WorldWideScience

Sample records for hydrodynamics bulk viscosities

  1. Bulk Viscosity Effects in Event-by-Event Relativistic Hydrodynamics

    CERN Document Server

    Noronha-Hostler, Jacquelyn; Noronha, Jorge; Andrade, Rone P G; Grassi, Frederique

    2013-01-01

    Bulk viscosity effects on the collective flow harmonics in heavy ion collisions are investigated, on an event by event basis, using a newly developed 2+1 Lagrangian hydrodynamic code named v-USPhydro which implements the Smoothed Particle Hydrodynamics (SPH) algorithm for viscous hydrodynamics. A new formula for the bulk viscous corrections present in the distribution function at freeze-out is derived starting from the Boltzmann equation for multi-hadron species. Bulk viscosity is shown to enhance the collective flow Fourier coefficients from $v_2(p_T)$ to $v_5(p_T)$ when $% p_{T}\\sim 1-3$ GeV even when the bulk viscosity to entropy density ratio, $% \\zeta/s$, is significantly smaller than $1/(4\\pi)$.

  2. Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion

    CERN Document Server

    Rajagopal, Krishna

    2009-01-01

    We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon plasma. We investigate the dependence of the energy density as a function of proper time on the values of the shear viscosity, the bulk viscosity, and second order coefficients, confirming that large changes in the values of the latter have negligible effects. Varying the shear viscosity between zero and a few times s/(4 pi), with s the entropy density, has significant effects, as expected based on other studies. Introducing a nonzero bulk viscosity also has significant effects. In fact, if the bulk viscosity peaks near the crossover temperature Tc to the degree indicated by recent lattice calculations in QCD without quarks, it can make the fluid cavitate -- falling apart into droplets. It is interesting to see a hydrodynamic calculation predicting its own breakdown, via cavitation, at th...

  3. Radiative Bulk Viscosity

    CERN Document Server

    Chen, X

    2001-01-01

    Viscous resistance to changes in the volume of a gas arises when different degrees of freedom have different relaxation times. Collisions tend to oppose the resulting departures from equilibrium and, in so doing, generate entropy. Even for a classical gas of hard spheres, when the mean free paths or mean flight times of constituent particles are long, we find a nonvanishing bulk viscosity. Here we apply a method recently used to uncover this result for a classical rarefied gas to radiative transfer theory and derive an expression for the radiative stress tensor for a gray medium with absorption and Thomson scattering. We determine the transport coefficients through the calculation of the comoving entropy generation. When scattering dominates absorption, the bulk viscosity becomes much larger than either the shear viscosity or the thermal conductivity.

  4. Bulk viscosity-driven suppression of shear viscosity effects on the flow harmonics at RHIC

    CERN Document Server

    Noronha-Hostler, J; Grassi, F

    2014-01-01

    The interplay between shear and bulk viscosities on the flow harmonics, $v_n$'s, at RHIC is investigated using the newly developed relativistic 2+1 hydrodynamical code v-USPhydro that includes bulk and shear viscosity effects both in the hydrodynamic evolution and also at freeze-out. While shear viscosity is known to attenuate the flow harmonics, we find that the inclusion of bulk viscosity decreases the shear viscosity-induced suppression of the flow harmonics bringing them closer to their values in ideal hydrodynamical calculations. Depending on the value of the bulk viscosity to entropy density ratio, $\\zeta/s$, in the quark-gluon plasma, the bulk viscosity-driven suppression of shear viscosity effects on the flow harmonics may require a re-evaluation of the previous estimates of the shear viscosity to entropy density ratio, $\\eta/s$, of the quark-gluon plasma previously extracted by comparing hydrodynamic calculations to heavy ion data.

  5. Can bulk viscosity drive inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, T.; Stein-Schabes, J.A.; Turner, M.S.

    1987-09-15

    Contrary to other claims, we argue that bulk viscosity associated with the interactions of non- relativistic particles with relativistic particles around the time of the grand unified theory (GUT) phase transition cannot lead to inflation. Simply put, the key ingredient for inflation, negative pressure, cannot arise due to the bulk-viscosity effects of a weakly interacting mixture of relativistic and nonrelativistic particles.

  6. Can bulk viscosity drive inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, T.; Stein-Schabes, J.A.; Turner, M.S.

    1987-04-01

    Contrary to other claims, we argue that, bulk viscosity associated with the interactions of nonrelativistic particles with relativistic particles around the time of the grand unified theory (GUT) phase transition cannot lead to inflation. Simply put, the key ingredient for inflation, negative pressure, cannot arise due to the bulk viscosity effects of a weakly-interacting mixture of relativistic and nonrelativistic particles. 13 refs., 1 fig.

  7. On bulk viscosity and moduli decay

    OpenAIRE

    M. Laine

    2010-01-01

    This pedagogically intended lecture, one of four under the header "Basics of thermal QCD", reviews an interesting relationship, originally pointed out by Bodeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, furthermore, as a platform on whic...

  8. Bulk viscosity and deflationary universes

    CERN Document Server

    Lima, J A S; Waga, I

    2007-01-01

    We analyze the conditions that make possible the description of entropy generation in the new inflationary model by means of a nearequilibrium process. We show that there are situations in which the bulk viscosity cannot describe particle production during the coherent field oscillations phase.

  9. The Universe With Bulk Viscosity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Exact solutions for a model with variable G, A and bulk viscosity areobtained. Inflationary solutions with constant (de Sitter-type) and variable energydensity are found. An expanding anisotropic universe is found to isotropize duringits expansion but a static universe cannot isotropize. The gravitational constant isfound to increase with time and the cosmological constant decreases with time asAo∝t-2.

  10. Bulk and shear viscosity in Hagedorn fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A.; Wahba, M. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Faculty of Engineering, Cairo (Egypt)

    2010-11-15

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses m <2 GeV obeys the first-order theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium of hadron resonances are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the in-medium thermal effects on bulk and shear viscosity and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equilibrium thermodynamics and the cosmological models, which require thermo- and hydro-dynamics equations of state. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Bulk and Shear Viscosity in Hagedorn Fluid

    CERN Document Server

    Tawfik, A

    2010-01-01

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses $m<2\\,$GeV obeys the {\\it first-order} theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the {\\it in-medium} thermal effects on bulk and shear viscosities and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equlibrium thermodynamics and the cosmological models, which require thermo and hydrodynamics equations of state.

  12. Hyperon bulk viscosity in strong magnetic fields

    CERN Document Server

    Sinha, Monika

    2008-01-01

    We study bulk viscosity in neutron star matter including $\\Lambda$ hyperons in the presence of quantizing magnetic fields. Relaxation time and bulk viscosity due to both the non-leptonic weak process involving $\\Lambda$ hyperons and the direct Urca (dUrca) process are calculated here. In the presence of a strong magnetic field, bulk viscosity coefficients are enhanced when protons, electrons and muons are populated in their respective zeroth Landau levels compared with the field free cases. The enhancement of bulk viscosity coefficient is larger for the dUrca case.

  13. On bulk viscosity and moduli decay

    CERN Document Server

    Laine, M

    2010-01-01

    This pedagogically intended lecture, one of four under the header "Basics of thermal QCD", reviews an interesting relationship, originally pointed out by Bodeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, futhermore, as a platform on which a number of generic thermal field theory concepts are illustrated. The other three lectures (on the QCD equation of state and the rates of elastic as well as inelastic processes experienced by heavy quarks) are recapitulated in brief encyclopedic form.

  14. Hydrodynamic Electron Flow and Hall Viscosity

    Science.gov (United States)

    Scaffidi, Thomas; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P.; Moore, Joel E.

    2017-06-01

    In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.

  15. Dark goo: Bulk viscosity as an alternative to dark energy

    CERN Document Server

    Gagnon, Jean-Sebastien

    2011-01-01

    We present a simple (microscopic) model in which bulk viscosity plays a role in explaining the present acceleration of the universe. The effect of bulk viscosity on the Friedmann equations is to turn the pressure into an "effective" pressure containing the bulk viscosity. For a sufficiently large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy equation of state. Our microscopic model includes self-interacting spin-zero particles (for which the bulk viscosity is known) that are added to the usual energy content of the universe. We study both background equations and linear perturbations in this model. We show that a dark energy behavior is obtained for reasonable values of the two parameters of the model (i.e. the mass and coupling of the spin-zero particles) and that linear perturbations are well-behaved. There is no apparent fine tuning involved. We also discuss the conditions under which hydrodynamics holds, in particular that the spin-zero particles must be in local eq...

  16. Viscosity and dissipative hydrodynamics from effective field theory

    Science.gov (United States)

    Grozdanov, Sašo; Polonyi, Janos

    2015-05-01

    With the goal of deriving dissipative hydrodynamics from an action, we study classical actions for open systems, which follow from the generic structure of effective actions in the Schwinger-Keldysh closed-time-path (CTP) formalism with two time axes and a doubling of degrees of freedom. The central structural feature of such effective actions is the coupling between degrees of freedom on the two time axes. This reflects the fact that from an effective field theory point of view, dissipation is the loss of energy of the low-energy hydrodynamical degrees of freedom to the integrated-out, UV degrees of freedom of the environment. The dynamics of only the hydrodynamical modes may therefore not possess a conserved stress-energy tensor. After a general discussion of the CTP effective actions, we use the variational principle to derive the energy-momentum balance equation for a dissipative fluid from an effective Goldstone action of the long-range hydrodynamical modes. Despite the absence of conserved energy and momentum, we show that we can construct the first-order dissipative stress-energy tensor and derive the Navier-Stokes equations near hydrodynamical equilibrium. The shear viscosity is shown to vanish in the classical theory under consideration, while the bulk viscosity is determined by the form of the effective action. We also discuss the thermodynamics of the system and analyze the entropy production.

  17. Cosmic bulk viscosity through backreaction

    CERN Document Server

    Barbosa, Rodrigo M; Zimdahl, Winfried; Piattella, Oliver F

    2015-01-01

    We consider an effective viscous pressure as the result of a backreaction of inhomogeneities within Buchert's formalism. The use of an effective metric with a time-dependent curvature radius allows us to calculate the luminosity distance of the backreaction model. This quantity is different from its counterpart for a "conventional" spatially flat bulk viscous fluid universe. Both expressions are tested against the SNIa data of the Union2.1 sample with only marginally different results.

  18. Bulk viscosity effects on ultrasonic thermoacoustic instability

    Science.gov (United States)

    Lin, Jeffrey; Scalo, Carlo; Hesselink, Lambertus

    2016-11-01

    We have carried out unstructured fully-compressible Navier-Stokes simulations of a minimal-unit traveling-wave ultrasonic thermoacoustic device in looped configuration. The model comprises a thermoacoustic stack with 85% porosity and a tapered area change to suppress the fundamental standing-wave mode. A bulk viscosity model, which accounts for vibrational and rotational molecular relaxation effects, is derived and implemented via direct modification of the viscous stress tensor, τij ≡ 2 μSij +λ/2 μ ∂uk/∂xk δij , where the bulk viscosity is defined by μb ≡ λ +2/3 μ . The effective bulk viscosity coefficient accurately captures acoustic absorption from low to high ultrasonic frequencies and matches experimental wave attenuation rates across five decades. Using pressure-based similitude, the model was downscaled from total length L = 2 . 58 m to 0 . 0258 m, corresponding to the frequency range f = 242 - 24200 Hz, revealing the effects of bulk viscosity and direct modification of the thermodynamic pressure. Simulations are carried out to limit cycle and exhibit growth rates consistent with linear stability analyses, based on Rott's theory.

  19. Effects of bulk viscosity on cosmological evolution

    CERN Document Server

    Pimentel, L O; Pimentel, L O; Diaz-Rivera, L M

    1994-01-01

    Abstract:The effect of bulk viscisity on the evolution of the homogeneous and isotropic cosmological models is considered. Solutions are found, with a barotropic equation of state, and a viscosity coefficient that is proportional to a power of the energy density of the universe. For flat space, power law expansions, related to extended inflation are found as well as exponential solutions, related to old inflation; also a solution with expansion that is an exponential of an exponential of the time is found.

  20. Cosmological Implications of QGP Bulk Viscosity

    CERN Document Server

    Anand, Sampurn; Bhatt, Jitesh R

    2016-01-01

    Recent studies of the hot QCD matter indicate that the bulk viscosity ($\\zeta$) of quark-gluon plasma (QGP) rises sharply near the critical point of the QCD phase transition. In this work, we show that such a sharp rise of the bulk viscosity will lead to an effective negative pressure near the critical temperature, $T_{c}$ which in turn drives the Universe to inflate. This inflation has a natural graceful exist when the viscous effect evanesce. We estimate that, depending upon the peak value of $\\zeta$, universe expands by a factor of $10$ to $80$ times in a very short span ($\\Delta t\\sim 10^{-8}$ seconds). Another important outcome of the bulk viscosity dominated dynamics is the cavitation of QGP around $T \\sim 1.5T_{c}$. This would lead to the phenomenon of formation of cavitation bubbles within the QGP phase. The above scenario is independent of the order of QCD phase transition. We delineate some of the important cosmological consequences of the inflation and the cavitation.

  1. Nonlocal transport and the hydrodynamic shear viscosity in graphene

    Science.gov (United States)

    Torre, Iacopo; Tomadin, Andrea; Geim, Andre K.; Polini, Marco

    2015-10-01

    Motivated by recent experimental progress in preparing encapsulated graphene sheets with ultrahigh mobilities up to room temperature, we present a theoretical study of dc transport in doped graphene in the hydrodynamic regime. By using the continuity and Navier-Stokes equations, we demonstrate analytically that measurements of nonlocal resistances in multiterminal Hall bar devices can be used to extract the hydrodynamic shear viscosity of the two-dimensional (2D) electron liquid in graphene. We also discuss how to probe the viscosity-dominated hydrodynamic transport regime by scanning probe potentiometry and magnetometry. Our approach enables measurements of the viscosity of any 2D electron liquid in the hydrodynamic transport regime.

  2. Intrinsic ambiguity in second order viscosity parameters in relativistic hydrodynamics

    CERN Document Server

    Nakayama, Yu

    2012-01-01

    We show that relativistic hydrodynamics in Minkowski space-time has intrinsic ambiguity in second order viscosity parameters in the Landau-Lifshitz frame. This stems from the possibility of improvements of energy-momentum tensor. There exist at least two viscosity parameters which can be removed by using this ambiguity in scale invariant hydrodynamics in (1+3) dimension, and seemingly non-conformal hydrodynamic theories can be hiddenly conformal invariant.

  3. Phenomenological consequences of enhanced bulk viscosity near the QCD critical point

    Science.gov (United States)

    Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi

    2017-03-01

    In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. This work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 +1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening the equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. The observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.

  4. Phenomenological Consequences of Enhanced Bulk Viscosity Near the QCD Critical Point

    CERN Document Server

    Monnai, Akihiko; Yin, Yi

    2016-01-01

    In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. This work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding $1+1$ dimensional causal relativistic hydrodynamical evolution at non-zero baryon density. We demonstrate that the critically-enhanced bulk viscosity induces a substantial non-equilibrium pressure, effectively softening the equation of state, and leads to sizable effects in the flow velocity and single particle distributions at the freeze-out. The observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complimentary information to facilitate searches for the QCD critic...

  5. Estimate of the Bulk Viscosity in the Cosmic Fluid

    CERN Document Server

    Normann, Ben David

    2016-01-01

    We first give a review of recent works on bulk viscous cosmology. Then, we derive general solutions of the Friedmann equations when bulk viscosity is included in the energy-momentum tensor, both for a single-component and a multicomponent fluid, showing that these general solutions reduce to those found in the literature in special cases. We solve the energy conservation equation for the three cases $\\zeta$=const., $\\zeta\\propto \\sqrt{\\rho}$, and $\\zeta\\propto \\rho$, often studied in previous investigations, and find the best-fit values for the present day viscosity $\\zeta_0$ in each of the three cases. Taking into account constraints from thermodynamics we find, in agreement with previous works, that the present day viscosity is less than about $ 10^7~$Pa s. In fact the best fit values suggest $\\zeta_0\\sim 10^6$Pa s. We point out that this magnitude is acceptable from a hydrodynamic point of view. Altogether, we give preference to the model $\\zeta\\propto \\sqrt{\\rho}$, which by now seems to be widely accepted...

  6. Universe Models with Negative Bulk Viscosity

    CERN Document Server

    Brevik, Iver

    2013-01-01

    The concept of negative temperatures has occasionally been used in connection with quantum systems. A recent example of this sort is reported in the paper of S. Braun et al. [Science 339,52 (2013)], where an attractively interacting ensemble of ultracold atoms is investigated experimentally and found to correspond to a negative-temperature system since the entropy decreases with increasing energy at the high end of the energy spectrum. As the authors suggest, it would be of interest to investigate whether a suitable generalization of standard cosmological theory could be helpful, in order to elucidate the observed accelerated expansion of the universe usually explained in terms of a positive tensile stress (negative pressure). In the present note we take up this basic idea and investigate a generalization of the standard viscous cosmological theory, not by admitting negative temperatures but instead by letting the bulk viscosity take negative values. Evidently, such an approach breaks standard thermodynamics,...

  7. Holographic bulk viscosity: GPR vs EO

    CERN Document Server

    Buchel, Alex; Kiritsis, Elias

    2011-01-01

    Recently Eling and Oz (EO) proposed a formula for the holographic bulk viscosity, in arXiv:1103.1657, derived from the null horizon focusing equation. This formula seems different from that obtained earlier by Gubser, Pufu and Rocha (GPR) in arXiv:0806.0407 calculated from the IR limit of the two-point function of the trace of the stress tensor. The two were shown to agree only for some simple scaling cases. We point out that the two formulae agree in two non-trivial holographic theories describing RG flows. The first is the strongly coupled N=2* gauge theory plasma. The second is the semi-phenomenological model of Improved Holographic QCD.

  8. Bulk viscosity, interaction and the viability of phantom solutions

    CERN Document Server

    Leyva, Yoelsy

    2016-01-01

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with $w<-1$. From the different cases that we study, the only possible scenario, with bulk viscosity and interac...

  9. Bulk viscosity of spin-one color superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sa' d, Basil A.

    2009-08-27

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  10. Hydrodynamics of spacetime and vacuum viscosity

    CERN Document Server

    Eling, Christopher

    2008-01-01

    It has recently been shown that the Einstein equation can be derived by demanding a non-equilibrium entropy balance law dS = dQ/T + dS_i hold for all local acceleration horizons through each point in spacetime. The entropy change dS is proportional to the change in horizon area while dQ and T are the energy flux across the horizon and Unruh temperature seen by an accelerating observer just inside the horizon. The internal entropy production term dS_i is proportional to the squared shear of the horizon and the ratio of the proportionality constant to the area entropy density must be \\hbar/4\\pi. Here we will show that this derivation can be reformulated in the language of hydrodynamics. We postulate that the vacuum thermal state in the Rindler wedge of spacetime obeys the holographic principle. Hydrodynamic perturbations of this state exist and are manifested in the dynamics of a stretched horizon fluid at the horizon boundary. Using the equations of hydrodynamics we derive the entropy balance law and show the ...

  11. Singularities and Entropy in Bulk Viscosity Dark Energy Model

    Institute of Scientific and Technical Information of China (English)

    孟新河; 窦旭

    2011-01-01

    In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ0 +λ1(1 +z)n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. B2 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ACDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {τ, s} as axes where the fixed point represents the A CDM model The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling.

  12. Bulk viscosity, interaction and the viability of phantom solutions

    Energy Technology Data Exchange (ETDEWEB)

    Leyva, Yoelsy; Sepulveda, Mirko [Universidad de Tarapaca, Departamento de Fisica, Facultad de Ciencias, Arica (Chile)

    2017-06-15

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with w < -1. From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data. (orig.)

  13. Universal properties of bulk viscosity near the QCD phase transition

    CERN Document Server

    Karsch, F; Tuchin, K

    2008-01-01

    We extract the bulk viscosity of hot quark-gluon matter in the presence of light quarks from the recent lattice data on the QCD equation of state. For that purpose we extend the sum rule analysis by including the contribution of light quarks. We also discuss the universal properties of bulk viscosity in the vicinity of a second order phase transition, as it might occur in the chiral limit of QCD at fixed strange quark mass and most likely does occur in two-flavor QCD. We point out that a chiral transition in the O(4) universality class at zero baryon density as well as the transition at the chiral critical point which belongs to the Z(2) universality class both lead to the critical behavior of bulk viscosity. In particular, the latter universality class implies the divergence of the bulk viscosity, which may be used as a signature of the critical point. We discuss the physical picture behind the dramatic increase of bulk viscosity seen in our analysis, and devise possible experimental tests of related phenome...

  14. Bianchi Type Ⅲ String Cosmological Model with Bulk Viscosity

    Institute of Scientific and Technical Information of China (English)

    WANGXing-Xiang

    2004-01-01

    The Bianchi type Ⅲ cosmological model for a cloud string with bulk viscosity are presented. To obtain a determinate model, an equation of state ρ=kλ and a relation between metric potentials B = Cn are assumed. The physical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuously expanding universe with a big-bang start, and the relation between the coefficient of bulk viscosity and the energy density is ζ∝ρ1/2.

  15. Bianchi Type Ⅲ String Cosmological Model with Bulk Viscosity

    Institute of Scientific and Technical Information of China (English)

    WANG Xing-Xiang

    2004-01-01

    The Bianchi type Ⅲ cosmological model for a cloud string with bulk viscosity are presented. To obtaina determinate model, an equation of state p = κλ and a relation between metric potentials B = Cn are assumed. Thephysical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuouslyexpanding universe with a big-bang start, and the relation between the coefficient of bulk viscosity and the energy densityis ζ∝1 p1/2.

  16. Cosmology with bulk viscosity and the gravitino problem

    CERN Document Server

    Buoninfante, L

    2016-01-01

    The gravitino problem is revisited in the framework of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. Dissipative effects (or bulk viscosity effects) arise owing to the different cooling rates of the fluid components. We show that the effects of the bulk viscosity allow to avoid the late abundance of gravitinos. In particular, we found that for a particular choice of the parameters characterizing the cosmological model, the gravitino abundance turns out to be independent on the reheating temperature.

  17. Scaling laws for implicit viscosities in smoothed particle hydrodynamics

    Science.gov (United States)

    Bierwisch, Claas; Polfer, Pit

    2017-06-01

    Smoothed particle hydrodynamics (SPH) is a particle-based method which solves continuum equations such as the Navier-Stokes equations. A periodic fluidic system under homogeneous shear is studied using SPH in the present work. The total pressure of the system and the shear stress contributions from the SPH interaction terms for pressure and viscosity as well as the contribution caused by velocity fluctuations are analyzed. It is found that the pressure and the shear stress contributions obey certain scaling laws depending on physical properties of the system such as compressibility, viscosity and shear rate as well as the spatial resolution. Some of the identified relations resemble scaling laws for the rheology of dense granular flows. These findings render an assessment of the convergence with respect to the spatial resolution of SPH simulations possible. Furthermore, the similarities between numerical SPH particles and physical grains in dense flow provide a deeper understanding of the nature of the SPH method.

  18. Bulk and shear viscosities for the Gribov-Zwanziger plasma

    Directory of Open Access Journals (Sweden)

    Florkowski Wojciech

    2016-01-01

    Full Text Available The concept of the Gribov-Zwanziger plasma is introduced and used to calculate the bulk and shear viscosities of the system of gluons. The kinetic coeffcients are obtained in two different ways which are shown to yield equivalent results.

  19. Phantom dark energy as an effect of bulk viscosity

    CERN Document Server

    Velten, Hermano; Meng, Xinhe

    2013-01-01

    In a homogeneous and isotropic universe bulk viscosity is the unique viscous effect capable to modify the background dynamics. Effects like shear viscosity or heat conduction can only change the evolution of the perturbations. The existence of a bulk viscous pressure in a fluid, which in order to obey to the second law of thermodynamics is negative, reduces its effective pressure. We discuss in this study the degeneracy in bulk viscous cosmologies and address the possibility that phantom dark energy cosmology could be caused by the existence of non-equilibrium pressure in any cosmic component. We establish the conditions under which either matter or radiation viscous cosmologies can be mapped into the phantom dark energy scenario with constraints from multiple observational data-sets

  20. Viscosity to entropy ratio of QGP in relativistic heavy ion collisions: The second-order viscose hydrodynamics

    Science.gov (United States)

    Mehrabi Pari, Sharareh; Taghavi Shahri, Fatemeh; Javidan, Kurosh

    2016-10-01

    The nuclear suppression factor RAA and elliptic flow ν2 are calculated by considering the effects of shear viscosity to the entropy density ratio η/s, using the viscose hydrodynamics at the first- and second-orders of approximation and considering temperature dependent coupling αs(T). It is shown that the second-order viscose hydrodynamics (varying shear viscosity to entropy ratio) with averaged value of 4πη/s = 1.5 ± 0.1 gives the best results of RAA and ν2 in comparison to the experimental data.

  1. Hubble Parameter in QCD Universe for finite Bulk Viscosity

    CERN Document Server

    Tawfik, A; Mansour, H; Harko, T

    2010-01-01

    The influence of perturbative bulk viscosity on the evolution of Hubble parameter in the QCD era of the early Universe has been analyzed, where Friedmann-Robertson-Walker metric and Einstein field equations are utilized. Homogeneous and isotropic background matter is assumed to be characterized by barotropic equations of state deduced from recent lattice QCD simulations and heavy--ion collisions. Taking into account perturbative bulk viscosity coefficient, an estimation for the evolution of the Hubble parameter has been introduced and compared with its evolution in a non--viscous matter. A numerical solution for finite viscous Israel-Stewart background matter is also worked out. Both methods qualitatively agree in reproducing viscous Hubble parameter that turns to be slightly different from the non--viscous one. This treatment is strictly limited within a very narrow temperature-- or time--interval in QCD era, where the QGP matter is likely dominant.

  2. Dissipative Processes in the Early Universe: Bulk Viscosity

    CERN Document Server

    Tawfik, A; Mansour, H; Wahba, M

    2009-01-01

    In this talk, we discuss one of the dissipative processes which likely take place in the Early Universe. We assume that the matter filling the isotropic and homogeneous background is to be described by a relativistic viscous fluid characterized by an ultra-relativistic equation of state and finite bulk viscosity deduced from recent lattice QCD calculations and heavy-ion collisions experiments. We concentrate our treatment to bulk viscosity as one of the essential dissipative processes in the rapidly expanding Early Universe and deduce the dependence of the scale factor and Hubble parameter on the comoving time $t$. We find that both scale factor and Hubble parameter are finite at $t=0$, revering to absence of singularity. We also find that their evolution apparently differs from the one resulting in when assuming that the background matter is an ideal and non-viscous fluid.

  3. An estimate of the bulk viscosity of the hadronic medium

    CERN Document Server

    Sarwar, Golam; Alam, Jan-e

    2015-01-01

    The bulk viscosity of the hadronic medium within the ambit of the Hadron Resonance Gas (HRG) model approach including the Hagedorn density of states has been estimated. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the hadronic bulk viscosity $\\zeta$ upto a relaxation time. We study the influence of the hadronic spectrum on $\\zeta$ and find its correlation with the conformal symmetry breaking (CSB) measure, $\\epsilon-3P$. We estimate $\\zeta$ along the chemical freezeout curve and find that at FAIR energies $\\zeta/s$ can be enhanced by a factor of five as compared to LHC energies.

  4. Area evolution, bulk viscosity and entropy principles for dynamical horizons

    CERN Document Server

    Gourgoulhon, E; Gourgoulhon, Eric; Jaramillo, Jose Luis

    2006-01-01

    We derive from Einstein equation an evolution law for the area of a trapping or dynamical horizon. The solutions to this differential equation show a causal behavior. Moreover, in a viscous fluid analogy, the equation can be interpreted as an energy balance law, yielding to a positive bulk viscosity. These two features contrast with the event horizon case, where the non-causal evolution of the area and the negative bulk viscosity require teleological boundary conditions. This reflects the local character of trapping horizons as opposed to event horizons. Interpreting the area as the entropy, we propose to use an area/entropy evolution principle to select a unique dynamical horizon and time slicing in the Cauchy evolution of an initial marginally trapped surface.

  5. Accelerating cosmological expansion from shear and bulk viscosity

    CERN Document Server

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2015-01-01

    The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

  6. Accelerating Cosmological Expansion from Shear and Bulk Viscosity

    Science.gov (United States)

    Floerchinger, Stefan; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-03-01

    The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

  7. Hubble parameter in QCD Universe for finite bulk viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A.; Wahba, M. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Al Mukattam, Cairo 11212 (Egypt); Mansour, H. [Department of Physics, Cairo University, Giza (Egypt); Harko, T. [Department of Physics and Center for Theoretical and Computational Physics, The University of Hong Kong, Pok Fu Lam Road, Hong Kong (China)

    2010-12-01

    We consider the influence of the perturbative bulk viscosity on the evolution of the Hubble parameter in the QCD era of the early Universe. For the geometry of the Universe we assume the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker metric, while the background matter is assumed to be characterized by barotropic equations of state, obtained from recent lattice QCD simulations, and heavy-ion collisions, respectively. Taking into account a perturbative form for the bulk viscosity coefficient, we obtain the evolution of the Hubble parameter, and we compare it with its evolution for an ideal (non-viscous) cosmological matter. A numerical solution for the viscous QCD plasma in the framework of the causal Israel-Stewart thermodynamics is also obtained. Both the perturbative approach and the numerical solution qualitatively agree in reproducing the viscous corrections to the Hubble parameter, which in the viscous case turns out to be slightly different as compared to the non-viscous case. Our results are strictly limited within a very narrow temperature- or time-interval in the QCD era, where the quark-gluon plasma is likely dominant. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. An estimate of the bulk viscosity of the hadronic medium

    Science.gov (United States)

    Sarwar, Golam; Chatterjee, Sandeep; Alam, Jane

    2017-05-01

    The bulk viscosity (ζ) of the hadronic medium has been estimated within the ambit of the Hadron Resonance Gas (HRG) model including the Hagedorn density of states. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the ζ of the hadronic matter up to a relaxation time. We study the influence of the hadronic spectrum on ζ and find its correlation with the conformal symmetry breaking measure, ε -3P. We estimate ζ along the contours with constant, S/{N}B (total entropy/net baryon number) in the T-μ plane (temperature-baryonic chemical potential) for S/{N}B=30,45 and 300. We also assess the value of ζ on the chemical freeze-out curve for various centers of mass energy (\\sqrt{{s}{NN}}) and find that the bulk viscosity to entropy density ratio, \\zeta /s is larger in the energy range of the beam energy scan program of RHIC, low energy SPS run, AGS, NICA and FAIR, than LHC energies.

  9. Extended Chaplygin gas equation of state with bulk and shear viscosities

    Science.gov (United States)

    Naji, Jalil

    2014-03-01

    In this note extended Chaplygin gas equation of state includes bulk and shear viscosities suggested. Bulk viscosity assumed as power law form of density and shear viscosity considered as a constant. We study evolution of dark energy density numerically for several forms of scale factor, and analytically under some assumptions corresponding to early universe. We found our model is stable for infinitesimal viscous parameters.

  10. Enhancement of Hydrodynamic Processes in Oil Pipelines Considering Rheologically Complex High-Viscosity Oils

    Science.gov (United States)

    Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.

    2016-06-01

    This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.

  11. The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence

    Science.gov (United States)

    Johnsen, Eric; Pan, Shaowu

    2016-11-01

    The practice of neglecting bulk viscosity in studies of compressible turbulence is widespread. While exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, this assumption is not justifiable for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g., CO2). To understand the mechanisms by which bulk viscosity and the associated phenomena affect compressible turbulence, we conduct DNS of freely decaying compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0-1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; while enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by an order of magnitude within the two eddy turnover time. Via a Helmholtz decomposition of the flow, we determined that bulk viscosity damps the dilatational velocity and reduces dilatational-solenoidal exchanges, as well as pressure-dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal modes.

  12. Viscosity and Vorticity in Reduced Magneto-Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-12

    Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.

  13. Effect of Shear and Bulk Viscosities on Interacting Modified Chaplygin Gas Cosmology

    Science.gov (United States)

    Naji, J.; Pourhassan, B.; Amani, Ali R.

    2014-12-01

    In this paper, we study interacting modified Chaplygin gas (MCG) which has shear and bulk viscosities. We consider sign-changeable interaction between MCG and matter, then investigate the effects of shear and bulk viscosities on the cosmological parameters such as energy, density, Hubble expansion parameter, scale factor and deceleration parameter.

  14. Bulk viscosity for pion and nucleon thermal fluctuation in the hadron resonance gas model

    CERN Document Server

    Ghosh, Sabyasachi; Mohanty, Bedangdas

    2016-01-01

    We have calculated microscopically bulk viscosity of hadronic matter, where equilibrium thermodynamics for all hadrons in medium are described by Hadron Resonance Gas (HRG) model. Considering pions and nucleons as abundant medium constituents, we have calculated their thermal widths, which inversely control the strength of bulk viscosities for respective components and represent their in-medium scattering probabilities with other mesonic and baryonic resonances, present in the medium. Our calculations show that bulk viscosity increases with both temperature and baryon chemical potential, whereas viscosity to entropy density ratio decreases with temperature and with baryon chemical potential, the ratio increases first and then decreases. The decreasing nature of the ratio with temperature is observed in most of the earlier investigations with few exceptions. We find that the temperature dependence of bulk viscosity crucially depends on the structure of the relaxation time. Along the chemical freeze-out line in...

  15. Artificial viscosity in simulation of shock waves by smoothed particle hydrodynamics

    CERN Document Server

    Nejad-Asghar, M; Soltani, J

    2007-01-01

    The artificial viscosity is reconsidered in smoothed particle hydrodynamics to prevent inter-particle penetration, unwanted heating, and unphysical solutions. The coefficients in the Monaghan's standard artificial viscosity are considered as time variable, and a restriction on them is proposed such that avoiding the undesired effects in the subsonic regions. The shock formation in adiabatic and isothermal cases are used to study the ability of this modified artificial viscosity recipe. The computer experiments show that the proposal appears to work and the accuracy of this restriction is acceptable.

  16. Entropy-based artificial viscosity stabilization for non-equilibrium Grey Radiation-Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Delchini, Marc O., E-mail: delchinm@email.tamu.edu; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim, E-mail: jim.morel@tamu.edu

    2015-09-01

    The entropy viscosity method is extended to the non-equilibrium Grey Radiation-Hydrodynamic equations. The method employs a viscous regularization to stabilize the numerical solution. The artificial viscosity coefficient is modulated by the entropy production and peaks at shock locations. The added dissipative terms are consistent with the entropy minimum principle. A new functional form of the entropy residual, suitable for the Radiation-Hydrodynamic equations, is derived. We demonstrate that the viscous regularization preserves the equilibrium diffusion limit. The equations are discretized with a standard Continuous Galerkin Finite Element Method and a fully implicit temporal integrator within the MOOSE multiphysics framework. The method of manufactured solutions is employed to demonstrate second-order accuracy in both the equilibrium diffusion and streaming limits. Several typical 1-D radiation-hydrodynamic test cases with shocks (from Mach 1.05 to Mach 50) are presented to establish the ability of the technique to capture and resolve shocks.

  17. Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent A term

    Institute of Scientific and Technical Information of China (English)

    R.K.Tiwari; S.Sharma

    2011-01-01

    Einstein Geld equations with the cosmological constant is considered in the presence of bulk viscosity in a Bianchi type-I universe. Solutions of the field equations are obtained by assuming the following conditions: the bulk viscosity is proportional to the expansion scalar £ oc 0; the expansion scalar is proportional to shear scalar 6 oc cr; and A is proportional to the Hubble parameter A on H. The corresponding interpretations of the cosmological solutions are also discussed.%@@ Einstein field equations with the cosmological constant is considered in the presence of bulk viscosity in a Bianchi type-I universe.Solutions of the field equations are obtained by assuming the following conditions:the bulk viscosity is proportional to the expansion scalar ξ∝θ;the expansion scalar is proportional to shear scalar θ∝σ;and ∧ is proportional to the Hubble parameter ∧∝ H.The corresponding interpretations of the cosmological solutions are also discussed.

  18. Randall-Sundrum model with {lambda}<0 and bulk brane viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Lepe, Samuel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile); Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Saavedra, Joel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile)], E-mail: joel.saavedra@ucv.cl

    2008-04-17

    We study the effect of the inclusion of bulk brane viscosity on brane world (BW) cosmology in the framework of the Eckart's theory, we focus in the Randall-Sundrum model with negative tension on the brane.

  19. Bulk viscosity of two-flavor quark matter from the Kubo formalism

    Science.gov (United States)

    Harutyunyan, Arus; Sedrakian, Armen

    2017-08-01

    We study the bulk viscosity of quark matter in the strong coupling regime within the two-flavor Nambu-Jona-Lasinio model. The dispersive effects that lead to nonzero bulk viscosity arise from quark-meson fluctuations above the Mott transition temperature, where meson decay into two quarks is kinematically allowed. We adopt the Kubo-Zubarev formalism and compute the equilibrium imaginary-time correlation function for pressure in the O (1 /Nc) power counting scheme. The bulk viscosity of matter is expressed in terms of the Lorentz components of the quark spectral function and includes multiloop contributions which arise via resummation of infinite geometrical series of loop diagrams. We show that the multiloop contributions dominate the single-loop contribution close to the Mott line, whereas at high temperatures the one-loop contribution is dominant. The multiloop bulk viscosity dominates the shear viscosity close to the Mott temperature by factors 5 to 20, but, with increasing temperature, the shear viscosity becomes the dominant dissipation mechanism of stresses as the one-loop contribution becomes the main source of bulk viscosity.

  20. Remarks concerning bulk viscosity of hadron matter in relaxation time ansatz

    Energy Technology Data Exchange (ETDEWEB)

    Khvorostukhin, A.S., E-mail: hvorost@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Institute of Applied Physics, Moldova Academy of Science, MD-2028 Kishineu (Moldova, Republic of); Toneev, V.D. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Voskresensky, D.N. [National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow 115409 (Russian Federation)

    2013-10-03

    The bulk viscosity is calculated for hadron matter produced in heavy-ion collisions, being described in the relaxation time approximation within the relativistic mean-field-based model with scaled hadron masses and couplings. We show how different approximations used in the literature affect the result. Numerical evaluations of the bulk viscosity with three considered models deviate not much from each other confirming earlier results.

  1. Effect of Liquid Viscosity and Solid Inventory on Hydrodynamics in a Liquid - solid Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Nirmala sundaram

    2017-01-01

    Full Text Available A comprehensive hydrodynamic study of a Liquid - Solid Circulating Fluidized Bed (LSCFB is conducted with changes in viscosity of the fluidizing medium and the inventory height of solids initially fed into the system. An LSCFB of height 2.95m and riser outer diameter 0.1m was chosen for experimentation. The three liquid media systems with varying viscosities that were chosen were water, glycerol 10% (v/v and glycerol 20% (v/v. Effect of inventory on the hydrodynamics was also studied, by taking initial heights of inventory to be 15cm, 25cm and 35cm. The hydrodynamic studies concentrated on pressure gradients along the axial pressure tapings, axial solid holdup, average solid holdup, solid circulation rate and slip velocity. Uniformity in axial solid holdup and average solid holdup was validated for changes in viscosity and inventory. Solid flux was seen to follow an inverse relationship to holdup. The changes in slip velocity with varying viscosity and inventory were studied, and found to decrease with both variables. The distribution parameter, Co of the drift flux model was found to be in the range of 0.983-0.994, suggesting non-uniformity in radial solid distribution, with higher solid concentration by the walls compared to the core of the column.

  2. Bianchi Type-Ⅲ String Cosmological Model with Bulk Viscosity in General Relativity

    Institute of Scientific and Technical Information of China (English)

    WANG Xing-Xiang

    2005-01-01

    The Bianchi type-Ⅲcosmological model for a cloud string with bulk viscosity are studied. To obtain a determinate solution, it is assumed that the coefficient of bulk viscosity is a power function of the scalar of expansion ζ = kθm and the shear scalar is proportional to scalar of expansion σ∝θ, which leads to the relation between metric potentials B = Cn. The physical features of the model are also discussed. It is found that the power index mhas significant influence on the string model. There is a "big bang" start in the model when m ≤ 1 but there is no the big-bang start when m > 1. In the special case m = 0, the model reduces to the string model of constant coefficient of bulk viscosity that was the result previously given in the literature.

  3. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions.

    Science.gov (United States)

    Jung, Gerhard; Schmid, Friederike

    2016-05-28

    Exact values for bulk and shear viscosity are important to characterize a fluid, and they are a necessary input for a continuum description. Here we present two novel methods to compute bulk viscosities by non-equilibrium molecular dynamics simulations of steady-state systems with periodic boundary conditions - one based on frequent particle displacements and one based on the application of external bulk forces with an inhomogeneous force profile. In equilibrium simulations, viscosities can be determined from the stress tensor fluctuations via Green-Kubo relations; however, the correct incorporation of random and dissipative forces is not obvious. We discuss different expressions proposed in the literature and test them at the example of a dissipative particle dynamics fluid.

  4. Bulk viscosity of strange quark matter in density dependent quark mass model

    Indian Academy of Sciences (India)

    J D Anand; N Chandrika Devi; V K Gupta; S Singh

    2000-05-01

    We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where , masses were neglected and first order interactions were taken into account. We find that at low temperatures and high relative perturbations, the bulk viscosity is higher by 2 to 3 orders of magnitude while at low perturbations the enhancement is by 1–2 order of magnitude as compared to earlier results. Also the damping time is 2–3 orders of magnitude lower implying that the star reaches stability much earlier than in MIT bag model calculations.

  5. Cosmology with bulk viscosity and the gravitino problem. Consequences of imperfect fluids on gravitino production

    Energy Technology Data Exchange (ETDEWEB)

    Buoninfante, L.; Lambiase, G. [Dipartimento di Fisica ' ' E.R. Caianiello' ' Universita di Salerno, Fisciano (Italy); INFN-Gruppo Collegato di Salerno, Fisciano (Italy)

    2017-05-15

    The gravitino problem is revisited in the framework of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. Dissipative effects (or bulk viscosity effects) arise owing to the different cooling rates of the fluid components. We show that the effects of the bulk viscosity allow one to avoid the late abundance of gravitinos. In particular, for particular values of the parameters characterizing the cosmological model, the gravitino abundance turns out to be weakly depending on the reheating temperature. (orig.)

  6. The importance of the bulk viscosity of QCD in ultrarelativistic heavy-ion collisions

    CERN Document Server

    Ryu, S; Shen, C; Denicol, G S; Schenke, B; Jeon, S; Gale, C

    2015-01-01

    We investigate the consequences of a nonzero bulk viscosity coefficient on the transverse momentum spectra, azimuthal momentum anisotropy, and multiplicity of charged hadrons produced in heavy ion collisions at LHC energies. The agreement between a realistic 3D hybrid simulation and the experimentally measured data considerably improves with the addition of a bulk viscosity coefficient for strongly interacting matter. This paves the way for an eventual quantitative determination of several QCD transport coefficients from the experimental heavy ion and hadron-nucleus collision programs.

  7. Anisotropic cosmological models with bulk viscosity and particle creation in Saez–Ballester theory of gravitation

    Indian Academy of Sciences (India)

    Chandel S; Ram Shri

    2016-03-01

    The paper deals with the study of particle creation and bulk viscosity in the evolution of spatially homogeneous and anisotropic Bianchi type-V cosmological models in the framework of Saez–Ballester theory of gravitation. Particle creation and bulk viscosity are considered as separate irreversible processes. The energy–momentum tensor is modified to accommodate the viscous pressure and creation pressure which is associated with the creation of matter out of gravitational field. A special law of variation of Hubble parameter is applied to obtain exact solutions of field equations in two types of cosmologies, one with power-law expansion and the other with exponential expansion. Cosmological model with power-law expansion has a Big-Bang singularity at time $t = 0$, whereas the model with exponential expansion has no finite singularity. We study bulk viscosity and particle creation in each model in four different cases. The bulk viscosity coefficient is obtained for full causal, Eckart’s and truncated theories. All physical parameters are calculated and thoroughly discussed in both models.

  8. Higher-dimensional cosmological model with variable gravitational constant and bulk viscosity in Lyra geometry

    Indian Academy of Sciences (India)

    G P Singh; R V Deshpande; T Singh

    2004-11-01

    We have studied five-dimensional homogeneous cosmological models with variable and bulk viscosity in Lyra geometry. Exact solutions for the field equations have been obtained and physical properties of the models are discussed. It has been observed that the results of new models are well within the observational limit.

  9. Towards precise calculation of transport coefficients in the hadron gas. The shear and the bulk viscosities

    CERN Document Server

    Moroz, Oleg N

    2011-01-01

    The shear and the bulk viscosities of the hadron gas at low temperatures are studied in the model with constant elastic cross sections being relativistic generalization of the hard spheres model. One effective radius ${r=0.4 fm}$ is chosen for all elastic collisions. Only elastic collisions are considered which are supposed to be dominant at temperatures ${T\\leq 120-140 MeV}$. The calculations are done in the framework of the Boltzmann equation with the Boltzmann statistics distribution functions and the ideal gas equation of state. The applicability of these approximations is discussed. It's found that the bulk viscosity of the hadron gas is much larger than the bulk viscosity of the pion gas while the shear viscosity is found to be less sensitive to the mass spectrum of hadrons. The constant cross sections and the Boltzmann statistics approximation allows one not only to conduct precise numerical calculations of transport coefficients in the hadron gas but also to obtain some relatively simple relativistic ...

  10. Time Domain Simulation of Sound Waves Using Smoothed Particle Hydrodynamics Algorithm with Artificial Viscosity

    Directory of Open Access Journals (Sweden)

    Xu Li

    2015-06-01

    Full Text Available Smoothed particle hydrodynamics (SPH, as a Lagrangian, meshfree method, is supposed to be useful in solving acoustic problems, such as combustion noise, bubble acoustics, etc., and has been gradually used in sound wave computation. However, unphysical oscillations in the sound wave simulation cannot be ignored. In this paper, an artificial viscosity term is added into the standard SPH algorithm used for solving linearized acoustic wave equations. SPH algorithms with or without artificial viscosity are both built to compute sound propagation and interference in the time domain. Then, the effects of the smoothing kernel function, particle spacing and Courant number on the SPH algorithms of sound waves are discussed. After comparing SPH simulation results with theoretical solutions, it is shown that the result of the SPH algorithm with the artificial viscosity term added attains good agreement with the theoretical solution by effectively reducing unphysical oscillations. In addition, suitable computational parameters of SPH algorithms are proposed through analyzing the sound pressure errors for simulating sound waves.

