PPARγ expression. FO increased ex vivo TNFα secretion after stimulation with lipopolysaccharide. Our findings provide evidence that nutraceutically relevant doses of FO supplements given before and during chemical peritonitis shift the balance of lipid mediators towards a proresolution, anti-inflammatory state without drastically altering the number or phenotype of local innate immune cell populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Anodic processes in the chemical and electrochemical etching of Si crystals in acid-fluoride solutions: Pore formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ulin, V. P.; Ulin, N. V.; Soldatenkov, F. Yu., E-mail: f.soldatenkov@mail.ioffe.ru [Ioffe Physical–Technical Institute (Russian Federation)

    2017-04-15

    The interaction of heavily doped p- and n-type Si crystals with hydrofluoric acid in the dark with and without contact with metals having greatly differing work functions (Ag and Pd) is studied. The dependences of the dissolution rates of Si crystals in HF solutions that contain oxidizing agents with different redox potentials (FeCl{sub 3}, V{sub 2}O{sub 5} and CrO{sub 3}) on the type and level of silicon doping are determined. Analysis of the experimental data suggests that valence-band holes in silicon are not directly involved in the anodic reactions of silicon oxidation and dissolution and their generation in crystals does not limit the rate of these processes. It is also shown that the character and rate of the chemical process leading to silicon dissolution in HF-containing electrolytes are determined by the interfacial potential attained at the semiconductor–electrolyte interface. The mechanism of electrochemical pore formation in silicon crystals is discussed in terms of selfconsistent cooperative reactions of nucleophilic substitution between chemisorbed fluorine anions and coordination- saturated silicon atoms in the crystal subsurface layer. A specific feature of these reactions for silicon crystals is that vacant nonbonding d{sup 2}sp{sup 3} orbitals of Si atoms, associated with sixfold degenerate states corresponding to the Δ valley of the conduction band, are involved in the formation of intermediate complexes. According to the suggested model, the pore-formation process spontaneously develops in local regions of the interface under the action of the interfacial potential in the adsorption layer and occurs as a result of the detachment of (SiF{sub 2}){sub n} polymer chains from the crystal. Just this process leads to the preferential propagation of pores along the <100> crystallographic directions. The thermodynamic aspects of pore nucleation and the effect of the potential drop across the interface, conduction type, and free-carrier concentration

  5. The multifaceted role of amino acids in chemical evolution

    Science.gov (United States)

    Strasdeit, Henry; Fox, Stefan; Dalai, Punam

    We present an overview of recent ideas about α-amino acids on the Hadean / early Archean Earth and Noachian Mars. Pertinent simulation experiments are discussed. Electrical dis-charges in early Earth's bulk, probably non-reducing atmosphere [1, 2] and in volcanic ash-gas clouds [3] are likely to have synthesized amino acids abiotically. In principle, this may have been followed by the synthesis of peptides. Different kinds of laboratory simulations have, however, revealed severe difficulties with the condensation process under presumed prebiotic conditions. It therefore appears that peptides on the early Earth were mainly di-, tri-and tetramers and slightly longer only in the case of glycine homopeptides. But even such short peptides may have shown primitive catalytic activity after complexation of metal ions to form proto-metalloenzymes. L-enantiomeric excesses (L-ee) of meteoritic amino acids were possibly involved in the origin of biohomochirality [4, 5]. This idea also faces some problems, mainly dilution of the amino acids on Earth and a resulting low overall L-ee. However, as yet unknown reactions might exist that are highly enantioselective even under such unfavorable conditions, perhaps by a combination of autocatalysis and inhibition (compare the Soai reaction). Primor-dial volcanic islands are prebiotically interesting locations. At their hot coasts, solid sea salt probably embedded amino acids [6]. Our laboratory experiments showed that further heating of the salt crusts, simulating the vicinity of lava streams, produced pyrroles among other prod-ucts. Pyrroles are building blocks of biomolecules such as bilins, chlorophylls and heme. Thus, an abiotic route from amino acids to the first photoreceptor and electron-transfer molecules might have existed. There is no reason to assume that the chemical evolutionary processes described above were singular events restricted to Earth and Mars. In fact, they might take place even today on terrestrial exoplanets

  6. Chemical polishing of partially oxidized T-111 alloy

    International Nuclear Information System (INIS)

    Teaney, P.E.

    1974-01-01

    The specimens were pressure-mounted in Bakelite and ground through 600 grit on silicon carbide papers. The specimens were rough-polished on a vibratory polisher for 4 to 6 h, using a water slurry of one micron alumina on Texmet, followed by 0.3-μ alumina on Texmet overnight. Final polishing was accomplished by continuous swabbing with a chemical polish. A chemical polish consisting of ten parts lactic acid, four parts nitric acid, and four parts hydrofluoric acid worked well for the T-111 parent material specimens; however, in the partially oxidized specimens, considerable pitting and staining occurred in the oxygen-affected zone and in the transition zone between the oxygen-affected zone and the parent material. A chemical polish was developed for the partially oxidized specimens by adjusting the ratio of the acids to ten parts lactic acid, two parts nitric acid, and two parts hydrofluoric acid. This slowed the chemical attack on the oxygen-affected zone considerably and, with continuous swabbing, the pitting and stain could be avoided. The specimens were rinsed and checked occasionally on the metallograph to determine when the proper polish had been obtained. Some specimens required intermittent polishing times up to 1 / 2 hour. No relationship could be established between the oxygen content of the specimen and the time required for chemical polishing in the partially oxidized specimens. However, the microstructure of the transition zone was the most difficult to obtain, and specimens with uniform reaction zones across the width of the specimen polished quicker than those with the transition zone

  7. Novel Abscisic Acid Antagonists Identified with Chemical Array Screening.

    Science.gov (United States)

    Ito, Takuya; Kondoh, Yasumitsu; Yoshida, Kazuko; Umezawa, Taishi; Shimizu, Takeshi; Shinozaki, Kazuo; Osada, Hiroyuki

    2015-11-01

    Abscisic acid (ABA) signaling is involved in multiple processes in plants, such as water stress control and seed dormancy. Major regulators of ABA signaling are the PYR/PYL/RCAR family receptor proteins, group A protein phosphatases 2C (PP2Cs), and subclass III of SNF1-related protein kinase 2 (SnRK2). Novel ABA agonists and antagonists to modulate the functions of these proteins would not only contribute to clarification of the signaling mechanisms but might also be used to improve crop yields. To obtain small molecules that interact with Arabidopsis ABA receptor PYR1, we screened 24 275 compounds from a chemical library at the RIKEN Natural Products Depository by using a chemical array platform. Subsequent SnRK2 and PP2C assays narrowed down the candidates to two molecules. One antagonized ABA in a competitive manner and inhibited the formation of the PYR1-ABA-PP2C ternary complex. These compounds might have potential as bioprobes to analyze ABA signaling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Uniform nano-ripples on the sidewall of silicon carbide micro-hole fabricated by femtosecond laser irradiation and acid etching

    Energy Technology Data Exchange (ETDEWEB)

    Khuat, Vanthanh [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Electronics and Information Engineering, Xi' an Jiaotong University, No. 28, Xianning West Road, Xi' an 710049 (China); Le Quy Don Technical University, No. 100, Hoang Quoc Viet Street, Hanoi 7EN-248 (Viet Nam); Chen, Tao; Gao, Bo; Si, Jinhai, E-mail: jinhaisi@mail.xjtu.edu.cn; Ma, Yuncan; Hou, Xun [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Electronics and Information Engineering, Xi' an Jiaotong University, No. 28, Xianning West Road, Xi' an 710049 (China)

    2014-06-16

    Uniform nano-ripples were observed on the sidewall of micro-holes in silicon carbide fabricated by 800-nm femtosecond laser and chemical selective etching. The morphology of the ripple was analyzed using scanning electronic microscopy. The formation mechanism of the micro-holes was attributed to the chemical reaction of the laser affected zone with mixed solution of hydrofluoric acid and nitric acid. The formation of nano-ripples on the sidewall of the holes could be attributed to the standing wave generated in z direction due to the interference between the incident wave and the reflected wave.

  9. Not All Children with Cystic Fibrosis Have Abnormal Esophageal Neutralization during Chemical Clearance of Acid Reflux.

    Science.gov (United States)

    Woodley, Frederick W; Moore-Clingenpeel, Melissa; Machado, Rodrigo Strehl; Nemastil, Christopher J; Jadcherla, Sudarshan R; Hayes, Don; Kopp, Benjamin T; Kaul, Ajay; Di Lorenzo, Carlo; Mousa, Hayat

    2017-09-01

    Acid neutralization during chemical clearance is significantly prolonged in children with cystic fibrosis, compared to symptomatic children without cystic fibrosis. The absence of available reference values impeded identification of abnormal findings within individual patients with and without cystic fibrosis. The present study aimed to test the hypothesis that significantly more children with cystic fibrosis have acid neutralization durations during chemical clearance that fall outside the physiological range. Published reference value for acid neutralization duration during chemical clearance (determined using combined impedance/pH monitoring) was used to assess esophageal acid neutralization efficiency during chemical clearance in 16 children with cystic fibrosis (3 to chemical clearance exceeded the upper end of the physiological range in 9 of 16 (56.3%) children with and in 3 of 16 (18.8%) children without cystic fibrosis ( p =0.0412). The likelihood ratio for duration indicated that children with cystic fibrosis are 2.1-times more likely to have abnormal acid neutralization during chemical clearance, and children with abnormal acid neutralization during chemical clearance are 1.5-times more likely to have cystic fibrosis. Significantly more (but not all) children with cystic fibrosis have abnormally prolonged esophageal clearance of acid. Children with cystic fibrosis are more likely to have abnormal acid neutralization during chemical clearance. Additional studies involving larger sample sizes are needed to address the importance of genotype, esophageal motility, composition and volume of saliva, and gastric acidity on acid neutralization efficiency in cystic fibrosis children.

  10. Green chemicals : A Kinetic Study on the Conversion of Glucose to Levulinic Acid

    NARCIS (Netherlands)

    Girisuta, B.; Janssen, L.P.B.M.; Heeres, H.J.

    2006-01-01

    Levulinic acid has been identified as a promising green, biomass derived platform chemical. A kinetic study on one of the key steps in the conversion of biomass to levulinic acid, i.e., the acid catalysed decomposition of glucose to levulinic acid has been performed. The experiments were performed

  11. Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

    Science.gov (United States)

    Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana

    2015-01-01

    OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845

  12. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    Science.gov (United States)

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Chemical evolution studies: the radiolysis and thermal decomposition of malonic acid

    International Nuclear Information System (INIS)

    Cruz-Castaneda, J.; Negron-Mendoza, A.; Heredia, A.; Ramos-Bernal, S.; Villafane-Barajas, S.; Frias, D.; Colin-Garcia, M.

    2015-01-01

    In the context of chemical evolution a simulation of a hydrothermal vent was performed. The thermolysis and radiolysis of malonic acid in aqueous solution were studied. The thermolysis was done by heating the samples (95 deg C) and radiolysis using gamma radiation. Products were identified by gas chromatography and gas chromatography-mass spectrometry. The thermal treatment produced acetic acid and CO 2 . The radiolysis experiments yield carbon dioxide, acetic acid, and di- and tricarboxylic acids. A theoretical model of the chemical process occurring under irradiation was developed; this was able to reproduce formation of products and the consumption of malonic acid. (author)

  14. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  15. Mass transfer modeling on the separation of tantalum and niobium from dilute hydrofluoric media through a hollow fiber supported liquid membrane

    International Nuclear Information System (INIS)

    Buachuang, Duenphen; Ramakul, Prakorn; Leepipatpiboon, Natchanun; Pancharoen, Ura

    2011-01-01

    Highlights: → Simultaneous separation of tantalum and niobium from the mixture solution. → An extraction through a hollow fiber supported liquid membrane (HFSLM). → The effect on tantalum removal found from Aliquat 336. → The mathematical model focusing on the extraction side of the liquid membrane system was presented. → The mass transfer coefficients of the aqueous feed (k i ) and the organic membrane phase (k m ) for the system were estimated as 1.19 x 10 -5 and 1.39 x 10 -7 cm/s, respectively. → Experimental data and theoretical values were found to be in good agreement when the concentration of Aliquat336 in the membrane phase was below 4% (v/v). - Abstract: The separation of a mixture of tantalum and niobium in dilute hydrofluoric media via hollow fiber supported liquid membrane (HFSLM) was examined. Quaternary ammonium salt (Aliquat336) diluted in kerosene was used as a carrier. The various effects on the transport and separation of tantalum and niobium were studied: concentration of hydrofluoric acid in the feed solution, concentration of the carrier (Aliquat336) in the membrane phase, types of stripping solutions (NaClO 4 , thiourea and HCl) and their concentration. The extraction of tantalum in the membrane phase from 0.3 M hydrofluoric acid (HF) by 3% (v/v) Aliquat336 was achieved by leaving niobium in the feed solution. Quantitative recovery of tantalum was achieved by 0.2 M NaClO 4 . Furthermore, a mathematical model focusing on the extraction side of the liquid membrane system was presented in order to predict the concentration of tantalum at different times. The mass transfer coefficients of the aqueous feed (k i ) and the organic membrane phase (k m ) were estimated as 1.19 x 10 -5 and 1.39 x 10 -7 cm/s, respectively. Therefore, the mass transfer limiting step is the diffusion of tantalum-Aliquat336 through the liquid membrane. Moreover, mass transfer modeling was performed and the validity of the developed model evaluated. Experimental

  16. Mass transfer modeling on the separation of tantalum and niobium from dilute hydrofluoric media through a hollow fiber supported liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Buachuang, Duenphen [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Ramakul, Prakorn [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000 (Thailand); Leepipatpiboon, Natchanun [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Pancharoen, Ura, E-mail: ura.p.@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand)

    2011-09-29

    Highlights: > Simultaneous separation of tantalum and niobium from the mixture solution. > An extraction through a hollow fiber supported liquid membrane (HFSLM). > The effect on tantalum removal found from Aliquat 336. > The mathematical model focusing on the extraction side of the liquid membrane system was presented. > The mass transfer coefficients of the aqueous feed (k{sub i}) and the organic membrane phase (k{sub m}) for the system were estimated as 1.19 x 10{sup -5} and 1.39 x 10{sup -7} cm/s, respectively. > Experimental data and theoretical values were found to be in good agreement when the concentration of Aliquat336 in the membrane phase was below 4% (v/v). - Abstract: The separation of a mixture of tantalum and niobium in dilute hydrofluoric media via hollow fiber supported liquid membrane (HFSLM) was examined. Quaternary ammonium salt (Aliquat336) diluted in kerosene was used as a carrier. The various effects on the transport and separation of tantalum and niobium were studied: concentration of hydrofluoric acid in the feed solution, concentration of the carrier (Aliquat336) in the membrane phase, types of stripping solutions (NaClO{sub 4}, thiourea and HCl) and their concentration. The extraction of tantalum in the membrane phase from 0.3 M hydrofluoric acid (HF) by 3% (v/v) Aliquat336 was achieved by leaving niobium in the feed solution. Quantitative recovery of tantalum was achieved by 0.2 M NaClO{sub 4}. Furthermore, a mathematical model focusing on the extraction side of the liquid membrane system was presented in order to predict the concentration of tantalum at different times. The mass transfer coefficients of the aqueous feed (k{sub i}) and the organic membrane phase (k{sub m}) were estimated as 1.19 x 10{sup -5} and 1.39 x 10{sup -7} cm/s, respectively. Therefore, the mass transfer limiting step is the diffusion of tantalum-Aliquat336 through the liquid membrane. Moreover, mass transfer modeling was performed and the validity of the

  17. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  18. Soil microbial community responses to acid exposure and neutralization treatment.

    Science.gov (United States)

    Shin, Doyun; Lee, Yunho; Park, Jeonghyun; Moon, Hee Sun; Hyun, Sung Pil

    2017-12-15

    Changes in microbial community induced by acid shock were studied in the context of potential release of acids to the environment due to chemical accidents. The responses of microbial communities in three different soils to the exposure to sulfuric or hydrofluoric acid and to the subsequent neutralization treatment were investigated as functions of acid concentration and exposure time by using 16S-rRNA gene based pyrosequencing and DGGE (Denaturing Gradient Gel Electrophoresis). Measurements of soil pH and dissolved ion concentrations revealed that the added acids were neutralized to different degrees, depending on the mineral composition and soil texture. Hydrofluoric acid was more effectively neutralized by the soils, compared with sulfuric acid at the same normality. Gram-negative ß-Proteobacteria were shown to be the most acid-sensitive bacterial strains, while spore-forming Gram-positive Bacilli were the most acid-tolerant. The results of this study suggest that the Gram-positive to Gram-negative bacterial ratio may serve as an effective bio-indicator in assessing the impact of the acid shock on the microbial community. Neutralization treatments helped recover the ratio closer to their original values. The findings of this study show that microbial community changes as well as geochemical changes such as pH and dissolved ion concentrations need to be considered in estimating the impact of an acid spill, in selecting an optimal remediation strategy, and in deciding when to end remedial actions at the acid spill impacted site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evaluation of the physico-chemical properties of acid thinned ...

    African Journals Online (AJOL)

    From the investigation, the acid modification of cassava starch at 60°C with 0.1M hydrochloric acid solutions for 1hr and 2hr gave pastes that are stable, and have workable viscosities and can form gel in food processing. Therefore, the results suggest that they are suitable for the food industry as food emulsifiers/stabilizers.

  20. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations

    Science.gov (United States)

    Cory, Rose M.; McKnight, Diane M.; Chin, Yu-Ping; Miller, Penney; Jaros, Chris L.

    2007-12-01

    Dissolved organic matter (DOM) originating from the extensive Arctic tundra is an important source of organic material to the Arctic Ocean. Chemical characteristics of whole water dissolved organic matter (DOM) and the fulvic acid fraction of DOM were studied from nine surface waters in the Arctic region of Alaska to gain insight into the extent of microbial and photochemical transformation of this DOM. All the fulvic acids had a strong terrestrial/higher plant signature, with uniformly depleted δ13C values of -28‰, and low fluorescence indices around 1.3. Several of the measured chemical characteristics of the Arctic fulvic acids were related to water residence time, a measure of environmental exposure to sunlight and microbial activity. For example, fulvic acids from Arctic streams had higher aromatic contents, higher specific absorbance values, lower nitrogen content, lower amino acid-like fluorescence and were more depleted in δ15N relative to fulvic acids isolated from lake and coastal surface waters. The differences in the nitrogen signature between the lake and coastal fulvic acids compared to the stream fulvic acids indicated that microbial contributions to the fulvic acid pool increased with increasing water residence time. The photo-lability of the fulvic acids was positively correlated with water residence time, suggesting that the fulvic acids isolated from source waters with larger water residence times (i.e., lakes and coastal waters) have experienced greater photochemical degradation than the stream fulvic acids. In addition, many of the initial differences in fulvic acid chemical characteristics across the gradient of water residence times were consistent with changes observed in fulvic acid photolysis experiments. Taken together, results from this study suggest that photochemical processes predominantly control the chemical character of fulvic acids in Arctic surface waters. Our findings show that hydrologic transport in addition to

  1. Reduction of trace quantities of chromium(VI by strong acids

    Directory of Open Access Journals (Sweden)

    Pezzin Sérgio H

    2004-01-01

    Full Text Available The chemical behavior of Cr(VI at low concentrations (10-4 to 10-7 mol L-1 in several strong acids was studied using high specific activity 51Cr(VI as a tracer. The speciation of the products from these systems was carried out by ion exchange chromatography with stepwise elution. The results show that trace quantities of Cr(VI, monitored by means of radiochromium (51Cr, are reduced in the presence of mineral acids such as perchloric, hydrochloric, hydrofluoric, sulfuric, nitric and trifluoromethanesulfonic acids, even in the absence of conventional reducing agents, producing different measureable Cr(III species, depending on the acid anion. Detailed studies of the reduction of low concentrations of Cr(VI with nitric acid have shown that the relative rate of reduction increases as the concentration of the acid increases or as the concentration of the Cr(VI decreases.

  2. Boronic acid-based chemical sensors for saccharides.

    Science.gov (United States)

    Zhang, Xiao-Tai; Liu, Guang-Jian; Ning, Zhang-Wei; Xing, Guo-Wen

    2017-11-27

    During the past decades, the interaction between boronic acids-functionalized sensors and saccharides is of great interest in the frontier domain of the interdiscipline concerning both biology and chemistry. Various boronic acid-based sensing systems have been developed to detect saccharides and corresponding derivatives in vitro as well as in vivo, which embrace unimolecular sensors, two-component sensing ensembles, functional assemblies, and boronic acid-loaded nanomaterials or surfaces. New sensing strategies emerge in endlessly with excellent selectivity and sensitivity. In this review, several typical sensing systems were introduced and some promising examples were highlighted to enable the deep insight of saccharides sensing on the basis of boronic acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2004-05-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  4. Vulnerability assessment of chemical industry facilities in South Korea based on the chemical accident history

    Science.gov (United States)

    Heo, S.; Lee, W. K.; Jong-Ryeul, S.; Kim, M. I.

    2016-12-01

    The use of chemical compounds are keep increasing because of their use in manufacturing industry. Chemical accident is growing as the consequence of the chemical use increment. Devastating damages from chemical accidents are far enough to aware people's cautious about the risk of the chemical accident. In South Korea, Gumi Hydrofluoric acid leaking accident triggered the importance of risk management and emphasized the preventing the accident over the damage reducing process after the accident occurs. Gumi accident encouraged the government data base construction relate to the chemical accident. As the result of this effort Chemical Safety-Clearing-house (CSC) have started to record the chemical accident information and damages according to the Harmful Chemical Substance Control Act (HCSC). CSC provide details information about the chemical accidents from 2002 to present. The detail informations are including title of company, address, business type, accident dates, accident types, accident chemical compounds, human damages inside of the chemical industry facilities, human damage outside of the chemical industry facilities, financial damages inside of the chemical industry facilities, and financial damages outside of the chemical industry facilities, environmental damages and response to the chemical accident. Collected the chemical accident history of South Korea from 2002 to 2015 and provide the spatial information to the each accident records based on their address. With the spatial information, compute the data on ArcGIS for the spatial-temporal analysis. The spatial-temporal information of chemical accident is organized by the chemical accident types, damages, and damages on environment and conduct the spatial proximity with local community and environmental receptors. Find the chemical accident vulnerable area of South Korea from 2002 to 2015 and add the vulnerable area of total period to examine the historically vulnerable area from the chemical accident in

  5. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2013-01-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions

  6. Fatty acid composition and its association with chemical and sensory analysis of boar taint.

    Science.gov (United States)

    Liu, Xiaoye; Trautmann, Johanna; Wigger, Ruth; Zhou, Guanghong; Mörlein, Daniel

    2017-09-15

    A certain level of disagreement between the chemical analysis of androstenone and skatole and the human perception of boar taint has been found in many studies. Here we analyze whether the fatty acid composition can explain such inconsistency between sensory evaluation and chemical analysis of boar taint compounds. Therefore, back fat samples (n=143) were selected according to their sensory evaluation by a 10-person sensory panel, and the chemical analysis (stable isotope dilution analysis with headspace solid-phase microextraction and gas chromatography-mass spectrometry) of androstenone and skatole. Subsequently a quantification of fatty acids using gas chromatography-flame ionization detection was conducted. The correlation analyses revealed that several fatty acids are significantly correlated with androstenone, skatole, and the sensory rating. However, multivariate analyses (principal component analysis) revealed no explanation of the fatty acid composition with respect to the (dis-)agreement between sensory and chemical analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Formation of nitric acid hydrates - A chemical equilibrium approach

    Science.gov (United States)

    Smith, Roland H.

    1990-01-01

    Published data are used to calculate equilibrium constants for reactions of the formation of nitric acid hydrates over the temperature range 190 to 205 K. Standard enthalpies of formation and standard entropies are calculated for the tri- and mono-hydrates. These are shown to be in reasonable agreement with earlier calorimetric measurements. The formation of nitric acid trihydrate in the polar stratosphere is discussed in terms of these equilibrium constants.

  8. Contribution to the study of the molecular interactions of gaseous hydrofluoric acid

    International Nuclear Information System (INIS)

    Ostorero, Jean

    1972-01-01

    The experimental study is based on measurements of gaseous viscosity coefficients and on the pure rotational spectrum of HF perturbed by F 2 at pressures up to 200 Bar. The study of viscosity is made with two apparatuses: a capillary viscometer (data on monomeric HF) and a rotating cylinder viscometer (data on mono and polymeric HF, and seven binary gaseous mixtures HF-X (X = He, Ar, N 2 , F 2 , CO 2 , ClF 3 , HCl). The experimental results are used as a criterion of validity for the different interaction models for polar gases found in the literature. The two remaining models are: 1) DANON and AMDUR; 2) MONCHICK and MASON. The viscosity data of mixtures give the values of the intermolecular parameters (ε 0 , σ 0 ) of the potential isotropic part. A semi quantum calculus improves slightly the correlation in the case of the model proposed by MONCHICK and MASON. The interpretation of the pressure viscosity data of HF gives the parameters values (e, o) for the dimer and the cyclic hexamer in the vapor phase. The vanishing of the R 0 rotation line of the HF spectrum perturbed by F 2 is qualitatively interpreted as the influence of the anisotropic part of the intermolecular potential. (author) [fr

  9. A study of the anomalous behaviour of the glass electrode in solutions containing hydrofluoric acid

    DEFF Research Database (Denmark)

    Sørensen, Emil; Lundgaard, T.

    1965-01-01

    A defined surface hydration of the glass electrode is secured by pre-treatment with 0.1 N HF followed by rinsing with pure 0.1 N HCl for a few minutes. On subsequent contact with 0.1 N HCl containing HF, the electrode potential shows a change which is determined by the [HF]. The immediate reaction...... is an adsorption of HF by the glass surface. This is followed, at [HF] higher than 0.01 N, by the substitution of two F− for OH− per Si atom. With increasing HF the attack on the Si-O-Si bonds becomes severe, but it can be tolerated to a considerable degree because the newly formed surface is identical...

  10. Hydrofluoric acid burn in a child from a compressed air duster.

    Science.gov (United States)

    Moreno, Claudia; Beierle, Elizabeth A

    2007-01-01

    Abuse of fluorinated hydrocarbons is on the rise, especially among the adolescent population. These products are potentially hazardous and pose substantial risks when abused. The psychosocial aspects related to inhalant abuse, and the treatment of adolescents with inhalant injuries is unique. We retrospectively reviewed our experience with burns from these products. We present a case of a 12-year-old girl who suffered first- and second-degree burns to her face, neck, shoulder, and chest during an episode of recreational inhalant abuse with 1,1-difluoroethane from an aerosolized computer cleaner. This is one of the youngest cases reported in literature with such burns from questionable fluorinated hydrocarbon abuse. Because of the accessible nature of these compounds around homes, schools, and offices, it is critical for health care providers to have an awareness of the potential hazards and devastating consequences of their abuse. We propose an approach to the care of these patients that provides a focus on both prevention and attention to mental health.

  11. High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation.

    Science.gov (United States)

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Wang, Yongzhong; Chen, Rong

    2013-03-01

    An etching method for preparing high-quality fiber-optic sensors using a buffered etchant with ultrasonic agitation is proposed. The effects of etching conditions on the etch rate and surface morphology of the etched fibers are investigated. The effect of surface roughness is discussed on the fibers' optical properties. Linear etching behavior and a smooth fiber surface can be repeatedly obtained by adjusting the ultrasonic power and etchant pH. The fibers' spectral quality is improved as the ratio of the pit depth to size decreases, and the fibers with smooth surfaces are more sensitive to a bacterial suspension than those with rough surfaces.

  12. Vinyl ether hydrolysis. VII. Isotope effects on catalysis by aqueous hydrofluoric acid

    International Nuclear Information System (INIS)

    Kresge, A.J.; Chen, H.J.; Chiang, Y.

    1977-01-01

    Comparison of rates of hydrolysis of three vinyl ethers catalyzed by HF in H 2 O and DF in D 2 O at 25 0 C gives primary isotope effects in the range k/sub H//k/sub D/ = 3.3 to 3.5. The unexpectedly small size of these effects may be attributed to strong, ω = 1325 to 1450 cm -1 , hydrogenic bending vibrations in the proton transfer transition states of these reactions along with the lack of compensatory bending vibrations in the diatomic proton donor

  13. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-01-01

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method

  14. Chemical modification of nanocellulose with canola oil fatty acid methyl ester

    Science.gov (United States)

    Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark

    2017-01-01

    Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...

  15. Impact of acid atmospheric deposition on soils : quantification of chemical and hydrologic processes

    NARCIS (Netherlands)

    Grinsven, van J.J.M.

    1988-01-01

    Atmospheric deposition of SO x , NOx and NHx will cause major changes in the chemical composition of solutions in acid soils, which may affect the biological functions of the soil. This thesis deals with quantification of soil acidification by means of chemical

  16. Techno-economic assessment of the production of bio-based chemicals from glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Gangarapu, S.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2012-01-01

    In this review, possible process steps for the production of bio-based industrial chemicals from glutamic acid are described, including a techno-economic assessment of all processes. The products under investigation were those that were shown to be synthesized from glutamic acid on lab-scale, namely

  17. Radiation-chemical formation of acids in polyvinyl butyral films with chlorinated additives

    International Nuclear Information System (INIS)

    Kriminiskaya, Z.K.

    1993-01-01

    Radiochromic indicators are commonly produced by reacting an indicator dye with an acid formed inside a polymer by irradiation. Halogenated and unhalogenated polymers were used, the latter containing halogenated organics. It was therefore of interest to study the formation of acid in polyvinyl butyral (PVD) with addition of a halogenated compound. Yields were measured of radiation-chemical acid formation in PVB films containing chloral hydrate and hexachloroethane. 5 refs., 1 fig., 2 tabs

  18. Chemical Sciences A comparative study of triglyceride and fatty acid ...

    African Journals Online (AJOL)

    Triglyceride and fatty acid composition were determined for palm oils from three different oil palm plantations in South-Eastern Nigeria. Each of the plantations belong to slightly different vegetation belts. The red fruits if the Tenera variety exhibited significant variations (P < 0.5) across the locations. Much of the variations ...

  19. Effects of sodium lactate and lactic acid on chemical, microbiological ...

    African Journals Online (AJOL)

    Administrator

    2011-09-19

    Sep 19, 2011 ... 2Laboratory of Enzymes and Bioconversion, Road of Soukra, B.P.W, ... opportunities for the poultry industrial production for using efficient, ... In industry, marinades are based on weak acids ... cost natural substrates, this study postulates that LA and ..... Furthermore, SL is widely available, economic and.

  20. Chemical aspects of peracetic acid based wastewater disinfection ...

    African Journals Online (AJOL)

    Peracetic acid (PAA) has been studied for wastewater disinfection applications for some 30 years and has been shown to be an effective disinfectant against many indicator microbes, including bacteria, viruses, and protozoa. One of the key advantages compared to, e.g., chlorine is the lack of harmful disinfection ...

  1. Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Frank H.; Riepl, Hubert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Maurer, Till [Boehringer Ingelheim Pharma GmbH and Co. KG, Analytical Sciences Department (Germany); Gronwald, Wolfram [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Neidig, Klaus-Peter [Bruker BioSpin GmbH, Software Department (Germany); Kalbitzer, Hans Robert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany)], E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de

    2007-12-15

    Protein-protein interactions are often studied by chemical shift mapping using solution NMR spectroscopy. When heteronuclear data are available the interaction interface is usually predicted by combining the chemical shift changes of different nuclei to a single quantity, the combined chemical shift perturbation {delta}{delta}{sub comb}. In this paper different procedures (published and non-published) to calculate {delta}{delta}{sub comb} are examined that include a variety of different functional forms and weighting factors for each nucleus. The predictive power of all shift mapping methods depends on the magnitude of the overlap of the chemical shift distributions of interacting and non-interacting residues and the cut-off criterion used. In general, the quality of the prediction on the basis of chemical shift changes alone is rather unsatisfactory but the combination of chemical shift changes on the basis of the Hamming or the Euclidian distance can improve the result. The corrected standard deviation to zero of the combined chemical shift changes can provide a reasonable cut-off criterion. As we show combined chemical shifts can also be applied for a more reliable quantitative evaluation of titration data.

  2. Changes in amino acid profile of alfalfa silage preserved by chemical and biological additives during fermentation

    Directory of Open Access Journals (Sweden)

    Jaroslava Michálková

    2009-01-01

    Full Text Available Changes in amino acid profile of alfalfa silage preserved with chemical or biological additives were studied in fresh and wilted silage. The chemical additive was formic acid and the biological additive consisted of Lactobacillus rhamnosus, L. plantarum, L. brevis, L. buchneri and Pediococcus pentosaceus. Second cut alfalfa (Medicago sativa L. was harvested at the bloom stage, ensiled in mini silos (15 dm3 and fermented at 20–23 °C for 12 weeks. The dry matter of the fresh silage was 228 g . kg−1 and 281.6 g . kg−1 for the wilted before ensiling. The amino acid content was estimated by using an automatic amino acid analyzer AAA (INGOS Prague. The results of the experiments indicated that amino acid breakdown was inhibited by increased dry matter and the use of chemical and biological additive. Additionally, the content of amino acids was found to change in relation to the degree of wilting and formic acid treatment yielded the lowest amino acid breakdown. The amino acid breakdown was also reduced by biological preservative especially in the silage with a higher level of dry matter content.

  3. Acid-resistant organic coatings for the chemical industry: a review

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria Grundahl

    2017-01-01

    Industries that work with acidic chemicals in their processes need to make choices on how to properly contain the substances and avoid rapid corrosion of equipment. Certain organic coatings and linings can be used in such environments, either to protect vulnerable construction materials, or......, in combination with fiber reinforcement, to replace them. However, degradation mechanisms of organic coatings in acid service are not thoroughly understood and relevant quantitative investigations are scarce. This review describes the uses and limitations of acid-resistant coatings in the chemical industry...

  4. Artificial specific binders directly recovered from chemically modified nucleic acid libraries.

    Science.gov (United States)

    Kasahara, Yuuya; Kuwahara, Masayasu

    2012-01-01

    Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i) the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii) technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii) ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.

  5. Artificial Specific Binders Directly Recovered from Chemically Modified Nucleic Acid Libraries

    Directory of Open Access Journals (Sweden)

    Yuuya Kasahara

    2012-01-01

    Full Text Available Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.

  6. Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana.

    Science.gov (United States)

    Benson, Chantel L; Kepka, Michal; Wunschel, Christian; Rajagopalan, Nandhakishore; Nelson, Ken M; Christmann, Alexander; Abrams, Suzanne R; Grill, Erwin; Loewen, Michele C

    2015-05-01

    Abscisic acid (ABA) is a phytohormone known to mediate numerous plant developmental processes and responses to environmental stress. In Arabidopsis thaliana, ABA acts, through a genetically redundant family of ABA receptors entitled Regulatory Component of ABA Receptor (RCAR)/Pyrabactin Resistant 1 (PYR1)/Pyrabactin Resistant-Like (PYL) receptors comprised of thirteen homologues acting in concert with a seven-member set of phosphatases. The individual contributions of A. thaliana RCARs and their binding partners with respect to specific physiological functions are as yet poorly understood. Towards developing efficacious plant growth regulators selective for specific ABA functions and tools for elucidating ABA perception, a panel of ABA analogs altered specifically on positions around the ABA ring was assembled. These analogs have been used to probe thirteen RCARs and four type 2C protein phosphatases (PP2Cs) and were also screened against representative physiological assays in the model plant Arabidopsis. The 1'-O methyl ether of (S)-ABA was identified as selective in that, at physiologically relevant levels, it regulates stomatal aperture and improves drought tolerance, but does not inhibit germination or root growth. Analogs with the 7'- and 8'-methyl groups of the ABA ring replaced with bulkier groups generally retained the activity and stereoselectivity of (S)- and (R)-ABA, while alteration of the 9'-methyl group afforded an analog that substituted for ABA in inhibiting germination but neither root growth nor stomatal closure. Further in vitro testing indicated differences in binding of analogs to individual RCARs, as well as differences in the enzyme activity resulting from specific PP2Cs bound to RCAR-analog complexes. Ultimately, these findings highlight the potential of a broader chemical genetics approach for dissection of the complex network mediating ABA-perception, signaling and functionality within a given species and modifications in the future design

  7. Differences in chemical properties of humic acids depending on their origin

    Energy Technology Data Exchange (ETDEWEB)

    Kribek, B

    1978-01-01

    Humic acids of soils are characterized by high content of nitrogen and ash and low molecular mass. The molecular mass of humic acids of peat is high, while the nitrogen and ash residue in them are small. The humic acids of dirt occupy an intermediate position. For the caustobioliths, a high content of carbon, low nitrogen and ash residue and demethylation of the structure are characteristic. Differences in the chemical properties of humic acids are determined mainly by differences in the chemical composition of fractions with high molecular weight. The specific nature of chemical properties of the humic substances governed by the origin makes it possible to use them to solve questions of paleogeography and to investigate the degree of diagenesis of coals.

  8. Acid-base chemistry of white wine: analytical characterisation and chemical modelling.

    Science.gov (United States)

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic "wine" especially adapted for testing.

  9. Phthalic Acid Chemical Probes Synthesized for Protein-Protein Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Chin-Jen Wu

    2013-06-01

    Full Text Available Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP. According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES was deposited on silicon dioxides (SiO2 particles and phthalate chemical probes were manufactured from phthalic acid and APTES–SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA software showed that these chemical probes were a practical technique for protein-protein interaction analysis.

  10. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    Directory of Open Access Journals (Sweden)

    Enrico Prenesti

    2012-01-01

    Full Text Available A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria. Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture, ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing.

  11. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    Science.gov (United States)

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing. PMID:22566762

  12. Chemical Composition and Fatty Acids of Glodok Fish by High Thermal Processing

    Directory of Open Access Journals (Sweden)

    Sri Purwaningsih

    2014-11-01

    Full Text Available Glodok is an economically underrated fish with a high nutrient content. The research aims to study the changes on chemical composition, fatty acids, omega-6 and omega-3 ratio in glodok muscle after processing with different methods of boiling, steaming, and boiling with addition of salt (3%. The results showed that the treatment (boiling, steaming, and boiling with addition of salt gives a significant effect (α=0.05 in water content, ash, lipid content, nervonat acid, linoleic acid, arachidonic acid, EPA, and DHA. The best processing method was steaming. The ratio of omega-3 and omega-6 in fresh glodok fish was 2,1:1, which is higher than WHO recommendation of 0,6:1,7.Keywords: chemical composition, fatty acid, glodok fish, processing

  13. Chemical states of p-boronophenylalanine in aqueous carboxylic acids and polyols

    International Nuclear Information System (INIS)

    Kobayashi, Mitsue; Kitaoka, Yoshinori

    1995-01-01

    Chemical states of p-boronophenylalanine were studied by infrared (IR) spectroscopy in aqueous carboxylic acids and in aqueous fructose. For BPA in water, the absorption band due to the B-O stretching of trigonal boron was observed, while that of tetrahedral boron was observed for BPA in aqueous oxalic acid. This means BPA forms a complex of tetrahedral boron with oxalate. It was proved that BPA also formed complexes of tetrahedral boron with citric acid as well as with fructose. No appreciable interaction was detected between BPA and maleic acid. (author)

  14. Chemical cautery of the inferior turbinates with trichloroacetic acid

    Directory of Open Access Journals (Sweden)

    Azevedo, Alexandre Fernandes de

    2011-10-01

    Full Text Available Introduction: Chronic secondary nasal obstruction, the hypertrophy of the inferior turbinates is a common symptom of great morbidity in our society. Several surgical techniques are described to cases refractory to medical treatments, however, there are controversy about which one of them is more effective and less subject to complications. Objective: Evaluate the efficacy, security and practicability of using ambulatory trichloroacetic acid to treat the hypertrophy of the inferior turbinates. Method: Prospective study with 29 patients submitted to the ambulatory technique of 30% trichloroacetic acid infiltration in the inferior turbinate's submucosa, under topic anesthesia. The symptoms of rhinorrhea and nasal obstruction were evaluated using the analogical and visual scale (AVS 010 pre-cautery and one year post-procedure. Results: Significant nasal obstruction and rhinorrhea reduction one year post-procedure. The complications were light synechia in two patients and small bleedings in four spontaneous resolution cases. Conclusion: The proposed method showed excellent results concerning nasal obstruction and rhinorrhea, can be conducted in ambulatory environment, and has proved to be a low-complication method.

  15. A spectroelectrochemical and chemical study on oxidation of hydroxycinnamic acids in aprotic medium

    Energy Technology Data Exchange (ETDEWEB)

    Petrucci, Rita [Dipartimento di Ingegneria Chimica M.M.P.M., Universita di Roma ' La Sapienza' , via del Castro Laurenziano 7, I-00161 Rome (Italy)]. E-mail: rita.petrucci@uniroma1.it; Astolfi, Paola [Dipartimento di Scienze dei Materiali e della Terra, Universita Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona (Italy); Greci, Lucedio [Dipartimento di Scienze dei Materiali e della Terra, Universita Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona (Italy); Firuzi, Omidreza [Dipartimento di Farmacologia delle Sostanze Naturali e Fisiologia Generale, Universita di Roma ' La Sapienza' , p.le Aldo Moro 5, I-00185 Rome (Italy); Saso, Luciano [Dipartimento di Farmacologia delle Sostanze Naturali e Fisiologia Generale, Universita di Roma ' La Sapienza' , p.le Aldo Moro 5, I-00185 Rome (Italy); Marrosu, Giancarlo [Dipartimento di Ingegneria Chimica M.M.P.M., Universita di Roma ' La Sapienza' , via del Castro Laurenziano 7, I-00161 Rome (Italy)

    2007-02-01

    Electrochemical and chemical oxidation of hydroxycinnamic acids (HCAs) was studied to investigate the mechanisms occurring in their antioxidant activities in a protons poor medium. Electrolyses and chemical reactions were followed on-line by monitoring the UV-spectral changes with time; final solutions were analysed by HPLC-MS. Anodic oxidation of mono- and di-HCAs, studied by cyclic voltammetry and controlled potential electrolyses, occurs via a reversible one-step two-electrons process, yielding the corresponding stable phenoxonium cation. A cyclization product was also proposed, as supported by ESR studies. Chemical oxidation with lead dioxide leads to different oxidation products according to the starting substrate. Di-HCAs like chlorogenic and rosmarinic acids and the ethyl ester of caffeic acid gave the corresponding neutral o-quinones, while mono-HCAs like cumaric, ferulic and sinapinic acids yielded the corresponding unstable neutral phenoxyl radical, as supported by the formation of dimerization products evidenced by HPLC-MS. In the case of caffeic acid, traces of the dimerization product suggest that the neutral phenoxyl radical may competitively undergo dimerization or decomposition of the neutral quinone. Chemical oxidation of HCAs was also followed by ESR spectroscopy: the di-HCAs radical anions were generated and detected, whereas among the mono-HCAs only the phenoxyl radical of the sinapinic acid was recorded.

  16. THE EFFECT OF METHANOGENIC INHIBITOR FEED ON PROPIONIC ACID AND LAMB MEAT CHEMICAL QUALITY

    Directory of Open Access Journals (Sweden)

    E. Suryanto

    2012-09-01

    Full Text Available This study aimed to determine the effect of medium chain fatty acids (MCFA on propionic acids and lamb meat chemical quality. The treatment given was R1: feed without medium chain fatty acids (MCFA, while R2 dan R3 were the feed contained 1.0% and 1.5% of MCFA, respectively. The twelve heads of lambs yearling weight of 16-17 kg were used as materials. Biological trial was done for three months and then was slaughtered. Before being slaughtered, the animal was taken rumen fluid to be analyzed for propionic acid. The carcass was sampled to be analyzed for chemical composition, cholesterol and fatty acids content. This study showed that methanogenic inhibitor feed with 1.0-1.5% MCFA could be used as sheep feed, and the results: the propionic acid content in rumen increased 29.59 – 36.11%. The cholesterol content decreased 7.14-10.06%. For the meat fatty acids composition, unsaturated fatty acids increased 9.05 – 17.96%. while saturated fatty acid decreased 6.59 – 11.88%.

  17. Physico-chemical studies of some aminobenzoic acid hydrazide complexes

    Directory of Open Access Journals (Sweden)

    S. ABD EL HALEEM

    2004-04-01

    Full Text Available The stability constants and related thermodynamic functions characterizing the formation of divalent Ni, Cu, Zn, Cd and Hg complexes with o- and p-aminobenzoic acid hydrazide were determined potentiometrically at different temperatures. The formations of the complexes are endothermic processes. The formed bonds are mainly electrostatic. Conductometric titration was carried out to determine the stoichiometry and stability of the formed complexes. The structures of complexes were characterized by their IR, 1H-NMR and 13C-NMR spectra, as well as X-ray diffractograms. The coordination process takes place through the carbonyl group and the terminal hydrazinic amino group. The thermal stability of the complexes was followed in the temperature range 20–600ºC.

  18. Radiation-chemical oxidation of neptunium in perchloric acid solutions

    International Nuclear Information System (INIS)

    Shilov, V.P.; Gusev, Yu.K.; Pikaev, A.K.; Stepanova, E.S.; Krot, N.N.

    1979-01-01

    The γ-radiation effect (at a dose rate of 5x10 16 eV/mlxs) on 1x10 -3 Np(6) and Np(5) perchloric acid solutions is studied. The output of Np(6) loss in aerated 0.001-0.005M HClO 4 solutions was 2.4 ions/100 eV. The output of Np(5) loss in solutions saturated with nitrous oxide was 2.1 ions/100 eV at pH-4. In aerated 0.1-1.0 M HClO 4 solutions in presence of XeO 4 the output of Np(5) loss grows from 6.6 to 13.5 ions/100 eV as (XeO 3 ) 0 increases from 1x10 -3 to 2x10 -2 M. Possible process mechanisms have been proposed

  19. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    Science.gov (United States)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  20. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2011-02-01

    Full Text Available The secondary organic aerosol (SOA yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS. A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS.

  1. Factors associated with chemical burns in Zhejiang province, China: An epidemiological study

    Directory of Open Access Journals (Sweden)

    Jiang Rui M

    2011-09-01

    Full Text Available Abstract Background Work-related burns are common among occupational injuries. Zhejiang Province is an industrial area with a high incidence of chemical burns. We aimed to survey epidemiological features of chemical burns in Zhejiang province to determine associated factors and acquire data for developing a strategy to prevent and treat chemical burns. Methods Questionnaires were developed, reviewed and validated by experts, and sent to 25 hospitals in Zhejiang province to prospectively collect data of 492 chemical burn patients admitted during one year from Sept. 1, 2008 to Aug. 31, 2009. Questions included victims' characteristics and general condition, injury location, causes of accident, causative chemicals, total body surface area burn, concomitant injuries, employee safety training, and awareness level of protective measures. Surveys were completed for each of burn patients by burn department personnel who interviewed the hospitalized patients. Results In this study, 417 victims (87.61% got chemical burn at work, of which 355 victims (74.58% worked in private or individual enterprises. Most frequent chemicals involved were hydrofluoric acid and sulfuric acid. Main causes of chemical injury accidents were inappropriate operation of equipment or handling of chemicals and absence of or failure to use effective individual protection. Conclusions Most chemical burns are preventable occupational injuries that can be attributed to inappropriate operation of equipment or handling of chemicals, lack of employee awareness about appropriate action and lack of effective protective equipment and training. Emphasis on safety education and protection for workers may help protect workers and prevent chemical burns.

  2. Fatty acid-derived biofuels and chemicals production in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Yongjin J. Zhou

    2014-09-01

    Full Text Available Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable and cost-effective energy resources. Advanced biofuels have potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. Microbial biosynthesis is generally considered as an environmental friendly refinery process, and fatty acid biosynthesis is an attractive route to synthesize chemicals and especially drop-in biofuels due to the high degree of reduction of fatty acids. The robustness and excellent accessibility to molecular genetics make the yeast S. cerevisiae a suitable host for the production of biofuels, chemicals and pharmaceuticals, and recent advances in metabolic engineering as well as systems and synthetic biology allow us to engineer the yeast fatty acid metabolism and modification pathways for production of advanced biofuels and chemicals.

  3. Dissolution of magnetite in a dilute chemical decontaminant formulation containing gallic acid as a reductant

    International Nuclear Information System (INIS)

    Kishore, Kamal; Rajesh, Puspalata; Dey, G.R.

