Energy Technology Data Exchange (ETDEWEB)
Ramshaw, J D
2000-10-01
A simple model was recently described for predicting the time evolution of the width of the mixing layer at an unstable fluid interface [J. D. Ramshaw, Phys. Rev. E 58, 5834 (1998); ibid. 61, 5339 (2000)]. The ordinary differential equations of this model have been heuristically generalized into partial differential equations suitable for implementation in multicomponent hydrodynamics codes. The central ingredient in this generalization is a nun-diffusional expression for the species mass fluxes. These fluxes describe the relative motion of the species, and thereby determine the local mixing rate and spatial distribution of mixed fluid as a function of time. The generalized model has been implemented in a two-dimensional hydrodynamics code. The model equations and implementation procedure are summarized, and comparisons with experimental mixing data are presented.
Film rupture in the diffuse interface model coupled to hydrodynamics.
Thiele, U; Velarde, M G; Neuffer, K; Pomeau, Y
2001-09-01
The process of dewetting of a thin liquid film is usually described using a long-wave approximation yielding a single evolution equation for the film thickness. This equation incorporates an additional pressure term-the disjoining pressure-accounting for the molecular forces. Recently a disjoining pressure was derived coupling hydrodynamics to the diffuse interface model [L. M. Pismen and Y. Pomeau, Phys. Rev. E 62, 2480 (2000)]. Using the resulting evolution equation as a generic example for the evolution of unstable thin films, we examine the thickness ranges for linear instability and metastability for flat films, the families of stationary periodic and localized solutions, and their linear stability. The results are compared to simulations of the nonlinear time evolution. From this we conclude that, within the linearly unstable thickness range, there exists a well defined subrange where finite perturbations are crucial for the time evolution and the resulting structures. In the remainder of the linearly unstable thickness range the resulting structures are controlled by the fastest flat film mode assumed up to now for the entire linearly unstable thickness range. Finally, the implications for other forms of disjoining pressure in dewetting and for spinodal decomposition are discussed.
Hydrodynamic interaction between particles near elastic interfaces
Daddi-Moussa-Ider, Abdallah
2016-01-01
We present an analytical calculation of the hydrodynamic interaction between two spherical particles near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self- and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between particle diameter and wall distance as well as between diameter and interparticle distance. We find that particle motion towards a membrane with pure bending resistance always leads to mutual repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing resistance, however, we observe an attractive interaction in a certain parameter range which is in contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions. Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical particle mobilities ...
Direct Numerical Simulation of Multiphase Flows with Unstable Interfaces
Schillaci, Eugenio; Lehmkuhl, Oriol; Antepara, Oscar; Oliva, Assensi
2016-09-01
This paper presents a numerical model that intends to simulate efficiently the surface instability that arise in multiphase flows, typically liquid-gas, both for laminar or turbulent regimes. The model is developed on the in-house computing platform TermoFluids, and operates the finite-volume, direct numerical simulation (DNS) of multiphase flows by means of a conservative level-set method for the interface-capturing. The mesh size is optimized by means of an adaptive mesh refinement (AMR) strategy, that allows the dynamic re-concentration of the mesh in the vicinity of the interfaces between fluids, in order to correctly represent the diverse structures (as ligaments and droplets) that may rise from unstable phenomena. In addition, special attention is given to the discretization of the various terms of the momentum equations, to ensure stability of the flow and correct representation of turbulent vortices. As shown, the method is capable of truthfully simulate the interface phenomena as the Kelvin-Helmholtz instability and the Plateau-Rayleigh instability, both in the case of 2-D and 3-D configurations. Therefore it is suitable for the simulation of complex phenomena such as simulation of air-blast atomization, with several important application in the field of automotive and aerospace engines. A prove is given by our preliminary study of the 3-D coaxial liquid-gas jet.
Coupling between hydrodynamics, acoustics, and heat release in a self-excited unstable combustor
Harvazinski, Matthew E.; Huang, Cheng; Sankaran, Venkateswaran; Feldman, Thomas W.; Anderson, William E.; Merkle, Charles L.; Talley, Douglas G.