  11. Bianchi Type-Ⅲ String Cosmological Model With Bulk Viscosity and Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xing-Xiang

    2006-01-01

    @@ The Bianchi type-Ⅲ cosmological model for a cloud string in the presence of bulk viscosity and magnetic field are presented. To obtain the determinate model it is assumed that there is an equation of state ρ = kλ and the scalar of expansion is proportional to the shear scalar θ∝σ, which leads to a relation between metric potentials B = mCn. The physical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuously expanding universe with a big-bang start. In the absence of magnetic field, it reduces to the string model with bulk viscosity that was previously given in the literature.

  12. Constraining a matter-dominated cosmological model with bulk viscosity proportional to the Hubble parameter

    CERN Document Server

    Avelino, Arturo

    2008-01-01

    We present and constrain a cosmological model where the only component is a pressureless fluid with bulk viscosity as an explanation for the present accelerated expansion of the universe. We study the particular model of a bulk viscosity coefficient proportional to the Hubble parameter. The model is constrained using the SNe Ia Gold 2006 sample, the Cosmic Microwave Background (CMB) shift parameter R, the Baryon Acoustic Oscillation (BAO) peak A and the Second Law of Thermodynamics (SLT). It was found that this model is in agreement with the SLT using only the SNe Ia test. However when the model is constrained using the three cosmological tests together (SNe+CMB+BAO) we found: 1.- The model violates the SLT, 2.- It predicts a value of H_0 \\approx 53 km sec^{-1} Mpc^{-1} for the Hubble constant, and 3.- We obtain a bad fit to data with a \\chi^2_{min} \\approx 532. These results indicate that this model is viable just if the bulk viscosity is triggered in recent times.

  13. Comprehensive tests of artificial viscosities, their switches and derivative operators used in Smoothed Particle Hydrodynamics

    CERN Document Server

    Hosono, Natsuki; Makino, Junichiro

    2016-01-01

    Hydrodynamical simulations of rotating disk play important roles in the field of astrophysical and planetary science. Smoothed Particle Hydrodynamics (SPH) has been widely used for such simulations. It, however, has been known that with SPH, a cold and thin Kepler disk breaks up due to the unwanted angular momentum transfer. Two possible reasons have been suggested for this breaking up of the disk; the artificial viscosity (AV) and the numerical error in the evaluation of pressure gradient in SPH. Which one is dominant has been still unclear. In this paper, we investigate the reason for this rapid breaking up of the disk. We implemented most of popular formulations of AV and switches and measured the angular momentum transfer due to both AV and the error of SPH estimate of pressure gradient. We found that the angular momentum transfer due to AV at the inner edge triggers the breaking up of the disk. We also found that the classical von-Neumann-Richtmyer-Landshoff type AV with a high order estimate for $\

  14. Analytical formulas for shear and bulk viscosities in relativistic gaseous mixtures with constant cross sections

    CERN Document Server

    Moroz, O

    2014-01-01

    Using Mathematica package, we derive analytical closed-form expressions for the shear and the bulk viscosity coefficients in multicomponent relativistic gases with constant cross sections, being the relativistic generalization for the hard spheres model. Some of them are cumbersome and require symbolic manipulations in an algebraic package. The constant cross sections are of the elastic processes, while the inelastic (or number-changing) processes (collisions or decays) are considered only partly. As examples, we find explicit expressions of the correct single-component first-order shear viscosity coefficient and some explicit analytical results for the binary mixture. These formulas have numerous applications in approximate nonequilibrium descriptions of gases of particles or quasiparticles with averaged (temperature dependent) cross sections. In addition to this, we present formulas for collision rates and some other related formulas. This paper is a shortened version of a previous one.

  15. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    Science.gov (United States)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  16. Modified equation of state, scalar field, and bulk viscosity in Friedmann universe

    CERN Document Server

    Ren, J

    2006-01-01

    A generalized dynamical equation for the scale factor of the universe is proposed to describe the cosmological evolution, of which the $\\Lambda$CDM model is a special case. It also provides a general example to show the equivalence of the modified equation of state (EOS) and a scalar field model. In the mathematical aspect, the EOS, the scalar field potential $V(\\phi)$, and the scale factor $a(t)$ all have possessed analytical solutions. Such features are due to a simple form invariance of the equation inherited which determines the Hubble parameter. From the physical point of view, this dynamical equation can be regarded as the $\\Lambda$CDM model with bulk viscosity, an existence content in the universe. We employ the SNe data with the parameter $\\mathcal{A}$ measured from the SDSS data and the shift parameter $\\mathcal{R}$ measured from WMAP data to constrain the parameters in our model. The result is that the contribution of the bulk viscosity, accumulated as an effective dark energy responsible for the cu...

  17. Online measurements of surface tensions and viscosities based on the hydrodynamics of Taylor flow in a microchannel

    Science.gov (United States)

    Sun, Yanhong; Guo, Chaohong; Jiang, Yuyan; Wang, Tao; Zhang, Lei

    2016-11-01

    This paper demonstrates an online measurement technique which can measure both surface tension and viscosity for confined fluids in microfluidic systems. The surface tension and viscosity are determined by monitoring the liquid film thickness deposited in a microchannel based on the hydrodynamics of Taylor flow. Measurements were carried out for pure liquids and binary aqueous liquid mixtures. The results agreed well with reference data and theoretical models. This novel method has considerable potential for measuring dynamic interfacial tension of complex mixtures. Furthermore, it offers opportunity for integrating property measurement with two-phase flow in microchannel, opening new lines of applications.

  18. Neutrino emissivities and bulk viscosity in neutral two flavor quark matter

    CERN Document Server

    Berdermann, J; Fischer, T; Kachanovich, A

    2016-01-01

    We study thermodynamic and transport properties for the isotropic color-spin-locking (iso-CSL) phase of two-flavor superconducting quark matter under compact star constraints within a NJL-type chiral quark model. Chiral symmetry breaking and the phase transition to superconducting quark matter leads to a density dependent change of quark masses, chemical potentials and diquark gap. A self-consistent treatment of these physical quantities influences on the microscopic calculations of transport properties. We present results for the iso-CSL direct URCA emissivities and bulk viscosities, which fulfill the constraints on quark matter derived from cooling and rotational evolution of compact stars. We compare our results with the phenomenologically successful, but yet heuristic 2SC+X phase. We show that the microscopically founded iso-CSL phase can replace the purely phenomenological 2SC+X phase in modern simulations of the cooling evolution for compact stars with color superconducting quark matter interior.

  19. Neutrino emissivities and bulk viscosity in neutral two-flavor quark matter

    Science.gov (United States)

    Berdermann, J.; Blaschke, D.; Fischer, T.; Kachanovich, A.

    2016-12-01

    We study thermodynamic and transport properties for the isotropic color-spin-locking (iso-CSL) phase of two-flavor superconducting quark matter under compact star constraints within a Nambu-Jona-Lasinio-type chiral quark model. Chiral symmetry breaking and the phase transition to superconducting quark matter leads to a density dependent change of quark masses, chemical potentials, and diquark gap. A self-consistent treatment of these physical quantities influences the microscopic calculations of transport properties. We present results for the iso-CSL direct URCA emissivities and bulk viscosities, which fulfil the constraints on quark matter derived from cooling and rotational evolution of compact stars. We compare our results with the phenomenologically successful, but yet heuristic 2 SC +X phase. We show that the microscopically founded iso-CSL phase can replace the purely phenomenological 2 SC +X phase in modern simulations of the cooling evolution for compact stars with color-superconducting quark matter interior.

  20. Quasiparticle anisotropic hydrodynamics

    CERN Document Server

    Alqahtani, Mubarak

    2016-01-01

    We study an azimuthally-symmetric boost-invariant quark-gluon plasma using quasiparticle anisotropic hydrodynamics including the effects of both shear and bulk viscosities. We compare results obtained using the quasiparticle method with the standard anisotropic hydrodynamics and viscous hydrodynamics. We consider the predictions of the three methods for the differential particle spectra and mean transverse momentum. We find that the three methods agree for small shear viscosity to entropy density ratio, $\\eta/s$, but show differences at large $\\eta/s$. Additionally, we find that the standard anisotropic hydrodynamics method shows suppressed production at low transverse-momentum compared to the other two methods, and the bulk-viscous correction can drive the primordial particle spectra negative at large $p_T$ in viscous hydrodynamics.

  1. Thermal conductivity, shear and bulk viscosities for a relativistic binary mixture

    Science.gov (United States)

    Moratto, Valdemar; Kremer, Gilberto M.

    2016-11-01

    In the present work, we deal with a binary mixture of diluted relativistic gases within the framework of the kinetic theory. The analysis is made within the framework of the Boltzmann equation. We assume that the gas is under the influence of an isotropic Schwarzschild metric and is composed of particles with speeds comparable with the light speed. Taking into account the constitutive equations for the laws of Fourier and Navier-Stokes, we obtain expressions for the thermal conductivity, the shear, and bulk viscosities. To evaluate the integrals we assume a hard-sphere interaction along with non-disparate masses for the particles of each component. We show the analytical expressions and the behavior of the transport coefficients with respect to a relativistic parameter which gives the ratio of the rest energy of the particles to the thermal energy of the gas. We also determine the dependence of the transport coefficients with respect to the gravitational potential and demonstrate that the corresponding one component limit is recovered by considering particles with equal masses, in accordance with the kinetic theory of a single fluid.

  2. Renormalization Group Flow, Stability, and Bulk Viscosity in a Large N Thermal QCD Model

    CERN Document Server

    Dasgupta, Keshav; Gale, Charles; Richard, Michael

    2016-01-01

    The ultraviolet completion of a large N QCD model requires introducing new degrees of freedom at certain scale so that the UV behavior may become asymptotically conformal with no Landau poles and no UV divergences of Wilson loops. These UV degrees of freedom are represented by certain anti-branes arranged on the blown-up sphere of a warped resolved conifold in a way that they are separated from the other set of branes that control the IR behavior of the theory. This separation of the branes and the anti-branes creates instability in the theory. Further complications arise from the curvature of the ambient space. We show that, despite these analytical hurdles, stability may still be achieved by switching on appropriate world-volume fluxes on the branes. The UV degrees of freedom, on the other hand, modify the RG flow in the model. We discuss this in details by evaluating the flow from IR confining to UV conformal. Finally we lay down a calculational scheme to study bulk viscosity which, in turn, would signal t...

  3. On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity

    Directory of Open Access Journals (Sweden)

    Nikolai N. Bogoliubov (Jr.

    2007-01-01

    Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.

  4. Bulk Viscosity of dual Fluid at Finite Cutoff Surface via Gravity/Fluid correspondence in Einstein-Maxwell Gravity

    CERN Document Server

    Hu, Ya-Peng; Wu, Xiao-Ning

    2014-01-01

    Basing the previous paper arXiv:1207.5309, we investigate the probability to find out the bulk viscosity of dual fluid at the finite cutoff surface via gravity/fluid correspondence in Einstein-Maxwell Gravity. We find that if we adopt new conditions to fix the undetermined parameters contained in the stress tensor and charged current of the dual fluid, two new terms could appear in the stress tensor of the dual fluid. One new term is related to the bulk viscosity term, while the other could be related to the perturbation of energy density. In addition, since the parameters contained in the charged current are the same, the charged current is not changed.

  5. Water nano-hydrodynamics: The interplay between interfacial viscosity, slip and chemistry

    Science.gov (United States)

    Chiu, Hsiang-Chih; Ortiz-Young, Deborah; Riedo, Elisa

    2012-02-01

    The understanding and the ability to manipulate fluids at the nanoscale is a matter of continuously growing scientific and technological interest. Fluid flow in nano-confined geometries is relevant for biology, polymer science and geophysics. The applications range from gene sequencing to protein segregation, cell sorting, sensors, nanotribology and diffusion through porous media. Here, we present experiments which show how the interfacial viscosity of water strongly depends on the wetting properties of the confining surfaces. This dependence is fully explained by considering water slippage at the stationary solid surface. The interfacial viscous forces as a function of six surfaces with different wettability are fitted with a modified form of the Newtonian definition of viscosity, which takes into consideration the fluid slip. This simple relationship can explain the viscosity measurements and permits us to extract a ``slip parameter'' for each investigated surface. This slip parameter is found to increase with the static contact angle of the solid surface as expected from previous work, bringing clear evidence of the relationship between viscosity and slip.

  6. Viscosity of dilute suspensions of rigid bead arrays at low shear: accounting for the variation in hydrodynamic stress over the bead surfaces.

    Science.gov (United States)

    Allison, Stuart A; Pei, Hongxia

    2009-06-11

    In this work, we examine the viscosity of a dilute suspension of irregularly shaped particles at low shear. A particle is modeled as a rigid array of nonoverlapping beads of variable size and geometry. Starting from a boundary element formalism, approximate account is taken of the variation in hydrodynamic stress over the surface of the individual beads. For a touching dimer of two identical beads, the predicted viscosity is lower than the exact value by 5.2%. The methodology is then applied to several other model systems including tetramers of variable conformation and linear strings of touching beads. An analysis is also carried out of the viscosity and translational diffusion of several dilute amino acids and diglycine in water. It is concluded that continuum hydrodynamic modeling with stick boundary conditions is unable to account for the experimental viscosity and diffusion data simultaneously. A model intermediate between "stick" and "slip" could possibly reconcile theory and experiment.

  7. Application of Technology of Hydrodynamic Cavitation Processing High-Viscosity Oils for the Purpose of Improving the Rheological Characteristics of Oils

    Science.gov (United States)

    Zemenkov, Y. D.; Zemenkova, M. Y.; Vengerov, A. A.; Brand, A. E.

    2016-10-01

    There is investigated the technology of hydrodynamic cavitational processing viscous and high-viscosity oils and the possibility of its application in the pipeline transport system for the purpose of increasing of rheological properties of the transported oils, including dynamic viscosity shear stress in the article. It is considered the possibility of application of the combined hydrodynamic cavitational processing with addition of depressor additive for identification of effect of a synergism. It is developed the laboratory bench and they are presented results of modeling and laboratory researches. It is developed the hardware and technological scheme of application of the developed equipment at industrial objects of pipeline transport.

  8. Quasiparticle anisotropic hydrodynamics for central collisions

    CERN Document Server

    Alqahtani, Mubarak; Strickland, Michael

    2016-01-01

    We use quasiparticle anisotropic hydrodynamics to study an azimuthally-symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state. We compare results obtained using the quasiparticle method with the standard method of imposing the equation of state in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio eta/s. We find that the three methods agree well for small shear viscosity to entropy density ratio, eta/s, but differ at large eta/s. We find, in particular, that when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative...

  9. Holographic fluid with bulk viscosity, perturbation of pressure and energy density at finite cutoff surface in the Einstein gravity

    CERN Document Server

    Hu, Ya-Peng; Wu, Xiao-Ning

    2014-01-01

    Using the gravity/fluid correspondence in our paper, we investigate the holographic fluid at finite cutoff surface in the Einstein gravity. After constructing the first order perturbative solution of the Schwarzschild-AdS black brane solution in the Einstein gravity, we focus on the stress-energy tensor of the dual fluid with transport coefficients at the finite cutoff surface. Besides the pressure and energy density of dual fluid are obtained, the shear viscosity is also obtained. The most important results are that we find that if we adopt different conditions to fix the undetermined parameters contained in the stress-energy tensor of the dual fluid, the pressure and energy density of the dual fluid can be perturbed. Particularly, the bulk viscosity of the dual fluid can also be given in this case.

  10. Non Existence of Shear in Bianchi Type-Ⅲ String Cosmological Models with Bulk Viscosity and Time-Dependent A Term

    Institute of Scientific and Technical Information of China (English)

    R. K. Tiwari; Sonia Sharma

    2011-01-01

    We study the non existence of shear in locally rotationally symmetric Bianchi type-Ⅲ string cosmological models with bulk viscosity and variable cosmological term Λ. Exact solutions of the field equations are obtained by assuming the conditions: the bulk viscosity is proportional to the expansion scalar, ε ∝ θ, expansion scalar is proportional to shear scalar, θ ∝ σ, and Λ is proportional to the Hubble parameter. The coefficient of bulk viscosity is assumed to be a power function of mass density. The corresponding physical interpretations of the cosmological solutions are also discussed.%@@ We study the non existence of shear in locally rotationally symmetric Bianchi type-M string cosmological models with bulk viscosity and variable cosmological term Λ.Exact solutions of the field equations are obtained by assuming the conditions: the bulk viscosity is proportional to the expansion scalar, ξ∝θ, expansion scalar is proportional to shear scalar, θ∝σ, and A is proportional to the Hubble parameter.The coefficient of bulk viscosity is assumed to be a power function of mass density.The corresponding physical interpretations of the cosmological solutions are also discussed.

  11. SU(3) Polyakov linear-sigma model: bulk and shear viscosity of QCD matter in finite magnetic field

    CERN Document Server

    Tawfik, Abdel Nasser; Hussein, T M

    2016-01-01

    Due to off-center relativistic motion of the charged spectators and the local momentum-imbalance of the participants, a short-lived huge magnetic field is likely generated, especially in relativistic heavy-ion collisions. In determining the temperature dependence of bulk and shear viscosities of the QCD matter in vanishing and finite magnetic field, we utilize mean field approximation to the SU($3$) Polyakov linear-sigma model (PLSM). We compare between the results from two different approaches; Green-Kubo correlation and Boltzmann master equation with Chapman-Enskog expansion. We find that both approaches have almost identical results, especially in the hadron phase. In the temperature dependence of bulk and shear viscosities relative to thermal entropy at the critical temperature, there is a rapid decrease in the chiral phase-transition and in the critical temperature with increasing magnetic field. As the magnetic field strength increases, a peak appears at the critical temperature ($T_c$). This can be und...

  12. Viscosity properties and strong liquid behavior of Pr60Ni25Al15 bulk metallic glass-forming liquids

    Institute of Scientific and Technical Information of China (English)

    WANG Dan; ZHANG Di; WANG ShuYing; NING QianYan; ZHENG CaiPing; YAN Yuan; LIU Jia; SUN MinHua

    2008-01-01

    Pr60Ni25Al15 bulk metallic glass in a cuboid form with dimensions of 2 mm×2 mm×55 mm by copper mold casting method was cast.The dynamic viscosity near the glass transition region for Pr60Ni25Al15 was measured by three-point beam bending methods.The fragility parameter m and activation energy for viscous flow of the liquid sample were calculated to be: m = 31.66, E= 10689.17 K, respectively.It was shown that the supercooled liquid of Pr60Ni25Al15 alloy behaved much closer to strong glasses.The variation of active energy with temperature in supercooled liquid was analyzed.It was found that Kivelson's super-Arrhenius equation is not suitable for description of the activation energy in a supercooled region of Bulk metallic glass, and there is a direct proportion between activation energy crystal-lization and activation energy of viscous flow.

  13. Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Universe

    CERN Document Server

    Avelino, Arturo

    2010-01-01

    We explore the viability of a bulk viscous matter-dominated Universe to explain the present accelerated expansion of the Universe. The model is composed by two fluids: a radiation component and a pressureless fluid with bulk viscosity of the form zeta = zeta_0 + zeta_1 H where zeta_0 and zeta_1 are constants and H is the Hubble parameter. The pressureless fluid characterizes both the baryon and dark matter components. We study all the possible scenarios for the Universe according to the values of zeta_0 and zeta_1 analyzing the behavior of the scale factor as well as the curvature scalar and the matter density. On the other hand, we test the model computing the best estimated values of zeta_0 and zeta_1 using the type Ia Supernovae (SNe Ia) and the shift parameter R of the Cosmic Microwave Radiation Anisotropies (CMB) probes. We find that the model fits well to both tests. We find also that from all the possible scenarios for the Universe, the preferred one by the best estimated values of (zeta_0, zeta_1) is ...

  14. Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe?

    CERN Document Server

    Avelino, Arturo

    2008-01-01

    We test a cosmological model which the only component is a pressureless fluid with a constant bulk viscosity as an explanation for the present accelerated expansion of the universe. We classify all the possible scenarios for the universe according to their past, present and future evolution. We test the viability of the model performing a Bayesian statistical analysis using the Gold 2006 (182 SNe) and ESSENCE + HST (192 SNe) type Ia supernovae (SNe Ia) data sets, imposing the second law of thermodynamics on the dimensionless constant bulk viscous coefficient and comparing the predicted age of the universe with the constraints in the age of the universe coming from the oldest globular clusters. The age of the universe is found to be 15.507 Gyr and 16.501 Gyr using the Gold 2006 and ESSENCE+HST SNe Ia data sets respectively. The best estimated values obtained for this model are similar to those obtained from the LCDM model for H_0 and \\chi^2_{min} using the same SNe Ia data sets and the estimated ages of the un...

  15. Viscosity properties and strong liquid behavior of Pr60Ni25Al15 bulk metallic glass-forming liquids

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pr60Ni25Al15 bulk metallic glass in a cuboid form with dimensions of 2 mm×2 mm×55 mm by copper mold casting method was cast. The dynamic viscosity near the glass transition region for Pr60Ni25Al15 was measured by three-point beam bending methods. The fragility parameter m and activation energy for viscous flow of the liquid sample were calculated to be:m=31.66,E=10689.17 K,respectively. It was shown that the supercooled liquid of Pr60Ni25Al15 alloy behaved much closer to strong glasses. The variation of active energy with temperature in supercooled liquid was analyzed. It was found that Kivelson’s super-Arrhenius equation is not suitable for description of the activation energy in a supercooled region of Bulk metallic glass,and there is a direct proportion between activation energy crystal-lization and activation energy of viscous flow.

  16. Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo; Nucamendi, Ulises, E-mail: avelino@ifm.umich.mx, E-mail: ulises@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040, Morelia, Michoacán (Mexico)

    2010-08-01

    We explore the viability of a bulk viscous matter-dominated Universe to explain the present accelerated expansion of the Universe. The model is composed by a pressureless fluid with bulk viscosity of the form ζ = ζ{sub 0}+ζ{sub 1}H where ζ{sub 0} and ζ{sub 1} are constants and H is the Hubble parameter. The pressureless fluid characterizes both the baryon and dark matter components. We study the behavior of the Universe according to this model analyzing the scale factor as well as some curvature scalars and the matter density. On the other hand, we compute the best estimated values of ζ{sub 0} and ζ{sub 1} using the type Ia Supernovae (SNe Ia) probe. We find that from all the possible scenarios for the Universe, the preferred one by the best estimated values of (ζ{sub 0},ζ{sub 1}) is that of an expanding Universe beginning with a Big-Bang, followed by a decelerated expansion at early times, and with a smooth transition in recent times to an accelerated expansion epoch that is going to continue forever. The predicted age of the Universe is a little smaller than the mean value of the observational constraint coming from the oldest globular clusters but it is still inside of the confidence interval of this constraint. A drawback of the model is the violation of the local second law of thermodynamics in redshifts z∼>1. However, when we assume ζ{sub 1} = 0, the simple model ζ = ζ{sub 0} evaluated at the best estimated value for ζ{sub 0} satisfies the local second law of thermodynamics, the age of the Universe is in perfect agreement with the constraint of globular clusters, and it also has a Big-Bang, followed by a decelerated expansion with the smooth transition to an accelerated expansion epoch in late times, that is going to continue forever.

  17. Shear and Bulk Viscosities of Quark Matter from Quark-Meson Fluctuations in the Nambu--Jona-Lasinio model

    CERN Document Server

    Ghosh, Sabyasachi; Roy, Victor; Serna, Fernando E; Krein, Gastão

    2015-01-01

    We have calculated the temperature dependence of shear $\\eta$ and bulk $\\zeta$ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-$\\pi$ and quark-$\\sigma$ loops at finite temperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent constituent-quark and meson masses, and quark-meson couplings are obtained in the Nambu--Jona-Lasinio model. We found a non-trivial influence of the temperature-dependent masses and couplings on the Landau-cut structure of the quark self-energy. Our results for the ratios $\\eta/s$ and $\\zeta/s$, where $s$ is the entropy density (also determined in the Nambu--Jona-Lasinio model in the quasi-particle approximation), are in fair agreement with results of the literature obtained from different models and techniques. In particular, our result for $\\eta/s$ has a minimum very close to the conjectured AdS/CFT lower bound, $\\eta/s = 1/4\\pi$.

  18. Shear and bulk viscosities of quark matter from quark-meson fluctuations in the Nambu-Jona-Lasinio model

    Science.gov (United States)

    Ghosh, Sabyasachi; Peixoto, Thiago C.; Roy, Victor; Serna, Fernando E.; Krein, Gastão

    2016-04-01

    We have calculated the temperature dependence of shear η and bulk ζ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-π and quark-σ loops at finite temperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent constituent-quark and meson masses and quark-meson couplings are obtained in the Nambu-Jona-Lasinio model. We found a nontrivial influence of the temperature-dependent masses and couplings on the Landau-cut structure of the quark self-energy. Our results for the ratios η /s and ζ /s , where s is the entropy density (also determined in the Nambu-Jona-Lasinio model in the quasiparticle approximation), are in fair agreement with results of the literature obtained from different models and techniques. In particular, our result for η /s has a minimum very close to the quantum lower bound, η /s =1 /4 π .

  19. Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe?

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo; Nucamendi, Ulises, E-mail: avelino@ifm.umich.mx, E-mail: ulises@ifm.umich.mx [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacan (Mexico)

    2009-04-15

    We test a cosmological model which the only component is a pressureless fluid with a constant bulk viscosity as an explanation for the present accelerated expansion of the universe. We classify all the possible scenarios for the universe predicted by the model according to their past, present and future evolution and we test its viability performing a Bayesian statistical analysis using the SCP ''Union'' data set (307 SNe Ia), imposing the second law of thermodynamics on the dimensionless constant bulk viscous coefficient {zeta}-tilde and comparing the predicted age of the universe by the model with the constraints coming from the oldest globular clusters. The best estimated values found for {zeta}-tilde and the Hubble constant H{sub 0} are: {zeta}-tilde = 1.922{+-}0.089 and H{sub 0} = 69.62{+-}0.59 (km/s)Mpc{sup -1} with a {chi}{sup 2}{sub min} = 314 ({chi}{sup 2}{sub d.o.f} = 1.031). The age of the universe is found to be 14.95{+-}0.42 Gyr. We see that the estimated value of H{sub 0} as well as of {chi}{sup 2}{sub d.o.f} are very similar to those obtained from {Lambda}CDM model using the same SNe Ia data set. The estimated age of the universe is in agreement with the constraints coming from the oldest globular clusters. Moreover, the estimated value of {zeta}-tilde is positive in agreement with the second law of thermodynamics (SLT). On the other hand, we perform different forms of marginalization over the parameter H{sub 0} in order to study the sensibility of the results to the way how H{sub 0} is marginalized. We found that it is almost negligible the dependence between the best estimated values of the free parameters of this model and the way how H{sub 0} is marginalized in the present work. Therefore, this simple model might be a viable candidate to explain the present acceleration in the expansion of the universe.

  20. Hyperscaling-Violating Lifshitz hydrodynamics from black-holes: Part II

    CERN Document Server

    Kiritsis, Elias

    2016-01-01

    The derivation of Lifshitz-invariant hydrodynamics from holography, presented in [arXiv:1508.02494] is generalized to arbitrary hyperscaling violating Lifshitz scaling theories with an unbroken U(1) symmetry. The hydrodynamics emerging is non-relativistic with scalar "forcing". By a redefinition of the pressure it becomes standard non-relativistic hydrodynamics in the presence of specific chemical potential for the mass current. The hydrodynamics is compatible with the scaling theory of Lifshitz invariance with hyperscaling violation. The bulk viscosity vanishes while the shear viscosity to entropy ratio is the same as in the relativistic case. We also consider the dimensional reduction ansatz for the hydrodynamics and clarify the difference with previous results suggesting a non-vanishing bulk viscosity.

  1. Pinning down QCD-matter shear viscosity in A + A collisions via EbyE fluctuations using pQCD + saturation + hydrodynamics

    Science.gov (United States)

    Niemi, H.; Eskola, K. J.; Paatelainen, R.; Tuominen, K.

    2016-12-01

    We compute the initial energy densities produced in ultrarelativistic heavy-ion collisions from NLO perturbative QCD using a saturation conjecture to control soft particle production, and describe the subsequent space-time evolution of the system with hydrodynamics, event by event. The resulting centrality dependence of the low-pT observables from this pQCD + saturation + hydro ("EKRT") framework are then compared simultaneously to the LHC and RHIC measurements. With such an analysis we can test the initial state calculation, and constrain the temperature dependence of the shear viscosity-to-entropy ratio η / s of QCD matter. Using these constraints from the current RHIC and LHC measurements we then predict the charged hadron multiplicities and flow coefficients for the 5 TeV Pb + Pb collisions.

  2. Pinning down QCD-matter shear viscosity in A+A collisions via EbyE fluctuations using pQCD + saturation + hydrodynamics

    CERN Document Server

    Niemi, H; Paatelainen, R; Tuominen, K

    2015-01-01

    We compute the initial energy densities produced in ultrarelativistic heavy-ion collisions from NLO perturbative QCD using a saturation conjecture to control soft particle production, and describe the subsequent space-time evolution of the system with hydrodynamics, event by event. The resulting centrality dependence of the low-$p_T$ observables from this pQCD + saturation + hydro ("EKRT") framework are then compared simultaneously to the LHC and RHIC measurements. With such an analysis we can test the initial state calculation, and constrain the temperature dependence of the shear viscosity-to-entropy ratio $\\eta/s$ of QCD matter. Using these constraints from the current RHIC and LHC measurements we then predict the charged hadron multiplicities and flow coefficients for the 5.023 TeV Pb+Pb collisions.

  3. A two-component volatile atmosphere for Pluto. I. The bulk hydrodynamic escape regime

    Energy Technology Data Exchange (ETDEWEB)

    Trafton, L. (Texas Univ., Austin (USA))

    1990-08-01

    The seasonal effects on Pluto's atmosphere of a simplified system of CH{sub 4} and N{sub 2} saturated over a solid solution are investigated, and the results are compared with previous CH{sub 4} models. It is found that bulk escape occurs for CH{sub 4} mole fractions less than 0.7 of Pluto's volatile reservoir. Greater CH{sub 4} abundance leads to diffusive separation during the escape of both species and an atmospheric mixing ratio of about Xc(0). If Xc(0) is in the range 0.02-0.10, Pluto's atmosphere remains largely intact at aphelion rather than virtually freezing out as it does for Xc(0) greater than 0.3 or less than 0.001, or form an atmosphere with only a single volatile gas. An upper limit for the CH{sub 4} mixing ratio is about 0.07 if N{sub 2} is the second gas. On the other hand, CH{sub 4} is the dominant surface constituent of the volatile deposit if Xc(0) is greater than 0.0001. 29 refs.

  4. On the Effects of Viscosity on the Shock Waves for a Hydrodynamical Case—Part I: Basic Mechanism

    Directory of Open Access Journals (Sweden)

    Huseyin Cavus

    2013-01-01

    Full Text Available The interaction of shock waves with viscosity is one of the central problems in the supersonic regime of compressible fluid flow. In this work, numerical solutions of unmagnetised fluid equations, with the viscous stress tensor, are investigated for a one-dimensional shock wave. In the algorithm developed the viscous stress terms are expressed in terms of the relevant Reynolds number. The algorithm concentrated on the compression rate, the entropy change, pressures, and Mach number ratios across the shock wave. The behaviour of solutions is obtained for the Reynolds and Mach numbers defining the medium and shock wave in the supersonic limits.

  5. An energy stable algorithm for a quasi-incompressible hydrodynamic phase-field model of viscous fluid mixtures with variable densities and viscosities

    Science.gov (United States)

    Gong, Yuezheng; Zhao, Jia; Wang, Qi

    2017-10-01

    A quasi-incompressible hydrodynamic phase field model for flows of fluid mixtures of two incompressible viscous fluids of distinct densities and viscosities is derived by using the generalized Onsager principle, which warrants the variational structure, the mass conservation and energy dissipation law. We recast the model in an equivalent form and discretize the equivalent system in space firstly to arrive at a time-dependent ordinary differential and algebraic equation (DAE) system, which preserves the mass conservation and energy dissipation law at the semi-discrete level. Then, we develop a temporal discretization scheme for the DAE system, where the mass conservation and the energy dissipation law are once again preserved at the fully discretized level. We prove that the fully discretized algorithm is unconditionally energy stable. Several numerical examples, including drop dynamics of viscous fluid drops immersed in another viscous fluid matrix and mixing dynamics of binary polymeric solutions, are presented to show the convergence property as well as the accuracy and efficiency of the new scheme.

  6. La lubrification hydrodynamique des paliers. Influence des additifs de viscosité Hydrodynamic Bearing Lubrication. Influence of Viscosity Improvers

    Directory of Open Access Journals (Sweden)

    Robin M.

    2006-11-01

    -length bearing has been developed, and ifs opération has been investigated with pure minéral cils. The results are close ta those theoretically predicted. However, thé Sommerfeld number does notsuffice for defining thé behavior of this bearing. At on equal Sommerfeld number, if thé rotation speed is voried and thé eccentricity is examined, this latter is found ta be all thé smallerasthe rotation speed is faster. The appearance of forces perpendicular ta thé sheor planes inside lubricants containing some viscosity improvers is revealed by a Weissenberg rheogoniometer.

  7. Shear and Bulk Viscosities of a Weakly Coupled Quark Gluon Plasma with Finite Chemical Potential and Temperature---Leading-Log Results

    CERN Document Server

    Chen, Jiunn-Wei; Song, Yu-Kun; Wang, Qun

    2012-01-01

    We calculate the shear (eta) and bulk (zeta) viscosities of a weakly coupled quark gluon plasma at the leading-log order with finite temperature T and quark chemical potential mu. We find that the shear viscosity to entropy density ratio eta/s increases monotonically with mu and eventually scales as (mu/T)^2 at large mu. In contrary, zeta/s is insensitive to mu. Both eta/s and zeta/s are monotonically decreasing functions of the quark flavor number N_f when N_f \\geq 2. This property is also observed in pion gas systems. Our perturbative calculation suggests that QCD becomes the most perfect (i.e. with the smallest eta/s) at mu=0 and N_f = 16 (the maximum N_f with asymptotic freedom). It would be interesting to test whether the currently smallest eta/s computed close to the phase transition with mu=0 and N_f = 0 can be further reduced by increasing N_f.

  8. Roles of bulk viscosity on Rayleigh-Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts

    Science.gov (United States)

    Sengupta, Tapan K.; Sengupta, Aditi; Sharma, Nidhi; Sengupta, Soumyo; Bhole, Ashish; Shruti, K. S.

    2016-09-01

    Direct numerical simulations of Rayleigh-Taylor instability (RTI) between two air masses with a temperature difference of 70 K is presented using compressible Navier-Stokes formulation in a non-equilibrium thermodynamic framework. The two-dimensional flow is studied in an isolated box with non-periodic walls in both vertical and horizontal directions. The non-conducting interface separating the two air masses is impulsively removed at t = 0 (depicting a heaviside function). No external perturbation has been used at the interface to instigate the instability at the onset. Computations have been carried out for rectangular and square cross sections. The formulation is free of Boussinesq approximation commonly used in many Navier-Stokes formulations for RTI. Effect of Stokes' hypothesis is quantified, by using models from acoustic attenuation measurement for the second coefficient of viscosity from two experiments. Effects of Stokes' hypothesis on growth of mixing layer and evolution of total entropy for the Rayleigh-Taylor system are reported. The initial rate of growth is observed to be independent of Stokes' hypothesis and the geometry of the box. Following this stage, growth rate is dependent on the geometry of the box and is sensitive to the model used. As a consequence of compressible formulation, we capture pressure wave-packets with associated reflection and rarefaction from the non-periodic walls. The pattern and frequency of reflections of pressure waves noted specifically at the initial stages are reflected in entropy variation of the system.

  9. Roles of bulk viscosity on Rayleigh-Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Tapan K., E-mail: tksen@iitk.ac.in; Bhole, Ashish; Shruti, K. S. [HPCL, Department of Aerospace Engineering, IIT Kanpur, Kanpur, UP (India); Sengupta, Aditi [Department of Engineering, University of Cambridge, Cambridge (United Kingdom); Sharma, Nidhi [Graduate Student, HPCL, Department of Aerospace Engineering, IIT Kanpur, Kanpur, UP (India); Sengupta, Soumyo [Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Direct numerical simulations of Rayleigh-Taylor instability (RTI) between two air masses with a temperature difference of 70 K is presented using compressible Navier-Stokes formulation in a non-equilibrium thermodynamic framework. The two-dimensional flow is studied in an isolated box with non-periodic walls in both vertical and horizontal directions. The non-conducting interface separating the two air masses is impulsively removed at t = 0 (depicting a heaviside function). No external perturbation has been used at the interface to instigate the instability at the onset. Computations have been carried out for rectangular and square cross sections. The formulation is free of Boussinesq approximation commonly used in many Navier-Stokes formulations for RTI. Effect of Stokes’ hypothesis is quantified, by using models from acoustic attenuation measurement for the second coefficient of viscosity from two experiments. Effects of Stokes’ hypothesis on growth of mixing layer and evolution of total entropy for the Rayleigh-Taylor system are reported. The initial rate of growth is observed to be independent of Stokes’ hypothesis and the geometry of the box. Following this stage, growth rate is dependent on the geometry of the box and is sensitive to the model used. As a consequence of compressible formulation, we capture pressure wave-packets with associated reflection and rarefaction from the non-periodic walls. The pattern and frequency of reflections of pressure waves noted specifically at the initial stages are reflected in entropy variation of the system.

  10. A Lagrangian formulation of relativistic Israel-Stewart hydrodynamics

    CERN Document Server

    Torrieri, Giorgio

    2016-01-01

    We rederive relativistic hydrodynamics as a Lagrangian effective theory using the doubled coordinates technique, allowing us to include dissipative terms. We include Navier-Stokes shear and bulk terms, as well as Israel-Stewart relaxation time terms, within this formalism. We show how the inclusion of shear viscosity, and the requirement of a bounded energy-momentum "vacuum", forces the inclusion of the Israel-Stewart term into the theory, thereby providing a justification for the origin and uniqueness of these terms.

  11. Inefficient Driving of Bulk Turbulence by Active Galactic Nuclei in a Hydrodynamic Model of the Intracluster Medium

    CERN Document Server

    Reynolds, Christopher S; Schekochihin, Alexander A

    2015-01-01

    Central jetted active galactic nuclei (AGN) appear to heat the core regions of the intracluster medium (ICM) in cooling-core galaxy clusters and groups, thereby preventing a cooling catastrophe. However, the physical mechanism(s) by which the directed flow of kinetic energy is thermalized throughout the ICM core remains unclear. We examine one widely discussed mechanism whereby the AGN induces subsonic turbulence in the ambient medium, the dissipation of which provides the ICM heat source. Through controlled inviscid 3-d hydrodynamic simulations, we verify that explosive AGN-like events can launch gravity waves (g-modes) into the ambient ICM which in turn decay to volume-filling turbulence. In our model, however, this process is found to be inefficient, with less than 1% of the energy injected by the AGN activity actually ending up in the turbulence of the ambient ICM. This efficiency is an order of magnitude or more too small to explain the observations of AGN-feedback in galaxy clusters and groups with shor...

  12. Two-pion interferometry for viscous hydrodynamic sources

    Institute of Scientific and Technical Information of China (English)

    Efaaf M.J.; SU Zhong-Qian; ZHANG Wei-Ning

    2012-01-01

    The space-time evolution of the (1+1)-dimensional viscous hydrodynamics with an initial quarkgluon plasma (QGP) produced in ultrarelativistic heavy ion collisions is studied numerically.The particleemitting sources undergo a crossover transition from the QGP to hadronic gas.We take into account a usual shear viscosity for the strongly coupled QGP as well as the bulk viscosity which increases significantly in the crossover region.The two-pion Hanbury-Brown-Twiss (HBT) interferometry for the viscous hydrodynamic sources is performed.The HBT analyses indicate that the viscosity effect on the two-pion HBT results is small if only the shear viscosity is taken into consideration in the calculations.The bulk viscosity leads to a larger transverse freeze-out configuration of the pion-emitting sources,and thus increases the transverse HBT radii.The results of the longitudinal HBT radius for the source with Bjorken longitudinal scaling are consistent with the experimental data.

  13. Physical properties of halthane series adhesives, part 2 of 2. Period covered: October--December 1976. [Urethanes: tensile adhesion; bulk viscosity; hardness

    Energy Technology Data Exchange (ETDEWEB)

    Lichte, H.W.

    1976-01-01

    The Halthane series of urethane adhesives have sufficient adhesive strengths and cure times for most assembly processes at Pantex. The efficiency of preparation and handling of the three systems are nearly equal. Physical properties are more consistent between samples for the 87-1. The 73-18 system is ranked in the middle and 73-14 as the least consistent. The 87-1 system is high in viscosity and adhesive bond strength. The low viscosity of 73-18 and 73-14 allows more consistency in bond thickness control. The Halthane 73-18 system in this series of development tests is considered best for processing/assembly capability.

  14. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  15. The Role of Viscosity in TATB Hot Spot Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Fried, L E; Zepeda-Ruis, L; Howard, W M; Najjar, F; Reaugh, J E

    2011-08-02

    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

  16. Viscous QCD matter in a hybrid hydrodynamic+Boltzmann approach

    CERN Document Server

    Song, Huichao; Heinz, Ulrich W

    2010-01-01

    A hybrid transport approach for the bulk evolution of viscous QCD matter produced in ultra-relativistic heavy-ion collisions is presented. The expansion of the dense deconfined phase of the reaction is modeled with viscous hydrodynamics while the dilute late hadron gas stage is described microscopically by the Boltzmann equation. The advantages of such a hybrid approach lie in the improved capability of handling large dissipative corrections in the late dilute phase of the reaction, including a realistic treatment of the non-equilibrium hadronic chemistry and kinetic freeze-out. By varying the switching temperature at which the hydrodynamic output is converted to particles for further propagation with the Boltzmann cascade we test the ability of the macroscopic hydrodynamic approach to emulate the microscopic evolution during the hadronic stage and extract the temperature dependence of the effective shear viscosity of the hadron resonance gas produced in the collision. We find that the extracted values depend...

  17. An approximate Expression for Viscosity of Nanosuspensions

    CERN Document Server

    Domostroeva, N G

    2009-01-01

    We consider liquid suspensions with dispersed nanoparticles. Using two-points Pade approximants and combining results of both hydrodynamic and molecular dynamics methods, we obtain the effective viscosity for any diameters of nanoparticles

  18. Dynamic heterogeneity controls diffusion and viscosity near biological interfaces

    Science.gov (United States)

    Pronk, Sander; Lindahl, Erik; Kasson, Peter M.

    2014-01-01

    At a nanometre scale, the behaviour of biological fluids is largely governed by interfacial physical chemistry. This may manifest as slowed or anomalous diffusion. Here we describe how measures developed for studying glassy systems allow quantitative measurement of interfacial effects on water dynamics, showing that correlated motions of particles near a surface result in a viscosity greater than anticipated from individual particle motions. This effect arises as a fundamental consequence of spatial heterogeneity on nanometre length scales and applies to any fluid near any surface. Increased interfacial viscosity also causes the classic finding that large solutes such as proteins diffuse much more slowly than predicted in bulk water. This has previously been treated via an empirical correction to the solute size: the hydrodynamic radius. Using measurements of quantities from theories of glass dynamics, we can now calculate diffusion constants from molecular details alone, eliminating the empirical correction factor.

  19. Black Brane Viscosity and the Gregory-Laflamme Instability

    CERN Document Server

    Camps, Joan; Haddad, Nidal

    2010-01-01

    We study long wavelength perturbations of neutral black p-branes in asymptotically flat space and show that, as anticipated in the blackfold approach, solutions of the relativistic hydrodynamic equations for an effective p+1-dimensional fluid yield solutions to the vacuum Einstein equations in a derivative expansion. Going beyond the perfect fluid approximation, we compute the effective shear and bulk viscosities of the black brane. The values we obtain saturate generic bounds. Sound waves in the effective fluid are unstable, and have been previously related to the Gregory-Laflamme instability of black p-branes. By including the damping effect of the viscosity in the unstable sound waves, we obtain a remarkably good and simple approximation to the dispersion relation of the Gregory-Laflamme modes, whose accuracy increases with the number of transverse dimensions. We propose an exact limiting form as the number of dimensions tends to infinity.

  20. Conservative smoothing versus artificial viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, C.; Hicks, D.L. [Michigan Technological Univ., Houghton, MI (United States); Swegle, J.W. [Sandia National Labs., Albuquerque, NM (United States). Solid and Structural Mechanics Dept.

    1994-08-01

    This report was stimulated by some recent investigations of S.P.H. (Smoothed Particle Hydrodynamics method). Solid dynamics computations with S.P.H. show symptoms of instabilities which are not eliminated by artificial viscosities. Both analysis and experiment indicate that conservative smoothing eliminates the instabilities in S.P.H. computations which artificial viscosities cannot. Questions were raised as to whether conservative smoothing might smear solutions more than artificial viscosity. Conservative smoothing, properly used, can produce more accurate solutions than the von Neumann-Richtmyer-Landshoff artificial viscosity which has been the standard for many years. The authors illustrate this using the vNR scheme on a test problem with known exact solution involving a shock collision in an ideal gas. They show that the norms of the errors with conservative smoothing are significantly smaller than the norms of the errors with artificial viscosity.

  1. Extension of Radiative Viscosity to Superfluid Matter

    Institute of Scientific and Technical Information of China (English)

    PI Chun-Mei; YANG Shu-Hua; ZHENG Xiao-Ping

    2011-01-01

    The radiative viscosity of superfluid npe matter is studied and it is found that to the lowest order of δμ/T,the ratio of radiative viscosity to bulk viscosity is the same as that of its normal matter.As one of the most important transport coefficients,the bulk viscosities of simple npe matter,of hyperon matter and even of quark matter,both in normal and superfluid states,have been extensively studied,[1-18] for more detail see Ref.[19].%The radiative viscosity of superfluid npe matter is studied and it is found that to the lowest order of δμ/T, the ratio of radiative viscosity to bulk viscosity is the same as that of its normal matter.

  2. A Hydrodynamic Study of p+p Collisions at \\sqrt{s}=7 TeV

    CERN Document Server

    Habich, M; Romatschke, P; Xiang, W

    2015-01-01

    In high energy collisions of heavy-ions, experimental findings of collective flow are customarily associated with the presence of a thermalized medium expanding according to the laws of hydrodynamics. Recently, the ATLAS, CMS and ALICE experiments found signals of the same type and magnitude in ultrarelativistic proton-proton collisions. In this study, the state-of-the art hydrodynamic model SONIC is used to simulate the systems created in p+p collisions. By varying the size of the second-order transport coefficients, the applicability of hydrodynamics itself to the systems created in p+p collisions is quantified. We find that hydrodynamics can give quantitatively reliable results for the particle spectra and the elliptic momentum anisotropy coefficient v2. Using a simple geometric model of the proton based on the elastic form factor leads to results in quantitative agreement with experimental measurements if allowing for a small, but non-vanishing bulk viscosity coefficient.