    2000-01-01

    Gallic acid (GA) was tried as a reductant in place of ascorbic acid in dilute chemical decontaminant (DCD) formulations. Dissolution of magnetite in GA based DCD formulations was studied at 50 deg as well as 80 degC. It was found to be a good substitute for ascorbic acid in EDTA/ascorbic acid/citric acid i.e. EAC formulation. The efficiency of EDTA/GA/CA formulation was as good as that of EAC formulation. 2.8 was found to be the optimum pH for this formulation and dissolution decreased at lower as well as higher pHs. The ion-exchange behaviour of GA is also appropriate for using it in a regenerating type of formulation. Being an aromatic compound, gallic acid has inherent stability against radiation degradation. (author)

  4. A dilute chemical decontaminant formulation containing gallic acid as a reductant

    International Nuclear Information System (INIS)

    Kishore, K.; Rajesh, P.; Kumbhar, A.G.

    2001-01-01

    Gallic acid (GA) was tried as a reductant in place of ascorbic acid in dilute chemical decontaminant (DCD) formulations. Dissolution of magnetite in GA based DCD formulations was studied at 50 C as well as 80 C. It was found to be a good substitute for ascorbic acid in EDTA/ascorbic acid/citric acid, i.e., EAC formulation. The efficiency of EDTA/GA/CA formulation was as good as that of EAC formulation. 2.8 was found to be the optimum pH for this formulation and dissolution decreased at lower as well as higher pHs. The ion exchange behaviour of GA is also appropriate for using it in a regenerating type of formulation. Being an aromatic compound, Gallic acid has inherent stability against radiation degradation. (orig.)

  5. Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic inter esterification

    Energy Technology Data Exchange (ETDEWEB)

    Feltes, M. M. C.; Oliveira de Pilot, L.; Gomes Correira, F.; Grimaldi, R.; Mara Block, J.; Ninow, J. L.

    2009-07-01

    Structured triglycerides (STs) containing both medium chain fatty acids (MCFA) and polyunsaturated fatty acids (PUFA) in the same molecule offer nutritional and therapeutic benefits. The aim of this work was to establish the incorporation of MCFA into fish oil triglycerides (TAGs), while maintaining substantial levels of docosahexaenoic and eicosapentaenoic acids. The effects of different acyl donors (capric acid methyl ester/MeC10 or medium chain triglyceride/TCM) and of the catalyst (chemical or enzymatic) on the fatty acid composition of the reaction product were studied. The fatty acid composition of the fish oil TAG was modified after inter esterification to contain MCFA, and it depended on the catalyst and on the substrates. Thermo grams obtained by Differential Scanning Calorimetry (DSC) showed that inter esterification promoted noteworthy changes in the melting profile of the samples. STs of clinical nutrition interest containing both EPA and DHA obtained from fish oil along with MCFA were successfully produced. (Author) 70 refs.

  6. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    Science.gov (United States)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  7. Thermodynamic properties of an emerging chemical disinfectant, peracetic acid.

    Science.gov (United States)

    Zhang, Chiqian; Brown, Pamela J B; Hu, Zhiqiang

    2018-04-15

    Peracetic acid (PAA or CH 3 COOOH) is an emerging disinfectant with a low potential to form carcinogenic disinfection by-products (DBPs). Basic thermodynamic properties of PAA are, however, absent or inconsistently reported in the literature. This review aimed to summarize important thermodynamic properties of PAA, including standard Gibbs energy of formation and oxidation-reduction (redox) potential. The standard Gibbs energies of formation of CH 3 COOOH (aq) , CH 3 COOOH (g) , CH 3 COOOH (l) , and CH 3 COOO (aq) - are -299.41kJ·mol -1 , -283.02kJ·mol -1 , -276.10kJ·mol -1 , and -252.60kJ·mol -1 , respectively. The standard redox potentials of PAA are 1.748V and 1.005V vs. standard hydrogen electrode (SHE) at pH 0 and pH 14, respectively. Under biochemical standard state conditions (pH 7, 25°C, 101,325Pa), PAA has a redox potential of 1.385V vs. SHE, higher than many disinfectants. Finally, the environmental implications of the thermodynamic properties of PAA were systematically discussed. Those properties can be used to predict the physicochemical and biological behavior of aquatic systems exposed to PAA. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A new chemical system solution for acid gas removal

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, M.; Rolker, J.; Witthaut, D.; Schulze, S. [Evonik Industries AG, Hanau (Germany); Buchholz, S. [Evonik Industries AG, Marl (Germany)

    2012-07-01

    An energy-efficient absorbent formulation fors eparating acid gases (e.g. CO{sub 2}, H2S) from gas streams such as natural gas, syngas or flue gas is important for a number of industrial applications. In many cases, a substantial share of their costs is driven by the operational expenditure (OPEX) of the CO{sub 2} separation unit. One possible strategy for reducing OPEX is the improvement of the absorbent performance. Although a number of absorbents for the separation of CO{sub 2} from gas streams exist, there is still a need to develop CO{sub 2} absorbents with an improved absorption performance, less corrosion and foaming, no nitrosamine formation, lower energy requirement and therefore less OPEX. This contribution aims at giving a brief state-of-the-art overview followed by an introduction and performance characterization of a new family of amine-based CO{sub 2} absorbents. High cyclic capacities in the range of 2.9 to 3.2 mol CO{sub 2} kg{sup -1} absorbent and low absorption enthalpies of about -30 kJ mol{sup -1} allow for significant savings in the regeneration energy of the new absorbent system. Calculations with the modified Kremser model indicate a reduction in the specific reboiler heat duty of 45 %. Moreover, the high-performance absorbents developed show much lower corrosion rates than state-of-the-art solutions that are currently employed. (orig.)

  9. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    International Nuclear Information System (INIS)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  10. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Leong, Susanna Su Jan [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Singapore Institute of Technology, Singapore (Singapore); Chang, Matthew Wook, E-mail: bchcmw@nus.edu.sg [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore)

    2014-12-23

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  11. Dark Classics in Chemical Neuroscience: Lysergic Acid Diethylamide (LSD).

    Science.gov (United States)

    Nichols, David E

    2018-03-01

    Lysergic acid diethylamide (LSD) is one of the most potent psychoactive agents known, producing dramatic alterations of consciousness after submilligram (≥20 μg) oral doses. Following the accidental discovery of its potent psychoactive effects in 1943, it was supplied by Sandoz Laboratories as an experimental drug that might be useful as an adjunct for psychotherapy, or to give psychiatrists insight into the mental processes in their patients. The finding of serotonin in the mammalian brain in 1953, and its structural resemblance to LSD, quickly led to ideas that serotonin in the brain might be involved in mental disorders, initiating rapid research interest in the neurochemistry of serotonin. LSD proved to be physiologically very safe and nonaddictive, with a very low incidence of adverse events when used in controlled experiments. Widely hailed by psychiatry as a breakthrough in the 1950s and early 1960s, clinical research with LSD ended by about 1970, when it was formally placed into Schedule 1 of the Controlled Substances Act of 1970 following its growing popularity as a recreational drug. Within the past 5 years, clinical research with LSD has begun in Europe, but there has been none in the United States. LSD is proving to be a powerful tool to help understand brain dynamics when combined with modern brain imaging methods. It remains to be seen whether therapeutic value for LSD can be confirmed in controlled clinical trials, but promising results have been obtained in small pilot trials of depression, anxiety, and addictions using psilocybin, a related psychedelic molecule.

  12. Organic Acids Regulation of Chemical-Microbial Phosphorus Transformations in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Paredes, Cecilia; Zhang, Hao; Giles, Courtney D; Darch, Tegan; Stutter, Marc; George, Timothy S; Shand, Charles; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Wearing, Catherine; Haygarth, Philip M

    2016-11-01

    We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg -1 . However, low organic acid doses (<2 mmol kg -1 ) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d ) and desorption rate constants (k -1 ) decreased whereas an increase in the response time of solution P equilibration (T c ) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.

  13. Analysis of chemical signatures of alkaliphiles using fatty acid methyl ester analysis

    Directory of Open Access Journals (Sweden)

    Basha Sreenivasulu

    2017-01-01

    Full Text Available Background: Fatty acids occur in nearly all living organisms as the important predominant constituents of lipids. While all fatty acids have essentially the same chemical nature, they are an extremely diverse group of compounds. Materials and Methods: To test the hypothesis, fatty acids of alkaliphiles isolates, Bacillus subtilis SVUNM4, Bacillus licheniformis SVUNM8, Bacillus methylotrohicus SVUNM9, and Paenibacillus dendritiformis SVUNM11, were characterized compared using gas chromatography-mass spectrometry (GC-MS analysis. Results: The content of investigated ten fatty acids, 1, 2-benzenedicarboxylic acid butyl 2-methylpropyl ester, phthalic acid, isobutyl 2-pentyl ester, dibutyl phthalate, cyclotrisiloxane, hexamethyl, cyclotetrasiloxane, octamethyl, dodecamethyl, heptasiloxane 1,1,3,3,5,5,7,7,9,9,11,11,13,13-etradecamethyl, 7,15-dihydroxydehydroabietic acid, methyl ester, di (trimethylsilyl ether, hentriacontane, 2-thiopheneacetic acid, undec-2-enyl ester, obviously varied among four species, suggesting each species has its own fatty acid pattern. Conclusions: These findings demonstrated that GC-MS-based fatty acid profiling analysis provides the reliable platform to classify these four species, which is helpful for ensuring their biotechnological interest and novel chemotaxonomic.

  14. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej; Greń, Katarzyna [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Kukharenko, Andrey I. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Korotin, Danila M. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Michalska, Joanna [Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice (Poland); Szyk-Warszyńska, Lilianna; Mosiałek, Michał [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Żak, Jerzy [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Pamuła, Elżbieta [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza Avenue 30, 30-059 Kraków (Poland); Kurmaev, Ernst Z. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1 mol dm{sup −3} phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. - Highlights: • Pure niobium was electropolished and subsequently anodised in a H{sub 3}PO{sub 4} solution. • Phosphorus was successfully introduced into the oxide layers after the treatment. • Corrosion resistance of niobium in Ringer's solution was improved after anodising.

  15. Containment of Nitric Acid Solutions of Plutonium-238

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Silver, G.L.; Pansoy-Hjelvik, L.; Ramsey, K.

    1999-01-01

    The corrosion of various metals that could be used to contain nitric acid solutions of Pu-238 has been studied. Tantalum and tantalum/2.5% tungsten resisted the test solvent better than 304L stainless steel and several INCONEL alloys. The solvent used to imitate nitric acid solutions of Pu-238 contained 70% nitric acid, hydrofluoric acid, and ammonium hexanitratocerate

  16. Chemical variability of fatty acid composition of seabuckthorn berries oil from different locations by GC-FID

    International Nuclear Information System (INIS)

    Shafi, N.; Kanwal, F.; Siddique, M.; Ghauri, E.G.; Akram, M.

    2008-01-01

    For determining the chemical composition of seabuckthorn oil of different origins, samples of seabuckthorn berries (red and yellow varieties) were collected from different locations of northern areas of Pakistan. Among eight different fatty acids, palmitoleic acid (32.4%) and palmitic acid (36.52 %) were found to be the major fatty acids present along with other important fatty acids i.e., oleic acid (37.07%), linoleic acid (12.36%) and linolenic acid (0.73%). Quantities of unsaturated fatty acids were higher than that of saturated analogues. (author)

  17. Top value platform chemicals: bio-based production of organic acids.

    Science.gov (United States)

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Separation of L-aspartic acid and L-glutamic acid mixtures for use in the production of bio-based chemicals

    NARCIS (Netherlands)

    Teng, Y.; Scott, E.L.; Sanders, J.P.M.

    2012-01-01

    BACKGROUND: Amino acids are promising feedstocks for the chemical industry due to their chemical functionality. They can be obtained by the hydrolysis of potentially inexpensive protein streams such as the byproduct of biofuel production. However, individual amino acids are required before they can

  19. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    Directory of Open Access Journals (Sweden)

    Angel Catalá

    2013-01-01

    Full Text Available I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others.

  20. Chemical characteristics and fatty acid profile of butterfly tree seed oil (Bauhinia purpurea L)

    Science.gov (United States)

    Soetjipto, H.; Riyanto, C. A.; Victoria, T.

    2018-04-01

    Butterfly tree (Kachnar) in Indonesia is only used as ornamental plants in garden, park, and roadsides. The seed of Butterfly tree was extracted with n-hexane and physicochemical properties were determined based on Standard Nasional Indonesia (SNI) 01-3555-1998 while the oil chemical composition was determined using GC-MS. The result showed that yield of the oil as 57.33±1.14 % (w/w) and the chemical characteristic of seed oil include acid value (13.7.8±0.23 mg KOH/g) saponification value (153.32±1.85 mg KOH/g), peroxide value (43.51±0.57. mg KOH/g). The butterfly tree seed oil showed that linoleic acid (28.11 %), palmitic acid (29.2%), oleic acid (19.82%) and stearic acid (10.7.4 %) were the main fatty acids in the crude seed oils. Minor amounts of neophytadiena and arachidic acid were also identified.

  1. Chemical composition, fatty acid profile and colour of broiler meat as ...

    African Journals Online (AJOL)

    Chemical composition, fatty acid profile and colour of broiler meat as affected by organic and conventional rearing systems. ... South African Journal of Animal Science ... A lower protein, but higher fat content was measured in the thigh meat of slow-growing broilers reared both in the organic and conventional systems, ...

  2. Environmental Comparison of Biobased Chemicals from Glutamic Acid with Their Petrochemical Equivalents

    NARCIS (Netherlands)

    Lammens, T.M.; Potting, J.; Sanders, J.P.M.; Boer, de I.J.M.

    2011-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased

  3. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents

    NARCIS (Netherlands)

    Lammens, T.M.; Potting, J.; Sanders, J.P.M.; Boer, de I.J.M.

    2012-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased

  4. Physico-chemical characteristics and fatty acid profile of desert date ...

    African Journals Online (AJOL)

    Because of its growing importance as a source of food and income for dryland communities, an assessment of the physico-chemical characteristics and fatty acid profile of kernel oil in Uganda was carried out. Balanites fruit samples were collected from Katakwi, Adjumani and Moroto districts; representing the Teso, West ...

  5. A chemical perspective on transcriptional fidelity dominant contributions of sugar integrity revealed by unlocked nucleic acids

    DEFF Research Database (Denmark)

    Xu, Liang; Plouffe, Steven W; Chong, Jenny

    2013-01-01

    Transcription unlocked: A synthetic chemical biology approach involving unlocked nucleic acids was used to dissect the contribution of sugar backbone integrity to the RNA Polymerase II (Pol II) transcription process. An unexpected dominant role for sugar-ring integrity in Pol II transcriptional...

  6. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    Science.gov (United States)

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  7. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids

    OpenAIRE

    Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper; Gramstad, Robin; Öjstedt, Ulrik; Sharma, Anitha Kumari; Andersen, Henrik Rasmus

    2014-01-01

    We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L− 1 PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli ...

  8. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  9. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    CERN Document Server

    Rondo, L.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosolnucleation. Based on quantum chemical calculations it has been suggested that the quantitative detectionof gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased inthe presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was setup at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection ofH2SO4in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time inthe CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF(Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutralsulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presenceof dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS...

  10. Decolorization and chemical regeneration of granular activated carbon used in citric acid refining

    Directory of Open Access Journals (Sweden)

    Kang Sun

    2009-04-01

    Full Text Available Citric acid fermentation (CAF liquor decolorization by granular activated carbon (GAC was studied and an improved chemical regeneration method of the exhausted GAC by the color of CAF liquor was investigated. The effects of the GAC dosage, time and temperature on the decoloring efficiency (DE % were studied. The DE % of the original GAC was 91 %. The regeneration efficiency (RE % using chemical regents was 104 % of the original GAC. Hot water as cheap reagent was found to be much helpful to the regeneration efficiency. Using oxidant and surfactant in addition to just using NaOH solution can recover 10 % more adsorption capacity of renewed GAC. The adding dosage of oxidant is good at 3 % of exhausted GAC weight; that of surfactant is good at 0.1 %. Comparing with steam regeneration method, high regeneration yield (> 95 % of chemical method was an attractive economic factor. The results of this investigation can be as helpful reference for citric acid manufacturer expanding profits.

  11. Discovery of a Chemical Modification by Citric Acid in a Recombinant Monoclonal Antibody

    Science.gov (United States)

    2015-01-01

    Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called “acidic species” that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity. PMID:25136741

  12. Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils.

    Science.gov (United States)

    Siano, Francesco; Straccia, Maria C; Paolucci, Marina; Fasulo, Gabriella; Boscaino, Floriana; Volpe, Maria G

    2016-03-30

    Nut and seed oils are often considered waste products but in recent years they have been receiving growing interest due to their high concentration of hydrophilic and lipophilic bioactive components, which have important pharmacological properties on human health. The aim of this work was to compare the physico-chemical and biochemical properties of pomegranate (Punicagranatum), sweet cherry (Prunusavium) and pumpkin (Cucurbita maxima) seed oils obtained by solvent extraction. High amount of linoleic acid was found in the cherry and pumpkin seed oils, while pomegranate seed oil showed relevant content of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs) along to eicosapentaenoic acid (EPA) and nervonic acid. Pumpkin seed oil had high concentration of carotenoids, while pomegranate oil was the best absorber in the UV-A and UV-B ranges. Pomegranate, cherry and pumpkin seed oils can be an excellent source of bioactive molecules and antioxidant compounds such as polyphenols, carotenoids and unsaturated fatty acids. These seed oils can be included both as preservatives and functional ingredients in the food, pharmaceutical and cosmetic fields and can contribute to disease prevention and health promotion. Moreover, high absorbance of UV light indicates a potential use of these oils as filters from radiations in the food, pharmaceutical, and cosmetic fields. © 2015 Society of Chemical Industry.

  13. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper

    2014-01-01

    We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch......-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L− 1 PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2–4 mg L− 1 PFA; with a 20 min contact...... time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic...

  14. Perfluorononanoic acid in combination with 14 chemicals exerts low-dose mixture effects in rats

    DEFF Research Database (Denmark)

    Hadrup, Niels; Pedersen, Mikael; Skov, Kasper

    2016-01-01

    Humans are simultaneously exposed to several chemicals that act jointly to induce mixture effects. At doses close to or higher than no-observed adverse effect levels, chemicals usually act additively in experimental studies. However, we are lacking knowledge on the importance of exposure to complex...... real-world mixtures at more relevant human exposure levels. We hypothesised that adverse mixture effects occur at doses approaching high-end human exposure levels. A mixture (Mix) of 14 chemicals at a combined dose of 2.5 mg/kg bw/day was tested in combination with perfluorononanoic acid (PFNA...... pituitary-adrenal axis. In conclusion, our data suggest that mixtures of environmental chemicals at doses approaching high-end human exposure levels can cause a hormonal imbalance and disturb steroid hormones and their regulation. These effects may be non-monotonic and were observed at low doses. Whether...

  15. Leaching behavior and chemical stability of copper butyl xanthate complex under acidic conditions.

    Science.gov (United States)

    Chang, Yi Kuo; Chang, Juu En; Chiang, Li Choung

    2003-08-01

    Although xanthate addition can be used for treating copper-containing wastewater, a better understanding of the leaching toxicity and the stability characteristics of the copper xanthate complexes formed is essential. This work was undertaken to evaluate the leaching behavior of copper xanthate complex precipitates by means of toxicity characteristics leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) using 1 N acetic acid solution as the leachant. Also, the chemical stability of the copper xanthate complex during extraction has been examined with the studying of variation of chemical structure using UV-vis, Fourier transform infrared and X-ray photoelectron spectroscopies (XPS). Both TCLP and SDLT results showed that a negligible amount of copper ion was leached out from the copper xanthate complex precipitate, indicating that the complex exhibited a high degree of copper leaching stability under acidic conditions. Nevertheless, chemical structure of the copper xanthate complex precipitate varied during the leaching tests. XPS data suggested that the copper xanthate complex initially contained both cupric and cuprous xanthate, but the unstable cupric xanthate change to the cuprous form after acid extraction, indicating the cuprous xanthate to be the final stabilizing structure. Despite that, the changes of chemical structure did not induce the rapid leaching of copper from the copper xanthate complex.

  16. Comparative study of humic acid removal and floc characteristics by electrocoagulation and chemical coagulation.

    Science.gov (United States)

    Semerjian, Lucy; Damaj, Ahmad; Salam, Darine

    2015-11-01

    The current study aims at investigating the efficiency of electrocoagulation for the removal of humic acid from contaminated waters. In parallel, conventional chemical coagulation was conducted to asses humic acid removal patterns. The effect of varying contributing parameters (matrix pH, humic acid concentration, type of electrode (aluminum vs. iron), current density, solution conductivity, and distance between electrodes) was considered to optimize the electrocoagulation process for the best attainable humic acid removal efficiencies. Optimum removals were recorded at pH of 5.0-5.5, an electrical conductivity of 3000 μS/cm at 25 °C, and an electrode distance of 1 cm for both electrode types. With aluminum electrodes, a current density of 0.05 mA/cm2 outperformed 0.1 mA/cm2 yet not higher densities, whereas a current density of 0.8 mA/cm2 was needed for iron electrodes to exhibit comparable performance. With both electrode types, higher initial humic acid concentrations were removed at a slower rate but ultimately attained almost complete removals. On the other hand, the best humic acid removals (∼90%) by chemical coagulation were achieved at 4 mg/L for both coagulants. Also, higher removals were attained at elevated initial humic acid concentrations. Humic acid removals of 90% or higher at an initial HA concentration of 40 mg/L were exhibited, yet alum performed better at the highest experimented concentration. It was evident that iron flocs were larger, denser, and more geometrical in shape compared to aluminum flocs.

  17. Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion.

    Science.gov (United States)

    Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok

    2004-03-01

    Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.

  18. Comparison of efficacy of chemical peeling with 25% trichloroacetic acid and 0.1% retinoic acid for facial rejuvenation

    Directory of Open Access Journals (Sweden)

    Selda Yildirim

    2016-06-01

    Full Text Available Introduction : Skin aging is a problem which negatively affects the psyche of the person, social relations, as well as work life and health and which compels the patients to find appropriate treatment methods. Numerous treatment methods have been developed in order to delay aging and to reduce the aging effects in addition to having a younger, healthier and more beautiful facial appearance. Aim : To compare the efficiency, cosmetic results and possible adverse effects of the peeling treatment with 25% trichloroacetic acid (TCA and 0.1% retinoic acid for facial rejuvenation in patients presenting with skin aging. Material and methods: Fifty female patients in total presenting with medium and advanced degree skin aging were subject to this study. Two separate treatment groups were formed; the first group underwent chemical skin treatment with 25% TCA while the other group was applied with 0.1% retinoic acid treatment. Following the 4 months’ treatment the patients were controlled three times in total for post lesional hypopigmentation, hyperpigmentation, scars, skin irritation and other possible changes per month. The pretreatment and first follow-up visit, and final control images were comparatively evaluated by three observers via specific software. Results : The healing rates of the group subject to retinoic acid were statistically higher (p 0.05. The frequency of TCA- and retinoic acid-associated adverse effects was similar in both groups (p > 0.05. As a result of both treatments, a reduction in the quality of life scores as well as a pronounced recovery (p = 0.001 in the quality of life of those patients with skin aging was observed. Conclusions : The photo aging treatment option with 0.1% retinoic acid is cheaper and more feasible for patients compared to 25% TCA, and it is also as reliable and effective as TCA.

  19. Density Functional Theory Study of Leaching Performance of Different Acids on Pyrochlore (100) Surface

    Science.gov (United States)

    Yang, Xiuli; Fang, Qing; Ouyang, Hui

    2018-06-01

    Pyrochlore leaching using hydrofluoric, sulfuric, and hydrochloric acids has been studied via experimental methods for years, but the interactions between niobium atoms on the pyrochlore surface and different acids have not been investigated. In this work, first-principles calculations based on density functional theory were used to elucidate the leaching performance of these three acids from the viewpoint of geometrical and electronic structures. The calculation results indicate that sulfate, chloride, and fluoride anions influence the geometric structure of pyrochlore (100) to different extents, decreasing in the order: sulfate, fluoride, chloride. Orbitals of O1 and O2 atoms of sulfate hybridized with those of surface niobium atom. Fluorine orbitals hybridized with those of surface niobium atoms. However, no obvious overlap exists between any orbitals of chlorine and surface niobium, revealing that chlorine does not interact chemically with surface niobium atoms.

  20. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping

    2013-06-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions representative of seawater and river water). A bipolar membrane (BPM) was placed next to the anode to prevent Cl- contamination and acidification of the anolyte, and to produce protons for HCl recovery. A 5-cell paired reverse-electrodialysis (RED) stack provided the electrical energy required to overcome the BPM over-potential (0.3-0.6 V), making the overall process spontaneous. The MRCC reactor produced electricity (908 mW/m2) as well as concentrated acidic and alkaline solutions, and therefore did not require an external power supply. After a fed-batch cycle, the pHs of the chemical product solutions were 1.65 ± 0.04 and 11.98 ± 0.10, due to the production of 1.35 ± 0.13 mmol of acid, and 0.59 ± 0.14 mmol of alkali. The acid- and alkali-production efficiencies based on generated current were 58 ± 3% and 25 ± 3%. These results demonstrated proof-of-concept acid and alkali production using only renewable energy sources. © 2013 Elsevier B.V.

  1. Comparative study of oxalic and malonic acid behaviour in the chemical cleaning of alloy 800 surfaces

    International Nuclear Information System (INIS)

    Garcia, Damian A.; Bruyere, Vivienne I.E.; Bordoni, Roberto A.; Olmedo, Ana M.; Morando, Pedro J.

    2004-01-01

    This work consisted, in a first stage, on a basic study of the dissolution mechanism of nickel ferrite in aqueous malonic acid. Powdered oxides (Ni x Fe 3-x O 4 ) were synthesized by wet procedures and heated at 750 C degrees. These oxides were characterized by conventional methods and dissolved under different experimental conditions (pH, reagent concentration, temperature, etc.) in order to determine the dissolution rates. Optimal dissolution conditions were explored and compared to the corresponding oxalic acid ones. In a second stage, these conditions were applied to oxides grown on Alloy 800 coupons. Before oxidation, all coupons were ground polished and then were exposed to hydrothermal conditions (350 C degrees, pH 25Cdegrees ≅ 10.4 -LiOH-, 20-22 days) in static autoclaves. Finally, oxidized and unoxidized coupons were treated with chemical solutions containing oxalic or malonic acid at conditions optimized in the first stage. These results were also compared to those obtained on coupons exposed to a commercial formulation, APAC (Alkaline Permanganate Ammonium Citrate), as a reference. The results on coupon descaling using APMAL (AP + Malonic), APOX (AP + oxalic) and the comparison with APAC leads to conclude that malonic acid is a reagent whose chemical behavior is much better than oxalic acid and comparable to commercial formulations. (author) [es

  2. Effects of organic solvents on hyaluronic acid nanoparticles obtained by precipitation and chemical crosslinking.

    Science.gov (United States)

    Bicudo, Rafaela Costa Souza; Santana, Maria Helena Andrade

    2012-03-01

    Hyaluronic acid is a hydrophilic mucopolysaccharide composed of alternating units of D-glucuronic acid and N-acetylglucosamine. It is used in many medical, pharmaceutical, and cosmetic applications, as sponges, films, or particle formulations. Hyaluronic acid nanoparticles can be synthesized free of oil and surfactants by nanoprecipitation in organic solvents, followed by chemical crosslinking. The organic solvent plays an important role in particles size and structure. Therefore, this study aimed to investigate the influence of acetone, ethanol, and isopropyl alcohol on the synthesis and physico-chemical properties of hyaluronic acid nanoparticles. Particles were crosslinked with adipic hydrazide and chloride carbodiimide under controlled conditions. The nanoparticles obtained with all three studied solvents were moderately electrostatically stable. Experiments with acetone produced the smallest particle size (120.44 nm) and polydispersity (0.27). The size and polydispersity of hyaluronic acid nanoparticles correlated with the surface tension between water and the organic solvents, not with the thermodynamic affinity of water for the organic solvents.

  3. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids.

    Science.gov (United States)

    Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper; Gramstad, Robin; Öjstedt, Ulrik; Sharma, Anitha Kumari; Andersen, Henrik Rasmus

    2014-08-15

    We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L(-1) PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2-4 mg L(-1) PFA; with a 20 min contact time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event, the disinfection efficiencies were confirmed and degradation rates were slightly higher than predicted in simulated CSO. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Chemical dosimetry at less than 1000 rad: aqueous trimesic acid solutions

    International Nuclear Information System (INIS)

    Matthews, R.W.; Wilson, J.G.

    1981-01-01

    Aqueous solutions of trimesic acid were investigated for possible use as a chemical dosimeter. In aerated 10 -2 M sulphuric acid solution containing 10 -3 M trimesic acid, a highly fluorescent product is formed with its maximum fluorescence at 450nm when excited by 350nm light. The product has fluorescence characteristics very similar to quinine in 0.05 M sulphuric acid. The fluorescence intensity is linear with dose in the range 1-1000 rad and a precision of +-2% was obtained from a number of runs. Solutions are stable for at least several days before and after irradiation. The yield is little affected by moderate changes in trimesic acid concentration, oxygen concentration, water purity, energy of radiation and irradiation temperature. The small dependence of the yield on dose rate and the effect of measurement temperature on the fluorescence signal have been quantified. The most significant factor affecting the fluorescence signal is the hydrogen ion concentration of the solution. In aerated neutral and alkaline (pH 10) solutions, hydroxytrimesic acid (HTMA) is formed with G(HTMA) equal to 2.07 +- 0.04 and 2.21 +- 0.04, for 10 -3 M trimesate. In these solutions, G(HTMA) increases appreciably with increase in the trimesate concentration. The main fluorescent product formed in irradiated acid solutions was not identified but it was not HTMA. (author)

  5. Regulation of strontium migration and translocation in chemical reclamation of acid soils

    International Nuclear Information System (INIS)

    Velichko, V.A.; Okonskij, A.I.; Shestakov, E.I.; Panov, N.P.

    1993-01-01

    Results of chemical testing are presented of the local reclamants (ashes of various deposits and ferrochromium plant slags) to study the possibilities of their use for chemical soil reclamation. Attention was paid to the investigation of pollutant (strontium) behaviour in the reclamant-acid soil-plant-ground water system. Tracer method was used, 85 Sr was applied as a label. Prospects of zeolite application to control the strontium behaviour following the reclamant introduction into soil were considered. It was shown that zeolite application permitted to regulate strontium behaviour in the reclamant-soil-plant-ground water system. At that the modified zeolites possessing high Sr selectivity are recommended for application

  6. Amino Acids from Icy Amines: A Radiation-Chemical Approach to Extraterrestrial Synthesis

    Science.gov (United States)

    Dworkin, J. P.; Moore, M. H.

    2010-01-01

    Detections of amino acids in meteorites go back several decades, with at least 100 such compounds being reported for the Murchison meteorite alone. The presence of these extraterrestrial molecules raises questions as to their formation, abundance, thermal stability, racemization, and possible subsequent reactions. Although all of these topics have been studied in laboratories, such work often involves many variables and unknowns. This has led us to seek out model systems with which to uncover reaction products, test chemical predictions, and sited light on underlying reaction mechanisms. This presentation will describe one such study, focusing on amino-acid formation in ices.

  7. Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance

    International Nuclear Information System (INIS)

    Martino, C. J.; Reboul, S. H.; Wiersma, B. J.; Coleman, C. J.

    2013-01-01

    A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt % or 2 wt %) were used at 55 deg C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results

  8. A mathematical model for chemical reactions with actinide elements in the aqueous nitric acid solution: REACT

    International Nuclear Information System (INIS)

    Tachimori, Shoichi

    1990-02-01

    A mathematical model of chemical reactions with actinide elements: REACT code, was developed to simulate change of valency states of U, Pu and Np in the aqueous nitric acid solution. Twenty seven rate equations for the redox reactions involving some reductants, disproportionation reactions, and radiolytic growth and decay reaction of nitrous acid were programmed in the code . Eight numerical solution methods such as Porsing method to solve the rate equations were incorporated parallel as options depending on the characteristics of the reaction systems. The present report gives a description of the REACT code, e.g., chemical reactions and their rate equations, numerical solution methods, and some examples of the calculation results. A manual and a source file of the program was attached to the appendix. (author)

  9. Improving lead adsorption through chemical modification of wheat straw by lactic acid

    Science.gov (United States)

    Mu, Ruimin; Wang, Minxiang; Bu, Qingwei; Liu, Dong; Zhao, Yanli

    2018-01-01

    This work describes the creation of a new cellulosic material derived from wheat straw modified by lactic acid for adsorption of lead in aqueous solution, called 0.3LANS (the concentration of the lactic acid were 0.3mol/L). Batch experiments were conducted to study the effects of initial pH value, contact time, adsorbent dose, initial concentration and temperature. Fourier transform infrared (FTIR), Elemental analysis, BET surface area and Scanning electron micrographs (SEM) analysis were used to investigate the chemical modification. Adsorption isotherm models namely, Langmuir, Freundlich were used to analyse the equilibrium data, and the Langmuir isotherm model provided the best correlation, means that the adsorption was chemical monolayer adsorption and the adsorption capacity qm was increased with increasing temperature, and reached 51.49mg/g for 0.3LANS at 35°C, showing adsorption was exothermic.

  10. Electrode materials for hydrobromic acid electrolysis in Texas Instruments' solar chemical converter

    Energy Technology Data Exchange (ETDEWEB)

    Luttmer, J.D.; Konrad, D.; Trachtenberg, I.

    1985-05-01

    Texas Instruments has developed a solar chemical converter (SCC) which converts solar energy into chemical energy via the electrolysis of hydrobromic acid. Various materials were evaluated as anodes and cathodes for the electrolysis of the acid. Emphasis was placed on obtaining low overvoltage electrodes with good long-term stability. Sputtered platinum-iridium thin films were identified as the best choice as the cathode material, and sputtered iridium and iridium oxide thin films were identified as the best choice as anode materials. Electrochemical measurements indicate that low overvoltage losses are encountered on these materials at operating current densitities in the SCC. Accelerated corrosion tests of the materials predict acceptable electrode stability for 20 years in an environment representative of onthe-roof service.

  11. Microwave Acid Extraction to Analyze K and Mg Reserves in the Clay Fraction of Soils

    Directory of Open Access Journals (Sweden)

    Araína Hulmann Batista

    Full Text Available ABSTRACT: Extraction of K and Mg with boiling 1 mol L-1 HNO3 in an open system for predicting K and Mg uptake by plants is a method of low reproducibility. The aim of this study was to compare the extraction capacity of different acid methods relative to hydrofluoric acid extraction for K and Mg. A further objective was to develop a chemical extraction method using a closed system (microwave for nonexchangeable and structural forms of these nutrients in order to replace the traditional method of extraction with boiling HNO3 on a hot plate (open system. The EPA 3051A method can be used to estimate the total content of K in the clay fraction of soils developed from carbonate and phyllite/mica schist rocks. In the clay fraction of soils developed from basalt, recoveries of K by the EPA 3051A (pseudo-total method were higher than for the EPA 3052 (total hydrofluoric extraction method. The relative abundance of K and Mg for soils in carbonate rocks, phyllite/mica schist, granite/gneiss, and basalt determined by aqua regia digestion is unreliable. The method using 1 mol L-1 HNO3 in an closed system (microwave showed potential for replacing the classical method of extraction of nonexchangeable forms of K (boiling 1 mol L-1 HNO3 in an open system - hot plate and reduced the loss of Si by volatilization.

  12. Phase distribution of ecologically controlled chemical elements in production of extraction phosphoric acid

    International Nuclear Information System (INIS)

    Kazak, V.G.; Agnelov, A.I.; Zajtsev, P.M.

    1995-01-01

    Content of 16 ecologically controlled chemical element (among them Cd, Sr, Th, U, V, Y) in solid and liquid phases of extraction phosphorus acid (EPA) production is determined. These elements are recommended to control by Scientific research institute of human ecology and environment to establish their extraction coefficients to phosphogypsum and EPA and optimal variant of production of ecologically sate phosphorus fertilizers. X-ray fluorescent, atomic-absorption and polarographic methods are used for analysis these elements

  13. Airborne observations of formic acid using a chemical ionization mass spectrometer

    Directory of Open Access Journals (Sweden)

    M. Le Breton

    2012-12-01

    Full Text Available The first airborne measurements of formic acid mixing ratios over the United Kingdom were measured on the FAAM BAe-146 research aircraft on 16 March 2010 with a chemical ionization mass spectrometer using I reagent ions. The I ionization scheme was able to measure formic acid mixing ratios at 1 Hz in the boundary layer.

    In-flight standard addition calibrations from a formic acid source were used to determine the instrument sensitivity of 35 ± 6 ion counts pptv−1 s−1 and a limit of detection of 25 pptv. Routine measurements were made through a scrubbed inlet to determine the instrumental background. Three plumes of formic acid were observed over the UK, originating from London, Humberside and Tyneside. The London plume had the highest formic acid mixing ratio throughout the flight, peaking at 358 pptv. No significant correlations of formic acid with NOx and ozone were found, but a positive correlation was observed between CO and HCOOH within the two plumes where coincident data were recorded.

    A trajectory model was employed to determine the sources of the plumes and compare modelled mixing ratios with measured values. The model underestimated formic acid concentrations by up to a factor of 2. This is explained by missing sources in the model, which were considered to be both primary emissions of formic acid of mainly anthropogenic origin and a lack of precursor emissions, such as isoprene, from biogenic sources, whose oxidation in situ would lead to formic acid formation.

  14. Interactions of benzoic acid and phosphates with iron oxide colloids using chemical force titration.

    Science.gov (United States)

    Liang, Jana; Horton, J Hugh

    2005-11-08

    Colloidal iron oxides are an important component in soil systems and in water treatment processes. Humic-based organic compounds, containing both phenol and benzoate functional groups, are often present in these systems and compete strongly with phosphate species for binding sites on the iron oxide surfaces. Here, we examine the interaction of benzoate and phenolic groups with various iron oxide colloids using atomic force microscopy (AFM) chemical force titration measurements. Self-assembled monolayers (SAMs) of 4-(12-mercaptododecyloxy)benzoic acid and 4-(12-mercaptododecyloxy)phenol were used to prepare chemically modified Au-coated AFM tips, and these were used to probe the surface chemistry of a series of iron oxide colloids. The SAMs formed were also characterized using scanning tunneling microscopy, reflection-absorption infrared spectroscopy, and X-ray photoelectron spectroscopy. The surface pK(a) of 4-(12- mercaptododecyloxy)benzoic acid has been determined to be 4.0 +/- 0.5, and the interaction between the tip and the sample coated with a SAM of this species is dominated by hydrogen bonding. The chemical force titraton profile for an AFM probe coated with 4-(12- mercaptododecyloxy)benzoic acid and a bare iron oxide colloid demonstrates that the benzoic acid function group interacts with all three types of iron oxide sites present on the colloid surface over a wide pH range. Similar experiments were carried out on colloids precipitated in the presence of phosphoric, gallic, and tannic acids. The results are discussed in the context of the competitive binding interactions of solution species present in soils or in water treatment processes.

  15. Toxic Effects of Peracetic Acid Used as a Chemical Weapon During Workers Riots

    International Nuclear Information System (INIS)

    Jovic-Stosic, J.; Todorovic, V.; Segrt, Z.

    2007-01-01

    Peracetic acid (PAA) is a mixture of acetic acid and hydrogen peroxide, often used as antimicrobial agent on food processing equipment. It may explosively decompose on shock, friction or concussion. PAA is a strong oxidant, corrosive to the eyes, skin, respiratory and digestive tract. Depending on concentration, contact may cause severe burns of the skin or the eyes, and inhalation may cause lung edema. We report toxic effects of PAA used as a chemical weapon in workers riots. Group of workers attacked the security guards in beverage plant, throwing out beer bottles filled with PAA. Bottles exploded, producing irritant mists and fumes, and splashing some of the guards with acid. After about 20 minutes of exposure in the closed space, 30 persons were transported to the emergency room; 22 of them were transferred to the hospital. After the initial treatment, 10 patients were admitted for further treatment. The symptoms of exposure included burning sensation and pain of the eyes, throat and skin, cough and shortness of breath. Effects on the eyes included redness and corneal erosions. Pulmonary disturbances were prolonged expirium and wheezing by auscultation, and hypoxemia. Skin burns were ranged as grade I-III. Treatment included rinse of eyes and skin, systemic therapy with corticosteroids, beta adrenergic drugs and theophylline. Surgical treatment was necessary in grade III skin burns. A variety of common industrial chemicals may be misused as a chemical weapon. We point out the hazards of serious toxic effects of PAA if used in riots or terrorists attacks. (author)

  16. Investigation of radiation-chemical behaviour of divalent palladium in perchloric acid solutions

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Kalinina, S.V.

    1988-01-01

    Gamma-radiolysis of divalent palladium in perchloric acid solutions is studied. Absorption spectra of intermediate palladium compounds formed in the irradiated solution are taken. The analysis of literature data as well as comparative analysis of the absorption spectra obtained under irradiation of palladium (2) perchloric acid solutions with absorption spectra of palladium chlorocomplexes allows to suppose that the mentioned compounds are chlorocomplexes of palladium (2) of different composition depending on HClO 4 concentration in the initial solution and absorbed radiation dose. Radiation-chemical reduction of palladium (2) up to metal is stated to take place in the whole studied range of initial concentrations of components of the system and dose rates. Kinetic dependences of metallic palladium formation are obtained. Values of radiation-chemical yields of metallic palladium formation depending on the initial concentrations of palladium (2) and perchloric acid are given. A mechanism of radiolytic reduction of palladium (2) in the investigated system is suggested based on the experimental data, and a theoretical value of the radiation-chemical yield of palladium (2) reduction being in a good agreement with experimentally found values is calculated

  17. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    Science.gov (United States)

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A comparison of neutralization efficiency of chemicals with respect to acidic Kopili River water

    Science.gov (United States)

    Kapil, Nibedita; Bhattacharyya, Krishna G.

    2017-09-01

    Among all the renewable sources of energy, hydropower is the most potential source which is economical, non-polluting and eco-friendly. The efficiency of hydropower plant in the long run depends on many factors like water and sediment quality. Erosive and corrosive wear of machine parts like turbine is a complex phenomenon. The problem becomes more acute if the hydroenvironment is acidic in nature. The wear and tear due to corrosion/erosion caused by acid mine drainage (AMD) from coal mines reduces the efficiency and the life of the equipments. In this work, neutralization of the acidic water of the Kopili River, Assam, India was investigated using a number of basic chemicals and quantitatively estimating their effectiveness and actual requirement. The acidic water of the river, used as the cooling water, has been found responsible for damaging the equipments of the Kopili Hydro Electric Power Project (KHEP), Assam/Meghalaya, India by reducing the life of all metallic parts through corrosion. In this work, use is made of a number of basic materials like calcium carbonate, calcium hydroxide, calcium oxide, sodium carbonate, sodium hydroxide, and ammonia to examine their neutralization efficiency with respect to the acidic water and it was found that quick lime or raw lime (CaO) has the highest neutralization capacity. Suggestions have been made for meeting the problem of acidity of the river water.

  19. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    Science.gov (United States)

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  20. Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bouttemy, M.; Tran-Van, P. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Gerard, I., E-mail: gerard@chimie.uvsq.fr [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Hildebrandt, T.; Causier, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Pelouard, J.L.; Dagher, G. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Jehl, Z.; Naghavi, N. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Voorwinden, G.; Dimmler, B. [Wuerth Elektronik Research GmbH, Industriestr. 4, 70565 Stuttgart (Germany); Powalla, M. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung (ZSW), Industriestr. 6, 70565 Stuttgart (Germany); Guillemoles, J.F. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Lincot, D. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Etcheberry, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France)

    2011-08-31

    CIGSe absorber was etched in HBr/Br{sub 2}/H{sub 2}O to prepare defined thicknesses of CIGSe between 2.7 and 0.5 {mu}m. We established a reproducible method of reducing the absorber thickness via chemical etching. We determine the dissolution kinetics rate of CIGSe using trace analysis by graphite furnace atomic absorption spectrometry of Ga and Cu. The roughness of the etching surface decreases during the first 500 nm of the etching to a steady state value of the root-mean-square roughness near 50 nm. X-ray photoelectron spectroscopy analyses demonstrate an etching process occurring with a constant chemical composition of the treated surface acidic bromine solutions provide a controlled chemical thinning process resulting in an almost flat surface and a very low superficial Se{sup 0} enrichment.

  1. Treatment of Arctic Wastewater by Chemical Coagulation, UV and Peracetic Acid Disinfection

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus

    2017-01-01

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency...... of physico-chemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli...... of heterotrophic bacteria by applying 6 mg/L and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 kWh/m3 and 2.10 kWh/m3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physico-chemical treatment of raw wastewater followed...

  2. Tolerance and safety of superficial chemical peeling with salicylic acid in various facial dermatoses

    Directory of Open Access Journals (Sweden)

    Iqbal Zafar

    2005-03-01

    Full Text Available BACKGROUND: Chemical peeling is a skin-wounding procedure that may have some potentially undesirable side-effects. AIMS: The present study is directed towards safety concerns associated with superficial chemical peeling with salicylic acid in various facial dermatoses. METHODS: The study was a non-comparative and a prospective one. Two hundred and sixty-eight patients of either sex, aged between 10 to 60 years, undergoing superficial chemical peeling for various facial dermatoses (melasma, acne vulgaris, freckles, post-inflammatory scars/pigmentation, actinic keratoses, plane facial warts, etc. were included in the study. Eight weekly peeling sessions were carried out in each patient. Tolerance to the procedure and any undesirable effects noted during these sessions were recorded. RESULTS: Almost all the patients tolerated the procedure well. Mild discomfort, burning, irritation and erythema were quite common but the incidence of major side-effects was very low and these too, were easily manageable. There was no significant difference in the incidence of side-effects between facial dermatoses (melasma, acne and other pigmentary disorders. CONCLUSION: Chemical peeling with salicylic acid is a well tolerated and safe treatment modality in many superficial facial dermatoses.

  3. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system.

    Science.gov (United States)

    Mounier, S; Nicolodelli, G; Redon, R; Milori, D M B P

    2017-04-15

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species.

    Science.gov (United States)

    Toppe, Jogeir; Albrektsen, Sissel; Hope, Britt; Aksnes, Anders

    2007-03-01

    The chemical composition, content of minerals and the profiles of amino acids and fatty acids were analyzed in fish bones from eight different species of fish. Fish bones varied significantly in chemical composition. The main difference was lipid content ranging from 23 g/kg in cod (Gadus morhua) to 509 g/kg in mackerel (Scomber scombrus). In general fatty fish species showed higher lipid levels in the bones compared to lean fish species. Similarly, lower levels of protein and ash were observed in bones from fatty fish species. Protein levels differed from 363 g/kg lipid free dry matter (dm) to 568 g/kg lipid free dm with a concomitant inverse difference in ash content. Ash to protein ratio differed from 0.78 to 1.71 with the lowest level in fish that naturally have highest swimming and physical activity. Saithe (Pollachius virens) and salmon (Salmo salar) were found to be significantly different in the levels of lipid, protein and ash, and ash/protein ratio in the bones. Only small differences were observed in the level of amino acids although species specific differences were observed. The levels of Ca and P in lipid free fish bones were about the same in all species analyzed. Fatty acid profile differed in relation to total lipid levels in the fish bones, but some minor differences between fish species were observed.

  5. Durability to Chemical Attack by Acids of Epoxy Microconcretes by Comparison to Cementitious Ones

    Directory of Open Access Journals (Sweden)

    Elhem Ghorbel

    2016-01-01

    Full Text Available This research deals with the durability of micropolymer concrete (MPC obtained by mixing an epoxy resin with fine and coarse sand particles. In particular the resistance of the micropolymer concrete to chemical solutions (citric acid C6H8O7, sulfuric acid H2SO4, and hydrochloric acid HCl is investigated and compared to this of Portland cement microconcrete. Two MPC are tested. The first is formulated with 9% mass fraction of epoxy polymer whereas calcareous fillers have been incorporated in the second formulation in order to reduce the percentage of the epoxy binder. It is shown that a microconcrete designed with 7% of epoxy, 10% of fillers, and 83% of aggregates is characterized by higher physical and mechanical properties than those of the MPC formulated with 9% of epoxy binder. The mechanical properties of the resulting materials after their exposure to the three selected acid solutions at different durations were studied through compressive, three points bending and ultrasonic wave propagation tests. The obtained results are compared to those of microcement concretes (MCC tested under the same conditions as MPC. The results show that both microepoxy polymer concretes exhibit better mechanical properties and highest resistance to chemical attack than the microcement concrete.