2015-04-01
The unsteady gas dynamic field in a closed combustor is determined by the nonlinear interactions between chamber acoustics, hydrodynamics, and turbulent combustion that can energize these modes. These interactions are studied in detail using hybrid RANS/large eddy simulations (RANS = Reynolds Averaged Navier-Stokes) of a non-premixed, high-pressure laboratory combustor that produces self-excited longitudinal instabilities. The main variable in the study is the relative acoustic length between the combustion chamber and the tube that injects oxidizer into the combustor. Assuming a half-wave (closed-closed) combustion chamber, the tube lengths approximately correspond to quarter-, 3/8-, and half-wave resonators that serve to vary the phasing between the acoustic modes in the tube and the combustion chamber. The simulation correctly predicts the relatively stable behavior measured with the shortest tube and the very unstable behavior measured with the intermediate tube. Unstable behavior is also predicted for the longest tube, a case for which bifurcated stability behavior was measured in the experiment. In the first (stable) configuration, fuel flows into the combustor uninterrupted, and heat release is spatially continuous with a flame that remains attached to the back step. In the second (unstable) configuration, a cyclic process is apparent comprising a disruption in the fuel flow, subsequent detachment of the flame from the back step, and accumulation of fuel in the recirculation zone that ignites upon arrival of a compression wave reflected from the downstream boundary of the combustion chamber. The third case (mixed stable/unstable) shares features with both of the other cases. The major difference between the two cases predicted to be unstable is that, in the intermediate length tube, a pressure wave reflection inside the tube pushes unburnt fuel behind the back step radially outward, leading to a post-coupled reignition mechanism, while in the case of the
Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin
2016-11-01
In Navier-Stokes fluids, shear flows are known to become unstable leading to instability and eventually to turbulence. A class of flow namely, Kolmogorov Flows (K-Flows) exhibit such transition at low Reynolds number. Using fluid and molecular dynamics, we address the physics of transition from laminar to turbulent regime in strongly correlated-liquids such as in multi-species plasmas and also in naturally occurring plasmas with K-Flows as initial condition. A 2D phenomenological generalized hydrodynamic model is invoked wherein the effect of strong correlations is incorporated via a viscoelastic memory. To study the stability of K-Flows or in general any shear flow, a generalized eigenvalue solver has been developed along with a spectral solver for the full nonlinear set of fluid equations. A study of the linear and nonlinear features of K-Flow in incompressible and compressible limit exhibits cyclicity and nonlinear pattern formation in vorticity. A first principles based molecular dynamics simulation of particles interacting via Yukawa potential is performed with features such as configurational and kinetic thermostats for K-Flows. This work reveals several interesting similarities and differences between hydrodynamics and molecular dynamics studies.
Jha, B.; Juanes, R.
2015-12-01
Coupled processes of flow, transport, and deformation are important during production of hydrocarbons from oil and gas reservoirs. Effective design and implementation of enhanced recovery techniques such as miscible gas flooding and hydraulic fracturing requires modeling and simulation of these coupled proceses in geologic porous media. We develop a computational framework to model the coupled processes of flow, transport, and deformation in heterogeneous fractured rock. We show that the hydrocarbon recovery efficiency during unstable displacement of a more viscous oil with a less viscous fluid in a fractured medium depends on the mechanical state of the medium, which evolves due to permeability alteration within and around fractures. We show that fully accounting for the coupling between the physical processes results in estimates of the recovery efficiency in agreement with observations in field and lab experiments.
EFFECTS OF DIFFERENT NUMERICAL INTERFACE METHODS ON HYDRODYNAMICS INSTABILITY
Energy Technology Data Exchange (ETDEWEB)
FRANCOIS, MARIANNE M. [Los Alamos National Laboratory; DENDY, EDWARD D. [Los Alamos National Laboratory; LOWRIE, ROBERT B. [Los Alamos National Laboratory; LIVESCU, DANIEL [Los Alamos National Laboratory; STEINKAMP, MICHAEL J. [Los Alamos National Laboratory
2007-01-11
The authors compare the effects of different numerical schemes for the advection and material interface treatments on the single-mode Rayleigh-Taylor instability, using the RAGE hydro-code. The interface growth and its surface density (interfacial area) versus time are investigated. The surface density metric shows to be better suited to characterize the difference in the flow, than the conventional interface growth metric. They have found that Van Leer's limiter combined to no interface treatment leads to the largest surface area. Finally, to quantify the difference between the numerical methods they have estimated the numerical viscosity in the linear-regime at different scales.