  3. To the analysis of the theory of mathematical model of hydrodynamics of a bulk layer of a mix of vegetative materials

    Directory of Open Access Journals (Sweden)

    S. A. Bikov

    2012-01-01

    Full Text Available The article presents the results of research work on finding out the interdependence between the dynamic separation of the working apparatus (machine, statistic separation and the degree of filling the apparatus (machine. The final mathematic model of calculating separation - an important hydrodynamic parameter of a layer of vegetable material while extragent is being filtrated through it. The authors worked out a universal method of defining hydrodynamic characteristics of a layer of material which can be applied to any vegetable materials and their mixtures worked up as required.

  4. Hydrodynamics and black holes

    CERN Document Server

    Oz, Yaron

    2015-01-01

    This chapter describes how the AdS/CFT correspondence (the Holographic Principle) relates field theory hydrodynamics to perturbations of black hole (brane) gravitational backgrounds. The hydrodynamics framework is first presented from the field theory point of view, after which the dual gravitational description is outlined, first for relativistic fluids and then for the nonrelativistic case. Further details of the fluid/gravity correspondence are then discussed, including the bulk geometry and the dynamics of the black hole horizon.

  5. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  6. Viscosities of the quasigluon plasma

    CERN Document Server

    Bluhm, M; Redlich, K

    2010-01-01

    We investigate bulk and shear viscosities of the gluon plasma within relaxation time approximation to an effective Boltzmann-Vlasov type kinetic theory by viewing the plasma as describable in terms of quasigluon excitations with temperature dependent self-energies. The found temperature dependence of the transport coefficients agrees fairly well with available lattice QCD results. The impact of some details in the quasigluon dispersion relation on the specific shear viscosity is discussed.

  7. Hydrodynamic transport functions from quantum kinetic theory

    CERN Document Server

    Calzetta, E A; Ramsey, S

    2000-01-01

    Starting from the quantum kinetic field theory [E. Calzetta and B. L. Hu, Phys. Rev. D37, 2878 (1988)] constructed from the closed-time-path (CTP), two-particle-irreducible (2PI) effective action we show how to compute from first principles the shear and bulk viscosity functions in the hydrodynamic-thermodynamic regime. For a real scalar field with $\\lambda \\Phi ^{4}$ self-interaction we need to include 4 loop graphs in the equation of motion. This work provides a microscopic field-theoretical basis to the ``effective kinetic theory'' proposed by Jeon and Yaffe [S. Jeon and L. G. Yaffe, Phys. Rev. D53, 5799 (1996)], while our result for the bulk viscosity reproduces their expression derived from linear response theory and the imaginary-time formalism of thermal field theory. Though unavoidably involved in calculations of this sort, we feel that the approach using fundamental quantum kinetic field theory is conceptually clearer and methodically simpler than the effective kinetic theory approach, as the success...

  8. Phenomenological predictions of 3+1d anisotropic hydrodynamics

    CERN Document Server

    Nopoush, Mohammad; Ryblewski, Radoslaw

    2016-01-01

    We make phenomenological predictions for particle spectra and elliptic flow in heavy-ion collisions using 3+1d anisotropic hydrodynamics (aHydro) including the effects of both shear and bulk viscosities. The dynamical equations necessary are derived by taking moments of the Boltzmann equation allowing for three distinct (diagonal) momentum-space anisotropy parameters. The formulation is based on relaxation-time approximation for the collisional kernel and a lattice-QCD-based equation of state. Evolving the system to late times, we calculate particle production using THERMINATOR 2, modified to account for an ellipsoidal distribution function. We obtain particle spectra for different particle species such as pions, kaons, and protons, and elliptic flow $v_2$ as a function of centrality, transverse momentum, and rapidity. In our model, we have four free parameters, i.e. freeze-out temperature, initial central energy density, initial momentum-space anisotropies, and shear viscosity to entropy density ratio. Using...

  9. Plasma Viscosity with Mass Transport in Spherical ICF Implosion Simulations

    CERN Document Server

    Vold, Erik L; Ortega, Mario I; Moll, Ryan; Fenn, Daniel; Molvig, Kim

    2015-01-01

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrange hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduc...

  10. Volume transport and generalized hydrodynamic equations for monatomic fluids.

    Science.gov (United States)

    Eu, Byung Chan

    2008-10-01

    In this paper, the effects of volume transport on the generalized hydrodynamic equations for a pure simple fluid are examined from the standpoint of statistical mechanics and, in particular, kinetic theory of fluids. First, we derive the generalized hydrodynamic equations, namely, the constitutive equations for the stress tensor and heat flux for a single-component monatomic fluid, from the generalized Boltzmann equation in the presence of volume transport. Then their linear steady-state solutions are derived and examined with regard to the effects of volume transport on them. The generalized hydrodynamic equations and linear constitutive relations obtained for nonconserved variables make it possible to assess Brenner's proposition [Physica A 349, 11 (2005); Physica A 349, 60 (2005)] for volume transport and attendant mass and volume velocities as well as the effects of volume transport on the Newtonian law of viscosity, compression/dilatation (bulk viscosity) phenomena, and Fourier's law of heat conduction. On the basis of study made, it is concluded that the notion of volume transport is sufficiently significant to retain in irreversible thermodynamics of fluids and fluid mechanics.

  11. Viscosity in Modified Gravity 

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2012-11-01

    Full Text Available A bulk viscosity is introduced in the formalism of modified gravity. It is shownthat, based on a natural scaling law for the viscosity, a simple solution can be found forquantities such as the Hubble parameter and the energy density. These solutions mayincorporate a viscosity-induced Big Rip singularity. By introducing a phase transition inthe cosmic fluid, the future singularity can nevertheless in principle be avoided. 

  12. Comparing near-infrared conventional diffuse reflectance spectroscopy and hyperspectral imaging for determination of the bulk properties of solid samples by multivariate regression: determination of Mooney viscosity and plasticity indices of natural rubber.

    Science.gov (United States)

    Juliano da Silva, Carlos; Pasquini, Celio

    2015-01-21

    Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample

  13. Hydrodynamic Overview at Hot Quarks 2016

    CERN Document Server

    Noronha-Hostler, Jacquelyn

    2016-01-01

    This presents an overview of relativistic hydrodynamic modeling in heavy-ion collisions prepared for Hot Quarks 2016, at South Padre Island, TX, USA. The influence of the initial state and viscosity on various experimental observables are discussed. Specific problems that arise in the hydrodynamical modeling at the Beam Energy Scan are briefly discussed.

  14. HYDRODYNAMIC INTERACTIONS BETWEEN TWO BODIES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of model tests, potential flow theory, and viscous Computational Fluid Dynamics (CFD) method, the hydrodynamic interactions between two underwater bodies were investigated to determine the influencing factors, changing rule, interaction mechanism, and appropriate methods describing them. Some special phenomena were discovered in two series of near-wall interaction experiments. The mathematical model and predicting methods were presented for interacting forces near wall, and the calculation results agreed well with the experimental ones. From the comparisons among numerical results with respect to nonviscosity, numerical results with respect to viscosity, and measured results, data on the influence of viscosity on hydrodynamic interactions were obtained. For hydrodynamic interaction related to multi-body unsteady motions with six degrees of freedom that is difficult to simulate in tests, numerical predictions of unsteady interacting forces were given.

  15. Relativistic hydrodynamics on graphics processing units

    CERN Document Server

    Sikorski, Jan; Porter-Sobieraj, Joanna; Słodkowski, Marcin; Krzyżanowski, Piotr; Książek, Natalia; Duda, Przemysław

    2016-01-01

    Hydrodynamics calculations have been successfully used in studies of the bulk properties of the Quark-Gluon Plasma, particularly of elliptic flow and shear viscosity. However, there are areas (for instance event-by-event simulations for flow fluctuations and higher-order flow harmonics studies) where further advancement is hampered by lack of efficient and precise 3+1D~program. This problem can be solved by using Graphics Processing Unit (GPU) computing, which offers unprecedented increase of the computing power compared to standard CPU simulations. In this work, we present an implementation of 3+1D ideal hydrodynamics simulations on the Graphics Processing Unit using Nvidia CUDA framework. MUSTA-FORCE (MUlti STAge, First ORder CEntral, with a~slope limiter and MUSCL reconstruction) and WENO (Weighted Essentially Non-Oscillating) schemes are employed in the simulations, delivering second (MUSTA-FORCE), fifth and seventh (WENO) order of accuracy. Third order Runge-Kutta scheme was used for integration in the t...

  16. DBI scalar field theory for QGP hydrodynamics

    Science.gov (United States)

    Nastase, Horatiu

    2016-07-01

    A way to describe the hydrodynamics of the quark-gluon plasma using a Dirac-Born-Infeld (DBI) action is proposed, based on the model found by Heisenberg for high energy scattering of nucleons. The expanding plasma is described as a shockwave in a DBI model for a real scalar standing in for the pion, and I show that one obtains a fluid description in terms of a relativistic fluid that near the shock is approximately ideal (η ≃0 ) and conformal. One can introduce an extra term inside the square root of the DBI action that generates a shear viscosity term in the energy-momentum tensor near the shock, as well as a bulk viscosity, and regulates the behavior of the energy density at the shock, making it finite. The resulting fluid satisfies the relativistic Navier-Stokes equation with uμ,ρ ,P ,η defined in terms of ϕ and its derivatives. One finds a relation between the parameters of the theory and the quark-gluon plasma thermodynamics, α /β2=η /(s T ), and by fixing α and β from usual (low multiplicity) particle scattering, one finds T ∝mπ.

  17. The effects of viscosity on circumplanetary disks

    Institute of Scientific and Technical Information of China (English)

    De-Fu Bu; Hsien Shang; Feng Yuan

    2013-01-01

    The effects of viscosity on the circumplanetary disks residing in the vicinity of protoplanets are investigated through two-dimensional hydrodynamical simulations with the shearing sheet model.We find that viscosity can considerably affect properties of the circumplanetary disk when the mass of the protoplanet Mp (<) 33 M(⊙),where M(⊙) is the Earth's mass.However,effects of viscosity on the circumplanetary disk are negligibly small when the mass of the protoplanet Mp(>) 33 M(⊙).We find that when Mp(<) 33 M(⊙),viscosity can markedly disrupt the spiral structure of the gas around the planet and smoothly distribute the gas,which weakens the torques exerted on the protoplanet.Thus,viscosity can slow the migration speed of a protoplanet.After including viscosity,the size of the circumplanetary disk can be decreased by a factor of (>) 20%.Viscosity helps to transport gas into the circumplanetary disk from the differentially rotating circumstellar disk.The mass of the circumplanetary disk can be increased by a factor of 50% after viscosity is taken into account when Mp(<) 33 M(⊙).Effects of viscosity on the formation of planets and satellites are briefly discussed.

  18. Fluid viscosity under confined conditions

    Science.gov (United States)

    Rudyak, V. Ya.; Belkin, A. A.

    2014-12-01

    Closed equations of fluid transfer in confined conditions are constructed in this study using ab initio methods of nonequilibrium statistical mechanics. It is shown that the fluid viscosity is not determined by the fluid properties alone, but becomes a property of the "fluid-nanochannel walls" system as a whole. Relations for the tensor of stresses and the interphase force, which specifies the exchange by momentum of fluid molecules with the channel-wall molecules, are derived. It is shown that the coefficient of viscosity is now determined by the sum of three contributions. The first contribution coincides with the expression for the coefficient of the viscosity of fluid in the bulk being specified by the interaction of fluid molecules with each other. The second contribution has the same structure as the first one but is determined by the interaction of fluid molecules with the channel-wall molecules. Finally, the third contribution has no analog in the usual statistical mechanics of transport processes of a simple fluid. It is associated with the correlation of intermolecular forces of the fluid and the channel walls. Thus, it is established that the coefficient of viscosity of fluid in sufficiently small channels will substantially differ from its bulk value.

  19. Dissipation in the effective field theory for hydrodynamics: First order effects

    CERN Document Server

    Endlich, Solomon; Porto, Rafael A; Wang, Junpu

    2013-01-01

    We introduce dissipative effects in the effective field theory of hydrodynamics. We do this in a model-independent fashion by coupling the long-distance degrees of freedom explicitly kept in the effective field theory to a generic sector that "lives in the fluid", which corresponds physically to the microscopic constituents of the fluid. At linear order in perturbations, the symmetries, the derivative expansion, and the assumption that this microscopic sector is thermalized, allow us to characterize the leading dissipative effects at low frequencies via three parameters only, which correspond to bulk viscosity, shear viscosity, and--in the presence of a conserved charge--heat conduction. Using our methods we re-derive the Kubo relations for these transport coefficients.

  20. Black Branes in a Box: Hydrodynamics, Stability, and Criticality

    CERN Document Server

    Emparan, Roberto

    2012-01-01

    We study the effective hydrodynamics of neutral black branes enclosed in a finite cylindrical cavity with Dirichlet boundary conditions. We focus on how the Gregory-Laflamme instability changes as we vary the cavity radius R. Fixing the metric at the cavity wall increases the rigidity of the black brane by hindering gradients of the redshift on the wall. In the effective fluid, this is reflected in the growth of the squared speed of sound. As a consequence, when the cavity is smaller than a critical radius the black brane becomes dynamically stable. The correlation with the change in thermodynamic stability is transparent in our approach. We compute the bulk and shear viscosities of the black brane and find that they do not run with R. We find mean-field theory critical exponents near the critical point.

  1. Flow harmonics within an analytically solvable viscous hydrodynamic model

    CERN Document Server

    Hatta, Yoshitaka; Torrieri, Giorgio; Xiao, Bo-Wen

    2014-01-01

    Based on a viscous hydrodynamic model with anisotropically perturbed Gubser flow and isothermal Cooper-Frye freezeout, we analytically compute the flow harmonics $v_n(p_T)$ and study how they scale with the harmonic number $n$ and transverse momentum, as well as the system size, shear and bulk viscosity coefficients, and collision energy. In particular, we find that the magnitude of shear viscous corrections grows linearly with $n$. The mixing between different harmonics is also discussed. While this model is rather simple as compared to realistic heavy-ion collisions, we argue that the scaling results presented here may be meaningfully compared to experimental data collected over many energies, system sizes, and geometries.

  2. Instability of aqueous solutions of polyacrylamide in a hydrodynamic field

    Science.gov (United States)

    Makogon, B. P.; Bykova, E. N.; Bezrukova, M. A.; Klenin, S. I.; Ivanyuta, Yu. F.; Povkh, I. L.; Toryanik, A. I.

    1985-09-01

    This article discusses findings obtained regarding the effect of a hydrodynamic field on the reduced viscosity, effect of turbulent friction reduction, light scattering, double refraction, and optical density of aqueous solutions of hydrolyzed polyacrylamide.

  3. Shear viscosity of nuclear matter

    CERN Document Server

    Magner, A G; Grygoriev, U V; Plujko, V A

    2016-01-01

    Shear viscosity $\\eta$ is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective overdamped motion. In the frequent collision regime, the shear viscosity depends on the particle number density $n$ through the mean-field parameter $a$ which describes attractive forces in the VDW equation. In the temperature region $T=15\\div 40$~MeV, a ratio of the shear viscosity to the entropy density $s$ is smaller than 1 at the nucleon number density $n =(0.5\\div 1.5)\\,n^{}_0$, where $n^{}_0=0.16\\,$fm$^{-3}$ is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the $\\eta/s$ ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of $\\eta/s\\gg 1$ are however found in both the low density, $n\\ll n^{}_0$, and high density, $n>2n^{}_0$, regions. This makes the ideal hydrodynamic approach ina...

  4. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  5. Surface dilatational viscosity of Langmuir monolayers

    Science.gov (United States)

    Lopez, Juan; Vogel, Michael; Hirsa, Amir

    2003-11-01

    With increased interest in microfluidic systems, interfacial phenomena is receiving more attention. As the length scales of fluid problems decrease, the surface to volume ratio increases and the coupling between interfacial flow and bulk flow becomes increasingly dominated by effects due to intrinsic surface viscosities (shear and dilatational), in comparison to elastic effects (due to surface tension gradients). The surface shear viscosity is well-characterized, as cm-scale laboratory experiments are able to isolate its effects from other interfacial processes (e.g., in the deep-channel viscometer). The same is not true for the dilatational viscosity, because it acts in the direction of surface tension gradients. Their relative strength scale with the capillary number, and for cm-scale laboratory flows, surface tension effects tend to dominate. In microfluidic scale flows, the scaling favors viscosity. We have devised an experimental apparatus which is capable of isolating and enhancing the effects of dilatational viscosity at the cm scales by driving the interface harmonically in time, while keeping the interface flat. In this talk, we shall present both the theory for how this works as well as experimental measurements of surface velocity from which we deduce the dilatational viscosity of several monolayers on the air-water interface over a substantial range of surface concentrations. Anomalous behavior over some range of concentration, which superficially indicates negative viscosity, maybe explained in terms of compositional effects due to large spatial and temporal variations in concentration and corresponding viscosity.

  6. Effect of liquid viscosity on hydrodynamic behavior in inverse three-phase turbulent bed%液体黏度对气液固逆流三相湍动床动力学行为的影响

    Institute of Scientific and Technical Information of China (English)

    曹长青; 刘明言; 王一平; 秦秀云; 胡宗定

    2005-01-01

    Local phase holdups in an inverse three-phase turbulent bed of 150 mm i.d. auu 4350 mm height were measured simultaneously by micro-electrical conductivity probe technique in this study. Theexperiments were carried out with polyethylene particles (dp=4.01 mm, ps=926 kg·m-3), air, and water [0.05% (mass) SCMC, 0.20% (mass) SCMC] as solid phase, gas phase and liquid phase respectively. 540 sets of experimental data of local phase holdups in radial direction were obtained under Ug=Ug3. It was found that the distribution of local solid holdup showed a maximum peak at r/R=(0.75-0.90). The range of maximum peaks was larger than that of conventional fluidized beds. The distribution of local gas holdup in radial direction showed a maximum value at the column center and a minimum value near the wall. Moreover, the non-homogeneous distribution of local gas holdup in radial directions was more evident than that of conventional fluidized beds. The different operation regimes as well as the corresponding three specific gas velocities (Ug1, Ug2 and Ug3) were obtained on the basis of the axial distribution characteristics of cross-sectional average solid holdups. The effect of the operating conditions (liquid viscosity, initial volume fraction of solids Hs0/H0, initial liquid height Hl0) on the specific gas velocities was presented.

  7. Theoretical hydrodynamics

    CERN Document Server

    Milne-Thomson, L M

    2011-01-01

    This classic exposition of the mathematical theory of fluid motion is applicable to both hydrodynamics and aerodynamics. Based on vector methods and notation with their natural consequence in two dimensions - the complex variable - it offers more than 600 exercises and nearly 400 diagrams. Prerequisites include a knowledge of elementary calculus. 1968 edition.

  8. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  9. Ship Hydrodynamics

    Science.gov (United States)

    Lafrance, Pierre

    1978-01-01

    Explores in a non-mathematical treatment some of the hydrodynamical phenomena and forces that affect the operation of ships, especially at high speeds. Discusses the major components of ship resistance such as the different types of drags and ways to reduce them and how to apply those principles for the hovercraft. (GA)

  10. Microscopic Hydrodynamic Modes in a Binary Hard Sphere Mixture

    Science.gov (United States)

    Reichl, L. E.; Gust, Erich D.

    2017-07-01

    We derive analytic microscopic expressions for the shear viscosity, the speed of sound, and the decay rates of the hydrodynamic modes in a hard sphere binary gas mixture directly from the spectral properties of coupled Boltzmann equations. We show that the analytic expressions give good agreement with experimental viscosity data and to the results of light scattering experiments on noble gas binary mixtures.

  11. Hydrodynamics research of wastewater treatment bioreactors

    Institute of Scientific and Technical Information of China (English)

    REN Nan-qi; ZHANG Bing; ZHOU Xue-fei

    2009-01-01

    To optimize the design and improve the performance of wastewater treatment bioreactors, the review concerning the hydrodynamics explored by theoretical equations, process experiments, modeling of the hydrody-namics and flow field measurement is presented. Results of different kinds of experiments show that the hydro-dynamic characteristics can affect sludge characteristics, mass transfer and reactor performance significantly. A-long with the development of theoretical equations, turbulence models including large eddy simulation models and Reynolds-averaged Navier-Stokes (RANS) models are widely used at present. Standard and modified k-ε models are the most widely used eddy viscosity turbulence models for simulating flows in bioreactors. Numericalsimulation of hydrodynamics is proved to be efficient for optimizing design and operation. The development of measurement techniques with high accuracy and low intrusion enables the flow filed in the bioreactors to be transparent. Integration of both numerical simulation and experimental measurement can describe the hydrody-namics very well.

  12. GodunovSPH with shear viscosity : implementation and tests

    CERN Document Server

    Cha, Seung-Hoon

    2016-01-01

    The acceleration and energy dissipation terms due to the shear viscosity have been implemented and tested in GodunovSPH. The double summation method has been employed to avoid the well known numerical noise of the second derivative in particle based codes. The plane Couette flow with various initial and boundary conditions have been used as tests, and the numerical and analytical results show a good agreement. Not only the viscosity--only calculation, but the full hydrodynamics simulations have been performed, and they show expected results as well. The very low kinematic viscosity simulations show a turbulent pattern when the Reynolds number exceeds $\\sim$$10^2$. The critical value of the Reynolds number at the transition point of the laminar and turbulent flows coincides with the previous works approximately. A smoothed dynamic viscosity has been suggested to describe the individual kinematic viscosity of particles. The infinitely extended Couette flow which has two layers of different viscosities has been ...

  13. Lifshitz Superfluid Hydrodynamics

    CERN Document Server

    Chapman, Shira; Oz, Yaron

    2014-01-01

    We construct the first order hydrodynamics of quantum critical points with Lifshitz scaling and a spontaneously broken symmetry. The fluid is described by a combination of two flows, a normal component that carries entropy and a super-flow which has zero viscosity and carries no entropy. We analyze the new transport effects allowed by the lack of boost invariance and constrain them by the local second law of thermodynamics. Imposing time-reversal invariance, we find eight new parity even transport coefficients. The formulation is applicable, in general, to any superfluid/superconductor with an explicit breaking of boost symmetry, in particular to high $T_c$ superconductors. We discuss possible experimental signatures.

  14. Radiation Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is

  15. Nanoflow hydrodynamics

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Dyre, Jeppe C.; Daivis, Peter J.;

    2011-01-01

    We show by nonequilibrium molecular dynamics simulations that the Navier-Stokes equation does not correctly describe water flow in a nanoscale geometry. It is argued that this failure reflects the fact that the coupling between the intrinsic rotational and translational degrees of freedom becomes...... important for nanoflows. The coupling is correctly accounted for by the extended Navier-Stokes equations that include the intrinsic angular momentum as an independent hydrodynamic degree of freedom. © 2011 American Physical Society....

  16. Quantification of Viscosity and Capillary Pressure Anomalies for Polar Liquids in 2D Hydrophilic Nano-Confinements

    Science.gov (United States)

    Kelly, S. A.; Torres-Verdin, C.; Balhoff, M.

    2014-12-01

    Interest in liquid and interfacial behavior within nano-confinements spans many disciplines. Geophysical interest originates from a desire to understand flow mechanisms through hydrocarbon-rich nano-porous shale media, especially communication between fractures and the adjacent nano-porous matrix (imbibition). This work investigates the extent of boundary layer nucleation during polar liquid flows in hydrophilic nano-confinements via discrepancies seen in viscosity and capillary pressure from their bulk values. We perform our experiments in two-dimensional nanochannels of varying size and as small as 30 nm x 60 nm in cross section and still obtain visual data with reflected differential interference contrast (DIC) microscopy. The simple geometry of the nanochannels enables the comparison against analytical transport solutions. By designing a nanochannel experiment that allows us to monitor the rate of fluid imbibition and volume loss of a trapped air pocket the liquid is imbibing into, we are able to decouple capillary pressure and viscosity from imbibition data, as well as gain information about gas partitioning at the meniscus interface. Our current experiments are performed with organic solvents within siliceous nanochannels and the results of the decoupling scheme indicate that for rectangular nanochannels with heights of 60 nm and varying widths, effective viscosity is consistently between 4-12 times higher than the bulk value and capillary pressure is around 50% less than the macroscopic Young-Laplace equation prediction. These results equate to the nucleation of wall boundary layers on the order of tens of molecular layers thick. Structured boundary layers have an inherently increased viscosity compared to the liquid bulk value, resulting in a significant reduction in imbibition efficacy. This presence of approximately 15 nm boundary layers in on the threshold of two different theories - thin bimolecular boundary layers and exclusion zones (thick boundary

  17. Entropy production, viscosity bounds and bumpy black holes

    OpenAIRE

    Hartnoll, Sean; Ramirez, David; Santos, Jorge

    2016-01-01

    The ratio of shear viscosity to entropy density, $\\eta/s$, is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production due to a strain. Fluctuations of the metric components $\\delta g_{xy}$ are massive about these backgrounds, leading to $\\eta/s < 1/(4\\pi)$ at all finite temperatures (even in Einstein gravity). As the te...

  18. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  19. Optical viscosity sensor

    Science.gov (United States)

    Chang, Cheng-Ling; Peyroux, Juliette; Perez, Alex; Tsui, Chi-Leung; Wang, Wei-Chih

    2009-03-01

    Viscosity measurement by bend loss of fiber is presented. The sensing principle makes use of the damping characteristic of a vibrating optical fiber probe with fix-free end configuration. By measuring the displacement of the fiber probe, the viscosity can be determined by matching the probe's displacement with the displacement built in the database obtained by either experimental method or Finite element calculation. Experimental results are presented by measuring the sucrose and glycerol solutions of different concentrations with a viscosity varying from 1 to 15 cP. Stokes' flow assumption is utilized to attenuate the mass density effect and simplify the viscosity measurement.

  20. Viscosity of confined inhomogeneous nonequilibrium fluids.

    Science.gov (United States)

    Zhang, Junfang; Todd, B D; Travis, Karl P

    2004-12-01

    We use the nonlocal linear hydrodynamic constitutive model, proposed by Evans and Morriss [Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990)], for computing an effective spatially dependent shear viscosity of inhomogeneous nonequilibrium fluids. The model is applied to a simple atomic fluid undergoing planar Poiseuille flow in a confined channel of several atomic diameters width. We compare the spatially dependent viscosity with a local generalization of Newton's law of viscosity and the Navier-Stokes viscosity, both of which are known to suffer extreme inaccuracies for highly inhomogeneous systems. The nonlocal constitutive model calculates effective position dependent viscosities that are free from the notorious singularities experienced by applying the commonly used local constitutive model. It is simple, general, and has widespread applicability in nanofluidics where experimental measurement of position dependent transport coefficients is currently inaccessible. In principle the method can be used to predict approximate flow profiles of any arbitrary inhomogeneous system. We demonstrate this by predicting the flow profile for a simple fluid undergoing planar Couette flow in a confined channel of several atomic diameters width.

  1. GodunovSPH with shear viscosity: implementation and tests

    Science.gov (United States)

    Cha, Seung-Hoon; Wood, Matt A.

    2016-05-01

    The acceleration and energy dissipation terms due to the shear viscosity have been implemented and tested in GodunovSPH. The double summation method has been employed to avoid the well-known numerical noise of the second derivative in particle based codes. The plane Couette flow with various initial and boundary conditions have been used as tests, and the numerical and analytical results show a good agreement. Not only the viscosity-only calculation, but the full hydrodynamics simulations have been performed, and they show expected results as well. The very low kinematic viscosity simulations show a turbulent pattern when the Reynolds number exceeds ˜102. The critical value of the Reynolds number at the transition point of the laminar and turbulent flows coincides with the previous works approximately. A smoothed dynamic viscosity has been suggested to describe the individual kinematic viscosity of particles. The infinitely extended Couette flow which has two layers of different viscosities has been simulated to check the smoothed dynamic viscosity, and the result agrees well with the analytic solution. In order to compare the standard smoothed particle hydrodynamics (SPH) and GodunovSPH, the two layers test has been performed again with a density contrast. GodunovSPH shows less dispersion than the standard SPH, but there is no significant difference in the results. The results of the viscous ring evolution has also been presented as well, and the numerical results agrees with the analytic solution.

  2. Odd viscosity in two-dimensional incompressible fluids

    Science.gov (United States)

    Ganeshan, Sriram; Abanov, Alexander G.

    2017-09-01

    In this work, we present observable consequences of a parity-violating odd-viscosity term in incompressible 2+1D hydrodynamics. For boundary conditions depending on the velocity field (flow) alone we show that (i) the fluid flow quantified by the velocity field is independent of odd viscosity, (ii) the force acting on a closed contour is independent of odd viscosity, and (iii) the odd-viscosity part of torque on a closed contour is proportional to the rate of change of area enclosed by the contour with the proportionality constant being twice the odd viscosity. The last statement allows us to define a measurement protocol of odd viscostance in analogy to Hall resistance measurements. We also consider no-stress boundary conditions that explicitly depend on odd viscosity. A classic hydrodynamics problem with no-stress boundary conditions is that of a bubble in a planar Stokes flow. We solve this problem exactly for shear and hyperbolic flows and show that the steady-state shape of the bubble in the shear flow depends explicitly on the value of odd viscosity.

  3. Flow fields in soap films: Relating viscosity and film thickness

    Science.gov (United States)

    Prasad, V.; Weeks, Eric R.

    2009-08-01

    We follow the diffusive motion of colloidal particles in soap films with varying h/d , where h is the thickness of the film and d is the diameter of the particles. The hydrodynamics of these films are determined by looking at the correlated motion of pairs of particles as a function of separation R . The Trapeznikov approximation [A. A. Trapeznikov, Proceedings of the 2nd International Congress on Surface Activity (Butterworths, London, 1957), p. 242] is used to model soap films as an effective two-dimensional (2D) fluid in contact with bulk air phases. The flow fields determined from correlated particle motions show excellent agreement with what is expected for the theory of 2D fluids for all our films where 0.6≤h/d≤14.3 , with the 2D shear viscosity matching that predicted by Trapeznikov. However, the parameters of these flow fields change markedly for thick films (h/d>7±3) . Our results indicate that three-dimensional effects become important for these thicker films, despite the flow fields still having a 2D character.

  4. Macrostatistical hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, H.

    1992-01-01

    During the course of these efforts we have been studying suspension of particles in Newtonian and non-Newtonian liquids, embodying a combination of analysis, experiments, and numerical simulations. Experiments primarily involved tracking small balls as they fall slowly through otherwise quiescent suspensions of neutrally buoyant particles. Detailed trajectories of the balls, obtained either with new experimental techniques or by numerical simulation, were statistically interpreted in terms of the mean settling velocity and the dispersion about the mean. We showed that falling-ball rheometry, using small balls relative to the suspended particles, could be a means of measuring the macroscopic zero-shear-rate viscosity without significantly disturbing the original microstructure; therefore, falling-ball rheometry can be a powerful tool for use in studying the effects of microstructures on the macroscopic properties of suspensions. We plan to extend this work to the study of more complex, structured fluids, and to use other tools (e.g., rolling-ball rheometry) to study boundary effects. We also propose to study flowing suspensions to obtain non-zero-shear-rate viscosities. The intent is to develop an understanding of the basic principles needed to treat generic multiphase flow problems, through a detailed study of model systems. 8 refs.

  5. Hydrodynamic interactions in two dimensions

    Science.gov (United States)

    di Leonardo, R.; Keen, S.; Ianni, F.; Leach, J.; Padgett, M. J.; Ruocco, G.

    2008-09-01

    We measure hydrodynamic interactions between colloidal particles confined in a thin sheet of fluid. The reduced dimensionality, compared to a bulk fluid, increases dramatically the range of couplings. Using optical tweezers we force a two body system along the eigenmodes of the mobility tensor and find that eigenmobilities change logarithmically with particle separation. At a hundred radii distance, the mobilities for rigid and relative motions differ by a factor of 2, whereas in bulk fluids, they would be practically indistinguishable. A two dimensional counterpart of Oseen hydrodynamic tensor quantitatively reproduces the observed behavior, once the relevant boundary conditions are recognized. These results highlight the importance of dimensionality for transport and interactions in colloidal systems and proteins in biological membranes.

  6. Introduction to Hydrodynamics

    CERN Document Server

    Jeon, Sangyong

    2015-01-01

    We give a pedagogical review of relativistic hydrodynamics relevant to relativistic heavy ion collisions. Topics discussed include linear response theory derivation of 2nd order viscous hydrodynamics including the Kubo formulas, kinetic theory derivation of 2nd order viscous hydrodynamics, anisotropic hydrodynamics and a brief review of numerical algorithms. Emphasis is given to the theory of hydrodynamics rather than phenomenology.

  7. Submarine hydrodynamics

    CERN Document Server

    Renilson, Martin

    2015-01-01

    This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...

  8. Novel Rotating Hairy Black Hole in (2+1)-Dimensions and Shear Viscosity to Entropy Ratio

    Science.gov (United States)

    Naji, J.; Heshmatian, S.

    2014-08-01

    The novel rotating hairy black hole metric in (2 + 1) dimensions, which is an exact solution to the field equations of the Einstein-scalar AdS theory with a non-minimal coupling, considered in this paper and some hydrodynamics quantities such as diffusion constant and shear viscosity investigated. By using thermodynamics quantities such as temperature and entropy we can use diffusion constant to obtain shear viscosity and then calculate shear viscosity to entropy ratio.

  9. Effect of geometry on hydrodynamic film thickness

    Science.gov (United States)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  10. Drop spreading with random viscosity

    CERN Document Server

    Xu, Feng

    2016-01-01

    We examine theoretically the spreading of a viscous liquid drop over a thin film of uniform thickness, assuming the liquid's viscosity is regulated by the concentration of a solute that is carried passively by the spreading flow. The solute is assumed to be initially heterogeneous, having a spatial distribution with prescribed statistical features. To examine how this variability influences the drop's motion, we investigate spreading in a planar geometry using lubrication theory, combining numerical simulations with asymptotic analysis. We assume diffusion is sufficient to suppress solute concentration gradients across but not along the film. The solute field beneath the bulk of the drop is stretched by the spreading flow, such that the initial solute concentration immediately behind the drop's effective contact lines has a long-lived influence on the spreading rate. Over long periods, solute swept up from the precursor film accumulates in a short region behind the contact line, allowing patches of elevated v...

  11. Commensurability Effects in Viscosity of Nanoconfined Water.

    Science.gov (United States)

    Neek-Amal, Mehdi; Peeters, Francois M; Grigorieva, Irina V; Geim, Andre K

    2016-03-22

    The rate of water flow through hydrophobic nanocapillaries is greatly enhanced as compared to that expected from macroscopic hydrodynamics. This phenomenon is usually described in terms of a relatively large slip length, which is in turn defined by such microscopic properties as the friction between water and capillary surfaces and the viscosity of water. We show that the viscosity of water and, therefore, its flow rate are profoundly affected by the layered structure of confined water if the capillary size becomes less than 2 nm. To this end, we study the structure and dynamics of water confined between two parallel graphene layers using equilibrium molecular dynamics simulations. We find that the shear viscosity is not only greatly enhanced for subnanometer capillaries, but also exhibits large oscillations that originate from commensurability between the capillary size and the size of water molecules. Such oscillating behavior of viscosity and, consequently, the slip length should be taken into account in designing and studying graphene-based and similar membranes for desalination and filtration.

  12. Acoustic and sonochemical methods for altering the viscosity of oil during recovery and pipeline transportation.

    Science.gov (United States)

    Abramov, Vladimir O; Abramova, Anna V; Bayazitov, Vadim M; Mullakaev, Marat S; Marnosov, Alexandr V; Ildiyakov, Alexandr V

    2017-03-01

    Reduction of oil viscosity is of great importance for the petroleum industry since it contributes a lot to the facilitation of pipeline transportation of oil. This study analyzes the capability of acoustic waves to decrease the viscosity of oil during its commercial production. Three types of equipment were tested: an ultrasonic emitter that is located directly in the well and affects oil during its production and two types of acoustic machines to be located at the wellhead and perform acoustic treatment after oil extraction: a setup for ultrasonic hydrodynamic treatment and a flow-through ultrasonic reactor. In our case, the two acoustic machines were rebuilt and tested in the laboratory. The viscosity of oil was measured before and after both types of acoustic treatment; and 2, 24 and 48h after ultrasonic treatment and 1 and 4h after hydrodynamic treatment in order to estimate the constancy of viscosity reduction. The viscosity reduction achieved by acoustic waves was compared to the viscosity reduction achieved by acoustic waves jointly with solvents. It was shown, that regardless of the form of powerful acoustic impact, a long lasting decrease in viscosity can be obtained only if sonochemical treatment is used. Using sonochemical treatment based on ultrasonic hydrodynamic treatment a viscosity reduction by 72,46% was achieved. However, the reduction in viscosity by 16%, which was demonstrated using the ultrasonic downhole tool in the well without addition of chemicals, is high enough to facilitate the production of viscous hydrocarbons.

  13. A Hydrodynamic Analysis of Collective Flow in Heavy-Ion Collisions

    Science.gov (United States)

    Yan, Li

    Recent progress in the hydrodynamic simulation of heavy-ion collisions have characterized the fluctuating initial state and the viscous corrections to the corresponding collective flow. These fluctuations naturally explain the "ridge" and "shoulder" structure of the measured two-particle correlation functions at RHIC and the LHC. We introduce a cumulant expansion for analyzing the azimuthal fluctuations in the initial state. The cumulant definitions systematically describe the azimuthal anisotropy order by order. In particular, the dipole asymmetry epsilon 1 appears at third order in the expansion, and the response to this initial fluctuation produces a radipity even dipole flow v 1, which has been subsequently confirmed by experiment. In addition, the cumulant expansion organizes the study of the nonlinear response to the initial conditions. The linear and nonlinear response coefficients to a given initial state were calculated with ideal and viscous hydrodynamic simulations. The collective flow is generated either linearly or nonlinearly, and the relative contribution of these two mechanisms to the observed flow pattern is calculated as a function of harmonic order, collision centrality, and the shear viscosity. For non-central collisions and high harmonic orders n ≥ 4, the nonlinear response is the dominant mechanism. This result is also seen in event-by-event hydrodynamic simulations. Using the cumulant expansion and the corresponding linear and nonlinear response coefficients, we determine the event plane correlations and compare to first measurements of this type. The observed event plane correlations are rooted in the initial state participant plane correlations, but a large fraction of the observed correlations are determined by harmonic mixing during the bulk expansion. Viscous corrections to the hydrodynamic formulation of collective flow are reflected in hydrodynamic equations of motion, as well as the correction to the distribution function at freeze

  14. Galaxy clusters as hydrodynamics laboratories

    Science.gov (United States)

    Roediger, Elke; Sheardown, Alexander; Fish, Thomas; ZuHone, John; Hunt, Matthew; Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.

    2017-08-01

    The intra-cluster medium (ICM) of galaxy clusters shows a wealth of hydrodynamical features that trace the growth of clusters via the infall of galaxies or smaller subclusters. Such hydrodynamical features include the wakes of the infalling objects as well as the interfaces between the host cluster’s ICM and the atmosphere of the infalling object. Furthermore, the cluster dynamics can be traced by merger shocks, bow shocks, and sloshing motions of the ICM.The characteristics of these dynamical features, e.g., the direction, length, brightness, and temperature of the galaxies' or subclusters' gas tails varies significantly between different objects. This could be due to either dynamical conditions or ICM transport coefficients such as viscosity and thermal conductivity. For example, the cool long gas tails of of some infalling galaxies and groups have been attributed to a substantial ICM viscosity suppressing mixing of the stripped galaxy or group gas with the hotter ambient ICM.Using hydrodynamical simulations of minor mergers we show, however, that these features can be explained naturally by the dynamical conditions of each particular galaxy or group infall. Specifically, we identify observable features to distinguish the first and second infall of a galaxy or group into its host cluster as well as characteristics during apocentre passage. Comparing our simulations with observations, we can explain several puzzling observations such as the long and cold tail of M86 in Virgo and the very long and tangentially oriented tail of the group LEDA 87445 in Hydra A.Using our simulations, we also assess the validity of the stagnation pressure method that is widely used to determine an infalling galaxy's velocity. We show that near pericentre passage the method gives reasonable results, but near apocentre it is not easily applicable.

  15. Hydrodynamic simulations with the Godunov SPH

    CERN Document Server

    Murante, Giuseppe; Brunino, Riccardo; Cha, Suneg-Hoon

    2011-01-01

    We present results based on an implementation of the Godunov Smoothed Particle Hydrodynamics (GSPH), originally developed by Inutsuka (2002), in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear flow test, and the "blob" test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha (2010): (i) GSPH provi...

  16. Integrated Solvent Design for CO2 Capture and Viscosity Tuning

    Energy Technology Data Exchange (ETDEWEB)

    Cantu Cantu, David; Malhotra, Deepika; Koech, Phillip K.; Heldebrant, David J.; Zheng, Feng; Freeman, Charles J.; Rousseau, Roger J.; Glezakou, Vassiliki-Alexandra

    2017-07-03

    We present novel design strategies for reduced viscosity single-component, water-lean CO2 capture organic solvent systems. Through molecular simulation, we identify the main molecular-level descriptor that influences bulk solvent viscosity. Upon loading, a zwitterionic structure forms with a small activation energy of ca 16 kJ/mol and a small stabilization of ca 6 kJ/mol. Viscosity increases exponentially with CO2 loading due to hydrogen-bonding between neighboring Zwitterions. We find that molecular structures that promote internal hydrogen bonding (within the same molecule) and suppress interactions with neighboring molecules have low viscosities. In addition, tuning the acid/base properties leads to a shift of the equilibrium toward a non-charged (acid) form that further reduces the viscosity. Based on the above structural criteria, a reduced order model is also presented that allows for the quick screening of large compound libraries and down selection of promising candidates for synthesis and testing.

  17. Bulk flow coupled to a viscous interfacial film sheared by a rotating knife edge

    Science.gov (United States)

    Raghunandan, Aditya; Rasheed, Fayaz; Hirsa, Amir; Lopez, Juan

    2015-11-01

    The measurement of the interfacial properties of highly viscous biofilms, such as DPPC (the primary component of lung surfactant), present on the surface of liquids (bulk phase) continues to attract significant attention. Most measurement techniques rely on shearing the interfacial film and quantifying its viscous response in terms of a surface (excess) viscosity at the air-liquid interface. The knife edge viscometer offers a significant advantage over other approaches used to study highly viscous films as the film is directly sheared by a rotating knife edge in direct contact with the film. However, accurately quantifying the viscous response is non-trivial and involves accounting for the coupled interfacial and bulk phase flows. Here, we examine the nature of the viscous response of water insoluble DPPC films sheared in a knife edge viscometer over a range of surface packing, and its influence on the strength of the coupled bulk flow. Experimental results, obtained via Particle Image Velocimetry in the bulk and at the surface (via Brewster Angle Microscopy), are compared with numerical flow predictions to quantify the coupling across hydrodynamic flow regimes, from the Stokes flow limit to regimes where flow inertia is significant. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  18. Viscosity of Thorium Soaps

    Directory of Open Access Journals (Sweden)

    RAMAKANT SHARMA

    2013-06-01

    Full Text Available The density and viscosity results of thorium soaps in benzene methanol mixture have been explained satisfactorily in terms of the equations proposed by Einstein, Vand and Jones-Dole. The values of the CMC and molar volume of thorium soaps calculated from these equations are in close agreement.

  19. Viscosity in accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J.I.

    1980-01-01

    Both HerX-1 and SS433 may contain accretion disks slaved to a precessing companion star. If so, it is possible to bound the effective viscosity in these disks. The results, in terms of the disk parameter alpha, are lower bounds of 0.01 for HerX-1 and of 0.1 for SS433.

  20. Viscosity of colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E.G.D. [Rockefeller Univ., New York, NY (United States); Schepper, I.M. de [Delft Univ. of Technology (Netherlands)

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  1. Viscosity measurement in thin lubricant films using shear ultrasonic reflection

    OpenAIRE

    S. Kasolang; Dwyer-Joyce, R.S.

    2008-01-01

    When a shear ultrasonic wave is incident on a solid and liquid boundary, the proportion that is reflected depends on the liquid viscosity. This is the basis for some instruments for on-line measurement of bulk liquid viscosity. In machine elements, the lubricant is usually present in a thin layer between two rubbing solid surfaces. The thin film has a different response to an ultrasonic shear wave than liquid in bulk. In this work, this response is investigated with the aim of measuring visco...

  2. Cosmological bulk viscosity, the Burnett regime, and the BGK equation

    CERN Document Server

    Sandoval-Villalbazo, A

    2002-01-01

    Einstein's field equations in FRW space-times are coupled to the BGK equation in order to derive the stress energy tensor including dissipative effects up to second order in the thermodynamical forces. The space-time is assumed to be matter-dominated, but in a low density regime for which a second order (Burnett) coefficient becomes relevant. Cosmological implications of the solutions, as well as the physical meaning of transport coefficients in an isotropic homogeneous universe are discussed.

  3. Bulk viscosity driving the acceleration of the Universe

    CERN Document Server

    Fabris, J C; De Ribeiro, R S

    2006-01-01

    The possibility that the present acceleration of the universe is driven by a kind of viscous fluid is exploited. At background level this model is similar to the generalized Chaplygin gas model (GCGM). But, at perturbative level, the viscous fluid exhibits interesting properties. In particular the oscillations in the power spectrum that plagues the GCGM are not present. Possible fundamental descriptions for this viscous dark energy are discussed.

  4. Viscosity model of high-viscosity dispersing system

    Institute of Scientific and Technical Information of China (English)

    魏先福; 王娜; 黄蓓青; 孙承博

    2008-01-01

    High-viscosity dispersing system is formed by dispersing the solid particles in the high-viscosity continuous medium.It is very easy to form the three-dimensional network structure for solid particles in the system and the rheology behavior becomes complicated.The apparent viscosity of this dispersing system always has the connection with the volume ratio and the shear rate.In order to discuss the rheology behavior and put up the viscosity model,the suspension of silicon dioxide and silicon oil were prepared.Through testing the viscosity,the solid concentration and the shear rate,the effects of the ratio and the shear rate on viscosity was analyzed,the model of the high-viscosity dispersing system was designed and the model with the printing ink were validated.The experiment results show that the model is applicable to the high-viscosity dispersing systems.