  6. Correlations between the 1H NMR chemical shieldings and the pKa values of organic acids and amines.

    Science.gov (United States)

    Lu, Juanfeng; Lu, Tingting; Zhao, Xinyun; Chen, Xi; Zhan, Chang-Guo

    2018-06-01

    The acid dissociation constants and 1 H NMR chemical shieldings of organic compounds are important properties that have attracted much research interest. However, few studies have explored the relationship between these two properties. In this work, we theoretically studied the NMR chemical shifts of a series of carboxylic acids and amines in the gas phase and in aqueous solution. It was found that the negative logarithms of the experimental acid dissociation constants (i.e., the pK a values) of the organic acids and amines in aqueous solution correlate almost linearly with the corresponding calculated NMR chemical shieldings. Key factors that affect the theoretically predicted pK a values are discussed in this paper. The present work provides a new way to predict the pK a values of organic/biochemical compounds. Graphical abstract The chemical shielding values of organic acids and amines correlate near linearly with their corresponding pK a values.

  7. Treatment of periorbital dark circles: Comparative study of chemical peeling with a combination of trichloroacetic acid and lactic acid versus carboxytherapy

    OpenAIRE

    Arwa Mohammad Hassan; Ghada Fawzy Hassan; Hedaya Yousef Aldalies; Gamal Mohammad El Maghraby

    2016-01-01

    Periorbital dark circles (PODC) are a common worldwide cosmetic problem. It is difficult to treat due to complications in its pathogenesis and aetiology. Available lines of treatment for PODC include whitening creams, topical retinoid acid, chemical peeling, laser therapy, carboxytherapy, autologous fat transplantation, injectable fillers and surgery (blepharoplasty).The aim of this study isto evaluate and compare the efficacy of chemical peels using trichloroacetic acid (3.75%) and lactic ac...

  8. Proton exchange between oxymethyl radical and acids and bases: semiempirical quantum-chemical study

    Directory of Open Access Journals (Sweden)

    Irina Pustolaikina

    2016-12-01

    Full Text Available The reactions with proton participation are widely represented in the analytical, technological and biological chemistry. Quantum-chemical study of the exchange processes in hydrogen bonding complexes will allow us to achieve progress in the understanding of the elementary act mechanism of proton transfer in hydrogen bonding chain as well as the essence of the acid-base interactions. Oxymethyl radical •CH2ОН is small in size and comfortable as a model particle that well transmits protolytic properties of paramagnetic acids having more complex structure. Quantum-chemical modeling of proton exchange reaction oxymethyl radical ∙CH2OH and its diamagnetic analog CH3OH with amines, carboxylic acids and water was carried out using UAM1 method with the help of Gaussian-2009 program. QST2 method was used for the search of transition state, IRC procedure was applied for the calculation of descents along the reaction coordinate. The difference in the structure of transition states of ∙CH2OH/ CH3OH with bases and acids has been shown. It has been confirmed that in the case of bases, consecutive proton exchange mechanism was fixed, and in the case of complexes with carboxylic acids parallel proton exchange mechanism was fixed. The similarity in the reaction behavior of paramagnetic and diamagnetic systems in the proton exchange has been found. It was suggested that the mechanism of proton exchange reaction is determined by the structure of the hydrogen bonding cyclic complex, which is, in turn, depends from the nature of the acid-base interactions partners.

  9. Chemical-milling solution for invar alloy

    Science.gov (United States)

    Batiuk, W.

    1980-01-01

    Excellent surface finishes and tolerances are achieved using two formulations. Solution A gives finish of 3.17 micrometers after milling at 57 to 63 deg C. Constituents of A are: Hydrofluoric acid (70%), 5,8 oz/gal; nitric acid (40-42) degrees Baume), 40 oz/gal. Alternative solution gives 2.16 micrometer finish, and differs from A by addition of 7% phosphoric acid. Formulations eliminate channeling at root fillets, dishing, island formation, and overhangs.

  10. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  11. Application of positive mode atmospheric chemical ionisation to distinguish epimeric oleanolic and ursolic acids.

    Science.gov (United States)

    Townley, Chloe; Brettell, Rhea C; Bowen, Richard D; Gallagher, Richard T; Martin, William H C

    2015-01-01

    A new and more reliable method is reported for distinguishing the equatorial and axial epimers of oleanolic and ursolic acids and related triterpenoids based primarily on the relative abundance of the [M+H](+) and [M+-H(2)O](+) signals in their positive mode atmospheric pressure chemical ionisation mass spectra. The rate of elimination of water, which is the principal primary fragmentation of protonated oleanolic and ursolic acids, depends systematically on the stereochemistry of the hydroxyl group in the 3 position. For the b-epimer, in which the 3-hydroxyl substituent is in an equatorial position,[M+-H(2)O](+) is the base peak. In contrast, for the α-epimer, where the 3-hydroxyl group is axial, [M + H](+) is the base peak. This trend, which is general for a range of derivatives of oleanolic and ursolic acids, including the corresponding methyl esters, allows epimeric triterpenoids in these series to be securely differentiated. Confirmatory information is available from the collision-induced dissociation of the [M+-H(2)O](+) primary fragment ions, which follow different pathways for the species derived from axial and equatorial epimers of oleanolic and ursolic acids. These two pieces of independent spectral information permit the stereochemistry of epimeric oleanolic and ursolic acids (and selected derivatives) to be assigned with confidence without relying either on chromatographic retention times or referring to the spectra or other properties of authentic samples of these triterpenoids.

  12. Dialkyldithiophosphoric acids - chemical properties and 5f and 4f elements ions extraction

    International Nuclear Information System (INIS)

    Pattee, D.

    1987-09-01

    This work is a contribution to the study of the properties of the dialkyldithiophosphoric acids and of the extraction of the 4f and 5f ions from weakly acidic nitrate and phosphate media. Following a complete bibliographic study, synthesis and purification of the di-2-ethylhexyl-dithiophosphoric acid (HDEHDTP) is studied. It is identified with chemical methods and spectroscopic methods (I.R., N.M.R., V.P.C.); its by products, the di-2-ethylhexyl (monothio) phosphoric acids (HDEHTP, HDEHP) are also identified and characterized. Stability against hydrolysis and radiolysis is determined. The extractive properties are studied for the 4f and 5f ions. The presence of a sulfur donor atom in HDEHDTP makes it inefficient for the extraction of trivalent lanthanides and actinides but brings out a certain selectivity for americium. For HDEHTP, the presence of an oxygen donor atom rubs out any selectivity and the extraction constants are greater. Selectivity of HDEHDTP is increased by TBP (tri-n-butylphosphate) in synergistic mixtures. The mechanism of extraction of hexavalent uranium from phosphoric medium is elucidated. A model is developed by NMR for the micellisation of the sodium salts of HDEHDTP, HDEHTP and HDEHP, and extrapolated it to the trivalent rare earth salts of the acids. The structures are verified by light scattering and low angle X-ray diffraction [fr

  13. Effect of Hot water and dilute acid pretreatment on the chemical properties of liquorice root

    Directory of Open Access Journals (Sweden)

    zahra takzare

    2016-06-01

    Full Text Available Abstract In this study, the liquorice root (Glycyrrhiza glabra that was extracted in the factory in Kerman province, pre-hydrolyzed and then chemical compositions (Extractives, Lignin content, Holocellulose percent, the hydrolysis process yield and weight loss of the waste was measured. Pre-hydrolysis process was done on the above mentioned waste by hot water, hot water followed by 0.5 percent sulfuric acid and also alone sulfuric acid with different concentrations (0.5, 1, 1.5 and 2 percent The samples were pre-hydrolyzed in hot water at 150 °C and 30, 60 and 90 minutes as well as in the mixture of hot water and 0.5 % sulfuric acid at 150 °C and 60 minutes and also in pure sulfuric acid, at 130 °C and at 60 minutes. The results showed that the pre-hydrolyzed treatment with hot water in 60 minutes had been favorable performance in the respect of weight loss, lignin content and holocellulose percent. Also, in the case of pre-treatment including sulfuric acid, 2% dose can be good selected option in term of maximum holocellulose percent and minimum lignin content so that it can be suggested to produce higher value-added products such as bioethanol from licorice root bid.

  14. Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Ana Maria Athayde Uchôa-thomaz

    2014-09-01

    Full Text Available This study aimed to characterize the chemical composition, determine the fatty acid profile, and quantify the bioactive compounds present in guava seed powder (Psidium guajava L.. The powder resulted from seeds obtained from guava pulp processing. The agro-industrial seeds from red guava cv. paluma were used, and they were donated by a frozen pulp fruit manufacturer. They contain varying amounts of macronutrients and micronutrients, with a high content of total dietary fiber (63.94 g/100g, protein (11.19 g/100g, iron (13.8 mg/100g, zinc (3.31 mg/100g, and reduced calorie content (182 kcal/100g. Their lipid profile showed a predominance of unsaturated fatty acids (87.06%, especially linoleic acid (n6 and oleic acid (n9. The powder obtained contained significant amounts of bioactive compounds such as ascorbic acid (87.44 mg/100g, total carotenoids (1.25 mg/100 g and insoluble dietary fiber (63.55 g/100g. With regard to their microbiological quality, the samples were found suitable for consumption. Based on these results, it can be concluded that the powder produced has favorable attributes for industrial use, and that use of these seeds would be a viable alternative to prevent various diseases and malnutrition in our country and to reduce the environmental impact of agricultural waste.

  15. Study of morphology, chemical, and amino acid composition of red deer meat

    Science.gov (United States)

    Okuskhanova, Eleonora; Assenova, Bahytkul; Rebezov, Maksim; Amirkhanov, Kumarbek; Yessimbekov, Zhanibek; Smolnikova, Farida; Nurgazezova, Almagul; Nurymkhan, Gulnur; Stuart, Marilyne

    2017-01-01

    Aim: The aim of this study was to evaluate red deer (maral) meat quality based on chemical composition, pH, water-binding capacity (WBC), and amino acid content. Materials and Methods: Maral meat surface morphology measurements were obtained by scanning electron microscopy. Active acidity (pH) was determined by potentiometry. Samples were analyzed for WBC by exudation of moisture to a filter paper by the application of pressure. Chemical composition (moisture, protein, fat, and ash fractions) was obtained by drying at 150°C and by extraction, using ethylic ether, and ashing at 500-600°C. The amino acid composition was obtained by liquid chromatography. Results: Maral meat, with a pH of 5.85 and an average moisture content of 76.82%, was found to be low in fat (2.26%). Its protein content was 18.71% while its ash content was 2.21%. The amino acid composition showed that lysine (9.85 g/100 g), threonine (5.38 g/100 g), and valine (5.84 g/100 g) predominated in maral meat, while phenylalanine (4.08 g/100 g), methionine (3.29 g/100 g), and tryptophan (0.94 g/100 g) were relatively low in maral meat compared to other meats. The average WBC was found to be 65.82% and WBC was found to inversely correlate with moisture content. Conclusion: Low-fat content, high mineral content, and balanced amino-acid composition qualify maral meat as a worthy dietary and functional food. PMID:28717313

  16. Effect of acidic aqueous solution on chemical and physical properties of polyamide NF membranes

    Science.gov (United States)

    Jun, Byung-Moon; Kim, Su Hwan; Kwak, Sang Kyu; Kwon, Young-Nam

    2018-06-01

    This work was systematically investigated the effects of acidic aqueous solution (15 wt% sulfuric acid as model wastewater from smelting process) on the physical and chemical properties of commercially available nanofiltration (NF) polyamide membranes, using piperazine (PIP)-based NE40/70 membranes and m-phenylene diamine (MPD)-based NE90 membrane. Surface properties of the membranes were studied before and after exposure to strong acid using various analytical tools: Scanning Electron Microscopy (SEM), Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), contact angle analyzer, and electrophoretic light scattering spectrophotometer. The characterization and permeation results showed piperazine-based NE40/70 membranes have relatively lower acid-resistance than MPD-based NE90 membrane. Furthermore, density functional theory (DFT) calculation was also conducted to reveal the different acid-tolerances between the piperazine-based and MPD-based polyamide membranes. The easiest protonation was found to be the protonation of oxygen in piperazine-based monomer, and the N-protonation of the monomer had the lowest energy barrier in the rate determining step (RDS). The calculations were well compatible with the surface characterization results. In addition, the energy barrier in RDS is highly correlated with the twist angle (τD), which determines the delocalization of electrons between the carbonyl πCO bond and nitrogen lone pair, and the tendency of the twist angle was also maintained in longer molecules (dimer and trimer). This study clearly explained why the semi-aromatic membrane (NE40/70) is chemically less stable than the aromatic membrane (NE90) given the surface characterizations and DFT calculation results.

  17. Study of morphology, chemical, and amino acid composition of red deer meat

    Directory of Open Access Journals (Sweden)

    Eleonora Okuskhanova

    2017-06-01

    Full Text Available Aim: The aim of this study was to evaluate red deer (maral meat quality based on chemical composition, pH, water-binding capacity (WBC, and amino acid content. Materials and Methods: Maral meat surface morphology measurements were obtained by scanning electron microscopy. Active acidity (pH was determined by potentiometry. Samples were analyzed for WBC by exudation of moisture to a filter paper by the application of pressure. Chemical composition (moisture, protein, fat, and ash fractions was obtained by drying at 150°C and by extraction, using ethylic ether, and ashing at 500-600°C. The amino acid composition was obtained by liquid chromatography. Results: Maral meat, with a pH of 5.85 and an average moisture content of 76.82%, was found to be low in fat (2.26%. Its protein content was 18.71% while its ash content was 2.21%. The amino acid composition showed that lysine (9.85 g/100 g, threonine (5.38 g/100 g, and valine (5.84 g/100 g predominated in maral meat, while phenylalanine (4.08 g/100 g, methionine (3.29 g/100 g, and tryptophan (0.94 g/100 g were relatively low in maral meat compared to other meats. The average WBC was found to be 65.82% and WBC was found to inversely correlate with moisture content. Conclusion: Low-fat content, high mineral content, and balanced amino-acid composition qualify maral meat as a worthy dietary and functional food.

  18. Toxicity of binary chemical munition destruction products: methylphosphonic acid, methylphosphinic acid, 2-diisopropylaminoethanol, DF neutralent, and QL neutralent.

    Science.gov (United States)

    Watson, Rebecca E; Hafez, Ahmed M; Kremsky, Jonathan N; Bizzigotti, George O

    2007-01-01

    This paper reports the toxicity and environmental impact of neutralents produced from the hydrolysis of binary chemical agent precursor chemicals DF (methylphosphonic difluoride) and QL (2-[bis(1-methylethyl)amino]ethyl ethyl methylphosphonite). Following a literature review of the neutralent mixtures and constituents, basic toxicity tests were conducted to fill data gaps, including acute oral and dermal median lethal dose assays, the Ames mutagenicity test, and ecotoxicity tests. For methylphosphonic acid (MPA), a major constituent of DF neutralent, the acute oral LD(50) in the Sprague-Dawley rat was measured at 1888 mg/kg, and the Ames test using typical tester strains of Salmonella typhimurium and Escherichia coli was negative. The 48-h LC(50) values for pH-adjusted DF neutralent with Daphnia magna and Cyprinodon variegatus were > 2500 mg/L and 1593 mg/L, respectively. The acute oral LD(50) values in the rat for QL neutralent constituents methylphosphinic acid (MP) and 2-diisopropylaminoethanol (KB) were both determined to be 940 mg/kg, and the Ames test was negative for both. Good Laboratory Practice (GLP)-compliant ecotoxicity tests for MP and KB gave 48-h D. magna EC(50) values of 6.8 mg/L and 83 mg/L, respectively. GLP-compliant 96-h C. variegatus assays on MP and KB gave LC(50) values of 73 and 252 mg/L, respectively, and NOEC values of 22 and 108 mg/L. QL neutralent LD(50) values for acute oral and dermal toxicity tests were both > 5000 mg/kg, and the 48-h LD(50) values for D. magna and C. variegatus were 249 and 2500 mg/L, respectively. Using these data, the overall toxicity of the neutralents was assessed.

  19. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    International Nuclear Information System (INIS)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei

    2013-01-01

    We introduce a Python-based program that utilizes the large database of 13 C and 15 N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13 C– 13 C, 15 N– 13 C, or 3D 15 N– 13 C– 13 C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13 C– 13 C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  20. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei, E-mail: mhong@iastate.edu [Iowa State University, Department of Chemistry (United States)

    2013-06-15

    We introduce a Python-based program that utilizes the large database of {sup 13}C and {sup 15}N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D {sup 13}C-{sup 13}C, {sup 15}N-{sup 13}C, or 3D {sup 15}N-{sup 13}C-{sup 13}C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D {sup 13}C-{sup 13}C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the C{alpha} and C{beta} chemical shifts, the highest-ranked PLUQ assignments were 40-60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO-C{alpha}-C{beta} or N-C{alpha}-C{beta}), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  1. Evaluation of efficacy of chemical peeling with glycolic acid in hyperpigmentation disorders of the skin

    Directory of Open Access Journals (Sweden)

    Supriya P Deshmukh

    2012-01-01

    Full Text Available Background : Chemical peeling entails application of chemical agents to the skin causing a controlled chemical burn, thereby achieving improved texture and quality of skin. Aim: To evaluate the efficacy of glycolic acid in melasma and other causes of hyperpigmentation. Materials and Methods: A total of 20 patients were included in the study. After adequate priming, application of glycolic acid in various concentrations in biweekly interval for a period of 16 weeks was done. Post-treatment photographs were taken and were subjected to analysis. Results: Melasma constituted 11 patients and hyperpigmentation, ie, post acne marks and freckles due to sun exposure accounted nine patients. Complete resolution of melasma was possible only in one (9% patient and good improvement in four (36.3%, whereas five (45.5% patients showed fair improvement. In cases of hyperpigmentation, three (33% patients showed excellent improvement, one (11% showed good improvement, and five (55.5% patients showed fair improvement. The patients of melasma took an average of 7.33 number of peels to show improvement and those of hyperpigmentation took 4.2 peels. Conclusions: Melasma shows fair to good improvement and requires more number of peels as compared to other causes of hyperpigmentation in skin. Postinflammatory pigmentation shows excellent improvement in the majority of patients.

  2. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.

    Science.gov (United States)

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-02-16

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m 3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m 3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.

  3. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    Science.gov (United States)

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu. © 2014 American Institute of Chemical Engineers.

  4. Acid leaching of coal: to produce clean fuels from Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, Meryem [Mineral Research and Exploration Directorate (Turkey)], email: meryem_seferinoglu66@yahoo.com; Duzenli, Derya [Ankara Central Laboratory (Turkey)

    2011-07-01

    With the increasing concerns about the environment, energy producers and governments are looking at developing clean energy sources. However, Turkey has limited clean energy resources and is using low grade coal which has high sulphur content as an alternative energy source. The aim of this paper is to study the possibility of generating clean fuel from Edirne Lignite and to get a better understanding of chemical mechanisms involved in coal leaching with hydrofluoric acid (HF) solutions. Leaching was conducted on Edirne Lignite with HF solution at ambient temperature and the effects of parameters such as reaction time and concentration of acid solutions on the process were evaluated. The optimum conditions were found and it was shown that ash levels can be reduced from 28.9% to 10.5% and the calorific value increased by 500kcal/kg with the HF leaching method. This study demonstrated that the production of clean fuel from high sulphur lignite is possible.

  5. Procedure of Destructive Chemical Recovery of Precious Metals in Nitric Acid Production

    Directory of Open Access Journals (Sweden)

    Ljubičić, M.

    2012-07-01

    Full Text Available The heart of the nitric acid production process is the chemical reactor containing a platinum-based catalyst pack and an associated catchment system, which allows the ammonia oxidation reaction to take place efficiently. Under the severe operating conditions imposed by the high-pressure ammonia oxidation process, the catalyst gauzes experience progressive deterioration, as shown by the restricted surface of the catalyst wires, the loss of catalytic activity and the loss of catalytic materials. The higher the pressure of gaseous ammonia oxidation, the greater the loss of platinum group metals from the surface of the applied selective heterogeneous catalysts. Total losses for one batch over the whole period of using selective heterogeneous catalysts may account in the range from 20 to 40 % of the total installed quantity of precious metals. An important part of the platinum removed from the platinum-rhodium alloy wires can be recovered at the outlet of the reactor by means of palladium catchment gauzes. However, this catchment process, which is based on the great ability of palladium to alloy with platinum, is not 100 % effective and a fraction of the platinum and practically all of the rhodium lost by the catalyst wires, evades the catchment package and is then deposited in other parts of the plant, especially heat exchangers. From the above mentioned operating equipment, the retained mass of precious metals can be recovered by the technical procedure of non-destructive and destructive chemical solid-liquid extraction.Shown is the technical procedure of destructive chemical recovery of preheater and boiler for preheating and production of steam by applying sulfuric acid (w = 20 % and subsequent procedure of raffination of derived sludge, to the final recovery of precious metals. The technical procedure of destructive chemical recovery of precious metals from preheater and boiler for preheating and production of steam in nitric acid production is

  6. Modelling the acid/base 1H NMR chemical shift limits of metabolites in human urine.

    Science.gov (United States)

    Tredwell, Gregory D; Bundy, Jacob G; De Iorio, Maria; Ebbels, Timothy M D

    2016-01-01

    Despite the use of buffering agents the 1 H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples. To investigate the acid, base and metal ion dependent 1 H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture. Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl 2 , MgCl 2 , NaCl or KCl, and their 1 H NMR spectra were acquired. Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na + , K + , Ca 2+ and Mg 2+ , were also measured. These data will be a valuable resource for 1 H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1 H NMR spectra.

  7. Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium

    International Nuclear Information System (INIS)

    Arslan, Taner; Kandemirli, Fatma; Ebenso, Eno E.; Love, Ian; Alemu, Hailemichael

    2009-01-01

    Quantum chemical calculations using the density functional theory (DFT) and some semi-empirical methods were performed on four sulphonamides (sulfaguanidine, sulfamethazine, sulfamethoxazole and sulfadiazine) used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental %IE were subjected to correlation analysis and indicate that their inhibition effect are closely related to E HOMO , E LUMO , hardness, polarizability, dipole moment and charges. The %IE increased with increase in the E HOMO and decrease in E HOMO - E LUMO . The negative sign of the E HOMO values and other kinetic and thermodynamic parameters indicates that the data obtained support physical adsorption mechanism

  8. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    Science.gov (United States)

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-02-04

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  9. An investigation of the chemical composition and acid corrosion of pedra sabão (soapstone

    Directory of Open Access Journals (Sweden)

    ROBSON FERNANDES DE FARIAS

    2005-02-01

    Full Text Available In this paper the results of a basic study of the chemical composition and structure of soapstone are reported. An investigation of the effects of aqueous sulfuric acid solutions on the physical integrity of the stone was also performed. The studied soapstone samples had a lamellar nanostructure as verified by DRX data. Furthermore, they contained isolated silanol (Si–OH groups, as indicated by FTIR data, and the majority of the silicon atoms were bonded to OH groups, as shown by 29Si CPMAS NMR analysis. Is was also shown that a low resistance to acid attack is associated with a large amount of magnesium and/or iron in the stone.

  10. Combined Sewer Overflow pretreatment with chemical coagulation and a particle settler for improved peracetic acid disinfection

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Bonnerup, Arne; Andersen, Henrik Rasmus

    2016-01-01

    Full scale disinfection by peracetic acid (PAA) was achieved on Combined Sewer Overflow (CSO) water, which was pre-treated physically by a fast settling-filtration unit. Disinfection of untreated CSO water using PAA was compared to treatment using a particle separator (Hydro......Separator®) and additional coagulation with poly-aluminum-chloride. Disinfection for Enterococcus increased with the applied dose of PAA and additional improvement was achieved when it was preceded by chemical coagulation with 5 mg L−1 poly-aluminum-chloride. When Enterococcus was reduced by treatment in the Hydro...

  11. Quantum Chemical Prediction of Equilibrium Acidities of Ureas, Deltamides, Squaramides, and Croconamides.

    Science.gov (United States)

    Ho, Junming; Zwicker, Vincent E; Yuen, Karen K Y; Jolliffe, Katrina A

    2017-10-06

    Robust quantum chemical methods are employed to predict the pK a 's of several families of dual hydrogen-bonding organocatalysts/anion receptors, including deltamides and croconamides as well as their thio derivatives. The average accuracy of these predictions is ∼1 pK a unit and allows for a comparison of the acidity between classes of receptors and for quantitative studies of substituent effects. These computational insights further explain the relationship between pK a and chloride anion affinity of these receptors that will be important for designing future anion receptors and organocatalysts.

  12. Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo

    Directory of Open Access Journals (Sweden)

    Hongbin Tu

    2017-09-01

    Full Text Available Despite its transport by glucose transporters (GLUTs in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo−/− unable to synthesize ascorbate (vitamin C were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo.

  13. Ultrasound-assisted acid hydrolysis of cellulose to chemical building blocks: Application to furfural synthesis.

    Science.gov (United States)

    Santos, Daniel; Silva, Ubiratan F; Duarte, Fabio A; Bizzi, Cezar A; Flores, Erico M M; Mello, Paola A

    2018-01-01

    In this work, the use of ultrasound energy for the production of furanic platforms from cellulose was investigated and the synthesis of furfural was demonstrated. Several systems were evaluated, as ultrasound bath, cup horn and probe, in order to investigate microcrystalline cellulose conversion using simply a diluted acid solution and ultrasound. Several acid mixtures were evaluated for hydrolysis, as diluted solutions of HNO 3 , H 2 SO 4 , HCl and H 2 C 2 O 4 . The influence of the following parameters in the ultrasound-assisted acid hydrolysis (UAAH) were studied: sonication temperature (30 to 70°C) and ultrasound amplitude (30 to 70% for a cup horn system) for 4 to 8molL -1 HNO 3 solutions. For each evaluated condition, the products were identified by ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS), which provide accurate information regarding the products obtained from biomass conversion. The furfural structure was confirmed by nuclear magnetic resonance ( 1 H and 13 C NMR) spectroscopy. In addition, cellulosic residues from hydrolysis reaction were characterized using scanning electron microscopy (SEM), which contributed for a better understanding of physical-chemical effects caused by ultrasound. After process optimization, a 4molL -1 HNO 3 solution, sonicated for 60min at 30°C in a cup horn system at 50% of amplitude, lead to 78% of conversion to furfural. This mild temperature condition combined to the use of a diluted acid solution represents an important contribution for the selective production of chemical building blocks using ultrasound energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis.

    Science.gov (United States)

    Shaheen, Th I; Emam, Hossam E

    2018-02-01

    Cellulose nanocrystal (CNC) is a unique material obtained from naturally occurring cellulose fibers. Owing to their mechanical, optical, chemical, and rheological properties, CNC gained significant interest. Herein, we investigate the potential of commercially non-recyclable wood waste, in particular, sawdust as a new resource for CNC. Isolation of CNC from sawdust was conducted as per acid hydrolysis which induced by ultrasonication technique. Thus, sawdust after being alkali delignified prior sodium chlorite bleaching, was subjected to sulfuric acid with concentration of 65% (w/w) at 60 ° C for 60min. After complete reaction, CNC were collected by centrifugation followed by dialyzing against water and finally dried via using lyophilization technique. The CNC yield attained values of 15% from purified sawdust. Acid hydrolysis mechanism exactly referred that, the amorphous regions along with thinner as well as shorter crystallites spreaded throughout the cellulose structure are digested by the acid leaving CNC suspension. The latter was freeze-dried to produce CNC powder. A thorough investigation pertaining to nanostructural characteristics of CNC was performed. These characteristics were monitored using TEM, SEM, AFM, XRD and FTIR spectra for following the changes in functionality. Based on the results obtained, the combination of sonication and chemical treatment was great effective in extraction of CNC with the average dimensions (diameter×length) of 35.2±7.4nm×238.7±81.2nm as confirmed from TEM. Whilst, the XRD study confirmed the crystal structure of CNC is obeyed cellulose type I with crystallinity index ∼90%. Cellulose nanocrystals are nominated as the best candidate within the range studied in the area of reinforcement by virtue of their salient textural features. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Treatment of Active Acne Vulgaris by Chemical Peeling Using 88% Lactic Acid

    Directory of Open Access Journals (Sweden)

    Khalifa E. Sharquie

    2014-10-01

    Full Text Available Introduction: The etiopathogenesis of acne vulgaris is multifactorial, and its therapy is prolonged course that might be not accepted by many patients. Most recently TCA 35% one session peeling gave complete clearance and full remission for active acne vulgaris. Lactic acid has been used effectively as therapeutic topical agents for many skin diseases. Aim: To evaluate the efficacy and safety of chemical peeling using 88% lactic acid solution in the treatment of active acne vulgaris. Material and Methods: This clinical, interventional, therapeutic study was done at the Department of Dermatology, Baghdad Teaching Hospital, during the period from October 2012 to October 2013. Twenty five patients with active acne vulgaris were included, 15 (60% females and 10 (40% males and their ages ranged from 16-36 (21.5000± 5.46279 years. Fifteen patients were associated with acne scars. Three chemical peels using 88% lactic acid solution was carried out two weeks apart for patients with active acne vulgaris with or without scarring. Scoring for active acne vulgaris and acne scar was done for each case before and after operation to evaluate the severity of acne and the degree of scar before and after treatment. All patients were with Fitzpatrick’s skin types III and IV. Patients were followed up every two weeks during period of therapy and monthly for 3 months after stopping the treatment. Results: Twenty five patients with active acne vulgaris were treated with 3 sessions of lactic acid, fifteen patients had associated acne scar. Scoring for active acne vulgaris including papules and pustules showed highly statistically significant reduction after 2 weeks of therapy (p=0.0001, after 4 weeks (p=0.0001and after 6 weeks (p=0.0001, with percent reduction 87.2% for papules and 94% for pustules after end of sessions while after 3 months follow up the reduction rate for papules 93.8% and p-value (p=0.001 and for pustules 97.6% and (p=0.0001. While the scarring

  16. Effect of organic solvents on dissolution process of mechano-chemically activated molybdenum by inorganic acid solutions

    International Nuclear Information System (INIS)

    Shevtsova, I.Ya.; Chernyak, A.S.; Khal'zov, A.A.

    1992-01-01

    The process of chemical dissolution of mechanochemically activated and nonactivated molybdenite by inorganic acid solutions in certain organic solvents of different nature was considered. It is shown that the highest extraction of molybdenum in solution is achieved in the presence of nitric acid. The dissociation constant of the acid used in the given organic solvent does not affect molybdenite solubility. When dissolving molybdenite by solutions of nitric acid in carbonic acids, alcohols and esters, the solubility of the concentrate depends on the length of hydrocarbon chain of the organic solvent and dispersion degree of mineral source material

  17. Regioisomers of octanoic acid-containing structured triacylglycerols analyzed by tandem mass spectrometry using ammonia negative ion chemical ionization

    DEFF Research Database (Denmark)

    Kurvinen, J.P.; Mu, Huiling; Kallio, H.

    2001-01-01

    Tandem mass spectrometry based on ammonia negative ion chemical ionization and sample introduction via direct exposure probe was applied to analysis of regioisomeric structures of octanoic acid containing structured triacylglycerols (TAG) of type MML, MLM, MLL, and LML (M, medium-chain fatty acid...

  18. Effects of tempering (annealing), acid hydrolysis, low-citric acid substitution on chemical and physicochemical properties of starches of four yam (Dioscorea spp.) cultivars.

    Science.gov (United States)

    Falade, Kolawole O; Ayetigbo, Oluwatoyin E

    2017-05-01

    The effects of tempering (annealing), acid hydrolysis and low-citric acid substitution on chemical and physicochemical properties of starches of four Nigerian yam cultivars were investigated. Crude fat and protein contents of the native starches decreased significantly after the modifications, while nitrogen-free extract increased significantly with acid hydrolysis and citric acid substitution. Acid hydrolysis and low-citric acid substitution reduced the least concentration for gel formation of the starches from 4 to 2% w/v, but tempering had no effect. Swelling power of the starches reduced significantly, and water solubility increased significantly at 75 and 85 °C, especially with acid hydrolysis and low-citric acid substitution. However, tempering significantly reduced starch solubility in the four cultivars. Paste clarity of starches of white (29.17%), water (18.90%), yellow (30.90%) and bitter (10.57%) yams reduced significantly with tempering to 14.43, 11.83, 16.93 and 7.27%, but increased significantly with acid hydrolysis to 41.40, 35.37, 28.77 and 32.33%, and low-citric acid substitution to 36.60, 44.17, 50.67 and 14.33%, respectively. Pasting properties such as peak, trough, breakdown, final, and setback viscosities and peak time of native starches reduced significantly with acid hydrolysis and low-citric acid substitution, however, tempering significantly increased their pasting temperature, peak time, setback and final viscosities.

  19. Polyunsaturated fatty acid amides from the Zanthoxylum genus - from culinary curiosities to probes for chemical biology.

    Science.gov (United States)

    Chruma, Jason J; Cullen, Douglas J; Bowman, Lydia; Toy, Patrick H

    2018-01-25

    Covering up to February 2017The pericarps of several species from the Zanthoxylum genus, a.k.a. the "prickly ash", have long been used for culinary purposes throughout Asia, most notably in the Sichuan (previously Szechuan) cuisine of Southwestern China, due to the unique tingling and numbing orosensations arising from a collection of polyunsaturated fatty acid amide (alkamide) constituents. The past decade has experienced dramatically increased academic and industrial interest in these pungent Zanthoxylum-derived alkamides, with a concomitant explosion in studies aimed at elucidating the specific biochemical mechanisms behind several medically-relevant biological activities exhibited by the natural products. This rapid increase in interest is partially fueled by advances in organic synthesis reported within the past few years that finally have allowed for the production of diastereomerically-pure Zanthoxylum alkamides and related analogs in multigram quantities. Herein is a comprehensive review of the discovery, total synthesis, and biological evaluation of Zanthoxylum-derived polyunsaturated fatty acid amides and synthetic analogues. Critical insights into how chemical synthesis can further benefit future chemical biology efforts in the field are also provided.

  20. Chemical treatment of olive pomace: effect on acid-basic properties and metal biosorption capacity.

    Science.gov (United States)

    Martín-Lara, M A; Pagnanelli, F; Mainelli, S; Calero, M; Toro, L

    2008-08-15

    In this study, olive pomace, an agricultural waste that is very abundant in Mediterranean area, was modified by two chemical treatments in order to improve its biosorption capacity. Potentiometric titrations and IR analyses were used to characterise untreated olive pomace (OP), olive pomace treated by phosphoric acid (PAOP) and treated by hydrogen peroxide (HPOP). Acid-base properties of all investigated biosorbents were characterised by two main kinds of active sites, whose nature and concentration were determined by a mechanistic model assuming continuous distribution for the proton affinity constants. Titration modelling denoted that all investigated biosorbents (OP, PAOP and HPOP) were characterised by the same kinds of active sites (carboxylic and phenolic), but with different total concentrations with PAOP richer than OP and HPOP. Single metal equilibrium studies in batch reactors were carried out to determine the capacity of these sorbents for copper and cadmium ions at constant pH. Experimental data were analysed and compared using the Langmuir isotherm. The order of maximum uptake capacity of copper and cadmium ions on different biosorbents was PAOP>HPOP>OP. The maximum adsorption capacity of copper and cadmium, was obtained as 0.48 and 0.10 mmol/g, respectively, for PAOP. Metal biosorption tests in presence of Na(+) in solution were also carried out in order to evaluate the effect of chemical treatment on biomass selectivity. These data showed that PAOP is more selective for cadmium than the other sorbents, while similar selectivity was observed for copper.

  1. Chemical treatment of olive pomace: Effect on acid-basic properties and metal biosorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Lara, M.A. [Departamento de Ingenieria Quimica, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)], E-mail: marianml@ugr.es; Pagnanelli, F. [Dipartimento di Chimica, Facolta di S.M.F.N., Universita degli Studi ' La Sapienza' , P.le A. Moro, 5, 00185 Roma (Italy)], E-mail: francesca.pagnanelli@uniroma1.it; Mainelli, S. [Dipartimento di Chimica, Facolta di S.M.F.N., Universita degli Studi ' La Sapienza' , P.le A. Moro, 5, 00185 Roma (Italy); Calero, M. [Departamento de Ingenieria Quimica, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain); Toro, L. [Dipartimento di Chimica, Facolta di S.M.F.N., Universita degli Studi ' La Sapienza' , P.le A. Moro, 5, 00185 Roma (Italy)

    2008-08-15

    In this study, olive pomace, an agricultural waste that is very abundant in Mediterranean area, was modified by two chemical treatments in order to improve its biosorption capacity. Potentiometric titrations and IR analyses were used to characterise untreated olive pomace (OP), olive pomace treated by phosphoric acid (PAOP) and treated by hydrogen peroxide (HPOP). Acid-base properties of all investigated biosorbents were characterised by two main kinds of active sites, whose nature and concentration were determined by a mechanistic model assuming continuous distribution for the proton affinity constants. Titration modelling denoted that all investigated biosorbents (OP, PAOP and HPOP) were characterised by the same kinds of active sites (carboxylic and phenolic), but with different total concentrations with PAOP richer than OP and HPOP. Single metal equilibrium studies in batch reactors were carried out to determine the capacity of these sorbents for copper and cadmium ions at constant pH. Experimental data were analysed and compared using the Langmuir isotherm. The order of maximum uptake capacity of copper and cadmium ions on different biosorbents was PAOP > HPOP > OP. The maximum adsorption capacity of copper and cadmium, was obtained as 0.48 and 0.10 mmol/g, respectively, for PAOP. Metal biosorption tests in presence of Na{sup +} in solution were also carried out in order to evaluate the effect of chemical treatment on biomass selectivity. These data showed that PAOP is more selective for cadmium than the other sorbents, while similar selectivity was observed for copper.

  2. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.

    Science.gov (United States)

    Liu, Hui; Cheng, Tao; Xian, Mo; Cao, Yujin; Fang, Fang; Zou, Huibin

    2014-01-01

    With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on). Copyright © 2013 Elsevier Inc. All rights reserved.

  3. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts.

    Science.gov (United States)

    Zheng, Anmin; Liu, Shang-Bin; Deng, Feng

    2017-10-11

    Acid-base catalytic reaction, either in heterogeneous or homogeneous systems, is one of the most important chemical reactions that has provoked a wide variety of industrial catalytic processes for production of chemicals and petrochemicals over the past few decades. In view of the fact that the catalytic performances (e.g., activity, selectivity, and reaction mechanism) of acid-catalyzed reactions over acidic catalysts are mostly dictated by detailed acidic features, viz. type (Brønsted vs Lewis acidity), amount (concentration), strength, and local environments (location) of acid sites, information on and manipulation of their structure-activity correlation are crucial for optimization of catalytic performances as well as innovative design of novel effective catalysts. This review aims to summarize recent developments on acidity characterization of solid and liquid catalysts by means of experimental 31 P nuclear magnetic resonance (NMR) spectroscopy using phosphorus probe molecules such as trialkylphosphine (TMP) and trialkylphosphine oxides (R 3 PO). In particular, correlations between the observed 31 P chemical shifts (δ 31 P) of phosphorus (P)-containing probes and acidic strengths have been established in conjuction with density functional theory (DFT) calculations, rendering practical and reliable acidity scales for Brønsted and Lewis acidities at the atomic level. As illustrated for a variety of different solid and liquid acid systems, such as microporous zeolites, mesoporous molecular sieves, and metal oxides, the 31 P NMR probe approaches were shown to provide important acid features of various catalysts, surpassing most conventional methods such as titration, pH measurement, Hammett acidity function, and some other commonly used physicochemical techniques, such as calorimetry, temperature-programmed desorption of ammonia (NH 3 -TPD), Fourier transformed infrared (FT-IR), and 1 H NMR spectroscopies.

  4. Chemical Composition of Pyroligneous Acid Obtained from Eucalyptus GG100 Clone

    Directory of Open Access Journals (Sweden)

    Alexandre S. Pimenta

    2018-02-01

    Full Text Available The present study aimed to characterize the chemical composition of pyroligneous acid (PA obtained from slow pyrolysis of the clone GG100 of Eucalyptus urophylla × Eucalyptus grandis. The efficiency of extraction of organic compounds by using different solvents—dichloromethane (DCM, diethyl ether (DE and ethyl acetate (EA—was evaluated. Wood discs were collected and carbonized at a heating rate of 1.25 °C/min until 450 °C. Pyrolysis gases were trapped and condensed, yielding a crude liquid product (CLP, which was refined to obtain pure PA. Then liquid–liquid extraction was carried out. Each extracted fraction was analyzed by GC-MS and the chemical compounds were identified. Experimental results showed that a larger number of chemical compounds could be extracted by using DCM and EA in comparison to diethyl ether DE. A total number of 93 compounds were identified, with phenolic compounds being the major group, followed by aldehydes and ketones, furans, pyrans and esters. Higher contents of guaiacol, phenol, cresols and furfural seem to explain the antibacterial and antifungal activity shown by PA, as reported previously in the literature. Experimental data indicated that the organic phase extracted from GG100 PA consists of a mixture of compounds similar to liquid smokes regularly used in the food industry.

  5. Effects of acid treatment on the clay palygorskite: XRD, surface area, morphological and chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Katiane Cruz Magalhaes; Santos, Maria do Socorro Ferreira dos; Santos, Maria Rita Morais Chaves; Oliveira, Marilia Evelyn Rodrigues; Osajima, Josy Antevelli; Silva Filho, Edson Cavalcanti da [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil); Carvalho, Maria Wilma Nunes Cordeiro, E-mail: edsonfilho@ufpi.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2014-08-15

    The palygorskite is an aluminum-magnesium silicate that has a fibrous morphology. Their physicochemical characteristics are the result of high surface area, porosity and thermal resistance which make it an attractive adsorbent. Its adsorption capacity can be increased through chemical reactions and/or heat treatments. The objective of this work is to verify the effects of acid activation on the palygorskite, treated with HCl at 90 °C at concentrations of 2, 4 and 6 mol L{sup -1} in 2 and 4 hours, with clay/acid solution ratio 1 g 10 mL{sup -1} and characterized by techniques: XRF, XRD and surface area. A significant increase in specific surface area was observed in the sample treated with HCl at the concentration 6 mol L{sup -1}. The changes were more pronounced at stricter concentrations of acidity, with decreasing intensity of reflection of the clay indicated in the XRD. These changes were confirmed in the XRF with the leaching of some oxides and with increasing concentration of SiO{sub 2}. (author)

  6. Changes of chemical properties of humic acids from crude and fungal transformed lignite

    Energy Technology Data Exchange (ETDEWEB)

    LianHua Dong; Quan Yuan; HongLi Yuan [China Agricultural University, Beijing (China). College of Biological Science

    2006-12-15

    The development of biological processes for fossil energy utilization has received increasing attention in recent years. There are abundance of lignite resources in China and the lignite, a low-grade coal, can be transformed by a Penicillium sp. After fungal transformation, the contents of humic acid and water-soluble humic material increased from 38.6% to 55.1%, and from less than 4.0% to 28.2%, respectively. The differences in chemical properties of crude lignite humic acid (aHA), fungal transformed lignite humic acid (bHA) and water-soluble humic material from fungal transformed lignite (WS) were studied. Elemental analysis and size exclusion chromatography showed that the N content of bHA increased by 47.36% compared with aHA, and the molecular mass of bHA was smaller than aHA. And the WS with the smallest molecular mass contained most content of N. The {sup 13}C NMR and FT-IR spectra of aHA and bHA showed that aHA contained more aromatic structure than bHA. 44 refs., 3 figs., 2 tabs.

  7. Comparison of 30% salicylic acid with jessner's solution for superficial chemical peeling in epidermal melasma

    International Nuclear Information System (INIS)

    Ejaz, A.; Raza, N.; Iftikhar, N.; Muzzafar, F.

    2008-01-01

    To compare the efficacy and safety of Jessner's solution with 30% salicylic acid as superficial chemical peeling agents in treating epidermal melasma in Asian skin. Sixty consenting patients with epidermal melasma were randomly divided into two groups. Group A was treated with Jessner's solution and Group B with 30% salicylic acid. Baseline Melasma Area Severity Index (MASI) score was noted and peeling started at 2-weekly intervals. Sunscreen in morning and moisturizer at night were prescribed in all patients. MASI score and adverse effects were recorded biweekly. Treatment was stopped at 12 weeks and patients were followed-up at 4 weekly intervals for further 12 weeks. Final MASI score and adverse effects were noted at the end of follow-up period. Mean MASI scores were compared using paired sample t-test and one-way ANOVA. Difference in baseline, treatment end and follow-up end MASI scores was not statistically significant between the two groups (p=0.54, 0.26, and 0.55 respectively). On the other hand, within group analysis of difference between pre and posttreatment MASI score was highly significant in both groups (p < 0.0001). Adverse effects were mild and comparable in both groups. Jessner's solution and 30% salicylic acid are equally effective and safe peeling agents for use in epidermal melasma in Asian skin. (author)

  8. Chemical Properties of Caffeic and Ferulic Acids in Biological System: Implications in Cancer Therapy. A Review.

    Science.gov (United States)

    Damasceno, Sarah S; Dantas, Bruna B; Ribeiro-Filho, Jaime; Antônio M Araújo, Demetrius; Galberto M da Costa, José

    2017-01-01

    The antioxidant properties of caffeic and ferulic acids in biological systems have been extensively demonstrated. As antioxidants, these compounds prevent the production of reactive oxygen species (ROS), which cause cell lesions that are associated with the development of several diseases, including cancer. Recent findings suggest that the chemoprotective action of these phenolic acids occurs through the following mechanisms: regulation of gene expression, chelation and / or reduction of transition metals, formation of covalent adducts and direct toxicity. The biological efficacy of these promising chemoprotective agents is strongly related with their chemical structure. Therefore, in this study, we discuss the structural characteristics of ferulic and caffeic acids that are responsible for their biological activities, as well as the mechanisms of action involved with the anti-cancer activity. Several reports indicated that the antioxidant effect of these phenylpropanoids results from reactions with free radicals with formation of stable products in the cells. The chelating effect of these compounds was also reported as an important protective mechanism against oxidative. Finally, the lipophilicity of these agents facilitates their entry into the cells, and thus, contributes to the anticancer activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Optimization of chemical regeneration procedures of spent activated carbon

    Directory of Open Access Journals (Sweden)

    Naser Ghasemzadeh

    2017-01-01

    Full Text Available The chemical regeneration of granular activated carbon exhausted in a petrochemical wastewater unit was investigated. Gas chromatography and energy-dispersive X-ray spectroscopy demonstrated that spent activated carbon carries large types of organic and inorganic materials. Diverse chemical solvents were adopted in comparison with traditional chemical solvents and regeneration efficiency was investigated for each approach. The optimum procedure and optimum condition including temperature, concentration of solvent, and time were determined. The regenerated activated carbon was used in the adsorption of methylene blue (MB in order to find its regeneration efficiency. The regeneration efficiency can be identified by comparing of amount of MB absorbed by the fresh and regenerated activated carbon. The best acidic regenerator was hydrofluoric acid. The higher the temperature causes the faster desorption rate and consequently, the higher regeneration efficiency. The regeneration efficiency increased by means of an increase in the time of regeneration and solvent concentration, but there was an optimum time and solvent concentration for regeneration. The optimum temperature, solvent concentration and regeneration time obtained was 80 ⁰C, 3 molar and 3 hours, respectively.

  10. Reactions of OH-radicals with hydroxylated and methoxylated benzoic acids and cinnamic acids. Radiation-induced chemical changes in mushrooms

    International Nuclear Information System (INIS)

    Gaisberger, B.

    2001-05-01

    In the first part of this work the radiation induced chemical changes of methoxylated and hydroxylated benzoic acids and cinnamic acids were investigated. Methoxylated compounds were also used as model components for acid derivatives with no free-OH groups. The latter are essentials parts of vegetable foodstuff. A comparison of the radiolytic behaviour of single substituted methoxy- and hydroxybenzoic acids was given at first, data of literature was included. The priority of the investigation was the hydroxylation process induced by OH-radicals. The OH-adduct distribution is generally the same for the hydroxy- as well as for the methoxybenzoic acid isomers. This could be proved by oxidation of these OH-adducts with K 3 Fe(CN) 6 . In the presence of air 68-77 % of the hydroxybenzoic acids are converted into hydroxylation products, whereas with the methoxylated acids this reaction leads only to about 10%. An explanation gives the different decay pathways of the intermediate peroxylradical. The multiple methoxy- and hydroxybenzoic acids show three different reaction possibilities: hydroxylation, replacement of -OCH 3 by -OH and -in case of the cinnamic acids-oxidative decomposition of the rest of the propenic acid under formation of the corresponding benzaldehydes. All these reactions can be expected when irradiating foodstuff, containing these acid compounds. The characteristic formation of these components and their linear dose/concentration relationship make these substrates very promising for the use as markers for irradiation treatment of foodstuff. The second part of this work deals with the gamma-radiation induced chemical changes in mushrooms. The irradiated and non-irradiated samples were freeze-dried and purified from matrix components chromatographically on polyamid columns. In case of the phenolic compounds for 4-hydroxybenzoic acid and three unknown components linear dose/concentration relationships could be obtained. Two of these unknown compounds seem

  11. Assessment of impacts at the advanced test reactor as a result of chemical releases at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Rood, A.S.