Hydrodynamical entrapment of ciliates at the air-liquid interface
Ferracci, Jonathan; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji
2012-11-01
We found the new phenomenon of the entrapment of ciliates at the air-water interface, though they are not trapped by a solid interface. We first characterize the behaviours of cells at the interface by comparing it to those away from interfaces. The results showed that the cell's swimming velocity is considerably reduced at the air-water interface. In order to experimentally verify the possible physiological causes of the entrapment, we observed their behaviours in absence of positive chemotaxis for oxygen and the negative geotaxis. The results illustrated that the entrapment phenomenon was not dependent on these physiological conditions. The experiments using surfactant revealed that the entrapment phenomenon was strongly affected by the velocity-stress conditions at the interface. This fact was confirmed numerically by a boundary element method, i.e. the stress-free condition at the air-liquid interface is one of the main mechanisms of the entrapment phenomenon found in the experiments. Since the entrapment phenomenon found in this study affects the cell-cell interactions and the mass transport at the interface, the knowledge obtained in this study is useful for better understanding the complex behaviours of swimming microorganisms in nature. PhD student in the Physiological Flow Studies Laboratory.
Measurements of monolayer hydrodynamics at an air/water interface
Vogel, Michael James
2002-09-01
Growing interest in monomolecular films is driven in part by their numerous applications, which include coating technologies, chemical and bio-sensors, and optoelectronic devices. In the present research, a study involving several different experiments has focused on an improved understanding and quantification of the physics of monolayer-influenced flows. Measurements were made with laser-based nonintrusive techniques, including boundary-fitted digital particle image velocimetry (BFDPIV) to obtain interfacial velocity and shear data, and reflected second-harmonic generation (SHG) to directly measure surfactant concentration at the interface. A simple geometry consisting of uniform bulk flow and a planar surface-piercing barrier which resulted in the phenomenon commonly referred to as a Reynolds ridge was used to study the elasticity of a monolayer. A novel technique was developed in which velocity and surfactant concentration measurements are made simultaneously with a single laser beam which is scanned along the interface. Additionally, a theoretical model balancing surface elasticity and bulk shear at the interface was developed to predict the concentration profile for any insoluble monolayer. The predicted concentration profiles were found to be in agreement with experimental results. Additionally, global predictions from the model for four different insoluble surfactant systems also showed agreement with experimental measurements. In order to study the interfacial dilatational viscosity (kappa s) of a monolayer, for which there are no consistently measured values in the literature, a cavity flow was utilized in which the floor oscillates in the direction parallel to itself. Initially, a baseline study was performed to establish the range of parameters for which the flow is essentially two-dimensional (2D). Three flow regimes were found in the parameter space considered: an essentially 2D time-periodic flow, a time-periodic three-dimensional (3D) flow with a
Sliding drops in the diffuse interface model coupled to hydrodynamics.
Thiele, U; Velarde, M G; Neuffer, K; Bestehorn, M; Pomeau, Y
2001-12-01
Using a film thickness evolution equation derived recently combining long-wave approximation and diffuse interface theory [L. M. Pismen and Y. Pomeau, Phys. Rev. E 62, 2480 (2000)] we study one-dimensional surface profiles for a thin film on an inclined plane. We discuss stationary flat film and periodic solutions including their linear stability. Flat sliding drops are identified as universal profiles, whose main properties do not depend on mean film thickness. The flat drops are analyzed in detail, especially how their velocity, advancing and receding dynamic contact angles and plateau thicknesses depend on the inclination of the plane. A study of nonuniversal drops shows the existence of a dynamical wetting transition with hysteresis between droplike solutions and a flat film with small amplitude nonlinear waves.
TPCI: the PLUTO-CLOUDY Interface . A versatile coupled photoionization hydrodynamics code
Salz, M.; Banerjee, R.; Mignone, A.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M.