  5. Viscosity of Campi Flregrei (Italy) magmas

    Science.gov (United States)

    Misiti, Valeria; Vetere, Francesco; Scarlato, Piergiorgio; Behrens, Harald; Mangiacapra, Annarita; Freda, Carmela

    2010-05-01

    Viscosity is an important factor governing both intrusive and volcanic processes. The most important parameters governing silicate melts viscosity are bulk composition of melt and temperature. Pressure has only minor effect at crustal depths, whereas crystals and bubbles have significant influence. Among compositional parameters, the water content is critical above all in terms of rheological behaviour of melts and explosive style of an eruption. Consequently, without an appropriate knowledge of magma viscosity depending on the amount of dissolved volatiles, it is not possible to model the processes (i.e., magma ascent, fragmentation, and dispersion) required to predict realistic volcanic scenarios and thus forecast volcanic hazards. The Campi Flegrei are a large volcanic complex (~150 km2) located west of the city of Naples, Italy, that has been the site of volcanic activity for more than 60 ka and represents a potential volcanic hazard owing to the large local population. In the frame of a INGV-DPC (Department of Civil Protection) project devoted to design a multidisciplinary system for short-term volcano hazard evaluation, we performed viscosity measurements, under dry and hydrous conditions, of primitive melt compositions representative of two Campi Flegrei eruptions (Minopoli-shoshonite and Fondo Riccio-latite). Viscosity of the two melts have been investigated in the high temperature/low viscosity range at atmospheric pressure in dry samples and at 0.5 GPa in runs having water content from nominally anhydrous to about 3 wt%. Data in the low temperature/high viscosity range were obtained near the glass transition temperature at atmospheric pressure on samples whose water contents vary from 0.3 up to 2.43 wt%. The combination of high- and low-viscosity data permits a general description of the viscosity as a function of temperature and water content using a modified Tamman-Vogel-Fulcher equation. logν = a+ --b--+ --d--×exp(g × w-) (T - c) (T - e) T (1) where

  6. Probing the shear viscosity of an active nematic film

    Science.gov (United States)

    Guillamat, Pau; Ignés-Mullol, Jordi; Shankar, Suraj; Marchetti, M. Cristina; Sagués, Francesc

    2016-12-01

    In vitro reconstituted active systems, such as the adenosine triphosphate (ATP)-driven microtubule bundle suspension developed by the Dogic group [T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann, and Z. Dogic, Nature (London) 491, 431 (2012), 10.1038/nature11591], provide a fertile testing ground for elucidating the phenomenology of active liquid crystalline states. Controlling such novel phases of matter crucially depends on our knowledge of their material and physical properties. In this Rapid Communication, we show that the shear viscosity of an active nematic film can be probed by varying its hydrodynamic coupling to a bounding oil layer. Using the motion of disclinations as intrinsic tracers of the flow field and a hydrodynamic model, we obtain an estimate for the shear viscosity of the nematic film. Knowing this now provides us with an additional handle for robust and precision tunable control of the emergent dynamics of active fluids.

  7. Moving forward to constrain the shear viscosity of QCD matter

    OpenAIRE

    Denicol, Gabriel; Monnai, Akihiko; Schenke, Bjoern

    2015-01-01

    We demonstrate that measurements of rapidity differential anisotropic flow in heavy ion collisions can constrain the temperature dependence of the shear viscosity to entropy density ratio {\\eta}/s of QCD matter. Comparing results from hydrodynamic calculations with experimental data from RHIC, we find evidence for a small {\\eta}/s $\\approx$ 0.04 in the QCD cross-over region and a strong temperature dependence in the hadronic phase. A temperature independent {\\eta}/s is disfavored by the data....

  8. Gravitational hydrodynamics of large-scale structure formation

    NARCIS (Netherlands)

    T.M. Nieuwenhuizen; C.H. Gibson; R.E. Schild

    2009-01-01

    The gravitational hydrodynamics of the primordial plasma with neutrino hot dark matter is considered as a challenge to the bottom-up cold-dark-matter paradigm. Viscosity and turbulence induce a top-down fragmentation scenario before and at decoupling. The first step is the creation of voids in the p

  9. A new shock-capturing numerical scheme for ideal hydrodynamics

    CERN Document Server

    Feckova, Zuzana

    2015-01-01

    We present a new algorithm for solving ideal relativistic hydrodynamics based on Godunov method with an exact solution of Riemann problem for an arbitrary equation of state. Standard numerical tests are executed, such as the sound wave propagation and the shock tube problem. Low numerical viscosity and high precision are attained with proper discretization.

  10. Gravitational hydrodynamics of large-scale structure formation

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.; Gibson, C.H.; Schild, R.E.

    2009-01-01

    The gravitational hydrodynamics of the primordial plasma with neutrino hot dark matter is considered as a challenge to the bottom-up cold-dark-matter paradigm. Viscosity and turbulence induce a top-down fragmentation scenario before and at decoupling. The first step is the creation of voids in the p

  11. Entropy-limited hydrodynamics: a novel approach to relativistic hydrodynamics

    Science.gov (United States)

    Guercilena, Federico; Radice, David; Rezzolla, Luciano

    2017-07-01

    We present entropy-limited hydrodynamics (ELH): a new approach for the computation of numerical fluxes arising in the discretization of hyperbolic equations in conservation form. ELH is based on the hybridisation of an unfiltered high-order scheme with the first-order Lax-Friedrichs method. The activation of the low-order part of the scheme is driven by a measure of the locally generated entropy inspired by the artificial-viscosity method proposed by Guermond et al. (J. Comput. Phys. 230(11):4248-4267, 2011, doi: 10.1016/j.jcp.2010.11.043). Here, we present ELH in the context of high-order finite-differencing methods and of the equations of general-relativistic hydrodynamics. We study the performance of ELH in a series of classical astrophysical tests in general relativity involving isolated, rotating and nonrotating neutron stars, and including a case of gravitational collapse to black hole. We present a detailed comparison of ELH with the fifth-order monotonicity preserving method MP5 (Suresh and Huynh in J. Comput. Phys. 136(1):83-99, 1997, doi: 10.1006/jcph.1997.5745), one of the most common high-order schemes currently employed in numerical-relativity simulations. We find that ELH achieves comparable and, in many of the cases studied here, better accuracy than more traditional methods at a fraction of the computational cost (up to {˜}50% speedup). Given its accuracy and its simplicity of implementation, ELH is a promising framework for the development of new special- and general-relativistic hydrodynamics codes well adapted for massively parallel supercomputers.

  12. A lattice Boltzmann study of non-hydrodynamic effects in shell models of turbulence

    Science.gov (United States)

    Benzi, R.; Biferale, L.; Sbragaglia, M.; Succi, S.; Toschi, F.

    2004-10-01

    A lattice Boltzmann scheme simulating the dynamics of shell models of turbulence is developed. The influence of high-order kinetic modes (ghosts) on the dissipative properties of turbulence dynamics is studied. It is analytically found that when ghost fields relax on the same timescale as the hydrodynamic ones, their major effect is a net enhancement of the fluid viscosity. The bare fluid viscosity is recovered by letting ghost fields evolve on a much longer timescale. Analytical results are borne out by high-resolution numerical simulations. These simulations indicate that the hydrodynamic manifold is very robust towards large fluctuations of non-hydrodynamic fields.

  13. Formation of density singularities in hydrodynamics of freely cooling inelastic gases: a family of exact solutions

    CERN Document Server

    Fouxon, Itzhak; Assaf, Michael; Livne, Eli

    2007-01-01

    We employ granular hydrodynamics to investigate a paradigmatic problem of clustering of particles in a freely cooling dilute granular gas. We consider large-scale hydrodynamic motions where the viscosity and heat conduction can be neglected, and one arrives at the equations of ideal gas dynamics with an additional term describing bulk energy losses due to inelastic collisions. We employ Lagrangian coordinates and derive a broad family of exact non-stationary analytical solutions that depend only on one spatial coordinate. These solutions exhibit a new type of singularity, where the gas density blows up in a finite time when starting from smooth initial conditions. The density blowups signal formation of close-packed clusters of particles. As the density blow-up time $t_c$ is approached, the maximum density exhibits a power law $\\sim (t_c-t)^{-2}$. The velocity gradient blows up as $\\sim - (t_c-t)^{-1}$ while the velocity itself remains continuous and develops a cusp (rather than a shock discontinuity) at the ...

  14. Constraints on Crustal Viscosity from Geodetic Observations

    Science.gov (United States)

    Houseman, Gregory

    2015-04-01

    Laboratory measurements of the ductile deformation of crustal rocks demonstrate a range of crystal deformation mechanisms that may be represented by a viscous deformation law, albeit one in which the effective viscosity may vary by orders of magnitude, depending on temperature, stress, grain size, water content and other factors. In such measurements these factors can be separately controlled and effective viscosities can be estimated more or less accurately, though the measured deformation occurs on much shorter time scales and length scales than are typical of geological deformation. To obtain bulk measures of the in situ crustal viscosity law for actual geological processes, estimated stress differences are balanced against measured surface displacement or strain rates: at the continental scale, surface displacement and strain rates can be effectively measured using GPS, and stress differences can be estimated from the distribution of gravitational potential energy; this method has provided constraints on a depth-averaged effective viscosity for the lithosphere as a whole in regions that are actively deforming. Another technique measures the post-seismic displacements that are interpreted to occur in the aftermath of a large crustal earthquake. Stress-differences here are basically constrained by the co-seismic deformation and the elastic rigidity (obtained from seismic velocity) and the strain rates are again provided by GPS. In this technique the strain is a strong function of position relative to the fault, so in general the interpretation of this type of data depends on a complex calculation in which various simplifying assumptions must be made. The spatial variation of displacement history on the surface in this case contains information about the spatial variation of viscosity within the crust. Recent post-seismic studies have shown the potential for obtaining measurements of both depth variation and lateral variation of viscosity in the crust beneath

  15. Renormalization group approach to causal bulk viscous cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Belinchon, J A [Grupo Inter-Universitario de Analisis Dimensional, Dept. Fisica ETS Arquitectura UPM, Av. Juan de Herrera 4, Madrid (Spain); Harko, T [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Mak, M K [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)

    2002-06-07

    The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor.

  16. Hall Viscosity I: Linear Response Theory for Viscosity

    Science.gov (United States)

    Bradlyn, Barry; Goldstein, Moshe; Read, Nicholas

    2012-02-01

    In two dimensional systems with broken time-reversal symmetry, there can exist a non-dissipative viscosity coefficient [1,2,3]. This Hall viscosity is similar in nature to the non-dissipative Hall conductivity. In order to investigate this phenomenon further, we develop a linear response formalism for viscosity. We derive a Kubo formula for the frequency dependent viscosity tensor in the long wavelength limit. We compute the viscosity tensor for the free electron gas, integer quantum Hall systems, and two-dimensional paired superfluids. In the zero frequency limit, we show how the known results [3,4] for the Hall viscosity are recovered.[4pt] [1] J. Avron, R. Seiler, and P. Zograf, Phys. Rev. Lett. 75, 697 (1995).[0pt] [2] P. Levay, J. Math. Phys. 36, 2792 (1995).[0pt] [3] N. Read, Phys. Rev. B 79, 045308 (2009).[0pt] [4] N. Read and E. Rezayi, Phys. Rev. B 84, 085316 (2011).

  17. Nanofluidics, from bulk to interfaces.

    Science.gov (United States)

    Bocquet, Lydéric; Charlaix, Elisabeth

    2010-03-01

    Nanofluidics has emerged recently in the footsteps of microfluidics, following the quest for scale reduction inherent to nanotechnologies. By definition, nanofluidics explores transport phenomena of fluids at nanometer scales. Why is the nanometer scale specific? What fluid properties are probed at nanometric scales? In other words, why does 'nanofluidics' deserve its own brand name? In this critical review, we will explore the vast manifold of length scales emerging for fluid behavior at the nanoscale, as well as the associated mechanisms and corresponding applications. We will in particular explore the interplay between bulk and interface phenomena. The limit of validity of the continuum approaches will be discussed, as well as the numerous surface induced effects occurring at these scales, from hydrodynamic slippage to the various electro-kinetic phenomena originating from the couplings between hydrodynamics and electrostatics. An enlightening analogy between ion transport in nanochannels and transport in doped semi-conductors will be discussed (156 references).

  18. Elasto-hydrodynamic lubrication

    CERN Document Server

    Dowson, D; Hopkins, D W

    1977-01-01

    Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio

  19. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  20. Towards advanced aeration modelling: from blower to bubbles to bulk.

    Science.gov (United States)

    Amaral, Andreia; Schraa, Oliver; Rieger, Leiv; Gillot, Sylvie; Fayolle, Yannick; Bellandi, Giacomo; Amerlinck, Youri; Mortier, Séverine T F C; Gori, Riccardo; Neves, Ramiro; Nopens, Ingmar

    2017-02-01

    Aeration is an essential component of aerobic biological wastewater treatment and is the largest energy consumer at most water resource recovery facilities. Most modelling studies neglect the inherent complexity of the aeration systems used. Typically, the blowers, air piping, and diffusers are not modelled in detail, completely mixed reactors in a series are used to represent plug-flow reactors, and empirical correlations are used to describe the impact of operating conditions on bubble formation and transport, and oxygen transfer from the bubbles to the bulk liquid. However, the mechanisms involved are very complex in nature and require significant research efforts. This contribution highlights why and where there is a need for more detail in the different aspects of the aeration system and compiles recent efforts to develop physical models of the entire aeration system (blower, valves, air piping and diffusers), as well as adding rigour to the oxygen transfer efficiency modelling (impact of viscosity, bubble size distribution, shear and hydrodynamics). As a result of these model extensions, more realistic predictions of dissolved oxygen profiles and energy consumption have been achieved. Finally, the current needs for further model development are highlighted.

  1. Hydrodynamics of R-charged black holes

    CERN Document Server

    Son, D T; Son, Dam T.; Starinets, Andrei O.

    2006-01-01

    We consider hydrodynamics of N=4 supersymmetric SU(N_c) Yang-Mills plasma at a nonzero density of R-charge. In the regime of large N_c and large 't Hooft coupling the gravity dual description involves an asymptotically Anti- de Sitter five-dimensional charged black hole solution of Behrnd, Cvetic and Sabra. We compute the shear viscosity as a function of chemical potentials conjugated to the three U(1) \\subset SO(6)_R charges. The ratio of the shear viscosity to entropy density is independent of the chemical potentials and is equal to 1/4\\pi. For a single charge black hole we also compute the thermal conductivity, and investigate the critical behavior of the transport coefficients near the boundary of thermodynamic stability.

  2. Viscosity of the earth's core.

    Science.gov (United States)

    Gans, R. F.

    1972-01-01

    Calculation of the viscosity of the core at the boundary of the inner and outer core. It is assumed that this boundary is a melting transition and the viscosity limits of the Andrade (1934,1952) hypothesis (3.7 to 18.5 cp) are adopted. The corresponding kinematic viscosities are such that the precessional system explored by Malkus (1968) would be unstable. Whether it would be sufficiently unstable to overcome a severely subadiabatic temperature gradient cannot be determined.

  3. Field induced rotational viscosity of ferrofluid: effect of capillary size and magnetic field direction.

    Science.gov (United States)

    Andhariya, Nidhi; Chudasama, Bhupendra; Patel, Rajesh; Upadhyay, R V; Mehta, R V

    2008-07-01

    In the present investigation we report the effect of capillary diameter and the direction of applied magnetic field on the rotational viscosity of water and kerosene based ferrofluids. We found that changes in the field induced rotational viscosity are larger in the case of water based magnetic fluid than that of kerosene based fluid. The field induced rotational viscosity is found to be inversely proportional to the capillary diameter and it falls exponentially as a function of the angle between the direction of field and vorticity of flow. Magnetophoretic mobility and hydrodynamic volume fraction of nanomagnetic particles are determined for above cases.

  4. Formation of density singularities in ideal hydrodynamics of freely cooling inelastic gases: A family of exact solutions

    Science.gov (United States)

    Fouxon, Itzhak; Meerson, Baruch; Assaf, Michael; Livne, Eli

    2007-09-01

    We employ granular hydrodynamics to investigate a paradigmatic problem of clustering of particles in a freely cooling dilute granular gas. We consider large-scale hydrodynamic motions where the viscosity and heat conduction can be neglected, and one arrives at the equations of ideal gas dynamics with an additional term describing bulk energy losses due to inelastic collisions. We employ Lagrangian coordinates and derive a broad family of exact nonstationary analytical solutions that depend only on one spatial coordinate. These solutions exhibit a new type of singularity, where the gas density blows up in a finite time when starting from smooth initial conditions. The density blowups signal formation of close-packed clusters of particles. As the density blow-up time tc is approached, the maximum density exhibits a power law ˜(tc-t)-2. The velocity gradient blows up as ˜-(tc-t)-1 while the velocity itself remains continuous and develops a cusp (rather than a shock discontinuity) at the singularity. The gas temperature vanishes at the singularity, and the singularity follows the isobaric scenario: the gas pressure remains finite and approximately uniform in space and constant in time close to the singularity. An additional exact solution shows that the density blowup, of the same type, may coexist with an "ordinary" shock, at which the hydrodynamic fields are discontinuous but finite. We confirm stability of the exact solutions with respect to small one-dimensional perturbations by solving the ideal hydrodynamic equations numerically. Furthermore, numerical solutions show that the local features of the density blowup hold universally, independently of details of the initial and boundary conditions.

  5. Viscosity-Induced Crossing of the Phantom Barrier

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2015-09-01

    Full Text Available We show explicitly, by using astrophysical data plus reasonable assumptions for the bulk viscosity in the cosmic fluid, how the magnitude of this viscosity may be high enough to drive the fluid from its position in the quintessence region at present time t = 0 across the barrier w = −1 into the phantom region in the late universe. The phantom barrier is accordingly not a sharp mathematical divide, but rather a fuzzy concept. We also calculate the limiting forms of various thermodynamical quantities, including the rate of entropy production, for a dark energy fluid near the future Big Rip singularity.

  6. Shear viscosity in holography and effective theory of transport without translational symmetry

    CERN Document Server

    Burikham, Piyabut

    2016-01-01

    We study the shear viscosity in an effective hydrodynamic theory and holographic model where the translational symmetry is broken by massless scalar fields. We identify the shear viscosity, $\\eta$, from the coefficient of the shear tensor in the modified constitutive relation, constructed from thermodynamic quantities, fluid velocity and the scalar fields, which break the translational symmetry explicitly. Our construction of constitutive relation is inspired by those derived from the fluid/gravity correspondence in the weakly disordered limit $m/T \\ll 1$. We found that the shear viscosity - entropy density ratio violate the KSS bound even when the translational symmetry is weakly broken. At the leading order in disorder strength, as the energy density is fixed and the disorder strength increases, we observe that the shear viscosity remains unchanged while the entropy grows larger, resulting in the violation of the bound. At higher order correction in $m/T$, we show that the shear viscosity from the constitut...

  7. Hydrodynamics of evaporating sessile drops

    CERN Document Server

    Barash, L Yu

    2010-01-01

    Several dynamical stages of the Marangoni convection of an evaporating sessile drop are obtained. We jointly take into account the hydrodynamics of an evaporating sessile drop, effects of the thermal conduction in the drop and the diffusion of vapor in air. The stages are characterized by different number of vortices in the drop and the spatial location of vortices. During the early stage the array of vortices arises near a surface of the drop and induces a non-monotonic spatial distribution of the temperature over the drop surface. The number of near-surface vortices in the drop is controlled by the Marangoni cell size, which is calculated similar to that given by Pearson for flat fluid layers. The number of vortices quickly decreases with time, resulting in three bulk vortices in the intermediate stage. The vortex structure finally evolves into the single convection vortex in the drop, existing during about 1/2 of the evaporation time.

  8. Effective Viscosity Coefficient of Nanosuspensions

    Science.gov (United States)

    Rudyak, V. Ya.; Belkin, A. A.; Egorov, V. V.

    2008-12-01

    Systematic calculations of the effective viscosity coefficient of nanosuspensions have been performed using the molecular dynamics method. It is established that the viscosity of a nanosuspension depends not only on the volume concentration of the nanoparticles but also on their mass and diameter. Differences from Einstein's relation are found even for nanosuspensions with a low particle concentration.

  9. Volatiles Which Increase Magma Viscosity

    Science.gov (United States)

    Webb, S.

    2015-12-01

    The standard model of an erupting volcano is one in which the viscosity of a decompressing magma increases as the volatiles leave the melt structure to form bubbles. It has now been observed that the addition of the "volatiles" P, Cl and F result in an increase in silicate melt viscosity. This observation would mean that the viscosity of selected degassing magmas would decrease rather than increase. Here we look at P, Cl and F as three volatiles which increase viscosity through different structural mechanisms. In all three cases the volatiles increase the viscosity of peralkaline composition melts, but appear to always decrease the viscosity of peraluminous melts. Phosphorus causes the melt to unmix into a Na-P rich phase and a Na-poor silicate phase. Thus as the network modifying Na (or Ca) are removed to the phosphorus-rich melt, the matrix melt viscosity increases. With increasing amounts of added phosphorus (at network modifying Na ~ P) the addition of further phosphorus causes a decrease in viscosity. The addition of chlorine to Fe-free aluminosilicate melts results in an increase in viscosity. NMR data on these glass indicates that the chlorine sits in salt-like structures surrounded by Na and/or Ca. Such structures would remove network-modifying atoms from the melt structure and thus result in an increase in viscosity. The NMR spectra of fluorine-bearing glasses shows that F takes up at least 5 different structural positions in peralkaline composition melts. Three of these positions should result in a decrease in viscosity due to the removal of bridging oxygens. Two of the structural positons of F, however, should result in an increase in viscosity as they require the removal of network-modifying atoms from the melt structure (with one of the structures being that observed for Cl). This would imply that increasing amounts of F might result in an increase in viscosity. This proposed increase in viscosity with increasing F has now been experimentally confirmed.

  10. Hubble Parameter in Bulk Viscous Cosmology

    CERN Document Server

    Tawfik, A; Wahba, M

    2009-01-01

    We discuss influences of bulk viscosity on the Early Universe, which is modeled by Friedmann-Robertson-Walker metric and Einstein field equations. We assume that the matter filling the isotropic and homogeneous background is relativistic viscous characterized by ultra-relativistic equations of state deduced from recent lattice QCD simulations. We obtain a set of complicated differential equations, for which we suggest approximate solutions for Hubble parameter $H$. We find that finite viscosity in Eckart and Israel-Stewart fluids would significantly modify our picture about the Early Universe.

  11. Diffusion Constant and Shear Viscosity in the Charged 3D Hairy Black Hole

    Science.gov (United States)

    Naji, Jalil

    2014-06-01

    A charged hairy black hole in 3 dimensions considered to study hydrodynamics. Specially, we calculate diffusion constant and obtain the effect of black hole electric charge and scalar charge on it. This parameter help us to obtain information about black hole and will be useful to study shear viscosity of dual picture by using AdS/CFT.

  12. Hydrodynamics in black brane with hyperscaling violation metric background

    CERN Document Server

    Sadeghi, Jafar

    2014-01-01

    In this paper we consider a metric with hyperscaling violation on black brane background. In this background we calculate the ratio of shear viscosity to entropy density with hydrodynamics information. The calculation of this quantity lead us to constraint $\\theta$ as $3\\leq\\theta<4$, and $\\theta\\leq0$. In that case we show that the quantity of $\\frac{\\eta}{s}$ not dependent to hyperscaling violation parameter $\\theta.$ Our results about ratio of shear viscosity to entropy density in direct of $QCD$ point of view agree with other works in literature as $1/4\\pi$.

  13. Purely hydrodynamic origin for swarming of swimming particles

    Science.gov (United States)

    Oyama, Norihiro; Molina, John Jairo; Yamamoto, Ryoichi

    2016-04-01

    Three-dimensional simulations with fully resolved hydrodynamics are performed to study the collective motion of model swimmers in bulk and confinement. Calculating the dynamic structure factor, we clarified that the swarming in bulk systems can be understood as a pseudoacoustic mode. Under confinement between flat parallel walls, this pseudoacoustic mode leads to a traveling wavelike motion. This swarming behavior is due purely to the hydrodynamic interactions between the swimmers and depends strongly on the type and strength of swimming (i.e., pusher or puller).

  14. Comparative analysis of CFD models for jetting fluidized beds: Effect of particle-phase viscosity

    Institute of Scientific and Technical Information of China (English)

    Pei Pei; Kai Zhang; Gang Xu; Yongping Yang; Dongsheng Wen

    2012-01-01

    Under the Eulerian-Eulerian framework of simulating gas-solid two-phase flow,the accuracy of the hydrodynamic prediction is strongly affected by the selection of rheology of the particulate phase,for which a detailed assessment is still absent.Using a jetting fluidized bed as an example,this work investigates the influence of solid theology on the hydrodynamic behavior by employing different particle-phase viscosity models.Both constant particle-phase viscosity model (CVM) with different viscosity values and a simple two-fluid model without particle-phase viscosity (NVM) are incorporated into the classical twofluid model and compared with the experimental measurements.Qualitative and quantitative results show that the jet penetration depth,jet frequency and averaged bed pressure drop are not a strong function of the particle-phase viscosity.Compared to CVM,the NVM exhibits better predictions on the jet behaviors,which is more suitable for investigating the hydrodynamics of gas-solid fluidized bed with a central jet.

  15. Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation.

    Science.gov (United States)

    Benetti, A R; Havndrup-Pedersen, C; Honoré, D; Pedersen, M K; Pallesen, U

    2015-01-01

    The bulk-filling of deep, wide dental cavities is faster and easier than traditional incremental restoration. However, the extent of cure at the bottom of the restoration should be carefully examined in combination with the polymerization contraction and gap formation that occur during the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk-fill materials produced a significantly larger depth of cure and polymerization contraction. Although most of the bulk-fill materials exhibited a gap formation similar to that of the conventional resin composite, two of the low-viscosity bulk-fill resin composites, x-tra base and Venus Bulk Fill, produced larger gaps.

  16. ZBLAN Viscosity Instrumentation

    Science.gov (United States)

    Kaukler, William

    2001-01-01

    The past year's contribution from Dr. Kaukler's experimental effort consists of these 5 parts: a) Construction and proof-of-concept testing of a novel shearing plate viscometer designed to produce small shear rates and operate at elevated temperatures; b) Preparing nonlinear polymeric materials to serve as standards of nonlinear Theological behavior; c) Measurements and evaluation of above materials for nonlinear rheometric behavior at room temperature using commercial spinning cone and plate viscometers available in the lab; d) Preparing specimens from various forms of pitch for quantitative comparative testing in a Dynamic Mechanical Analyzer, Thermal Mechanical Analyzer; and Archeological Analyzer; e) Arranging to have sets of pitch specimens tested using the various instruments listed above, from different manufacturers, to form a baseline of the viscosity variation with temperature using the different test modes offered by these instruments by compiling the data collected from the various test results. Our focus in this project is the shear thinning behavior of ZBLAN glass over a wide range of temperature. Experimentally, there are no standard techniques to perform such measurements on glasses, particularly at elevated temperatures. Literature reviews to date have shown that shear thinning in certain glasses appears to occur, but no data is available for ZBLAN glass. The best techniques to find shear thinning behavior require the application of very low rates of shear. In addition, because the onset of the thinning behavior occurs at an unknown elevated temperature, the instruments used in this study must provide controlled low rates of shear and do so for temperatures approaching 600 C. In this regard, a novel shearing parallel plate viscometer was designed and a prototype built and tested.

  17. Tunable shear thickening: from understanding suspension thickening to controlling viscosity on the fly

    Science.gov (United States)

    Cohen, Itai; Lin, Neil; Ness, Chris; Sun, Jin; Cates, Mike; Guy, Ben; Hermes, Michiel; Poon, Wilson

    2016-11-01

    Whether contact forces play a role in shear thickening of colloidal systems where hydrodynamic contributions are thought to dominate remains highly controversial. By performing shear reversal experiments on silica and latex colloidal particles, we directly measure the hydrodynamic and contact force contributions to the suspension viscosity. We find that contact forces are not only present, but dominate the shear thickening response. More importantly, this finding directly suggests a strategy for active controlling the thickening viscosities of dense suspensions. We demonstrate that by strategic imposition of a high-frequency and low-amplitude shear perturbation orthogonal to the primary shearing flow, we can largely eradicate thickening. The orthogonal shear effectively becomes a regulator for controlling thickening in the suspension, allowing the viscosity to be reduced by up to two decades on demand.

  18. Viscosity Measurement for Tellurium Melt

    Science.gov (United States)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2006-01-01

    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  19. Geometry-dependent viscosity reduction in sheared active fluids

    CERN Document Server

    Słomka, Jonasz

    2016-01-01

    We investigate flow pattern formation and viscosity reduction mechanisms in active fluids by studying a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of previously intractable higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, geometry-dependent viscosity reduction and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of non-equilibrium fluids by tuning confinement geometry and pattern scale selection.

  20. The collective mode and turbulent viscosity in accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Fridman, A.M.; Boyarchuk, A.A.; Bisikalo, D.V.; Kuznetsov, O.A.; Khoruzhii, O.V.; Torgashin, Yu.M.; Kilpio, A.A

    2003-10-20

    The existence of a spiral-vortex structure is revealed by a numerical simulation of the dynamics of an accretion disc in close binary stars. This structure is not related to the tidal influence of a companion star. It is a density wave containing a one-armed spiral and an anticyclonic vortex. The formation of the structure is caused by a hydrodynamical instability. The latter results in a disc turbulence with a turbulent viscosity coefficient {nu}{approx_equal}0.035 {omega}h{sup 2} (h is a semithickness of the disc). This value is in accordance with both the value of a numerical viscosity in presented calculations and the results of observations. The period of the density wave rotation is in agreement with the typical periods of light curve variations observed in cataclysmic binary stars.

  1. Accretion disc viscosity: a limit on the anisotropy

    CERN Document Server

    Nixon, Chris

    2015-01-01

    Observations of warped discs can give insight into the nature of angular momentum transport in accretion discs. Only a few objects are known to show strong periodicity on long timescales, but when such periodicity is present it is often attributed to precession of the accretion disc. The X-ray binary Hercules X-1/HZ Herculis (Her X-1) is one of the best examples of such periodicity and has been linked to disc precession since it was first observed. By using the current best-fitting models to Her X-1, which invoke precession driven by radiation warping, I place a constraint on the effective viscosities that act in a warped disc. These effective viscosities almost certainly arise due to turbulence induced by the magneto-rotational instability. The constraints derived here are in agreement with analytical and numerical investigations into the nature of magneto-hydrodynamic disc turbulence, but at odds with some recent global simulations.

  2. Effects of Liquid Second Viscosity in High-Amplitude Sonoluminescence

    Institute of Scientific and Technical Information of China (English)

    Ahmad Moshaii; Rasool Sadighi-Bonabi; Mohammad Taeibi-Rahni; Mehdi Daemi

    2004-01-01

    @@ The well-known Rayleigh-Plesset (RP) equation is the base of nearly all hydrodynamical descriptions of the sonoluminescence phenomenon. A major deficiency of this equation is that it accounts for viscosity of an incompressible liquid and compressibility, separately. By removing this approximation, we have modified the RP equation, considering effects of liquid second viscosity. This modification exhibits its importance at the end of an intense collapse, so that the new model predicts the appearance of a new picosecond bouncing during highamplitude sonoluminescence radiation. This new bouncing produces very sharp (sub-picosecond) peaks on the top of the sonoluminescence pulse. These new behaviours are more remarkable for higher driving pressures and lower ambient temperatures.

  3. Dark matter perturbations and viscosity: a causal approach

    CERN Document Server

    Acquaviva, Giovanni; Pénin, Aurélie

    2016-01-01

    The inclusion of dissipative effects in cosmic fluids modifies their clustering properties and could have observable effects on the formation of large scale structures. We analyse the evolution of density perturbations of cold dark matter endowed with causal bulk viscosity. The perturbative analysis is carried out in the Newtonian approximation and the bulk viscosity is described by the causal Israel-Stewart (IS) theory. In contrast to the non-causal Eckart theory, we obtain a third order evolution equation for the density contrast that depends on three free parameters. For certain parameter values, the density contrast and growth factor in IS mimic their behaviour in $\\Lambda$CDM when $z \\geq 1$. Interestingly, and contrary to intuition, certain sets of parameters lead to an increase of the clustering.

  4. Fluid Dynamics and Viscosity in Strongly Correlated Fluids

    CERN Document Server

    Schaefer, Thomas

    2014-01-01

    We review the modern view of fluid dynamics as an effective low energy, long wavelength theory of many body systems at finite temperature. We introduce the notion of a nearly perfect fluid, defined by a ratio $\\eta/s$ of shear viscosity to entropy density of order $\\hbar/k_B$ or less. Nearly perfect fluids exhibit hydrodynamic behavior at all distances down to the microscopic length scale of the fluid. We summarize arguments that suggest that there is fundamental limit to fluidity, and review the current experimental situation with regard to measurements of $\\eta/s$ in strongly coupled quantum fluids.

  5. Viscosity of particle laden films

    Science.gov (United States)

    Timounay, Yousra; Rouyer, Florence

    2017-06-01

    We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  6. Evaluation of Viscosity Characteristics of Spin-Coated UV Nanoimprint Resin

    Science.gov (United States)

    Hidemasa Atobe,; Hiroshi Hiroshima,; Qing Wang,

    2010-06-01

    The viscosity of a UV-curable resin used in UV nanoimprint is one of the key parameters to determine the process speed of resin filling in the recesses of a mold. We have developed an apparatus to measure the viscosity of a spin-coated thin liquid film on a wafer. With this viscosity measuring apparatus we examined the effect of the film thickness, exposure of resin to atmosphere, and temperature of resin on the viscosity of PAK-01, which is a UV-curable resin commonly employed in UV nanoimprint. The viscosity of this resin with its film thickness larger than 2.3 μm showed a constant value of 83 mPa\\cdots, which is almost the same as that of the bulk PAK-01. At below 2.3 μm, the viscosity seemed to increase with decreasing film thickness. The viscosity of the spin-coated resin was also found to increase with the duration of its exposure to atmosphere; for a 30 min exposure to atmosphere, the viscosity reached up to 461 mPa\\cdots. It is considered that during the prolonged exposure, the volatile component of the resin evaporated. When subjected to heat treatment, the viscosity of the UV-curable resin did not seem to depend on film thickness and maintained a steady value of 385 mPa\\cdots. It was found that as the film thickness decreased the viscosity approached the value obtained by heat treatment.

  7. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    Indranil Mazumdar

    2015-08-01

    We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.

  8. Cosmic String Universes Embedded with Viscosity

    Institute of Scientific and Technical Information of China (English)

    Koijam Manihar Singh; Kangujam Priyokumar Singh

    2011-01-01

    We study string cosmological models with attached particles in LRS BI type space time.The dynamical and physical properties of such universes are studied,and the possibility that during the evolution of the universe the strings disappear,leaving only the particles,is also discussed.It is found that bulk viscosity plays a large role in the evolution of the universe.In these models we find critical instances of when there was a “Bounce”.The studied models are found to be of an inflationary type,and since a desirable feature of a meaningful string cosmological model is the presence of an inflationary epoch in the very early stages of evolution,our models can be thought of as realistic universes.The origin of the universe and the early stages of formation are still interesting areas of research.The concept of string theory was developed to describe the events of the early stages of the evolution of the universe.The universe can be described as a collection of extended (non point) objects.Thus,“string dust” cosmology will provide us with a model to investigate the properties related to this fact.%We study string cosmological models with attached particles in LRS BI type space time. The dynamical and physical properties of such universes are studied, and the possibility that during the evolution of the universe the strings disappear, leaving only the particles, is also discussed. It is found that bulk viscosity plays a large role in the evolution of the universe. In these models we find critical instances of when there was a "Bounce". The studied models are found to be of an inflationary type, and since a desirable feature of a meaningful string cosmological model is the presence of an inflationary epoch in the very early stages of evolution, our models can be thought of as realistic universes.

  9. Global Scaling Symmetry, Noether Charge and Universality of Shear Viscosity

    CERN Document Server

    Liu, Hai-Shan

    2016-01-01

    Recently it was established in Einstein-Maxwell-Dilaton gravity that the KSS viscosity/entropy ratio associated with AdS planar black holes can be viewed as the boundary dual to the generalized Smarr relation of the black holes in the bulk. In this paper we establish this relation in Einstein gravity with general minimally-coupled matter, and also in theories with an additional non-minimally coupled scalar field. We consider two examples for explicit demonstrations.

  10. Global scaling symmetry, Noether charge, and universality of shear viscosity

    Science.gov (United States)

    Liu, Hai-Shan

    2016-05-01

    Recently, it was established in Einstein-Maxwell-Dilaton gravity that the Kovtun-Son-Starinets viscosity/entropy ratio associated with anti-de Sitter planar black holes can be viewed as the boundary dual to the generalized Smarr relation of the black holes in the bulk. In this paper, we establish this relation in Einstein gravity with general minimally coupled matter and also in theories with an additional nonminimally coupled scalar field. We consider two examples for explicit demonstrations.

  11. Viscosity model for aluminosilicate melt

    Directory of Open Access Journals (Sweden)

    Zhang G.H.

    2012-01-01

    Full Text Available The structurally based viscosity model proposed in our previous study is extended to include more components, e.g. SiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O and K2O. A simple method is proposed to calculate the numbers of different types of oxygen ions classified by the different cations they bonded with, which is used to characterize the influence of composition on viscosity. When dealing with the aluminosilicate melts containing several basic oxides, the priority order is established for different cations for charge compensating Al3+ ions, according to the coulombic force between cation and oxygen anion. It is indicated that basic oxides have two paradox influences on viscosity: basic oxide with a higher basicity decreases viscosity more greatly by forming weaker non-bridging oxygen bond; while it increases viscosity more greatly by forming stronger bridging oxygen bond in tetrahedron after charge compensating Al3+ ion. The present model can extrapolate its application range to the system without SiO2. Furthermore, it could also give a satisfy interpretation to the abnormal phenomenon that viscosity increases when adding K2O to CaO-Al2O3-SiO2 melt within a certain composition range.

  12. Signature of time-dependent hydrodynamic interactions on collective diffusion in colloidal monolayers

    Science.gov (United States)

    Domínguez, Alvaro

    2014-12-01

    It has been shown recently that the coefficient of collective diffusion in a colloidal monolayer is divergent due to the hydrodynamic interactions mediated by the ambient fluid in bulk. The analysis is extended to allow for time-dependent hydrodynamic interactions. Observational features specific to this time dependency are predicted. The possible experimental detection in the dynamics of the monolayer is discussed.

  13. A new exact solution of the relativistic Boltzmann equation and its hydrodynamic limit

    CERN Document Server

    Denicol, Gabriel S; Martinez, Mauricio; Noronha, Jorge; Strickland, Michael

    2014-01-01

    We present an exact solution of the relativistic Boltzmann equation for a system undergoing boost-invariant longitudinal and azimuthally symmetric transverse flow ("Gubser flow"). The resulting exact non-equilibrium dynamics is compared to 1st- and 2nd-order relativistic hydrodynamic approximations for various shear viscosity to entropy density ratios. This novel solution can be used to test the validity and accuracy of different hydrodynamic approximations in conditions similar to those generated in relativistic heavy-ion collisions.

  14. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  15. A note on generalized hydrodynamics: inhomogeneous fields and other concepts

    CERN Document Server

    Doyon, Benjamin

    2016-01-01

    Generalized hydrodynamics (GHD) was proposed recently as a formulation of hydrodynamics for integrable systems, taking into account infinitely-many conservation laws. In this note we further develop the theory in various directions. By extending GHD to all commuting flows of the integrable model, we provide a full description of how to take into account weakly varying force fields, temperature fields and other inhomogeneous external fields within GHD. We expect this can be used, for instance, to characterize the non-equilibrium dynamics of one-dimensional Bose gases in trap potentials. We also show that the GGE equations of state, and thus GHD, emerge uniformly in free particle models under the condition that the space-time variation scale of hydrodynamic observables grows unboundedly with time. We further show how the equations of state at the core of GHD follow from the continuity relation for entropy, and we show how to recover Euler-like equations and discuss possible viscosity terms.

  16. Parity-Violating Hydrodynamics in 2+1 Dimensions

    CERN Document Server

    Jensen, Kristan; Kovtun, Pavel; Meyer, Rene; Ritz, Adam; Yarom, Amos

    2011-01-01

    We study relativistic hydrodynamics of normal fluids in two spatial dimensions. When the microscopic theory breaks parity, extra transport coefficients appear in the hydrodynamic regime, including the Hall viscosity, and the anomalous Hall conductivity. In this work we classify all the transport coefficients in first order hydrodynamics. We then use properties of response functions and the positivity of entropy production to restrict the possible coefficients in the constitutive relations. All the parity-breaking transport coefficients are dissipationless, and some of them are related to the thermodynamic response to an external magnetic field and to vorticity. In addition, we give a holographic example of a strongly interacting relativistic fluid where the parity-violating transport coefficients are computable.

  17. Bulk viscous cosmology in early Universe

    Indian Academy of Sciences (India)

    C P Singh

    2008-07-01

    The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model. The `gamma' function is defined in such a way that it describes a unified solution of early evolution of the Universe for inflationary and radiation-dominated phases. The fluid has only bulk viscous term and the coefficient of bulk viscosity is taken to be proportional to some power function of the energy density. The complete general solutions have been given through three cases. For flat space, power-law as well as exponential solutions are found. The problem of how the introduction of viscosity affects the appearance of singularity, is briefly discussed in particular solutions. The deceleration parameter has a freedom to vary with the scale factor of the model, which describes the accelerating expansion of the Universe.

  18. Hydrodynamics and Elasticity of Charged Black Branes

    DEFF Research Database (Denmark)

    Gath, Jakob

    charge and a dilaton coupling. For the case of Maxwell black branes we furthermore compute the charge diffusion constant. We find that the shear viscosity to entropy bound is saturated and comment on proposed bounds for the bulk viscosity to entropy ratio. With the transport coecients we compute......)isotropic uid branes in terms of two sets of response coecients, the Young modulus and the piezoelectric moduli. We subsequently consider a large class of examples in gravity of this effective theory. In particular, we consider dilatonic black p-branes in two different settings: charged under a Maxwell gauge...... as a seed solution, we obtain a class of charged black brane geometries carrying smeared Maxwell charge in Einstein-Maxwell-dilaton theory. In the specific case of ten-dimensional space-time we furthermore use T-duality to generate bent black branes with higher-form charge, including smeared D...

  19. Anisotropic hydrodynamics -- basic concepts

    CERN Document Server

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael

    2013-01-01

    Due to the rapid longitudinal expansion of the quark-gluon plasma created in relativistic heavy ion collisions, potentially large local rest frame momentum-space anisotropies are generated. The magnitude of these momentum-space anisotropies can be so large as to violate the central assumption of canonical viscous hydrodynamical treatments which linearize around an isotropic background. In order to better describe the early-time dynamics of the quark gluon plasma, one can consider instead expanding around a locally anisotropic background which results in a dynamical framework called anisotropic hydrodynamics. In this proceedings contribution we review the basic concepts of the anisotropic hydrodynamics framework presenting viewpoints from both the phenomenological and microscopic points of view.

  20. A Proposal for measuring Anisotropic Shear Viscosity in Unitary Fermi Gases

    CERN Document Server

    Samanta, Rickmoy; Trivedi, Sandip P

    2016-01-01

    We present a proposal to measure anisotropic shear viscosity in a strongly interacting, ultra-cold, unitary Fermi gas confined in a harmonic trap. We introduce anisotropy in this setup by strongly confining the gas in one of the directions with relatively weak confinement in the remaining directions. This system has a close resemblance to anisotropic strongly coupled field theories studied recently in the context of gauge-gravity duality. Computations in such theories (which have gravity duals) revealed that some of the viscosity components of the anisotropic shear viscosity tensor can be made much smaller than the entropy density, thus parametrically violating the bound proposed by Kovtun, Son and Starinets (KSS): $\\frac {\\eta} {s} \\geq \\frac{1}{4 \\pi}$. A Boltzmann analysis performed in a system of weakly interacting particles in a linear potential also shows that components of the viscosity tensor can be reduced. Motivated by these exciting results, we propose two hydrodynamic modes in the unitary Fermi ga...

  1. Effects of real viscosity on plasma liner formation and implosion from supersonic plasma jets

    Science.gov (United States)

    Schillo, Kevin; Cassibry, Jason; Hsu, Scott; PLX-Alpha Team

    2015-11-01

    The PLX- α project endeavors to study plasma liner formation and implosion by merging of a spherical array of plasma jets as a candidate standoff driver for magneto-inertial fusion (MIF). Smoothed particle hydrodynamics (SPH) is being used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. The SPH code was used to simulate test cases in which the number of plasma guns and initial conditions for the plasma were varied. Linear stabilizations were observed, but the possibility exists that this stabilization was due to the implementation of artificial viscosity in the code. A real viscosity model was added to our SPHC model using the Braginskii ion viscosity. Preliminary results for test cases that incorporate real viscosity are presented.

  2. Dispersive hydrodynamics: Preface

    Science.gov (United States)

    Biondini, G.; El, G. A.; Hoefer, M. A.; Miller, P. D.

    2016-10-01

    This Special Issue on Dispersive Hydrodynamics is dedicated to the memory and work of G.B. Whitham who was one of the pioneers in this field of physical applied mathematics. Some of the papers appearing here are related to work reported on at the workshop "Dispersive Hydrodynamics: The Mathematics of Dispersive Shock Waves and Applications" held in May 2015 at the Banff International Research Station. This Preface provides a broad overview of the field and summaries of the various contributions to the Special Issue, placing them in a unified context.

  3. Viscosity of liquid undercooled tungsten

    Science.gov (United States)

    Paradis, Paul-François; Ishikawa, Takehiko; Yoda, Shinichi

    2005-05-01

    Knowledge of the viscosity and its temperature dependence is essential to improve metallurgical processes as well as to validate theoretical and empirical models of liquid metals. However, data for metals with melting points above 2504K could not be determined yet due to contamination and containment problems. Here we report the viscosity of tungsten, the highest melting point metal (3695K), measured by a levitation technique. Over the 3350-3700-K temperature range, which includes the undercooled region by 345K, the viscosity data could be fitted as η(T )=0.108exp[1.28×105/(RT)](mPas). At the melting point, the datum agrees with the proposed theoretical and empirical models of liquid metals but presents atypical temperature dependence, suggesting a basic change in the mechanism of momentum transfer.