    1991-02-01

    This report provides an assessment of potential impacts at the Advanced Test Reactor Facility (ATR) resulting from accidental chemical spill at the Idaho Chemical Processing Plant (ICPP). Spills postulated to occur at the Lincoln Blvd turnoff to ICPP were also evaluated. Peak and time weighted average concentrations were calculated for receptors at the ATR facility and the Test Reactor Area guard station at a height above ground level of 1.0 m. Calculated concentrations were then compared to the 15 minute averaged Threshold Limit Value - Short Term Exposure Limit (TLV-STEL) and the 30 minute averaged Immediately Dangerous to Life and Health (IDLH) limit. Several different methodologies were used to estimate source strength and dispersion. Fifteen minute time weighted averaged concentrations of hydrofluoric acid and anhydrous ammonia exceeded TLV-STEL values for the cases considered. The IDLH value for these chemicals was not exceeded. Calculated concentrations of ammonium hydroxide, hexone, nitric acid, propane, gasoline, chlorine and liquid nitrogen were all below the TLV-STEL value

  12. Rapid analysis of formic acid, acetic acid, and furfural in pretreated wheat straw hydrolysates and ethanol in a bioethanol fermentation using atmospheric pressure chemical ionisation mass spectrometry

    Directory of Open Access Journals (Sweden)

    Smart Katherine A

    2011-09-01

    Full Text Available Abstract Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS offers advantages as a rapid analytical technique for the quantification of three biomass degradation products (acetic acid, formic acid and furfural within pretreated wheat straw hydrolysates and the analysis of ethanol during fermentation. The data we obtained using APCI-MS correlated significantly with high-performance liquid chromatography analysis whilst offering the analyst minimal sample preparation and faster sample throughput.

  13. Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species

    Directory of Open Access Journals (Sweden)

    Saima Rafiq

    2016-07-01

    Full Text Available Milk composition is an imperative aspect which influences the quality of dairy products. The objective of study was to compare the chemical composition, nitrogen fractions and amino acids profile of milk from buffalo, cow, sheep, goat, and camel. Sheep milk was found to be highest in fat (6.82%±0.04%, solid-not-fat (11.24%±0.02%, total solids (18.05%±0.05%, protein (5.15%±0.06% and casein (3.87%±0.04% contents followed by buffalo milk. Maximum whey proteins were observed in camel milk (0.80%±0.03%, buffalo (0.68%±0.02% and sheep (0.66%±0.02% milk. The non-protein-nitrogen contents varied from 0.33% to 0.62% among different milk species. The highest r-values were recorded for correlations between crude protein and casein in buffalo (r = 0.82, cow (r = 0.88, sheep (r = 0.86 and goat milk (r = 0.98. The caseins and whey proteins were also positively correlated with true proteins in all milk species. A favorable balance of branched-chain amino acids; leucine, isoleucine, and valine were found both in casein and whey proteins. Leucine content was highest in cow (108±2.3 mg/g, camel (96±2.2 mg/g and buffalo (90±2.4 mg/g milk caseins. Maximum concentrations of isoleucine, phenylalanine, and histidine were noticed in goat milk caseins. Glutamic acid and proline were dominant among non-essential amino acids. Conclusively, current exploration is important for milk processors to design nutritious and consistent quality end products.

  14. Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic interesterification

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Structured triglycerides (STs containing both medium-chain fatty acids (MCFA and polyunsaturated fatty acids (PUFA in the same molecule offer nutritional and therapeutic benefits. The aim of this work was to establish the incorporation of MCFA into fish oil triglycerides (TAGs, while maintaining substantial levels of docosahexaenoic and eicosapentaenoic acids. The effects of different acyl donors (capric acid methyl ester/MeC10 or medium chain triglyceride/TCM and of the catalyst (chemical or enzymatic on the fatty acid composition of the reaction product were studied. The fatty acid composition of the fish oil TAG was modified after interesterification to contain MCFA, and it depended on the catalyst and on the substrates. Thermograms obtained by Differential Scanning Calorimetry (DSC showed that interesterification promoted noteworthy changes in the melting profile of the samples. STs of clinical nutrition interest containing both EPA and DHA obtained from fish oil along with MCFA were successfully produced.

    Triglicéridos estructurados (SL conteniendo ácidos grasos de cadena media (MCFA y ácidos grasos poliinsaturados (PUFA en la misma molécula de glicerol tienen ventajas nutricionales y terapéuticas. Se establece la incorporación de MCFA a los triglicéridos (TAGs de aceite de pescado, conservando un contenido considerable de ácidos docosahexaenóico (DHA y eicosapentaenóico (EPA. El efecto de diferentes acil donadores (éster metílico de ácido cáprico/MeC10 o triglicéridos de cadena media/TCM y de catalizador (químico o enzimático sobre la composición del producto de las reacciones fue estudiado. La composición de ácidos grasos de los TAGs del aceite de pescado fue modificada después de las reacciones para contener MCFA y dependió del catalizador y de los substratos. Los termogramas obtenidos por Calorimetría Diferencial de Barrido (DSC indicaron que la interesterificación provocó alteraciones considerables de

  15. Combustion behaviour of ultra clean coal obtained by chemical demineralisation

    Energy Technology Data Exchange (ETDEWEB)

    F. Rubiera; A. Arenillas; B. Arias; J.J. Pis; I. Suarez-Ruiz; K.M. Steel; J.W. Patrick [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2003-10-01

    The increasing environmental concern caused by the use of fossil fuels and the concomitant need for improved combustion efficiency is leading to the development of new coal cleaning and utilisation processes. However, the benefits achieved by the removal of most mineral matter from coal either by physical or chemical methods can be annulled if poor coal combustibility characteristics are attained. In this work a high volatile bituminous coal with 6% ash content was subjected to chemical demineralisation via hydrofluoric and nitric acid leaching, the ash content of the clean coal was reduced to 0.3%. The original and treated coals were devolatilised in a drop tube furnace and the structure and morphology of the resultant chars was analysed by optical and scanning electron microscopies. The reactivity characteristics of the chars were studied by isothermal combustion tests in air at different temperatures in a thermogravimetric system. Comparison of the combustion behaviour and pollutant emissions of both coals was conducted in a drop tube furnace operating at 1000{sup o}C. The results of this work indicate that the char obtained from the chemically treated coal presents very different structure, morphology and reactivity behaviour than the char from the original coal. The changes induced by the chemical treatment increased the combustion efficiency determined in the drop tube furnace, in fact higher burnout levels were obtained for the demineralised coal.

  16. Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid

    Directory of Open Access Journals (Sweden)

    Gamal O. El-Sayed

    2014-09-01

    Full Text Available Corncob, which is the main waste from corn agricultures in Egypt, has been used as a raw material for the preparation of different activated carbons. Activated carbons (ACs were prepared by chemical activation with concentrated H3PO4 acid; followed by pyrolysis at 400, 500 and 600 °C. Different ACs have been used for the removal of methylene blue (MB dye from aqueous solutions. Batch adsorption experiments were performed as a function of initial dye concentration, contact time, adsorbent dose and pH. Adsorption data were modeled using the Langmuir and Freundlich adsorption isotherms. Adsorption of MB on AC1 (R2=0.9868 and AC2 (R2=0.9810 followed Langmuir model with maximum monolayer sorption capacity of 28.65 and 17.57 mg/g, respectively. Adsorption onto AC3 was better fitted to Freundlich isotherm model (R2=0.9823.

  17. In vitro cytotoxic and genotoxic effects of diphenylarsinic acid, a degradation product of chemical warfare agents

    International Nuclear Information System (INIS)

    Ochi, Takafumi; Suzuki, Toshihide; Isono, Hideo; Kaise, Toshikazu

    2004-01-01

    Diphenylarsinic acid [DPAs(V)], a degradation product of diphenylcyanoarsine or diphenylchloroarsine, both of which were developed as chemical warfare agents, was investigated in terms of its capacity to induce cytotoxic effects, numerical and structural changes of chromosomes, and abnormalities of centrosome integrity and spindle organizations in conjunction with the effects of glutathione (GSH) depletion. DPAs(V) had toxic effects on cultured human hepatocarcinoma HepG2 cells at concentrations more than 0.5 mM. Depletion of GSH reduced the toxic effects of DPAs(V) as well as dimethylarsinic acid [DMAs(V)] toxicity, while toxicity by arsenite [iAs(III)] was enhanced. Exogenously added sulfhydryl (SH) compounds, such as dimercapropropane sulfonate (DMPS), GSH, and dithiothreitol (DTT), enhanced the toxic effects of DPAs(V) while they suppressed iAs(III) toxicity. DPAs(V) caused an increase in the mitotic index, and also structural and numerical changes in chromosomes in V79 Chinese hamster cells. Abnormality of centrosome integrity in mitotic V79 cells and multipolar spindles was also induced by DPAs(V) in a time- and concentration-dependent manner. These results suggested that highly toxic chemicals were generated by the interaction of DPAs(V) with SH compounds. Moreover, enhancements of toxicity by a combination of DPAs(V) and SH compounds suggested a risk in the use of SH compounds as a remedy for intoxication by diphenylarsenic compounds. Investigations on the effects of SH compounds on animals intoxicated with DPAs(V) are warranted

  18. In vitro cytotoxic and genotoxic effects of diphenylarsinic acid, a degradation product of chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Takafumi; Suzuki, Toshihide; Isono, Hideo; Kaise, Toshikazu

    2004-10-01

    Diphenylarsinic acid [DPAs(V)], a degradation product of diphenylcyanoarsine or diphenylchloroarsine, both of which were developed as chemical warfare agents, was investigated in terms of its capacity to induce cytotoxic effects, numerical and structural changes of chromosomes, and abnormalities of centrosome integrity and spindle organizations in conjunction with the effects of glutathione (GSH) depletion. DPAs(V) had toxic effects on cultured human hepatocarcinoma HepG2 cells at concentrations more than 0.5 mM. Depletion of GSH reduced the toxic effects of DPAs(V) as well as dimethylarsinic acid [DMAs(V)] toxicity, while toxicity by arsenite [iAs(III)] was enhanced. Exogenously added sulfhydryl (SH) compounds, such as dimercapropropane sulfonate (DMPS), GSH, and dithiothreitol (DTT), enhanced the toxic effects of DPAs(V) while they suppressed iAs(III) toxicity. DPAs(V) caused an increase in the mitotic index, and also structural and numerical changes in chromosomes in V79 Chinese hamster cells. Abnormality of centrosome integrity in mitotic V79 cells and multipolar spindles was also induced by DPAs(V) in a time- and concentration-dependent manner. These results suggested that highly toxic chemicals were generated by the interaction of DPAs(V) with SH compounds. Moreover, enhancements of toxicity by a combination of DPAs(V) and SH compounds suggested a risk in the use of SH compounds as a remedy for intoxication by diphenylarsenic compounds. Investigations on the effects of SH compounds on animals intoxicated with DPAs(V) are warranted.

  19. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    Science.gov (United States)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  20. Operational experience in chemical control of scale in boilers at the Ostrava-Karvina power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, E; Srovnal, O

    1988-03-01

    Discusses methods for buildup removal from coal-fired boilers in power plants. Buildup types are analyzed. Standardized methods for buildup removal tested on a commercial scale in the power plants are comparatively evaluated. Scaling in the boiler heat exchange system is investigated. Using hydrofluoric acid for scale removal is discussed. Concentration of hydrofluoric acid ranges from 1.5% to 2.0%. Ryphalgan and Kaptax are used as corrosion inhibitors. Syntron B is also used for scale removal during boiler operation (at a pressure to 6.4% and temperature below 270 C). Efficiency of scale removal using various reagents is discussed. 4 refs.

  1. Some physical and chemical properties of bitter melon (Momordica charantia L. seed and fatty acid composition of seed oil

    Directory of Open Access Journals (Sweden)

    Muharrem GÖLÜKÇÜ

    2014-06-01

    Full Text Available Edible part and leaves of bitter melon (Momordica charantia L. are used as food or medicine to control some diseases because of its antioxidant, antibacterial, anticancer, anti-hepatotoxic, antiviral, antiulcerogenic and larvicidal effects. Although fruits have considerable amount of seeds, they have not received much attention. In this study, some physical and chemical properties of the seed and also fatty acid composition of seed oil were determined. Oil content of the sample was determined by soxhlet apparatus as 26.10% in dried sample. Fatty acid composition was analyzed by GC-MS and seven fatty acids were identified and their ratios were determined in this seed oil. The main fatty acid was determined as α-eleostearic (45.60%. The other fatty acids were palmitic (3.69%, stearic (28.00%, oleic (12.45%, linoleic (8.90%, arachidic (0.71% and gadoleic acids (0.65%.

  2. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    Directory of Open Access Journals (Sweden)

    Silvia Tabasso

    2015-02-01

    Full Text Available This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  3. Aggregation-induced chemical reactions: acid dissociation in growing water clusters.

    Science.gov (United States)

    Forbert, Harald; Masia, Marco; Kaczmarek-Kedziera, Anna; Nair, Nisanth N; Marx, Dominik

    2011-03-23

    Understanding chemical reactivity at ultracold conditions, thus enabling molecular syntheses via interstellar and atmospheric processes, is a key issue in cryochemistry. In particular, acid dissociation and proton transfer reactions are ubiquitous in aqueous microsolvation environments. Here, the full dissociation of a HCl molecule upon stepwise solvation by a small number of water molecules at low temperatures, as relevant to helium nanodroplet isolation (HENDI) spectroscopy, is analyzed in mechanistic detail. It is found that upon successive aggregation of HCl with H(2)O molecules, a series of cyclic heteromolecular structures, up to and including HCl(H(2)O)(3), are initially obtained before a precursor state for dissociation, HCl(H(2)O)(3)···H(2)O, is observed upon addition of a fourth water molecule. The latter partially aggregated structure can be viewed as an "activated species", which readily leads to dissociation of HCl and to the formation of a solvent-shared ion pair, H(3)O(+)(H(2)O)(3)Cl(-). Overall, the process is mostly downhill in potential energy, and, in addition, small remaining barriers are overcome by using kinetic energy released as a result of forming hydrogen bonds due to aggregation. The associated barrier is not ruled by thermal equilibrium but is generated by athermal non-equilibrium dynamics. These "aggregation-induced chemical reactions" are expected to be of broad relevance to chemistry at ultralow temperature much beyond HENDI spectroscopy.

  4. Conformational, structural, vibrational, electronic and quantum chemical investigations of cis-2-methoxycinnamic acid

    Science.gov (United States)

    Arjunan, V.; Anitha, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-01-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of cis-2-methoxycinnamic acid have been measured in the range 4000-400 and 4000-100 cm-1, respectively. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constrains using the DFT/B3LYP method utilising 6-311++G∗∗ and cc-pVTZ basis sets. The thermodynamic stability and chemical reactivity descriptors of the molecule have been determined. The exact environment of C and H of the molecule has been analysed by NMR spectroscopies through 1H and 13C NMR chemical shifts of the molecule. The energies of the frontier molecular orbitals have also been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from density functional theory (DFT) gradient calculations employing the B3LYP/6-311++G∗∗ and cc-pVTZ methods.

  5. Surface chemical compositions and dispersity of starch nanocrystals formed by sulfuric and hydrochloric acid hydrolysis.

    Science.gov (United States)

    Wei, Benxi; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2014-01-01

    Surface chemical compositions of starch nanocrystals (SNC) prepared using sulfuric acid (H2SO4) and hydrochloric acid (HCl) hydrolysis were analyzed by X-ray photoelectron spectroscopy (XPS) and FT-IR. The results showed that carboxyl groups and sulfate esters were presented in SNC after hydrolysis with H2SO4, while no sulfate esters were detected in SNC during HCl-hydrolysis. TEM results showed that, compared to H2SO4-hydrolyzed sample, a wider size distribution of SNC prepared by HCl-hydrolysis were observed. Zeta-potentials were -23.1 and -5.02 mV for H2SO4- and HCl-hydrolyzed SNC suspensions at pH 6.5, respectively. Nevertheless, the zeta-potential values decreased to -32.3 and -10.2 mV as the dispersion pH was adjusted to 10.6. After placed 48 h at pH 10.6, zeta-potential increased to -24.1 mV for H2SO4-hydrolyzed SNC, while no change was detected for HCl-hydrolyzed one. The higher zeta-potential and relative small particle distribution of SNC caused more stable suspensions compared to HCl-hydrolyzed sample.

  6. Surface chemical compositions and dispersity of starch nanocrystals formed by sulfuric and hydrochloric acid hydrolysis.

    Directory of Open Access Journals (Sweden)

    Benxi Wei

    Full Text Available Surface chemical compositions of starch nanocrystals (SNC prepared using sulfuric acid (H2SO4 and hydrochloric acid (HCl hydrolysis were analyzed by X-ray photoelectron spectroscopy (XPS and FT-IR. The results showed that carboxyl groups and sulfate esters were presented in SNC after hydrolysis with H2SO4, while no sulfate esters were detected in SNC during HCl-hydrolysis. TEM results showed that, compared to H2SO4-hydrolyzed sample, a wider size distribution of SNC prepared by HCl-hydrolysis were observed. Zeta-potentials were -23.1 and -5.02 mV for H2SO4- and HCl-hydrolyzed SNC suspensions at pH 6.5, respectively. Nevertheless, the zeta-potential values decreased to -32.3 and -10.2 mV as the dispersion pH was adjusted to 10.6. After placed 48 h at pH 10.6, zeta-potential increased to -24.1 mV for H2SO4-hydrolyzed SNC, while no change was detected for HCl-hydrolyzed one. The higher zeta-potential and relative small particle distribution of SNC caused more stable suspensions compared to HCl-hydrolyzed sample.

  7. Golden flaxseed and its byproducts in beef patties: physico-chemical evaluation and fatty acid profile

    Directory of Open Access Journals (Sweden)

    Daiana Novello

    2013-09-01

    Full Text Available Flaxseed application in meat and meat products by adding not flesh ingredients has not yet been properly assessed. This technology strategy, if well optimized, could substantially improve the nutritional value of meat products and promote healthy appeals consistent. Knowing that, this study aimed to evaluate the effect of adding golden flaxseed oil, or flour, or seed in the physico-chemical properties and fatty acid profile of beef patties. Beef patties were prepared with 5.0% of oil (FO, or flour (FF, or seed (FS, plus a control formulation (FC. For raw products containing flaxseed, the moisture content (74.22 to 68.61% was decreased and the ash (1.61 to 2.00g 100g-1, protein (15.62 to 16.46g 100g-1, fat (6.20 to 9.74g 100g-1, carbohydrate (2.02 to 3.97 g 100g-1, and calorie (127.71 to 161.62kcal 100g-1 contents were increased. The raw and grilled samples containing golden flaxseed had increased beneficial omega-3 (n-3 fatty acids (0.85 a 2.98g 100g-1, a decreased n-6/n-3 ratio (0.50, thus improving the nutritional profile.

  8. Synthesis, structural characterization and quantum chemical studies of silicon-containing benzoic acid derivatives

    Science.gov (United States)

    Zaltariov, Mirela-Fernanda; Cojocaru, Corneliu; Shova, Sergiu; Sacarescu, Liviu; Cazacu, Maria

    2016-09-01

    The present paper is concerned with the synthesis and molecular structure investigation of two new benzoic acid derivatives having trimethylsilyl tails, 4-((trimethylsilyl)methoxy) and 4-(3-(trimethylsilyl)propoxy)benzoic acids. The structures of the novel compounds have been confirmed by X-ray crystallography, Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H and 13C NMR). The theoretical studies of molecules were conducted by using the quantum chemical methods, such as Density Functional Theory (DFT B3LYP/6-31 + G**), Hartree-Fock (HF/6-31 + G**) and semiempirical computations (PM3, PM6 and PM7). The optimized molecular geometries have been found to be in good agreement with experimental structures resulted from the X-ray diffraction. The maximum electronic absorption bands observed at 272-287 nm (UV-vis spectra) have been assigned to π → π* transitions, which were in reasonable agreement with the time dependent density functional theory (TD-DFT) calculations. The computed vibrational frequencies by DFT method were assigned and compared with the experimental FTIR spectra. The mapped electrostatic potentials revealed the reactive sites, which corroborated the observation of the dimer supramolecular structures formed in the crystals by hydrogen-bonding. The energies of frontier molecular orbitals (HOMO and LUMO), energy gap, dipole moment and molecular descriptors for the new compounds were calculated and discussed.

  9. Effects of deposition time in chemically deposited ZnS films in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, H.; Chelouche, A., E-mail: azeddinechelouche@gmail.com; Talantikite, D.; Merzouk, H.; Boudjouan, F.; Djouadi, D.

    2015-08-31

    We report an experimental study on the synthesis and characterization of zinc sulfide (ZnS) single layer thin films deposited on glass substrates by chemical bath deposition technique in acidic solution. The effect of deposition time on the microstructure, surface morphology, optical absorption, transmittance, and photoluminescence (PL) was investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), UV-Vis–NIR spectrophotometry and photoluminescence (PL) spectroscopy. The results showed that the samples exhibit wurtzite structure and their crystal quality is improved by increasing deposition time. The latter, was found to affect the morphology of the thin films as showed by SEM micrographs. The optical measurements revealed a high transparency in the visible range and a dependence of absorption edge and band gap on deposition time. The room temperature PL spectra indicated that all ZnS grown thin films emit a UV and blue light, while the band intensities are found to be dependent on deposition times. - Highlights: • Single layer ZnS thin films were deposited by CBD in acidic solution at 95 °C. • The effect of deposition time was investigated. • Coexistence of ZnS and ZnO hexagonal structures for time deposition below 2 h • Thicker ZnS films were achieved after monolayer deposition for 5 h. • The highest UV-blue emission observed in thin film deposited at 5 h.

  10. Surface Chemical Compositions and Dispersity of Starch Nanocrystals Formed by Sulfuric and Hydrochloric Acid Hydrolysis

    Science.gov (United States)

    Wei, Benxi; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2014-01-01

    Surface chemical compositions of starch nanocrystals (SNC) prepared using sulfuric acid (H2SO4) and hydrochloric acid (HCl) hydrolysis were analyzed by X-ray photoelectron spectroscopy (XPS) and FT-IR. The results showed that carboxyl groups and sulfate esters were presented in SNC after hydrolysis with H2SO4, while no sulfate esters were detected in SNC during HCl-hydrolysis. TEM results showed that, compared to H2SO4-hydrolyzed sample, a wider size distribution of SNC prepared by HCl-hydrolysis were observed. Zeta-potentials were −23.1 and −5.02 mV for H2SO4- and HCl-hydrolyzed SNC suspensions at pH 6.5, respectively. Nevertheless, the zeta-potential values decreased to −32.3 and −10.2 mV as the dispersion pH was adjusted to 10.6. After placed 48 h at pH 10.6, zeta-potential increased to −24.1 mV for H2SO4-hydrolyzed SNC, while no change was detected for HCl-hydrolyzed one. The higher zeta-potential and relative small particle distribution of SNC caused more stable suspensions compared to HCl-hydrolyzed sample. PMID:24586246

  11. Synthesis of nanocrystalline LaF3 doped silica glasses by hydrofluoric acid catalyzed sol–gel process

    International Nuclear Information System (INIS)

    Nagayama, Shuhei; Kajihara, Koichi; Kanamura, Kiyoshi

    2012-01-01

    Highlights: ► Silica glasses doped by LaF 3 nanocrystals are obtained by HF-catalyzed sol–gel method. ► The processing time (∼1 week) is much shorter than that of previous studies. ► The uptake of SiF groups in the glass matrix greatly reduces the SiOH concentration. ► Effects of sintering conditions and properties of Er 3+ -doped samples are presented. - Abstract: Silica glasses doped with LaF 3 nanocrystals were prepared by HF-catalyzed sol–gel method. HF was used both as fluorine source and as catalyst of the sol–gel reaction, making it possible to shorten the processing time with reducing the concentration of SiOH groups to ∼10 18 cm −3 . The resultant glasses are transparent at visible spectral range, and the optical loss at the ultraviolet absorption edge is dominated by the Rayleigh scattering from LaF 3 crystallites. The size of LaF 3 crystallites increases with an increase in the sintering temperature and time, and is smaller than ∼40 nm in samples showing good visible transparency. Green upconversion photoluminescence is observed in an Er 3+ -doped sample under excitation at 980 nm.

  12. Preparation of industrial chemicals by acid leaching from the koga nepheline syenite, southern Swat, lesser Himalayas-Pakistan

    International Nuclear Information System (INIS)

    Nizami, A.R.

    2012-01-01

    This paper encompasses the study on the preparation of industrial chemicals by acid leaching from the Koga nepheline syenite, Southern Swat, Lesser Himalayas-Pakistan. These rocks have been studied in detail by many workers to exploit their industrial utility in the form of powdered rock material in glass and ceramics and steel industry. The present authors for the first time carried out acid leaching studies and prepared a number of industrial chemicals, like, alumina, aluminium sulphate, sodium and ammonium alums, sodium sulphate) and sodium bisulphate by simple chemical reactions at bench scale successfully. The developed process is simple and economically viable. It is recommended to exploit this process in cottage industry in the mountainous areas hosting these rocks for the benefit of local population. The research and development work for production of these chemicals at pilot plant and industrial scale is recommended as well. (author)

  13. Chemical processes at the surface of various clays on acid-base titration

    International Nuclear Information System (INIS)

    Park, K. K.; Park, Y. S.; Jung, E. C.

    2010-01-01

    The chemical reaction of radionuclides at the interface between groundwater and geological mineral is an important process determining their retardation of transport through groundwater flow in a nuclear waste disposal. Clay minerals are major components of soil and argillaceous rock, and some of them are considered to be important base materials in the design of high-level nuclear waste repository due to their large swelling, low-permeability, large surface area, and strong and large sorption of radionuclides. Clay materials are phyllosilicates containing accessory minerals such as metal oxides, hydroxides, oxyhydroxides. Their structures are condensed 1:1 or 2:1 layers of tetrahedral SiO 3/2 OH and octahedral Al(OH) 6/2 sheets. An accurate knowledge about the properties of clay surface is required as a parameter for a long-term estimation of radionuclide retardation effects. Electric surface charge is a primary property determining ion exchange and surface complexation of radionuclides on its surface. The sources of electric surface charge are a permanent structural negative charge on a basal plane and a dissociable charge at an edge surface. Investigation of proton sorption is a prerequisite to the understanding of radionuclide sorption. The reactions on a permanently charged site and on an edge site are measured by an electrokinetic measurement and by potentiometric titration, respectively. However, side reactions such as complexation, proton/cation exchange, dissolution, hydrolysis, precipitation and re adsorption, and the reaction of secondary minerals hinder an experimental measurement of accurate acid-base properties. This presentation describes the pH change on dispersing various clays in water and adding acid, base or Eu(III) ion to these solutions, and the effect of Eu(III) ion on acid-base titration of clay solutions

  14. Chemical processes at the surface of various clays on acid-base titration

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. K.; Park, Y. S.; Jung, E. C. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The chemical reaction of radionuclides at the interface between groundwater and geological mineral is an important process determining their retardation of transport through groundwater flow in a nuclear waste disposal. Clay minerals are major components of soil and argillaceous rock, and some of them are considered to be important base materials in the design of high-level nuclear waste repository due to their large swelling, low-permeability, large surface area, and strong and large sorption of radionuclides. Clay materials are phyllosilicates containing accessory minerals such as metal oxides, hydroxides, oxyhydroxides. Their structures are condensed 1:1 or 2:1 layers of tetrahedral SiO{sub 3/2}OH and octahedral Al(OH){sub 6/2} sheets. An accurate knowledge about the properties of clay surface is required as a parameter for a long-term estimation of radionuclide retardation effects. Electric surface charge is a primary property determining ion exchange and surface complexation of radionuclides on its surface. The sources of electric surface charge are a permanent structural negative charge on a basal plane and a dissociable charge at an edge surface. Investigation of proton sorption is a prerequisite to the understanding of radionuclide sorption. The reactions on a permanently charged site and on an edge site are measured by an electrokinetic measurement and by potentiometric titration, respectively. However, side reactions such as complexation, proton/cation exchange, dissolution, hydrolysis, precipitation and re adsorption, and the reaction of secondary minerals hinder an experimental measurement of accurate acid-base properties. This presentation describes the pH change on dispersing various clays in water and adding acid, base or Eu(III) ion to these solutions, and the effect of Eu(III) ion on acid-base titration of clay solutions

  15. Postvagotomy acid secretion and mucosal blood flow during beta-adrenoceptor stimulation and universal chemical sympathectomy in dogs

    DEFF Research Database (Denmark)

    Hovendal, C P

    1983-01-01

    The aim of the present study was to examine the effect of beta-adrenoceptor stimulation, alpha blockade, and elimination of the adrenergic nerve function on mucosal blood flow and acid secretion in parietal-cell-vagotomized (PCV) gastric fistula dogs. Isoprenaline inhibited pentagastrin-stimulate......The aim of the present study was to examine the effect of beta-adrenoceptor stimulation, alpha blockade, and elimination of the adrenergic nerve function on mucosal blood flow and acid secretion in parietal-cell-vagotomized (PCV) gastric fistula dogs. Isoprenaline inhibited pentagastrin...... to chemical sympathectomy with 6-hydroxy-dopamine, a false neurotransmitter that selectively destroys the adrenergic nerve terminals. Chemical sympathectomy increased the pentagastrin-stimulated gastric acid secretion and stabilized the mucosal blood flow at the level before vagotomy, but with an increased...... ratio between blood flow and acid secretion. One may conclude that the sympathetic nerve system influences gastric function after vagotomy....

  16. RESEARCH OF UV-PROTECTIVE ACTIVITY OF FERULIC ACID AS PART OF OINTMENT COMPOSITIONS WITH DIFFERENT PHYSICAL AND CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    I. L. Abisalova

    2014-01-01

    Full Text Available Cosmetics with the ability to neutralize harmful influence of ultraviolet rays on skin are quite in demand. UV filters in creams composition are divided into two groups: physical and chemical. Antioxidants are used as chemical UV filters. The article presents the results of ferulic acid testing as UV filter in ointment bases with lipophile, hydrophile and lipophilic and hydrophilic properties. The dependence of ferulic acid efficiency from the base type where it was applied was established. The results received are correlated with data about release rate of ferulic acid received in vitro. Ointment bases with such emulsifiers as cetyl alcohol, base emulsifier and Olivem 1000 have the most signified UV protective effect of ferulic acid.

  17. Chemical composition and ruminal degradation kinetics of crude protein and amino acids, and intestinal digestibility of amino acids from tropical forages

    Directory of Open Access Journals (Sweden)

    Lidia Ferreira Miranda

    2012-03-01

    Full Text Available The objective of this research was to determine the chemical composition and ruminal degradation of the crude protein (CP, total and individual amino acids of leaves from tropical forages: perennial soybean (Neonotonia wightii, cassava (Manihot esculenta, leucaena (Leucaena leucocephala and ramie (Boehmeria nivea, and to estimate the intestinal digestibility of the rumen undegradable protein (RUDP and individual amino acids of leaves from the tropical forages above cited, but including pigeon pea (Cajanus cajan. Three nonlactating Holstein cows were used to determine the in situ ruminal degradability of protein and amino acids from leaves (6, 18 and 48 hours of ruminal incubation. For determination of the intestinal digestibility of RUDP, the residue from ruminal incubation of the materials was used for 18 hours. A larger concentration of total amino acids for ramie and smaller for perennial soybean were observed; however, they were very similar in leucaena and cassava. Leucine was the essential amino acid of greater concentration, with the exception of cassava, which exhibited a leucine concentration 40.45% smaller. Ramie showed 14.35 and 22.31% more lysine and methionine, respectively. The intestinal digestibility of RUDP varied from 23.56; 47.87; 23.48; 25.69 and 10.86% for leucaena, perennial soybean, cassava, ramie and pigeon pea, respectively. The individual amino acids of tropical forage disappeared in different extensions in the rumen. For the correct evaluation of those forages, one should consider their composition of amino acids, degradations and intestinal digestibility, once the amino acid composition of the forage does not reflect the amino acid profiles that arrived in the small intestine. Differences between the degradation curves of CP and amino acids indicate that degradation of amino acids cannot be estimated through the degradation curve of CP, and that amino acids are not degraded in a similar degradation profile.

  18. Modern concepts of treatment and prevention of chemical injuries.

    Science.gov (United States)

    Edlich, Richard F; Farinholt, Heidi-Marie A; Winters, Kathryne L; Britt, L D; Long, William B; Werner, Charles L; Gubler, K Dean

    2005-01-01

    Chemical injuries are commonly encountered following exposure to acids and alkali, including hydrofluoric acid, formic acid, anhydrous ammonia, cement, and phenol. Other specific agents that cause chemical burns include white phosphorus, elemental metals, nitrates, hydrocarbons, and tar. Even though there are more than 65,000 chemicals available on the market, and an estimated 60,000 new chemicals produced each year, the potential deleterious effects of these chemicals on humans are still unknown. The Superfund Amendments and Reauthorization Act contains extensive provisions for emergency planning and the rights of communities to know about toxic chemical releases. Since 1990, the Agency for Toxic Substances and Disease Registry (ATSDR) has maintained an active, state-based Hazardous Substances Emergency Events Surveillance (HSEES) system to describe the public health consequences risked by access to hazardous chemicals. Most chemical agents damage the skin by producing a chemical reaction rather than hyperthermic injury. Although some chemicals produce considerable heat as a result of an exothermic reaction when they come in contact with water, their ability to produce direct chemical changes on the skin accounts for the most skin injury. Specific chemical changes depend on the agent, including acids, alkalis, corrosives, oxidizing and reducing agents, desiccants, vesicants, and protoplasmic poisons. The concentration of toxic agent and duration of its contact primarily determine degree of skin destruction. Hazardous materials (hazmats) are substances that may injure life and damage the environment if improperly handled. HAZMAT accidents are particularly dangerous for responding personnel, who are in danger from the moment of arrival on the scene until containment of the accident. Consequently, the Superfund Amendment and Reauthorization Act mandates community preparedness for dealing with hazmat accidents. Paramedics and members of the hazmat response team

  19. Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition

    KAUST Repository

    Hwang, David

    2017-12-13

    Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n++-GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 × 10−5 to 0.01 mm2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.

  20. Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition

    KAUST Repository

    Hwang, David; Mughal, Asad J.; Wong, Matthew S.; Alhassan, Abdullah I.; Nakamura, Shuji; DenBaars, Steven P.

    2017-01-01

    Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n++-GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 × 10−5 to 0.01 mm2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.

  1. Comparative Studies on Dyeability with Direct, Acid and Reactive Dyes after Chemical Modification of Jute with Mixed Amino Acids Obtained from Extract of Waste Soya Bean Seeds

    Science.gov (United States)

    Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar

    2017-12-01

    Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.

  2. Random coil chemical shifts in acidic 8 M urea: Implementation of random coil shift data in NMRView

    International Nuclear Information System (INIS)

    Schwarzinger, Stephan; Kroon, Gerard J.A.; Foss, Ted R.; Wright, Peter E.; Dyson, H. Jane

    2000-01-01

    Studies of proteins unfolded in acid or chemical denaturant can help in unraveling events during the earliest phases of protein folding. In order for meaningful comparisons to be made of residual structure in unfolded states, it is necessary to use random coil chemical shifts that are valid for the experimental system under study. We present a set of random coil chemical shifts obtained for model peptides under experimental conditions used in studies of denatured proteins. This new set, together with previously published data sets, has been incorporated into a software interface for NMRView, allowing selection of the random coil data set that fits the experimental conditions best

  3. The influence of chemical methods (acid modification) on elephant foot yam flour to improve physical and chemical quality on processed food

    Science.gov (United States)

    Paramita, Octavianti; Wahyuningsih, Ansori, Muhammad

    2018-03-01

    This study was aimed at improving the physicochemical quality of elephant foot yam flour in Gunungpati, Semarang by acid modification. The utilization of elephant foot yam flour in several processed food was also discussed in this study. The flour of the experimental result discussed in this study was expected to become a reference for the manufacturers of elephant foot yam flour and its processed food in Gunungpati. This study modified the elephant foot yam flour using acid modification method. The physical and chemical quality of each elephant foot yam flour of the experimental result sample were assessed using proximate analysis. The resulting tuber flour weighed 50 grams and the soaked in acid solution with various concentrations 5 %, 10 % and 15 % with soaking duration 30, 60 and 90 minutes at temperature 35 °C. The resulting suspension was washed 3 times, filtered and then dried by cabinet dryer using 46 °C for 2 days. The dried flour was sifted with a 80 mesh sieve. Chemical test was conducted after elephant foot yam was acid modification to determine changes in the quality flour: test levels of protein, fat, crude fiber content, moisture content, ash content and starch content. In addition, color tests and granular test on elephant foot yam flour were also conducted. The acid modification as chemical treatment on elephant foot yam flour in this study was able to change the functional properties of elephant foot yam flour towards a better processing characterized by a brighter color (L = 80, a = 8 and b = 12), the hydrolysis of polysaccharides flour into shorter chain (flour content decreased to 72%), the expansion of granules in elephant foot yam resulting in a process - ready flour, and better monolayer water content of 11%. The content of protein and fiber on the elephant foot yam flour also can be maintained at a level of 8% and 1.9% levels.

  4. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Motahareh Soltani

    2016-08-01

    Full Text Available Objectives: Aluminium phosphide (AlP is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3, a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01. Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01. A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning.

  5. Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties.

    Science.gov (United States)

    Silva, Sara; Costa, Eduardo M; Horta, Bruno; Calhau, Conceição; Morais, Rui M; Pintado, M Manuela

    2016-09-13

    Phenolic acids are a particular group of small phenolic compounds which have exhibited some anti-biofilm activity, although the link between their activity and their intrinsic pH is not clear. Therefore, the present work examined the anti-biofilm activity (inhibition of biomass and metabolic activity) of phenolic acids in relation to the environmental pH, as well as other physico-chemical properties. The results indicate that, while Escherichia coli was not inhibited by the phenolic acids, both methicillin resistant Staphylococcus aureus and methicillin resistant Staphylococcus epidermidis were susceptible to the action of all phenolic acids, with the pH playing a relevant role in the activity: a neutral pH favored MRSE inhibition, while acidic conditions favored MRSA inhibition. Some links between molecular polarity and size were associated only with their potential as metabolic inhibitors, with the overall interactions hinting at a membrane-based mechanism for MRSA and a cytoplasmic effect for MRSE.

  6. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  7. Trace metals of an acid mine drainage stream using a chemical model (WATEQ) and sediment analysis

    International Nuclear Information System (INIS)

    West, K.A.; Wilson, T.P.

    1992-01-01

    The high metal contents common to the discharge of acid-mine drainage (AMD) from mines and mine spoils is an environmental concern to both government and industry. This paper reports the results of investigation of the behavior of metals in an AMD system at a former surface coal mine in Tuscarawas County, Oh. AMD discharges from seeps travels, in respective order through a laminar flow stream; a Typha-dominated wetland; a turbulent flow stream; and a sediment retention pond. Dissolved metals (Fe, Mn, Zn, Cr, Cd, Cu, and Al) major and minor components, and other parameters (pH, dissolved oxygen and Eh) were measured in the AMD water at each sample location. A chemical mineral equilibrium model (WATEQ) was used to predict the minerals which should precipitate at each site. Results suggest that the seeps are supersaturated and should be precipitating hematite, goethite and magnetite (iron oxides), and siderite (iron carbonate), whereas water of the other downstream sites were at or below equilibrium conditions for these minerals. The hydrogeochemistry of the AMD was further studied using sequential chemical attacks on the precipitate sediment surface coatings, in order to determine metal concentrations in the exchangeable, carbonate, Fe-Mn oxyhydroxide, and oxidizable fractions. The carbonate and exchangeable fractions of the precipitate are dominated by Ca and Fe, as well as Mg in the carbonate fraction. The Fe-Mn oxyhydroxide fraction contained Fe, Al, Mn, Mg, and trace metals, and also contained the greatest concentration of total elements in the system. The Fe-Mn oxyhydroxide is therefore, the major sink for metals of this AMD system. The decrease in the concentration of metals in the sediment precipitates in the downstream locations, is consistent with WATEQ and water analysis results

  8. Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage.

    Science.gov (United States)

    Gibert, Oriol; de Pablo, Joan; Luis Cortina, José; Ayora, Carlos

    2004-11-01

    The current approach of the biological treatment of acid mine drainage by means of a passive remediation system involves the choice of an appropriate organic substrate as electron donor for sulphate reducers. Nowadays this selection is one of the critical steps in the performance of such treatment, as this depends to a great extent on the degradability of the organic substrate. Thus, a prior characterisation of the organic substrate predicting its biodegradability would be desirable before embarking on an extensive large-scale application. The aim of this study was to correlate the chemical composition (lignin content) of four different natural organic substrates (compost, sheep and poultry manures, oak leaf) and their capacity to sustain bacterial activity in an attempt to predict biodegradation from chemical characterisation. The results showed that the lower the content of lignin in the organic substrate, the higher its biodegradability and capacity for developing bacterial activity. Of the four organic materials, sheep and poultry manures and oak leaf evolved reducing conditions and sustained active sulphidogenesis, which coupled with the decrease in sulphate concentration indicated bacterial activity. Sheep manure was clearly the most successful organic material as electron donor (sulphate removal >99%), followed by poultry manure and oak leaf (sulphate removal of 80%). Compost appeared to be too poor in carbon to promote sulphate-reducing bacteria activity by itself. Column experiments emphasised the importance of considering the residence time as a key factor in the performance of continuous systems. With a residence time of 0.73 days, sheep manure did not promote sulphidogenesis. However, extending residence time to 2.4 and 9.0 days resulted in an increase in the sulphate removal to 18% and 27%, respectively.

  9. Light-induced nitrous acid (HONO) production from NO2 heterogeneous reactions on household chemicals

    Science.gov (United States)

    Gómez Alvarez, Elena; Sörgel, Matthias; Gligorovski, Sasho; Bassil, Sabina; Bartolomei, Vincent; Coulomb, Bruno; Zetzsch, Cornelius; Wortham, Henri

    2014-10-01

    Nitrous acid (HONO) can be generated in various indoor environments directly during combustion processes or indirectly via heterogeneous NO2 reactions with water adsorbed layers on diverse surfaces. Indoors not only the concentrations of NO2 are higher but the surface to volume (S/V) ratios are larger and therefore the potential of HONO production is significantly elevated compared to outdoors. It has been claimed that the UV solar light is largely attenuated indoors. Here, we show that solar light (λ > 340 nm) penetrates indoors and can influence the heterogeneous reactions of gas-phase NO2 with various household surfaces. The NO2 to HONO conversion mediated by light on surfaces covered with domestic chemicals has been determined at atmospherically relevant conditions i.e. 50 ppb NO2 and 50% RH. The formation rates of HONO were enhanced in presence of light for all the studied surfaces and are determined in the following order: 1.3·109 molecules cm-2 s-1 for borosilicate glass, 1.7·109 molecules cm-2 s-1 for bathroom cleaner, 1.0·1010 molecules cm-2 s-1 on alkaline detergent (floor cleaner), 1.3·1010 molecules cm-2 s-1 for white wall paint and 2.7·1010 molecules cm-2 s-1 for lacquer. These results highlight the potential of household chemicals, used for cleaning purposes to generate HONO indoors through light-enhanced NO2 heterogeneous reactions. The results obtained have been applied to predict the timely evolution of HONO in a real indoor environment using a dynamic mass balance model. A steady state mixing ratio of HONO has been estimated at 1.6 ppb assuming a contribution from glass, paint and lacquer and considering the photolysis of HONO as the most important loss process.

  10. The role of chemical weathering in the neutralization of acid rain

    International Nuclear Information System (INIS)

    Asolekar, S.R.

    1991-01-01

    Chemical weathering of soils/minerals is an important process which controls the long-term neutralization of acid rain as well as the quality of surface water, ground water, and oceans. Few laboratory studies have been conducted to evaluate the response of real whole soils or soil fractions to acidification. In this research experiments were performed in a laboratory semi-continuous pH-stat reactor over the pH range 2.7 to 4.7 using Band C-horizon soil fractions from the Bear Brook Watershed, Maine, and in presence/absence of 1 to 20 mmol/L oxalate ligand in the bulk solution. Acid consumption rate and the corresponding release rates of sodium, calcium, magnesium, aluminum, iron, and silica were monitored in the laboratory reactor. Both H + -ion and oxalate promoted weathering rates were fractional order based on the concentration in bulk solution. The mixed kinetic model for the soils is: WR T = WR H + WR ox = K H (H + ) m + K ox [OX TD ] p , where m and p are fractional orders. The hydrogen ion consumption rates were approximately equal to cation release rates on an equivalent basis for hydrogen ion promoted weathering situations where secondary precipitation was unlikely (pH < 4.7) as well as for weathering of C-horizon light fraction at pH 4.0 and oxalate concentration 1 and 5 mmol/L. The relative proportions of released species were in the neighborhood of stoichiometric ratios of bulk soil chemistry for weatherable minerals in Band C-horizon soil fractions. The experimental ratios of H/Si, Al/Si, Fe/Si, Ca/Si, Na/Si, and Mg/Si for linear weathering rates of Band C-horizon soil fractions were fairly constant in the presence and absence of oxalate ligand and strongly suggested that silica may be used as a tracer for primary mineral weathering assuming quartz is inert

  11. Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals.

    Science.gov (United States)

    Keith, John A; Carter, Emily A

    2012-09-11

    Sensibly modeling (photo)electrocatalytic reactions involving proton and electron transfer with computational quantum chemistry requires accurate descriptions of protonated, deprotonated, and radical species in solution. Procedures to do this are generally nontrivial, especially in cases that involve radical anions that are unstable in the gas phase. Recently, pyridinium and the corresponding reduced neutral radical have been postulated as key catalysts in the reduction of CO2 to methanol. To assess practical methodologies to describe the acid/base chemistry of these species, we employed density functional theory (DFT) in tandem with implicit solvation models to calculate acidity constants for 22 substituted pyridinium cations and their corresponding pyridinyl radicals in water solvent. We first benchmarked our calculations against experimental pyridinium deprotonation energies in both gas and aqueous phases. DFT with hybrid exchange-correlation functionals provide chemical accuracy for gas-phase data and allow absolute prediction of experimental pKas with unsigned errors under 1 pKa unit. The accuracy of this economical pKa calculation approach was further verified by benchmarking against highly accurate (but very expensive) CCSD(T)-F12 calculations. We compare the relative importance and sensitivity of these energies to selection of solvation model, solvation energy definitions, implicit solvation cavity definition, basis sets, electron densities, model geometries, and mixed implicit/explicit models. After determining the most accurate model to reproduce experimentally-known pKas from first principles, we apply the same approach to predict pKas for radical pyridinyl species that have been proposed relevant under electrochemical conditions. This work provides considerable insight into the pitfalls using continuum solvation models, particularly when used for radical species.

  12. The capric and lauric acid mixture with chemical additives as latent heat storage materials for cooling application

    Energy Technology Data Exchange (ETDEWEB)

    Roxas-Dimaano, M.N. [University of Santo Tomas, Manila (Philippines). Research Center for the Natural Sciences; Watanabe, T. [Tokyo Institute of Technology (Japan). Research Laboratory for Nuclear Reactors

    2002-09-01

    The mixture of capric acid and lauric acid (C-L acid), with the respective mole composition of 65% and 35%, is a potential phase change material (PCM). Its melting point of 18.0{sup o}C, however, is considered high for cooling application of thermal energy storage. The thermophysical and heat transfer characteristics of the C-L acid with some organic additives are investigated. Compatibility of C-L acid combinations with additives in different proportions and their melting characteristics are analyzed using the differential scanning calorimeter (DSC). Among the chemical additives, methyl salicylate, eugenol, and cineole presented the relevant melting characteristics. The individual heat transfer behavior and thermal storage performance of 0.1 mole fraction of these additives in the C-L acid mixture are evaluated. The radial and axial temperature distribution during charging and discharging at different concentrations of selected PCM combinations are experimentally determined employing a vertical cylindrical shell and tube heat exchanger. The methyl salicylate in the C-L acid provided the most effective additive in the C-L acid. It demonstrated the least melting band width aimed at lowering the melting point of the C-L acid with the highest heat of fusion value with relatively comparable rate of heat transfer. Furthermore, the thermal performance based on the total amount of transferred energy and their rates, established the PCM's latent heat storage capability. (author)

  13. [Enhanced electro-chemical oxidation of Acid Red 3R solution with phosphotungstic acid supported on gamma-Al2O3].