2015-04-01
We present an interface between the (magneto-) hydrodynamics code PLUTO and the plasma simulation and spectral synthesis code CLOUDY. By combining these codes, we constructed a new photoionization hydrodynamics solver: the PLUTO-CLOUDY Interface (TPCI), which is well suited to simulate photoevaporative flows under strong irradiation. The code includes the electromagnetic spectrum from X-rays to the radio range and solves the photoionization and chemical network of the 30 lightest elements. TPCI follows an iterative numerical scheme: first, the equilibrium state of the medium is solved for a given radiation field by CLOUDY, resulting in a net radiative heating or cooling. In the second step, the latter influences the (magneto-) hydrodynamic evolution calculated by PLUTO. Here, we validated the one-dimensional version of the code on the basis of four test problems: photoevaporation of a cool hydrogen cloud, cooling of coronal plasma, formation of a Strömgren sphere, and the evaporating atmosphere of a hot Jupiter. This combination of an equilibrium photoionization solver with a general MHD code provides an advanced simulation tool applicable to a variety of astrophysical problems. A copy of the code is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A21
Hydrodynamics of a self-propelled camphor boat at the air-water interface
Akella, Sathish; Singh, Dhiraj; Singh, Ravi; Bandi, Mahesh
2015-11-01
A camphor tablet, when placed at the air-water interface undergoes sublimation and camphor vapour spreads radially outwards across the surface due to Marangoni forces. This steady camphor influx from tablet onto the air-water interface is balanced by the camphor outflux due to evaporation. When spontaneous fluctuations in evaporation break the axial symmetry of Marangoni force acting radially outwards, the camphor tablet is propelled like a boat along the water surface. We report experiments on the hydrodynamics of a self-propelled camphor boat at air-water interfaces. We observe three different modes of motion, namely continuous, harmonic and periodic, due to the volatile nature of camphor. We explain these modes in terms of ratio of two time-scales: the time-scale over which viscous forces are dominant over the Marangoni forces (τη) and the time-scale over which Marangoni forces are dominant over the viscous forces (τσ). The continuous, harmonic and periodic motions are observed when τη /τσ ~ 1 , τη /τσ >= 1 and τη /τσ >> 1 respectively. Experimentally, the ratio of the time scales is varied by changing the interfacial tension of the air-water interface using Sodium Dodecyl Sulfate. This work was supported by the Collective Interactions Unit, OIST Graduate University.
Hydrodynamics of a fixed camphor boat at the air-water interface
Singh, Dhiraj; Akella, Sathish; Singh, Ravi; Mandre, Shreyas; Bandi, Mahesh
2015-11-01
A camphor tablet, when introduced at the air-water interface undergoes sublimation and the camphor vapour spreads radially outwards across the surface. This radial spreading of camphor is due to Marangoni forces setup by the camphor concentration gradient. We report experiments on the hydrodynamics of this process for a camphor tablet held fixed at the air-water interface. During the initial transient, the time-dependent spread radius R (t) of camphor scales algebraically with time t (R (t) ~t 1 / 2) in agreement with empirical scalings reported for spreading of volatile oils on water surface. But unlike surfactants, the camphor stops spreading when the influx of camphor from the tablet onto the air-water interface is balanced by the outflux of camphor due to evaporation, and a steady-state condition is reached. The spreading camphor however, shears the underlying fluid and sets up bulk convective flow. We explain the coupled steady-state dynamics between the interfacial camphor spreading and bulk convective flow with a boundary layer approximation, supported by experimental evidence. This work was supported by the Collective Interactions Unit, OIST Graduate University.
Parallelization of plasma 2-D hydrodynamics code using Message Passing Interface (MPI)
Energy Technology Data Exchange (ETDEWEB)
Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment
1997-11-01
2 dimensional hydrodynamics code using CIP method is parallelized for Intel Paragon XP/S massive parallel computer at Kansai Research Establishment using MPI (Message Passing Interface). The communicator is found to be useful to divide and parallelize programs into functional modules. Using the process topology and the derived data type, large scale finite difference simulation codes can be significantly accelerated with simple coding of the area division method. MPI has functions which simplify the program to process boundary conditions and simplify the communication between adjacent nodes. 357 and 576 times acceleration is obtained for 400 and 782 nodes, respectively. MPI utilizes feature of scalar massive parallel computers with distributed memories. Fast and portable codes can be developed using MPI. (author)
Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime
2014-07-01
We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.
Bonthuis, Douwe Jan; Netz, Roland R
2013-10-03
Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.