  4. Microrheology with Optical Tweezers: Measuring the solutions' relative viscosity at a glance

    CERN Document Server

    Del Giudice, Francesco; Greco, Francesco; Netti, Paolo Antonio; Maffettone, Pier Luca; Cooper, Jonathan M; Tassieri, Manlio

    2014-01-01

    We present a straightforward method for measuring the fluids' relative viscosity via a simple graphical analysis of the normalised position autocorrelation function of an optically trapped bead, without the need of embarking on laborious calculations. The advantages of the proposed microrheology method become evident, for instance, when it is adopted for measuring the molecular weight of rare or precious materials by means of their intrinsic viscosity. The proposed method has been validated by direct comparison with conventional bulk rheology methods.

  5. The flow of heavy flavor in hydrodynamics

    CERN Document Server

    Song, Taesoo; Lee, Su Houng

    2011-01-01

    The flow of charm is calculated in 2+1 ideal hydrodynamics by introducing the charge of $c\\bar{c}$ pair assuming that the number of $c\\bar{c}$ pairs is conserved in relativistic heavy-ion collisions. It is found that the mean radial flow velocity of charm quarks is smaller than that of bulk matter by 10$\\sim$15 \\% and the measured $v_2$ of heavy-flavor electrons is reproduced up to $p_T^e=$ 1.5 GeV/c in Au+Au collision at RHIC. The same flow is applied to regenerated $J/\\psi$ and its $v_2$ is discussed.

  6. Smoothed Particle Hydrodynamic Simulator

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-05

    This code is a highly modular framework for developing smoothed particle hydrodynamic (SPH) simulations running on parallel platforms. The compartmentalization of the code allows for rapid development of new SPH applications and modifications of existing algorithms. The compartmentalization also allows changes in one part of the code used by many applications to instantly be made available to all applications.

  7. Hydrodynamic aspect of caves

    Directory of Open Access Journals (Sweden)

    Franci Gabrovsek

    2008-01-01

    Full Text Available From a hydrological point of view, active caves are a series of connected conduits which drain water through an aquifer. Water tends to choose the easiest way through the system but different geological and morphological barriers act as flow restrictions. The number and characteristics of restrictions depends on the particular speleogenetic environment, which is a function of geological, geomorphological, climatological and hydrological settings. Such a variety and heterogeneity of underground systems has presented a challenge for human understanding for many centuries. Access to many underground passages, theoretical knowledge and recent methods (modeling, water pressure-resistant dataloggers, precise sensors etc. give us the opportunity to get better insight into the hydrodynamic aspect of caves. In our work we tried to approach underground hydrodynamics from both theoretical and practical points of view. We present some theoretical background of open surface and pressurized flow in underground rivers and present results of some possible scenarios. Moreover, two case studies from the Ljubljanica river basin are presented in more detail: the cave system between Planinsko polje and Ljubljansko barje, and the cave system between Bloško polje and Cerkniško polje. The approach and methodology in each case is somewhat different, as the aims were different at the beginning of exploration. However, they both deal with temporal and spatial hydrodynamics of underground waters. In the case of Bloško polje-Cerkniško polje system we also explain the feedback loop between hydrodynamics and Holocene speleogenesis.

  8. Viscosity kernel of molecular fluids

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter

    2010-01-01

    , temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...... forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means...

  9. Hydrodynamics of the Dirac spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yizhuang, E-mail: yizhuang.liu@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Warchoł, Piotr, E-mail: piotr.warchol@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Krakow (Poland); Zahed, Ismail, E-mail: ismail.zahed@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2016-02-10

    We discuss a hydrodynamical description of the eigenvalues of the Dirac spectrum in even dimensions in the vacuum and in the large N (volume) limit. The linearized hydrodynamics supports sound waves. The hydrodynamical relaxation of the eigenvalues is captured by a hydrodynamical (tunneling) minimum configuration which follows from a pertinent form of Euler equation. The relaxation from a phase of unbroken chiral symmetry to a phase of broken chiral symmetry occurs over a time set by the speed of sound.

  10. Effective shear viscosity and dynamics of suspensions of micro-swimmers at moderate concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, Lipnikov [Los Alamos National Laboratory; Gyrya, V [PENNSYLVANIA STATE UNIV.; Aronson, I [ANL; Berlyand, L [PENNSYLVANIA STATE UNIV.

    2009-01-01

    Recently, there have been a number of experimental studies suggesting that a suspension of self-propelled bacteria (microswimmers in general) may have an effective viscosity significantly smaller than the viscosity of the ambient fluid. This is in sharp contrast with suspensions of hard passive inclusions, whose presence always increases the viscosity. Here we present a 2D model for a suspension of microswimmers in a fluid and analyze it analytically in the dilute regime (no swimmer-swimmer interactions) and numerically using a Mimetic Finite Difference discretization. Our analysis shows that in the dilute regime the effective shear viscosity is not affected by self-propulsion. But at the moderate concentrations (due to swimmer-swimmer interactions) the effective viscosity decreases linearly as a function of the propulsion strength of the swimmers. These findings prove that (i) a physically observable decrease of viscosity for a suspension of self-propelled bacteria can be explained purely by hydrodynamic interactions and (ii) self-propulsion and interaction of swimmers are both essential to the reduction of the effective shear viscosity. We performed a number of numerical experiments analyzing the dynamics of swimmers resulting from pairwise interactions. The numerical results agree with the physically observed phenomena (e.g., attraction of swimmer to swimmer and swimmer to the wall). This is viewed as an additional validation of the model and the numerical scheme.

  11. Separation of blood cells using hydrodynamic lift

    Science.gov (United States)

    Geislinger, T. M.; Eggart, B.; Braunmüller, S.; Schmid, L.; Franke, T.

    2012-04-01

    Using size and deformability as intrinsic biomarkers, we separate red blood cells (RBCs) from other blood components based on a repulsive hydrodynamic cell-wall-interaction. We exploit this purely viscous lift effect at low Reynolds numbers to induce a lateral migration of soft objects perpendicular to the streamlines of the fluid, which closely follows theoretical prediction by Olla [J. Phys. II 7, 1533, (1997)]. We study the effects of flow rate and fluid viscosity on the separation efficiency and demonstrate the separation of RBCs, blood platelets, and solid microspheres from each other. The method can be used for continuous and label-free cell classification and sorting in on-chip blood analysis.

  12. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  13. Viscosity Formulations and the Effect of Uncertain Parameters

    Science.gov (United States)

    Wasiliev, J. M.

    2015-12-01

    The development of detailed models of the interior of the Earth and other terrestrial planets is frequently hampered by poorly constrained compositional parameters, namely Activation Energy and Volume, which are necessary to define Arrhenius viscosity. This results in the values of said parameters varying considerably to suit the needs of individual investigations. A computational exploration of the effects of Activation Energy and Volume on the Earth's mantle was thus conducted, with a view to developing a robust and versatile method for obtaining a first-degree approximation for the parameter values, and providing some context for future studies. A wide range of plausible mantle configurations was examined in both one and two dimensions, with the latter case utilising the modelling program ASPECT to generate a series of simple Earth-like planets which were allowed to evolve until a steady state was achieved. A comprehensive statistical analysis was then performed, allowing for suitable parameter values to be more effectively constrained for numerous given viscosity formulations. Activation Energy was seen to exhibit considerable influence over the bulk magnitude of viscosity values, while Activation Volume heavily impacted the viscosity contrast between the upper and lower mantle. This behaviour stems from the parameters controlling the temperature and pressure dependency of viscosity within the calculation. Results were found to be highly dependent on the minimum and maximum values imposed on the viscosity, reinforcing the need for a fuller understanding of the formulation. A notable impact on stress profiles, and hence tectonic regime, was also observed. As such similar calculations were performed on directly scaled Super-Earths, with the intention of providing some insight into scenarios conducive to particular tectonic regimes in planets outside our solar system.

  14. Pressure Effect on Extensional Viscosity

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Kjær, Erik Michael

    1999-01-01

    The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves...

  15. Effective viscosity of confined hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2012-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  16. Computation of shear viscosity of colloidal suspensions by SRD-MD

    Energy Technology Data Exchange (ETDEWEB)

    Laganapan, A. M. K.; Videcoq, A., E-mail: arnaud.videcoq@unilim.fr; Bienia, M. [SPCTS, UMR 7315, ENSCI, CNRS, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges Cedex (France); Ala-Nissila, T. [COMP CoE at the Department of Applied Physics, Aalto University School of Science, P.O. Box 11000, FIN-00076 Aalto, Espoo (Finland); Department of Physics, Brown University, Providence, Rhode Island 02912-1843 (United States); Bochicchio, D.; Ferrando, R. [Dipartimento di Fisica and CNR-IMEM, via Dodecaneso 33, Genova I-16146 (Italy)

    2015-04-14

    The behaviour of sheared colloidal suspensions with full hydrodynamic interactions (HIs) is numerically studied. To this end, we use the hybrid stochastic rotation dynamics-molecular dynamics (SRD-MD) method. The shear viscosity of colloidal suspensions is computed for different volume fractions, both for dilute and concentrated cases. We verify that HIs help in the collisions and the streaming of colloidal particles, thereby increasing the overall shear viscosity of the suspension. Our results show a good agreement with known experimental, theoretical, and numerical studies. This work demonstrates the ability of SRD-MD to successfully simulate transport coefficients that require correct modelling of HIs.

  17. Fluctuating hydrodynamics for ionic liquids

    Science.gov (United States)

    Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos

    2017-04-01

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.

  18. Detailed hydrodynamic characterization of harmonically excited falling-film flows: A combined experimental and computational study

    Science.gov (United States)

    Charogiannis, Alexandros; Denner, Fabian; van Wachem, Berend G. M.; Kalliadasis, Serafim; Markides, Christos N.

    2017-01-01

    We present results from the simultaneous application of planar laser-induced fluorescence (PLIF), particle image velocimetry (PIV) and particle tracking velocimetry (PTV), complemented by direct numerical simulations, aimed at the detailed hydrodynamic characterization of harmonically excited liquid-film flows falling under the action of gravity. The experimental campaign comprises four different aqueous-glycerol solutions corresponding to four Kapitza numbers (Ka=14 , 85, 350, 1800), spanning the Reynolds number range Re=2.3 -320 , and with forcing frequencies fw=7 and 10 Hz . PLIF was employed to generate spatiotemporally resolved film-height measurements, and PIV and PTV to generate two-dimensional velocity-vector maps of the flow field underneath the wavy film interface. The latter allows for instantaneous, highly localized velocity-profile, bulk-velocity, and flow-rate data to be retrieved, based on which the effect of local film topology on the flow field underneath the waves is studied in detail. Temporal sequences of instantaneous and local film height and bulk velocity are generated and combined into bulk flow-rate time series. The time-mean flow rates are then decomposed into steady and unsteady components, the former represented by the product of the mean film height and mean bulk velocity and the latter by the covariance of the film-height and bulk-velocity fluctuations. The steady terms are found to vary linearly with the flow Re, with the best-fit gradients approximated closely by the kinematic viscosities of the three examined liquids. The unsteady terms, typically amounting to 5 %-10 % of the mean and peaking at approximately 20 % , are found to scale linearly with the film-height variance. And, interestingly, the instantaneous flow rate is found to vary linearly with the instantaneous film height. Both experimental and numerical flow-rate data are closely approximated by a simple analytical relationship with only minor deviations. This relationship

  19. General relativistic hydrodynamic flows around a static compact object in final stages of accretion flow

    Directory of Open Access Journals (Sweden)

    J Ghanbari

    2009-12-01

    Full Text Available Dynamics of stationary axisymmetric configuration of the viscous accreting fluids surrounding a non-rotating compact object in final stages of accretion flow is presented here. For the special case of thin disk approximation, the relativistic fluid equations ignoring self-gravity of the disk are derived in Schwarzschild geometry. For two different state equations, two sets of self-consistent analytical solutions of fully relativistic fluid equations are obtained separately. The effect of bulk viscosity coefficient on the physical functions are investigated for each state equation, as well as the bounds that exert on the free parameters due to the condition of accretion flow in the last stages. The solutions found show that the radial and azimuthal velocities, density and pressure of the fluid increase inwards for both state equations. Also, viscosity has no effect on the velocities and density distributions in both state equations. Two state equations show different types of behavior with respect to the bulk viscosity coefficient. For p=K state equation, if there is no bulk viscosity, the pressure remains constant throughout the disk, whereas with increasing bulk viscosity the pressure falls off in the inner regions but soon stabilizes at an almost constant value. However, for p=ρc2 state equation, the pressure is never constant, even in the absence of bulk viscosity. The larger the value of ηb, the higher the value of pressure in the inner regions.

  20. Cylindrically symmetric cosmological model in the presence of bulk stress with varying $\\Lambda$

    Indian Academy of Sciences (India)

    V G METE; A S NIMKAR; V D ELKAR

    2016-10-01

    Cylindrically symmetric non-static space–time is investigated in the presence of bulk stress given by Landau and Lifshitz. To get a solution, a supplementary condition between metric potentials is used. The viscosity coefficient of the bulk viscous fluid is assumed to be a power function of mass density whereas the coefficient of shear viscosity is considered as proportional to the scale of expansion in the model. Also some physical and geometrical properties of the model are discussed.

  1. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  2. Hydrodynamic slip length as a surface property.

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G P

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  3. Magnetic microrheometer for in situ characterization of coating viscosity.

    Science.gov (United States)

    Song, Jin-Oh; Henry, Robert M; Jacobs, Ryan M; Francis, Lorraine F

    2010-09-01

    A magnetic microrheometer has been designed to characterize the local viscosity of liquid-applied coatings in situ during solidification. The apparatus includes NdFeB magnets mounted on computer-controlled micropositioners for the manipulation of ∼1 μm diameter superparamagnetic particles in the coating. Magnetic field gradients at 20-70 T/m are generated by changing magnet size and the gap distance between the magnets. A specimen stage located between two magnets is outfitted with a heater and channels to control process conditions (temperature and air flow), and a digital optical microscope lens above the stage is used to monitor the probe particle position. Validation studies with glycerol and polyimide precursor solution showed that microrheometry results match traditional bulk rheometry within an error of 5%. The viscosities of polyvinyl alcohol (PVA) solution and polyimide precursor solution coatings were measured at different shear rates (0.01-5 s(-1)) by adjusting the magnetic field gradient. The effect of proximity to the substrate on the particle motion was characterized and compared with theoretical predictions. The magnetic microrheometer was used to characterize the time-viscosity profile of PVA coatings during drying at several temperatures. The viscosity range measured by the apparatus was 0.1-20 Pa s during drying of coatings at temperatures between room temperature and 80 °C.

  4. Scalability of Hydrodynamic Simulations

    CERN Document Server

    Tang, Shikui

    2009-01-01

    Many hydrodynamic processes can be studied in a way that is scalable over a vastly relevant physical parameter space. We systematically examine this scalability, which has so far only briefly discussed in astrophysical literature. We show how the scalability is limited by various constraints imposed by physical processes and initial conditions. Using supernova remnants in different environments and evolutionary phases as application examples, we demonstrate the use of the scaling as a powerful tool to explore the interdependence among relevant parameters, based on a minimum set of simulations. In particular, we devise a scaling scheme that can be used to adaptively generate numerous seed remnants and plant them into 3D hydrodynamic simulations of the supernova-dominated interstellar medium.

  5. Relativistic Hydrodynamics with Wavelets

    CERN Document Server

    DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W

    2015-01-01

    Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...

  6. Burst Mechanisms in Hydrodynamics

    CERN Document Server

    Knobloch, E

    1999-01-01

    Different mechanisms believed to be responsible for the generation of bursts in hydrodynamical systems are reviewed and a new mechanism capable of generating regular or irregular bursts of large dynamic range near threshold is described. The new mechanism is present in the interaction between oscillatory modes of odd and even parity in systems of large but finite aspect ratio, and provides an explanation for the bursting behavior observed in binary fluid convection. Additional applications of the new mechanism are proposed.

  7. Relativistic cosmological hydrodynamics

    CERN Document Server

    Hwang, J

    1997-01-01

    We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.

  8. Hydrodynamics of insect spermatozoa

    Science.gov (United States)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  9. Hydrodynamics of fossil fishes.

    Science.gov (United States)

    Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert

    2014-08-07

    From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms.

  10. Calibrating an updated smoothed particle hydrodynamics scheme within gcd+

    Science.gov (United States)

    Kawata, D.; Okamoto, T.; Gibson, B. K.; Barnes, D. J.; Cen, R.

    2013-01-01

    We adapt a modern scheme of smoothed particle hydrodynamics (SPH) to our tree N-body/SPH galactic chemodynamics code gcd+. The applied scheme includes implementations of the artificial viscosity switch and artificial thermal conductivity proposed by Morris & Monaghan, Rosswog & Price and Price to model discontinuities and Kelvin-Helmholtz instabilities more accurately. We first present hydrodynamics test simulations and contrast the results to runs undertaken without artificial viscosity switch or thermal conduction. In addition, we also explore the different levels of smoothing by adopting larger or smaller smoothing lengths, i.e. a larger or smaller number of neighbour particles, Nnb. We demonstrate that the new version of gcd+ is capable of modelling Kelvin-Helmholtz instabilities to a similar level as the mesh code, athena. From the Gresho vortex, point-like explosion and self-similar collapse tests, we conclude that setting the smoothing length to keep Nnb as high as ˜58 is preferable to adopting smaller smoothing lengths. We present our optimized parameter sets from the hydrodynamics tests.

  11. On the Viscosity of Emulsions

    CERN Document Server

    Kroy, K; Djabourov, M; Kroy, Klaus; Capron, Isabelle; Djabourov, Madeleine

    1999-01-01

    Combining direct computations with invariance arguments, Taylor's constitutive equation for an emulsion can be extrapolated to high shear rates. We show that the resulting expression is consistent with the rigorous limits of small drop deformation and that it bears a strong similarity to an a priori unrelated rheological quantity, namely the dynamic (frequency dependent) linear shear response. More precisely, within a large parameter region the nonlinear steady-state shear viscosity is obtained from the real part of the complex dynamic viscosity, while the first normal stress difference is obtained from its imaginary part. Our experiments with a droplet phase of a binary polymer solution (alginate/caseinate) can be interpreted by an emulsion analogy. They indicate that the predicted similarity rule generalizes to the case of moderately viscoelastic constituents that obey the Cox-Merz rule.

  12. Determination of fluid viscosity and femto Newton forces of Leishmania amazonensis using optical tweezers

    Science.gov (United States)

    Fontes, Adriana; Giorgio, Selma; de Castro, Archimedes, Jr.; Neto, Vivaldo M.; de Y. Pozzo, Liliana; de Thomaz, Andre A.; Barbosa, Luiz C.; Cesar, Carlos L.

    2005-08-01

    The displacements of a polystyrene microsphere trapped by an optical tweezers (OT) can be used as a force transducer for mechanical measurements in life sciences such as the measurement of forces of living microorganisms or the viscosity of local fluids. The technique we used allowed us to measure forces on the 200 femto Newtons to 4 pico Newtons range of the protozoa Leishmania amazonensis, responsible for a serious tropical disease. These observations can be used to understand the infection mechanism and chemotaxis of these parasites. The same technique was used to measure viscosities of few microliters sample with agreement with known samples better than 5%. To calibrate the force as a function of the microsphere displacement we first dragged the microsphere in a fluid at known velocity for a broad range of different optical and hydrodynamical parameters. The hydrodynamical model took into account the presence of two walls and the force depends on drag velocity, fluid viscosity and walls proximities, while the optical model in the geometric optics regime depends on the particle and fluid refractive indexes and laser power. To measure the high numerical (NA) aperture laser beam power after the objective we used an integration sphere to avoid the systematic errors of usual power meters for high NA beams. After this careful laser power measurement we obtained an almost 45 degrees straight line for the plot of the optical force (calculated by the particle horizontal displacement) versus hydrodynamic force (calculated by the drag velocity) under variation of all the parameters described below. This means that hydrodynamic models can be used to calibrate optical forces, as we have done for the parasite force measurement, or vice-versa, as we did for the viscosity measurements.

  13. Viscosity of Earth's Outer Core

    CERN Document Server

    Smylie, D E

    2007-01-01

    A viscosity profile across the entire fluid outer core is found by interpolating between measured boundary values, using a differential form of the Arrhenius law governing pressure and temperature dependence. The discovery that both the retrograde and prograde free core nutations are in free decay (Palmer and Smylie, 2005) allows direct measures of viscosity at the top of the outer core, while the reduction in the rotational splitting of the two equatorial translational modes of the inner core allows it to be measured at the bottom. We find 2,371 plus/minus 1,530 Pa.s at the top and 1.247 plus/minus 0.035 x 10^11 Pa.s at the bottom. Following Brazhkin (1998) and Brazhkin and Lyapin (2000) who get 10^2 Pa.s at the top, 10^11 Pa.s at the bottom, by an Arrhenius extrapolation of laboratory experiments, we use a differential form of the Arrhenius law to interpolate along the melting temperature curve to find a viscosity profile across the outer core. We find the variation to be closely log-linear between the meas...

  14. Viscosity Index Improvers and Thickeners

    Science.gov (United States)

    Stambaugh, R. L.; Kinker, B. G.

    The viscosity index of an oil or an oil formulation is an important physical parameter. Viscosity index improvers, VIIs, are comprised of five main classes of polymers: polymethylmethacrylates (PMAs), olefin copolymers (OCPs), hydrogenated poly(styrene-co-butadiene or isoprene) (HSD/SIP/HRIs), esterified polystyrene-co-maleic anhydride (SPEs) and a combination of PMA/OCP systems. The chemistry, manufacture, dispersancy and utility of each class are described. The comparative functions, properties, thickening ability, dispersancy and degradation of VIIs are discussed. Permanent and temporary shear thinning of VII-thickened formulations are described and compared. The end-use performance and choice of VI improvers is discussed in terms of low- and high-temperature viscosities, journal bearing oil film thickness, fuel economy, oil consumption, high-temperature pumping efficiency and deposit control. Discussion of future developments concludes that VI improvers will evolve to meet new challenges of increased thermal-oxidative degradation from increased engine operating temperatures, different base stocks of either synthetic base oils or vegetable oil-based, together with alcohol- or vegetable oil-based fuels. VI improvers must also evolve to deal with higher levels of fuel dilution and new types of sludge and also enhanced low-temperature requirements.

  15. A new and reliable model for predicting methane viscosity at high pressures and high temperatures

    Institute of Scientific and Technical Information of China (English)

    Ehsan Heidaryan; Jamshid Moghadasi; Amir Salarabadi

    2010-01-01

    In recent years,there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures.Hydrodynamic calculation of the energy losses in the flow of gases in conduits,as well as through the porous media constituting natural petroleum reservoirs,requires knowledge of the viscosity of the fluid at the pressure and temperature involved.Although there are numerous publications concerning the viscosity of methane at atmospheric pressure,there appears to be little information available relating to the effect of pressure and temperature upon the viscosity.A survey of the literature reveals that the disagreements between published data on the viscosity of methane are common and that most investigations have been conducted over restricted temperature and pressure ranges.Experimental viscosity data for methane are presented for temperatures from 320 to 400 K and pressures from 3000 to 140000 kPa by using falling body viscometer.A summary is given to evaluate the available data for methane,and a comparison is presented for that data common to the experimental range reported in this paper.A new and reliable correlation for methane gas viscosity is presented.Predicted values are given for temperatures up to 400 K and pressures up to 140000 kPa with Average Absolute Percent Relative Error(EABS)of 0.794.

  16. Foundations of radiation hydrodynamics

    CERN Document Server

    Mihalas, Dimitri

    1999-01-01

    Radiation hydrodynamics is a broad subject that cuts across many disciplines in physics and astronomy: fluid dynamics, thermodynamics, statistical mechanics, kinetic theory, and radiative transfer, among others. The theory developed in this book by two specialists in the field can be applied to the study of such diverse astrophysical phenomena as stellar winds, supernova explosions, and the initial phases of cosmic expansion, as well as the physics of laser fusion and reentry vehicles. As such, it provides students with the basic tools for research on radiating flows.Largely self-contained,

  17. Next-to-leading order improved perturbative QCD + saturation + hydrodynamics model for A+A collisions

    Energy Technology Data Exchange (ETDEWEB)

    Paatelainen, R.; Eskola, K.J. [Department of Physics, P.O.Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics, P.O.Box 64, FI-00014 University of Helsinki (Finland); Holopainen, H. [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Niemi, H. [Department of Physics, P.O.Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics, P.O.Box 64, FI-00014 University of Helsinki (Finland); Tuominen, K. [Department of Physics, P.O.Box 64, FI-00014 University of Helsinki (Finland); Helsinki Institute of Physics, P.O.Box 64, FI-00014 University of Helsinki (Finland)

    2014-06-15

    We calculate initial conditions for the hydrodynamical evolution in ultrarelativistic heavy-ion collisions at the LHC and RHIC in an improved next-to-leading order perturbative QCD + saturation framework. Using viscous relativistic hydrodynamics, we show that we obtain a good simultaneous description of the centrality dependence of charged particle multiplicities, transverse momentum spectra and elliptic flow at the LHC and at RHIC. In particular, we discuss how the temperature dependence of the shear viscosity is constrained by these data.

  18. Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements

    Directory of Open Access Journals (Sweden)

    Martin Alberto Masuelli

    2013-01-01

    Full Text Available The behavior of bovine serum albumin (BSA in water is scarcely studied, and the thermodynamic properties arising from the experimental measurements have not been reported. Intrinsic viscosity measurements are very useful in assessing the interaction between the solute and solvent. This work discussed in a simple determination of the enthalpy of BSA in aqueous solution when the concentration ranges from 0.2 to 36.71% wt. and the temperature from 35 to 40°C. The relationship between the concentration and intrinsic viscosity is determined according to the method of Huggins. The temperature increase reduces the ratio between inherent viscosity and concentration (ηi/c. This is reflected in the Van't Hoff curve. Furthermore, this work proposes hydrodynamic cohesion value as an indicator of the degree of affinity of protein with water and thermodynamic implications in conformational changes.

  19. Extension of the dielectric breakdown model for simulation of viscous fingering at finite viscosity ratios.

    Science.gov (United States)

    Doorwar, Shashvat; Mohanty, Kishore K

    2014-07-01

    Immiscible displacement of viscous oil by water in a petroleum reservoir is often hydrodynamically unstable. Due to similarities between the physics of dielectric breakdown and immiscible flow in porous media, we extend the existing dielectric breakdown model to simulate viscous fingering patterns for a wide range of viscosity ratios (μ(r)). At low values of power-law index η, the system behaves like a stable Eden growth model and as the value of η is increased to unity, diffusion limited aggregation-like fractals appear. This model is compared with our two-dimensional (2D) experiments to develop a correlation between the viscosity ratio and the power index, i.e., η = 10(-5)μ(r)(0.8775). The 2D and three-dimensional (3D) simulation data appear scalable. The fingering pattern in 3D simulations at finite viscosity ratios appear qualitatively similar to the few experimental results published in the literature.

  20. Molecular hydrodynamics from memory kernels

    CERN Document Server

    Lesnicki, Dominika; Carof, Antoine; Rotenberg, Benjamin

    2016-01-01

    The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as $t^{-3/2}$. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, at odds with incompressible hydrodynamics predictions. We finally discuss the various contributions to the friction, the associated time scales and the cross-over between the molecular and hydrodynamic regimes upon increasing the solute radius.

  1. Hydrodynamics of pronuclear migration

    Science.gov (United States)

    Nazockdast, Ehssan; Needleman, Daniel; Shelley, Michael

    2014-11-01

    Microtubule (MT) filaments play a key role in many processes involved in cell devision including spindle formation, chromosome segregation, and pronuclear positioning. We present a direct numerical technique to simulate MT dynamics in such processes. Our method includes hydrodynamically mediated interactions between MTs and other cytoskeletal objects, using singularity methods for Stokes flow. Long-ranged many-body hydrodynamic interactions are computed using a highly efficient and scalable fast multipole method, enabling the simulation of thousands of MTs. Our simulation method also takes into account the flexibility of MTs using Euler-Bernoulli beam theory as well as their dynamic instability. Using this technique, we simulate pronuclear migration in single-celled Caenorhabditis elegans embryos. Two different positioning mechanisms, based on the interactions of MTs with the motor proteins and the cell cortex, are explored: cytoplasmic pulling and cortical pushing. We find that although the pronuclear complex migrates towards the center of the cell in both models, the generated cytoplasmic flows are fundamentally different. This suggest that cytoplasmic flow visualization during pronuclear migration can be utilized to differentiate between the two mechanisms.

  2. SPHGal: Smoothed Particle Hydrodynamics with improved accuracy for Galaxy simulations

    CERN Document Server

    Hu, Chia-Yu; Walch, Stefanie; Moster, Benjamin P; Oser, Ludwig

    2014-01-01

    We present the smoothed-particle hydrodynamics implementation SPHGal which incorporates several recent developments into the GADGET code. This includes a pressure-entropy formulation of SPH with a Wendland kernel, a higher order estimate of velocity gradients, a modified artificial viscosity switch with a strong limiter, and artificial conduction of thermal energy. We conduct a series of idealized hydrodynamic tests and show that while the pressure-entropy formulation is ideal for resolving fluid mixing at contact discontinuities, it performs conspicuously worse when strong shocks are involved due to the large entropy discontinuities. Including artificial conduction at shocks greatly improves the results. The Kelvin-Helmholtz instability can be resolved properly and dense clouds in the blob test dissolve qualitatively in agreement with other improved SPH implementations. We further perform simulations of an isolated Milky Way like disk galaxy and find a feedback-induced instability developing if too much arti...

  3. Axisymmetric smoothed particle hydrodynamics with self-gravity

    CERN Document Server

    García-Senz, D; Cabezon, R M; Bravo, E

    2008-01-01

    The axisymmetric form of the hydrodynamic equations within the smoothed particle hydrodynamics (SPH) formalism is presented and checked using idealized scenarios taken from astrophysics (free fall collapse, implosion and further pulsation of a sun-like star), gas dynamics (wall heating problem, collision of two streams of gas) and inertial confinement fusion (ICF, -ablative implosion of a small capsule-). New material concerning the standard SPH formalism is given. That includes the numerical handling of those mass points which move close to the singularity axis, more accurate expressions for the artificial viscosity and the heat conduction term and an easy way to incorporate self-gravity in the simulations. The algorithm developed to compute gravity does not rely in any sort of grid, leading to a numerical scheme totally compatible with the lagrangian nature of the SPH equations.

  4. Decay of hydrodynamic modes in dilute Bose-Einstein condensates

    Science.gov (United States)

    Gust, Erich; Reichl, Linda

    2015-03-01

    We present the results of Bogoliubov mean field theory applied to the hydrodynamic modes in a dilute Bose-Einstein condensate. The condensate has six hydrodynamic modes, two of which are decaying shear modes related to the viscosity, and two pairs pairs of sound modes which undergo an avoided crossing as the equilibrium temperature is varied. The two pairs of sound modes decay at very different rates, except in the neighborhood of the avoided crossing, where the identity of the longest-lived mode switches. The predicted speed and lifetime of the longest-lived sound mode are consistent with recent experimental observations on sound in an 87Rb Bose-Einstein condensate. The strong depedence of the decay rates on temperature implies a possible new method for determining the temperature of Bose-Einstein condensates. The authors wish to thank the Robert A. Welch Foundation Grant No. F-1051 for support of this work.

  5. Nonlinear hydrodynamic corrections to supersonic F-KPP wave fronts

    Science.gov (United States)

    Antoine, C.; Dumazer, G.; Nowakowski, B.; Lemarchand, A.

    2012-03-01

    We study the hydrodynamic corrections to the dynamics and structure of an exothermic chemical wave front of Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) type which travels in a one-dimensional gaseous medium. We show in particular that its long time dynamics, cut-off sensitivity and leading edge behavior are almost entirely controlled by the hydrodynamic front speed correction δUh which characterizes the pushed nature of the front. Reducing the problem to an effective comoving heterogeneous F-KPP equation, we determine two analytical expressions for δUh: an accurate one, derived from a variational method, and an approximate one, from which one can assess the δUh sensitivity to the shear viscosity and heat conductivity of the fluid of interest.

  6. Viscoelastic hydrodynamic interactions and anomalous CM diffusion in polymer melts

    Science.gov (United States)

    Meyer, Hendrik

    We have recently discovered that anomalous center-of-mass (CM) diffusion occurring on intermediate time scales in polymer melts can be explained by the interplay of viscoelastic and hydrodynamic interactions (VHI). The theory has been solved for unentangled melts in 3D and 2D and excellent agreement between theory and simulation is found, also for alkanes with a force field optimized from neutron scattering. The physical mechanism considers that hydrodynamic interactions are not screened: they are time dependent because of increasing viscosity before the terminal relaxation time. The VHI are generally active in melts of any topology. They are most important at early times well before the terminal relaxation time and thus affect the nanosecond time range typically observable in dynamic neutron scattering experiments. We illustrate the effects with recent molecular dynamics simulations of linear, ring and star polymers. Work performed with A.N. Semenov and J. Farago.

  7. CRKSPH - A Conservative Reproducing Kernel Smoothed Particle Hydrodynamics Scheme

    CERN Document Server

    Frontiere, Nicholas; Owen, J Michael

    2016-01-01

    We present a formulation of smoothed particle hydrodynamics (SPH) that employs a first-order consistent reproducing kernel function, exactly interpolating linear fields with particle tracers. Previous formulations using reproducing kernel (RK) interpolation have had difficulties maintaining conservation of momentum due to the fact the RK kernels are not, in general, spatially symmetric. Here, we utilize a reformulation of the fluid equations such that mass, momentum, and energy are all manifestly conserved without any assumption about kernel symmetries. Additionally, by exploiting the increased accuracy of the RK method's gradient, we formulate a simple limiter for the artificial viscosity that reduces the excess diffusion normally incurred by the ordinary SPH artificial viscosity. Collectively, we call our suite of modifications to the traditional SPH scheme Conservative Reproducing Kernel SPH, or CRKSPH. CRKSPH retains the benefits of traditional SPH methods (such as preserving Galilean invariance and manif...

  8. Hydrodynamics of the physical vacuum: dark matter is an illusion

    CERN Document Server

    Sbitnev, Valeriy I

    2015-01-01

    The relativistic hydrodynamical equations are being examined with the aim of extracting the quantum-mechanical equations (the relativistic Klein-Gordon equation and the Schr\\"odinger equation in the non-relativistic limit). In both cases it is required to get the quantum potential, which follows from pressure gradients within a superfluid vacuum medium. This special fluid, endowed with viscosity allows to describe emergence of the flat orbital speeds of spiral galaxies. The viscosity averaged on time vanishes, but its variance is different from zero. It is a function fluctuating about zero. Therefore the flattening is the result of the energy exchange of the torque with zero-point fluctuations of the physical vacuum on the ultra-low frequencies.

  9. Hydrodynamics of the physical vacuum: Dark matter is an illusion

    Science.gov (United States)

    Sbitnev, Valeriy I.

    2015-10-01

    The relativistic hydrodynamical equations are being examined with the aim of extracting the quantum-mechanical equations (the relativistic Klein-Gordon equation and the Schrödinger equation in the non-relativistic limit). In both cases we find the quantum potential, which follows from pressure gradients within a superfluid vacuum medium. This special fluid, endowed with viscosity allows to describe emergence of the flat orbital speeds of spiral galaxies. The viscosity averaged on time vanishes, but its variance is different from zero. It is a function fluctuating about zero. Therefore, the flattening is the result of the energy exchange of the torque with zero-point fluctuations of the physical vacuum on the ultra-low frequencies.

  10. FRW Bulk Viscous Cosmology with Modified Chaplygin Gas in Flat Space

    CERN Document Server

    Saadat, H

    2016-01-01

    In this paper we study FRW bulk viscous cosmology in presence of modified Chaplygin gas. We write modified Friedmann equations due to bulk viscosity and Chaplygin gas and obtain time-dependent energy density for the special case of flat space.

  11. Apsidal precession, disc breaking and viscosity in warped discs

    CERN Document Server

    Nealon, Rebecca; Price, Daniel J; King, Andrew

    2015-01-01

    We demonstrate the importance of general relativistic apsidal precession in warped black hole accretion discs by comparing three - dimensional smoothed particle hydrodynamic simulations in which this effect is first neglected, and then included. If apsidal precession is neglected, we confirm the results of an earlier magnetohydrodynamic simulation which made this assumption, showing that at least in this case the $\\alpha$ viscosity model produces very similar results to those of simulations where angular momentum transport is due to the magnetorotational instability. Including apsidal precession significantly changes the predicted disc evolution. For moderately inclined discs thick enough that tilt is transported by bending waves, we find a disc tilt which is nonzero at the inner disc edge and oscillates with radius, consistent with published analytic results. For larger inclinations we find disc breaking.

  12. Viscosity of a nucleonic fluid

    CERN Document Server

    Mekjian, Aram Z

    2012-01-01

    The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.

  13. The viscosity of dimethyl ether

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Jakobsen, Jørgen

    2007-01-01

    Dimethyl ether (DME) has been recognised as an excellent fuel for diesel engines for over one decade now. Engines fuelled by DME emit virtually no particulate matter even at low NOx levels. This is only possible in the case of diesel oil operation if expensive and efficient lowering particles...... for pressurisation in these methods. The results of the VFVM are consolidated by measurements of the viscosities of propane and butane: these agree with the outcome of measurements using a quartz crystal microbalance (QCM) a method that is supposedly less sensible than the Reynolds number....

  14. Viscosity measurements of antibody solutions by photon correlation spectroscopy: an indirect approach - limitations and applicability for high-concentration liquid protein solutions.

    Science.gov (United States)

    Wagner, Michael; Reiche, Katharina; Blume, Alfred; Garidel, Patrick

    2013-01-01

    Photon correlation spectroscopy (PCS) is compared with classic rheological measurements using the cone-and-plate technique for the determination of the viscosity of protein solutions. The potential advantages using PCS are small sample volume and fast determination of zero-shear viscosity. The present study assesses potentials and limitations of the applicability of this method for the determination of viscosity of antibody solutions in protein science development. The principle of the assay is based on the determination of the apparent hydrodynamic radius of commercial available latex beads of known size added to protein solutions. Using the Stokes-Einstein equation, the hydrodynamic radius can be converted to viscosity. Several latex particle sizes and concentrations were evaluated and the assay optimized. The PCS assay for viscosity determination was tested using water/glycerol-mixtures, where the viscosity was measured with rheometer using the cone-and-plate method and also compared with published data. Different protein solutions of bovine serum albumin, lysozyme and monoclonal antibodies were then used and the PCS results were compared with viscosity data obtained by the cone-and-plate method. It could be shown that the PCS assay has limitations for the determination of the viscosity of protein solutions, especially monoclonal antibodies. The main reason is due to protein-latex bead interactions leading to the formation of larger aggregates. The use of surface modification of the latex beads can in principle prevent this interaction.

  15. Advances in the hydrodynamics solver of CO5BOLD

    Science.gov (United States)

    Freytag, Bernd

    Many features of the Roe solver used in the hydrodynamics module of CO5BOLD have recently been added or overhauled, including the reconstruction methods (by adding the new second-order ``Frankenstein's method''), the treatment of transversal velocities, energy-flux averaging and entropy-wave treatment at small Mach numbers, the CTU scheme to combine the one-dimensional fluxes, and additional safety measures. All this results in a significantly better behavior at low Mach number flows, and an improved stability at larger Mach numbers requiring less (or no) additional tensor viscosity, which then leads to a noticeable increase in effective resolution.

  16. Lagrangian formulation of relativistic Israel-Stewart hydrodynamics

    Science.gov (United States)

    Montenegro, David; Torrieri, Giorgio

    2016-09-01

    We rederive relativistic hydrodynamics as a Lagrangian effective theory using the doubled coordinates technique, allowing us to include dissipative terms. We include Navier-Stokes shear and bulk terms, as well as Israel-Stewart relaxation time terms, within this formalism. We show how the inclusion of shear dissipation forces the inclusion of the Israel-Stewart term into the theory, thereby providing an additional justification for the form of this term.

  17. A kinetic regime of hydrodynamic fluctuations and long time tails for a Bjorken expansion

    CERN Document Server

    Akamatsu, Yukinao; Teaney, Derek

    2016-01-01

    We develop a set of kinetic equations for hydrodynamic fluctuations which are equivalent to nonlinear hydrodynamics with noise. The hydro-kinetic equations can be coupled to existing second order hydrodynamic codes to incorporate the physics of these fluctuations. We first show that the kinetic response precisely reproduces the renormalization of the shear viscosity and the fractional power ($\\propto \\omega^{3/2}$) which characterizes equilibrium correlators of energy and momentum for a static fluid. Then we use the hydro-kinetic equations to analyze thermal fluctuations for a Bjorken expansion, evaluating the contribution of thermal noise from the earliest moments and at late times. In the Bjorken case, the solution to the kinetic equations determines the coefficient of the first fractional power of the gradient expansion ($\\propto 1/(\\tau T)^{3/2}$) for the expanding system. Numerically, we find that the contribution to the longitudinal pressure from hydrodynamic fluctuations is larger than second order hyd...

  18. Different elution modes and field programming in gravitational field-flow fractionation: field programming using density and viscosity gradients.

    Science.gov (United States)

    Plocková, Jana; Chmelík, Josef

    2006-06-23

    In previous papers, several approaches to programming of the resulting force field in GFFF were described and investigated. The experiments were dealing with flow-velocity and channel thickness, i.e. factors influencing hydrodynamic lift forces (HLF). The potential of density and viscosity of carrier liquid for field programming was predicted and demonstrated by preliminary experiments. This work is devoted to experimental verification of the influence of carrier liquid density and viscosity. Several carrier liquid density and simultaneously viscosity gradients using water-methanol mixtures are in this work implemented in the separation of a model silica mixture. Working with the water-methanol gradients, one is not able to separate the influence of density from the contribution of viscosity. However, we found experimental conditions to show the isolated effect of carrier liquid density (two water-methanol mixtures of equal viscosity differing in their densities). In order to demonstrate the isolated effect of viscosity, we implemented in this work a new system of (hydroxypropyl)methyl cellulose (HPMC) carrier liquids. Three different HPMC compositions enabled to vary the viscosity more than two times at almost constant density. With increasing carrier liquid viscosity, the focusing and elevating trend was clearly pronounced for 5 and 10 microm silica particles. By the isolated effect of increased viscosity, the centre of the 10 microm particle zone was elevated to the streamline at 16% of the channel height. These experiments have shown that the influence of carrier liquid viscosity on HLF should be taken into account even at higher levels above the channel bottom, i.e. beyond the near-wall region. Further, it is shown that higher value of carrier liquid viscosity improves the separation of the model mixture in terms of time and resolution.

  19. Drop Spreading with Random Viscosity

    Science.gov (United States)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  20. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  1. Fluctuations in Relativistic Causal Hydrodynamics

    CERN Document Server

    Kumar, Avdhesh; Mishra, Ananta P

    2013-01-01

    The formalism to calculate the hydrodynamics fluctuation using the quasi-stationary fluctuation theory of Onsager to the relativistic Navier-Stokes hydrodynamics is already known. In this work we calculate hydrodynamic fluctuations in relativistic causal theory of Muller, Israel and Stewart and other related causal hydrodynamic theories. We show that expressions for the Onsager coefficients and the correlation functions have form similar to the ones obtained by using Navier-Stokes equation. However, temporal evolution of the correlation functions obtained using MIS and the other causal theories can be significantly different than the correlation functions obtained using the Navier-Stokes equation. Finally, as an illustrative example, we explicitly plot the correlation functions obtained using the causal-hydrodynamics theories and compare them with correlation functions obtained by earlier authors using the expanding boost-invariant (Bjorken) flows.

  2. Gradient expansion for anisotropic hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Spaliński, Michał

    2016-01-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.

  3. Hydrodynamics of Ship Propellers

    DEFF Research Database (Denmark)

    Breslin, John P.; Andersen, Poul

    This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and moments which the propeller generates on the shaft and on the ship hull.The first part of the text is devoted to fundamentals of the flow about hydrofoil sections (with and without cavitation......) and about wings. It then treats propellers in uniform flow, first via advanced actuator disc modelling, and then using lifting-line theory. Pragmatic guidance is given for design and evaluation of performance, including the use of computer modelling.The second part covers the development of unsteady forces...... arising from operation in non-uniform hull wakes. First, by a number of simplifications, various aspects of the problem are dealt with separately until the full problem of a non-cavitating, wide-bladed propeller in a wake is treated by a new and completely developed theory. Next, the complicated problem...

  4. Hydrodynamic effects on coalescence.

    Energy Technology Data Exchange (ETDEWEB)

    Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael (Yale University, New Haven, CT); Gorby, Allen D.; Brooks, Carlton, F.

    2006-10-01

    The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.

  5. A mesoscopic model for microscale hydrodynamics and interfacial phenomena: Slip, films, and contact angle hysteresis

    OpenAIRE

    Colosqui, Carlos E.; Kavousanakis, Michail E.; Papathanasiou, Athanasios G.; Kevrekidis, Ioannis G.

    2012-01-01

    We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibriu...

  6. Hydrodynamics of sediment threshold

    Science.gov (United States)

    Ali, Sk Zeeshan; Dey, Subhasish

    2016-07-01

    A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.

  7. An Experimental Study of Liquid-Solid Flow in a Circulating Fluidized Bed of Varying Liquid Viscosity

    Directory of Open Access Journals (Sweden)

    nirmala sundaram

    2015-01-01

    Full Text Available Hydrodynamics plays a major role in the design of an industrial liquid-solid circulating fluidized bed (LSCFB system. Till date, research investigations have been carried out with tap water as a liquid phase in an LSCFB. But still there is a limited understanding regarding the circulation of particles in an LSCFB with viscous fluids. The aim of our study was to characterize the hydrodynamics in an LSCFB with varying viscosity. Experiments were conducted in a fluidized bed riser of 0.1 m diameter by 2.4 m height with different viscous liquids to study the effects of the operating parameters, namely, primary velocity, secondary velocity, and total velocity, on the hydrodynamic characteristics of the LSCFB with reference to its solid holdup, solid circulation rate, and particle velocity. Experiments were conducted using water and glycerol at different concentrations, and the solid particles (sand and resin of different densities, but same diameter were used in the experiment. The results indicate that the solid holdup in the riser was axially uniform for viscous liquids, which increased with an increase in auxiliary velocity. The average solid holdup decreased with an increase in total velocity, and it increased with an increase in liquid viscosity as the critical transitional velocity decreased with an increase in viscosity. The solid circulation rate was found to be increased with increased total velocity, auxiliary velocity, and viscosity.