    Science.gov (United States)

    Yue, Lin; Wang, Kai-Hong; Guo, Jian-Bo; Yang, Jing-Liang; Liu, Bao-You; Lian, Jing; Wang, Tao

    2013-03-01

    Supported phosphotungstic acid catalysts on gamma-Al2O3 (HPW/gamma-Al2O3) were prepared by solution impregnation and characterized by FTIR, XRD, TG-DTA and SEM. The heteropolyanion shows a Keggin structure. Electro-chemical oxidation of Acid Red 3R was investigated in the presence of HPW supported on gamma-Al2O3 as packing materials in the reactor. The results show that HPW/gamma-Al2O3 has a good catalytic activity for decolorization of Acid Red 3R. When HPW loading was 4.6%, pH value of Acid Red 3R was 3, the voltage was 25.0 V, air-flow was 0.04 m3 x h(-1), and electrode span was 3.0 cm, the decolorization efficiency of Acid Red 3R can reach 97.6%. The removal rate of color had still about 80% in this electro-chemical oxidation system, after HPW/gamma-Al2O3 was used for 10 times, but active component loss existed. The interim product was analyzed by means of Vis-UV absorption spectrum. It shows that the conjugated structure of dye is destroyed primarily.

  14. Measurement of formic acid, acetic acid and hydroxyacetaldehyde, hydrogen peroxide, and methyl peroxide in air by chemical ionization mass spectrometry: airborne method development

    Science.gov (United States)

    Treadaway, Victoria; Heikes, Brian G.; McNeill, Ashley S.; Silwal, Indira K. C.; O'Sullivan, Daniel W.

    2018-04-01

    A chemical ionization mass spectrometry (CIMS) method utilizing a reagent gas mixture of O2, CO2, and CH3I in N2 is described and optimized for quantitative gas-phase measurements of hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HCOOH), and the sum of acetic acid (CH3COOH) and hydroxyacetaldehyde (HOCH2CHO; also known as glycolaldehyde). The instrumentation and methodology were designed for airborne in situ field measurements. The CIMS quantification of formic acid, acetic acid, and hydroxyacetaldehyde used I- cluster formation to produce and detect the ion clusters I-(HCOOH), I-(CH3COOH), and I-(HOCH2CHO), respectively. The CIMS also produced and detected I- clusters with hydrogen peroxide and methyl peroxide, I-(H2O2) and I-(CH3OOH), though the sensitivity was lower than with the O2- (CO2) and O2- ion clusters, respectively. For that reason, while the I- peroxide clusters are presented, the focus is on the organic acids. Acetic acid and hydroxyacetaldehyde were found to yield equivalent CIMS responses. They are exact isobaric compounds and indistinguishable in the CIMS used. Consequently, their combined signal is referred to as the acetic acid equivalent sum. Within the resolution of the quadrupole used in the CIMS (1 m/z), ethanol and 1- and 2-propanol were potential isobaric interferences to the measurement of formic acid and the acetic acid equivalent sum, respectively. The CIMS response to ethanol was 3.3 % that of formic acid and the response to either 1- or 2-propanol was 1 % of the acetic acid response; therefore, the alcohols were not considered to be significant interferences to formic acid or the acetic acid equivalent sum. The multi-reagent ion system was successfully deployed during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) in 2014. The combination of FRAPPÉ and laboratory calibrations allowed for the post-mission quantification of formic acid and the acetic acid equivalent sum observed during the Deep

  15. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhi [Materials Research Institute, Athlone Institute of Technology, Athlone (Ireland); Daly, Michael [Mergon International, Castlepollard, Westmeath (Ireland); Clémence, Lopez [Polytech Grenoble, Grenoble (France); Geever, Luke M.; Major, Ian; Higginbotham, Clement L. [Materials Research Institute, Athlone Institute of Technology, Athlone (Ireland); Devine, Declan M., E-mail: ddevine@ait.ie [Materials Research Institute, Athlone Institute of Technology, Athlone (Ireland)

    2016-08-15

    Highlights: • The effects of stearic acid treatment for CaCO{sub 3} are highly influenced by the treatment method of application. • A new stearic acid treatment method, namely, combination treatment for CaCO{sub 3} was developed. • The combination treatment was compared with two of the existing methods dry and wet method. • The negative effects of void coalescence was minimised by the utilization of the combination method. - Abstract: Calcium carbonate (CaCO{sub 3}) is often treated with stearic acid (SA) to decrease its polarity. However, the method of application of the SA treatments has a strong influence on CaCO{sub 3} thermoplastic composite’s interfacial structure and distribution. Several of papers describe the promising effects of SA surface treatment, but few compare the treatment process and its effect on the properties of the final thermoplastic composite. In the current study, we assessed a new SA treatment method, namely, complex treatment for polymer composite fabrication with HDPE. Subsequently, a comparative study was performed between the “complex” process and the other existing methods. The composites were assessed using different experiments included scanning electron microscopy (SEM), void content, density, wettability, differential scanning calorimetry (DSC), and tensile tests. It was observed that the “complex” surface treatment yielded composites with a significantly lower voids content and higher density compared to other surface treatments. This indicates that after the “complex” treatment process, the CaCO{sub 3} particles and HDPE matrix are more tightly packed than other methods. DSC and wettability results suggest that the “wet” and “complex” treated CaCO{sub 3} composites had a significantly higher heat of fusion and moisture resistance compared to the “dry” treated CaCO{sub 3} composites. Furthermore, “wet” and “complex” treated CaCO{sub 3} composites have a significantly higher tensile

  16. Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters.

    Science.gov (United States)

    Bianchi, Federico; Praplan, Arnaud P; Sarnela, Nina; Dommen, Josef; Kürten, Andreas; Ortega, Ismael K; Schobesberger, Siegfried; Junninen, Heikki; Simon, Mario; Tröstl, Jasmin; Jokinen, Tuija; Sipilä, Mikko; Adamov, Alexey; Amorim, Antonio; Almeida, Joao; Breitenlechner, Martin; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Laaksonen, Ari; Lawler, Michael J; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Tomé, António; Virtanen, Annele; Viisanen, Yrjö; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2014-12-02

    We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision.

  17. A novel technology for neutralizing acidity and attenuating toxic chemical species from acid mine drainage using cryptocrystalline magnesite tailings

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2016-04-01

    Full Text Available neutralize and attenuate elevated concentrations of chemical species in AMD to within prescribed legal frameworks for water use in agricultural and industrial sectors in South Africa....

  18. [Determination of naphthenic acids in distillates of crude oil by gas chromatography/chemical ionization-mass spectrometry].

    Science.gov (United States)

    Lü, Zhenbo; Tian, Songbai; Zhai, Yuchun; Sun, Yanwei; Zhuang, Lihong

    2004-05-01

    The petroleum carboxylic acids in 200-420 degrees C distillate of crude oil were separated by the extraction with column chromatography on an anion exchange resin. The effect of the composition and structure of naphthenic acids on separation were studied by the infra-red (IR) spectroscopic techniques. Naphthenic acids and iso-butane reagent gas were introduced into the ion source for chemical ionization, in which the ions represented by [M + C4H9]+ were used to calculate the relative molecular mass for each acid. Based on the mass spectra of pure fatty and naphthenic acids, in combination with the z-series formula CnH(2n + z)O2, the naphthenic acids can be classified into fatty, mono-, bi- ... hexa-cyclic types. The results indicated that the relative molecular mass range of naphthenic acids in this distillates was 170-510, and the carbon number range was C10-C35. The contents of bi-cyclic and tri-cyclic naphthenic acids were higher than others.

  19. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Midori de Oliveira, Fernanda; Gava Segatelli, Mariana [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário, Londrina, PR CEP 86051-990 (Brazil); Tarley, César Ricardo Teixeira, E-mail: ctarleyquim@yahoo.com.br [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário, Londrina, PR CEP 86051-990 (Brazil); Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica, Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Departamento de Química Analítica, Cidade Universitária Zeferino Vaz s/n, CEP 13083-970 Campinas, SP (Brazil)

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium (pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers. - Highlights: • The molecularly imprinted hybrid polymer showed high adsorption capacity for folic acid. • The molecularly imprinted hybrid polymer showed high selectivity for folic acid. • The molecularly imprinted hybrid polymer modified with GPTMS excludes higher amount of BSA.

  20. Determination of Conditional Stability Constants for Metal Ions with Humic Acid using Chemically Immobilised Humic Acid on Silica Gel

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, G.; Guszi, J. [Frederic Joliot-Curie' National Research Inst. for Rad iobiology and Radiohygiene, Budapest, H-1775 (Hungary)]. e-mail: szabogy@hp.osski.hu; Miyajima, T. [Dept. of Chemistry, Faculty of Science and Engineering, Saga Univ ., 1-Honjo, Saga (Japan); Geckeis, H. [Forschungszentrum Karlsruhe, Inst. fuer Nuk leare Entsorgung, 76021 Karlsruhe (Germany); Reiller, P. [Commissariat a l' Energie A tomique, CE Saclay, Laboratoire de Speciation des Radionucleides et des Molecule s, F-91191 Gif-sur-Yvette (France); Bulman, R.A. [Radiation Protection Div., Health Protection Agency, Chilton, Didcot (United Kingdom)

    2007-06-15

    Limitations on aqueous solution chemistries of humic acid, and also hydrolysis of some cationic species, restrict measurement of conditional stability constants of 4f- and 5f-series elements as humate complexes. Reported log {beta} values are determined by using non-linear regression binding isotherms, of Am(III) and Th(IV), and also Ag(I) and Sr(II), bound by a humic acid composite.

  1. The ecotoxicogenomic assessment of soil toxicity associated with the production chain of 2,5-furandicarboxylic acid (FDCA), a candidate bio-based green chemical building block

    NARCIS (Netherlands)

    Chen, G.; van Straalen, N.M.; Roelofs, D.

    2016-01-01

    2,5-Furan dicarboxylic acid (FDCA) is one of the top-12 value-added chemicals derived from biomass that may serve as a 'green' substitute for terephthalic acid (TPA) in polyesters. FDCA can be synthesized chemically from 5-(hydroxymethyl)furfural (HMF), which is produced from fructose or glucose. To

  2. Acidity enhances the effectiveness of active chemical defensive secretions of sea hares, Aplysia californica, against spiny lobsters, Panulirus interruptus.

    Science.gov (United States)

    Shabani, Shkelzen; Yaldiz, Seymanur; Vu, Luan; Derby, Charles D

    2007-12-01

    Sea hares such as Aplysia californica, gastropod molluscs lacking a protective shell, can release a purple cloud of chemicals when vigorously attacked by predators. This active chemical defense is composed of two glandular secretions, ink and opaline, both of which contain an array of compounds. This secretion defends sea hares against predators such as California spiny lobsters Panulirus interruptus via multiple mechanisms, one of which is phagomimicry, in which secretions containing feeding chemicals attract and distract predators toward the secretion and away from the sea hare. We show here that ink and opaline are highly acidic, both having a pH of approximately 5. We examined if the acidity of ink and opaline affects their phagomimetic properties. We tested behavioral and electrophysiological responses of chemoreceptor neurons in the olfactory and gustatory organs of P. interruptus, to ink and opaline of A. californica within their natural range of pH values, from approximately 5 to 8. Both behavioral and electrophysiological responses to ink and opaline were enhanced at low pH, and low pH alone accounted for most of this effect. Our data suggest that acidity enhances the phagomimetic chemical defense of sea hares.

  3. An NMR and ab initio quantum chemical study of acid-base equilibria for conformationally constrained acidic alpha-amino acids in aqueous solution

    DEFF Research Database (Denmark)

    Nielsen, Peter Aadal; Jaroszewski, Jerzy W.; Norrby, Per-Ola

    2001-01-01

    The protonation states of a series of piperidinedicarboxylic acids (PDAs), which are conformationally constrained acidic alpha -amino acids, have been studied by C-13 NMR titration in water. The resulting data have been correlated with theoretical results obtained by HF/6-31+G* calculations using...

  4. Chemical reactivity of {alpha}-isosaccharinic acid in heterogeneous alkaline systems

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M. A.; Loon, L. R. Van

    2009-05-15

    Cellulose degradation under alkaline conditions is of relevance for the mobility of many radionuclides in the near-field of a cementitious repository for radioactive waste, because metal-binding degradation products may be formed. Among these, {alpha}- isosaccharinic acid ({alpha}-ISA) is the strongest complexant. The prediction of the equilibrium concentration of {alpha}-ISA in cement pore water is therefore an important step in the assessment of the influence of cellulose degradation products on the speciation of radionuclides in such environments. The present report focuses on possible chemical transformation reactions of {alpha}-ISA in heterogeneous alkaline model systems containing either Ca(OH){sub 2} or crushed hardened cement paste. The transformation reactions were monitored by measuring the concentration of {alpha}-ISA by high performance anion exchange chromatography and the formation of reaction products by high performance ion exclusion chromatography. The overall loss of organic species from solution was monitored by measuring the concentration of non-purgeable organic carbon. The reactions were examined in diluted and compacted suspensions, at either 25 {sup o}C or 90 {sup o}C, and under anaerobic atmospheres obtained by various methods. It was found that {alpha}-ISA was transformed under all conditions tested to some extent. Reaction products, such as glycolate, formate, lactate and acetate, all compounds with less complexing strength than {alpha}-ISA, were detected. The amount of reaction products identified by the chromatographic technique applied was {approx} 50 % of the amount of {alpha}-ISA reacted. Sorption of {alpha}-ISA to Ca(OH){sub 2} contributed only to a minor extent to the loss of {alpha}-ISA from the solution phase. As the most important conclusion of the present work it was demonstrated that the presence of oxidising agents had a distinctive influence on the turnover of {alpha}-ISA. Under aerobic conditions {alpha}-ISA was

  5. Chemical reactivity of α-isosaccharinic acid in heterogeneous alkaline systems

    International Nuclear Information System (INIS)

    Glaus, M. A.; Loon, L. R. Van

    2008-11-01

    Cellulose degradation under alkaline conditions is of relevance for the mobility of many radionuclides in the near-field of a cementitious repository for radioactive waste, because metal-binding degradation products may be formed. Among these, α-isosaccharinic acid (α-ISA) is the strongest complexant. The prediction of the equilibrium concentration of α-ISA in cement pore water is therefore an important step in the assessment of the influence of cellulose degradation products on the speciation of radionuclides in such environments. The present report focuses on possible chemical transformation reactions of α-ISA in heterogeneous alkaline model systems containing either Ca(OH) 2 or crushed hardened cement paste. The transformation reactions were monitored by measuring the concentration of α-ISA by high performance anion exchange chromatography and the formation of reaction products by high performance ion exclusion chromatography. The overall loss of organic species from solution was monitored by measuring the concentration of non-purgeable organic carbon. The reactions were examined in diluted and compacted suspensions, either at 25 o C or 90 o C, and under anaerobic atmospheres obtained by various methods. It was found that α-ISA was transformed under all conditions tested to some extent. Reaction products, such as glycolate, formate, lactate and acetate, all compounds with less complexing strength than α-ISA, were detected. The amount of reaction products identified by the chromatographic technique applied was ∼50 % of the amount of α-ISA reacted. Sorption of α-ISA to Ca(OH) 2 contributed only to a minor extent to the loss of α-ISA from the solution phase. As the most important conclusion of the present work it was demonstrated that the presence of oxidising agents had a distinctive influence on the turnover of α-ISA. Under aerobic conditions α-ISA was quantitatively converted to reaction products, whereas under strict anaerobic conditions, only

  6. Chemical reactivity of α-isosaccharinic acid in heterogeneous alkaline systems

    International Nuclear Information System (INIS)

    Glaus, M. A.; Loon, L. R. Van

    2009-05-01

    Cellulose degradation under alkaline conditions is of relevance for the mobility of many radionuclides in the near-field of a cementitious repository for radioactive waste, because metal-binding degradation products may be formed. Among these, α- isosaccharinic acid (α-ISA) is the strongest complexant. The prediction of the equilibrium concentration of α-ISA in cement pore water is therefore an important step in the assessment of the influence of cellulose degradation products on the speciation of radionuclides in such environments. The present report focuses on possible chemical transformation reactions of α-ISA in heterogeneous alkaline model systems containing either Ca(OH) 2 or crushed hardened cement paste. The transformation reactions were monitored by measuring the concentration of α-ISA by high performance anion exchange chromatography and the formation of reaction products by high performance ion exclusion chromatography. The overall loss of organic species from solution was monitored by measuring the concentration of non-purgeable organic carbon. The reactions were examined in diluted and compacted suspensions, at either 25 o C or 90 o C, and under anaerobic atmospheres obtained by various methods. It was found that α-ISA was transformed under all conditions tested to some extent. Reaction products, such as glycolate, formate, lactate and acetate, all compounds with less complexing strength than α-ISA, were detected. The amount of reaction products identified by the chromatographic technique applied was ∼ 50 % of the amount of α-ISA reacted. Sorption of α-ISA to Ca(OH) 2 contributed only to a minor extent to the loss of α-ISA from the solution phase. As the most important conclusion of the present work it was demonstrated that the presence of oxidising agents had a distinctive influence on the turnover of α-ISA. Under aerobic conditions α-ISA was quantitatively converted to reaction products, whereas under strict anaerobic conditions, only

  7. A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage.

    Science.gov (United States)

    Pozo, Guillermo; Pongy, Sebastien; Keller, Jürg; Ledezma, Pablo; Freguia, Stefano

    2017-12-01

    The mining sector is currently under unprecedented pressure due to stringent environmental regulations. As a consequence, a permanent acid mine drainage (AMD) treatment is increasingly being regarded as a desirable target with direct benefits for the environment and the operational and economic viability of the resources sector. In this study we demonstrate that a novel bioelectrochemical system (BES) can deliver permanent treatment of acid mine drainage without chemical dosing. The technology consists of a two-cell bioelectrochemical setup to enable the removal of sulfate from the ongoing reduction-oxidation sulfur cycle to less than 550 mg L -1 (85 ± 2% removal from a real AMD of an abandoned silver mine), thereby also reducing salinity at an electrical energy requirement of 10 ± 0.3 kWh kg -1 of SO 4 2- -S removed. In addition, the BES operation drove the removal and recovery of the main cations Al, Fe, Mg, Zn at rates of 151 ± 0 g Al m -3  d -1 , 179 ± 1 g Fe m -3  d -1 , 172 ± 1 g Mg m -3  d -1 and 46 ± 0 g Zn m -3  d -1 into a concentrate stream containing 263 ± 2 mg Al, 279 ± 2 mg Fe, 152 ± 0 mg Mg and 90 ± 0 mg Zn per gram of solid precipitated after BES fed-rate control treatment. The solid metal-sludge was twice less voluminous and 9 times more readily settleable than metal-sludge precipitated using NaOH. The continuous BES treatment also demonstrated the concomitant precipitation of rare earth elements together with yttrium (REY), with up to 498 ± 70 μg Y, 166 ± 27 μg Nd, 155 ± 14 μg Gd per gram of solid, among other high-value metals. The high-REY precipitates could be used to offset the treatment costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Materials and boiler rig testing to support chemical cleaning of once-through AGR boilers

    International Nuclear Information System (INIS)

    Tice, D.R.; Platts, N.; Raffel, A.S.; Rudge, A.

    2002-01-01

    An extensive programme of work has been carried out to evaluate two candidate inhibited cleaning solutions for possible implementation on plant, which would be the first chemical clean of an AGR boiler. The two candidate cleaning solutions considered were a Stannine-inhibited citric acid/formic acid mixture (GOM106) and inhibited hydrofluoric acid. Citric acid-based cleaning processes are widely used within the UK Power Industry. The GOM106 solution, comprising a mixture of 3% citric acid, 0.5% formic acid and 0.05% Stannine LTP inhibitor, buffered with ammonia to pH 3.5, was developed specifically for the AGR boilers during the 1970's. Although a considerable amount of materials testing work was carried out by British Energy's predecessor companies to produce a recommended cleaning procedure there were some remaining concerns with the use of GOM106, from these earlier studies, for example, an increased risk of pitting attack associated with the removal of thick 9Cr oxide deposits and a risk of unacceptable damage in critical locations such as the upper transition joints and other weld locations. Hence, additional testing was still required to validate the solution for use on plant. Inhibited hydrofluoric acid (HFA) was also evaluated as an alternative reagent to GOM106. HFA has been used extensively for cleaning mild and low'alloy steel boiler tubes in fossil-fired plant in the UK and elsewhere in Europe and is known to remove oxide quickly. Waste treatment is also easier than for the GOM106 process and some protection against damage to the boiler tube materials is provided by complexing of fluoride with ferric ion. Validation of the potential reagents and inhibitors was achieved by assessing the rate and effectiveness of oxide removal from specimens of helical boiler tubing and welds, together with establishing the extent of any metal loss or localised damage. The initial materials testing resulted in the inhibited ammoniated citric / formic acid reagent being

  9. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical

    Directory of Open Access Journals (Sweden)

    Shih-Shin Liang

    2014-11-01

    Full Text Available Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES. Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively.

  10. Chemical constituents of the essential oil and organic acids from longkong (Aglaia dookkoo Griff. fruits

    Directory of Open Access Journals (Sweden)

    Abdulhakim Hamad

    2006-03-01

    Full Text Available The pulp of longkong fruits (Aglaia dookkoo Griff., collected from Narathiwat province, was dried and extracted by steam distillation to obtain the essential oil in 0.48% yield. The GC-MS data showed oleic acid (14.80%, α-copaene (11.15%, germacrene-D (9.16%, δ- cadinene (6.74%, τ -muurolol (6.34%, (+ spathulenol (5.72% and palmitic acid (5.49% as the major constituents. Organic acids were also extracted from dried pulp with methanol using a Soxhlet apparatus to give the crude extract in 36.26% yield. Four organic acids: glycolic, maleic, malic and citric acids were determined by HPLC. Maleic acid (1.23% was the major acid and the others were citric (0.22%, malic (0.15% and glycolic acids (0.14%.

  11. Quantum Chemical Investigation on Photochemical Reactions of Nonanoic Acids at Air-Water Interface.

    Science.gov (United States)

    Xiao, Pin; Wang, Qian; Fang, Wei-Hai; Cui, Ganglong

    2017-06-08

    Photoinduced chemical reactions of organic compounds at the marine boundary layer have recently attracted significant experimental attention because this kind of photoreactions has been proposed to have substantial impact on local new particle formation and their photoproducts could be a source of secondary organic aerosols. In this work, we have employed first-principles density functional theory method combined with cluster models to systematically explore photochemical reaction pathways of nonanoic acids (NAs) to form volatile saturated and unsaturated C 9 and C 8 aldehydes at air-water interfaces. On the basis of the results, we have found that the formation of C 9 aldehydes is not initiated by intermolecular Norrish type II reaction between two NAs but by intramolecular T 1 C-O bond fission of NA generating acyl and hydroxyl radicals. Subsequently, saturated C 9 aldehydes are formed through hydrogenation reaction of acyl radical by another intact NA. Following two dehydrogenation reactions, unsaturated C 9 aldehydes are generated. In parallel, the pathway to C 8 aldehydes is initiated by T 1 C-C bond fission of NA, which generates octyl and carboxyl radicals; then, an octanol is formed through recombination reaction of octyl with hydroxyl radical. In the following, two dehydrogenation reactions result into an enol intermediate from which saturated C 8 aldehydes are produced via NA-assisted intermolecular hydrogen transfer. Finally, two dehydrogenation reactions generate unsaturated C 8 aldehydes. In these reactions, water and NA molecules are found to play important roles. They significantly reduce relevant reaction barriers. Our work has also explored oxygenation reactions of NA with molecular oxygen and radical-radical dimerization reactions.

  12. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    Science.gov (United States)

    Young, Travis; Schultz, Peter G

    2013-12-17

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  13. The effect of lunar soil, metal oxides on thermal and radio-chemical stability of amino acids

    International Nuclear Information System (INIS)

    Khenokh, M.A.; Lapinskaya, E.M.

    1983-01-01

    Data on study of the effect of lunar soil and some metal oxides characteristic both for land and sea basaltS of lunar sojls on thermal and radio-chemical stability of amino acids are presented. The data obtained permit to suppose that extremely small quantity of amino acids discovered in lunar soil is conditioned by their decomposition under combined effect of different types of radiation, solar wind and sharp change of temperature. Probably, the effect of soil on photochemical activity of UV-radiation of the Sun and solid-phase radiolysis is not practically observed

  14. Solar fuels and chemicals system design study (ammonia/nitric acid production process). Volume 2. Conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-06-01

    As part of the Solar Central Receiver Fuels and Chemicals Program, Foster Wheeler Solar Development Corporation (FWSDC), under contract to Sandia National Laboratories-Livermore (SNLL), developed a conceptual design of a facility to produce ammonia and nitric acid using solar energy as the principal external source of process heat. In the selected process, ammonia is produced in an endothermic reaction within a steam methane (natural gas) reformer. The heat of reaction is provided by molten carbonate salt heated by both a solar central receiver and an exothermic ammonia-fired heater. After absorption by water, the product of the latter reaction is nitric acid.

  15. A ω-mercaptoundecylphosphonic acid chemically modified gold electrode for uranium determination in waters in presence of organic matter.

    Science.gov (United States)

    Merli, Daniele; Protti, Stefano; Labò, Matteo; Pesavento, Maria; Profumo, Antonella

    2016-05-01

    A chemically modified electrode (CME) on a gold surface assembled with a ω-phosphonic acid terminated thiol was investigated for its capability to complex uranyl ions. The electrode, characterized by electrochemical techniques, demonstrated to be effective for the determination of uranyl at sub-μgL(-1) level by differential pulse adsorptive stripping voltammetry (DPAdSV) in environmental waters, also in presence of humic matter and other potential chelating agents. The accuracy of the measurements was investigated employing as model probes ligands of different complexing capability (humic acids and EDTA). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Acid and Base Catalyzed Hydrolysis of Cyanophycin for the Biobased Production of Nitrogen Containing Chemicals

    NARCIS (Netherlands)

    Könst, P.M.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2011-01-01

    While growing on side-streams of the agro-industries, engineered microorganisms can produce ethanol and simultaneously bind L-aspartic acid and L-arginine in equimolar amounts in the polyamino acid cyanophycin. In this way, widely available amino acids can be isolated and utilized as an alternative

  17. Utilization of chemically modified citrus reticulata peels for biosorptive removal of acid yellow-73 dye from water

    International Nuclear Information System (INIS)

    Rehman, R.; Salman, M.; Mahmud, T.; Kanwal, F.; Zaman, W.

    2013-01-01

    Textile effluents contain several varieties of natural and synthetic dyes, which are non-biodegradable. Acid Yellow-73 is one of them. In this research work, adsorptive removal of this dye was investigated using chemically modified Citrus reticulata peels, in batch mode. It was noted that adsorption of dye on Citrus reticulata peels increased by increasing contact time and decreased in basic pH conditions. Langmuir and Freundlich isothermal models were followed by equilibrium data, but the first isotherm fitted the data better, showing that chemisorption occurred more as compared to physiosorption, showing maximum adsorption capacity 96.46 mg.g-1.L-1. The thermodynamic study showed that adsorption of Acid Yellow-73 on chemically modified Citrus reticulata peels was favorable in nature, following pseudo-second order kinetics. (author)

  18. Improving surface functional properties of tofu whey-derived peptides by chemical modification with fatty acids.

    Science.gov (United States)

    Matemu, Athanasia Oswald; Katayama, Shigeru; Kayahara, Hisataka; Murasawa, Hisashi; Nakamura, Soichiro

    2012-04-01

    Effect of acylation with saturated fatty acids on surface functional properties of tofu whey-derived peptides was investigated. Tofu whey (TW) and soy proteins (7S, 11S, and acid-precipitated soy protein [APP]) were hydrolyzed by Protease M 'Amano' G, and resulting peptide mixtures were acylated with esterified fatty acids of different chain length (6C to 18C) to form a covalent linkage between the carboxyl group of fatty acid and the free amino groups of peptide. Acylation significantly (P properties of 7S, 11S, and APP peptides independent of fatty acid chain length. Acylation decreased water binding capacity although oil binding capacity of acylated tofu whey ultra filtered fraction (UFTW acids had shown significant higher surface hydrophobicity as in contrast with acylated UFTW acids can further affect functional properties of soy proteins. © 2012 Institute of Food Technologists®

  19. Coal structure and reactivity changes induced by chemical demineralisation

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Pevida, C.; Garcia, R.; Pis, J.J. [Department of Energy and Environment, Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Steel, K.M.; Patrick, J.W. [Fuel Technology Group, School of Chemical, Environmental and Mining Engineering, Nottingham University, University Park, NG7 2RD Nottingham (United Kingdom)

    2002-12-01

    The aim of this work was to determine the influence that an advanced demineralisation procedure has on the combustion characteristics of coal. A high-volatile bituminous coal with 6.2% ash content was treated in a mixture of hydrofluoric and fluorosilicic acids (HF/H{sub 2}SiF{sub 6}). Nitric acid was used either as a pretreatment, or as a washing stage after HF/H{sub 2}SiF{sub 6} demineralisation, with an ash content as low as 0.3% being attained in the latter case. The structural changes produced by the chemical treatment were evaluated by comparison of the FTIR spectra of the raw and treated coal samples. The devolatilisation and combustibility behaviour of the samples was studied by using a thermobalance coupled to a mass spectrometer (TGA-MS) for evolved gas analysis. The combustibility characteristics of the cleaned samples were clearly improved, there being a decrease in SO{sub 2} emissions.

  20. Acid dip for dosemeter

    International Nuclear Information System (INIS)

    Stewart, J.C.; McWhan, A.F.

    1982-01-01

    Background signal in a PTFE based dosemeter caused by impurities in the PTFE and in the active component such as lithium fluoride is substantially reduced by treating the dosemeter with acid. The optimum treatment involves use of hydrofluoric acid at room temperature for approximately one minute, followed by thorough washing with methanol, and finally drying. This treatment is best applied after the original manufacture of the dosemeters. It may also be applied to existing dosemeters after they have been in use for some time. The treatment produces a permanent effect in reducing both the light induced signal and the non-light induced signal. The process may be applied to all types of dosemeter manufactured from PTFE or other plastics or resins which are able to resist brief exposure to acid. The treatment works particularly well with dosemeters based on PTFE and lithium fluoride. It is also applicable to dosemeters based on calcium sulphate, lithium borate and magnesium borate. Acids which may be used include hydrofluoric, hydrochloric, nitric, phosphoric and sulphuric. (author)

  1. Treatment of periorbital dark circles: Comparative study of chemical peeling with a combination of trichloroacetic acid and lactic acid versus carboxytherapy

    Directory of Open Access Journals (Sweden)

    Arwa Mohammad Hassan

    2016-07-01

    Full Text Available Periorbital dark circles (PODC are a common worldwide cosmetic problem. It is difficult to treat due to complications in its pathogenesis and aetiology. Available lines of treatment for PODC include whitening creams, topical retinoid acid, chemical peeling, laser therapy, carboxytherapy, autologous fat transplantation, injectable fillers and surgery (blepharoplasty.The aim of this study isto evaluate and compare the efficacy of chemical peels using trichloroacetic acid (3.75% and lactic acid (15% in a gel formula with that of carboxytherapy, in the treatment of periorbital hyperpigmentation.Two groups of patients with PODC were included in the study, named Group A and B in which each group consisted of 15 patients. Group A was assigned for patients who received treatment with chemical peeling with a combination of trichloroacetic acid (3.75% and lactic acid (15% in a gel formula, once a week for four weeks. Group B was assigned for patients who received carboxytherapy that was performed by subcutaneous and intradermal injection of CO2 once a week for four weeks. All patients were assessed by digital photographs, before and after treatment, by observing the improvement in the grade of PODC. Reports of patient satisfaction and global tolerance were evaluated by three medical observers. There was a significant improvement in the grade of PODC in both groups. The degree of improvement of PODC in group A was excellent, with good grade in 93.4% of the treated patients while fair grade in 6.6% of them. There was a statistically significant improvement in the pigmented type. The degree of improvement of PODC in group B was excellent, with good grade in 86.7% of the treated patients while fair grade in 13.3% of them. However, no statistically significant difference between the two groups was observed. Minimal and transient side effects were noticed; however, it did not require further treatment. In conclusion, the two methods of treatment were effective

  2. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities.

    Science.gov (United States)

    Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H 2 SO 4 ) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1 H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal

  3. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  4. Chemical composition and antibacterial properties of essential oil and fatty acids of different parts of Ligularia persica Boiss.

    Science.gov (United States)

    Mohadjerani, Maryam; Hosseinzadeh, Rahman; Hosseini, Maryam

    2016-01-01

    The objective of this research was to investigate the chemical composition and antibacterial activities of the fatty acids and essential oil from various parts of Ligularia persica Boiss (L. persica) growing wild in north of Iran. Essential oils were extracted by using Clevenger-type apparatus. Antibacterial activity was tested on two Gram-positive and two Gram-negative bacteria by using micro dilution method. GC and GC∕MS analysis of the oils resulted in detection of 94%, 96%, 93%, 99% of the total essential oil of flowers, stems, roots and leaves, respectively. The main components of flowers oil were cis-ocimene (15.4%), β-myrcene (4.4%), β-ocimene (3.9%), and γ-terpinene (5.0%). The major constituents of stems oil were β-phellandrene (5.4%), β-cymene (7.0%), valencene (3.9%). The main compounds of root oil were fukinanolid (17.0%), α-phellandrene (11.5%) and Β-selinene (5.0%) and in the case of leaves oil were cis-ocimene (4.8%), β-ocimene (4.9%), and linolenic acid methyl ester (4.7%). An analysis by GC-FID and GC-MS on the fatty-acid composition of the different parts of L. persica showed that major components were linoleic acid (11.3-31.6%), linolenic acid (4.7-21.8%) and palmitic acid (7.2-23.2%). Saturated fatty acids were found in lower amounts than unsaturated ones. The least minimum inhibition concentration (MIC) of the L. persica was 7.16 μg/ml against Pseudomonas aeruginosa. Our study indicated that the essential oil from L. persica stems and flowers showed high inhibitory effect on the Gram negative bacteria. The results also showed that fatty acids from the stems and leaves contained a high amount of poly-unsaturated fatty acids (PUFAs).

  5. Metodologia AGOA: a modelagem de clusters de hidratação no complexo aziridina···ácido fluorídrico AGOA methodology: modeling the hydration clusters for the aziridine···hydrofluoric complex

    Directory of Open Access Journals (Sweden)

    Boaz G. Oliveira

    2009-01-01

    Full Text Available We present a theoretical study of solvent effect on C2H5N···HF hydrogen-bonded complex through the application of the AGOA methodology. By using the TIP4P model to orientate the configuration of water molecules, the hydration clusters generated by AGOA were obtained through the analysis of the molecular electrostatic potential (MEP of solute (C2H5N···HF. Thereby, it was calculated the hydration energies on positive and negative MEP fields, which are maxima (PEMmax and minima (PEMmin when represent the -CH2- methylene groups and hydrofluoric acid, respectively. By taking into account the higher and lower hydration energy values of -370.6 kJ mol-1 and -74.3 kJ mol-1 for PEMmax and PEMmin of the C2H5N···HF, our analysis shows that these results corroborate the open ring reaction of aziridine, in which the preferential attack of water molecules occurs at the methylene groups of this heterocyclic.

  6. Excluded volume effects caused by high concentration addition of acid generators in chemically amplified resists used for extreme ultraviolet lithography

    Science.gov (United States)

    Kozawa, Takahiro; Watanabe, Kyoko; Matsuoka, Kyoko; Yamamoto, Hiroki; Komuro, Yoshitaka; Kawana, Daisuke; Yamazaki, Akiyoshi

    2017-08-01

    The resolution of lithography used for the high-volume production of semiconductor devices has been improved to meet the market demands for highly integrated circuits. With the reduction in feature size, the molecular size becomes non-negligible in the resist material design. In this study, the excluded volume effects caused by adding high-concentration acid generators were investigated for triphenylsulfonium nonaflate. The resist film density was measured by X-ray diffractometry. The dependences of absorption coefficient and protected unit concentration on acid generator weight ratio were calculated from the measured film density. Using these values, the effects on the decomposition yield of acid generators, the protected unit fluctuation, and the line edge roughness (LER) were evaluated by simulation on the basis of sensitization and reaction mechanisms of chemically amplified extreme ultraviolet resists. The positive effects of the increase in acid generator weight ratio on LER were predominant below the acid generator weight ratio of 0.3, while the negative effects became equivalent to the positive effects above the acid generator weight ratio of 0.3 owing to the excluded volume effects.

  7. Interaction of silicene with amino acid analogues—from physical to chemical adsorption in gas and solvated phases

    Science.gov (United States)

    Jagvaral, Yesukhei; He, Haiying; Pandey, Ravindra

    2018-01-01

    Silicene is an emerging 2D material, and an understanding of its interaction with amino acids, the basic building blocks of protein, is of fundamental importance. In this paper, we investigate the nature of adsorption of amino-acid analogues on silicene employing density functional theory and an implicit solvation model. Amino acid analogues are defined as CH3-R molecules, where R is the functional group of the amino acid side chain. The calculated results find three distinct groups within the amino-acid analogues considered: (i) group I, which includes MeCH3 and MeSH, interacts with silicene via the van der Waals dispersive terms leading to physisorbed configurations; (ii) group II strongly interacts with silicene forming Si-O/N chemical bonds in the chemisorbed configurations; and (iii) group III, which consists of the phenyl group, interacts with silicene via π-π interactions leading to physisorbed configurations. The results show that the lateral chains of the amino acids intrinsically determine the interactions between protein and silicene at the interface under the given physiological conditions.

  8. Efficacy and safety of a new superficial chemical peel using alpha-hydroxy acid, vitamin C and oxygen for melasma.

    Science.gov (United States)

    Kim, Won-Serk

    2013-02-01

    Facial skin pigmentary disorders can be resistant to conventional treatment. Superficial chemical peel is an effective and safe treatment in pigmentary problems including melasma, post-inflammatory hyperpigmentation and aging spots. To assess the efficacy and safety of new superficial chemical peel (Melasma peel, Theraderm®), this is composed of alpha-hydroxy acid (AHAs), vitamin C and oxygen for melasma. Twenty-five ethnic Korean patients (Fitzpatrick skin phototypes IV and V) with moderate to severe melasma were enrolled. The patients underwent four treatments at 1-2-week intervals for 8 weeks. Clinical improvement was evaluated on a 5-point scale by participants and by the same dermatologist, and adverse effects were checked during the study. Improvement in the degree of pigmentation, pores, and evenness were noted. Significant clinical improvement of hyperpigmentation was evident. No adverse effects were reported. New superficial chemical peel using AHAs, vitamin C and oxygen is an effective and very safe treatment for melasma.

  9. Fabrication and characterization of chemical sensors made from nanostructured films of poly(o-ethoxyaniline) prepared with different doping acids

    Energy Technology Data Exchange (ETDEWEB)

    Brugnollo, E.D. [EMBRAPA Instrumentacao Agropecuaria, CP 741, CEP 13560-970, Sao Carlos, SP (Brazil); Instituto de Fisica de Sao Carlos, USP, CP 369, CEP 13560-970, Sao Carlos, SP (Brazil); Paterno, L.G. [Departamento de Engenharia de Sistemas Eletronicos, EPUSP, CEP 05508-900, Sao Paulo, SP (Brazil)], E-mail: paterno@lme.usp.br; Leite, F.L. [EMBRAPA Instrumentacao Agropecuaria, CP 741, CEP 13560-970, Sao Carlos, SP (Brazil); Instituto de Fisica de Sao Carlos, USP, CP 369, CEP 13560-970, Sao Carlos, SP (Brazil); Fonseca, F.J. [Departamento de Engenharia de Sistemas Eletronicos, EPUSP, CEP 05508-900, Sao Paulo, SP (Brazil); Constantino, C.J.L.; Antunes, P.A. [Departamento de Fisica, Quimica e Biologia, FCT-UNESP, CEP 19060-900, Presidente Prudente, SP (Brazil); Mattoso, L.H.C. [EMBRAPA Instrumentacao Agropecuaria, CP 741, CEP 13560-970, Sao Carlos, SP (Brazil)

    2008-03-31

    Chemical sensors made from nanostructured films of poly(o-ethoxyaniline) POEA and poly(sodium 4-styrene sulfonate) PSS are produced and used to detect and distinguish 4 chemicals in solution at 20 mM, including sucrose, NaCl, HCl, and caffeine. These substances are used in order to mimic the 4 basic tastes recognized by humans, namely sweet, salty, sour, and bitter, respectively. The sensors are produced by the deposition of POEA/PSS films at the top of interdigitated microelectrodes via the layer-by-layer technique, using POEA solutions containing different dopant acids. Besides the different characteristics of the POEA/PSS films investigated by UV-Vis and Raman spectroscopies, and by atomic force microscopy, it is observed that their electrical response to the different chemicals in liquid media is very fast, in the order of seconds, systematical, reproducible, and extremely dependent on the type of acid used for film fabrication. The responses of the as-prepared sensors are reproducible and repetitive after many cycles of operation. Furthermore, the use of an 'electronic tongue' composed by an array of these sensors and principal component analysis as pattern recognition tool allows one to reasonably distinguish test solutions according to their chemical composition.

  10. Reduction in Acidity by Chemical and Microbiological Methods and Their Effect on Moslavac Wine Quality

    OpenAIRE

    Herjavec, Stanka; Majdak, Ana; Tupajić, Pavica; Redžepović, Sulejman; Orlić, Sandi

    2003-01-01

    Changes in chemical composition and sensory properties caused by chemical and microbiological methods of deacidification in Moslavac (syn. Furmint) wines were investigated. Alcoholic fermentation of Moslavac musts was carried out with two different strains of the yeasts Saccharomyces paradoxus. There were no marked differences in chemical composition among the wines. Compared to the control microbiological deacidification of wines by Oenococcus oeni resulted in a complete decomposition of mal...

  11. Molecular modeling of protonic acid doping of emeraldine base polyaniline for chemical sensors

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, C.K.Y.; Ye, H.; Leung, S.Y.Y.; Zhang, G.

    2012-01-01

    We proposed a molecular modeling methodology to study the protonic acid doping of emeraldine base polyaniline which can used in gas detection. The commercial forcefield COMPASS was used for the polymer and protonic acid molecules. The molecular model, which is capable of representing the polyaniline

  12. Physical adsorption vs. chemical binding of undecylenic acid on porous silicon surface: a comparative study of differently functionalized materials

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, J.; Lehto, V.P. [University of Turku (Finland). Department of Physics; Chirvony, V.; Matveeva, E. [Nanophotonics Technology Center, Technical University of Valencia (Spain); Pastor, E.

    2009-07-15

    To imply miscibility to porous silicon (PSi) used for biomedical purposes a number of functionalization methods are employed. In order to distinguish between a non-specific surfactant-like interaction (physical sorption) and chemical binding of unsaturated chemicals (undecylenic acid, UD) to H-terminated PSi surface we studied the two differently treated materials. Differential scanning calorimetry (DSC) and thermogravimetry (TGA), BET and FTIR measurements were performed with the PSi powder samples (n+ doped). Changes in surface area, weight loss, calorific effect and chemical composition that accompanied the thermal treatment have shown that the physisorbed UD molecules undergo a chemical process (binding) with the Si-H{sub x} surface groups at about 150 C in both, N{sub 2} inert atmosphere and in a synthetic air, oxidative atmosphere. Controlled conversion of physically sorbed molecules to the chemically attached ones is discussed with respect to methods of surface modification of PSi materials for increasing their biocompatibility. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers

    Science.gov (United States)

    Pardeshi, Sushma; Dhodapkar, Rita; Kumar, Anupama

    2013-12-01

    Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.

  14. X-ray diffraction, vibrational and quantum chemical investigations of 2-methyl-4-nitroanilinium trichloroacetate trichloroacetic acid

    Science.gov (United States)

    Arjunan, V.; Marchewka, Mariusz K.; Pietraszko, A.; Kalaivani, M.

    2012-11-01

    The structural investigations of the molecular complex of 2-methyl-4-nitroaniline with trichloroacetic acid, namely 2-methyl-4-nitroanilinium trichloroacetate trichloroacetic acid (C11H10Cl6N2O6) have been performed by means of single crystal and powder X-ray diffraction method. The complex was formed with accompanying proton transfer from trichloroacetic acid molecule to 2-methyl-4-nitroaniline. The studied crystal is built up of singly protonated 2-methyl-4-nitroanilinium cations, trichloroacetate anions and neutral trichloroacetic acid molecules. The crystals are monoclinic, space group P21/c, with a = 14.947 Å, b = 6.432 Å, c = 19.609 Å and Z = 4. The vibrational assignments and analysis of 2-methyl-4-nitroanilinium trichloroacetate trichloroacetic acid have also been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings were added from the quantum chemical studies performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ, 6-31G and 6-31++G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of 2M4NATCA were also determined by the DFT methods.

  15. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol.

    Science.gov (United States)

    Iyyappan, J; Bharathiraja, B; Baskar, G; Jayamuthunagai, J; Barathkumar, S; Anna Shiny, R

    2018-03-01

    In the present investigation, crude glycerol derived from transesterification process was utilized to produce the commercially-valuable malic acid. A combined resistant on methanol and malic acid strain of Aspergillus niger MTCC 281 mutant was generated in solid medium containing methanol (1-5%) and malic acid (40-80 g/L) by the adaptation process for 22 weeks. The ability of induced Aspergillus niger MTCC 281 mutant to utilize crude glycerol and pure glycerol to produce malic acid was studied. The yield of malic acid was increased with 4.45 folds compared with that of parent strain from crude glycerol. The highest concentration of malic acid from crude glycerol by using beneficial mutant was found to be 77.38 ± 0.51 g/L after 192 h at 25 °C. This present study specified that crude glycerol by-product from biodiesel production could be used for producing high amount of malic acid without any pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Photolithography-free laser-patterned HF acid-resistant chromium-polyimide mask for rapid fabrication of microfluidic systems in glass

    International Nuclear Information System (INIS)

    Zamuruyev, Konstantin O; Zrodnikov, Yuriy; Davis, Cristina E

    2017-01-01

    Excellent chemical and physical properties of glass, over a range of operating conditions, make it a preferred material for chemical detection systems in analytical chemistry, biology, and the environmental sciences. However, it is often compromised with SU8, PDMS, or Parylene materials due to the sophisticated mask preparation requirements for wet etching of glass. Here, we report our efforts toward developing a photolithography-free laser-patterned hydrofluoric acid-resistant chromium-polyimide tape mask for rapid prototyping of microfluidic systems in glass. The patterns are defined in masking layer with a diode-pumped solid-state laser. Minimum feature size is limited to the diameter of the laser beam, 30 µ m; minimum spacing between features is limited by the thermal shrinkage and adhesive contact of the polyimide tape to 40 µ m. The patterned glass substrates are etched in 49% hydrofluoric acid at ambient temperature with soft agitation (in time increments, up to 60 min duration). In spite of the simplicity, our method demonstrates comparable results to the other current more sophisticated masking methods in terms of the etched depth (up to 300 µ m in borosilicate glass), feature under etch ratio in isotropic etch (∼1.36), and low mask hole density. The method demonstrates high yield and reliability. To our knowledge, this method is the first proposed technique for rapid prototyping of microfluidic systems in glass with such high performance parameters. The proposed method of fabrication can potentially be implemented in research institutions without access to a standard clean-room facility. (paper)

  17. An Effective Acid Combination for Enhanced Properties and Corrosion Control of Acidizing Sandstone Formation

    International Nuclear Information System (INIS)

    Shafiq, Mian Umer; Mahmud, Hisham Khaled Ben

    2016-01-01

    To fulfill the demand of the world energy, more technologies to enhance the recovery of oil production are being developed. Sandstone acidizing has been introduced and it acts as one of the important means to increase oil and gas production. Sandstone acidizing operation generally uses acids, which create or enlarge the flow channels of formation around the wellbore. In sandstone matrix acidizing, acids are injected into the formation at a pressure below the formation fracturing pressure, in which the injected acids react with mineral particles that may restrict the flow of hydrocarbons. Most common combination is Hydrofluoric Acid - Hydrochloric with concentration (3% HF - 12% HCl) known as mud acid. But there are some problems associated with the use of mud acid i.e., corrosion, precipitation. In this paper several new combinations of acids were experimentally screened to identify the most effective combination. The combinations used consist of fluoboric, phosphoric, formic and hydrofluoric acids. Cores were allowed to react with these combinations and results are compared with the mud acid. The parameters, which are analyzed, are Improved Permeability Ratio, strength and mineralogy. The analysis showed that the new acid combination has the potential to be used in sandstone acidizing. (paper)

  18. Comparison of amino acids physico-chemical properties and usage of late embryogenesis abundant proteins, hydrophilins and WHy domain.