Li, Bo; Sun, Hui; Zhou, Shenggao
2015-01-01
The solute-solvent interface that separates biological molecules from their surrounding aqueous solvent characterizes the conformation and dynamics of such molecules. In this work, we construct a solvent fluid dielectric boundary model for the solvation of charged molecules and apply it to study the stability of a model cylindrical solute-solvent interface. The motion of the solute-solvent interface is defined to be the same as that of solvent fluid at the interface. The solvent fluid is assu...
Diffusivity and hydrodynamic drag of nanoparticles at a vapor-liquid interface
Koplik, Joel; Maldarelli, Charles
2017-02-01
Measurements of the surface diffusivity of colloidal spheres translating along a vapor-liquid interface show an unexpected decrease in diffusivity, or increase in surface drag (from the Stokes-Einstein relation), when the particles situate further into the vapor phase. However, direct measurements of the surface drag from the colloid velocity due to an external force find the expected decrease with deeper immersion into the vapor. We perform molecular dynamics simulations of the diffusivity and force experiments for a nanoparticle with a small surface roughness at a vapor-liquid interface to examine the effect of contact line fluctuations. The drag calculated from both calculations agree and decrease as the particle positions further into the vapor. The surface drag is smaller than the bulk liquid drag due to the partial submersion into the liquid and the finite thickness of the interfacial zone relative to the nanoparticle size. We observe weak contact line fluctuations and transient pinning events, but these do not give rise to an anomalous increase in drag in this system.
DEFF Research Database (Denmark)
Casas, Isabel; Gijbels, Irène
2012-01-01
The objective of this paper is to introduce the break-preserving local linear (BPLL) estimator for the estimation of unstable volatility functions for independent and asymptotically independent processes. Breaks in the structure of the conditional mean and/or the volatility functions are common i...
DEFF Research Database (Denmark)
Casas, Isabel; Gijbels, Irène
2012-01-01
The objective of this paper is to introduce the break-preserving local linear (BPLL) estimator for the estimation of unstable volatility functions for independent and asymptotically independent processes. Breaks in the structure of the conditional mean and/or the volatility functions are common i...
A kinetic control of the heliospheric interface hydrodynamics of charge-exchanging fluids
Fahr, H J
2004-01-01
It is well known that the Solar System is presently moving through a partially ionized local interstellar medium. This gives rise to a counter-flow situation requiring a consistent description of behaviour of the two fluids -- ions and neutral atoms -- which are dynamically coupled by mutual charge exchange processes. Solutions to this problem have been offered in the literature, all relying on the assumption that the proton fluid, even under evidently nonequilibrium conditions, can be expected to stay in a highly-relaxated distribution function given by mono-Maxwellians shifted by the local proton bulk velocity. Here we check the validity of this assumption, calculating on the basis of a Boltzmann-kinetic approach the actually occurring deviations. As we show, especially for low degrees of ionization, $\\xi \\le 0.3$, both the H-atoms and protons involved do generate in the heliospheric interface clearly pronounced deviations from shifted Maxwellians with asymmetrically shaped distribution functions giving ris...
Dynamics and hydrodynamic mixing of reactive solutes at stable fresh-salt interfaces
van der Zee, Sjoerd E. A. T. M.; Eeman, Sara; Cirkel, Gijsbert; Leijnse, Toon
2014-05-01
In coastal zones with saline groundwater, but also in semi-arid regions, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. A similar situation is found in situations where groundwater is not saline, but has a different chemical signature than rainwater-affected groundwater. Then also, vegetation patches and botanic biodiversity may depend sensitively on the depth of the interface between different types of groundwater. In this presentation, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens properties by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominate on the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalised lens volume and the main lens and recharge characteristics, enabling an empirical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase and the increase of recharge frequency causes a decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the centre of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of irregularly varying daily recharge data. Starting from a step response function
Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina
2017-02-01
Experimental and modeling studies were performed to investigate bacteria deposition behavior in unsaturated porous media. The coupled effect of different forces, acting on bacteria at solid-air-water interfaces and their relative importance on bacteria deposition mechanisms was explored by calculating Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions such as hydrophobic, capillary and hydrodynamic forces. Negatively charged non-motile bacteria and quartz sands were used in packed column experiments. The breakthrough curves and retention profiles of bacteria were simulated using the modified Mobile-IMmobile (MIM) model, to identify physico-chemical attachment or physical straining mechanisms involved in bacteria retention. These results indicated that both mechanisms might occur in both sand. However, the attachment was found to be a reversible process, because attachment coefficients were similar to those of detachment. DLVO calculations supported these results: the primary minimum did not exist, suggesting no permanent retention of bacteria to solid-water and air-water interfaces. Calculated hydrodynamic and resisting torques predicted that bacteria detachment in the secondary minimum might occur. The capillary potential energy was greater than DLVO, hydrophobic and hydrodynamic potential energies, suggesting that film straining by capillary forces might largely govern bacteria deposition under unsaturated conditions.