  8. High viscosity fluid simulation using particle-based method

    KAUST Repository

    Chang, Yuanzhang

    2011-03-01

    We present a new particle-based method for high viscosity fluid simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the traditional Navier-Stokes equation to simulate the movements of the high viscosity fluids. Benefiting from the Lagrangian nature of Smoothed Particle Hydrodynamics method, large flow deformation can be well handled easily and naturally. In addition, in order to eliminate the particle deficiency problem near the boundary, ghost particles are employed to enforce the solid boundary condition. Compared with Finite Element Methods with complicated and time-consuming remeshing operations, our method is much more straightforward to implement. Moreover, our method doesn\\'t need to store and compare to an initial rest state. The experimental results show that the proposed method is effective and efficient to handle the movements of highly viscous flows, and a large variety of different kinds of fluid behaviors can be well simulated by adjusting just one parameter. © 2011 IEEE.

  9. VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Maja eBoric

    2012-07-01

    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  10. Radiation-Hydrodynamics of Hot Jupiter Atmospheres

    CERN Document Server

    Menou, Kristen

    2009-01-01

    Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, formally in the regime of radiation-hydrodynamics. To lowest order in v/c, relativistic Doppler shifts distort line profiles along optical paths with finite wind velocity gradients. This leads to flow-dependent deviations in the effective emission and absorption properties of the atmospheric medium. Evaluating the overall impact of these distortions on the radiative structure of a dynamic atmosphere is non-trivial. We present transmissivity and systematic equivalent width excess calculations which suggest possibly important consequences for radiation transport in hot Jupiter atmospheres. If winds are fast and bulk Doppler shifts are indeed important for the global radiative balance, accurate modeling and reliable data interpretation for hot Jupiter atmospheres may p...

  11. Bulk Nanostructured Materials

    Science.gov (United States)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-09-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  12. Bacterial accumulation in viscosity gradients

    Science.gov (United States)

    Waisbord, Nicolas; Guasto, Jeffrey

    2016-11-01

    Cell motility is greatly modified by fluid rheology. In particular, the physical environments in which cells function, are often characterized by gradients of viscous biopolymers, such as mucus and extracellular matrix, which impact processes ranging from reproduction to digestion to biofilm formation. To understand how spatial heterogeneity of fluid rheology affects the motility and transport of swimming cells, we use hydrogel microfluidic devices to generate viscosity gradients in a simple, polymeric, Newtonian fluid. Using video microscopy, we characterize the random walk motility patterns of model bacteria (Bacillus subtilis), showing that both wild-type ('run-and-tumble') cells and smooth-swimming mutants accumulate in the viscous region of the fluid. Through statistical analysis of individual cell trajectories and body kinematics in both homogeneous and heterogeneous viscous environments, we discriminate passive, physical effects from active sensing processes to explain the observed cell accumulation at the ensemble level.

  13. Shear Viscosity from Lattice QCD

    CERN Document Server

    Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán

    2015-01-01

    Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented

  14. Viscosity of oil and water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, A.E.; Hall, A.R.W. [National Engineering Laboratory, Glasgow (United Kingdom)

    1999-07-01

    A study was performed to investigate the apparent viscosity of oil and water mixtures using the pressure loss along a horizontal pipe. Water fractions between 100% to 5% were examined at three flow velocities and three temperatures. Four combinations of crude oil and saline solution were used. Tests found that the mixture viscosity exhibited a peak at the position of phase inversion. The value of this maximum viscosity depended upon the temperature and fluid combination used, but not the velocity. Physical properties of the fluids were important factors in the viscosity/water fraction behaviour. (author)

  15. Accretion of Jupiter-mass planets in the limit of vanishing viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Szulágyi, J.; Morbidelli, A.; Crida, A. [University of Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, Laboratoire Lagrange, F-06304, Nice (France); Masset, F., E-mail: jszulagyi@oca.eu [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2014-02-20

    In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼10{sup 4} yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.

  16. Viscosity of neutron star matter and $r$-modes in rotating pulsars

    CERN Document Server

    Kolomeitsev, E E

    2014-01-01

    We study viscosity of the neutron star matter and $r$-mode instability in rotating neutron stars. Contributions to the shear and bulk viscosities from various processes are calculated with account of in-medium modifications of the nucleon-nucleon interaction. A softening of the pion mode and a possibility of the pion condensation are included. The nucleon pairing is incorporated. In the shear viscosity we include the lepton contribution calculated with account of the Landau damping in the photon exchange, the nucleon contribution described by the medium-modified one pion exchange, and other terms, such as the novel phonon contribution in the 1S$_0$ superfluid neutron phase, and the neutrino term in the neutrino opacity region. The nucleon shear viscosity depends on the density rather moderately and proves to be much less than the lepton term. Among the terms contributing to the bulk viscosity, the term from the medium modified Urca reactions possesses strongest density dependence because of the pion softening...

  17. Recent development of hydrodynamic modeling

    Science.gov (United States)

    Hirano, Tetsufumi

    2014-09-01

    In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions

  18. Hydrodynamical Description of the QCD Dirac Spectrum at Finite Chemical Potential

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2015-01-01

    We present a hydrodynamical description of the QCD Dirac spectrum at finite chemical potential as an uncompressible droplet in the complex eigenvalue space. For a large droplet, the fluctuation spectrum around the hydrostatic solution is gapped by a longitudinal Coulomb plasmon, and exhibits a frictionless odd viscosity. The stochastic relaxation time for the restoration/breaking of chiral symmetry is set by twice the plasmon frequency. The leading droplet size correction to the relaxation time is fixed by a universal odd viscosity to density ratio $\\eta_O/\\rho_0=(\\beta-1)/2$ for the three Dyson ensembles $\\beta=1,2,4$.

  19. Special Relativistic Hydrodynamics with Gravitation

    Science.gov (United States)

    Hwang, Jai-chan; Noh, Hyerim

    2016-12-01

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  20. Special relativistic hydrodynamics with gravitation

    CERN Document Server

    Hwang, Jai-chan

    2016-01-01

    The special relativistic hydrodynamics with weak gravity is hitherto unknown in the literature. Whether such an asymmetric combination is possible was unclear. Here, the hydrodynamic equations with Poisson-type gravity considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit are consistently derived from Einstein's general relativity. Analysis is made in the maximal slicing where the Poisson's equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the {\\it general} hypersurface condition. Our formulation includes the anisotropic stress.

  1. Warm dense mater: another application for pulsed power hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Reinovsky, Robert Emil [Los Alamos National Laboratory

    2009-01-01

    Pulsed Power Hydrodynamics (PPH) is an application of low-impedance pulsed power, and high magnetic field technology to the study of advanced hydrodynamic problems, instabilities, turbulence, and material properties. PPH can potentially be applied to the study of the properties of warm dense matter (WDM) as well. Exploration of the properties of warm dense matter such as equation of state, viscosity, conductivity is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to slightly above solid density) and modest temperatures ({approx}1-10 eV). Conditions characteristic of WDM are difficult to obtain, and even more difficult to diagnose. One approach to producing WDM uses laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers are applying these techniques. Pulsed power hydrodynamic techniques, such as large convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through multiple shock compression and heating of normal density material between a massive, high density, energetic liner and a high density central 'anvil' are possible ways to reach relevant conditions. Another avenue to WDM conditions is through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. In this paper we will examine the challenges to pulsed power technology and to pulsed power systems presented by the opportunity to explore this interesting region of parameter space.

  2. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  3. Bosonization and quantum hydrodynamics

    Indian Academy of Sciences (India)

    Girish S Setlur

    2006-03-01

    It is shown that it is possible to bosonize fermions in any number of dimensions using the hydrodynamic variables, namely the velocity potential and density. The slow part of the Fermi field is defined irrespective of dimensionality and the commutators of this field with currents and densities are exponentiated using the velocity potential as conjugate to the density. An action in terms of these canonical bosonic variables is proposed that reproduces the correct current and density correlations. This formalism in one dimension is shown to be equivalent to the Tomonaga-Luttinger approach as it leads to the same propagator and exponents. We compute the one-particle properties of a spinless homogeneous Fermi system in two spatial dimensions with long-range gauge interactions and highlight the metal-insulator transition in the system. A general formula for the generating function of density correlations is derived that is valid beyond the random phase approximation. Finally, we write down a formula for the annihilation operator in momentum space directly in terms of number conserving products of Fermi fields.

  4. Engineering Hydrodynamic AUV Hulls

    Science.gov (United States)

    Allen, J.

    2016-12-01

    AUV stands for autonomous underwater vehicle. AUVs are used in oceanography and are similar to gliders. MBARIs AUVs as well as other AUVs map the ocean floor which is very important. They also measure physical characteristics of the water, such as temperature and salinity. My science fair project for 4th grade was a STEM activity in which I built and tested 3 different AUV bodies. I wanted to find out which design was the most hydrodynamic. I tested three different lengths of AUV hulls to see which AUV would glide the farthest. The first was 6 inches. The second was 12 inches and the third was 18 inches. I used clay for the nosecone and cut a ruler into two and made it the fin. Each AUV used the same nosecone and fin. I tested all three designs in a pool. I used biomimicry to create my hypothesis. When I was researching I found that long slim animals swim fastest. So, my hypothesis is the longer AUV will glide farthest. In the end I was right. The longer AUV did glide the farthest.

  5. Reciprocal relations in dissipationless hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Melnikovsky, L. A., E-mail: leva@kapitza.ras.ru [Russian Academy of Sciences, Kapitza Institute for Physical Problems (Russian Federation)

    2014-12-15

    Hidden symmetry in dissipationless terms of arbitrary hydrodynamics equations is recognized. We demonstrate that all fluxes are generated by a single function and derive conventional Euler equations using the proposed formalism.

  6. Relativistic Hydrodynamics on Graphic Cards

    CERN Document Server

    Gerhard, Jochen; Bleicher, Marcus

    2012-01-01

    We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.

  7. Gradient expansion for anisotropic hydrodynamics

    Science.gov (United States)

    Florkowski, Wojciech; Ryblewski, Radoslaw; Spaliński, Michał

    2016-12-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of nonhydrodynamic modes.

  8. Reducing blood viscosity with magnetic fields.

    Science.gov (United States)

    Tao, R; Huang, K

    2011-07-01

    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ~1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells' normal function. This technology has much potential for physical therapy.

  9. Rapidity correlations test stochastic hydrodynamics

    CERN Document Server

    Zin, Christopher; Moschelli, George

    2016-01-01

    We show that measurements of the rapidity dependence of transverse momentum correlations can be used to determine the characteristic time $\\tau_{\\pi}$ that dictates the rate of isotropization of the stress energy tensor, as well as the shear viscosity $\

  10. An introduction to astrophysical hydrodynamics

    CERN Document Server

    Shore, Steven N

    1992-01-01

    This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.

  11. Determination of femto Newton forces and fluid viscosity using optical tweezers: application to Leishmania amazonensis

    Science.gov (United States)

    Fontes, Adriana; Giorgio, Selma; de Castro, Archimedes B., Jr.; Neto, Vivaldo M.; Pozzo, Liliana d. Y.; Marques, Gustavo P.; Barbosa, Luiz C.; Cesar, Carlos L.

    2005-03-01

    The objective of this research is to use the displacements of a polystyrene microsphere trapped by an optical tweezers (OT) as a force transducer in mechanical measurements in life sciences. To do this we compared the theoretical optical and hydrodynamic models with experimental data under a broad variation of parameters such as fluid viscosity, refractive index, drag velocity and wall proximities. The laser power was measured after the objective with an integration sphere because normal power meters do not provide an accurate measurement for beam with high numerical apertures. With this careful laser power determination the plot of the optical force (calculated by the particle displacement) versus hydrodynamic force (calculated by the drag velocity) under very different conditions shows an almost 45 degrees straight line. This means that hydrodynamic models can be used to calibrate optical forces and vice-versa. With this calibration we observed the forces of polystyrene bead attached to the protozoa Leishmania amazonensis, responsible for a serious tropical disease. The force range is from 200 femto Newtons to 4 pico Newtons and these experiments shows that OT can be used for infection mechanism and chemotaxis studies in parasites. The other application was to use the optical force to measure viscosities of few microliters sample. Our result shows 5% accuracy measurements.

  12. The Friction Theory for Viscosity Modeling

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan

    2001-01-01

    In this work the one-parameter friction theory (f-theory) general models have been extended to the viscosity prediction and modeling of characterized oils. It is demonstrated that these simple models, which take advantage of the repulsive and attractive pressure terms of cubic equations of state...... such as the SRK, PR and PRSV, can provide accurate viscosity prediction and modeling of characterized oils. In the case of light reservoir oils, whose properties are close to those of normal alkanes, the one-parameter f-theory general models can predict the viscosity of these fluids with good accuracy. Yet......, in the case when experimental information is available a more accurate modeling can be obtained by means of a simple tuning procedure. A tuned f-theory general model can deliver highly accurate viscosity modeling above the saturation pressure and good prediction of the liquid-phase viscosity at pressures...

  13. Plasma Viscosity : A Risk Factor In Hypertension

    Directory of Open Access Journals (Sweden)

    Puniyani R. R

    1989-01-01

    Full Text Available Haemorrheological study on hypertension was done at Indian Institute of Technology Hospital, Bombay. Male population in the age groups of 35 to 60 years was screened for hypertension from February 1986 to February 1987. Out of 340 subjects examined, 44 hypertensive cases were found, who were investigated for blood viscosity profile and were compared with 45 controls. The parameters studied were plasma viscosity, whole blood viscosity, red cell aggregation, red cell deformability and haematocrit W.H.O. criteria of hypertension (HT was strictly adhered to (B.P. above 160/95 mm of Hg. When compared to control group, plasma viscosity and whole blood viscosity were elevated in freshly detected and uncontrolled hypertensives. Red cell aggregation and deformability were significantly altered in chronic hypertensives than in normal, but haematocrit was not affected in any group.

  14. Flow, slippage and a hydrodynamic boundary condition of polymers at surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M; Pastorino, C; Servantie, J [Institut fuer Theoretische Physik, Georg-August-Universitaet, D-37077 Goettingen (Germany)], E-mail: mmueller@theorie.physik.uni-goettingen.de

    2008-12-10

    Tailoring surface interactions or grafting of polymers onto surfaces is a versatile tool for controlling wettability, lubrication, adhesion and interactions between surfaces. Using molecular dynamics of a coarse-grained, bead-spring model and dynamic single-chain-in-mean-field simulations, we investigate how structural changes near the surface affect the flow of a polymer melt over the surface and how these changes can be parameterized by a hydrodynamic boundary condition. We study the temperature dependence of the near-surface flow of a polymer melt at a corrugated, attractive surface. At weakly attractive surfaces, lubrication layers form, the slip length is large and increases upon cooling. Close to the glass transition temperature, very large slip lengths are observed. At a more attractive surface, a 'sticky surface layer' is build up, giving rise to a small slip length. Upon cooling, the slip length decreases at high temperatures, passes through a minimum and increases upon approaching the glass transition temperature. At strongly attractive surfaces, the Navier slip condition fails to describe Couette and Poiseuille flows simultaneously. A similar failure of the Navier slip condition is observed for the flow of a polymer melt over a brush comprised of identical molecules. The wetting and flow properties of this surface are rather complex. Most notably, the cyclic motion of the grafted molecules gives rise to a reversal of the flow direction at the grafting surface. The failure of the Navier slip condition in both cases can be rationalized within a schematic, two-layer model, which demonstrates that the Navier slip condition fails to simultaneously describe Poiseuille and Couette flow if the fluid at the surface exhibits a higher viscosity than the bulk.

  15. Shear behavior of squalane and tetracosane under extreme confinement. III. Effect of confinement on viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.A.; Cochran, H.D.; Cummings, P.T. [Department of Chemical Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200 (United States)]|[Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6268 (United States)

    1997-12-01

    This study uses nonequilibrium molecular dynamics simulation to explore the rheology of confined liquid alkanes. Two alkanes that differ in molecular structural complexity are examined: tetracosane (C{sub 24}H{sub 50}), which is a linear alkane, and squalane (C{sub 30}H{sub 62}), which has six symmetrically placed methyl branches along a 24 carbon backbone. These model lubricants are confined between model walls that have short chains tethered to them, thus screening the wall details. This paper, the third of a three part series, compares the viscosities of the confined fluids to those of the bulk fluids. The alkanes are described by a well-documented potential model that has been shown to reproduce bulk experimental viscosity and phase equilibria measurements. Details of the simulation method, and structural information can be found in the preceding two papers of this series. The measured strain rates in these simulations range between 10{sup 8} and 10{sup 11} s{sup {minus}1}, which is typical of a number of practical applications. The confined fluids undergo extensive shear thinning, showing a power-law behavior. Comparison of results for the confined fluid to those for the bulk fluid reveal that, for the conditions examined, there is no difference between the bulk and confined viscosities for these alkanes. This observation is in contrast to experimental results at much lower strain rates (10{endash}10{sup 5} s{sup {minus}1}), which indicate the viscosities of the confined fluid to be much larger than the bulk viscosities. In making the comparison, we have carefully accounted for slip at the wall and have performed simulations of the bulk fluid at the same conditions of strain rate, temperature, and pressure as for the corresponding confined fluid. The viscosity is found to be independent of the wall spacing. The calculated power-law exponents are similar to experimentally observed values. We also note that the exponent increases with increasing density of the

  16. Slurry bubble column hydrodynamics

    Science.gov (United States)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids

  17. CALIBRATED HYDRODYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Sezar Gülbaz

    2015-01-01

    Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.

  18. Numerical simulation of the hydrodynamic instability experiments and flow mixing

    Institute of Scientific and Technical Information of China (English)

    BAI JingSong; WANG Tao; LI Ping; ZOU LiYong; LIU CangLi

    2009-01-01

    Based on the numerical methods of volume of fluid (VOF) and piecewise parabolic method (PPM) and parallel circumstance of Message Passing Interface (MPI), a parallel multi-viscosity-fluid hydrodynamic code MVPPM (Multi-Viscosity-Fluid Piecewise Parabolic Method) is developed and performed to study the hydrodynamic instability and flow mixing. Firstly, the MVPPM code is verified and validated by simulating three instability cases: The first one is a Riemann problem of viscous flow on the shock tube;the second one is the hydrodynamic instability and mixing of gaseous flows under re-shocks; the third one is a half height experiment of interfacial instability, which is conducted on the AWE's shock tube. By comparing the numerical results with experimental data, good agreement is achieved. Then the MVPPM code is applied to simulate the two cases of the interfacial instabilities of jelly models accelerated by explosion products of a gaseous explosive mixture (GEM), which are adopted in our experiments. The first is implosive dynamic interfacial instability of cylindrical symmetry and mixing. The evolving process of inner and outer interfaces, and the late distribution of mixing mass caused by Rayleigh-Taylor (RT) instability in the center of different radius are given. The second is jelly layer experiment which is initialized with one periodic perturbation with different amplitude and wave length. It reveals the complex processes of evolution of interface, and presents the displacement of front face of jelly layer, bubble head and top of spike relative to initial equilibrium position vs. time. The numerical results are in excellent agreement with that experimental images, and show that the amplitude of initial perturbations affects the evolvement of fluid mixing zone (FMZ) growth rate extremely, especially at late times.

  19. Numerical simulation of the hydrodynamic instability experiments and flow mixing

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the numerical methods of volume of fluid (VOF) and piecewise parabolic method (PPM) and parallel circumstance of Message Passing Interface (MPI),a parallel multi-viscosity-fluid hydrodynamic code MVPPM (Multi-Viscosity-Fluid Piecewise Parabolic Method) is developed and performed to study the hydrodynamic instability and flow mixing. Firstly,the MVPPM code is verified and validated by simulating three instability cases:The first one is a Riemann problem of viscous flow on the shock tube; the second one is the hydrodynamic instability and mixing of gaseous flows under re-shocks; the third one is a half height experiment of interfacial instability,which is conducted on the AWE’s shock tube. By comparing the numerical results with experimental data,good agreement is achieved. Then the MVPPM code is applied to simulate the two cases of the interfacial instabilities of jelly models acceler-ated by explosion products of a gaseous explosive mixture (GEM),which are adopted in our experi-ments. The first is implosive dynamic interfacial instability of cylindrical symmetry and mixing. The evolving process of inner and outer interfaces,and the late distribution of mixing mass caused by Rayleigh-Taylor (RT) instability in the center of different radius are given. The second is jelly layer ex-periment which is initialized with one periodic perturbation with different amplitude and wave length. It reveals the complex processes of evolution of interface,and presents the displacement of front face of jelly layer,bubble head and top of spike relative to initial equilibrium position vs. time. The numerical results are in excellent agreement with that experimental images,and show that the amplitude of initial perturbations affects the evolvement of fluid mixing zone (FMZ) growth rate extremely,especially at late times.

  20. Jet-induced modifications of the characteristic of the bulk nuclear matter

    CERN Document Server

    Marcinkowski, P; Kikoła, D; Sikorski, J; Porter-Sobieraj, J; Gawryszewski, P; Zygmunt, B

    2015-01-01

    We present our studies on jet-induced modifications of the characteristic of the bulk nuclear matter. To describe such a matter, we use efficient relativistic hydrodynamic simulations in (3+1) dimensions employing the Graphics Processing Unit (GPU) in the parallel programming framework. We use Cartesian coordinates in the calculations to ensure a high spatial resolution that is constant throughout the evolution of the system. We show our results on how jets modify the hydrodynamics fields and discuss the implications.

  1. Jet-induced modifications of the characteristic of the bulk nuclear matter

    Science.gov (United States)

    Marcinkowski, P.; Słodkowski, M.; Kikoła, D.; Sikorski, J.; Porter-Sobieraj, J.; Gawryszewski, P.; Zygmunt, B.

    2016-01-01

    We present our studies on jet induced modifications of the characteristics of bulk nuclear matter. To describe such matter, we use efficient relativistic hydrodynamic simulations in (3+1)-dimension, employing the Graphics Processing Unit (GPU) in the parallel programming framework. We use Cartesian coordinates in the calculations to ensure a high spatial resolution that is constant throughout the evolution of the system. We show our results on how jets modify the hydrodynamics fields and discuss the implications.

  2. Influence of temperature and salinity on hydrodynamic forces

    Directory of Open Access Journals (Sweden)

    A. Escobar

    2016-12-01

    Full Text Available The purpose of this study is to introduce an innovative approach to offshore engineering so as to take variations in sea temperature and salinity into account in the calculation of hydrodynamic forces. With this in mind, a thorough critical analysis of the influence of sea temperature and salinity on hydrodynamic forces on piles like those used nowadays in offshore wind farms will be carried out. This influence on hydrodynamic forces occurs through a change in water density and viscosity due to temperature and salinity variation. Therefore, the aim here is to observe whether models currently used to estimate wave forces on piles are valid for different ranges of sea temperature and salinity apart from observing the limit when diffraction or nonlinear effects arise combining both effects with the magnitude of the pile diameter. Hence, specific software has been developed to simulate equations in fluid mechanics taking into account nonlinear and diffraction effects. This software enables wave produced forces on a cylinder supported on the sea bed to be calculated. The study includes observations on the calculation model's sensitivity as to a variation in the cylinder's diameter, on the one hand and, on the other, as to temperature and salinity variation. This software will enable an iterative calculation to be made for finding out the shape the pressure wave caused when a wave passes over will have for different pile diameters and water with different temperature and salinity.

  3. Modeling the Hydrodynamical Properties of the QGP at RHIC

    Science.gov (United States)

    Garishvili, Irakli; Soltz, Ron; Pratt, Scott; Cheng, Micael; Glenn, Andrew; Newby, Jason; Linden-Levy, Loren; Abelev, Betty

    2010-11-01

    Comparisons of the RHIC data to various theoretical models suggest that the evolution of the QGP, a state of matter believed to be created in early stages of heavy ion collisions at RHIC, is qualitatively well described by hydrodynamics. However, the key properties of the QGP, such as initial temperature, Tinit, and the ratio of shear viscosity to entropy density of matter, η/s, are not precisely known. To constrain these properties we have developed a multi-stage hydrodynamics/hadron cascade model of heavy ion collisions which incorporates Glauber initial state conditions, pre-equilibrium flow, the UVH2+1 viscous hydro model, Cooper-Frye freezeout, and the UrQMD hadronic cascade model. To test the sensitivity of the observables to the equation of state (EoS), we use several different EoS in the hydrodynamic evolution, including those derived from the hadron resonance gas model and lattice QCD. This framework has an ability to predict key QGP observables, such as, elliptic flow, spectra, and HBT radii for various particle species. For each set of model's input parameters (Tinit, η/s and initial flow) we perform a simultaneous comparison to spectra, elliptic flow, and HBT measured at RHIC. Based on this analysis the determinations of Tinit and η/s will be presented.

  4. A formulation of consistent particle hydrodynamics in strong form

    Science.gov (United States)

    Yamamoto, Satoko; Makino, Junichiro

    2017-03-01

    In fluid dynamical simulations in astrophysics, large deformations are common and surface tracking is sometimes necessary. The smoothed particle hydrodynamics (SPH) method has been used in many such simulations. Recently, however, it has been shown that SPH cannot handle contact discontinuities or free surfaces accurately. There are several reasons for this problem. The first one is that SPH requires that the density is continuous and differentiable. The second one is that SPH does not have consistency, and thus the accuracy is of the zeroth-order in space. In addition, we cannot express accurate boundary conditions with SPH. In this paper, we propose a novel, high-order scheme for particle-based hydrodynamics of compressible fluid. Our method is based on a kernel-weighted high-order fitting polynomial for intensive variables. With this approach, we can construct a scheme which solves all of the three problems described above. For shock capturing, we use a tensor form of von Neumann-Richtmyer artificial viscosity. We have applied our method to many test problems and obtained excellent results. Our method is not conservative, since particles do not have mass or energy, but only their densities. However, because of the Lagrangian nature of our scheme, the violation of the conservation laws turned out to be small. We name this method Consistent Particle Hydrodynamics in Strong Form (CPHSF).

  5. Linearly resummed hydrodynamics in a weakly curved spacetime

    CERN Document Server

    Bu, Yanyan

    2015-01-01

    We extend our study of all-order linearly resummed hydrodynamics in a flat space~\\cite{1406.7222,1409.3095} to fluids in weakly curved spaces. The underlying microscopic theory is a finite temperature $\\mathcal{N}=4$ super-Yang-Mills theory at strong coupling. The AdS/CFT correspondence relates black brane solutions of the Einstein gravity in asymptotically \\emph{locally} $\\textrm{AdS}_5$ geometry to relativistic conformal fluids in a weakly curved 4D background. To linear order in the amplitude of hydrodynamic variables and metric perturbations, the fluid's energy-momentum tensor is computed with derivatives of both the fluid velocity and background metric resummed to all orders. We extensively discuss the meaning of all order hydrodynamics by expressing it in terms of the memory function formalism, which is also suitable for practical simulations. In addition to two viscosity functions discussed at length in refs.~\\cite{1406.7222,1409.3095}, we find four curvature induced structures coupled to the fluid via...

  6. CRKSPH - A Conservative Reproducing Kernel Smoothed Particle Hydrodynamics Scheme

    Science.gov (United States)

    Frontiere, Nicholas; Raskin, Cody D.; Owen, J. Michael

    2017-03-01

    We present a formulation of smoothed particle hydrodynamics (SPH) that utilizes a first-order consistent reproducing kernel, a smoothing function that exactly interpolates linear fields with particle tracers. Previous formulations using reproducing kernel (RK) interpolation have had difficulties maintaining conservation of momentum due to the fact the RK kernels are not, in general, spatially symmetric. Here, we utilize a reformulation of the fluid equations such that mass, linear momentum, and energy are all rigorously conserved without any assumption about kernel symmetries, while additionally maintaining approximate angular momentum conservation. Our approach starts from a rigorously consistent interpolation theory, where we derive the evolution equations to enforce the appropriate conservation properties, at the sacrifice of full consistency in the momentum equation. Additionally, by exploiting the increased accuracy of the RK method's gradient, we formulate a simple limiter for the artificial viscosity that reduces the excess diffusion normally incurred by the ordinary SPH artificial viscosity. Collectively, we call our suite of modifications to the traditional SPH scheme Conservative Reproducing Kernel SPH, or CRKSPH. CRKSPH retains many benefits of traditional SPH methods (such as preserving Galilean invariance and manifest conservation of mass, momentum, and energy) while improving on many of the shortcomings of SPH, particularly the overly aggressive artificial viscosity and zeroth-order inaccuracy. We compare CRKSPH to two different modern SPH formulations (pressure based SPH and compatibly differenced SPH), demonstrating the advantages of our new formulation when modeling fluid mixing, strong shock, and adiabatic phenomena.

  7. Escape from viscosity : the kinematics and hydrodynamics of copepod foraging and escape swimming

    NARCIS (Netherlands)

    van Duren, LA; Videler, JJ

    2003-01-01

    Feeding and escape swimming in adult females of the calanoid copepod. Temora lopgicornis Muller were investigated and compared. Swimming velocities were calculated using a 3-D filming setup., Foraging velocities ranged between 2 and 6 min s(-1), while maximum velocities of up to 80 mm s(-1) were rea

  8. Comparative evaluation of aqueous humor viscosity.

    Science.gov (United States)

    Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric

    2015-01-01

    To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.

  9. A Study of Oil Viscosity Mental Model

    Science.gov (United States)

    Albaiti; Liliasari; Sumarna, Omay; Abdulkadir Martoprawiro, Muhamad

    2017-02-01

    There is no study regarding on how to learn viscosity of the liquid (e.g. oil) by interconnecting macroscopic, sub-microscopic and symbolic levels. Therefore, the purpose of this research was to study the mental model of the oil viscosity. Intermolecular attractive force of oil constituent on the sub-microscopic level is depicted in the form of mental models. In this research, the viscosity data for some types of oil was measured by using Hoppler method. Viscosity of mineral oil SAE 20W-50, mineral oil SAE 15W-40 and synthetic oil SAE 10W-40 were 1.75, 1.31, and 1.03 Pa s, and the densities of these oils were 908.64, 885.04, and 877.02 kg/m3, respectively. The results showed that the greater density of the mineral oil that is assumed to be composed of linear chains of hydrocarbons, the longer the chain of hydrocarbon linear. Consequently, there are stronger the London force and greater the oil viscosity. The density and viscosity of synthetic oil are lower than that of both mineral oils. Synthetic oil structurally forms polymers with large branching. This structure affects a lower synthetic oil viscosity. This study contributes to construct a mental model of pre-service chemistry teachers.

  10. The hydrodynamics of colloidal gelation.

    Science.gov (United States)

    Varga, Zsigmond; Wang, Gang; Swan, James

    2015-12-14

    Colloidal gels are formed during arrested phase separation. Sub-micron, mutually attractive particles aggregate to form a system spanning network with high interfacial area, far from equilibrium. Models for microstructural evolution during colloidal gelation have often struggled to match experimental results with long standing questions regarding the role of hydrodynamic interactions. In nearly all models, these interactions are neglected entirely. In the present work, we report simulations of gelation with and without hydrodynamic interactions between the suspended particles executed in HOOMD-blue. The disparities between these simulations are striking and mirror the experimental-theoretical mismatch in the literature. The hydrodynamic simulations agree with experimental observations, however. We explore a simple model of the competing transport processes in gelation that anticipates these disparities, and conclude that hydrodynamic forces are essential. Near the gel boundary, there exists a competition between compaction of individual aggregates which suppresses gelation and coagulation of aggregates which enhances it. The time scale for compaction is mildly slowed by hydrodynamic interactions, while the time scale for coagulation is greatly accelerated. This enhancement to coagulation leads to a shift in the gel boundary to lower strengths of attraction and lower particle concentrations when compared to models that neglect hydrodynamic interactions. Away from the gel boundary, differences in the nearest neighbor distribution and fractal dimension persist within gels produced by both simulation methods. This result necessitates a fundamental rethinking of how dynamic, discrete element models for gelation kinetics are developed as well as how collective hydrodynamic interactions influence the arrest of attractive colloidal dispersions.

  11. Experimental contribution to the understanding of the dynamics of spreading of Newtonian fluids: effect of volume, viscosity and surfactant.

    Science.gov (United States)

    Roques-Carmes, Thibault; Mathieu, Vincent; Gigante, Alexandra

    2010-04-01

    The dynamics of drop spreading of glycerol-water mixtures with and without surfactant on hydrophilic glass surfaces has been investigated. The influence of different factors, such as viscosity, drop volume and non-ionic alkyl (8-16) glucoside (Plantacare) surfactant concentration on the number and the nature of the spreading regimes is systematically investigated. More than 25 spreading experiments have been performed in order to obtain clear trends. The results confirm the existence of several spreading regimes for the duration of an experiment (200 s). For each regime, the radius can be expressed by a power law of the form R=Kt(n). Both n and K are necessary to identify the regime. The experimental data are compared with the analytical predictions of the combined theory of spreading. One of the main results of this study is that the nature of the regimes is strongly affected by the drop volume, the viscosity and the surfactant concentration. This behavior is not predicted by the theory. For drop volume less than or equal to 15 microL, a succession of two different regimes which depend on the viscosity and surfactant concentration are observed in the following order: a molecular-kinetic regime followed by a hydrodynamic regime (for high viscosity in the presence of surfactant) or a hydrodynamic regime and lastly a final asymptotic regime corresponding to a long relaxation time to equilibrium (for high viscosity in absence of surfactant and for low viscosity regardless of the presence of surfactant). The spreading follows quantitatively the predictions of the theory. Our results demonstrate that the theory is still valid for low viscosity liquids and in the presence of surfactant. The contact angle for which the crossover between molecular-kinetic regime and hydrodynamic regime occurs is thoroughly estimated since the theories do not allow the exact calculation of this value. Here for the first time, an empirical power law exponent (n=0.08+/-0.05) is proposed for

  12. Viscosity studies of water based magnetite nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Anu, K.; Hemalatha, J. [Advanced Materials Lab, Department of Physics, National Institute of Technology, Tiruchirappalli, Tamilnadu, India – 620015 (India)

    2016-05-23

    Magnetite nanofluids of various concentrations have been synthesized through co-precipitation method. The structural and topographical studies made with the X-Ray Diffractometer and Atomic Force Microscope are presented in this paper. The density and viscosity studies for the ferrofluids of various concentrations have been made at room temperature. The experimental viscosities are compared with theoretical values obtained from Einstein, Batchelor and Wang models. An attempt to modify the Rosensweig model is made and the modified Rosensweig equation is reported. In addition, new empirical correlation is also proposed for predicting viscosity of ferrofluid at various concentrations.

  13. Shear viscosity of liquid mixtures Mass dependence

    CERN Document Server

    Kaushal, R

    2002-01-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.

  14. Intrinsic viscosity of a suspension of cubes

    KAUST Repository

    Mallavajula, Rajesh K.

    2013-11-06

    We report on the viscosity of a dilute suspension of cube-shaped particles. Irrespective of the particle size, size distribution, and surface chemistry, we find empirically that cubes manifest an intrinsic viscosity [η]=3.1±0.2, which is substantially higher than the well-known value for spheres, [η]=2.5. The orientation-dependent intrinsic viscosity of cubic particles is determined theoretically using a finite-element solution of the Stokes equations. For isotropically oriented cubes, these calculations show [η]=3.1, in excellent agreement with our experimental observations. © 2013 American Physical Society.

  15. Linearized model for the hydrodynamic stability investigation of molten fuel jets into the coolant of a Liquid Metal Fast Breeder Reactor (LMFBR)

    Science.gov (United States)

    Hartel, K.

    1986-02-01

    The hydrodynamic stability of liquid jets in a liquid continuum, both characterized by low viscosity was analyzed. A linearized mathematical model was developed. This model enables the length necessary for fragmentation of a vertical, symmetric jet of molten fuel by hydraulic forces in the coolant of a liquid metal fast breeder reactor to be evaluated. On the basis of this model the FRAG code for numerical calculation of the hydrodynamic fragmentation mechanism was developed.

  16. Microfluidic breakups of confined droplets against a linear obstacle: The importance of the viscosity contrast.

    Science.gov (United States)

    Salkin, Louis; Courbin, Laurent; Panizza, Pascal

    2012-09-01

    Combining experiments and theory, we investigate the break-up dynamics of deformable objects, such as drops and bubbles, against a linear micro-obstacle. Our experiments bring the role of the viscosity contrast Δη between dispersed and continuous phases to light: the evolution of the critical capillary number to break a drop as a function of its size is either nonmonotonic (Δη>0) or monotonic (Δη≤0). In the case of positive viscosity contrasts, experiments and modeling reveal the existence of an unexpected critical object size for which the critical capillary number for breakup is minimum. Using simple physical arguments, we derive a model that well describes observations, provides diagrams mapping the four hydrodynamic regimes identified experimentally, and demonstrates that the critical size originating from confinement solely depends on geometrical parameters of the obstacle.

  17. Higher-Harmonic Collective Modes in a Trapped Gas from Second-Order Hydrodynamics

    CERN Document Server

    Lewis, William E

    2016-01-01

    Utilizing a second-order hydrodynamics formalism, the dispersion relations for the frequencies and damping rates of collective oscillations as well as spatial structure of these modes up to the decapole oscillation in both two- and three- dimensional gas geometries are calculated. In addition to higher-order modes, the formalism also gives rise to purely damped "non-hydrodynamic" modes. We calculate the amplitude of the various modes for both symmetric and asymmetric trap quenches, finding excellent agreement with an exact quantum mechanical calculation. We find that higher-order hydrodynamic modes are more sensitive to the value of shear viscosity, which may be of interest for the precision extraction of transport coefficients in Fermi gas systems.

  18. A new relativistic hydrodynamics code for high-energy heavy-ion collisions

    Science.gov (United States)

    Okamoto, Kazuhisa; Akamatsu, Yukinao; Nonaka, Chiho

    2016-10-01

    We construct a new Godunov type relativistic hydrodynamics code in Milne coordinates, using a Riemann solver based on the two-shock approximation which is stable under the existence of large shock waves. We check the correctness of the numerical algorithm by comparing numerical calculations and analytical solutions in various problems, such as shock tubes, expansion of matter into the vacuum, the Landau-Khalatnikov solution, and propagation of fluctuations around Bjorken flow and Gubser flow. We investigate the energy and momentum conservation property of our code in a test problem of longitudinal hydrodynamic expansion with an initial condition for high-energy heavy-ion collisions. We also discuss numerical viscosity in the test problems of expansion of matter into the vacuum and conservation properties. Furthermore, we discuss how the numerical stability is affected by the source terms of relativistic numerical hydrodynamics in Milne coordinates.

  19. A new relativistic hydrodynamics code for high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Kazuhisa [Nagoya University, Department of Physics, Nagoya (Japan); Akamatsu, Yukinao [Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Osaka University, Department of Physics, Toyonaka (Japan); Stony Brook University, Department of Physics and Astronomy, Stony Brook, NY (United States); Nonaka, Chiho [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Duke University, Department of Physics, Durham, NC (United States)

    2016-10-15

    We construct a new Godunov type relativistic hydrodynamics code in Milne coordinates, using a Riemann solver based on the two-shock approximation which is stable under the existence of large shock waves. We check the correctness of the numerical algorithm by comparing numerical calculations and analytical solutions in various problems, such as shock tubes, expansion of matter into the vacuum, the Landau-Khalatnikov solution, and propagation of fluctuations around Bjorken flow and Gubser flow. We investigate the energy and momentum conservation property of our code in a test problem of longitudinal hydrodynamic expansion with an initial condition for high-energy heavy-ion collisions. We also discuss numerical viscosity in the test problems of expansion of matter into the vacuum and conservation properties. Furthermore, we discuss how the numerical stability is affected by the source terms of relativistic numerical hydrodynamics in Milne coordinates. (orig.)

  20. A new relativistic hydrodynamics code for high-energy heavy-ion collisions

    CERN Document Server

    Okamoto, Kazuhisa; Nonaka, Chiho

    2016-01-01

    We construct a new Godunov type relativistic hydrodynamics code in Milne coordinates, using a Riemann solver based on the two-shock approximation which is stable under existence of large shock waves. We check the correctness of the numerical algorithm by comparing numerical calculations and analytical solutions in various problems, such as shock tubes, expansion of matter into the vacuum, Landau-Khalatnikov solution, propagation of fluctuations around Bjorken flow and Gubser flow. We investigate the energy and momentum conservation property of our code in a test problem of longitudinal hydrodynamic expansion with an initial condition for high-energy heavy-ion collisions.We also discuss numerical viscosity in the test problems of expansion of matter into the vacuum and conservation properties. Furthermore, we discuss how the numerical stability is affected by the source terms of relativistic numerical hydrodynamics in Milne coordinates.

  1. Relativistic Hydrodynamics in Heavy-Ion Collisions: General Aspects and Recent Developments

    Directory of Open Access Journals (Sweden)

    Amaresh Jaiswal

    2016-01-01

    Full Text Available Relativistic hydrodynamics has been quite successful in explaining the collective behaviour of the QCD matter produced in high energy heavy-ion collisions at RHIC and LHC. We briefly review the latest developments in the hydrodynamical modeling of relativistic heavy-ion collisions. Essential ingredients of the model such as the hydrodynamic evolution equations, dissipation, initial conditions, equation of state, and freeze-out process are reviewed. We discuss observable quantities such as particle spectra and anisotropic flow and effect of viscosity on these observables. Recent developments such as event-by-event fluctuations, flow in small systems (proton-proton and proton-nucleus collisions, flow in ultracentral collisions, longitudinal fluctuations, and correlations and flow in intense magnetic field are also discussed.

  2. Jeans instability of magnetized quantum plasma: Effect of viscosity, rotation and finite Larmor radius corrections

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Shweta, E-mail: jshweta09@gmail.com; Sharma, Prerana [Department of Physics, Ujjain Engineering College, Ujjain, M.P.456010 (India); Chhajlani, R. K. [School of Studies in Physics, Vikram University Ujjain, M. P. - 456010 (India)

    2015-07-31

    The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability.

  3. Viscosity parameter in dissipative accretion flows with mass outflow around black holes

    Science.gov (United States)

    Nagarkoti, Shreeram; Chakrabarti, Sandip K.

    2016-10-01

    Numerical hydrodynamic simulation of inviscid and viscous flows have shown that significant outflows could be produced from the CENtrifugal pressure-supported BOundary Layer or CENBOL of an advective disc. However, this barrier is weakened in presence of viscosity, more so, if there are explicit energy dissipations at the boundary layer itself. We study effects of viscosity and energy dissipation theoretically on the outflow rate and show that, as the viscosity or energy dissipation (or both) rises, the prospect of formation of outflows is greatly reduced, thereby verifying results obtained through observations and numerical simulations. Indeed, we find that in a dissipative viscous flow, shocks in presence of outflows can be produced only if the Shakura-Sunyaev viscosity parameter α is less than 0.2. This is a direct consequence of modification of the Rankine-Hugoniot relation across the shock in a viscous flow, when the energy dissipation and mass-loss in the form of outflows from the post-shock region are included. If we ignore the effects of mass-loss altogether, the standing dissipative shocks in viscous flows may occur only if α black hole candidates such as GX399-4, MAXI J1659-152 and MAXI J1836-194 and find that required α are indeed well within our prescribed limit.

  4. Ion-viscosity effects on plasma-liner formation and implosion via merging supersonic plasma jets

    Science.gov (United States)

    Schillo, Kevin; Cassibry, Jason; Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team

    2016-10-01

    The PLX- α project endeavors to study plasma-liner formation and implosion by merging a spherical array of plasma jets as a candidate standoff driver for MIF. Smoothed particle hydrodynamics is used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. Ion viscosity is anticipated to be an important mechanism for momentum transport during liner formation, implosion, and stagnation. To study this, ion viscosity was incorporated into the code. To provide confidence in the numerical output and to help identify the difference between numerical and physical diffusion, a series of test cases were performed, consisting of Couette flow, Gresho vortex, and a Taylor-Green vortex. An L2-norm analysis was performed to measure the error and convergence. Simulations of conical (6 jets) and 4 π (60 jets) liners with and without ion viscosity reveal potential effects of viscosity on ram pressure, Mach-number degradation, and evolution of liner perturbations during jet merging and liner implosion.

  5. Viscosity parameter in dissipative accretion flows with mass outflow around black holes

    CERN Document Server

    Nagarkoti, Shreeram

    2016-01-01

    Numerical hydrodynamic simulation of inviscid and viscous flows have shown that significant outflows could be produced from the CENtrifugal pressure supported BOundary Layer or CENBOL of an advective disk. However, this barrier is weakened in presence of viscosity, more so, if there are explicit energy dissipations at the boundary layer itself. We study effects of viscosity and energy dissipation theoretically on the outflow rate and show that as the viscosity or energy dissipation (or both) rises, the prospect of formation of outflows is greatly reduced, thereby verifying results obtained through observations and numerical simulations. Indeed, we find that in a dissipative viscous flow, shocks in presence of outflows can be produced only if the Shakura-Sunyaev viscosity parameter {\\alpha} is less than 0.2. This is a direct consequence of modification of the Rankine-Hugoniot relation across the shock in a viscous flow, when the energy dissipation and mass loss in the form of outflows from the post-shock regio...

  6. Quartz resonator fluid density and viscosity monitor

    Science.gov (United States)

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-01-01

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  7. Sludge based Bacillus thuringiensis biopesticides: viscosity impacts.

    Science.gov (United States)

    Brar, S K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2005-08-01

    Viscosity studies were performed on raw, pre-treated (sterilised and thermal alkaline hydrolysed or both types of treatment) and Bacillus thuringiensis (Bt) fermented sludges at different solids concentration (10-40 g/L) for production of biopesticides. Correlations were established among rheological parameter (viscosity), solids (total and dissolved) concentration and entomotoxicity (Tx) of Bt fermented sludges. Exponential and power laws were preferentially followed by hydrolysed fermented compared to raw fermented sludge. Soluble chemical oxygen demand variation corroborated with increase in dissolved solids concentration on pre-treatments, contributing to changes in viscosity. Moreover, Tx was higher for hydrolysed fermented sludge in comparison to raw fermented sludge owing to increased availability of nutrients and lower viscosity that improved oxygen transfer. The shake flask results were reproducible in fermenter. This study will have major impact on selecting fermentation, harvesting and formulation techniques of Bt fermented sludges for biopesticide production.

  8. Neoclassical Viscosities and Anomalous Flows in Stellarators

    Science.gov (United States)

    Ware, A. S.; Spong, D. A.; Breyfogle, M.; Marine, T.

    2009-05-01

    We present initial work to use neoclassical viscosities calculated with the PENTA code [1] in a transport model that includes Reynolds stress generation of flows [2]. The PENTA code uses a drift kinetic equation solver to calculate neoclassical viscosities and flows in general three-dimensional geometries over a range of collisionalities. The predicted neoclassical viscosities predicted by PENTA can be flux-surfaced average and applied in a 1-D transport model that includes anomalous flow generation. This combination of codes can be used to test the impact of stellarator geometry on anomalous flow generation. As a test case, we apply the code to modeling flows in the HSX stellarator. Due to variations in the neoclassical viscosities, HSX can have strong neoclassical flows in the core region. In turn, these neoclassical flows can provide a seed for anomalous flow generation. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).