    Science.gov (United States)

    Jaspard, Emmanuel; Hunault, Gilles

    2014-01-01

    Late Embryogenesis Abundant proteins (LEAPs) comprise several diverse protein families and are mostly involved in stress tolerance. Most of LEAPs are intrinsically disordered and thus poorly functionally characterized. LEAPs have been classified and a large number of their physico-chemical properties have been statistically analyzed. LEAPs were previously proposed to be a subset of a very wide family of proteins called hydrophilins, while a domain called WHy (Water stress and Hypersensitive response) was found in LEAP class 8 (according to our previous classification). Since little is known about hydrophilins and WHy domain, the cross-analysis of their amino acids physico-chemical properties and amino acids usage together with those of LEAPs helps to describe some of their structural features and to make hypothesis about their function. Physico-chemical properties of hydrophilins and WHy domain strongly suggest their role in dehydration tolerance, probably by interacting with water and small polar molecules. The computational analysis reveals that LEAP class 8 and hydrophilins are distinct protein families and that not all LEAPs are a protein subset of hydrophilins family as proposed earlier. Hydrophilins seem related to LEAP class 2 (also called dehydrins) and to Heat Shock Proteins 12 (HSP12). Hydrophilins are likely unstructured proteins while WHy domain is structured. LEAP class 2, hydrophilins and WHy domain are thus proposed to share a common physiological role by interacting with water or other polar/charged small molecules, hence contributing to dehydration tolerance.

  19. Radiation-chemical behaviour of neptunium ions in nitric acid solutions in the presence of curium-244

    International Nuclear Information System (INIS)

    Frolova, L.M.; Frolov, A.A.; Vasil'ev, V.Ya.

    1984-01-01

    Radiation-chemical behaviour of neptunium ions in nitric acid solutions is studied under the action of intensive internal alpha-irradiation conditioned by curium nuclides. In 0.3-1.1 mol/l solutions of nitric acid radiation-chemical oxidation of neptunium (4) and reduction of neptunium (6) is obeyed to the first order law of reaction rate in respect to neptunium concentration. Effective constants of neptunium (4) oxidation rates and neptuniumi(6) reduction rates are not dependent on neptunium ion in1tial concentration and increase with a growth of a dose rate of alpha-irradiation of solution. In equilibrium only neptunium (5) and neptunium (6) are present in solutions with HNO 3 concentration less than 1 mol/l. In more concentrated solutions equilibrium between sexa-, penta- and tetravalent neptunium forms is established. Equilibrium concentrations of neptunium valent forms are not dependent on neptunium initial oxidation state under the same initial conditions (dose rate, neptunium concentration and acidity. It is shown form experimental data that under the action of alpha-irradiation neptunium (5) both is oxidated to neptunium (6) and is reduced to neptunium (4)

  20. Impact of Chemical Analogs of 4-Hydroxybenzoic Acid on Coenzyme Q Biosynthesis: From Inhibition to Bypass of Coenzyme Q Deficiency

    Directory of Open Access Journals (Sweden)

    Fabien Pierrel

    2017-06-01

    Full Text Available Coenzyme Q is a lipid that participates to important physiological functions. Coenzyme Q is synthesized in multiple steps from the precursor 4-hydroxybenzoic acid. Mutations in enzymes that participate to coenzyme Q biosynthesis result in primary coenzyme Q deficiency, a type of mitochondrial disease. Coenzyme Q10 supplementation of patients is the classical treatment but it shows limited efficacy in some cases. The molecular understanding of the coenzyme Q biosynthetic pathway allowed the design of experiments to bypass deficient biosynthetic steps with analogs of 4-hydroxybenzoic acid. These molecules provide the defective chemical group and can reactivate endogenous coenzyme Q biosynthesis as demonstrated recently in yeast, mammalian cell cultures, and mouse models of primary coenzyme Q deficiency. This mini review presents how the chemical properties of various analogs of 4-hydroxybenzoic acid dictate the effect of the molecules on CoQ biosynthesis and how the reactivation of endogenous coenzyme Q biosynthesis may achieve better results than exogenous CoQ10 supplementation.

  1. An overview of a uranium acidic mining lake (Caldas, Brazil): composition of the zooplankton community and limno-chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, H.; Ferrari, C.; Roque, C.V.; Nascimento, M.R. [Brazilian Nuclear Energy Commission/Pocos de Caldas Laboratory (Brazil); Wisniewski, M.J. [Alfenas Federal University/Limnology Laboratory (Brazil); Rodgher, S. [Universidade Estadual Paulista Julio de Mesquita Filho/Science and Technology Laboratory (Brazil)

    2014-07-01

    This research represents an attempt to fill a gap in the information on the zooplankton composition and limno-chemical aspects of the uranium pit lake (Osamu Utsumi Pit, Brazil), affected by acid mine drainage. In the present study water samples were collected three-monthly, for a period of one year (2008-2009). The water samples from the uranium pit lake showed moderately acidic pH values (3.6 to 4.1), high values of the electrical conductivity, sulfate, uranium, fluoride, zinc, manganese and aluminum concentrations. The Rotifera cephalodella sp., Keratella americana, K. cochlearis, Bdelloidea order and the Cladocera Bosminopsis deitersi, Bosmina sp., were registered in the samples from the uranium pit lake with ADM. Of the species registered the Bdelloidea order was the most important in terms of density (17,500 - 77,778 ind m{sup -3}), since it occurred throughout the whole sampling period. In this study, probably the combined effect of moderately acid pH values and other potentially co-stressors factors, for example the high concentrations of stable and radioactive chemical species, could have influenced this richness and also the composition of the zooplankton species in the water samples from the uranium pit lake. Document available in abstract form only. (authors)

  2. Hydrogen fluoride (HF) substance flow analysis for safe and sustainable chemical industry.

    Science.gov (United States)

    Kim, Junbeum; Hwang, Yongwoo; Yoo, Mijin; Chen, Sha; Lee, Ik-Mo

    2017-11-01

    In this study, the chemical substance flow of hydrogen fluoride (hydrofluoric acid, HF) in domestic chemical industries in 2014 was analyzed in order to provide a basic material and information for the establishment of organized management system to ensure safety during HF applications. A total of 44,751 tons of HF was made by four domestic companies (in 2014); import amount was 95,984 tons in 2014 while 21,579 tons of HF was imported in 2005. The export amount of HF was 2180 tons, of which 2074 ton (China, 1422 tons, U.S. 524 tons, and Malaysia, 128 tons) was exported for the manufacturing of semiconductors. Based on the export and import amounts, it can be inferred that HF was used for manufacturing semiconductors. The industries applications of 161,123 tons of HF were as follows: manufacturing of basic inorganic chemical substance (27,937 tons), manufacturing of other chemical products such as detergents (28,208 tons), manufacturing of flat display (24,896 tons), and manufacturing of glass container package (22,002 tons). In this study, an analysis of the chemical substance flow showed that HF was mainly used in the semiconductor industry as well as glass container manufacturing. Combined with other risk management tools and approaches in the chemical industry, the chemical substance flow analysis (CSFA) can be a useful tool and method for assessment and management. The current CSFA results provide useful information for policy making in the chemical industry and national systems. Graphical abstract Hydrogen fluoride chemical substance flows in 2014 in South Korea.

  3. Treatment of Arctic Wastewater by Chemical Coagulation, UV and Peracetic Acid Disinfection

    OpenAIRE

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-01-01

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physico-chemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chlorid...

  4. Radiation chemical synthesis of N-vinylpyrrolidone copolymers with undecylenic and oleic acids

    International Nuclear Information System (INIS)

    Ushakova, V.N.; Panarin, E.F.; Denisov, V.M.; Kol'tsov, A.I.; Persinen, A.A.

    1988-01-01

    Radiation copolymerization of N-vinylpyrrolidone with undecylenic and oleic acids is investigated. Irradiation was carried out at 320 and 300 K using γ-radiation with 0.23 and 0.04 Gy/s dose rate respectively. Polymer yield and copolimerization rate sufficiently depend on composition of initial mixture. Maximum molar concentration of carboxyl links in copolymer is 30 %. Statistic copolymer, which has no adjacent links of carboxylic acid, is formed. The relative reactivity of acids is equal to zero; reactivities of N-vinylpyrrolidone: 0.61< r<0.94 for undecylenic and 0.90 < r < 1.31 for oleic acid are calculated taking account of preterminal link effect

  5. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation.

    Science.gov (United States)

    Andersen, Stephen J; Candry, Pieter; Basadre, Thais; Khor, Way Cern; Roume, Hugo; Hernandez-Sanabria, Emma; Coma, Marta; Rabaey, Korneel

    2015-01-01

    Volatile fatty acids (VFA) are building blocks for the chemical industry. Sustainable, biological production is constrained by production and recovery costs, including the need for intensive pH correction. Membrane electrolysis has been developed as an in situ extraction technology tailored to the direct recovery of VFA from fermentation while stabilizing acidogenesis without caustic addition. A current applied across an anion exchange membrane reduces the fermentation broth (catholyte, water reduction: H2O + e(-) → ½ H2 + OH(-)) and drives carboxylate ions into a clean, concentrated VFA stream (anolyte, water oxidation: H2O → 2e(-) + 2 H(+) + O2). In this study, we fermented thin stillage to generate a mixed VFA extract without chemical pH control. Membrane electrolysis (0.1 A, 3.22 ± 0.60 V) extracted 28 ± 6 % of carboxylates generated per day (on a carbon basis) and completely replaced caustic control of pH, with no impact on the total carboxylate production amount or rate. Hydrogen generated from the applied current shifted the fermentation outcome from predominantly C2 and C3 VFA (64 ± 3 % of the total VFA present in the control) to majority of C4 to C6 (70 ± 12 % in the experiment), with identical proportions in the VFA acid extract. A strain related to Megasphaera elsdenii (maximum abundance of 57 %), a bacteria capable of producing mid-chain VFA at a high rate, was enriched by the applied current, alongside a stable community of Lactobacillus spp. (10 %), enabling chain elongation of VFA through lactic acid. A conversion of 30 ± 5 % VFA produced per sCOD fed (60 ± 10 % of the reactive fraction) was achieved, with a 50 ± 6 % reduction in suspended solids likely by electro-coagulation. VFA can be extracted directly from a fermentation broth by membrane electrolysis. The electrolytic water reduction products are utilized in the fermentation: OH(-) is used for pH control without added chemicals, and H2 is

  6. Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions

    Science.gov (United States)

    Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...

  7. The critical chemical and mechanical regulation of folic acid on neural engineering.

    Science.gov (United States)

    Kim, Gloria B; Chen, Yongjie; Kang, Weibo; Guo, Jinshan; Payne, Russell; Li, Hui; Wei, Qiong; Baker, Julianne; Dong, Cheng; Zhang, Sulin; Wong, Pak Kin; Rizk, Elias B; Yan, Jiazhi; Yang, Jian

    2018-04-03

    The mandate of folic acid supplementation in grained products has reduced the occurrence of neural tube defects by one third in the U.S since its introduction by the Food and Drug Administration in 1998. However, the advantages and possible mechanisms of action of using folic acid for peripheral nerve engineering and neurological diseases still remain largely elusive. Herein, folic acid is described as an inexpensive and multifunctional niche component that modulates behaviors in different cells in the nervous system. The multiple benefits of modulation include: 1) generating chemotactic responses on glial cells, 2) inducing neurotrophin release, and 3) stimulating neuronal differentiation of a PC-12 cell system. For the first time, folic acid is also shown to enhance cellular force generation and global methylation in the PC-12 cells, thereby enabling both biomechanical and biochemical pathways to regulate neuron differentiation. These findings are evaluated in vivo for clinical translation. Our results suggest that folic acid-nerve guidance conduits may offer significant benefits as a low-cost, off-the-shelf product for reaching the functional recovery seen with autografts in large sciatic nerve defects. Consequently, folic acid holds great potential as a critical and convenient therapeutic intervention for neural engineering, regenerative medicine, medical prosthetics, and drug delivery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. EFFECT OF STABILIZERS ON THE CHEMICAL AND PHOTODEGRADATION OF ASCORBIC ACID IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Iqbal Ahmad

    2016-06-01

    Full Text Available Ascorbic acid (vitamin C is susceptible to light and air and forms various degradation products. A number of stabilizers have been used to study their effect on the degradation of ascorbic acid (AH2 in dark and light at pH 4.0 and 6.0 alone and in combination with citric and tartaric acids. The assay of AH2 in degraded solutions was performed by a specific UV spectrometric method. The degradation product of AH2 at pH 4.0 and 6.0 was identified as dehydroascorbic acid. The degradation of AH2 has been found to follow first-order kinetics. The apparent first-order rate constants, t90 and percent inhibition in rate in the presence of stabilizers and the second-order rate constants for the interaction of stabilizers with AH2 have been determined. The highest stabilizing effect on AH2 was found by sodium metabisulfite, followed by sodium sulfite, sodium bisulfate, sodium thiosulfate and thiourea. The pH of the solutions has also been found to influence the degradation of AH2 as the rates are higher at pH 6.0 compared to those of pH 4.0, probably due to the ionization of AH2. A synergistic effect has been observed when citric or tartaric acid was added to the solutions containing stabilizers where citric acid showed comparatively better effect.

  9. Humic acid from Shilajit – a physico-chemical and spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    SURAJ P. AGARWAL

    2010-03-01

    Full Text Available Shilajit is a blackish–brown exudation, consisting of organic substances, metal ions and minerals, from different formations, commonly found in the Himalayan region (1000–3000 m from Nepal to Kashmir. Shilajit can also be collected throughout the mountain regions in Afghanistan, Bhutan, China, Bajkal, throughout Ural, Caucasus and Altai mountains also, at altitudes between 1000 to 5000 m. The major physiological action of shilajit has been attributed to the presence of bioactive dibenzo-α-pyrones together with humic and fulvic acids, which act as carrier molecules for the active ingredients. In this work, the aim was to extract humic acid from Shilajit from various sources and characterised these humic acids based on their physicochemical properties, elemental analysis, UV/Vis and FTIR spectra, X-ray diffraction pattern and DSC thermograms. The spectral features obtained from UV/Vis, FTIR, XRD and DSC studies for samples of different origins showed a distinct similarity amongst themselves and in comparison to soil humic acids. The surfactant properties of the extracted fulvic acids were investigated by determining the effect of increasing concentration on the surface tension of water. The study demonstrated that humic acids extracted from shilajit indeed possessed surfactant properties.

  10. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: liuyang@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Shen, Xin; Zhou, Huan [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Wang, Yingjun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Deng, Linhong, E-mail: dlh@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China)

    2016-05-01

    Graphical abstract: - Highlights: • Chitosan film was modified by surface grafting of citric acid. • The modified film has good hydrophilicity and moisture-retaining capacity. • The citric acid grafting treatment significantly promote the biomineralization. • MC3T3-E1 osteoblasts research confirms the biocompatibility of the film. - Abstract: We develop a novel chitosan–citric acid film (abbreviated as CS–CA) suitable for biomedical applications in this study. In this CS–CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS–CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS–CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS–CA film. This CS–CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.

  11. The chemical digestion of Ti6Al7Nb scaffolds produced by Selective Laser Melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm.

    Science.gov (United States)

    Junka, Adam F; Szymczyk, Patrycja; Secewicz, Anna; Pawlak, Andrzej; Smutnicka, Danuta; Ziółkowski, Grzegorz; Bartoszewicz, Marzenna; Chlebus, Edward

    2016-01-01

    In our previous work we reported the impact of hydrofluoric and nitric acid used for chemical polishing of Ti-6Al-7Nb scaffolds on decrease of the number of Staphylococcus aureus biofilm forming cells. Herein, we tested impact of the aforementioned substances on biofilm of Gram-negative microorganism, Pseudomonas aeruginosa, dangerous pathogen responsible for plethora of implant-related infections. The Ti-6Al-7Nb scaffolds were manufactured using Selective Laser Melting method. Scaffolds were subjected to chemical polishing using a mixture of nitric acid and fluoride or left intact (control group). Pseudomonal biofilm was allowed to form on scaffolds for 24 hours and was removed by mechanical vortex shaking. The number of pseudomonal cells was estimated by means of quantitative culture and Scanning Electron Microscopy. The presence of nitric acid and fluoride on scaffold surfaces was assessed by means of IR and rentgen spetorscopy. Quantitative data were analysed using the Mann-Whitney test (P ≤ 0.05). Our results indicate that application of chemical polishing correlates with significant drop of biofilm-forming pseudomonal cells on the manufactured Ti-6Al-7Nb scaffolds ( p = 0.0133, Mann-Whitney test) compared to the number of biofilm-forming cells on non-polished scaffolds. As X-ray photoelectron spectroscopy revealed the presence of fluoride and nitrogen on the surface of scaffold, we speculate that drop of biofilm forming cells may be caused by biofilm-supressing activity of these two elements.

  12. Contribution to the study of the physico-chemical mechanisms of metallic cation extraction by alkylphosphoric acids. Extraction of zirconium (IV) by di-2-ethylhexyl phosphoric acid (DEHPA)

    International Nuclear Information System (INIS)

    Carbonnier, J.-L.

    1979-02-01

    Extraction of zirconium, especially at high concentration (0.1M), by dodecane diluted DEHPA (HA) from hydrochloric or nitric aqueous phases of 0.1 to 10 M acidity was studied. The composition, structure and polymerisation of the complexes extracted were determined by chemical analysis, viscosimetry, infrared spectrometry and light scattering. A Zr(OH) 2 A 2 .2HNO 3 , type structure is proposed for these complexes instead of the generally accepted form: Zr(OH) 2 (NO 3 ) 2 .2HA. Similarly in hydrochloric solution: Zr(OH) 2 A 2 .2HCl. Polymerisation in the organic phase results from the juxtaposition of two factors; firstly zirconium saturation (formation of bridges by DEHPA between zirconium atoms) and secondly the nature the equeous phase. In slightly acid hydrochloric solution (pH = 1.3) the aqueous plymers of zirconium are extracted in the organic phase as polynuclear complexes; in nitric solution no polynuclear complexes are observed but the nitric acid molecules extracted set up hydrogen bonds which explain the increased viscosity and gelification of the organic phases [fr

  13. Synthesis and physical-chemical properties of functional derivatives of 3-benzyl-8-propylxanthinyl-7-acetic acid

    Directory of Open Access Journals (Sweden)

    E. K. Mikhal’chenko

    2017-08-01

    Full Text Available Introduction. Synthetic research of new biologically active compounds occupies an important place in modern pharmaceutical science.Thus it is important to develop techniques for the biologically active substances functionalization. Esters and amides take special place among the variety of functional derivatives of organic acids,. These fragments are well-known pharmacophores and could be found in a wide range of drugs. Thus, the nootropic agent pyracetam is 2-oxo-1-pyrolidineacetamide, and is the selective antagonist of β-adrenoreceptores; atenolol is a derivative of benzeneacetamide. Substituted acetamide and ester fragments are also present in the structures of aprofen, spasmolitin, acetylidine and β-lactam cephalosporins and penicillins antibiotics.Aim of our research was the synthetic method development for functional derivatives of 3-benzyl-8-propylxanthinyl-7-acetic acid and the study of their physical-chemical properties. Materials and methods. Melting points were determined using capillary method on DMP (M. 1Н NMR-spectra were recorded by Varian Mercury VX-200 device (company «Varian» – USA solvent – (DMSO-d6, internal standard – ТМS. Elemental analysis of obtained compounds was produced on device Elementar Vario L cube. Chemical shifts were reported in ppm (parts per million values. Infrared (IR spectra were measured on a Bruker Alpha instrument using a potassium bromide (KBr disk, scanning from 400 to 4000 cm-1. Results and discussion. We selected 3-benzyl-8-propylxanthinyl-7-acetic acid as initial compound for our study. For synthesis of hexyl, heptyl, octyl, nonyl, decyl and benzyl esters of 3-benzyl-8-propylxanthinyl-7-acetic acid we used alternative method, that included alkylation of sodium salts of acids with alkyl halogens. Reaction was made at DMF medium by reflux of reagents. Next stage of our research was the synthesis of amides of 3-beznyl-8-propylxanthinyl-7-acetic acid by the reaction of ethyl or propyl esters

  14. A comparative study between chemical and enzymatic transesterification of high free fatty acid contained rubber seed oil for biodiesel production

    Directory of Open Access Journals (Sweden)

    Jilse Sebastian

    2016-12-01

    Full Text Available The choice of a paramount method for biodiesel production has significance as the demand of alternative fuels like biodiesel is growing rapidly. In the present study, experimental results from chemical-catalysed as well as enzyme-catalysed methods were compared using common influencing parameters such as oil/alcohol molar ratio, catalyst concentration and reaction duration. Requirement of certain solvents to enhance the reaction rate was explained in the enzyme-catalysed transesterification reaction. Biodiesel conversion of more than 90% was attained for chemical-catalysed transesterification, whereas the conversion rate was 85% for enzyme-catalysed method. This gives the indication of further refinement in the enzyme-catalysed transesterification process. The influencing parameters and absolute results of the analysis give the impression of superiority of enzymatic transesterification method for biodiesel production from high free fatty acid-contained rubber seed oil.

  15. Relationship between fat globule size and chemical and fatty acid composition of cow's milk in mid lactation

    Directory of Open Access Journals (Sweden)

    Cosima Scolozzi

    2010-01-01

    Full Text Available The milk in 57 Italian Fresian cows in mid lactation was analysed in order to define the relationship between some qualitative milk parameters and the size of milk fat globules. The study focused on the morphometric evaluation of milk fat globules, chemical parameteres and fatty acid composition of the milk. The results show that a prevalence of milk fat globules with a diameter 6 um was associated (P<0.01 with greater milk yield nad a higher percentage of lactose, non-fat dry matter and ash............

  16. Relationship between fat globule size and chemical and fatty acid composition of cow's milk in mid lactation

    Directory of Open Access Journals (Sweden)

    Mina Martini

    2006-01-01

    Full Text Available The milk in 57 Italian Fresian cows in mid lactation was analysed in order to define the relationship between some qualitative milk parameters and the size of milk fat globules. The study focused on the morphometric evaluation of milk fat globules, chemical parameteres and fatty acid composition of the milk. The results show that a prevalence of milk fat globules with a diameter 6 um was associated (P<0.01 with greater milk yield nad a higher percentage of lactose, non-fat dry matter and ash............

  17. Development of a method for environmentally friendly chemical peptide synthesis in water using water-dispersible amino acid nanoparticles

    Directory of Open Access Journals (Sweden)

    Fukumori Yoshinobu

    2011-08-01

    Full Text Available Abstract Due to the vast importance of peptides in biological processes, there is an escalating need for synthetic peptides to be used in a wide variety of applications. However, the consumption of organic solvent is extremely large in chemical peptide syntheses because of the multiple condensation steps in organic solvents. That is, the current synthesis method is not environmentally friendly. From the viewpoint of green sustainable chemistry, we focused on developing an organic solvent-free synthetic method using water, an environmentally friendly solvent. Here we described in-water synthesis technology using water-dispersible protected amino acids.

  18. Physico-chemical parameter for production of lactic acid or ethanol of (corynebacterium glutamicum) bacteria

    International Nuclear Information System (INIS)

    Castellanos, Angelica; Garcia, Lina Marcela; Astudillo, Myriam; Lopez Galan, Jorge Enrique; Florez Pardo, Luz Marina.

    2011-01-01

    The interest to obtain products for the bio-fuel industry from renewable resources has directed research to find resistant and costs-effective biotechnological systems. Corynebacterium glutamicum, is a microorganism used to produce amino acids, that grows in wide variety of substrates and its resistance during fermentation to pH, temperature, osmotic pressure variations and alcohol aggregate, renders this organism a suitable candidate to improve by genetic modifications lactic acid and ethanol synthesis. However, some aspects of its physiology remain unknown, such us increase lactic acid and ethanol production from C5 and C6 sugars. For this reason, the main aim in our work was to identify the most important variables with impact on culture and the best culture conditions to produce lactic acid or ethanol in batch culture. To achieve this objective, eight variables were tested in culture using a statistical model. The best culture conditions were obtained and tested in a bacth bioreactor system. Temperature, biotin and glucose concentration were the variables with most impact (p - 1 , 16 g/l of lactic acid was obtained after 15 h of culture with an efficiency of 32%. High glucose consumption was observed during bacterial growth, which leads to low concentration of substrate for the production process; this suggests a culture feeding at the end of exponential growth phase, which can increase the production yield.

  19. The chemical foundations of nitroalkene fatty acid signaling through addition reactions with thiols.

    Science.gov (United States)

    Turell, Lucía; Steglich, Martina; Alvarez, Beatriz

    2018-03-22

    Nitroalkene fatty acids can be formed in vivo and administered exogenously. They exert pleiotropic signaling actions with cytoprotective and antiinflammatory effects. The presence of the potent electron withdrawing nitro group confers electrophilicity to the adjacent β-carbon. Thiols (precisely, thiolates) are strong nucleophiles and can react with nitroalkene fatty acids through reversible Michael addition reactions. In addition, nitroalkene fatty acids can undergo several other processes including metabolic oxidation, reduction, esterification, nitric oxide release and partition into hydrophobic compartments. The signaling actions of nitroalkenes are mainly mediated by reactions with critical thiols in regulatory proteins. Thus, the thio-Michael addition reaction provides a framework for understanding the molecular basis of the biological effects of nitroalkene fatty acids at the crossroads of thiol signaling and electrophilic lipid signaling. In this review, we describe the reactions of nitroalkene fatty acids in biological contexts. We focus on the Michael addition-elimination reaction with thiols and its mechanism, and extrapolate kinetic and thermodynamic considerations to in vivo settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Hydrolysis of aspartic acid phosphoramidate nucleotides: a comparative quantum chemical study.

    Science.gov (United States)

    Michielssens, Servaas; Tien Trung, Nguyen; Froeyen, Matheus; Herdewijn, Piet; Tho Nguyen, Minh; Ceulemans, Arnout

    2009-09-07

    L-Aspartic acid has recently been found to be a good leaving group during HIV reverse transcriptase catalyzed incorporation of deoxyadenosine monophosphate (dAMP) in DNA. This showed that L-Asp is a good mimic for the pyrophosphate moiety of deoxyadenosine triphosphate. The present work explores the thermochemistry and mechanism for hydrolysis of several models for L-aspartic-dAMP using B3LYP/DGDZVP, MP2/6-311++G** and G3MP2 level of theory. The effect of the new compound is gradually investigated: starting from a simple methyl amine leaving group up to the aspartic acid leaving group. The enzymatic environment was mimicked by involving two Mg(2+) ions and some important active site residues in the reaction. All reactions are compared to the corresponding O-coupled leaving group, which is methanol for methyl amine and malic acid for aspartic acid. With methyl amine as a leaving group a tautomeric associative or tautomeric dissociative mechanism is preferred and the barrier is lower than the comparable mechanism with methanol as a leaving group. The calculations on the aspartic acid in the enzymatic environment show that qualitatively the mechanism is the same as for triphosphate but the barrier for hydrolysis by the associative mechanism is higher for L-aspartic-dAMP than for L-malic-dAMP and pyrophosphate.

  1. EFFECTS OF Citrus hystryx AS FAT PROTECTOR ON UNSATURATED FATTY ACIDS, CHOLESTEROL AND CHEMICAL COMPOSITION OF LAMB MEAT

    Directory of Open Access Journals (Sweden)

    N.C. Tiven

    2016-03-01

    Full Text Available This study was conducted to determine the effect of Citrus hystrix as fat protector on unsaturated fatty acids, cholesterol and chemical composition of lamb meat. The research design applied was completely randomized design with 3 treatments and 5 replications. Fifteen local male lambs aged 9-12 months weighing 14-17 kg, were divided into 3 groups of different diet treatments (P0 : sheeps were only given a basal diet; P1 : sheeps are given basal diet and 3% cooking oil; P2 : sheeps are given basal diet, 3% cooking oil and protected by 3% Citrus hystrix powder. The data were analyzed by analysis of variance, the differences among treatments were tested by Duncan’s New Multiple Range Test. The results showed meat from sheeps that consume P2 diet has a total fatty acid and polyunsaturated fatty acids content were higher (P<0.01, with lower cholesterol content (P<0.01 than of P0, and has a protein and fat content were higher (P <0.01, but a lower water content (P<0.01 than that of PO. It can be concluded that the use of Citrus hystrix powder as fat protector can increase content of polyunsaturated fatty acids, protein and fat, but decrease cholesterol content.

  2. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid

    Directory of Open Access Journals (Sweden)

    Andri Cahyo Kumoro

    2015-03-01

    Full Text Available Acetylation is one of the common methods of modifying starch properties by introducing acetil (CH3CO groups to starch molecules at low temperatures. While most acetylation is conducted using starch as anhidroglucose source and acetic anhydride or vinyl acetate as nucleophilic agents, this work employ reactants, namely flour and glacial acetic acid. The purpose of this work are to study the effect of pH reaction and GAA/GF mass ratio on the rate of acetylation reaction and to determine its rate constants. The acetylation of gadung flour with glacial acetic acid in the presence of sodium hydroxide as a homogenous catalyst was studied at ambient temperature with pH ranging from 8-10 and different mass ratio of acetic acid : gadung flour (1:3; 1:4; and 1:5. It was found that increasing pH, lead to increase the degree of substitution, while increasing GAA/GF mass ratio caused such decreases in the degree of substitution, due to the hydrolysis of the acetylated starch. The desired starch acetylation reaction is accompanied by undesirable hydrolysis reaction of the acetylated starch after 40-50 minutes reaction time. Investigation of kinetics of the reaction observed that the value of mass transfer rate constant (Kcs is smaller than the surface reaction rate constant (k. Thus, it can be concluded that rate controlling step is mass transfer.  © 2015 BCREC UNDIP. All rights reservedReceived: 7th August 2014; Revised: 8th September 2014; Accepted: 14th September 2014How to Cite: Kumoro, A.C., Amelia, R. (2015. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 30-37. (doi:10.9767/bcrec.10.1.7181.30-37Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7181.30-37

  3. Preventive acid chemical cleaning operation (PACCO) on steam generator in French nuclear power plants

    International Nuclear Information System (INIS)

    Traino, Jules; Ruiz Martinez, Jose Thomas; Rottner, Bernard; Vedova, Eric

    2014-01-01

    Steam Generators (SG) usually present important deposit loading and Tube Support Blockage, resulting from Secondary Side corrosion products. These phenomena modify SG behavior which can lead to safety, heat exchange performance and lifetime problems. In this context, a Chemical Cleaning Process (PACCO) was designed to solve the issue. After almost two years of intensive lab tests, pilot simulation and mock-ups, the chemical process was finally qualified by EDF. The aim of the work was firstly the development in laboratory of a chemical process that could eliminate partially the deposit loading, respecting the integrity of materials and gas emission limits. Secondly, the objective was the design and the implementation of the process on-site. The process has been applied successfully in 3 SG in Dampierre nuclear power plant in France on July 2013. The main results were: - Corrosion < 100 μm. - 40% of the initial deposit loading, removed by SG. (authors)

  4. Radiation-chemical synthesis of polypropylene fabrics with sulfonic acid functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyun Kug; Park, Jung Soo; Han, Do Hung, E-mail: dhhan@yumail.ac.kr; Bondar, Iuliia, E-mail: juliavad@yahoo.co

    2011-04-01

    A sorption-active material carrying sulfonic acid groups was synthesized by the radiation-induced graft polymerization of styrene monomer onto the surface of non-woven polypropylene fabric, followed by sulfonation of the grafted polystyrene chains. The effect of the main experimental parameters (absorbed dose, monomer concentration, reaction time) on the styrene degree of grafting was investigated. The sulfonation process with 5% chlorosulfonic acid at room temperature was investigated in detail and the optimal sulfonation conditions for the samples with a medium degree of grafting (70-140%) were determined. Densities of 3.5-5 meq/g were obtained by applying those sorption-active PP fabrics with a sulfonic acid group.

  5. Electrolytic technique for the chemical decontamination process with sulfuric acid-cerium (IV) for decommissioning

    International Nuclear Information System (INIS)

    Wei, Tsong-Yang; Hsieh, Jung-Chun.

    1992-01-01

    An electrolyzer with an ion-exchange membrane as the separator has been used to study the electrolytic redox reaction of Ce 4+ / Ce 3+ in sulfuric acid solution, which is a reagent for predismantling system decontamination. Influencing factors such as current density, cerium concentration, acidity, electrolyte flow rate, membrane type and electrode material were studied experimentally. The results indicate that the redox can be achieved with high conversion even as the cerium concentration is below 0.005 M. However, the current efficiency strongly depends on the cerium concentration. In addition, the acid content and the electrolyte flow rate show little influence on the redox reaction. Both cation and anion membrane are feasible for this process. Therefore, the operation conditions are widely applicable. Moreover, two different electrode materials, platinized titanium meshes and graphite, were used. The results show that the platinized titanium meshes is preferable to the graphite for higher current efficiency. (author)

  6. Chemical basis for the phytotoxicity of N-aryl hydroxamic acids and acetanilide analogues.

    Science.gov (United States)

    Bravo, Héctor R; Villarroel, Elisa; Copaja, Sylvia V; Argandoña, Victor H

    2008-01-01

    Germination inhibition activity of N-aryl hydroxamic acids and acetanilide analogues was measured on lettuce seeds (Lactuca sativa). Lipophilicity of the compounds was determined by HPLC. A correlation between lipophilicity values and percentage of germination inhibition was established. A model mechanism of action for auxin was used for analyzing the effect of the substituent at the alpha carbon atom (Ca) on the polarization of hydroxamic and amide functions in relation to the germination inhibition activity observed. Results suggest that the lipophilic and acidic properties play an important role in the phytotoxicity of the compounds. A test with the microalga Chlorella vulgaris was used to evaluate the potential herbicide activity of the hydroxamic acids and acetanilides.

  7. Succinic acid production derived from carbohydrates: An energy and greenhouse gas assessment of a platform chemical toward a bio-based economy

    NARCIS (Netherlands)

    Cok, B.|info:eu-repo/dai/nl/371750679; Tsiropoulos, I.; Roes, A.L.|info:eu-repo/dai/nl/303022388; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2014-01-01

    Bio-based succinic acid has the potential to become a platform chemical, i.e. a key building block for deriving both commodity and high-value chemicals, which makes it an attractive compound in a bio-based economy. A few companies and industrial consortia have begun to develop its industrial

  8. Chemical Composition and Fatty Acid Content of Some Spices and Herbs under Saudi Arabia Conditions

    Directory of Open Access Journals (Sweden)

    Fahad Mohammed Al-Jasass

    2012-01-01

    Full Text Available Some Saudi herbs and spices were analyzed. The results indicated that mustard, black cumin, and cress seeds contain high amount of fat 38.45%, 31.95% and 23.19%, respectively, as compared to clove (16.63%, black pepper (5.34% and fenugreek (4.51% seeds. Cress, mustard, black cumin and black pepper contain higher protein contents ranging from 26.61 to 25.45%, as compared to fenugreek (12.91% and clove (6.9%. Crude fiber and ash content ranged from 6.36 to 23.6% and from 3.57 to 7.1%, respectively. All seeds contain high levels of potassium (ranging from 383 to 823 mg/100g, followed by calcium (ranging from 75 to 270 mg/100g, Magnesium (ranged from 42 to 102 mg/100g and iron (ranged from 20.5 to 65 mg/100g. However, zinc, manganese and copper were found at low levels. The major fatty acids in cress and mustard were linolenic acid (48.43% and erucic acid (29.81%, respectively. The lenoleic acid was the major fatty acid in black cumin, fenugreek, black pepper and clove oils being 68.07%, 34.85%, 33.03% and 44.73%, respectively. Total unsaturated fatty acids were 83.24, 95.62, 86.46, 92.99, 81.34 and 87.82% for cress, mustard, black cumin, fenugreek, black pepper and clove, respectively. The differences in the results obtained are due to environmental factors, production areas, cultivars used to produce seeds and also due to the different methods used to prepare these local spices.

  9. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    Science.gov (United States)

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. γ-irradiated crystalline sugars and amino acids: A chemical analysis

    International Nuclear Information System (INIS)

    Gejvall, T.

    1975-01-01

    Crystalline sugars and amino acids were irradiated at room temperature in a 60 Co γ-source at a dose rate ranging from 2 to 3x10 19 eV/g per hour. The investigation has geen performed to broaden the knowledge about what happens to food at irradiation preservation. The total degradation and the role of the glycosidic bond were investigated in some carbonhydrates. Transfer reactions of tritium constitute another specific problem which has been treated. Several components are formed in the crystalline amino acids, and a new gas chromatographic method was developed for analysis of amines in degraded material. (K.K)

  11. Chemical and amino acid composition of cooked walnut (juglans regia) flour

    International Nuclear Information System (INIS)

    Niyi, H.; Ogungbenle, N.

    2009-01-01

    The proximate analysis of cooked walnut (Juglans regia) flour revealed the composition as protein (14.18%), moisture (11.01%), ash (3.14%), crude fibre (3.03%), crude fat (10.22%), carbohydrate (58.42%), phytate (20.18 mg/g), oxalate (1.13 mg/g) and tannin (2.33%). Glutamic and aspartic acids were the most predominant amino acids in the sample with values of 151.6 mg/g and 89.5 mg/g, respectively. (author)

  12. Advanced Biocatalytic Processing of Heterogeneous Lignocellulosic Feedstocks to a Platform Chemical Intermediate (Lactic acid Ester)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sharon Shoemaker

    2004-09-03

    The development of commercial boi-based processes and products derived from agricultural waste biomass has the potential for significant impact on the economy and security of our nation. Adding value, rather than disposing of the waste of agriculture, can solve an environmental problem and reduce our dependence on foreign sources of fossil fuel for production of chemicals, materials and fuels.

  13. Catalytic Deoxygenation of Fatty Acids and Triglycerides for Production of Fuels and Chemicals

    NARCIS (Netherlands)

    Hollak, Stefan

    2014-01-01

    Fossil fuels (i.e. coal, gas, oil) currently cover over 80 % of the world’s energy demand. The use of alternative resources for the production of fuels and chemicals has been an important research area over the last decade. This was not only stimulated by the declining fossil feedstock resources and

  14. The precautionary principle and chemicals management: The example of perfluoroalkyl acids in groundwater.

    Science.gov (United States)

    Cousins, Ian T; Vestergren, Robin; Wang, Zhanyun; Scheringer, Martin; McLachlan, Michael S

    2016-09-01

    Already in the late 1990s microgram-per-liter levels of perfluorooctane sulfonate (PFOS) were measured in water samples from areas where fire-fighting foams were used or spilled. Despite these early warnings, the problems of groundwater, and thus drinking water, contaminated with perfluoroalkyl and polyfluoroalkyl substances (PFASs) including PFOS are only beginning to be addressed. It is clear that this PFAS contamination is poorly reversible and that the societal costs of clean-up will be high. This inability to reverse exposure in a reasonable timeframe is a major motivation for application of the precautionary principle in chemicals management. We conclude that exposure can be poorly reversible; 1) due to slow elimination kinetics in organisms, or 2) due to poorly reversible environmental contamination that leads to continuous exposure. In the second case, which is relevant for contaminated groundwater, the reversibility of exposure is not related to the magnitude of a chemical's bioaccumulation potential. We argue therefore that all PFASs entering groundwater, irrespective of their perfluoroalkyl chain length and bioaccumulation potential, will result in poorly reversible exposures and risks as well as further clean-up costs for society. To protect groundwater resources for future generations, society should consider a precautionary approach to chemicals management and prevent the use and release of highly persistent and mobile chemicals such as PFASs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Wet Chemical Oxidation of Organic Waste Using Nitric-Phosphoric Acid Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R.A.

    1998-10-06

    Experimental progress has been made in a wide range of areas which support the continued development of the nitric-phosphoric acid oxidation process for combustible, solid organic wastes. An improved understanding of the overall process operation has been obtained, acid recovery and recycle systems have been studied, safety issues have been addressed, two potential final waste forms have been tested, preliminary mass flow diagrams have been prepared, and process flowsheets have been developed. The flowsheet developed is essentially a closed-loop system which addresses all of the internally generated waste streams. The combined activities aim to provide the basis for building and testing a 250-400 liter pilot-scale unit. Variations of the process now must be evaluated in order to address the needs of the primary customer, SRS Solid Waste Management. The customer is interested in treating job control waste contaminated with Pu-238 for shipment to WIPP. As a result, variations for feed preparation, acid recycle, and final form manufacturing must be considered to provide for simpler processing to accommodate operations in high radiation and contamination environments. The purpose of this program is to demonstrate a nitric-phosphoric acid destruction technology which can treat a heterogeneous waste by oxidizing the solid and liquid organic compounds while decontaminating noncombustible items.

  16. Assessment of flavonoid and fatty acid intake by chemical analysis of biomarkers and the duplicate diets

    NARCIS (Netherlands)

    Vries, de J.H.M.

    1998-01-01

    Dietary intake is important to investigate the relationship between diet and the occurrence of disease. However, it is difficult to assess the intake of nutrients such as flavonoids, minor fatty acids and plant sterols because the data on these nutrients in food composition tables are insufficient

  17. Chemically modified carbon paste electrode for fast screening of oxalic acid levels in soil solutions

    Czech Academy of Sciences Publication Activity Database

    Šestáková, Ivana; Jakl, M.; Jaklová Dytrtová, J.

    2008-01-01

    Roč. 102, - (2008), s. 140-140 E-ISSN 1213-7103. [International Conference on Electroanalysis /12./. 16.06.2008-19.06.2008, Prague] R&D Projects: GA ČR GA521/06/0496 Institutional research plan: CEZ:AV0Z40400503 Keywords : oxalic acid * carbon paste electrodes * soil solutions Subject RIV: CG - Electrochemistry

  18. Chemical constituents: water-soluble vitamins, free amino acids and sugar profile from Ganoderma adspersum.

    Science.gov (United States)

    Kıvrak, İbrahim

    2015-01-01

    Ganoderma adspersum presents a rigid fruiting body owing to chitin content and having a small quantity of water or moisture. The utility of bioactive constituent of the mushroom can only be available by extraction for human usage. In this study, carbohydrate, water-soluble vitamin compositions and amino acid contents were determined in G. adspersum mushroom. The composition in individual sugars was determined by HPLC-RID, mannitol (13.04 g/100 g) and trehalose (10.27 g/100 g) being the most abundant sugars. The examination of water-soluble vitamins and free amino acid composition was determined by UPLC-ESI-MS/MS. Essential amino acid constituted 67.79% of total amino acid, which is well worth the attention with regard to researchers and consumers. In addition, G. adspersum, which is also significantly rich in B group vitamins and vitamin C, can provide a wide range of notable applications in the pharmaceutics, cosmetics, food and dietary supplement industries. G. adspersum revealed its value for pharmacy and nutrition fields.

  19. Preparation and characterization of the nanocomposites from chemically modified nanocellulose and poly(lactic acid)

    Science.gov (United States)

    Liqing Wei; Shupin Luo; Armando G. McDonald; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark

    2017-01-01

    Cellulose nanocrystals (CNCs) are renewable and sustainable filler for polymeric nanocomposites. However, their high hydrophilicity limits their use with hydrophobic polymer for composite materials. In this study, freeze-dried CNCs were modified by transesterification with canola oil fatty acid methyl ester to reduce the hydrophilicity. The transesterified CNCs (CNCFE...

  20. Histopathologic changes of the eyelid skin following trichloroacetic acid chemical peel

    NARCIS (Netherlands)

    Dailey, R. A.; Gray, J. F.; Rubin, M. G.; Hildebrand, P. L.; Swanson, N. A.; Wobig, J. L.; Wilson, D. J.; Speelman, P.

    1998-01-01

    The use of trichloroacetic acid (TCA) as a periorbital and eyelid peel for skin rejuvenation is gaining significant acceptance among oculoplastic surgeons, dermatologists, and other surgery groups. In spite of the current enthusiasm, there remain potentially serious complications resulting from any

  1. Contrasting chemical response to artificial acidification of three acid-sensitive streams in Maine, USA

    International Nuclear Information System (INIS)

    Goss, Heather V.; Norton, Stephen A.

    2008-01-01

    We experimentally acidified three low alkalinity first-order streams in forested catchments in Maine, USA. We evaluated water samples from a reference site above the point of hydrochloric acid addition and from two or three sites located 16 to 94 m downstream. Neutralization included protonation of weak acids, adsorption of sulfate, and ion exchange of base cations and aluminum (Al) for protons (H + ). Protonation of bicarbonate was significant in the relatively high pH Hadlock Brook. Protonation of weak organic acids dominated in the high dissolved organic carbon (DOC) Mud Pond Inlet. The response in low DOC, low pH East Bear Brook was dominated by stream substrate release of cations. East Bear Brook had the strongest acid neutralization response per unit catchment area. In all streams, exchangeable calcium (Ca) and magnesium (Mg) were mobilized, with Ca > Mg. Al was also mobilized. During initial stages of acidification, Ca desorbed preferentially, whereas Al mobilization dominated later. Early in the recovery, adsorption of Ca to the streambed sediments was kinetically favored over adsorption of Al. Though pH increased downstream of acid addition, the streams remained undersaturated with respect to amorphous Al(OH) 3 , so Al did not precipitate. In East Bear Brook, however, Al left solution further downstream through adsorption. This process was likely kinetically controlled, because it occurred in East Bear Brook (3-4 L/s) but did not occur in Hadlock Brook (ca. 40 L/s) or Mud Pond Inlet (ca. 60 L/s). During experimental acidification, the initial Al:Ca ratio of a stream's response may indicate the acidification status of the catchment. Short-term stream acidification experiments illuminate processes characteristic of episodic stream acidification and of long-term catchment acidification. East Bear Brook and Hadlock Brook catchments are in early to intermediate stages of acidification. The Mud Pond Inlet catchment (high Al:Ca ratio) is in a later stage of

  2. Chemical Compositions of Achillea sivasica: Different Plant Part Volatiles, Enantiomers and Fatty Acids

    Directory of Open Access Journals (Sweden)

    Gülmira Özek

    2018-03-01

    Full Text Available In the present work, Microsteam distillation - Solid phase microextraction (MSD-SPME and hydrodistillation (HD techniques were applied to obtain volatiles from Achillea sivasica, an endemic species from Turkey. GC-FID and GC/MS analysis revealed that 1,8-cineole (22.1% and a -pinene (9.3% were the main constituents of the hydrodistilled flower volatiles. (Z- b -Farnesene (23.9%, decanoic acid (10.1%, b- eudesmol (8.0%, tricosane (7.3% and hexadecanoic acid (7.2% were the main volatiles obtained from flowers by MSD-SPME. The leaf volatiles obtained by HD contained camphor (9.0%, b -pinene (6.9%, 1,8-cineole (6.7%, a -pinene (6.7% and a -bisabolol (6.6% as the main constituents while the leaf volatiles obtained by MSD-SPME technique were rich in (E-geranyl acetone (10.5%, (E- b -ionone (10.3%, camphor (10.2%, 1,8-cineole (9.6%, longiverbenone (7.9%, b -eudesmol (7.5%, isopropyl myristate (6.7% and epi- a -bisabolol (6.4%. The root volatiles were rich in longiverbenone (14.1%, (E-geranyl acetone (9.3%, nonanol (12.1% and decanol (12.5%. The enantiomeric distribution of the major volatile constituents was analyzed by using different b -cyclodextrin chiral columns. (1R-(+- a -Pinene, (1S-(-- b -pinene, (4R-(+-limonene, (1R,3S,5R-(--trans-pinocarveol, (1S,2R,4S-(--borneol, (2S-(-- a -bisabolol were detected as dominant enantiomers. The lipids extracted from the flower and leaf with Folch method and methylated with BF 3 reagent contained common acids: linolenic, linoleic, hexadecanoic acids. Oleic and stearic acids were detected particularly in high amount in the flower lipids

  3. Porous polycarbene-bearing membrane actuator for ultrasensitive weak-acid detection and real-time chemical reaction monitoring.

    Science.gov (United States)

    Sun, Jian-Ke; Zhang, Weiyi; Guterman, Ryan; Lin, Hui-Juan; Yuan, Jiayin

    2018-04-30

    Soft actuators with integration of ultrasensitivity and capability of simultaneous interaction with multiple stimuli through an entire event ask for a high level of structure complexity, adaptability, and/or multi-responsiveness, which is a great challenge. Here, we develop a porous polycarbene-bearing membrane actuator built up from ionic complexation between a poly(ionic liquid) and trimesic acid (TA). The actuator features two concurrent structure gradients, i.e., an electrostatic complexation (EC) degree and a density distribution of a carbene-NH 3 adduct (CNA) along the membrane cross-section. The membrane actuator performs the highest sensitivity among the state-of-the-art soft proton actuators toward acetic acid at 10 -6  mol L -1 (M) level in aqueous media. Through competing actuation of the two gradients, it is capable of monitoring an entire process of proton-involved chemical reactions that comprise multiple stimuli and operational steps. The present achievement constitutes a significant step toward real-life application of soft actuators in chemical sensing and reaction technology.