"Explosively growing" vortices of unstably stratified atmosphere
Onishchenko, O. G.; Horton, W.; Pokhotelov, O. A.; Fedun, V.
2016-10-01
A new type of "explosively growing" vortex structure is investigated theoretically in the framework of ideal fluid hydrodynamics. It is shown that vortex structures may arise in convectively unstable atmospheric layers containing background vorticity. From an exact analytical vortex solution the vertical vorticity structure and toroidal speed are derived and analyzed. The assumption that vorticity is constant with height leads to a solution that grows explosively when the flow is inviscid. The results shown are in agreement with observations and laboratory experiments
DEFF Research Database (Denmark)
Computerens interface eller grænseflade har spredt sig overalt. Mobiltelefoner, spilkonsoller, pc'er og storskærme indeholder computere – men computere indbygges også i tøj og andre hverdagslige genstande, så vi konstant har adgang til digitale data. Interface retter fokus mod, hvordan den digita...
DEFF Research Database (Denmark)
Computerens interface eller grænseflade har spredt sig overalt. Mobiltelefoner, spilkonsoller, pc'er og storskærme indeholder computere – men computere indbygges også i tøj og andre hverdagslige genstande, så vi konstant har adgang til digitale data. Interface retter fokus mod, hvordan den digitale...... kunst og kultur skabes, spredes og opleves igennem interfaces. Forfatterne undersøger og diskuterer interfacets æstetik, ideologi og kultur – og analyserer aktuel interfacekunst på tværs af musik, kunst, litteratur og film. Bogen belyser interfacets oprindelse i den kolde krigs laboratorier og dets...
Directory of Open Access Journals (Sweden)
Dipayan Sanyal
2005-01-01
macroscopic conservation equations with an order parameter which can account for the solid, liquid, and the mushy zones with the help of a phase function defined on the basis of the liquid fraction, the Gibbs relation, and the phase diagram with local approximations. Using the above formalism for alloy solidification, the width of the diffuse interface (mushy zone was computed rather accurately for iron-carbon and ammonium chloride-water binary alloys and validated against experimental data from literature.
Unstable g-modes in Proto-Neutron Stars
Ferrari, V; Pons, J A
2007-01-01
In this article we study the possibility that, due to non-linear couplings, unstable g-modes associated to convective motions excite stable oscillating g-modes. This problem is of particular interest, since gravitational waves emitted by a newly born proto-neutron star pulsating in its stable g-modes would be in the bandwidth of VIRGO and LIGO. Our results indicate that nonlinear saturation of unstable modes occurs at relatively low amplitudes, and therefore, even if there exists a coupling between stable and unstable modes, it does not seem to be sufficiently effective to explain, alone, the excitation of the oscillating g-modes found in hydrodynamical simulations.
Unstable g-modes in proto-neutron stars
Energy Technology Data Exchange (ETDEWEB)
Ferrari, V [Dipartimento di Fisica ' G Marconi' , Sapienza Universita di Roma and Sezione INFN ROMA1, piazzale Aldo Moro 2, I-00185 Rome (Italy); Gualtieri, L [Dipartimento di Fisica ' G Marconi' , Sapienza Universita di Roma and Sezione INFN ROMA1, piazzale Aldo Moro 2, I-00185 Rome (Italy); Pons, J A [Departament de Fisica Aplicada, Universitat d' Alacant, Apartat de correus 99, 03080 Alacant (Spain)
2007-10-21
In this paper we study the possibility that, due to nonlinear couplings, unstable g-modes associated with convective motions excite stable oscillating g-modes. This problem is of particular interest, since the gravitational waves emitted by a newly born proto-neutron star pulsating in its stable g-modes would be in the bandwidth of VIRGO and LIGO. Our results indicate that the nonlinear saturation of unstable modes occurs at relatively low amplitudes, and therefore, even if there exists a coupling between the stable and unstable modes, it does not seem to be sufficiently effective to explain, alone, the excitation of the oscillating g-modes found in hydrodynamical simulations.