  9. Recent progress in anisotropic hydrodynamics

    CERN Document Server

    Strickland, Michael

    2016-01-01

    The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, . In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.

  10. Numerical Hydrodynamics in Special Relativity

    Directory of Open Access Journals (Sweden)

    Martí José Maria

    2003-01-01

    Full Text Available This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD. Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction.

  11. Comparative hydrodynamics of bacterial polymorphism

    CERN Document Server

    Spagnolie, Saverio E

    2011-01-01

    Most bacteria swim through fluids by rotating helical flagella which can take one of twelve distinct polymorphic shapes. The most common helical waveform is the "normal" form, used during forward swimming runs. To shed light on the prevalence of the normal form in locomotion, we gather all available experimental measurements of the various polymorphic forms and compute their intrinsic hydrodynamic efficiencies. The normal helical form is found to be the most hydrodynamically efficient of the twelve polymorphic forms by a significant margin - a conclusion valid for both the peritrichous and polar flagellar families, and robust to a change in the effective flagellum diameter or length. The hydrodynamic optimality of the normal polymorph suggests that, although energetic costs of locomotion are small for bacteria, fluid mechanical forces may have played a significant role in the evolution of the flagellum.

  12. Quantum Plasmas An Hydrodynamic Approach

    CERN Document Server

    Haas, Fernando

    2011-01-01

    This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of...

  13. Hydrodynamic shocks in microroller suspensions

    Science.gov (United States)

    Delmotte, Blaise; Driscoll, Michelle; Chaikin, Paul; Donev, Aleksandar

    2017-09-01

    We combine experiments, large-scale simulations, and continuum models to study the emergence of coherent structures in a suspension of magnetically driven microrollers sedimented near a floor. Collective hydrodynamic effects are predominant in this system, leading to strong density-velocity coupling. We characterize a uniform suspension and show that density waves propagate freely in all directions in a dispersive fashion. When sharp density gradients are introduced in the suspension, we observe the formation of a shock. Unlike Burgers' shocklike structures observed in other active and driven confined hydrodynamic systems, the shock front in our system has a well-defined finite width and moves rapidly compared to the mean suspension velocity. We introduce a continuum model demonstrating that the finite width of the front is due to far-field nonlocal hydrodynamic interactions and governed by a geometric parameter, the average particle height above the floor.

  14. Numerical Hydrodynamics in Special Relativity.

    Science.gov (United States)

    Martí, José Maria; Müller, Ewald

    2003-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction.

  15. Variable viscosity effects on mixed convection heat and mass ...

    African Journals Online (AJOL)

    Variable viscosity effects on mixed convection heat and mass transfer along a ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Keywords: Variable viscosity, Chemical Reaction, Viscous Dissipation, Finite difference method, Suction.

  16. Fabrication and Testing of Viscosity Measuring Instrument (Viscometer

    Directory of Open Access Journals (Sweden)

    A. B. HASSAN

    2006-01-01

    Full Text Available This paper presents the fabrication and testing of a simple and portable viscometer for the measurement of bulk viscosity of different Newtonian fluids. It is aimed at making available the instrument in local markets and consequently reducing or eliminating the prohibitive cost of importation. The method employed is the use of a D.C motor to rotate a disc having holes for infra-red light to pass through and fall on a photo-diode thus undergoing amplification and this signal being translated on a moving-coil meter as a deflection. The motor speed is kept constant but varies with changes in viscosity of the fluid during stirring, which alter signals being read on the meter. The faster is revolution per minute of the disc, the less the deflection on the meter and vise-versa. From the results of tests conducted on various sample fluids using data on standard Newtonian fluids as reliable guide the efficiency of the viscometer was 76.5%.

  17. Lovelock theories, holography and the fate of the viscosity bound

    CERN Document Server

    Camanho, Xian O; Paulos, Miguel F

    2010-01-01

    We consider Lovelock theories of gravity in the context of AdS/CFT. We show that, for these theories, causality violation on a black hole background can occur well in the interior of the geometry, thus posing more stringent constraints than were previously found in the literature. Also, we find that instabilities of the geometry can appear for certain parameter values at any point in the geometry, as well in the bulk as close to the horizon. These new sources of causality violation and instability should be related to CFT features that do not depend on the UV behavior. They solve a puzzle found previously concerning unphysical negative values for the shear viscosity that are not ruled out solely by causality restrictions. We find that, contrary to previous expectations, causality violation is not always related to positivity of energy. Furthermore, we compute the bound for the shear viscosity to entropy density ratio of supersymmetric conformal field theories from d=4 till d=10 - i.e., up to quartic Lovelock ...

  18. ANTI-INFLAMMATORY ACTIVITY OF DODONAEA VISCOSE

    OpenAIRE

    Mahadevan, N.; Venkatesh, Sama; Suresh, B

    1998-01-01

    Dodonaea viscose, Linn is a widely grown plant of Nilgiris district of Tamil and is commonly used by the tribals of Nilgiris as a traditional medicine for done fracture and joint sprains. Since it is generally believed tat fractures are accompanied by either some degree of injury or inflammations, it was felt desirable to carry our anti inflammatory activity of Dodonaea viscose. Anti-inflammatory activity of the plant was carried out by carrageenin induced paw edema method in Wister albino rats.

  19. Anti-inflammatory activity of dodonaea viscose.

    Science.gov (United States)

    Mahadevan, N; Venkatesh, S; Suresh, B

    1998-10-01

    Dodonaea viscose, Linn is a widely grown plant of Nilgiris district of Tamil and is commonly used by the tribals of Nilgiris as a traditional medicine for done fracture and joint sprains. Since it is generally believed tat fractures are accompanied by either some degree of injury or inflammations, it was felt desirable to carry our anti inflammatory activity of Dodonaea viscose. Anti-inflammatory activity of the plant was carried out by carrageenin induced paw edema method in Wister albino rats.

  20. Viscosity anomaly in core-softened liquids

    OpenAIRE

    Fomin, Yu. D.; Ryzhov, V. N.

    2013-01-01

    The present article presents a molecular dynamics study of several anomalies of core-softened systems. It is well known that many core-softened liquids demonstrate diffusion anomaly. Usual intuition relates the diffusion coefficient to shear viscosity via Stockes-Einstein relation. However, it can break down at low temperature. In this respect it is important to see if viscosity also demonstrates anomalous behavior.

  1. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  2. Auctioning Bulk Mobile Messages

    NARCIS (Netherlands)

    S. Meij (Simon); L-F. Pau (Louis-François); H.W.G.M. van Heck (Eric)

    2003-01-01

    textabstractThe search for enablers of continued growth of SMS traffic, as well as the take-off of the more diversified MMS message contents, open up for enterprises the potential of bulk use of mobile messaging , instead of essentially one-by-one use. In parallel, such enterprises or value added

  3. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  4. Viscosity-Induced Crossing of the Phantom Divide in the Dark Cosmic Fluid

    CERN Document Server

    Brevik, Iver

    2013-01-01

    Choosing various natural forms for the equation-of-state parameter w and the bulk viscosity \\zeta, we discuss how it is possible for a dark energy fluid to slide from the quintessence region across the divide w=-1 into the phantom region, and thus into a Big Rip future singularity. Different analytic forms for \\zeta, as powers of the scalar expansion, are suggested and compared with experiments.

  5. STUDY OF THE VISCOSITY OF PROTEIN SOLUTIONS THROUGH THE RAPID VISCOSITY ANALYZER (RVA

    Directory of Open Access Journals (Sweden)

    Maura P. Alves

    2014-05-01

    Full Text Available This study aimed to determine viscosity curves prepared from whey protein concentrates (WPCs by the rapid viscosity analyzer (RVA and determine the optimal heat treatment time in order to obtain the maximum viscosity solutions at this stage. The WPCs produced from whey samples initially subjected to thermal treatment and microfiltration presented composition compatible with the international standards, with a significant difference (p<0.05 for fat concentration. Viscographic profiles indicated that WPCs produced from microfiltered whey had higher viscosities than those subjected to heat treatment. In addition, 10 min was determined to be the optimal length of time for heat treatment in order to maximise WPCs viscosity. These results indicate that WPC production can be designed for different food applications. Finally, a rapid viscosity analyzer was demonstrated to be an appropriate tool to study the application of whey proteins in food systems.

  6. Viscosity of mafic magmas at high pressures

    Science.gov (United States)

    Cochain, B.; Sanloup, C.; Leroy, C.; Kono, Y.

    2017-01-01

    While it is accepted that silica-rich melts behave anomalously with a decrease of their viscosity at increased pressures (P), the viscosity of silica-poor melts is much less constrained. However, modeling of mantle melts dynamics throughout Earth's history, including the magma ocean era, requires precise knowledge of the viscous properties of silica-poor magmas. We extend here our previous measurements on fayalite melt to natural end-members pyroxenite melts (MgSiO3 and CaSiO3) using in situ X-ray radiography up to 8 GPa. For all compositions, viscosity decreases with P, rapidly below 5 GPa and slowly above. The magnitude of the viscosity decrease is larger for pyroxene melts than for fayalite melt and larger for the Ca end-member within pyroxene melts. The anomalous viscosity decrease appears to be a universal behavior for magmas up to 13 GPa, while the P dependence of viscosity beyond this remains to be measured. These results imply that mantle melts are very pervasive at depth.

  7. Hydrodynamics of oceans and atmospheres

    CERN Document Server

    Eckart, Carl

    1960-01-01

    Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear

  8. Abnormal pressures as hydrodynamic phenomena

    Science.gov (United States)

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  9. Charm mass effects in bulk channel correlations

    CERN Document Server

    Burnier, Y

    2013-01-01

    The bulk viscosity of thermalized QCD matter at temperatures above a few hundred MeV could be significantly influenced by charm quarks because their contribution arises four perturbative orders before purely gluonic effects. In an attempt to clarify the challenges of a lattice study, we determine the relevant imaginary-time correlator (of massive scalar densities) up to NLO in perturbation theory, and compare with existing data. We find discrepancies much larger than in the vector channel; this may hint, apart from the importance of taking a continuum limit, to larger non-perturbative effects in the scalar channel. We also recall how a transport peak related to the scalar density spectral function encodes non-perturbative information concerning the charm quark chemical equilibration rate close to equilibrium.

  10. A new scheme of causal viscous hydrodynamics for relativistic heavy-ion collisions: Riemann solver for quark-gluon plasma

    CERN Document Server

    Akamatsu, Yukinao; Nonaka, Chiho; Takamoto, Makoto

    2013-01-01

    In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamic equation with QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which are crucial in describing of quark-gluon plasma in high energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In the sound wave propagation, the intrinsic {\\em numerical} viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of {\\em physical} viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation.

  11. A comparison of cosmological hydrodynamic codes

    Science.gov (United States)

    Kang, Hyesung; Ostriker, Jeremiah P.; Cen, Renyue; Ryu, Dongsu; Hernquist, Lars; Evrard, August E.; Bryan, Greg L.; Norman, Michael L.

    1994-01-01

    We present a detailed comparison of the simulation results of various hydrodynamic codes. Starting with identical initial conditions based on the cold dark matter scenario for the growth of structure, with parameters h = 0.5 Omega = Omega(sub b) = 1, and sigma(sub 8) = 1, we integrate from redshift z = 20 to z = O to determine the physical state within a representative volume of size L(exp 3) where L = 64 h(exp -1) Mpc. Five indenpendent codes are compared: three of them Eulerian mesh-based and two variants of the smooth particle hydrodynamics 'SPH' Lagrangian approach. The Eulerian codes were run at N(exp 3) = (32(exp 3), 64(exp 3), 128(exp 3), and 256(exp 3)) cells, the SPH codes at N(exp 3) = 32(exp 3) and 64(exp 3) particles. Results were then rebinned to a 16(exp 3) grid with the exception that the rebinned data should converge, by all techniques, to a common and correct result as N approaches infinity. We find that global averages of various physical quantities do, as expected, tend to converge in the rebinned model, but that uncertainites in even primitive quantities such as (T), (rho(exp 2))(exp 1/2) persists at the 3%-17% level achieve comparable and satisfactory accuracy for comparable computer time in their treatment of the high-density, high-temeprature regions as measured in the rebinned data; the variance among the five codes (at highest resolution) for the mean temperature (as weighted by rho(exp 2) is only 4.5%. Examined at high resolution we suspect that the density resolution is better in the SPH codes and the thermal accuracy in low-density regions better in the Eulerian codes. In the low-density, low-temperature regions the SPH codes have poor accuracy due to statiscal effects, and the Jameson code gives the temperatures which are too high, due to overuse of artificial viscosity in these high Mach number regions. Overall the comparison allows us to better estimate errors; it points to ways of improving this current generation ofhydrodynamic

  12. Anisotropic shear viscosity of a strongly coupled non-Abelian plasma from magnetic branes

    CERN Document Server

    Critelli, R; Zaniboni, M; Noronha, J

    2014-01-01

    Recent estimates for the electromagnetic fields produced in the early stages of non-central ultra-relativistic heavy ion collisions indicate the presence of magnetic fields $B\\sim \\mathcal{O}(0.1-15\\,m_\\pi^2)$, where $m_\\pi$ is the pion mass. It is then of special interest to study the effects of strong (Abelian) magnetic fields on the transport coefficients of strongly coupled non-Abelian plasmas, such as the quark-gluon plasma formed in heavy ion collisions. In this work we study the anisotropy in the shear viscosity induced by an external magnetic field in a strongly coupled $\\mathcal{N} = 4$ SYM plasma. Due to the spatial anisotropy created by the magnetic field, the most general viscosity tensor has 5 shear viscosity coefficients and 2 bulk viscosities. We use the holographic correspondence to evaluate two of the shear viscosities, $\\eta_{\\perp} \\equiv \\eta_{xyxy}$ (perpendicular to the magnetic field) and $\\eta_{\\parallel} \\equiv \\eta_{xzxz}=\\eta_{yzyz}$ (parallel to the field). When $B\

  13. Hydrodynamics of a quark droplet

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas

    2012-01-01

    We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...

  14. Numerical Hydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2003-01-01

    Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.

  15. Anomalous hydrodynamics in two dimensions

    Indian Academy of Sciences (India)

    Rabin Banerjee

    2016-02-01

    A new approach is presented to discuss two-dimensional hydrodynamics with gauge and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are obtained. Also, a connection between response parameters and anomaly coefficients is discussed. These are new results which, in the absence of the gauge sector, reproduce the results found by the gradient expansion approach.

  16. Hydrodynamic Noise and Surface Compliance.

    Science.gov (United States)

    1982-09-08

    Lighthill, 3,4 Ffowcs-Wiiliams, 5-7 and Morse and Ingard .8 Ffowcs-Williams’ 7 excellent review identifies five distinctly different theoretical...Williams, "Hydrodynamic Noise," Annual Review of Fluid Mechanics (Annual Reviews, Palo Alto, CA), vol. 1, 1969, pp. 197-222. 8. P. Morse and K. V. Ingard

  17. Hydrodynamic slip in silicon nanochannels

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-03-01

    Equilibrium and nonequilibrium molecular dynamics simulations were performed to better understand the hydrodynamic behavior of water flowing through silicon nanochannels. The water-silicon interaction potential was calibrated by means of size-independent molecular dynamics simulations of silicon wettability. The wettability of silicon was found to be dependent on the strength of the water-silicon interaction and the structure of the underlying surface. As a result, the anisotropy was found to be an important factor in the wettability of these types of crystalline solids. Using this premise as a fundamental starting point, the hydrodynamic slip in nanoconfined water was characterized using both equilibrium and nonequilibrium calculations of the slip length under low shear rate operating conditions. As was the case for the wettability analysis, the hydrodynamic slip was found to be dependent on the wetted solid surface atomic structure. Additionally, the interfacial water liquid structure was the most significant parameter to describe the hydrodynamic boundary condition. The calibration of the water-silicon interaction potential performed by matching the experimental contact angle of silicon led to the verification of the no-slip condition, experimentally reported for silicon nanochannels at low shear rates.

  18. On the similarity of variable viscosity flows

    Science.gov (United States)

    Voivenel, L.; Danaila, L.; Varea, E.; Renou, B.; Cazalens, M.

    2016-08-01

    Turbulent mixing is ubiquitous in both nature and industrial applications. Most of them concern different fluids, therefore with variable physical properties (density and/or viscosity). The focus here is on variable viscosity flows and mixing, involving density-matched fluids. The issue is whether or not these flows may be self-similar, or self-preserving. The importance of this question stands on the predictability of these flows; self-similar dynamical systems are easier tractable from an analytical viewpoint. More specifically, self-similar analysis is applied to the scale-by-scale energy transport equations, which represent the transport of energy at each scale and each point of the flow. Scale-by-scale energy budget equations are developed for inhomogeneous and anisotropic flows, in which the viscosity varies as a result of heterogeneous mixture or temperature variations. Additional terms are highlighted, accounting for the viscosity gradients, or fluctuations. These terms are present at both small and large scales, thus rectifying the common belief that viscosity is a small-scale quantity. Scale-by-scale energy budget equations are then adapted for the particular case of a round jet evolving in a more viscous host fluid. It is further shown that the condition of self-preservation is not necessarily satisfied in variable-viscosity jets. Indeed, the jet momentum conservation, as well as the constancy of the Reynolds number in the central region of the jet, cannot be satisfied simultaneously. This points to the necessity of considering less stringent conditions (with respect to classical, single-fluid jets) when analytically tackling these flows and reinforces the idea that viscosity variations must be accounted for when modelling these flows.

  19. Nonequilibrium temperature and bulk viscosity for a dense fluid of square-well molecules

    NARCIS (Netherlands)

    Beijeren, H. van; Karkheck, J.; Sengers, J.V.

    1988-01-01

    A recently proposed nonlinear kinetic theory for a dense fluid of square-well molecules reveals the existence of two temperature scales, one associated with kinetic energy and the other with potential energy. The scales are coupled through conservation of energy and, for nonequilibrium states, the

  20. Bacterial Swarming: social behaviour or hydrodynamics?

    Science.gov (United States)

    Vermant, Jan

    2010-03-01

    Bacterial swarming of colonies is typically described as a social phenomenon between bacteria, whereby groups of bacteria collectively move atop solid surfaces. This multicellular behavior, during which the organized bacterial populations are embedded in an extracellular slime layer, is connected to important features such as biofilm formation and virulence. Despite the possible intricate quorum sensing mechanisms that regulate swarming, several physico-chemical phenomena may play a role in the dynamics of swarming and biofilm formation. Especially the striking fingering patterns formed by some swarmer colonies on relatively soft sub phases have attracted the attention as they could be the signatures of an instability. Recently, a parallel has been drawn between the swarming patterns and the spreading of viscous drops under the influence of a surfactant, which lead to similar patterns [1]. Starting from the observation that several of the molecules, essential in swarming systems, are strong biosurfactants, the possibility of flows driven by gradients in surface tension, has been proposed. This Marangoni flows are known to lead to these characteristic patterns. For Rhizobium etli not only the pattern formation, but also the experimentally observed spreading speed has been shown to be consistent with the one expected for Marangoni flows for the surface pressures, thickness, and viscosities that have been observed [2]. We will present an experimental study of swarming colonies of the bacteria Pseudomonas aeruginosa, the pattern formation, the surfactant gradients and height profiles in comparison with predictions of a thin film hydrodynamic model.[4pt] [1] Matar O.K. and Troian S., Phys. Fluids 11 : 3232 (1999)[0pt] [2] Daniels, R et al., PNAS, 103 (40): 14965-14970 (2006)

  1. Bianchi Type-I bulk viscous fluid string dust magnetized cosmological model in general relativity

    Indian Academy of Sciences (India)

    Raj Bali; Anjali

    2004-09-01

    Bianchi Type-I magnetized bulk viscous fluid string dust cosmological model is investigated. To get a determinate model, we have assumed the conditions and = constant where is the shear, the expansion in the model and the coefficient of bulk viscosity. The behaviour of the model in the presence and absence of magnetic field together with physical and geometrical aspects of the model are also discussed.

  2. Nonlinear viscosity derived by means of Grad's moment method

    Science.gov (United States)

    Eu, Byung Chan

    2002-03-01

    In this paper we examine the stress tensor component evolution equations recently derived by Uribe and Garcia-Colin [Phys. Rev. E 60, 4052 (1999)] for unidirectional flow at uniform temperature under the assumption/approximation of vanishing transversal velocity gradients. By removing this assumption/approximation we derive the stress tensor evolution equation from the Boltzmann equation within the framework of the Grad moment expansion for the case of uniform temperature (the same condition as theirs). Specializing the evolution equation to the case of steady unidirectional flow in a square channel, we obtain a set of steady state evolution equations for the components of the stress tensor. Because the transversal velocity gradients are not assumed to vanish in this paper in contrast to their paper, the present result is more general than theirs. Its special case corresponding to the one-dimensional flow considered by Uribe and Garcia-Colin is at variance with theirs because of a missing term in their stress evolution equation for the xy component. The nonlinear viscosity formulas are also different. A general remark is given with regard to the relation of dimensionalities of hydrodynamic equations and the kinetic equation underlying the former. They are not necessarily the same.

  3. Viscosity and electric properties of water aerosols

    Science.gov (United States)

    Shavlov, A. V.; Sokolov, I. V.; Dzhumandzhi, V. A.

    2016-09-01

    The flow of water mist in a narrow duct has been studied experimentally. The profile of the velocity of drops has been measured, and the viscosity of the mist has been calculated using the Navier-Stokes equation. It has been found that at low gradients of the rate of shear the viscosity of the mist can exceed that of clean air by tens and even hundreds of times. The electric charge of the drops has been measured. It has been found that the viscosity of the mist differs from that of clean air at gradients of the rate of shear that are less than the frequency of the establishment of electric equilibrium between the drops. A comparative analysis of the viscosities of the mist and a drop cluster has been carried out, and the dependence of the viscosity of the water aerosol on the radius and the charge of the drops has been predicted. The possible role of aerosols that contain submicron drops in the known "clear air turbulence" problem has been shown.

  4. Viscosity model for fully liquid silicate melt

    Directory of Open Access Journals (Sweden)

    Zhang Guo-Hua

    2012-01-01

    Full Text Available A model for estimating the viscosity of silicate melt as derived in our previous paper is extended to the system containing MgO, CaO, SrO, BaO, Li2O, Na2O, K2O, which can express the nonlinear variation of activation energy of viscosity with the composition. It is found that the optimized parameters of model which characterize the deforming ability of bonds around non-bridging oxygen decrease with increasing the bond strength of M-O bond expressed by I=2Q/RMz+ + rO2-2 (where Q is the valence of cation M; r is the radius. It is pointed out that viscosity is not only determined by the bond strength, but also by the radius of cation which is defined as the size effect. The radius of cation plays paradox roles in the two factors: smaller radius leads to a stronger bond, thus a higher viscosity; while cations with smaller radius are easier to diffuse when neglecting the interaction force, thus a lower viscosity will be.

  5. Approximate hydrodynamic design of a finite span hydrofoil

    Science.gov (United States)

    Vladimirov, A N

    1955-01-01

    Previous work on the motion of various bodies under the surface of a heavy fluid is discussed. The solution of the motion of a flat plate by Keldysh and Lavrentiev is applied to the motion of a hydrofoil, making possible the presentation of charts for determining the lift and resistance of an infinite span hydrofoil operating in a heavy frictionless fluid having infinite depth below the free water surface. Consideration is given to the effects of viscosity and a method is suggested to correct for the finite span. The effect of the water surface on the downwash behind the foil is also discussed. A comparison of theoretical results obtained from this work with experimental data indicates that a basis for the approximate hydrodynamic design of a finite span hydrofoil has been achieved.

  6. Underdamped modes in a hydrodynamically coupled microparticle system

    Science.gov (United States)

    Yao, A. M.; Keen, S. A. J.; Burnham, D. R.; Leach, J.; Leonardo, R. Di; McGloin, D.; Padgett, M. J.

    2009-05-01

    When micron-sized particles are trapped in a linear periodic array, for example, by using optical tweezers, they interact only through the hydrodynamic forces between them. This couples the motion of the spheres and it has been predicted that an extended system might behave as an elastic medium that could support underdamped propagating waves. In practice, these underdamped modes can be observed only with massive particles in very stiff traps and very low viscosity fluids. We have been able to realize these conditions by trapping water droplets in air. Even with a system of just two particles we were able to observe the coupled oscillatory motion predicted: underdamping of the symmetric (collective) mode and overdamping of the asymmetric (relative) mode.

  7. Hydrodynamic length-scale selection in microswimmer suspensions

    Science.gov (United States)

    Heidenreich, Sebastian; Dunkel, Jörn; Klapp, Sabine H. L.; Bär, Markus

    2016-08-01

    A universal characteristic of mesoscale turbulence in active suspensions is the emergence of a typical vortex length scale, distinctly different from the scale invariance of turbulent high-Reynolds number flows. Collective length-scale selection has been observed in bacterial fluids, endothelial tissue, and active colloids, yet the physical origins of this phenomenon remain elusive. Here, we systematically derive an effective fourth-order field theory from a generic microscopic model that allows us to predict the typical vortex size in microswimmer suspensions. Building on a self-consistent closure condition, the derivation shows that the vortex length scale is determined by the competition between local alignment forces, rotational diffusion, and intermediate-range hydrodynamic interactions. Vortex structures found in simulations of the theory agree with recent measurements in Bacillus subtilis suspensions. Moreover, our approach yields an effective viscosity enhancement (reduction), as reported experimentally for puller (pusher) microorganisms.

  8. High temperature viscosity measurement system and viscosity of a common dielectric liquid

    CERN Document Server

    Tuncer, Enis

    2013-01-01

    A device to measure viscosity of dielectric oils was developed. The device is an inset to an autoclave system where the temperature and the pressure could be controlled. The device is capable of measuring viscosities up to 400C and 5000psi, which are the limits of our autoclave at the moment.

  9. Hydrodynamic interaction between particles near elastic interfaces

    CERN Document Server

    Daddi-Moussa-Ider, Abdallah

    2016-01-01

    We present an analytical calculation of the hydrodynamic interaction between two spherical particles near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self- and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between particle diameter and wall distance as well as between diameter and interparticle distance. We find that particle motion towards a membrane with pure bending resistance always leads to mutual repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing resistance, however, we observe an attractive interaction in a certain parameter range which is in contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions. Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical particle mobilities ...

  10. Kinetic regime of hydrodynamic fluctuations and long time tails for a Bjorken expansion

    Science.gov (United States)

    Akamatsu, Yukinao; Mazeliauskas, Aleksas; Teaney, Derek

    2017-01-01

    We develop a set of kinetic equations for hydrodynamic fluctuations which are equivalent to nonlinear hydrodynamics with noise. The hydrokinetic equations can be coupled to existing second-order hydrodynamic codes to incorporate the physics of these fluctuations. We first show that the kinetic response precisely reproduces the renormalization of the shear viscosity and the fractional power (∝ω3 /2) which characterizes equilibrium correlators of energy and momentum for a static fluid. Then we use the hydrokinetic equations to analyze thermal fluctuations for a Bjorken expansion, evaluating the contribution of thermal noise from the earliest moments and at late times. In the Bjorken case, the solution to the kinetic equations determines the coefficient of the first fractional power of the gradient expansion (∝1 /(τT ) 3 /2) for the expanding system. Numerically, we find that the contribution to the longitudinal pressure from hydrodynamic fluctuations is larger than second-order hydrodynamics for typical medium parameters used to simulate heavy ion collisions.

  11. Viscosity near Earth's solid inner core

    Science.gov (United States)

    Smylie

    1999-04-16

    Anomalous splitting of the two equatorial translational modes of oscillation of Earth's solid inner core is used to estimate the effective viscosity just outside its boundary. Superconducting gravimeter observations give periods of 3.5822 +/- 0.0012 (retrograde) and 4.0150 +/- 0.0010 (prograde) hours. With the use of Ekman layer theory to estimate viscous drag forces, an inferred single viscosity of 1.22 x 10(11) Pascal seconds gives calculated periods of 3.5839 and 4.0167 hours for the two modes, close to the observed values. The large effective viscosity is consistent with a fluid, solid-liquid mixture surrounding the inner core associated with the "compositional convection" that drives Earth's geodynamo.

  12. Viscosity jump in Earth's mid-mantle.

    Science.gov (United States)

    Rudolph, Maxwell L; Lekić, Vedran; Lithgow-Bertelloni, Carolina

    2015-12-11

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle plumes, settling of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Based on a reanalysis of the long-wavelength nonhydrostatic geoid, we infer viscous layering of the mantle using a method that allows us to avoid a priori assumptions about its variation with depth. We detect an increase in viscosity at 800- to 1200-kilometers depth, far greater than the depth of the mineral phase transformations that define the mantle transition zone. The viscosity increase is coincident in depth with regions where seismic tomography has imaged slab stagnation, plume deflection, and changes in large-scale structure and offers a simple explanation of these phenomena.

  13. Relativistic r-modes and shear viscosity

    CERN Document Server

    Gualtieri, L; Miralles, J A; Ferrari, V

    2006-01-01

    We derive the relativistic equations for stellar perturbations, including in a consistent way shear viscosity in the stress-energy tensor, and we numerically integrate our equations in the case of large viscosity. We consider the slow rotation approximation, and we neglect the coupling between polar and axial perturbations. In our approach, the frequency and damping time of the emitted gravitational radiation are directly obtained. We find that, approaching the inviscid limit from the finite viscosity case, the continuous spectrum is regularized. Constant density stars, polytropic stars, and stars with realistic equations of state are considered. In the case of constant density stars and polytropic stars, our results for the viscous damping times agree, within a factor two, with the usual estimates obtained by using the eigenfunctions of the inviscid limit. For realistic neutron stars, our numerical results give viscous damping times with the same dependence on mass and radius as previously estimated, but sys...

  14. Experimental and theoretical studies of scaling of sizes and intrinsic viscosity of hyperbranched chains in good solvents

    Science.gov (United States)

    Li, Lianwei; Lu, Yuyuan; An, Lijia; Wu, Chi

    2013-03-01

    Using a set of hyperbranched polystyrenes with different overall molar masses but a uniform subchain length or a similar overall molar mass but different subchain lengths, we studied their sizes and hydrodynamic behaviors in toluene (a good solvent) at T = 25 °C by combining experimental (laser light scattering (LLS) and viscometry) and theoretical methods based on a partially permeable sphere model. Our results show that both the average radii of gyration (⟨Rg⟩) and hydrodynamic radius (⟨Rh⟩) are scaled to the weight-average molar mass (Mw) as ⟨Rg⟩ ˜ ⟨Rh⟩ ˜ MwγMw,sφ, with γ = 0.47 ± 0.01 and φ = 0.10 ± 0.01; and their intrinsic viscosity ([η]) quantitatively follow the Mark-Houwink-Sakurada (MHS) equation as [η] = KηMwνMw,sμ with Kη = 2.26 × 10-5, ν = 0.39 ± 0.01, and μ = 0.31 ± 0.01, revealing that these model chains with long subchains are indeed fractal objects. Further, our theoretical and experimental results broadly agree with each other besides a slight deviation from the MHS equation for short subchains, similar to dendrimers, presumably due to the multi-body hydrodynamic interaction. Moreover, we also find that the average viscometric radius (⟨Rη⟩) determined from intrinsic viscosity is slightly smaller than ⟨Rh⟩ measured in dynamic LLS and their ratio (⟨Rη⟩/⟨Rh⟩) roughly remains 0.95 ± 0.05, reflecting that linear polymer chains are more draining with a smaller ⟨Rh⟩ than their hyperbranched counterparts for a given intrinsic viscosity. Our current study of the "defect-free" hyperbranched polymer chains offers a standard model for further theoretical investigation of hydrodynamic behaviors of hyperbranched polymers and other complicated architectures, in a remaining unexploited research field of polymer science.

  15. Viscosity Meaurement Technique for Metal Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Heng [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering; Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  16. Gravimetric capillary method for kinematic viscosity measurements

    Science.gov (United States)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing

    1992-01-01

    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  17. Shear Viscosity of a Unitary Fermi Gas

    OpenAIRE

    Wlazłowski, Gabriel; Magierski, Piotr; Drut, Joaquín E.

    2012-01-01

    We present the first ab initio determination of the shear viscosity eta of the Unitary Fermi Gas, based on finite temperature quantum Monte Carlo calculations and the Kubo linear-response formalism. We determine the temperature dependence of the shear viscosity to entropy density ratio eta/s. The minimum of eta/s appears to be located above the critical temperature for the superfluid-to-normal phase transition with the most probable value being eta/s approx 0.2 hbar/kB, which almost saturates...

  18. Shear Viscosity in a Gluon Gas

    OpenAIRE

    Xu, Zhe; Greiner, Carsten

    2007-01-01

    The relation of the shear viscosity coefficient to the recently introduced transport rate is derived within relativistic kinetic theory. We calculate the shear viscosity over entropy ratio \\eta/s for a gluon gas, which involves elastic gg-> gg perturbative QCD (PQCD) scatterings as well as inelastic ggggg PQCD bremsstrahlung. For \\alpha_s=0.3 we find \\eta/s=0.13 and for \\alpha_s=0.6, \\eta/s=0.076. The small \\eta/s values, which suggest strongly coupled systems, are due to the gluon bremsstrah...

  19. Entropy viscosity method for nonlinear conservation laws

    KAUST Repository

    Guermond, Jean-Luc

    2011-05-01

    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  20. Slim accretion discs with different viscosity prescriptions

    Energy Technology Data Exchange (ETDEWEB)

    Szuszkiewicz, E. (Max-Planck-Institut fuer Physik und Astrophysik, Garching (Germany, F.R.). Inst. fuer Astrophysik)

    1990-05-15

    The variability of X-ray sources powered by accretion may be connected to thermal instabilities in the innermost parts of slim discs. The time-scales of variability predicted by the theory with the standard {alpha}-viscosity prescription agree with those observed in a wide range of sources. The amplitudes (3-4 orders of magnitude in luminosity) are correctly predicted for X-ray transient sources, but in general are too big for quasars, Seyferts, galactic black hole candidates and LMXBs. We show here that a slight modification of the viscosity prescription can offer a much better agreement with observations. (author).

  1. Measuring Viscosities of Gases at Atmospheric Pressure

    Science.gov (United States)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  2. Viscosity-temperature correlation for crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Shanshool, J.; Niazi, E. [Chemical Engineering Dept., Al-Nahrain Univ., Baghdad (Iraq)

    2004-12-01

    The kinematic viscosities of crude oils were measured over a temperature range 10-50 C and at atmospheric pressure. These data were used to develop a method to predict the viscosity of crude oils, based upon API gravity, pour point and molecular weight. The proposed new correlation has been verified using data base of about twelve Middle East crude oils, showing significantly improved correlation, with an average absolute deviation of 5.3%. The correlation is also applicable to crude oils with a wide range of API gravities, pour points and molecular weights. (orig.)

  3. Brain vascular and hydrodynamic physiology

    Science.gov (United States)

    Tasker, Robert C.

    2013-01-01

    Protecting the brain in vulnerable infants undergoing surgery is a central aspect of perioperative care. Understanding the link between blood flow, oxygen delivery and oxygen consumption leads to a more informed approach to bedside care. In some cases, we need to consider how high can we let the partial pressure of carbon dioxide go before we have concerns about risk of increased cerebral blood volume and change in intracranial hydrodynamics? Alternatively, in almost all such cases, we have to address the question of how low can we let the blood pressure drop before we should be concerned about brain perfusion? This review, provides a basic understanding of brain bioenergetics, hemodynamics, hydrodynamics, autoregulation and vascular homeostasis to changes in blood gases that is fundamental to our thinking about bedside care and monitoring. PMID:24331089

  4. Algorithm refinement for fluctuating hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Sarah A.; Bell, John B.; Garcia, Alejandro L.

    2007-07-03

    This paper introduces an adaptive mesh and algorithmrefinement method for fluctuating hydrodynamics. This particle-continuumhybrid simulates the dynamics of a compressible fluid with thermalfluctuations. The particle algorithm is direct simulation Monte Carlo(DSMC), a molecular-level scheme based on the Boltzmann equation. Thecontinuum algorithm is based on the Landau-Lifshitz Navier-Stokes (LLNS)equations, which incorporate thermal fluctuations into macroscopichydrodynamics by using stochastic fluxes. It uses a recently-developedsolver for LLNS, based on third-order Runge-Kutta. We present numericaltests of systems in and out of equilibrium, including time-dependentsystems, and demonstrate dynamic adaptive refinement by the computationof a moving shock wave. Mean system behavior and second moment statisticsof our simulations match theoretical values and benchmarks well. We findthat particular attention should be paid to the spectrum of the flux atthe interface between the particle and continuum methods, specificallyfor the non-hydrodynamic (kinetic) time scales.

  5. Hydrodynamics from Landau initial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Abhisek [University of Tennessee, Knoxville (UTK); Gerhard, Jochen [Frankfurt Institute for Advanced Studies (FIAS), Germany; Torrieri, Giorgio [Universidade Estadual de Campinas, Instituto de Física " Gleb Wataghin" (IFGW), Sao Paulo, Brazil; Read jr, Kenneth F. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Wong, Cheuk-Yin [ORNL

    2015-01-01

    We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by-event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 - 30%) expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2

  6. Non-boost-invariant dissipative hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Strickland, Michael; Tinti, Leonardo

    2016-01-01

    The one-dimensional non-boost-invariant evolution of the quark-gluon plasma, presumably produced during the early stages of heavy-ion collisions, is analyzed within the frameworks of viscous and anisotropic hydrodynamics. We neglect transverse dynamics and assume homogeneous conditions in the transverse plane but, differently from Bjorken expansion, we relax longitudinal boost invariance in order to study the rapidity dependence of various hydrodynamical observables. We compare the results obtained using several formulations of second-order viscous hydrodynamics with a recent approach to anisotropic hydrodynamics, which treats the large initial pressure anisotropy in a non-perturbative fashion. The results obtained with second-order viscous hydrodynamics depend on the particular choice of the second-order terms included, which suggests that the latter should be included in the most complete way. The results of anisotropic hydrodynamics and viscous hydrodynamics agree for the central hot part of the system, ho...

  7. Hydrodynamics of catheter biofilm formation

    CERN Document Server

    Sotolongo-Costa, Oscar; Rodriguez-Perez, Daniel; Martinez-Escobar, Sergio; Fernandez-Barbero, Antonio

    2009-01-01

    A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equation leads to the conclusion that biofilms grow on the internal catheter wall due to the counter-stream diffusion of blood through a very thin layer close to the wall. This biological deposition is the first necessary step for the subsequent bacteria colonization.

  8. Soliton propagation in relativistic hydrodynamics

    CERN Document Server

    Fogaça, D A; 10.1016/j.nuclphysa.2007.03.104

    2013-01-01

    We study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. In a previous work we have derived a KdV equation from Euler and continuity equations in non-relativistic hydrodynamics. In the present contribution we extend our formalism to relativistic fluids. We present results for a given equation of state, which is based on quantum hadrodynamics (QHD).

  9. Hydrodynamic Evolution of GRB Afterglow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We investigate the dynamics of a relativistic fireball which decelerates as it sweeps up ambient matter. Not only the radiative and adiabatic cases, but also the realistic intermediate cases are calculated. We perform numerical calcula-tion for various ambient media and sizes of beaming expansion, and find that the deceleration radius R0 may play an important role for the hydrodynamic evolution of GRB afterglow.

  10. Bypass to Turbulence in Hydrodynamic Accretion Disks: An Eigenvalue Analysis

    CERN Document Server

    Mukhopadhyay, B; Narayan, R; Mukhopadhyay, Banibrata; Afshordi, Niayesh; Narayan, Ramesh

    2004-01-01

    Cold accretion disks such as those in star-forming systems, quiescent cataclysmic variables, and some active galactic nuclei, are expected to have neutral gas which does not couple well to magnetic fields. The turbulent viscosity in such disks must be hydrodynamic in origin, not magnetohydrodynamic. We investigate the growth of hydrodynamic perturbations in a linear shear flow sandwiched between two parallel walls. The unperturbed flow is similar to plane Couette flow but with a Coriolis force included. Although there are no exponentially growing eigenmodes in this system, nevertheless, because of the non-normal nature of the eigenmodes, it is possible to have a large transient growth in the energy of perturbations. For a constant angular momentum disk, we find that the perturbation with maximum growth has a wave-vector in the vertical direction. The energy grows by more than a factor of 100 for a Reynolds number R=300 and more than a factor of 1000 for R=1000. Turbulence can be easily excited in such a disk,...

  11. Hydrodynamic multibead modeling: problems, pitfalls, and solutions. 2. Proteins.

    Science.gov (United States)

    Zipper, Peter; Durchschlag, Helmut

    2010-02-01

    Hydrodynamic models of proteins have been generated by recourse to crystallographic data and applying a filling model strategy in order to predict both hydrodynamic and scattering parameters. The design of accurate protein models retaining the majority of the molecule peculiarities requires usage of many beads and consideration of many serious problems. Applying the expertise obtained with ellipsoid models and pilot tests on proteins, we succeeded in constructing precise models for several anhydrous and hydrated proteins of different shape, size, and complexity. The models constructed consist of many beads (up to about 11,000) for the protein constituents (atoms, amino acid residues, groups) and preferentially bound water molecules. While in the case of small proteins, parameter predictions are straightforward, computations for giant proteins necessitate drastic reductions of the number of initially available beads. Among several auxiliary programs, our advanced hydration programs, HYDCRYST and HYDMODEL, and modified versions of García de la Torre's program HYDRO were successfully employed. This allowed the generation of realistic protein models by imaging details of their fine structure and enabled the prediction of reliable molecular parameters including intrinsic viscosities. The appearance of the models and the agreement of molecular properties and distance distribution functions p(r) of unreduced and reduced models can be used for a meticulous inspection of the data obtained.

  12. Performance characteristics in hydrodynamic water cooled thrust bearings

    Directory of Open Access Journals (Sweden)

    Farooq Ahmad Najar

    2016-09-01

    Full Text Available This paper deals with the study of the influence on performance characteristics of a thrust bearing with the introduction of cooling circuit and flow velocity of coolant within the designed thrust bearings is described. New method of cooling circuit configuration is taken into consideration and water has been chosen as a coolant here in the present work. Flow velocity of coolant, ranging from 0.5m/s to 2.0m/s is proposed. The Finite difference based numerical model has been developed in order to notice the effect on the heat transfer on a large hydrodynamic lubrication thrust bearing in-terms of its performance characteristics. In the present work, the solution of Reynolds equation, an energy equation with viscosity variation and Fourier heat conduction equations, applied with appropriate boundary conditions. From the present investigation, it is observed significant amount of heat content is removed from the bearing with the increase of flow velocity of coolant in an embedded cooling duct within the pad. An important parameter among performance characteristics has prevailed a significant increase in hydrodynamic pressure generation which in turn subsequently increases the load carrying capacity which has been never ever documented in the background literature.

  13. Pencil: Finite-difference Code for Compressible Hydrodynamic Flows

    Science.gov (United States)

    Brandenburg, Axel; Dobler, Wolfgang

    2010-10-01

    The Pencil code is a high-order finite-difference code for compressible hydrodynamic flows with magnetic fields. It is highly modular and can easily be adapted to different types of problems. The code runs efficiently under MPI on massively parallel shared- or distributed-memory computers, like e.g. large Beowulf clusters. The Pencil code is primarily designed to deal with weakly compressible turbulent flows. To achieve good parallelization, explicit (as opposed to compact) finite differences are used. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with non-periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, self-gravity, non-local radiation transfer, dust particle evolution with feedback on the gas, etc. A range of artificial viscosity and diffusion schemes can be invoked to deal with supersonic flows. For direct simulations regular viscosity and diffusion is being used. The code is written in well-commented Fortran90.

  14. Numerical heat conduction in hydrodynamical models of colliding hypersonic flows

    CERN Document Server

    Parkin, E R

    2010-01-01

    Hydrodynamical models of colliding hypersonic flows are presented which explore the dependence of the resulting dynamics and the characteristics of the derived X-ray emission on numerical conduction and viscosity. For the purpose of our investigation we present models of colliding flow with plane-parallel and cylindrical divergence. Numerical conduction causes erroneous heating of gas across the contact discontinuity which has implications for the rate at which the gas cools. We find that the dynamics of the shocked gas and the resulting X-ray emission are strongly dependent on the contrast in the density and temperature either side of the contact discontinuity, these effects being strongest where the postshock gas of one flow behaves quasi-adiabatically while the postshock gas of the other flow is strongly radiative. Introducing additional numerical viscosity into the simulations has the effect of damping the growth of instabilities, which in some cases act to increase the volume of shocked gas and can re-he...

  15. Recent progress in anisotropic hydrodynamics

    Directory of Open Access Journals (Sweden)

    Strickland Michael

    2017-01-01

    Full Text Available The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, 〈 pL2〉 ≪ 〈 pT2〉. In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.

  16. SOME ASPECTS OF THE REACTIVITY OF PULP INTENDED FOR HIGH-VISCOSITY VISCOSE

    Directory of Open Access Journals (Sweden)

    Linda Ostberg,

    2012-01-01

    Full Text Available The motivation for this study was to reduce the consumption of C2S when preparing high-viscosity viscose by pre-treating two softwood pulps with enzymes prior to the viscose stages. Reactivity was evaluated in two ways, Fock´s test of the pulp and the gamma number of the viscose solution prior to regeneration. Whilst the reactivity of a pulp that had been subjected to enzyme pretreatment increased according to Fock´s test, it did not increase according to the gamma number. This unexpected difference between the two reactivity tests was investigated. It was concluded that Fock´s test measures the extent to which C2S reacts with a pulp sample during a standardized test, whereas the gamma number measures the resulting degree of xanthate substitution on the cellulose backbone. The gamma number was judged to be the more relevant of the two tests, since it reflects the dissolution ability of a pulp in the viscose preparation. A higher gamma number also means that the coagulation time in the spinning process is prolonged; this is beneficial, as it can be used to increase the tenacity of the viscose fibres. Measuring the reactivity according to Fock´s test, on the contrary, provides more dubious results, as the test has no undisputed correlation to the viscose preparation process.