  4. Molecular interactions of nucleic acid bases. A review of quantum-chemical studies

    Czech Academy of Sciences Publication Activity Database

    Šponer, Jiří; Hobza, Pavel

    2003-01-01

    Roč. 68, č. 12 (2003), s. 2231-2282 ISSN 0010-0765 R&D Projects: GA MŠk LN00A032; GA AV ČR IAA4040904 Grant - others:Wellcome Trust(GB) GR067507MF Institutional research plan: CEZ:AV0Z5004920; CEZ:AV0Z4040901 Keywords : DNA base pairs * initio quantum -chemical calculations * electron correlation Subject RIV: BO - Biophysics Impact factor: 1.041, year: 2003

  5. Physico-chemical processes in acid mine drainage in coal mining, south Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Campaner, Veridiana Polvani; Luiz-silva, Wanilson. [Universidade Estadual de Campinas, Campinas (Brazil)

    2009-07-01

    Acid mine drainage generated from coal mine showed a pH of 3.2, high concentrations of SO{sub 4}{sup 2-}, Al, Fe, Mn, Zn and minor As, Cd, Co, Cr, Cu, Ni and Pb. The major reduction in the concentration occurred for Al, As, Cr, Fe and Pb after the treatment with CaO. The evolution of these acid waters within the tributary stream showed decreasing concentration for all soluble constituents, except Al. This natural attenuation was controlled by pH (6.4 to 10.8) as a result of concurrent mixing with tributary stream and reaction with local bedrock that contains limestone. Aluminum increasing concentration during this evolution seems to be related to an input of Al-enriched waters due to the leaching of silicate minerals in alkaline conditions. 47 refs., 3 figs., 3 tabs.

  6. Chemically Transformable Configurations of Mercaptohexadecanoic Acid Self-Assembled Monolayers Adsorbed on Au(111)

    International Nuclear Information System (INIS)

    van Buuren, T; Bostedt, C; Nelson, A J; Terminello, L J; Vance, A L; Fadley, C S; Willey, T M

    2003-01-01

    Carboxyl terminated Self-Assembled Monolayers (SAMs) are commonly used in a variety of applications, with the assumption that the molecules form well ordered monolayers. In this work, NEXAFS verifies well ordered monolayers can be formed using acetic acid in the solvent. Disordered monolayers with unbound molecules present in the result using only ethanol. A stark reorientation occurs upon deprotonation of the endgroup by rinsing in a KOH solution. This reorientation of the endgroup is reversible with tilted over, hydrogen bound carboxyl groups while carboxylate-ion endgroups are upright. C1s photoemission shows that SAMs formed and rinsed with acetic acid in ethanol, the endgroups are protonated, while without, a large fraction of the molecules on the surface are carboxylate terminated

  7. Photo- and radiation chemical cycloaddition of maleic acid derivatives to ethylene and acetylene under elavated pressure

    International Nuclear Information System (INIS)

    Mirbach, M.

    1975-01-01

    Based on spectroscopic and kinetic measurements the influence of high pressure on some selected photochemical cycloaddition-reactions is studied. The photo-cycloaddition-reaction of maleic acid anhydride with ethylen has been performed under high ethylen pressures ( 90%). Surprisingly the quantum yield of the cyclo aduct decreases with increasing ethylene pressure from PHI = 0.06 at p = 1 bar to PHI = 0.022 at p = 42 bar. Based on Stern-Volmer quenching experiments, the decrease in ring formation with increasing ethylene concentrations could be explained by an endoergic triplet energy transfer from maleic acid anhydride to ethylene. The type II dissociation of butyrophenone has been quenched also with ethylene. With a lifetime for the first excited butyrophenone triplett state of tau = 6.8 x 10 -8 sec, obtained from kinetic data, the velocity constant can be calculated for this reaction with the result k 5 = 3 x 10 6 M -1 sec -1 . (orig./HK) [de

  8. Chemical colitis due to peracetic acid: A case report and review of literature

    Directory of Open Access Journals (Sweden)

    Angelo Zullo

    2011-01-01

    Full Text Available Reprocessing of both endoscopic instruments and reusable disposals is mandatory to prevent infection transmission. However, toxic colitis due to endoscope contamination by different disinfectants following an imperfect washing has been reported. We present a case of peracetic acid-induced colitis and reviewed the literature. Overall, five cases of peracetic acid toxic colitis have been reported. All cases presented with "snow white sign" immediately appearing during endoscopy, two patients complaint of mild abdominal pain (one of whom had also fever and rectal bleeding, whilst the others remained totally asymptomatic. Only one patient received a 1-week metronidazole treatment. No immediate complications were observed, and no sequels occurred at clinical-endoscopic follow-up. The identified cause of disinfectant contamination was a defective either manual or automated rinsing of the colonoscope following the reprocessing procedure.

  9. Chemical Functionalization and Characterization of Cellulose Extracted from Wheat Straw Using Acid Hydrolysis Methodologies

    Directory of Open Access Journals (Sweden)

    Chemar J. Huntley

    2015-01-01

    Full Text Available The nonuniform distribution of cellulose into many composite materials is attributed to the hydrogen bonding observed by the three hydroxyl groups located on each glucose monomer. As an alternative, chemical functionalization is performed to disrupt the strong hydrogen bonding behavior without significant altering of the chemical structure or lowering of the thermal stability. In this report, we use wheat straw as the biomass source for the extraction of cellulose and, subsequently, chemical modification via the Albright-Goldman and Jones oxidation reactions. X-ray diffraction analyses reveal that upon oxidation a slight change in the cellulose polymorphic structure (CI to CII can be observed when compared to its unmodified counterpart. Scanning electron microscopy analyses show that the oxidized cellulose structure exhibits fiber-like crystals with lengths and diameters on the micrometer scale. Thermal analyses (differential scanning calorimetry and thermogravimetric analysis show an increase in the thermal stability for the modified cellulose at extremely high temperatures (>300°C.

  10. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Palumbo, Fabio Salvatore; Pitarresi, Giovanna; Fiorica, Calogero; Rigogliuso, Salvatrice; Ghersi, Giulio; Giammona, Gaetano

    2013-01-01

    In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control. - Highlights: ► Hyaluronic acid (HA) has been functionalized with ethylenediamine (EDA). ► Amino groups of HA-EDA allow the reaction with α-elastin and ethylene glycol diglycidyl ether (EGDGE). ► Chemical scaffolds of HA-EDA-graft-α-elastin/EGDGE have been characterized. ► The presence of α-elastin affects porosity, swelling and enzymatic degradation of scaffolds. ► The presence of α-elastin improves attachment, viability and proliferation of fibroblasts and smooth muscle cells

  11. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Fabio Salvatore [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); Pitarresi, Giovanna, E-mail: giovanna.pitarresi@unipa.it [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); Institute of Biophysics at Palermo, Italian National Research Council, Via Ugo La Malfa 153, 90146 Palermo (Italy); Fiorica, Calogero [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); Rigogliuso, Salvatrice; Ghersi, Giulio [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Biologia Cellulare, Università degli Studi di Palermo, Viale delle Scienze ed. 16, 90128, Palermo (Italy); Giammona, Gaetano [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); IBIM-CNR, Via Ugo La Malfa 153, 90146 Palermo (Italy)

    2013-07-01

    In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control. - Highlights: ► Hyaluronic acid (HA) has been functionalized with ethylenediamine (EDA). ► Amino groups of HA-EDA allow the reaction with α-elastin and ethylene glycol diglycidyl ether (EGDGE). ► Chemical scaffolds of HA-EDA-graft-α-elastin/EGDGE have been characterized. ► The presence of α-elastin affects porosity, swelling and enzymatic degradation of scaffolds. ► The presence of α-elastin improves attachment, viability and proliferation of fibroblasts and smooth muscle cells.

  12. Mycosporine-Like Amino Acids: Relevant Secondary Metabolites. Chemical and Ecological Aspects

    OpenAIRE

    Mario O. Carignan; Jose I. Carreto

    2011-01-01

    Taxonomically diverse marine, freshwater and terrestrial organisms have evolved the capacity to synthesize, accumulate and metabolize a variety of UV-absorbing substances called mycosporine-like amino acids (MAAs) as part of an overall strategy to diminish the direct and indirect damaging effects of environmental ultraviolet radiation (UVR). Whereas the enzymatic machinery to synthesize MAAs was probably inherited from cyanobacteria ancestors via the endosymbionts hypothesis, metazoans lack t...

  13. Biocatalytic production of mandelic acid and analogues: a review and comparison with chemical processes

    Czech Academy of Sciences Publication Activity Database

    Martínková, Ludmila; Křen, Vladimír

    2018-01-01

    Roč. 102, č. 9 (2018), s. 3893-3900 ISSN 0175-7598 R&D Projects: GA ČR(CZ) GA18-00184S; GA MŠk LTC17009 Institutional support: RVO:61388971 Keywords : Mandelic acid * Nitrilase * Lipase Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Bioprocessing technologies (industrial processes relying on biological agents to drive the process) biocatalysis, fermentation Impact factor: 3.420, year: 2016

  14. [Synthesis and physico-chemical characterisation of some new derivatives of rutoside and clofibric acid].

    Science.gov (United States)

    Lupaşcu, D; Profire, Lenuţa; Dănilă, Gh

    2006-01-01

    Fibrates are drugs with efficacy in reducing blood cholesterol levels and especially, triglyceride plasma levels. Unfortunately, fibrates have a poor water-solubility and showed some adverse reactions at long treatment. The objective of this study was to obtain some new clofibric acid derivatives with rutin; some of these compounds contain a guanidine moiety, known as effective at cardiovascular level. All the compounds are soluble in water.

  15. Catalytic conversion of cellulose to fuels and chemicals using boronic acids

    Science.gov (United States)

    Raines, Ronald; Caes, Benjamin; Palte, Michael

    2015-10-20

    Methods and catalyst compositions for formation of furans from carbohydrates. A carbohydrate substrate is heating in the presence of a 2-substituted phenylboronic acid (or salt or hydrate thereof) and optionally a magnesium or calcium halide salt. The reaction is carried out in a polar aprotic solvent other than an ionic liquid, an ionic liquid or a mixture thereof. Additional of a selected amount of water to the reaction can enhance the yield of furans.

  16. The importance of chemical buffering for pelagic and benthic colonization in acidic waters

    International Nuclear Information System (INIS)

    Nixdorf, B.; Lessmann, D.; Steinberg, C. E. W.

    2003-01-01

    In poorly buffered areas acidification may occur for two reasons: through atmospheric deposition of acidifying substances and - in mining districts - through pyrite weathering. These different sources of acidity lead to distinct clearly geochemistry in lakes and rivers. In general, the geochemistry is the major determinant for the planktonic composition of the acidified water bodies, whereas the nutrient status mainly determines the level of biomass. A number of acidic mining lakes in Eastern Germany have to be neutralized to meet the water quality goals of the European Union Directives and to overcome the ecological degradation. This neutralization process is limnologically a short-term maturation of lakes, which permits biological succession to overcome two different geochemical buffer systems. First, the iron buffer system characterizes an initial state, when colonization starts: there is low organismic diversity and productivity, clear net heterotrophy in most cases. Organic carbon that serves as fuel for the food web derives mainly from allochthonous sources. In the second, less acidic state aluminum is the buffer. This state is found exceptionally among the hard water mining lakes, often as a result of deposition of acidifying substances onto soft water systems. Colonization in aluminum-buffered lakes is more complex and controlled by the sensitivity of the organisms towards both, protons and inorganic reactive aluminum species. In soft-water systems, calcium may act as antidote against acid and aluminum; however, this function is lost in hard water post mining lakes of similar proton concentrations. Nutrient limitations may occur, but these do not usually control qualitative and quantitative plankton composition. In these lakes, total pelagic biomass is controlled by the bioavailability of nutrients, particularly phosphorus

  17. Carbon dioxide capture from reforming gases using acetic acid-mixed chemical absorbents

    Energy Technology Data Exchange (ETDEWEB)

    Rahmanian, Amin; Zaini, Muhammad Abbas ahmad; Abdullah, Tuan Amran Tuan [Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2015-07-15

    Carbon dioxide (CO{sub 2}) is a major problem in the production of natural gas as it may contribute to the operational problems such as foaming, corrosion, high solution viscosity, and fouling, thereby decreasing the plant life. The presence of acid gas in natural gas reforming may also result in the increase of transported gas volume and the decrease of heating value. Absorption using aqueous solutions of alkanolamines has been a preferred approach in current industry for CO{sub 2} removal. Concentration of ammonia and DEA affects the CO{sub 2} removal; increasing the absorbents concentration increases the CO{sub 2} removal. On molar basis, DEA shows a greater CO{sub 2} absorption than ammonia. Acetic acid-mixed absorbents display a lower CO{sub 2} removal than the nonmixed ones. Decrease in solubility due to the decrease in solution pH has resulted in a lower CO{sub 2} absorption by acetic acid-mixed absorbents. Liquid flow rate offers only small influence on the absorption of CO{sub 2}, while decreasing the gas flow rate increases the CO{sub 2} removal. On the operational point of view, blend of ammonia and DEA absorbent would be beneficial for CO{sub 2} removal from reforming gases as it could partly solve the problems associated with regeneration and corrosion.

  18. Enhanced Soil Chemical Properties and Rice Yield in Acid Sulphate Soil by Application of Rice Straw

    Directory of Open Access Journals (Sweden)

    Siti Nurzakiah

    2012-01-01

    Full Text Available Swampland development such as acid sulphate soil for agricultural cultivation has various problem, including highsoil acidity, fluctuated and unpredictable water flooding and the presence of toxic elements such as Fe whichresulting in low crop yields. The research was conducted at the experimental station Belandean, Barito Kualaregency in dry season 2007. The objective of research was to study the effect of rice straw on the dynamic of soilpH, the concentration of iron and sulphate and yield on tidal land acid sulphate soil at two different water inletchannel. This research was designed in RCBD (Randomized Completely Block Design with five treatments (0, 2.5,5.0, 7.5 and 10 Mg ha-1 and four replications. Dolomite as much as 1 Mg ha-1 was also applied. This research wasdivided into two sub-units experiment i.e. two conditions of different water inlet channel. The first water channelswere placed with limestone and the second inlet was planted with Eleocharis dulcis. The results showed that (i ricestraw application did not affect the dynamic of soil pH, concentration of iron and sulphate, and (ii the highest yieldwas obtained with 7.5 Mg ha-1 of rice straw.

  19. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.

    Science.gov (United States)

    Jalan, Amrit; Allen, Joshua W; Green, William H

    2013-10-21

    Reactions of the Criegee intermediate (CI, ˙CH2OO˙) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between ˙CH2OO˙ and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48-51 kcal mol(-1) lower in energy, formed via 1,3-cycloaddition of ˙CH2OO˙ across the C=O bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O-O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  20. Physical-chemical model for cellular uptake of fatty acids: prediction of intracellular pool sizes

    International Nuclear Information System (INIS)

    Cooper, R.; Noy, N.; Zakim, D.

    1987-01-01

    If the uptake of fatty acids by liver is a physical, not a biological, process, then the size and location of the intrahepatic pool of fatty acids can be predicted from uptake rates and thermodynamic data. The purpose of the experiments in this paper was to test the accuracy of this idea. Rat livers were perfused with [ 3 H] palmitate bound to [ 14 C] albumin, and the total amounts of palmitate removed from the perfusate were measured at 3-s intervals. The intrahepatic pools of palmitate calculated from these data were 13.8 and 23.0 nmol/g of liver at ratios of palmitate/albumin (mol/mol) (afferent side) of 2/1 and 4/1, respectively, in the steady state. The intrahepatic pools of palmitate calculated from the distributions of palmitate between membranes, H 2 O, albumin, and fatty acid binding protein and the measured first-order rate constants for acyl-CoA ligases in mitochondria and microsomes were 12.1 and 34.6 nmol/g for perfusate ratios of palmitate/albumin of 2/1 and 4/1, in the steady state. Intrahepatic pools of palmitate measured after establishment of a steady-state rate of uptake were 15.0 and 31.8 nmol/g for these ratios of palmitate/albumin of 2/1 and 4/1

  1. A Voltammetric Sensor Based on Chemically Reduced Graphene Oxide-Modified Screen-Printed Carbon Electrode for the Simultaneous Analysis of Uric Acid, Ascorbic Acid and Dopamine

    Directory of Open Access Journals (Sweden)

    Prosper Kanyong

    2016-12-01

    Full Text Available A disposable screen-printed carbon electrode (SPCE modified with chemically reduced graphene oxide (rGO (rGO-SPCE is described. The rGO-SPCE was characterized by UV-Vis and electrochemical impedance spectroscopy, and cyclic voltammetry. The electrode displays excellent electrocatalytic activity towards uric acid (UA, ascorbic acid (AA and dopamine (DA. Three resolved voltammetric peaks (at 183 mV for UA, 273 mV for AA and 317 mV for DA, all vs. Ag/AgCl were found. Differential pulse voltammetry was used to simultaneously detect UA, AA and DA in their ternary mixtures. The linear working range extends from 10 to 3000 μM for UA; 0.1 to 2.5 μM, and 5.0 to 2 × 104 µM for AA; and 0.2 to 80.0 μM and 120.0 to 500 µM for DA, and the limits of detection (S/N = 3 are 0.1, 50.0, and 0.4 μM, respectively. The performance of the sensor was evaluated by analysing spiked human urine samples, and the recoveries were found to be well over 98.0% for the three compounds. These results indicate that the rGO-SPCE represents a sensitive analytical sensing tool for simultaneous analysis of UA, AA and DA.

  2. A study comparing chemical peeling using modified jessner′s solution and 15% trichloroacetic acid versus 15% trichloroacetic acid in the treatment of melasma

    Directory of Open Access Journals (Sweden)

    Safoury Omar

    2009-01-01

    Full Text Available Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner′s solution, modified Jessner′s solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA and modified Jessner′s solution with 15% TCA on melasma. Materials and Methods: Twenty married females with melasma (epidermal type, with a mean age of 38.25 years, were included in this study. All were of skin type III or IV. Fifteen percent TCA was applied to the whole face, with the exception of the left malar area to which combined TCA 15% and modified Jessner′s solution was applied. Results: Our results revealed statistically highly significant difference between MASI Score (Melasma Area and Severity Index between the right malar area and the left malar area. Conclusion: Modified Jessner′s solution proved to be useful as an adjuvant treatment with TCA in the treatment of melasma, improving the results and minimizing postinflammatory hyperpigmentation.

  3. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.

    Science.gov (United States)

    Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J

    2010-03-15

    A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment. (c) 2009 Elsevier B.V. All rights reserved.

  4. Milk Chemical Composition of Dairy Cows Fed Rations Containing Protected Omega-3 Fatty Acids and Fermented Rice Bran

    Directory of Open Access Journals (Sweden)

    Sudibya

    2013-12-01

    Full Text Available The research was conducted to investigate the effect of ration containing protected omega-3 and fermented rice bran on chemical composition of dairy milk. The research employed 10 female PFH dairy cows of 2-4 years old with body weight 300-375 kg. The research was assigned in randomized complete block design. The treatment consisted of P0= control ration, P1= P0 + 20% fermented rice bran, P2= P1 + 4% soya bean oil, P3= P1 + 4% protected tuna fish oil and P4= P1 + 4% protected lemuru fish oil. The results showed that the effects of fish oil supplementation in the rations significantly (P<0.01 decreased feed consumption, cholesterol, low density lipoprotein, lipids, and saturated fatty acids. Meanwhile, it increased milk production, content of high density lipoprotein, omega-3, omega-6 and unsaturated fatty acids in the dairy cows milk. It is concluded that the inclusion of 4% protected fish oil in the rations can produce healthy milk by decreasing milk cholesterol and increasing omega-3 fatty acids content.

  5. Chemical Characterization and Oxidative Stability of Medium- and Long-Chain Fatty Acid Profiles in Tree-Borne Seed Oils

    Directory of Open Access Journals (Sweden)

    Da-Som Kim

    2018-01-01

    Full Text Available This study was undertaken to evaluate chemical characteristics and oxidative stability of tree-borne seed oils. A total of 15 different fatty acids were identified in six tree-borne seed oils, which included seven types of saturated fatty acids, four types of monounsaturated fatty acids, and four types of polyunsaturated fatty acids. Japanese camphor tree (JCT had a high content of medium-chain fatty acids (97.94 ± 0.04%, in which fatty acid composition was distinct from those of the other five plant seed oils. Overall, contents of tocopherols, a type of fat-soluble vitamin, ranged between 3.82 ± 0.04 mg/100 g and 101.98 ± 1.34 mg/100 g, respectively. Phytosterol contents ranged from 117.77 ± 1.32 mg/100 g to 479.45 ± 4.27 mg/100 g, respectively. Of all tree-borne seed oils, β-sitosterol was the phytosterol at the highest concentration. Contents of unsaponifiables were between 0.13 ± 0.08 and 2.01 ± 0.02, and values of acid, peroxide, and p-anisidine were between 0.79 ± 0.01 and 38.94 ± 0.24 mg KOH/g, 3.53 ± 0.21 and 127.67 ± 1.79 meq/kg, and 2.07 ± 0.51 and 9.67 ± 0.25, respectively. Oxidative stability of tree-borne seed oils was assessed through measurement of oxidation-induction periods. These results should serve as a foundation to identify the potential of tree-borne seed oils in industrial application as well as in providing fundamental data.

  6. Change of physical and chemical parameters of fulvic acids at different pH of the system

    Science.gov (United States)

    Dinu, Marina; Kremleva, Tatyana

    2017-04-01

    Organic substances of humic nature significantly change physicochemical properties at different pH of natural waters. As a consequence, a large number of consecutive and parallel reactions in the structure of organic polymers, and reacting with inorganic anions. The main indicators of changes in the properties of organic acids in natural systems are changes in their IR spectra, changes in the colloid stability (the zeta potential) as well as in the molecular weight and emission spectra (fluorescence emission spectra). The aim of our study was to evaluate of changing in physical and chemical properties of the fulvic acid from soil/water samples in the natural areas of European Russia and Western Siberia (the steppe and the northern taiga zones) at different pH (from 8 to 1.5). Changes in absorption bands of fulvic acid caused by both COOH groups and amino groups with varying degrees of protonation were found. Consequently, we can assume that in an electric field fulvic acid change the sign of their charge at depending on pH. During the lowering of the pH intensity of C-O bands generally decreases, while in the region 1590 cm-1 disappears. In turn, the band at 1700 cm-1 is the most intense; it could mean a complete protonation of the carboxyl groups. According to our data, the values of zeta potential changes depending on pH of the system. The zeta potential becomes more negative with increasing pH and it may be due to ionization of oxygen groups of fulvic acid. For the colloidal polymer systems the value of the zeta potential is strongly negative (less than -20 mV) and strongly positive (over 20 mV) characterize the system as the most stable. Our experimental data for the study of the zeta potential of fulvic acids extracted from the soils and waters of different climatic zones show zonal influence of the qualitative characteristics of organic substances on the surface charge of the high-molecular micelle of fulvic acids. It was found that fulvic acids extracted

  7. Effect of type of suckling and polyunsaturated fatty acid use on lamb production. 2. Chemical and fatty acid composition of raw and cooked meat

    Directory of Open Access Journals (Sweden)

    Francesco Toteda

    2010-01-01

    Full Text Available This study was carried out in order to examine the chemical and fatty acid composition of raw and cooked meat obtained fromlambs raised under mothers or reared by artificial suckling with acidified milk replacers with or without polyunsaturated fattyacid (PUFA supplementation. Meat samples were taken from twenty Gentile di Puglia male lambs subjected to the followingfeeding treatments: the control group received only maternal milk (MM, n.=6 while two groups were reared by artificial sucklingwith an acidified milk replacer (MR, n.=7 or with an acidified milk replacer supplemented with 10 ml/l of a PUFA enrichedoil (MR+PUFA, n.=7. Lambs were slaughtered at 45 days of age. After 24 hours of refrigeration at 4 °C, the lumbar regionwas dissected from each right half-carcass and split into pieces, one of which was used raw while the other was cooked in aventilated electric oven at 180 °C until an internal temperature of 75 °C was reached. Chemical and fatty acid analysis wereperformed on raw and cooked meat, while only raw meat was assessed for cholesterol. Cooking losses were also evaluated.Meat obtained from MR+PUFA fed lambs contained more fat (Punder mothers increased the total amount of saturated fatty acids (SFA, compared with both the MR group (Pthe MR+PUFA one (Pcomparison with both MR diets. The highest PUFA/SFA ratio of meat was recorded for the MR+PUFA group (0.27, with statisticaldifferences respect to the MR group (0.21; Pmilk produced meat containing more cholesterol than the MR+PUFA group (85.89 vs 76.26 mg/100 g; Pindex of meat was higher following natural rearing in comparison with the MR+PUFA treatment (1.34 vs 1.05;Pand 0.76, respectively; Pparameters evaluated. In conclusion, artificial suckling with acidified milk replacers improves some meat quality features.Supplementation of milk replacers with PUFAs, although in a limited way, may improve the dietetic properties of lamb meat.

  8. Chemical ionization mass spectrometry of indol-3yl-acetic acid and cis-abscisic acid: evaluation of negative ion detection and quantification of cis-abscisic acid in growing maize roots

    International Nuclear Information System (INIS)

    Rivier, L.; Saugy, M.

    1986-01-01

    Mass spectra of the derivatives of indol-3yl-acetic acid and cis-abscisic acid were obtained in electron impact and chemical ionization positive ion and negative ion modes. The respective merits of methane, isobutane, and ammonia as reagent gases for structure determination and sensitive detection were compared using the methyl esters. From one to 10 fluorine atoms were attached to IAA to improve the electron-capturing properties of the molecule. The best qualitative information was obtained when using positive ion chemical ionization with methane. However, the most sensitive detection, with at least two ions per molecule, was achieved by electron impact on the IAA-HFB-ME derivative and by negative ion chemical ionization with NH 3 on the ABA-methyl ester derivative. p ]Quantitative analyses of ABA in different parts of maize (Zea mays cv. LG 11) root tips were performed by the latter technique. It was found that the cap and apex contained less ABA than the physiologically older parts of the root such as the elongation zone and the more differentiated tissues. This technique was also used to show a relation between maize root growth and the endogenous ABA level of the elongation zone and root tip: there is more ABA in the slowly growing roots than in the rapidly growing ones. (author)

  9. A comparative evaluation of a dipicolinic acid based dilute chemical decontaminant formulation with respect to its efficacy for dissolution of iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kamal Kishore; Dey, G.R.; Naik, D.B.; Moorthy, P.N. [Applied Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085 (India)

    1998-12-31

    A dilute chemical decontamination formulation containing dipicolinic acid (2,6-pyridine dicarboxylic acid PDCA) and ascorbic acid (AA) has been found to be effective in dissolving magnetite, nickel ferrite and haemetite. Its main advantages arise because of (i) good solubility of the two constituents (ii) lack of absorption on the cation exchanger from acidic media during regenerative decontamination process (iii) stability to ionizing radiation and (iv) low corrosion rate for carbon steel. Dissolution rates of iron oxides in this formulation are as good as or better than in other well known formulations. (author)

  10. Functionalization and Chemical Modification of 2-Hydroxyethyl Methacrylate with Carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Nasirtabrizi

    2012-01-01

    Full Text Available Free radical polymerization of the resulting monomers methyl methacrylate (MMA, ethyl methacrylate (EMA, methylacrylate (MA and ethylacrylate (EA with 2-hydroxyethyl methacrylate (HEMA (in 1:1 mole ratio were carried out using azobis(isoboutyronitrile (AIBN as initiator at the temperature ranges 60-70°C. The modification of polymers were carried out by 9-anthracenecarboxylic acid (9-ACA via the esterification reaction between —OH of poly(HEMA and —COOH of 9-ACA, in presence of N,N′-dicyclohexyl-carbodiimide (DCC, 4-(dimethylamino pyridine (DMAP and N,N-dimethyl formamid (DMF. It was found that the molar ratio acid/alcohol/catalysts= 0.02: 0.02: 0.02 and 0.002, optimal for preparation of the ester. As demonstrated by FT-IR, 1H-NMR and dynamic mechanical thermal analysis (DMTA. The Tg value of methacrylate and acrylate copolymers containing 9-ACA groups was found to increase with incorporation of 9-ACA groups in polymer structures. The presence of 9-ACA groups in the polymer side chains created new polymers with novel modified properties that find some applications in polymer industry. These anthracenic factors could take part in cyclo addition reaction with other factors such as anhydrides and kinons.

  11. Chemical speciation and equilibria of some nucleic acid compounds and their iron(III) complexes

    Science.gov (United States)

    Masoud, Mamdouh S.; Abd El-Kaway, Marwa Y.; Hindawy, Ahmed M.; Soayed, Amina A.

    The pH effect on electronic absorption spectra of some biologically active nucleic acid constituents have been studied at room temperature and the mechanism of ionization was explained. These compounds are of two categories (pyrimidines: [barbital; 5,5'-diethyl-barbituric acid], [SBA; 4,6-dihydroxy-2-mercapto-pyrimidin], [NBA; 5-nitro-2,4,6(1H,3H,5H)-pyrimidine trione] and [TU; 2,3-dihydro-2-thioxo-pyrimidin-4(1H)-one]) and (purines: [adenine; 6-amino purine], its [Schiff bases derived from adenine-acetylacetone; (Z)-4-(7H-purin-6-ylimino)pentan-2-one) and adenine-salicylaldehyde; 2-((7H-purin-6-ylimino) methyl) phenol] and its [Azo derived from adenine-resorcinol; 4-((7H-purin-6-yl)-diazenyl) benzene-1,3-diol]. The phenomena of tautomerization assigned different tautomers. Different spectrophotometric methods are applied to evaluate the pK's values that explained with their molecular structures. The interaction of Fe3+ with some selected pyrimidines (barbital, NBA and SBA) was explained using familiar six spectrophotometric methods. The data typified the existence of different absorbing species with the different stoichiometries 1:1, 1:2, 1:3 and 2:3. The stability constant of the complexes was computed. More approach was deduced to assign the existence of different species applying the distribution diagrams.

  12. Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products.

    Science.gov (United States)

    Chang, Yao-Tsung; Hsi, Hsing-Cheng; Hseu, Zeng-Yei; Jheng, Shao-Liang

    2013-01-01

    In situ immobilization of heavy metals using reactive or stabilizing materials is a promising solution for soil remediation. Therefore, four agronomic and industrial by-products [wood biochar (WB), crushed oyster shell (OS), blast furnace slag (BFS), and fluidized-bed crystallized calcium (FBCC)] and CaCO3 were added to acidic soil (Cd = 8.71 mg kg(-1)) at the rates of 1%, 2%, and 4% and incubated for 90 d. Chinese cabbage (Brassica chinensis L.) was then planted in the soil to test the Cd uptake. The elevation in soil pH caused by adding the by-products produced a negative charge on the soil surface, which enhanced Cd adsorption. Consequently, the diethylenetriamine pentaacetic acid (DTPA)-extractable Cd content decreased significantly (P soil. These results from the sequential extraction procedure indicated that Cd converted from the exchangeable fraction to the carbonate or Fe-Mn oxide fraction. The long-term effectiveness of Cd immobilization caused by applying the 4 by-products was much greater than that caused by applying CaCO3. Plant shoot biomass clearly increased because of the by-product soil amendment. Cd concentration in the shoots was soil.

  13. In-stream chemical neutralization: A whole watershed approach to mitigating acid mine drainage

    International Nuclear Information System (INIS)

    Britt, D.L.

    1994-01-01

    The North Branch of the Potomac River is adversely affected by acid mine drainage (AMD) throughout its entire length. As an alternative to mine-mouth treatment methods an in-stream AMD-neutralization demonstration program for an approximately 25-mile segment of the North Branch of the Potomac River was designed and implemented. This river segment was ranked as the highest priority site in Maryland for a demonstration project owing to its combination of very poor water quality and excellent potential for supporting a recreational sport fishery in the absence of toxic metal and acid loadings. A whole-watershed approach employing Scandinavian doser technologies and calcium carbonate neutralizing agents is the basis for the North Branch Potomac River demonstration project. The project involves four phases: feasibility (1), design (2), implementation (3), and monitoring (4). This watershed approach to mitigating AMD is expected to restore circumneutrial water quality and to promote desirable fishery resources throughout the mainstem and selected tributaries of the North Branch of the Potomac River Upstream of Jennings Randolph Dam. This paper summarizes Phases 1--3 of the demonstration project

  14. The hypocholesterolemic and antiatherogenic effects of Cholazol H, a chemically functionalized insoluble fiber with bile acid sequestrant properties in hamsters.

    Science.gov (United States)

    Wilson, T A; Romano, C; Liang, J; Nicolosi, R J

    1998-08-01

    Cholazol H (Alpha-Beta Technology, Worcester, MA), a chemically functionalized, insoluble dietary fiber with bile acid sequestrant properties, was studied in 30 male F1 B Golden Syrian hamsters for its effect on plasma lipid concentrations and early atherogenesis in experiment 1. In experiment 2, 30 male Golden Syrian hamsters were studied for the effects on plasma lipids and fecal excretion of bile acids. In experiment 1, three groups of 10 hamsters each were fed a chow-based hypercholesterolemic diet supplemented with 5% coconut oil and 0.1% cholesterol for 6 weeks. After 6 weeks, hamsters were continued on the diet with either 0% drug (hypercholesterolemic diet [HCD]), 0.5% cholestyramine (CSTY), or 0.5% Cholazol H for 8 weeks. Fasting plasma lipids were measured at weeks 6, 10, and 14, and early atherosclerosis (fatty streak formation) was measured at week 14. Relative to HCD, CSTY and Cholazol H significantly lowered plasma total cholesterol (TC) (-37%, P coconut oil and 0.05% cholesterol and either 0% drug HCD, 0.5% CSTY, or 0.5% Cholazol H for 4 weeks. Fasting plasma lipids were measured at weeks 2 and 4, and fecal bile acids were measured at week 4. Both Cholazol H and CSTY were equally effective in significantly lowering plasma TC (-16%, P < .003, and -13%, P < .01, respectively) and nonHDL-C (-22%, P < .004, and -18%, P < .02, respectively), with no significant effect on HDL-C and TG relative to HCD. Cholazol H and CSTY produced a significantly greater concentration of fecal total bile acids (39%, P < .001, and 28%, P < .002, respectively) relative to HCD. Also, there was a 48% (P < .002) and 65% (P < .001) greater fecal concentration of cholic acid (CA) for Cholazol H-treated hamsters compared with HCD- and CSTY-treated hamsters, respectively. Cholazol H also significantly increased fecal concentration of deoxycholic acid (DCA; 56%, P < .02) compared with HCD. In summary, Cholazol H is as effective as CSTY for prevention of diet

  15. Synthesis and physical-chemical properties of 3-benzyl-8-propylxanthinyl-7-acetic acid and its derivatives

    Directory of Open Access Journals (Sweden)

    E. K. Mikhalchenko

    2017-04-01

    Full Text Available Introduction. Heterocyclic compounds play an important role in the metabolic processes of human organism. Structures of vitamins, nucleotides, chromoproteins are based on Nitrogen-containing heterocycles (purine, pyrimidine, thiazole etc. Thus, it was obvious to use these organic substances as basic molecules for synthetic research of biologically active compounds which could be used for treatment of different pathological processes. In their research, some scientist pay special attention to xanthine derivatives that are well-known low toxic natural compounds with wide spectrum of pronounced pharmacological properties (antioxidant, diuretic, antibacterial, anti-inflammatory etc. Insertion of carboxyl group in the structure of xanthine molecule is a prospective ability of its synthetic potential increasing. Aim of our research was the development of method of 3-benzyl-8-propylxanthinyl-7-acetic acid and its derivatives synthesis and studying their physical-chemical properties. Materials and methods. Melting points were determined using capillary method on DMP (M. 1Н NMR-spectra were recorded by Varian Mercury VX-200 device (company «Varian», USA solvent – (DMSO-d6, internal standard – ТМS. Elemental analysis of obtained compounds was produced on device Elementar Vario L cube. Results and discussion. We selected 3-benzyl-8-propyl xanthine as initial compound for our study. By its interaction with chloroacetic acid, chloroacetamide or propyl chloroacetate in DMF in the presence of calculated amount of NaHCO3 we synthesized 3-benzyl-8-propylxanthinyl-7-acetic acid its ester and amide. At the same time we found that obtaining of xanthinyl-7-acetic acid by hydrolysis of its ester produced with higher yield. On the next stage of our research we synthesized a number of water-soluble salts of 3-benzyl-8-propylxanthinyl-7-acetic acid by reaction of acid with different primary and secondary amines. The structures of all obtained compounds were

  16. Chemical transformations associated with neutronic irradiation of telluric acid; Transformations chimiques associees a l'irradiation neutronique de l'acide teliurique

    Energy Technology Data Exchange (ETDEWEB)

    Bertet, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-01-15

    The chemical transformations which arise from irradiation of telluric acid with neutrons have been studied under several experimental conditions. The effects of the reaction (n, {gamma} ) on Te{sup VI} and of the isomeric transitions {sup 131m}Te{sup VI} {yields} {sup 131}Te and {sup 129m}Te{sup VI} {yields} {sup 129}Te, and the oxidation states of {sup 131}I formed by {beta} decay of {sup 131}Te have been investigated in detail. The Szilard-Chalmers effect has been put in evidence. Retention (R) depends on the isomeric state of Rd-Te and is higher for the metastable isotopes. R increases with the time of irradiation. R seems to be independent of the medium which is used for dissolving telluric acid irradiated in the solid state. Higher values of R are found if the acid is irradiated in neutral or alkaline solution; irradiation in acid solution leads to lower values for R. Retention for {sup 131}Te{sup VI} and {sup 129}Te{sup VI} formed by isomeric transition depends on the pH of the solution where this disintegration occurs. For instance, with {sup 129}Te, R is greater in 6 M NaOH (80 per cent) than in 3 M HCI (40 per cent). The relative amounts of the oxidation states of {sup 131}I (reduced fraction (I{sup -}, IO{sup -}, I{sub 2}), iodate and periodate) depend on the medium, both if the acid is irradiated in the solid state and it is irradiated in solution. In the first case, the reduced fraction increases from 12 to 89 per cent when the dissolving medium is changed from neutral to 0.8 M HNO{sub 3}. In the second case, the reduced fraction is 90 per cent in neutral or acid solution and 64 per cent in 0.5 M KOH. It has been shown, furthermore, that microamounts of Te{sup VI} are formed in certain cases. (author) [French] Les transformations chimiques accompagnant l'irradiation neutronique de l'acide tellurique ont ete etudiees dans differentes conditions experimentales. On a examine notamment les consequences de la reaction (n, {gamma}) sur Te{sup VI}, des

  17. Organo-Functionalization of Silicon Nanocrystals Synthesized by Inductively Coupled Plasma Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Don-Sung; Choe, Dong-Hoe; Jeong, Hyun-Dam [Chonnam National University, Gwangju (Korea, Republic of); Yoo, Seung-Wan; Kim, Jung-Hyung [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-05-15

    Octadecyl-terminated silicon nanocrystals (ODE-Si NCs) are obtained via a surface-initiated thermal hydrosilylation reaction on hydride-terminated Si NCs (H-Si NCs). Pristine Si NCs were synthesized at the gram scale by using inductively coupled plasma chemical vapor deposition (ICP-CVD) . The H-Si NCs were produced through a chemical etching process with hydrofluoric acid (HF), ethanol (EtOH), and distilled water (d-H{sub 2}O). The results obtained from X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) indicate that the synthesized Si NCs obtained via ICP-CVD have diamond cubic-structured silicon with a grain size of 10 nm and a densely packed Si NC array consisting of individual NCs. Organo-functionalized Si NCs, i.e., ODE-Si NCs, are well soluble in organic solvent whereas pristine Si NCs synthesized through ICP-CVD are not. The surface chemistry of the ODE-Si NCs was confirmed via Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy ({sup 1}H-NMR), and field emission transmission electron microscopy (FE-TEM). Thereby, these newly synthesized and scalable organo-functionalized Si NCs are applicable as raw materials for practical use in devices by tuning the surface chemistry with various capping molecules.

  18. An Easy to Manufacture Micro Gas Preconcentrator for Chemical Sensing Applications.

    Science.gov (United States)

    McCartney, Mitchell M; Zrodnikov, Yuriy; Fung, Alexander G; LeVasseur, Michael K; Pedersen, Josephine M; Zamuruyev, Konstantin O; Aksenov, Alexander A; Kenyon, Nicholas J; Davis, Cristina E

    2017-08-25

    We have developed a simple-to-manufacture microfabricated gas preconcentrator for MEMS-based chemical sensing applications. Cavities and microfluidic channels were created using a wet etch process with hydrofluoric acid, portions of which can be performed outside of a cleanroom, instead of the more common deep reactive ion etch process. The integrated heater and resistance temperature detectors (RTDs) were created with a photolithography-free technique enabled by laser etching. With only 28 V DC (0.1 A), a maximum heating rate of 17.6 °C/s was observed. Adsorption and desorption flow parameters were optimized to be 90 SCCM and 25 SCCM, respectively, for a multicomponent gas mixture. Under testing conditions using Tenax TA sorbent, the device was capable of measuring analytes down to 22 ppb with only a 2 min sample loading time using a gas chromatograph with a flame ionization detector. Two separate devices were compared by measuring the same chemical mixture; both devices yielded similar peak areas and widths (fwhm: 0.032-0.033 min), suggesting reproducibility between devices.

  19. Photochemical and radiation-chemical aspects of matrix acidity effects on some organic systems

    Science.gov (United States)

    Ambroz, H. B.; Przybytniak, G. K.; Wronska, T.; Kemp, T. J.

    The role of matrix effects in radiolysis and photolysis is illustrated using two systems: organosulphur compounds and benzenediazonium salts. Their intermediates as detected by low temperature ESR and optical spectroscopy or FAB-MS give evidence that the main reaction pathways depend strongly on these effects. Changes in matrix acidity can control the formation of neutral radical, ion-radical or ionic species which are crucial to the character of the final products of irradiation of organosulphur compounds, which are of great importance in medicine, biology, ecology and industry. Microenvironmental influences determine whether the triplet aryl cation or radical species are detected as the principal or sole intermediates in the decomposition of diazonium salts, a process leading to different stable products with industrial application.

  20. Gallic acid as a corrosion inhibitor of carbon steel in chemical decontamination formulation

    International Nuclear Information System (INIS)

    Keny, S.J.; Kumbhar, A.G.; Thinaharan, C.; Venkateswaran, G.

    2008-01-01

    Gallic acid (GA) was found to provide corrosion inhibition to carbon steel (CS) at 4.25 mM concentration. Inherent stability to radiation degradation as compared to other reductant and coupled with its anionic nature with respect to removal using ion exchange column makes it suitable for using as both reductant as well as corrosion inhibitor in dilute decontamination formulations operating in the regenerative mode. A formulation containing CA (1.4 mM), EDTA/NTA (1.4 mM), AA (1.0-2.0 mM) and GA (4.25 mM) was found to be more efficient in dissolving hematite and providing 31% corrosion inhibition (passivation) to the CS

  1. Mycosporine-Like Amino Acids: Relevant Secondary Metabolites. Chemical and Ecological Aspects

    Directory of Open Access Journals (Sweden)

    Mario O. Carignan

    2011-03-01

    Full Text Available Taxonomically diverse marine, freshwater and terrestrial organisms have evolved the capacity to synthesize, accumulate and metabolize a variety of UV-absorbing substances called mycosporine-like amino acids (MAAs as part of an overall strategy to diminish the direct and indirect damaging effects of environmental ultraviolet radiation (UVR. Whereas the enzymatic machinery to synthesize MAAs was probably inherited from cyanobacteria ancestors via the endosymbionts hypothesis, metazoans lack this biochemical pathway, but can acquire and metabolize these compounds by trophic transference, symbiotic or bacterial association. In this review we describe the structure and physicochemical properties of MAAs, including the recently discovered compounds and the modern methods used for their isolation and identification, updating previous reviews. On this basis, we review the metabolism and distribution of this unique class of metabolites among marine organism.

  2. Mycosporine-Like Amino Acids: Relevant Secondary Metabolites. Chemical and Ecological Aspects

    Science.gov (United States)

    Carreto, Jose I.; Carignan, Mario O.

    2011-01-01

    Taxonomically diverse marine, freshwater and terrestrial organisms have evolved the capacity to synthesize, accumulate and metabolize a variety of UV-absorbing substances called mycosporine-like amino acids (MAAs) as part of an overall strategy to diminish the direct and indirect damaging effects of environmental ultraviolet radiation (UVR). Whereas the enzymatic machinery to synthesize MAAs was probably inherited from cyanobacteria ancestors via the endosymbionts hypothesis, metazoans lack this biochemical pathway, but can acquire and metabolize these compounds by trophic transference, symbiotic or bacterial association. In this review we describe the structure and physicochemical properties of MAAs, including the recently discovered compounds and the modern methods used for their isolation and identification, updating previous reviews. On this basis, we review the metabolism and distribution of this unique class of metabolites among marine organism. PMID:21556168

  3. Application and appreciation of chemical sand fixing agent-poly (aspartic acid) and its composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun; Cao Hui; Wang Fang [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China); Tan Tianwei [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: twtan@mail.buct.edu.cn

    2007-12-15

    The sand fixing agent-poly (aspartic acid) (PASP) and its composites were applied in the field by two forms (spraying around by PASP solution and PASP powder directly). It was found that the sand fixing effect in powder form was not as good as in solution form, but it was more practical in dry region. It needed 9, 6 and 7 days for PASP, xanthan gum-PASP (X2) and ethyl cellulose-PASP (E3) to attain the maximal mechanical strength after they were applied, respectively. The sand fixing effect decreased when the material was subjected to repeated hydration-dehydration cycles and the material had no negative influence on plant growth. The PASP and its composites had water-retaining ability and could reduce the water evaporation. - The sand fixing agent was applied in powder form and it had no negative influence on plant growth.

  4. Lactic Acid Bacteria as a new platform for sustainable production of fuels and chemicals

    DEFF Research Database (Denmark)

    Boguta, Anna Monika

    generation biorefineries, the conversion of lignocellulose is a more complex process; thus, the pursue for a suitable microbe continues. In this PhD study, a wide collection of Lactic Acid Bacteria was systematically screened for the strains’ tolerance levels towards various inhibitors coming from...... experiments with increased concentrations of the key inhibitors, such as furfural and HMF, as well as with the presence of the most common combinations of inhibitors, mimicking real-life lignocellulosic feedstocks: sugarcane bagasse, wheat straw and soft wood. The two most promising strains were selected...... 20284 tolerance to furfural, an adaptation experiment was performed by continuous serial-transfer method. After 408 generations, an adapted strain A28 was isolated and showed an increased growth rate on the rich MRS medium with addition of furfural; yet, it also demonstrated a 27% better growth in MRS...

  5. Chemical characterization of composites developed from glycerol and dicarboxylic acids rein forced with piassava fiber

    International Nuclear Information System (INIS)

    Miranda, Cleidiene S.; Oliveira, Jamerson C.; Guimaraes, Danilo H.; Jose, Nadia M.; Carvalho, Ricardo F.

    2011-01-01

    In search of alternative technologies that enable the use of products with lower environmental impact, This study aims to develop a composite polymer-based piassava fiber. The sludge, waste and byproduct of commercial uses currently being used as reinforcement in polymer matrices, due to presence of lignocellulosic materials. The matrix polymer used was synthesized from glycerol with dicarboxylic acids, in order to open future perspectives on the use of glycerin generated from purified biodiesel production plastics. Composites with 2, 5, 10 wt% of piassava fiber cut into 5 mm raw and treated were obtained a mixture of solution. The materials were characterized by TGA, DSC, XRD and SEM. It was observed that the material under study is promising for the industrial market, because it has good compatibility with natural fibers allowing wider application of fiber natural and glycerol, producing semicrystalline composites and with good thermal properties. (author)

  6. Determination of beryllium in water using silica gel chemically modified with aminophosphonic acid

    International Nuclear Information System (INIS)

    Zajtseva, G.N.; Strelko, V.V.

    2001-01-01

    Considered are methods of Be determination based on Be isolation from the solutions using aminophosphonic acid covalently bound on silica gel surface (APA-SiO 2 ) and subsequent photometric or atomic-absorption determination of Be in eluate ( the limit of Be determination is 0.00005 mg/l or 0.00008 mg/l, respectively). APA-SiO 2 high efficiency and a possibility of beryllium ions extraction from diluted solutions by means of sorbent small weighed portions is shown. High efficiency of the sorbent both for concentration and waters purification from beryllium is shown. Methods are tested in analysis of waste water. To assess the accuracy of the proposed methods, parallel determination of beryllium in tests by means of the additions method was carried out. The given data testify to a sufficient accuracy and reproducibility of the proposed methods [ru

  7. Comparison of chemical characteristics of high oleic acid fraction of moringa oleifera oil with some vegetable oils

    International Nuclear Information System (INIS)

    Rahman, F.; Nadeem, M.; Zahoor, Y.