Shearing box simulations in the Rayleigh unstable regime
DEFF Research Database (Denmark)
Nauman, Farrukh; Blackman, Eric G.
2015-01-01
We study the stability properties of Rayleigh unstable flows both in the purely hydrodynamic and magnetohydrodynamic (MHD) regimes for two different values of the shear $q=2.1, 4.2$ ($q = - d\\ln\\Omega / d\\ln r$) and compare it with the Keplerian case $q=1.5$. The Rayleigh stability criterion states...
Institute of Scientific and Technical Information of China (English)
刘曾荣; 茅坚民
2003-01-01
Without introducing a discrete model, unstable continuous flows in a neighbourhood of an unstable stationary point can be stabilized. The linear part of the vector field of disturbing the flow can be managed to become the state variable multiplied by a negative constant. The nonlinear part of the vector field keeps to be unchanged,therefore flows far away from the stationary point are almost unaffected by the disturbance. The control method is easy to be used, even for practical problems for which a priori analytical knowledge of system dynamics is unavailable.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Controls for unstable structures
Guenther, Oliver; Hogg, Tad; Huberman, Bernardo A.
1997-06-01
We study the behavior of several organizations for a market based distributed control of unstable physical systems and show how a hierarchical organization is a reasonable compromise between rapid local responses with simple communication and the use of global knowledge. We also introduce a new control organization, the multihierarchy, and show that is uses less power than a hierarchy in achieving stability. The multihierarchy also has a position invariant response that can control disturbances at the appropriate scale and location.
Milne-Thomson, L M
2011-01-01
This classic exposition of the mathematical theory of fluid motion is applicable to both hydrodynamics and aerodynamics. Based on vector methods and notation with their natural consequence in two dimensions - the complex variable - it offers more than 600 exercises and nearly 400 diagrams. Prerequisites include a knowledge of elementary calculus. 1968 edition.
Bonneau, Dominique; Souchet, Dominique
2014-01-01
This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.
Lafrance, Pierre
1978-01-01
Explores in a non-mathematical treatment some of the hydrodynamical phenomena and forces that affect the operation of ships, especially at high speeds. Discusses the major components of ship resistance such as the different types of drags and ways to reduce them and how to apply those principles for the hovercraft. (GA)
Energy Technology Data Exchange (ETDEWEB)
Castor, J I
2003-10-16
The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is
Lauga, Eric
2015-01-01
Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt; Dyre, Jeppe C.; Daivis, Peter J.;
2011-01-01
We show by nonequilibrium molecular dynamics simulations that the Navier-Stokes equation does not correctly describe water flow in a nanoscale geometry. It is argued that this failure reflects the fact that the coupling between the intrinsic rotational and translational degrees of freedom becomes...... important for nanoflows. The coupling is correctly accounted for by the extended Navier-Stokes equations that include the intrinsic angular momentum as an independent hydrodynamic degree of freedom. © 2011 American Physical Society....
Santos, Jorge E
2015-01-01
We study non-axisymmetric linearised gravitational perturbations of the Emparan-Reall black ring using numerical methods. We find an unstable mode whose onset lies within the "fat" branch of the black ring and continues into the "thin" branch. Together with previous results using Penrose inequalities that fat black rings are unstable, this provides numerical evidence that the entire black ring family is unstable.
Jeon, Sangyong
2015-01-01
We give a pedagogical review of relativistic hydrodynamics relevant to relativistic heavy ion collisions. Topics discussed include linear response theory derivation of 2nd order viscous hydrodynamics including the Kubo formulas, kinetic theory derivation of 2nd order viscous hydrodynamics, anisotropic hydrodynamics and a brief review of numerical algorithms. Emphasis is given to the theory of hydrodynamics rather than phenomenology.
Renilson, Martin
2015-01-01
This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...
Balancing for unstable nonlinear systems
Scherpen, J.M.A.
1993-01-01
A previously obtained method of balancing for stable nonlinear systems is extended to unstable nonlinear systems. The similarity invariants obtained by the concept of LQG balancing for an unstable linear system can also be obtained by considering a past and future energy function of the system. By c
Rheology of unstable mineral emulsions
Directory of Open Access Journals (Sweden)
Sokolović Dunja S.