  17. New approach to initializing hydrodynamic fields and mini-jet propagation in quark-gluon fluids

    Science.gov (United States)

    Okai, Michito; Kawaguchi, Koji; Tachibana, Yasuki; Hirano, Tetsufumi

    2017-05-01

    We propose a new approach to initialize the hydrodynamic fields, such as energy density distributions and four-flow velocity fields in hydrodynamic modeling of high-energy nuclear collisions at the collider energies. Instead of matching the energy-momentum tensor or putting the initial conditions of quark-gluon fluids at a fixed initial time, we utilize a framework of relativistic hydrodynamic equations with source terms to describe the initial stage. Putting the energy and momentum loss rate of the initial partons into the source terms, we obtain hydrodynamic initial conditions dynamically. The resultant initial profile of the quark-gluon fluid looks highly bumpy as seen in the conventional event-by-event initial conditions. In addition, initial random flow velocity fields also are generated as a consequence of momentum deposition from the initial partons. We regard the partons that survive after the dynamical initialization process as the mini-jets and find sizable effects of both mini-jet propagation in the quark-gluon fluids and initial random transverse flow on the final momentum spectra and anisotropic flow observables. We perform event-by-event (3+1)-dimensional ideal hydrodynamic simulations with this new framework that enables us to describe the hydrodynamic bulk collectivity, parton energy loss, and interplay among them in a unified manner.

  18. Numerical Prediction of Hydrodynamic Forces on A Ship Passing Through A Lock

    Institute of Scientific and Technical Information of China (English)

    王宏志; 邹早建

    2014-01-01

    While passing through a lock, a ship usually undergoes a steady forward motion at low speed. Owing to the size restriction of lock chamber, the shallow water and bank effects on the hydrodynamic forces acting on the ship may be remarkable, which may have an adverse effect on navigation safety. However, the complicated hydrodynamics is not yet fully understood. This paper focuses on the hydrodynamic forces acting on a ship passing through a lock. The unsteady viscous flow and hydrodynamic forces are calculated by applying an unsteady RANS code with a RNG k-εturbulence model. User-defined function (UDF) is compiled to define the ship motion. Meanwhile, the grid regeneration is dealt with by using the dynamic mesh method and sliding interface technique. Numerical study is carried out for a bulk carrier ship passing through the Pierre Vandamme Lock in Zeebrugge at the model scale. The proposed method is validated by comparing the numerical results with the data of captive model tests. By analyzing the numerical results obtained at different speeds, water depths and eccentricities, the influences of speed, water depth and eccentricity on the hydrodynamic forces are illustrated. The numerical method proposed in this paper can qualitatively predict the ship-lock hydrodynamic interaction. It can provide certain guidance on the manoeuvring and control of ships passing through a lock.

  19. Sensor for Viscosity and Shear Strength Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.

    1998-10-20

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation.

  20. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...

  1. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational viscos...

  2. Viscose and Terylene Market Witnesses Positive Activity

    Institute of Scientific and Technical Information of China (English)

    Hua xiaowei; Guoyun

    2010-01-01

    @@ Viscose and terylene staple fiber market is very hot as prices rise this year. The main reason for the positive market activity is that cotton prices hay increased rapidly. But, there is a worry that the appreciation of the yuan, to gether with the rate hike will squeeze profit margins of the industry.

  3. Pressure-viscosity coefficient of biobased lubricants

    Science.gov (United States)

    Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...

  4. Viscosity in accretion discs. [for binary stars

    Science.gov (United States)

    Katz, J. I.

    1980-01-01

    Both HerX-1 and SS433 may contain accretion disks slaved to a precessing companion star. If so, it is possible to bound the effective viscosity in these disks. The results, in terms of the disk parameter alpha, are lower bounds of 0.01 for HerX-1 and of 0.1 for SS433.

  5. Viscosity-dependent Janus particle chain dynamics.

    Science.gov (United States)

    Ren, Bin; Kretzschmar, Ilona

    2013-12-03

    Iron oxide (Fe3O4) Janus particles assemble into staggered chains parallel to the field lines in an ac electric field. Subsequent application of an external magnetic field leads to contraction of the staggered chains into double chains. The relation between the viscosity of the surrounding solution and the contraction rate of the iron oxide Janus particle chains is studied. Further, the influence of particle size and chain length (i.e., number of particles in chain) on the contraction rate is investigated. The base material for the Janus structure is silica (SiO2) with particle sizes of 1, 2, and 4 μm, and the cap material is Fe3O4. Addition of increasing amounts of glycerol to the aqueous system reveals that the contraction dynamics strongly correlate with the viscosity of the solution. The average chain contraction rate for each particle size can be fitted in the low viscosity range from 1 to 30 mPa·s with a power function of the form A/μ(0.9) - B/μ, in which the coefficients A and B are particle size, electric field, and magnetic-field-dependent constants. Using this function, the viscosity of an unknown solution can be determined, thereby pointing to the potential application of these Janus particle chain assemblies as in situ microviscometers.

  6. Shear Viscosity of Turbulent Chiral Plasma

    CERN Document Server

    Kumar, Avdhesh; Das, Amita; Kaw, P K

    2016-01-01

    It is well known that the difference between the chemical potentials of left-handed and right-handed particles in a parity violating (chiral) plasma can lead to an instability. We show that the chiral instability may drive turbulent transport. Further we estimate the anomalous viscosity of chiral plasma arising from the enhanced collisionality due to turbulence.

  7. Effect of Viscosity on Liquid Curtain Stability

    Science.gov (United States)

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Francis, Lorraine; Carvalho, Marcio; Dow Chemical Company Collaboration; PUC Rio Collaboration; University of Minnesota, Twin Cities Collaboration

    2016-11-01

    The effect of viscosity on the stability of Newtonian liquid curtains was explored by high-speed visualization. Glycerol/water solutions with viscosity ranging from 19.1 to 210 mPa.s were used as coating liquids. The experimental set-up used a slide die delivery and steel tube edge guides. The velocity along curtain at different positions was measured by tracking small particles at different flow conditions. The measurements revealed that away from edge guides, velocity is well described by free fall effect. However, close to edge guides, liquid moves slower, revealing formation of a viscous boundary layer. The size of boundary layer and velocity near edge guides are strong function of viscosity. The critical condition was determined by examining flow rate below which curtain broke. Curtain failure was initiated by growth of a hole within liquid curtain, close to edge guides. Visualization results showed that the hole forms in a circular shape then becomes elliptical as it grows faster in vertical direction compared to horizontal direction. As viscosity rises, minimum flow rate for destabilization of curtain increased, indicating connection between interaction with edge guides and curtain stability. We would like to acknowledge the financial support from the Dow Chemical Company.

  8. Bulk viscous matter-dominated Universes: asymptotic properties

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)

    2013-08-01

    By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

  9. On pulsating and cellular forms of hydrodynamic instability in liquid-propellant combustion

    Energy Technology Data Exchange (ETDEWEB)

    Margolis, S.B. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

    1997-11-01

    An extended Landau/Levich model of liquid-propellant combustion, one that allows for a local dependence of the burning rate on the (gas) pressure at the liquid/gas interface, exhibits not only the classical hydrodynamic cellular instability attributed to Landau, but also a pulsating hydrodynamic instability associated with sufficiently negative pressure sensitivities. Exploiting the realistic limit of small values of the gas-to-liquid density ratio {rho}, analytical formulas for both neutral stability boundaries may be obtained by expanding all quantities in appropriate powers of {rho} in each of three distinguished wavenumber regimes. In particular, composite analytical expressions are derived for the neutral stability boundaries A{sub p}(k), where A{sub p} is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. For the cellular boundary, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for negative values of A{sub p}, which is characteristic of many hydroxylammonium nitrate-based liquid propellants over certain pressure ranges. In contrast, the pulsating hydrodynamic stability boundary is insensitive to gravitational and surface-tension effects, but is more sensitive to the effects of liquid viscosity since, for typical nonzero values of the latter, the pulsating boundary decreases to larger negative values of A{sub p} as k increases through O(1) values.

  10. The numerical study of shock-induced hydrodynamic instability and mixing

    Institute of Scientific and Technical Information of China (English)

    Wang Tao; Bai Jing-Song; Li Ping; Zhong Min

    2009-01-01

    Based on multi-fluid volume fraction and piecewise parabolic method (PPM), a multi-viscosity-fluid hydrodynamic code MVPPM (Multi-Viscosity-Fluid Piecewise Parabolic Method) is developed and applied to the problems of shock-induced hydrodynamic interfacial instability and mixing. Simulations of gas/liquid interface instability show that the influences of initial perturbations on the fluid mixing zone (FMZ) growth are significant, especially at the late stages, while grids have only a slight effect on the FMZ width, when the interface is impulsively accelerated by a shock wave passing through it. A numerical study of the hydrodynamic interfacial instability and mixing of gaseous flows impacted by re-shocks is presented. It reveals that the numerical results are in good agreement with the experimental results and the mixing growth rate strongly depends on initial conditions. Ultimately, the jelly layer experiment relevant to the instability impacted by exploding is simulated. The shape of jelly interface, position of front face of jelly layer, crest and trough of perturbation versus time are given; their simulated results are in good agreement with experimental results.

  11. A quasi-continuum hydrodynamic model for slit shaped nanochannel flow

    Science.gov (United States)

    Bhadauria, Ravi; Aluru, N. R.

    2013-08-01

    We propose a quasi-continuum hydrodynamic model for isothermal transport of Lennard-Jones fluid confined in slit shaped nanochannels. In this work, we compute slip and viscous contributions independently and superimpose them to obtain the total velocity profile. Layering of fluid near the interface plays an important role in viscous contribution to the flow, by apparent viscosity change along the confining dimension. This relationship necessitates computing density profiles, which is done using the recently proposed empirical-potential based quasi-continuum theory [A. V. Raghunathan, J. H. Park, and N. R. Aluru, J. Chem. Phys. 127, 174701 (2007)], 10.1063/1.2793070. Existing correlations for density dependent viscosity provided by Woodcock [AIChE J. 52, 438 (2006)], 10.1002/aic.10676 are used to compute viscosity profile in the nanopores. A Dirichlet type slip boundary condition based on a static Langevin friction model describing center-of-mass motion of fluid particles is used, the parameters of which are dependent on the fluctuations of total wall-fluid force from an equilibrium molecular dynamics simulation. Different types of corrugated surfaces are considered to study wall-fluid friction effects on boundary conditions. Proposed hydrodynamic model yields good agreement of velocity profiles obtained from non-equilibrium molecular dynamics simulations for gravity driven flow.

  12. Performance evolution of fully and partially textured hydrodynamic journal bearings lubricated with two lubricants

    Science.gov (United States)

    Tala-ighil, N.; Fillon, M.

    2017-02-01

    This study investigates the evolution of the main bearing performance of partially and fully textured hydrodynamic journal bearing. The viscosity effect is also analysed by the mean of numerical simulations for two types of oil: the oil 1 (ISO VG 32, 31.3 cSt at 40 °C) has a lower viscosity than oil 2 (ISO VG 100, 93 cSt at 40 °C). Reynolds equation is solved by finite difference and Gauss-Seidel methods with over-relaxation for various operating conditions. It is shown that, under hydrodynamic lubrication regime, the improvement of the most important characteristics (the friction coefficient and minimum film thickness) of a textured journal bearing depend strongly on the lubricant viscosity and the journal rotational speed. The fully textured journal bearing is highly favorable at very low speeds while the partially textured journal bearing is more suitable for slightly higher speeds. The gain in bearing performance due to the texturing of the bushing disappears at a critical speed of the journal and then, for higher rotational speeds, the presence of textures becomes detrimental.

  13. A NOVEL INTERPRETATION OF CONCENTRATION DEPENDENCE OF VISCOSITY OF DILUTE POLYMER SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Yan Pan; Rong-shi Cheng

    2000-01-01

    The concentration dependence of the reduced viscosity of dilute polymer solution is interpreted in the light of a new concept of the self-association of polymer chains in dilute solution. The apparent self-association constant is defined as the molar association constant divided by the molar mass of individual polymer chain and is numerically interconvertible with the Huggins coefficient. The molar association constant is directly proportional to the effective hydrodynamic volume of the polymer chain in solution and is irrespective of the chain architecture. The effective hydrodynamic volume accounts for the non-spherical conformation of a short polymer chain in solution and is a product of a shape factor and hydrodynamic volume. The observed enhancement of Huggins coefficient for short chain and branched polymer is satisfactorily interpreted by the concept of self-association. The concept of self-association allows us to predict the existence of a boundary concentration Cs (dynamic contact concentration) which divides the dilute polymer solution into two regions.

  14. Hydrodynamic Instability and Thermal Coupling in a Dynamic Model of Liquid-Propellant Combustion

    Science.gov (United States)

    Margolis, S. B.

    1999-01-01

    For liquid-propellant combustion, the Landau/Levich hydrodynamic models have been combined and extended to account for a dynamic dependence of the burning rate on the local pressure and temperature fields. Analysis of these extended models is greatly facilitated by exploiting the realistic smallness of the gas-to-liquid density ratio rho. Neglecting thermal coupling effects, an asymptotic expression was then derived for the cellular stability boundary A(sub p)(k) where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. The results explicitly indicate the stabilizing effects of gravity on long-wave disturbances, and those of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limit of weak gravity, hydrodynamic instability in liquid-propellant combustion becomes a long-wave, instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumbers. In addition, surface tension and viscosity (both liquid and gas) each produce comparable effects in the large-wavenumber regime, thereby providing important modifications to the previous analyses in which one or more of these effects was neglected. For A(sub p)= O, the Landau/Levich results are recovered in appropriate limiting cases, although this typically corresponds to a hydrodynamically unstable parameter regime for p nitrate (HAN)-based liquid propellants, which often exhibit negative pressure sensitivities. While nonsteady combustion may correspond to secondary and higher-order bifurcations above the cellular boundary, it may also be a manifestation of this pulsating type of hydrodynamic instability. In the present work, a nonzero temperature sensitivity is incorporated into our previous asymptotic analyses. This entails a coupling of the energy equation to the previous purely hydrodynamic problem, and leads to a

  15. Bulk viscous matter and recent acceleration of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Sasidharan, Athira; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2015-07-15

    We consider a cosmological model dominated by bulk viscous matter with a total bulk viscosity coefficient proportional to the velocity and acceleration of the expansion of the universe in such a way that ζ = ζ{sub 0} + ζ{sub 1}(a)/(a) + ζ{sub 2}(a)/(a). We show that there exist two limiting conditions in the bulk viscous coefficients (ζ{sub 0}, ζ{sub 1}, ζ{sub 2}) which correspond to a universe having a Big Bang at the origin, followed by an early decelerated epoch and then making a smooth transition into an accelerating epoch. We have constrained the model using the type Ia Supernovae data, evaluated the best estimated values of all the bulk viscous parameters and the Hubble parameter corresponding to the two limiting conditions. We found that even though the evolution of the cosmological parameters are in general different for the two limiting cases, they show identical behavior for the best estimated values of the parameters from both limiting conditions. A recent acceleration would occur if ζ{sub 0} + ζ{sub 1} > 1 for the first limiting conditions and if ζ{sub 0} + ζ{sub 1} < 1 for the second limiting conditions. The age of the universe predicted by this model is found to be less than that predicted from the oldest galactic globular clusters. The total bulk viscosity seems to be negative in the past and becomes positive when z ≤ 0.8. So the model violates the local second law of thermodynamics. However, the model satisfies the generalized second law of thermodynamics at the apparent horizon throughout the evolution of the universe. We also made a statefinder analysis of the model and found that it is distinguishably different from the standard ΛCDM model at present, but it shows a de Sitter type behavior in the far future of the evolution. (orig.)

  16. Explosive bulk charge

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  17. The Incredible Bulk

    CERN Document Server

    Fukushima, Keita; Kumar, Jason; Sandick, Pearl; Yamamoto, Takahiro

    2014-01-01

    Recent experimental results from the LHC have placed strong constraints on the masses of colored superpartners. The MSSM parameter space is also constrained by the measurement of the Higgs boson mass, and the requirement that the relic density of lightest neutralinos be consistent with observations. Although large regions of the MSSM parameter space can be excluded by these combined bounds, leptophilic versions of the MSSM can survive these constraints. In this paper we consider a scenario in which the requirements of minimal flavor violation, vanishing $CP$-violation, and mass universality are relaxed, specifically focusing on scenarios with light sleptons. We find a large region of parameter space, analogous to the original bulk region, for which the lightest neutralino is a thermal relic with an abundance consistent with that of dark matter. We find that these leptophilic models are constrained by measurements of the magnetic and electric dipole moments of the electron and muon, and that these models have ...

  18. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  19. Structure–property reduced order model for viscosity prediction in single-component CO 2 -binding organic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Cantu, David C.; Malhotra, Deepika; Koech, Phillip K.; Heldebrant, David J.; Zheng, Feng (Richard); Freeman, Charles J.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2016-01-01

    CO2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high viscosity of non-aqueous alternatives. Quantitative reduced models, connecting molecular structure to bulk properties, are key for developing structure-property relationships that enable molecular design. In this work, we describe such a model that quantitatively predicts viscosities of CO2 binding organic liquids (CO2BOLs) based solely on molecular structure and the amount of bound CO2. The functional form of the model correlates the viscosity with the CO2 loading and an electrostatic term describing the charge distribution between the CO2-bearing functional group and the proton-receiving amine. Molecular simulations identify the proton shuttle between these groups within the same molecule to be the critical indicator of low viscosity. The model, developed to allow for quick screening of solvent libraries, paves the way towards the rational design of low viscosity non-aqueous solvent systems for post-combustion CO2 capture. Following these theoretical recommendations, synthetic efforts of promising candidates and viscosity measurement provide experimental validation and verification.

  20. A possible origin of viscosity in Keplerian accretion disks due to secondary perturbation: Turbulent transport without magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Banibrata Mukhopadhyay; Kanak Saha

    2011-01-01

    The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle.Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity.Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T (≥)105.However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability.This flow is similar to plane Couette flow including the Coriolis force, at least locally.What drives their turbulence and then transport,when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 (≤) vt (≤) 0.1, which can explain transport in accretion flows.

  1. Conditions of viscosity measurement for detecting irradiated peppers

    Science.gov (United States)

    Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru

    1995-04-01

    Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as a type of viscometer, shear rate and temperature.

  2. Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol

    Directory of Open Access Journals (Sweden)

    G. Gržinić

    2015-08-01

    Full Text Available The heterogeneous loss of dinitrogen pentoxide (N2O5 to aerosol particles has a significant impact on the night time nitrogen oxide cycle and therefore the oxidative capacity in the troposphere. Using a 13N short lived radioactive tracer method we studied the uptake kinetics of N2O5 on citric acid aerosol particles as a function of relative humidity (RH. The results show that citric acid exhibits lower reactivity than similar di- and polycarboxylic acids, with uptake coefficients between ~ 3 × 10−4–~ 3 × 10−3 depending on humidity (17–70 % RH. This humidity dependence can be explained by a changing viscosity and, hence, diffusivity in the organic matrix. Since the viscosity of highly concentrated citric acid solutions is not well established, we present four different parameterizations of N2O5 diffusivity based on the available literature data or estimates for viscosity and diffusivity. Above 50 % RH, uptake is consistent with the reacto-diffusive kinetic regime whereas below 50 % RH, the uptake coefficient is higher than expected from hydrolysis of N2O5 within the bulk of the particles, and the uptake kinetics may be limited by loss on the surface only. This study demonstrates the impact of viscosity in highly oxidized and highly functionalized secondary organic aerosol material on the heterogeneous chemistry of N2O5 and may explain some of the unexpectedly low loss rates to aerosol derived from field studies.

  3. Dynamic Acid/Base Equilibrium in Single Component Switchable Ionic Liquids and Consequences on Viscosity.

    Science.gov (United States)

    Cantu, David C; Lee, Juntaek; Lee, Mal-Soon; Heldebrant, David J; Koech, Phillip K; Freeman, Charles J; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2016-05-05

    The deployment of transformational nonaqueous CO2-capture solvent systems is encumbered by high viscosities even at intermediate uptakes. Using single-molecule CO2 binding organic liquids as a prototypical example, we present key molecular features that control bulk viscosity. Fast CO2-uptake kinetics arise from close proximity of the alcohol and amine sites involved in CO2 binding in a concerted fashion, resulting in a Zwitterion containing both an alkyl-carbonate and a protonated amine. The population of internal hydrogen bonds between the two functional groups determines the solution viscosity. Unlike the ion pair interactions in ionic liquids, these observations are novel and specific to a hydrogen-bonding network that can be controlled by chemically tuning single molecule CO2 capture solvents. We present a molecular design strategy to reduce viscosity by shifting the proton transfer equilibrium toward a neutral acid/amine species, as opposed to the ubiquitously accepted zwitterionic state. The molecular design concepts proposed here are readily extensible to other CO2 capture technologies.

  4. Dynamic Acid/Base Equilibrium in Single Component Switchable Ionic Liquids and Consequences on Viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Cantu Cantu, David; Lee, Jun Taek; Lee, Mal Soon; Heldebrant, David J.; Koech, Phillip K.; Freeman, Charles J.; Rousseau, Roger J.; Glezakou, Vassiliki Alexandra

    2016-05-05

    The deployment of transformational non-aqueous CO2-capture solvent systems is encumbered by high viscosity even at intermediate uptakes. Using single-molecule CO2 binding organic liquids as a prototypical example, we identify the key molecular features controlling bulk liquid viscosity and CO2 uptake kinetics. Fast uptake kinetics arise from close proximity of the alcohol and amine sites that are involved in CO2 binding. This process results in the concerted formation of a Zwitterion containing both an alkylcarbonate and a protonated amine. The hydrogen bonding between the two functional groups ultimately determines the solution viscosity. Based on molecular simulation, this work reveals options to significantly reduce viscosity with molecular modifications that shift the proton transfer equilibrium towards a neutral acid/amine species as opposed to the ubiquitously accepted Zwitterionic state. The molecular design concepts proposed here, for the alkyl-carbonate systems, are readily extensible to other CO2 capture technologies, such as the carbamate- or imidazole-based solvent chemistries.

  5. Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications

    Energy Technology Data Exchange (ETDEWEB)

    R. Paul Drake

    2005-12-01

    We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  6. Hydrodynamic characteristics of UASB bioreactors.

    Science.gov (United States)

    John, Siby; Tare, Vinod

    2011-10-01

    The hydrodynamic characteristics of UASB bioreactors operated under different organic loading and hydraulic loading rates were studied, using three laboratory scale models treating concocted sucrose wastewater. Residence time distribution (RTD) analysis using dispersion model and tanks-in-series model was directed towards the characterization of the fluid flow pattern in the reactors and correlation of the hydraulic regime with the biomass content and biogas production. Empty bed reactors followed a plug flow pattern and the flow pattern changed to a large dispersion mixing with biomass and gas production. Effect of increase in gas production on the overall hydraulics was insignificant.

  7. Disruptive Innovation in Numerical Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Waltz, Jacob I. [Los Alamos National Laboratory

    2012-09-06

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  8. Turbulence Models of Hydrodynamic Lubrication

    Institute of Scientific and Technical Information of China (English)

    张直明; 王小静; 孙美丽

    2003-01-01

    The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models on flow fields in turbulent Couette flows and shear-induced countercurrent flows were compared to existing measurements, and Zhang & Zhang' s combined k-ε model was shown to have surpassingly satisfactory results. The method of application of this combined k-ε model to high speed journal bearings and annular seals was summarized, and the predicted results were shown to be satisfactory by comparisons with existing experiments of journal bearings and annular seals.

  9. Highly-anisotropic hydrodynamics for central collisions

    CERN Document Server

    Ryblewski, Radoslaw

    2016-01-01

    The framework of leading-order anisotropic hydrodynamics is supplemented with realistic equation of state and self-consistent freeze-out prescription. The model is applied to central proton-nucleus collisions. The results are compared to those obtained within standard Israel-Stewart second-order viscous hydrodynamics. It is shown that the resulting hadron spectra are highly-sensitive to the hydrodynamic approach that has been used.

  10. Viscosity of net-baryon fluid near the QCD critical point

    CERN Document Server

    Antoniou, N G; Kapoyannis, A S

    2016-01-01

    In the dynamics of the QCD critical point, the net-baryon fluid, linked to the slow component of the order parameter, relaxes to a 3d Ising system in equilibrium. The transport coefficients develop power-law singularities in the limit $T \\rightarrow T_c$, $\\mu_b=\\mu_c$, associated with the critical exponents of the 3d Ising universality class. An analytical study of shear and bulk viscosity, with constraints imposed by universality and the requirements of a class of strong coupling theories, is performed in the neighbourhood of the critical point. It is found that the shear viscosity of the net-baryon fluid is restricted in the domain $1.6\\leq 4\\pi\\frac{\\eta}{s}\\leq 3.7$ for $T_c 1.23 T_c$) but rising towards the singularity at $T=T_c$.

  11. Implication of the lopsided growth for the viscosity of Earth's inner core

    CERN Document Server

    Mizzon, Hugau

    2012-01-01

    Two main seismic features characterize the Earth's inner core: a North-South polar anisotropy and an East-West asymmetry of P-wave velocity and attenuation. Anisotropy is expected if shear deformation is induced by convective motions. Translation has recently been put forward as an important mode of convection of the inner core. Combined with a simple diffusive grain growth model, this mechanism is able to explain the observed seismic asymmetry, but not the bulk anisotropy. The source of anisotropy has therefore to be sought in the shear motions caused by higher modes of convection. Using a hybrid finite-difference spherical harmonics Navier-Stokes solver, we investigate the interplay between translation and convection in a 3D spherical model with permeable boundary conditions at the inner core boundary. Three parameters act independently: viscosity, internal heating and convection velocity in the outer core. Our numerical simulations show the dominance of pure translation for viscosities of the inner core hi...

  12. Characterization of initial fluctuations for the hydrodynamical description of heavy ion collisions

    Science.gov (United States)

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2013-10-01

    Event-by-event fluctuations in the initial conditions for a hydrodynamical description of heavy ion collisions are characterized. We propose a Bessel-Fourier decomposition with respect to the azimuthal angle, the radius in the transverse plane, and rapidity. This allows for a complete characterization of fluctuations in all hydrodynamical fields including energy density, pressure, fluid velocity, shear stress, and bulk viscous pressure. It has the advantage that fluctuations can be ordered with respect to their wavelength and that they can be propagated mode by mode within the hydrodynamical formalism. Event ensembles can then be characterized in terms of a functional probability distribution. For the event ensemble of a Monte Carlo Glauber model, we provide evidence that the latter is close to Gaussian form, thus allowing for a particularly simple characterization of the event distribution.

  13. Characterization of initial fluctuations for the hydrodynamical description of heavy ion collisions

    CERN Document Server

    Floerchinger, Stefan

    2013-01-01

    Event-by-event fluctuations in the initial conditions for a hydrodynamical description of heavy-ion collisions are characterized. We propose a Bessel-Fourier decomposition with respect to the azimuthal angle, the radius in the transverse plane and rapidity. This allows for a complete characterization of fluctuations in all hydrodynamical fields including energy density, pressure, fluid velocity, shear stress and bulk viscous pressure. It has the advantage that fluctuations can be ordered with respect to their wave length and that they can be propagated mode-by-mode within the hydrodynamical formalism. Event ensembles can then be characterized in terms of a functional probability distribution. For the event ensemble of a Monte Carlo Glauber model, we provide evidence that the latter is close to Gaussian form, thus allowing for a particularly simple characterization of the event distribution.

  14. Mechanism of viscosity effect on magnetic island rotation

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailovskii, A.B.; Konovalov, S.V. [Institute of Nuclear Fusion, Russian Research Centre ' Kurchatov Institute' , Kurchatov Sq., 1, Moscow (Russian Federation); Pustovitov, V.D. [National Inst. for Fusion Science, Toki, Gifu (Japan); Tsypin, V.S. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, SP (Brazil)

    2000-04-01

    It is shown that plasma viscosity does not influence the magnetic island rotation directly. Nevertheless, it leads to nonstationarity of the plasma velocity. This nonstationarity is the reason of the viscosity effect on island rotation. (author)

  15. A brief review on viscosity of nanofluids

    Science.gov (United States)

    Mishra, Purna Chandra; Mukherjee, Sayantan; Nayak, Santosh Kumar; Panda, Arabind

    2014-10-01

    Since the past decade, rapid development in nanotechnology has produced several aspects for the scientists and technologists to look into. Nanofluid is one of the incredible outcomes of such advancement. Nanofluids (colloidal suspensions of metallic and nonmetallic nanoparticles in conventional base fluids) are best known for their remarkable change to enhanced heat transfer abilities. Earlier research work has already acutely focused on thermal conductivity of nanofluids. However, viscosity is another important property that needs the same attention due to its very crucial impact on heat transfer. Therefore, viscosity of nanofluids should be thoroughly investigated before use for practical heat transfer applications. In this contribution, a brief review on theoretical models is presented precisely. Furthermore, the effects of nanoparticles' shape and size, temperature, volume concentration, pH, etc. are organized together and reviewed.

  16. Molten Composition B Viscosity at Elevated Temperature

    Science.gov (United States)

    Zerkle, David K.; Núñez, Marcel P.; Zucker, Jonathan M.

    2016-10-01

    A shear-thinning viscosity model is developed for molten Composition B at elevated temperature from analysis of falling ball viscometer data. Results are reported with the system held at 85, 110, and 135°C. Balls of densities of 2.7, 8.0, and 15.6 g/cm3 are dropped to generate a range of strain rates in the material. Analysis of video recordings gives the speed at which the balls fall. Computer simulation of the viscometer is used to determine parameters for a non-Newtonian model calibrated to measured speeds. For the first time, viscosity is shown to be a function of temperature and strain rate-dependent maximum RDX (cyclotrimethylenetrinitramine) particle volume fraction.

  17. Viscosity: From air to hot nuclei

    Indian Academy of Sciences (India)

    Nguyen Dinh Dang

    2014-11-01

    After a brief review of the history of viscosity from classical to quantal fluids, a discussion of how the shear viscosity of a finite hot nucleus is calculated directly from the width and energy of the giant dipole resonance (GDR) of the nucleus is given in this paper. The ratio / with s being the entropy volume density, is extracted from the experimental systematic of GDR in copper, tin and lead isotopes at finite temperature . These empirical results are compared with the results predicted by several independent models, as well as with almost model-independent estimations. Based on these results, it is concluded that the ratio / in medium and heavy nuclei decreases with increasing to reach (1.3−4)$×\\hbar/(4 k_B)$ at = 5 MeV, which is almost the same as that obtained for quark-gluon plasma at > 170 MeV.

  18. Viscosity effects in wind wave generation

    CERN Document Server

    Paquier, Anna; Rabaud, Marc

    2016-01-01

    We investigate experimentally the influence of the liquid viscosity on the problem of the generation of waves by a turbulent wind at the surface of a liquid, extending the results of Paquier, Moisy and Rabaud [Phys. Fluids {\\bf 27}, 122103 (2015)] over nearly three decades of viscosity. The surface deformations are measured with micrometer accuracy using the Free-Surface Synthetic Schlieren method. We recover the two regimes of surface deformations previously identified: the wrinkles regime at small wind velocity, resulting from the viscous imprint on the liquid surface of the turbulent fluctuations in the boundary layer, and the regular wave regime at large wind velocity. Below the wave threshold, we find that the characteristic amplitude of the wrinkles scales as $\

  19. Shear Viscosity Coefficient from Microscopic Models

    CERN Document Server

    Muronga, A

    2004-01-01

    The transport coefficient of shear viscosity is studied for a hadron matter through microscopic transport model, the Ultra--relativistic Quantum Molecular Dynamics (UrQMD), using the Green--Kubo formulas. Molecular--dynamical simulations are performed for a system of light mesons in a box with periodic boundary conditions. Starting from an initial state composed of $\\pi, \\eta ,\\omega ,\\rho ,\\phi$ with a uniform phase--space distribution, the evolution takes place through elastic collisions, production and annihilation. The system approaches a stationary state of mesons and their resonances, which is characterized by common temperature. After equilibration, thermodynamic quantities such as the energy density, particle density, and pressure are calculated. From such an equilibrated state the shear viscosity coefficient is calculated from the fluctuations of stress tensor around equilibrium using Green--Kubo relations. We do our simulations here at zero net baryon density so that the equilibration times depend o...

  20. Viscosity and Plasticity of Latvian Illite Clays

    OpenAIRE

    2012-01-01

    Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...

  1. Viscosity estimation for slags containing calcium fluoride

    Institute of Scientific and Technical Information of China (English)

    Qifeng Shu; Jiayun Zhang

    2005-01-01

    Based on recently published experimental data, the Riboud model was modified for viscosity estimation of the slags containing calcium fluoride. The estimated values were in good agreement with measured data. Reasonable estimation can be achieved using the modified Riboud model for mould fluxes and ESR (eletro slag remelting) slags. Especially for ESR slags, the modified Riboud model can provide much more precise values than the original Riboud model.

  2. Effective viscosity of magnetic nanofluids through capillaries.

    Science.gov (United States)

    Patel, Rajesh

    2012-02-01

    The simultaneous effect of magnetic field and temperature on the capillary viscosity of magnetic nanofluid is an important parameter for a new class of applications such as nanoduct flow, nanomotors, micro- and nanofluidic devices, for transformer cooling, magnetic targeted drug delivery, etc. The effective viscosity of a nanofluid is explained based on the rotation of the particles and the effect of torque on it due to an externally applied magnetic field. Two types of fluids are used here, temperature-sensitive and non-temperature-sensitive magnetic nanofluids. In both types of fluids, decrease in effective viscosity with temperature is observed, but in both cases the mechanism for the decrement is quite different. One is due to temperature dependence of the magnetic moment and the other is due to removal of the secondary surfactant. For temperature-sensitive magnetic nanofluids, a Curie temperature of ~80 °C is extracted from this study. For non-temperature-sensitive magnetic nanofluids ~65% of the secondary surfactant is removed for a change in temperature, ΔT = 40 °C. This is analogous with removal of a drug from magnetic particles for targeted drug delivery. Further, a linear dependence of effective viscosity with different capillary size and ξ (angle between magnetic field and flow direction, ξε[0,π/2]) is also observed. This linear dependence can also be a good approximation for the study of magnetic drug targeting, as in the human body the capillaries are of different sizes, and the externally applied magnetic field is not always parallel or perpendicular to the drug flow direction.

  3. Impact of Viscosity on DNA Dynamics

    Institute of Scientific and Technical Information of China (English)

    S. ZDRAVKOVI(C); M. V. SATARI(C)

    2007-01-01

    We study the influence of viscosity on DNA dynamics. By employing the nonlinear Peyrard-Bishop-Dauxois (PBD) model, it is shown that the DNA dynamics can be explained by a solution of a complex nonlinear Schrodinger equation (CNLSE). This is the nonlinear Schrodinger equation (NLSE) with a nonlinear parameter being a complex number. We compare real and imaginary parts of this nonlinear parameter and show that the latter one should not be negligible, which means that the CNLSE should be solved numerically.

  4. Developing bulk exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  5. Viscosity Solutions for the two-phase Stefan Problem

    CERN Document Server

    Kim, Inwon C

    2010-01-01

    We introduce a notion of viscosity solutions for the two-phase Stefan problem, which incorporates possible existence of a mushy region generated by the initial data. We show that a comparison principle holds between viscosity solutions, and investigate the coincidence of the viscosity solutions and the weak solutions defined via integration by parts. In particular, in the absence of initial mushy region, viscosity solution is the unique weak solution with the same boundary data.

  6. Some open questions in hydrodynamics

    CERN Document Server

    Dyndal, Mateusz

    2014-01-01

    When speaking of unsolved problems in physics, this is surprising at first glance to discuss the case of fluid mechanics. However, there are many deep open questions that come with the theory of fluid mechanics. In this paper, we discuss some of them that we classify in two categories, the long term behavior of solutions of equations of hydrodynamics and the definition of initial (boundary) conditions. The first set of questions come with the non-relativistic theory based on the Navier-Stokes equations. Starting from smooth initial conditions, the purpose is to understand if solutions of Navier-Stokes equations remain smooth with the time evolution. Existence for just a finite time would imply the evolution of finite time singularities, which would have a major influence on the development of turbulent phenomena. The second set of questions come with the relativistic theory of hydrodynamics. There is an accumulating evidence that this theory may be relevant for the description of the medium created in high en...

  7. Temperature dependence of the bulk and surface properties of liquid Zn-Cd alloys

    Energy Technology Data Exchange (ETDEWEB)

    Awe, O.E. [University of Ibadan, Department of Physics, Ibadan (Nigeria); Azeez, A.A. [African University of Science and Technology, Abuja (Nigeria)

    2017-05-15

    The effects of temperature on the bulk and surface properties of liquid Zn-Cd alloys have been theoretically investigated, using a combination of self association model, Darken's thermodynamic equation for diffusion, empirical model for viscosity and a statistical mechanics model. The results from this study show that change in temperature resulted in cross-over effects in bulk and surface properties. We also found that with an increase in temperature, a pronounced asymmetry of viscosity isotherm is significantly reduced, and viscosity isotherm exhibited anomalous behaviour. Our results reveal that the homocoordination tendency in Zn-Cd liquid alloys is not strong and reduces with increasing temperature. The study further suggests a pronounced segregation of Cd-atoms at the surface of Zn-Cd liquid alloys and the extent of segregation reduces with temperature. We as well found that, in addition to the reported understanding that size-factor determines the compositional location of asymmetry of the viscosity isotherm, temperature is an operating parameter that has effect, not only on the composition of asymmetry, but also on the magnitude of asymmetry. In all the properties investigated, the most pronounced effect of temperature (52.9 %) is on the viscosity while the least effect (7.1 %) is on the surface tension. (orig.)

  8. The Effect of Exercise on Salivary Viscosity

    Directory of Open Access Journals (Sweden)

    Antoon J. M. Ligtenberg

    2016-11-01

    Full Text Available A common experience after exercise is the presence of a thick and sticky saliva layer on the oral surfaces, which causes a feeling of a dry mouth. Since the salivary mucin MUC5B is responsible for the visco-elastic behavior of saliva, in the present study we explored the effect of exercise on both the salivary viscosity and the secretion of MUC5B in saliva. Twenty healthy dental students performed an aerobic exercise by cycling for 15 min on cycle-ergometers at a heart rate of 130–140 beats per minute. Saliva was collected at three time points: before exercise, immediately after exercise and after 30 min recovery. Salivary flow rate, viscosity, amylase activity, total protein, carbohydrate and MUC5B concentration were determined. Salivary flow rate, protein and amylase did not change significantly. Immediately after exercise, the salivary viscosity and carbohydrate concentration were significantly higher than at baseline and after 30 min recovery. Immediately after exercise, the MUC5B concentration was significantly higher than after 30 min recovery. It is concluded that the presence of thick saliva after exercise is at least partially due to an increased secretion of MUC5B.

  9. RELAP-7 Numerical Stabilization: Entropy Viscosity Method

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Berry; M. O. Delchini; J. Ragusa

    2014-06-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.

  10. Turbulent viscosity optimized by data assimilation

    Directory of Open Access Journals (Sweden)

    Y. Leredde

    Full Text Available As an alternative approach to classical turbulence modelling using a first or second order closure, the data assimilation method of optimal control is applied to estimate a time and space-dependent turbulent viscosity in a three-dimensional oceanic circulation model. The optimal control method, described for a 3-D primitive equation model, involves the minimization of a cost function that quantifies the discrepancies between the simulations and the observations. An iterative algorithm is obtained via the adjoint model resolution. In a first experiment, a k + L model is used to simulate the one-dimensional development of inertial oscillations resulting from a wind stress at the sea surface and with the presence of a halocline. These results are used as synthetic observations to be assimilated. The turbulent viscosity is then recovered without the k + L closure, even with sparse and noisy observations. The problems of controllability and of the dimensions of the control are then discussed. A second experiment consists of a two-dimensional schematic simulation. A 2-D turbulent viscosity field is estimated from data on the initial and final states of a coastal upwelling event.

    Key words. Oceanography: general (numerical modelling · Oceanography: physical (turbulence · diffusion · and mixing processes

  11. Higher-harmonic collective modes in a trapped gas from second-order hydrodynamics

    Science.gov (United States)

    Lewis, W. E.; Romatschke, P.

    2017-02-01

    Utilizing a second-order hydrodynamics formalism, the dispersion relations for the frequencies and damping rates of collective oscillations as well as spatial structure of these modes up to the decapole oscillation in both two- and three- dimensional gas geometries are calculated. In addition to higher-order modes, the formalism also gives rise to purely damped ‘non-hydrodynamic’ modes. We calculate the amplitude of the various modes for both symmetric and asymmetric trap quenches, finding excellent agreement with an exact quantum mechanical calculation. We find that higher-order hydrodynamic modes are more sensitive to the value of shear viscosity, which may be of interest for the precision extraction of transport coefficients in Fermi gas systems.

  12. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    Science.gov (United States)

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.

  13. An Efficient Implementation of Flux Formulae in Multidimensional Relativistic Hydrodynamical Codes

    CERN Document Server

    Aloy, M A; Ibáñez, J M

    1999-01-01

    We derive and analyze a simplified formulation of the numerical viscosity terms appearing in the expression of the numerical fluxes associated to several High-Resolution Shock-Capturing schemes. After some algebraic pre-processing, we give explicit expressions for the numerical viscosity terms of two of the most widely used flux formulae, which implementation saves computational time in multidimensional simulations of relativistic flows. Additionally, such treatment explicitely cancells and factorizes a number of terms helping to amortiguate the growing of round-off errors. We have checked the performance of our formulation running a 3D relativistic hydrodynamical code to solve a standard test-bed problem and found that the improvement in efficiency is of high practical interest in numerical simulations of relativistic flows in Astrophysics.

  14. Hydrodynamics dual to Einstein-Gauss-Bonnet gravity: all-order gradient resummation and causality violation

    CERN Document Server

    Bu, Yanyan; Sharon, Amir

    2015-01-01

    Relativistic hydrodynamics dual to Einstein-Gauss-Bonnet gravity in asymptotic $\\textrm{AdS}_5$ space is under study. To linear order in the amplitude of the fluid velocity and temperature, we derive the fluid's stress-energy tensor via an all-order resummation of the derivative terms. Each order is accompanied by new transport coefficients, which all together could be compactly absorbed into two functions of momenta, referred to as viscosity functions. Via inverse Fourier transform, these viscosities appear as memory functions in the constitutive relation between components of the stress-energy tensor. We discover that for arbitrary small Gauss-Bonnet coefficient, these memory functions have support in the future, suggesting causality violation in the theory.

  15. Probing bulk viscous matter-dominated models with gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, A.; Bretón, N., E-mail: amontiel@fis.cinvestav.mx, E-mail: nora@fis.cinvestav.mx [Dpto. de Física, Centro de Investigación y de Estudios Avanzados del I. P. N., Av. IPN 2508, D.F. (Mexico)

    2011-08-01

    In this paper we extend the range of consistency of a constant bulk viscosity model to redshifts up to z ∼ 8.1. In this model the dark sector of the cosmic substratum is a viscous fluid with pressure p = −ζθ, where θ is the fluid-expansion scalar and ζ is the coefficient of bulk viscosity. Using the sample of 59 high-redshift GRBs reported by Wei (2010), we calibrate GRBs at low redshifts with the Union 2 sample of SNe Ia, thus avoiding the circularity problem. Testing the constant bulk viscosity model with GRBs we found the best fit for the viscosity parameter ζ-tilde in the range 0 < ζ-tilde < 3, so that it be consistent with previous probes; we also determined the deceleration parameter q{sub 0} and the redshift of transition to accelerated expansion. Besides, we present an updated analysis of the model with CMB5-year data and CMB7-year data, as well as with the baryon acoustic peak BAO. From the statistics with CMB it turns out that the model does not describe in a feasible way to such a far epoch of recombination of the universe, but is in very good concordance for epochs as far as z ∼ 8.1 till present.

  16. Probing bulk viscous matter-dominated models with Gamma-ray bursts

    CERN Document Server

    Montiel, A

    2011-01-01

    In this paper we extend the range of consistency of a constant bulk viscosity model to redshifts up to $z\\sim 8.1$. In this model the dark sector of the cosmic substratum is a viscous fluid with pressure $p= -\\zeta \\theta$, where $\\theta$ is the fluid-expansion scalar and $\\zeta$ is the coefficient of bulk viscosity. Using the sample of 59 high-redshift GRBs reported by Wei (2010), we calibrate GRBs at low redshifts with the Union 2 sample of SNe Ia, avoiding then the circularity problem. Testing the constant bulk viscosity model with GRBs we found the best fit for the viscosity parameter $\\tilde{\\zeta}$ in the range $0<\\tilde{\\zeta}<3$, being so consistent with previous probes; we also determined the deceleration parameter $q_0$ and the redshift of transition to accelerated expansion. Besides we present an updated analysis of the model with CMB5-year data and CMB7-year data, as well as with the baryon acoustic peak BAO. From the statistics with CMB it turns out that the model does not describe in a fea...

  17. Determination of the distance-dependent viscosity of mixtures in parallel slabs using non-equilibrium molecular dynamics.

    Science.gov (United States)

    Pařez, Stanislav; Předota, Milan

    2012-03-14

    We generalize a technique for determination of the shear viscosity of mixtures in planar slabs using non-equilibrium computer simulations by applying an external force parallel to the surface generating Poiseuille flow. The distance-dependent viscosity of the mixture, given as a function of the distance from the surface, is determined by analysis of the resulting velocity profiles of all species. We present results for a highly non-ideal water + methanol mixture in the whole concentration range between rutile (TiO(2)) walls. The bulk results are compared to the existing equilibrium molecular dynamics and experimental data while the inhomogeneous viscosity profiles at the interface are interpreted using the structural data and information on hydrogen bonding.

  18. Composition and Temperature Dependence of Shear Viscosity of Hydrocarbon Mixtures

    Science.gov (United States)

    1980-07-01

    model for viscosity of liquids , we feel that this is a very good correlation between molecular structure and viscosity, and it appears then that the...B. Thole, "The Viscosity of Liquids ," Longmans, Green and Co., London (1914). 15. W. R. Gambill, Chem. Eng, 66, 151 (1959) 16. P. K. Katti and M. M

  19. ON THE EDDY VISCOSITY MODEL OF PERIODIC TURBULENT SHEAR FLOWS

    Institute of Scientific and Technical Information of China (English)

    王新军; 罗纪生; 周恒

    2003-01-01

    Physical argument shows that eddy viscosity is essentially different from molecular viscosity. By direct numerical simulation, it was shown that for periodic turbulent flows, there is phase difference between Reynolds stress and rate of strain. This finding posed great challenge to turbulence modeling, because most turbulence modeling, which use the idea of eddy viscosity, do not take this effect into account.

  20. Liquid viscosity sensing using nonlinear vibration of a fiberoptic sensor.

    Science.gov (United States)

    Wang, Wei-Chih; Liu, Chao-Shih

    2013-07-01

    This paper investigates the nonlinear dynamic motion of a vibrating optical fiber viscosity sensor through representative cases of primary and super-harmonic resonance. The results show that a nonlinear effect drastically improves the sensitivity of the viscosity measurement by nearly an order of magnitude from the previously developed linear systems. Experimental results and several applications of the viscosity sensor are also presented.