    2014-01-01

    Chemical characteristics of High oleic acid fraction (HOF) of Moringa oleifera oil (MOO) was compared with sunflower, soybean and canola oils. HOF of MOO was obtained by dry fractionation at 0 degree C. Iodine value and C18:1 in HOF increased from 61.55 to 82.47 points and 70.29% to 81.15%, respectively. Cloud point of HOF was 1.1 degree C as compared to 10.2 degree C in MOO. The induction period of HOF was greater than all the vegetable oils tested in this investigation. HOF can be used as a source of edible oil with better health attributes and superior storage stability. (author)

  8. Chemical mechanical polishing of hard disk substrate with {alpha}-alumina-g-polystyrene sulfonic acid composite abrasive

    Energy Technology Data Exchange (ETDEWEB)

    Lei Hong, E-mail: hong_lei2005@yahoo.com.c [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Bu Naijing; Chen Ruling; Hao Ping [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Neng Sima; Tu Xifu; Yuen Kwok [Shenzhen Kaifa Magnetic Recording Co., LTD, Shenzhen, 518035 (China)

    2010-05-03

    {alpha}-Alumina-g-polystyrene sulfonic acid ({alpha}-Al{sub 2}O{sub 3}-g-PSS) composite abrasive was prepared by surface activation, graft polymerization and sulfonation, successively. The composition, dispersibility and morphology of the product were characterized by Fourier transformed infrared spectroscopy, laser particle size analysis and scanning electron microscopy, respectively. The chemical mechanical polishing (CMP) performances of the composite abrasive on hard disk substrate with nickel-phosphorous plating were investigated. The microscopy images of the polished surfaces show that {alpha}-Al{sub 2}O{sub 3}-g-PSS composite abrasive results in improved CMP and post-CMP cleaning performances than pure {alpha}-alumina abrasive under the same testing conditions.

  9. Synthesis, physico-chemical properties and complexing abilities of new amphiphilic ligands from D-galacturonic acid.

    Science.gov (United States)

    Allam, Anas; Behr, Jean-Bernard; Dupont, Laurent; Nardello-Rataj, Véronique; Plantier-Royon, Richard

    2010-04-19

    This paper describes a convenient and efficient synthesis of new complexing surfactants from d-galacturonic acid and n-octanol as renewable raw materials in a two-step sequence. In the first step, simultaneous O-glycosidation-esterification under Fischer conditions was achieved. The anomeric ratio of the products was studied based on the main experimental parameters and the activation mode (thermal or microwave). In the second step, aminolysis of the n-octyl ester was achieved with various functionalized primary amines under standard thermal or microwave activation. The physico-chemical properties of these new amphiphilic ligands were measured and these compounds were found to exhibit interesting surface properties. Complexing abilities of one uronamide ligand functionalized with a pyridine moiety toward Cu(II) ions was investigated in solution by EPR titrations. A solid compound was also synthesized and characterized, its relative structure was deduced from spectroscopic data. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Effect of chemical substitutions on photo-switching properties of 3-hydroxy-picolinic acid studied by ab initio methods

    International Nuclear Information System (INIS)

    Rode, Michał F.; Sobolewski, Andrzej L.

    2014-01-01

    Effect of chemical substitutions to the molecular structure of 3-hydroxy-picolinic acid on photo-switching properties of the system operating on excited-state intramolecular double proton transfer (d-ESIPT) process [M. F. Rode and A. L. Sobolewski, Chem. Phys. 409, 41 (2012)] was studied with the aid of electronic structure theory methods. It was shown that simultaneous application of electron-donating and electron-withdrawing substitutions at certain positions of the molecular frame increases the height of the S 0 -state tautomerization barrier (ensuring thermal stability of isomers) and facilitates a barrierless access to the S 1 /S 0 conical intersection from the Franck-Condon region of the S 1 potential-energy surface. Results of study point to the conclusion that the most challenging issue for practical design of a fast molecular photoswitch based on d-ESIPT phenomenon are to ensure a selectivity of optical excitation of a given tautomeric form of the system

  11. Effect of chemical substitutions on photo-switching properties of 3-hydroxy-picolinic acid studied by ab initio methods

    Science.gov (United States)

    Rode, Michał F.; Sobolewski, Andrzej L.

    2014-02-01

    Effect of chemical substitutions to the molecular structure of 3-hydroxy-picolinic acid on photo-switching properties of the system operating on excited-state intramolecular double proton transfer (d-ESIPT) process [M. F. Rode and A. L. Sobolewski, Chem. Phys. 409, 41 (2012)] was studied with the aid of electronic structure theory methods. It was shown that simultaneous application of electron-donating and electron-withdrawing substitutions at certain positions of the molecular frame increases the height of the S0-state tautomerization barrier (ensuring thermal stability of isomers) and facilitates a barrierless access to the S1/S0 conical intersection from the Franck-Condon region of the S1 potential-energy surface. Results of study point to the conclusion that the most challenging issue for practical design of a fast molecular photoswitch based on d-ESIPT phenomenon are to ensure a selectivity of optical excitation of a given tautomeric form of the system.

  12. A Highly-Sensitive Picric Acid Chemical Sensor Based on ZnO Nanopeanuts

    Directory of Open Access Journals (Sweden)

    Ahmed A. Ibrahim

    2017-07-01

    Full Text Available Herein, we report a facile synthesis, characterization, and electrochemical sensing application of ZnO nanopeanuts synthesized by a simple aqueous solution process and characterized by various techniques in order to confirm the compositional, morphological, structural, crystalline phase, and optical properties of the synthesized material. The detailed characterizations revealed that the synthesized material possesses a peanut-shaped morphology, dense growth, and a wurtzite hexagonal phase along with good crystal and optical properties. Further, to ascertain the useful properties of the synthesized ZnO nanopeanut as an excellent electron mediator, electrochemical sensors were fabricated based on the form of a screen printed electrode (SPE. Electrochemical and current-voltage characteristics were studied for the determination of picric acid sensing characteristics. The electrochemical sensor fabricated based on the SPE technique exhibited a reproducible and reliable sensitivity of ~1.2 μA/mM (9.23 μA·mM−1·cm−2, a lower limit of detection at 7.8 µM, a regression coefficient (R2 of 0.94, and good linearity over the 0.0078 mM to 10.0 mM concentration range. In addition, the sensor response was also tested using simple I-V techniques, wherein a sensitivity of 493.64 μA·mM−1·cm−2, an experimental Limit of detection (LOD of 0.125 mM, and a linear dynamic range (LDR of 1.0 mM–5.0 mM were observed for the fabricated picric acid sensor.

  13. In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution

    International Nuclear Information System (INIS)

    Kowsari, E.; Arman, S.Y.; Shahini, M.H.; Zandi, H.; Ehsani, A.; Naderi, R.; PourghasemiHanza, A.; Mehdipour, M.

    2016-01-01

    Highlights: • Electrochemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Quantum chemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Finding correlation between electrochemical analysis and quantum chemical analysis. - Abstract: In this study, an amino acid-derived ionic liquid inhibitor, namely tetra-n-butyl ammonium methioninate, was synthesized and the role this inhibitor for corrosion protection of mild steel exposed to 1.0 M HCl was investigated using electrochemical, quantum and surface analysis. By taking advantage of potentiodynamic polarization, the inhibitory action of tetra-n-butyl ammonium methioninate was found to be mainly mixed-type with dominant anodic inhibition. The effectiveness of the inhibitor was also indicated using electrochemical impedance spectroscopy (EIS). Moreover, to provide further insight into the mechanism of inhibition, electrochemical noise (EN) and quantum chemical calculations of the inhibitor were performed.

  14. The effect of terebinth (Pistacia terebinthus L.) coffee addition on the chemical and physical characteristics, colour values, organic acid profiles, mineral compositions and sensory properties of ice creams.

    Science.gov (United States)

    Yüksel, Arzu Kavaz; Şat, Ihsan Güngör; Yüksel, Mehmet

    2015-12-01

    The aim of this research was to evaluate the effect of terebinth (Pistacia terebinthus L.) coffee addition (0.5, 1 and 2 %) on the chemical and physical properties, colour values, organic acid profiles, mineral contents and sensory characteristics of ice creams. The total solids, fat, titratable acidity, viscosity, first dripping time and complete melting time values, a (*) and b (*) colour properties, citric, lactic, acetic and butyric acid levels and Ca, Cu, Mg, Fe, K, Zn and Na concentrations of ice creams showed an increase with the increment of terebinth coffee amount, while protein, pH, L (*), propionic acid and orotic acid values decreased. However, Al and malic acid were not detected in any of the samples. The overall acceptability scores of the sensory properties showed that the addition of 1 % terebinth coffee to the ice cream was more appreciated by the panellists.

  15. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering.

    Science.gov (United States)

    Palumbo, Fabio Salvatore; Pitarresi, Giovanna; Fiorica, Calogero; Rigogliuso, Salvatrice; Ghersi, Giulio; Giammona, Gaetano

    2013-07-01

    In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical.

    Science.gov (United States)

    Valdehuesa, Kris Niño G; Liu, Huaiwei; Nisola, Grace M; Chung, Wook-Jin; Lee, Seung Hwan; Park, Si Jae

    2013-04-01

    Development of sustainable technologies for the production of 3-hydroxypropionic acid (3HP) as a platform chemical has recently been gaining much attention owing to its versatility in applications for the synthesis of other specialty chemicals. Several proposed biological synthesis routes and strategies for producing 3HP from glucose and glycerol are reviewed presently. Ten proposed routes for 3HP production from glucose are described and one of which was recently constructed successfully in Escherichia coli with malonyl-Coenzyme A as a precursor. This resulted in a yield still far from the required level for industrial application. On the other hand, strategies employing engineered E. coli and Klebsiella pneumoniae capable of producing 3HP from glycerol are also evaluated. The titers produced by these recombinant strains reached around 3 %. At its current state, it is evident that a bulk of engineering works is yet to be done to acquire a biosynthesis route for 3HP that is acceptable for industrial-scale production.

  17. Inventory development for perfluorooctane sulfonic acid (PFOS) in Turkey: challenges to control chemicals in articles and products.

    Science.gov (United States)

    Korucu, M Kemal; Gedik, Kadir; Weber, Roland; Karademir, Aykan; Kurt-Karakus, Perihan Binnur

    2015-10-01

    Perfluorooctane sulfonic acid (PFOS) and related substances have been listed as persistent organic pollutants (POPs) in the Stockholm Convention. Countries which have ratified the Convention need to take appropriate actions to control PFOS use and release. This study compiles and enhances the findings of the first inventory of PFOS and related substances use in Turkey conducted within the frame of the Stockholm Convention National Implementation Plan (NIP) update. The specific Harmonized Commodity Description and Coding System (Harmonized System (HS)) codes of imported and exported goods that possibly contain PFOS and 165 of Chemical Abstracts Service (CAS) numbers of PFOS-related substances were assessed for acquiring information from customs and other authorities. However, with the current approaches available, no useful information could be compiled since HS codes are not specific enough and CAS numbers are not used by customs. Furthermore, the cut-off volume in chemical databases in Turkey and the reporting limit in the HS system (0.1 %) are too high for controlling PFOS. The attempt of modeling imported volumes by a Monte Carlo simulation did not also result in a satisfactory estimate, giving an upper-bound estimate above the global production volumes. The replies to questionnaires were not satisfactory, highlighting that an elaborated approach is needed in the communication with potentially PFOS-using stakeholders. The experience of the challenges of gathering information on PFOS in articles and products revealed the gaps of controlling highly hazardous substances in products and articles and the need of improvements.

  18. Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus camaldulensis Dehnh.

    Science.gov (United States)

    Ikka, Takashi; Ogawa, Tsuyoshi; Li, Donghua; Hiradate, Syuntaro; Morita, Akio

    2013-10-01

    Eucalyptus (Eucalyptus camaldulensis) has relatively high resistance to aluminum (Al) toxicity than the various herbaceous plants and model plant species. To investigate Al-tolerance mechanism, the metabolism of organic acids and the chemical forms of Al in the target site (root tips) in Eucalyptus was investigated. To do this, 2-year old rooted cuttings of E. camaldulensis were cultivated in half-strength Hoagland solution (pH 4.0) containing Al (0, 0.25, 0.5, 1.0, 2.5 and 5.0mM) salts for 5weeks; growth was not affected at concentrations up to 2.5mM even with Al concentration reaching 6000μgg(-1) DW. In roots, the citrate content also increased with increasing Al application. Concurrently, the activities of aconitase and NADP(+)-isocitrate dehydrogenase, which catalyze the decomposition of citrate, decreased. On the other hand, the activity of citrate synthase was not affected at concentrations up to 2.5mM Al. (27)Al-NMR spectroscopic analyses were carried out where it was found that Al-citrate complexes were a major chemical form present in cell sap of root tips. These findings suggested that E. camaldulensis detoxifies Al by forming Al-citrate complexes, and that this is achieved through Al-induced citrate accumulation in root tips via suppression of the citrate decomposition pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Chemical stability study of vitamins thiamine, riboflavin, pyridoxine and ascorbic acid in parenteral nutrition for neonatal use

    Science.gov (United States)

    2011-01-01

    Background The objective of this work was to study the vitamins B1, B2, B6 and C stability in a pediatric formulation containing high amounts of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulfate, pediatric vitamins and trace elements under different conditions using developed and validated analytical methods. Methods The study was carried out during 72 h with formulations packaged in recommended storage temperature (4°C) and 25°C, with and without photoprotection. Results The results showed that the methodologies used for assessing the chemical stability of vitamins B1, B2, B6 and C in the formulation were selective, linear, precise and accurate. The vitamins could be considered stable in the formulation during the three days of study if stored at 4°C. When stored at 25°C vitamin C presented instability after 48 h. Conclusion The pediatric formulation containing high amount of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulphate, pediatric vitamins and trace elements packaged in bag-type trilaminate presented a shelf life of the 72 h, when maintained under refrigeration, between 2°C and 8°C. This shelf life was measured considering the vitamins studied. Further studies are needed including all the vitamins present in this formulation. PMID:21569609

  20. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid.

    Science.gov (United States)

    Wang, Huawei; Fan, Xinxiu; Wang, Ya-Nan; Li, Weihua; Sun, Yingjie; Zhan, Meili; Wu, Guizhi

    2018-02-15

    The leaching behavior of six typical toxic metals (Pb, Zn, Cr, Cd, Cu and Ni) from raw and chemically stabilized (phosphate and chelating agent) municipal solid waste incineration (MSWI) fly ash were investigated using citric acid. Leaching tests indicated that phosphate stabilization can effectively decrease the leaching of Zn, Cd and Cr; whereas chelating agent stabilization shows a strong ability to lower the release of Pb, Cd and Cu, but instead increases the solubility of Zn and Cr at low pH conditions. Sequential extraction results suggested that the leaching of Pb, Zn and Cd in both the stabilized MSWI fly ash samples led to the decrease in Fe/Mn oxide fraction and the increase in exchangeable and carbonate fractions. The leaching of Cr was due to the decrease in exchangeable, carbonate and Fe/Mn oxide fractions in phosphate-stabilized and chelating agent-stabilized MSWI fly ash. The leaching of Cu in both stabilized MSWI fly ash was greatly ascribed to the decrease in Fe/Mn oxide and oxidisable fractions. Moreover, predicted curves by geochemical model indicated that both stabilized MSWI fly ash have the risk of releasing toxic metals under strong acid environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain

    Energy Technology Data Exchange (ETDEWEB)

    Renteria-Villalobos, Marusia, E-mail: marusia@us.es [Applied Nuclear Physics Group, University of Seville, ETS Arquitectura, Departamento de Fisica Aplicada, Avda. Reina Mercedes s/n, 41012 Seville (Spain); Advanced Materials Research Center (CIMAV), Miguel de Cervantes 120, 31109 Chihuahua (Mexico); Vioque, Ignacio, E-mail: ivioque@us.es [Applied Nuclear Physics Group, University of Seville, ETS Arquitectura, Departamento de Fisica Aplicada, Avda. Reina Mercedes s/n, 41012 Seville (Spain); Mantero, Juan, E-mail: manter@us.es [Applied Nuclear Physics Group, University of Seville, ETS Arquitectura, Departamento de Fisica Aplicada, Avda. Reina Mercedes s/n, 41012 Seville (Spain); Manjon, Guillermo, E-mail: manjon@us.es [Applied Nuclear Physics Group, University of Seville, ETS Arquitectura, Departamento de Fisica Aplicada, Avda. Reina Mercedes s/n, 41012 Seville (Spain)

    2010-09-15

    In this work, radiological, chemical, and also morphological characterization was performed in phosphate rock and phosphogypsum samples, in order to understand the behavior of toxic elements. Characterization was carried out using X-ray diffraction (XRD), X-ray fluorescence (XRF), gamma spectrometry and scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). Our results show that the phosphate rock was mainly composed of fluorapatite, calcite, perovskite, quartz, magnetite, pyrite and kaolinite, whereas phosphogypsum only exhibited dihydrated calcium sulfate. The activity concentration of U-series radioisotopes in phosphate rock was around 1640 Bq/kg. {sup 226}Ra and {sup 210}Pb tend to be distributed into phosphogypsum by up to 80%, whereas the fraction of U-isotopes is 10%. The most abundant trace elements in phosphate rock were Sr, Cr, V, Zn, Y, Ni and Ba. Some elements, such as Ba, Cd, Cu, La, Pb, Se, Sr, Th and Y, were enriched in the phosphogypsum. This enrichment may be attributed to an additional input associated to the sulfuric acid used for the phosphoric acid production. Furthermore, results from SEM-EDX demonstrated that toxic elements are not distributed homogeneously into phosphogypsum. Most of these elements are concentrated in particles <20 {mu}m of high porosity, and could be easily mobilized by leaching and/or erosion.

  2. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain

    International Nuclear Information System (INIS)

    Renteria-Villalobos, Marusia; Vioque, Ignacio; Mantero, Juan; Manjon, Guillermo

    2010-01-01

    In this work, radiological, chemical, and also morphological characterization was performed in phosphate rock and phosphogypsum samples, in order to understand the behavior of toxic elements. Characterization was carried out using X-ray diffraction (XRD), X-ray fluorescence (XRF), gamma spectrometry and scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). Our results show that the phosphate rock was mainly composed of fluorapatite, calcite, perovskite, quartz, magnetite, pyrite and kaolinite, whereas phosphogypsum only exhibited dihydrated calcium sulfate. The activity concentration of U-series radioisotopes in phosphate rock was around 1640 Bq/kg. 226 Ra and 210 Pb tend to be distributed into phosphogypsum by up to 80%, whereas the fraction of U-isotopes is 10%. The most abundant trace elements in phosphate rock were Sr, Cr, V, Zn, Y, Ni and Ba. Some elements, such as Ba, Cd, Cu, La, Pb, Se, Sr, Th and Y, were enriched in the phosphogypsum. This enrichment may be attributed to an additional input associated to the sulfuric acid used for the phosphoric acid production. Furthermore, results from SEM-EDX demonstrated that toxic elements are not distributed homogeneously into phosphogypsum. Most of these elements are concentrated in particles <20 μm of high porosity, and could be easily mobilized by leaching and/or erosion.

  3. Chemical stability study of vitamins thiamine, riboflavin, pyridoxine and ascorbic acid in parenteral nutrition for neonatal use

    Directory of Open Access Journals (Sweden)

    Cabral Lúcio M

    2011-05-01

    Full Text Available Abstract Background The objective of this work was to study the vitamins B1, B2, B6 and C stability in a pediatric formulation containing high amounts of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulfate, pediatric vitamins and trace elements under different conditions using developed and validated analytical methods. Methods The study was carried out during 72 h with formulations packaged in recommended storage temperature (4°C and 25°C, with and without photoprotection. Results The results showed that the methodologies used for assessing the chemical stability of vitamins B1, B2, B6 and C in the formulation were selective, linear, precise and accurate. The vitamins could be considered stable in the formulation during the three days of study if stored at 4°C. When stored at 25°C vitamin C presented instability after 48 h. Conclusion The pediatric formulation containing high amount of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulphate, pediatric vitamins and trace elements packaged in bag-type trilaminate presented a shelf life of the 72 h, when maintained under refrigeration, between 2°C and 8°C. This shelf life was measured considering the vitamins studied. Further studies are needed including all the vitamins present in this formulation.

  4. Chemical mechanism of D-amino acid oxidase from Rhodotorula gracilis: pH dependence of kinetic parameters.

    Science.gov (United States)

    Ramón, F; Castillón, M; De La Mata, I; Acebal, C

    1998-01-01

    The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of D-amino acids catalysed by this flavoenzyme. d-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a group with a pK of 10.8-9.90 (pK2) must be protonated for activity. The lower pK value corresponded to a group on the enzyme involved in catalysis and whose protonation state was not important for binding. The higher pK value was assumed to be the amino group of the substrate. Profiles of pKi for D-aspartate as competitive inhibitor showed that binding is prevented when a group on the enzyme with a pK value of 8.4 becomes unprotonated; this basic group was not detected in Vmax/Km profiles suggesting its involvement in binding of the beta-carboxylic group of the inhibitor. PMID:9461524

  5. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    International Nuclear Information System (INIS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-01-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier

  6. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat [Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Amin, Mohd. Cairul Iqbal Mohd [Faculty of Pharmacy, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  7. Chemical and physical characteristics of a soybean beverage with improved flavor by addition of ethylenediaminetetraacetic acid

    Directory of Open Access Journals (Sweden)

    Guzmán, Carlos A.

    2000-10-01

    Full Text Available A new method to obtain a soybean (SB with improved flavor characteristics was developed by adding ethylenediaminetetraacetic acid (EDTA. The SB was evaluated for pH, viscosity and density, as well as for protein, oil and ash contents, fatty acid composition and lipoxygenase activity. A water/bean ratio of 4.5:1 was selected because it provided the best protein (4.22 g 100 ml-1 and total solids (8.80 g 100 ml-1 contents. Sensory ratings for flavor and aroma intensities were also determined and compared with those of a commercial soymilk and a soybean beverage without EDTA. Samples from SB had the lowest ratings for green/beany and rancid flavors. The results indicated that the addition of EDTA may reduce off-flavors in soybean products.Se ha desarrollado un nuevo método para obtener un alimento líquido de soja (ALS con mejores cualidades organolépticas mediante adición de ácido etilendiaminotetraacético (EDTA. En el producto obtenido se evaluaron el pH, la viscosidad y la densidad, así como también los contenidos de proteínas, grasas y cenizas, la composición en ácidos grasos y la actividad de lipoxigenasa. Se seleccionó una relación agua/haba de soja equivalente a 4.5:1 puesto que la misma produjo los más altos contenidos de proteínas (4.22 g 100 ml-1 y sólidos totales (8.80 g 100 ml-1. Se realizó una evaluación sensorial, mediante pruebas de aceptabilidad, del aroma y sabor del ALS y se compararon con los de una «leche de soja» comercial y un alimento líquido de soja sin agregado de EDTA. Las muestras de ALS presentaron las evaluaciones más bajas para sabores rancio y «afrijolado». Los resultados obtenidos indicaron que la adición de EDTA puede reducir sabores desagradables en productos de soja.

  8. Topological analysis (BCP) of vibrational spectroscopic studies, docking, RDG, DSSC, Fukui functions and chemical reactivity of 2-methylphenylacetic acid

    Science.gov (United States)

    Kavimani, M.; Balachandran, V.; Narayana, B.; Vanasundari, K.; Revathi, B.

    2018-02-01

    Experimental FT-IR and FT-Raman spectra of 2-methylphenylacetic acid (MPA) were recorded and theoretical values are also analyzed. The non-linear optical (NLO) properties were evaluated by determination of first (5.5053 × 10- 30 e.s.u.) and second hyper-polarizabilities (7.6833 × 10- 36 e.s.u.) of the title compound. The Multiwfn package is used to find the weak non-covalent interaction (Van der Wall interaction) and strong repulsion (steric effect) of the molecule and examined by reduced density gradient. The molecular electrostatic potential (MEP) analysis used to find the most reactive sites for the electrophilic and nucleophilic attack. The chemical activity (electronegativity, hardness, chemical softness and chemical potential) of the title compound was predicted with the help of HOMO-LUMO energy values. The natural bond orbital (NBO) has been analyzed the stability of the molecule arising from the hyper-conjugative interaction. DSSCs were discussed in structural modifications that improve the electron injection efficiency of the title compound (MPA). The Fukui functions are calculated in order to get information associated with the local reactivity properties of the title compound. The binding sites of the two receptors were reported by molecular docking field and active site bond distance is same 1.9 Å. The inhibitor of the title compound forms a stable complex with 1QYV and 2H1K proteins at the binding energies are - 5.38 and - 5.85 (Δ G in kcal/mol).

  9. Assessment of changes of some functions of Ukrainian acid soils after chemical amelioration

    Directory of Open Access Journals (Sweden)

    Zapko Yurij

    2014-09-01

    Full Text Available The objective of the article was to determine the effectiveness of lime of different origin for chemical amelioration of soils and examine its impact on soil functions such as productivity, habitat, regulation of water quality, and the protective buffer biogeocenotic screen. Limy ameliorants were applied in small local field experiment on Luvic Chernozem, and experiment with lysimeter columns was carried out on Albic Luvisol. The number of the main groups of microflora and enzymatic activity of soil was determined in soil samples taken for the analysis from the root zone. Research concerning the influence of natural and industrial origin ameliorants on soil as habitat showed the correlation of sugar beets productivity with soil biogenic. The increase of biomultiplicity of soil microbiota after addition of a cement dust and negative influence of red sludge on soil as habitat for living organisms was observed. Research involving the influence of ameliorants on soil by lime as the protective buffer biogeocenotic screen was carried out using lysimeter columns. It was stated that the addition of limy ameliorants reduces mobility of heavy metals.

  10. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.

    Science.gov (United States)

    Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J

    2010-11-15

    A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.

  11. Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Uju; Goto, Masahiro; Kamiya, Noriho

    2016-08-01

    The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Chemical and Spectroscopical Characterization of Humic Acids from two South Brazilian Coals of Different Ranks

    Directory of Open Access Journals (Sweden)

    Dick Deborah P.

    2002-01-01

    Full Text Available Humic acids (HA extracted from two coals of different ranks, from their regenerated samples and from a nitrated sample, were characterized by elemental analysis and by infra-red (FTIR, solid state 13C nuclear magnetic resonance (NMR and eletronic paramagnetic resonance (EPR spectroscopies. The low rank coal HA presented higher C and lower O contents, higher C/N and lower H/C and O/C ratios than high rank coal HA. NMR results showed that both samples were more aromatic and less carboxylic than common soil HA. Those characteristics may limit the coal HA efficiency as an appropriate soil conditioner and fertilizer. The regeneration process did not produce major alterations in the coal HA, except a decrease of the free radical content as determined by EPR spectroscopy. Probably, the regeneration conditions and time were not adequate to oxidize the samples. The obtained FTIR spectra were much alike, except that from the nitrated sample, where the absorption band at 1533 cm-1 confirms the presence of nitrated groups. The nitration process increased the N content and reduced the C/N ratio to values comparable to those reported for soil HA, but the aromaticity still remained high and the carboxylic content was lowered after the procedure.

  13. Zirconia sol-gel coatings deposited on 304 stainless steel for chemical protection in acid media

    International Nuclear Information System (INIS)

    Luna, F. Perdomo; Atik, M.; Avaca, Luis A.; Aegerter, M.A.

    1995-01-01

    Zr O 2 thin films were prepared by sol-gel method and using dip-coating technique for deposition on 304 austenitic stainless steel, from sonocatalyzed sols of zirconia alkoxide, isopropanol (Zr(O C 3 H 7 )4/C 3 H 7 OH = 0.5), glacial acetic acid and water (C H 3 CO OH/H 2 O = 0.5). The films were dried at 40 deg C/15 min and thermally treated in the air with a linear variation of 5 deg C/min and two isothermal holdings at 400 deg C during 1 h and afterwards at 800 deg C during several periods of time (up to 20 h). The film thickness ranges between 0.6 and 0.8 μm. Structure and morphology were studied by x-ray diffraction and scanning electron microscopy. The corrosion potential, the corrosion current density, the polarization resistance and the corrosion rate (mpy) in 1,0 N aqueous solution of H 2 SO 4 at room temperature were determined using potentiometric polarization curves with a scanning velocity of 1 mV/s. These films act as a blocking physical layer in the corrosion media and increase the substrate life time in a factor of 7

  14. Swelling, Mechanics, and Thermal/Chemical Stability of Hydrogels Containing Phenylboronic Acid Side Chains

    Directory of Open Access Journals (Sweden)

    Arum Kim

    2017-12-01

    Full Text Available We report here studies of swelling, mechanics, and thermal stability of hydrogels consisting of 20 mol % methacrylamidophenylboronic acid (MPBA and 80 mol % acrylamide (AAm, lightly crosslinked with methylenebisacrylamide (Bis. Swelling was measured in solutions of fixed ionic strength, but with varying pH values and fructose concentrations. Mechanics was studied by compression and hold. In the absence of sugar or in the presence of fructose, the modulus was mostly maintained during the hold period, while a significant stress relaxation was seen in the presence of glucose, consistent with reversible, dynamic crosslinks provided by glucose, but not fructose. Thermal stability was determined by incubating hydrogels at pH 7.4 at room temperature, and 37, 50, and 65 °C, and monitoring swelling. In PBS (phosphate buffered saline solutions containing 9 mM fructose, swelling remained essentially complete for 50 days at room temperature, but decreased substantially with time at the higher temperatures, with accelerated reduction of swelling with increasing temperature. Controls indicated that over long time periods, both the MPBA and AAm units were experiencing conversion to different species.

  15. Acid Rain Examination and Chemical Composition of Atmospheric Precipitation in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Mohsen Saeedi

    2012-01-01

    Full Text Available Air pollution is one of the most important environmental problems in metropolitan cities like Tehran. Rain and snow, as natural events, may dissolve and absorb contaminants of the air and direct them onto the land or surface waters which become polluted. In the present study, precipitation samples were collected from an urbanized area of Tehran. They were analyzed for NO3-, PO43-, SO42-, pH, turbidity, Electrical Conductivity (EC, Cu, Fe, Zn, Pb, Ni, Cr, and Al. We demonstrate that snow samples were often more polluted and had lower pH than those from the rain, possibly as an effect of adsorption capability of snow flakes. Volume weighted average concentrations were calculated and compared with some other studies. Results revealed that Tehran's precipitations are much more polluted than those reported from other metropolitan cities. Cluster analysis revealed that studied parameters such as metals and acidity originated from the same sources, such as fuel combustion in residential and transportation sectors of Tehran.

  16. Zirconia sol-gel coatings deposited on 304 stainless steel for chemical protection in acid media

    Energy Technology Data Exchange (ETDEWEB)

    Luna, F Perdomo; Atik, M; Avaca, Luis A; Aegerter, M A [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica

    1996-12-31

    Zr O{sub 2} thin films were prepared by sol-gel method and using dip-coating technique for deposition on 304 austenitic stainless steel, from sonocatalyzed sols of zirconia alkoxide, isopropanol (Zr(O C{sub 3} H{sub 7})4/C{sub 3} H{sub 7} OH = 0.5), glacial acetic acid and water (C H{sub 3} CO OH/H{sub 2} O = 0.5). The films were dried at 40 deg C/15 min and thermally treated in the air with a linear variation of 5 deg C/min and two isothermal holdings at 400 deg C during 1 h and afterwards at 800 deg C during several periods of time (up to 20 h). The film thickness ranges between 0.6 and 0.8 {mu}m. Structure and morphology were studied by x-ray diffraction and scanning electron microscopy. The corrosion potential, the corrosion current density, the polarization resistance and the corrosion rate (mpy) in 1,0 N aqueous solution of H{sub 2} SO{sub 4} at room temperature were determined using potentiometric polarization curves with a scanning velocity of 1 mV/s. These films act as a blocking physical layer in the corrosion media and increase the substrate life time in a factor of 7 16 refs., 3 figs., 1 tab.

  17. Chemical composition of fatty acid and unsaponifiable fractions of leaves, stems and roots of Arbutus unedo and in vitro antimicrobial activity of unsaponifiable extracts.

    Science.gov (United States)

    Diba, Mohamed Amine; Paolini, Julien; Bendahou, Mourad; Varesi, Laurent; Allali, Hocine; Desjobert, Jean-Marie; Tabti, Boufeldja; Costa, Jean

    2010-07-01

    The chemical composition of the fatty acid and unsaponifiable fractions of the leaves, stems and roots of Arbutus unedo L. were determined using gas chromatography and gas chromatography-mass spectrometry. The fatty acid fractions of the leaves, stems and roots contained 38.5%, 31.3% and 14.1% palmitic acid, respectively, along with other long-chain fatty acids (up to C22). The chemical composition of the unsaponifiable fractions differed: the leaf and stem fractions contained high levels of aliphatic (32.1% and 62.6%, respectively) and terpenic compounds (49.6% and 25.7%, respectively), and the root fraction mainly contained esters, of which the most abundant was benzyl cinnamate (36.6%). The antimicrobial activities of the unsaponifiable fractions against nine species of microorganisms were assessed. The unsaponifiable leaf and stem extracts inhibited the growth of Klebsiella pneumoniae, Enterococcus faecalis and Candida albicans.

  18. Chemical Composition and Yield of Six Genotypes of Common Purslane (Portulaca oleracea L.): An Alternative Source of Omega-3 Fatty Acids.

    Science.gov (United States)

    Petropoulos, Spyridon Α; Karkanis, Anestis; Fernandes, Ângela; Barros, Lillian; Ferreira, Isabel C F R; Ntatsi, Georgia; Petrotos, Konstantinos; Lykas, Christos; Khah, Ebrahim

    2015-12-01

    Common purslane (Portulaca oleracea L.) is an annual weed rich in omega-3 fatty acids which is consumed for its edible leaves and stems. In the present study six different genotypes of common purslane (A-F) were evaluated for their nutritional value and chemical composition. Nutritional value and chemical composition depended on genotype. Oxalic acid content was the lowest for genotype D, whereas genotypes E and F are more promising for commercial cultivation, since they have low oxalic acid content. Genotype E had a very good antioxidant profile and a balanced composition of omega-3 and omega-6 fatty acids. Regarding yield, genotype A had the highest yield comparing to the other genotypes, whereas commercial varieties (E and F) did not differ from genotypes B and C. This study provides new information regarding common purslane bioactive compounds as affected by genotype and could be further implemented in food industry for products of high quality and increased added value.

  19. Influence of citric acid as chemical modifier for lead determination in dietary calcium supplement samples by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Cezar Paz de Mattos, Julio; Medeiros Nunes, Adriane; Figueiredo Martins, Ayrton; Luiz Dressler, Valderi; Marlon de Moraes Flores, Erico

    2005-01-01

    Citric acid was used as a chemical modifier for Pb determination by graphite furnace atomic absorption spectrometry in dietary supplement samples (calcium carbonate, dolomite and oyster shell samples) and its efficiency was compared to the use of palladium. Pyrolysis and atomization curves were established without use of chemical modifier, with the addition of 20, 100 and 200 μg of citric acid, and with 3 μg of palladium. The citric acid modifier made possible the interference-free Pb determination in the presence of high concentrations of Ca and Mg nitrates. Acid sample digestion involving closed vessels (microwave-assisted and conventional heating) and acid attack using polypropylene vessels at room temperature were compared. All digestion procedures presented similar results for calcium carbonate and dolomite samples. However, for oyster shell samples accurate results were obtained only with the use of closed vessel systems. Analyte addition and matrix-matched standards were used for calibration. The characteristic mass for Pb using citric acid and palladium were 16 and 25 pg, respectively. The relative standard deviation (RSD) was always less than 5% when citric acid was used. The relative and absolute limits of detection were 0.02 μg g -1 and 8 pg with citric acid and 0.1 μg g -1 and 44 pg with the Pd modifier, respectively (n = 10, 3σ). The recovery of Pb in spiked calcium supplement samples (10 μg l -1 ) was between 98% and 105%. With the use of 100 μg of citric acid as chemical modifier, problems such as high background absorption and high RSD values were minimized in comparison to the addition of 3 μg of palladium

  20. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    International Nuclear Information System (INIS)

    Shafiq, Mian Umer; Mahmud, Hisham Khaled Ben; Hamid, Mohamed Ali

    2015-01-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H 3 PO 4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid. (paper)

  1. Chemicals - potential substances for WMD creation, explosives and rocket fuel

    International Nuclear Information System (INIS)

    Vorozhtsova, M.D.; Khakimova, N.U.; Barotov, M.A.

    2010-01-01

    Full text: Chemical substances (chemicals) have different lists of control regimes. They are produced as: gasses, liquids; metals, alloys; compound substances (monomers, polymers). There is a special substances list which is subject to control. These are explosive substances, uranium hexafluoride, chlorine fluoride, heavy water, phosphoric compounds and etc. Identification methods of chemicals are different. According to external view it is difficult to identify chemicals. That's why different physical and chemical identification methods of chemicals are applied: quality and quantitative chemical analyses; chromatography; spectral methods; mass-spectrometry methods; radiographical methods and others. For chemicals labeling CAS is used - registry number, name of chemicals and control number. Besides, international symbols of danger are used. Let's consider dangerous chemicals. Phosphor penta sulphate - P_2S_5 or P_4S_1_0 are used for chemical weapons (CHW) production, as precursor of neuroparalytic substance, as well as in agriculture as pesticides, plastic additives and for organic synthesis. Produced as powder, granules, and tablets. Has a smell of rotten eggs. Very dangerous at contact with water - a toxic gas is exhaled. Sodium sulphate - Na_2S - is used in CHW production as precursor of blistering agent, as well as for ore flotation, leather production, for rubber and plastic production. Na_2S - is solid substance and white color, has a smell of rotten eggs, exhales toxic gases. Sodium and potassium cyanide - is used for CHW production as agents affecting blood, and neuroparalytic CHW. Besides, it is widely used for gold mining, in metallurgy, in nylon, herbicide and other productions. External view is white powder. Has a smell of bitter almond. Anhydrous hydrogen fluoride - HF. Aqueous solution called - hydrofluoric acid. Used in CHW production as precursor of neuroparalytic agents. Besides widely used at uranium and plutonium reprocessing. HF widely used in

  2. Ferulic Acid Orchestrates Anti-Oxidative Properties of Danggui Buxue Tang, an Ancient Herbal Decoction: Elucidation by Chemical Knock-Out Approach.

    Directory of Open Access Journals (Sweden)

    Amy G W Gong

    Full Text Available Ferulic acid, a phenolic acid derived mainly from a Chinese herb Angelica Sinensis Radix (ASR, was reported to reduce the formation of free radicals. Danggui Buxue Tang (DBT, a herbal decoction composing of Astragali Radix (AR and ASR, has been utilized for more than 800 years in China having known anti-oxidative property. Ferulic acid is a major active ingredient in DBT; however, the role of ferulic acid within the herbal mixture has not been resolved. In order to elucidate the function of ferulic acid within this herbal decoction, a ferulic acid-depleted herbal decoction was created and named as DBTΔfa. The anti-oxidative properties of chemically modified DBT decoction were systemically compared in cultured H9C2 rat cardiomyoblast cell line. The application of DBT and DBTΔfa into the cultures showed functions in (i decreasing the reactive oxygen species (ROS formation, detected by laser confocal; (ii increasing of the activation of Akt; (iii increasing the transcriptional activity of anti-oxidant response element (ARE; and (iv increasing the expressions of anti-oxidant enzymes, i.e. NQO1 and GCLM. In all scenario, the aforementioned anti-oxidative properties of DBTΔfa in H9C2 cells were significantly reduced, as compared to authentic DBT. Thus, ferulic acid could be an indispensable chemical in DBT to orchestrate multi-components of DBT as to achieve maximal anti-oxidative functions.

  3. Effect of cooking on the chemical composition of low-salt, low-fat Wakame/olive oil added beef patties with special reference to fatty acid content

    OpenAIRE

    López-López, I.; Cofrades, Susana; Cañeque, V.; Díaz, M. Teresa; López, O.; Jiménez Colmenero, Francisco

    2011-01-01

    Changes in chemical composition, with special reference to fatty acids, as affected by cooking, were studied in low-salt (0.5%)/low-fat patties (10%) with added Wakame (3%) and partial or total replacement of pork backfat with olive oil-in-water emulsion. The addition of Wakame and olive oil-in-water emulsion improved (P

  4. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine

    Science.gov (United States)

    Xinping Li; Xiaolin Luo; Kecheng Li; J.Y. Zhu; J. Dennis Fougere; Kimberley Clarke

    2012-01-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL...

  5. Chemical structure changes in coals after low-temperature oxidation and demineralization by acid treatment as revealed by high resolution solid state 13C NMR

    International Nuclear Information System (INIS)

    Tekely, P.; Nicole, D.; Delpuech, J.-J.; Totino, E.; Muller, J.F.

    1987-01-01

    13 C CP/MAS NMR has been used for characterization of chemical structure changes in coals after low-temperature oxidation and prolonged demineralization by acid treatment. In both cases the changes take place mainly in the aliphatic part of coal molecules. 21 refs.; 3 figs.; 2 tabs

  6. Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol)

    Science.gov (United States)

    Craig Clemons; Julia Sedlmair; Barbara Illman; Rebecca Ibach; Carol Hirschmugl

    2013-01-01

    The distribution of poly(acrylic acid) (PAA) in model laminates of nanocellulose and poly(vinyl alcohol) (PVOH) was investigated by FTIR chemical imaging. The method was effective in spatially discerning the three components of the composite. PAA can potentially improve the performance of nanocellulose reinforced PVOH by not only crosslinking the PVOH matrix but also...

  7. Physical and chemical mechanism underlying ultrasonically enhanced hydrochloric acid leaching of non-oxidative roasting of bastnaesite.

    Science.gov (United States)

    Zhang, Dongliang; Li, Mei; Gao, Kai; Li, Jianfei; Yan, Yujun; Liu, Xingyu

    2017-11-01

    In this study, we investigated an alternative to the conventional hydrochloric acid leaching of roasted bastnaesite. The studies suggested that the rare earth oxyfluorides in non-oxidatively roasted bastnaesite can be selectively leached only at elevated temperatures Further, the Ce(IV) in oxidatively roasted bastnaesite does not leach readily at low temperatures, and it is difficult to induce it to form a complex with F - ions in order to increase the leaching efficiency. Moreover, it is inevitably reduced to Ce(III) at elevated temperatures. Thus, the ultrasonically-assisted hydrochloric acid leaching of non-oxidatively roasted bastnaesite was studied in detail, including, the effects of several process factors and the, physical and chemical mechanisms underlying the leaching process. The results show that the leaching rate for the ultrasonically assisted process at 55°C (65% rare earth oxides) is almost the same as that for the conventional leaching process at 85°C. Based on the obtained results, it is concluded that ultrasonic cavitation plays a key role in the proposed process, resulting not only in a high shear stress, which damages the solid surface, but also in the formation of hydroxyl radicals (OH) and hydrogen peroxide (H 2 O 2 ). Standard electrode potential analysis and experimental results indicate that Ce(III) isoxidized by the hydroxyl radicals to Ce(IV), which can be leached with F - ions in the form of a complex, and that the Ce(IV) can subsequently be reduced to Ce(III) by the H 2 O 2. This prevents the Cl - ions in the solution from being oxidized to form chlorine. These results imply that the ultrasonically-assisted process can be used for the leaching of non-oxidatively roasted bastnaesite at low temperatures in the absence of a reductant. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI.

    Science.gov (United States)

    da Silva, N A; Lohmann, P; Fairney, J; Magill, A W; Oros Peusquens, A-M; Choi, C-H; Stirnberg, R; Stoffels, G; Galldiks, N; Golay, X; Langen, K-J; Jon Shah, N

    2018-06-01

    PET using radiolabelled amino acids has become a promising tool in the diagnostics of gliomas and brain metastasis. Current research is focused on the evaluation of amide proton transfer (APT) chemical exchange saturation transfer (CEST) MR imaging for brain tumour imaging. In this hybrid MR-PET study, brain tumours were compared using 3D data derived from APT-CEST MRI and amino acid PET using O-(2- 18 F-fluoroethyl)-L-tyrosine ( 18 F-FET). Eight patients with gliomas were investigated simultaneously with 18 F-FET PET and APT-CEST MRI using a 3-T MR-BrainPET scanner. CEST imaging was based on a steady-state approach using a B 1 average power of 1μT. B 0 field inhomogeneities were corrected a Prametric images of magnetisation transfer ratio asymmetry (MTR asym ) and differences to the extrapolated semi-solid magnetisation transfer reference method, APT# and nuclear Overhauser effect (NOE#), were calculated. Statistical analysis of the tumour-to-brain ratio of the CEST data was performed against PET data using the non-parametric Wilcoxon test. A tumour-to-brain ratio derived from APT# and 18 F-FET presented no significant differences, and no correlation was found between APT# and 18 F-FET PET data. The distance between local hot spot APT# and 18 F-FET were different (average 20 ± 13 mm, range 4-45 mm). For the first time, CEST images were compared with 18 F-FET in a simultaneous MR-PET measurement. Imaging findings derived from 18 F-FET PET and APT CEST MRI seem to provide different biological information. The validation of these imaging findings by histological confirmation is necessary, ideally using stereotactic biopsy.

  9. Organic compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elizandra C.S.; Chrisman, Erika C.A.N. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2009-12-19

    The use of inhibitors for mild steels corrosion control which are in contact with aggressive environment is an accepted practice in acid treatment of oil-wells. Organic compounds have been studied to evaluate their corrosion inhibition potential. Film-forming corrosion inhibitors, commonly used to protect oil-field equipment, can be absorbed on the steel surface to give structurally ordered layers. Therefore, the electrons should act as an important role for this adsorption. Studies reveal that organic compounds show significant inhibition efficiency. For this purpose, their molecules should contain N, O and S heteroatoms in various functional groups, long hydrocarbon linear or branched radical and anion and cation active components. However, most of these compounds are not only expensive but also toxic to living beings. According to the 'Green Chemistry' rules, corrosion inhibitors based on organic compounds should be cheap, with low toxicity and have high inhibition efficiency. In this study, the effects of some organic compounds with different groups such as amide, ether, phenyldiamine, anime and aminophenol on the corrosion behavior of mild steel in acidic media have been investigated. The experimental data were obtained by gravimetric measurements. The results show that these compounds reveal a promising corrosion inhibition where phenyldiamine is the most efficient. The effect of molecular structure on the corrosion inhibition efficiency was investigated by semi-empirical quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, and LUMO-HOMO energy gap orbital density were calculated. The relations between the inhibition efficiency and some quantum parameters are discussed and correlations are proposed. The highest values for the HOMO densities were found in the vicinity nitrogen atom, indicating that it is the most probable adsorption center

  10. Melamine derivatives as effective corrosion inhibitors for mild steel in acidic solution: Chemical, electrochemical, surface and DFT studies

    Science.gov (United States)

    Verma, Chandrabhan; Haque, J.; Ebenso, Eno E.; Quraishi, M. A.

    2018-06-01

    In present study two condensation products of melamine (triazine) and glyoxal namely, 2,2-bis(4,6-diamino-1,3,5-triazin-2-ylamino)acetaldehyde (ME-1) and (N2,N2‧E,N2,N2‧E)-N2,N2‧-(ethane-1,2-diylidene)-bis-(1,3,5-triazine-2,4,6-triamine) (ME-2) are tested as mild steel corrosion inhibitors in acidic solution (1M HCl). The inhibition efficiency of ME-1 and ME-2 increases with increase in their concentrations and maximum values of 91.47% and 94.88% were derived, respectively at 100 mgL-1 (34.20 × 10-5 M) concentration. Adsorption of ME-1 and ME-2 on the surface of metal obeyed the Langmuir adsorption isotherm. Polarization investigation revealed that ME-1 and ME-2 act as mixed type inhibitors with minor cathodic prevalence. The chemical and electrochemical analyses also supported by surface characterization methods where significant smoothness in the surface morphologies was observed in the images of SEM and AFM spectra. Several DFT indices such as EHOMO and ELUMO, ΔE, η, σ, χ, μ and ΔN were derived for both ME-1 and ME-2 molecules and correlated with experimental results. The DFT studies have also been carried out for protonated or cationic form of the inhibitor molecules by considering that in acidic medium the heteroatoms of organic inhibitors easily undergo protonation. The experimental and density functional theory (DFT) studies (neutral and protonated) were in good agreement.

  11. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    Science.gov (United States)

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains. Copyright © 2015 Elsevier Ltd. All rights reserved.