2013-01-01
Full Text Available In this paper, the rheology of mineral oils and their unstable water emulsion were investigated. The oil samples were domestic crude oil UA, its fractions UA1, UA4 and blend semi-product UP1, while the concentration of oil in water emulsions was in the range from 1 up to 30%. The results were analyzed based on shear stress. The oil samples UA, UA1 and UP1 are Newtonian fluids, while UA4 is pseudoplastic fluid. The samples UA and UA4 show higher value of shear stress (83.75 Pa, 297 Pa, then other two samples UA1 and UP1 (18.41 Pa, 17.52 Pa. Rheology of investigated oils due to its complex chemical composition should be analyzed as a simultaneous effect of all their components. Therefore, structural composition of the oils was determined, namely content of paraffins, naphthenes, aromatics and asphaltenes. All samples contain paraffins, naphthenes and aromatics but only oils UA and UA4 contain asphaltenes as well. All investigated emulsions except 30% EUA4 are Newtonian fluids. The EUA4 30% emulsion shows pseudoplastic behaviour, and it is the only 30% emulsion among investigated ones that achieves lower shear stress then its oil. The characteristics of oil samples that could have an influence on their properties and their emulsion rheology, were determined. These characteristics are: neutralization number, interfacial tension, dielectric constant, and emulsivity. Oil samples UA and UA4 have significantly higher values of neutralization number, dielectric constants, and emulsivity. The sample UA has the lowest value of interface tension and the greatest emulsivity, indicating that this oil, among all investigated, has the highest preference for building emulsion. This could be the reason why 20% and 30% emulsions of the oil UA achieve the highest shear stress among all investigated emulsions.
Treatment of Unstable Ankle Fractures
Directory of Open Access Journals (Sweden)
Yaniel Truffín Rodríguez
2015-11-01
Full Text Available Patients with unstable ankle fractures frequently attend the emergency rooms. It is estimated that there are 122 ankle fractures per 100 000 people a year. Surgical treatment of those that are unstable is inevitable since they can not be corrected in a conservative way. Several surgical procedures for repair of such lesions have been described and all of them constitute important tools for the orthopedic surgeon. Therefore, we conducted a literature review to discuss the current management of unstable ankle fractures based on the analysis of the published literature and the experiences in the Dr. Gustavo Aldereguía Lima University General Hospital of Cienfuegos.
Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures
Energy Technology Data Exchange (ETDEWEB)
Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Bhattacharjee, Amit Kumar [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Nonaka, Andy; Bell, John B. [Center for Computational Science and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Garcia, Alejandro L. [Department of Physics and Astronomy, San Jose State University, San Jose, California 95192 (United States)
2015-03-15
miscible interface due to coupling between Rayleigh–Taylor and double-diffusive convective modes,” Phys. Fluids 25, 024107 (2013)] in a Hele-Shaw cell. We find that giant nonequilibrium fluctuations can trigger the instability but are eventually dominated by the deterministic growth of the unstable mode, in both quasi-two-dimensional (Hele-Shaw) and fully three-dimensional geometries used in typical shadowgraph experiments.
A numerical study of unstable Hele-Shaw flow
DEFF Research Database (Denmark)
Hansen, Erik Bent; Rasmussen, Henning
1999-01-01
A numerical procedure which is based on an integral equation for the normal velocity at the interface is developed for the unstable flow with surface tension in a Hele-Shaw cell. The procedure has been validated by comparing solutions obtained by it with published results. It has also been applie...
Proton scattering from unstable nuclei
Indian Academy of Sciences (India)
Y Blumenfeld; E Khan; F Maréchal; T Suomijärvi
2001-08-01
Recent improvements in the intensities and optical qualities of radioactive beams have made possible the study of elastic and inelastic proton scattering on unstable nuclei. The design and performances of an innovative silicon strip detector array devoted to such experiments are described. The quality of the data obtained are illustrated with recent results obtained at the GANIL facility for unstable oxygen, sulfur and argon isotopes. Methods to analyse the data using phenomenological and microscopic optical model potentials are discussed.
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Hydrodynamic Instability and Thermal Coupling in a Dynamic Model of Liquid-Propellant Combustion
Margolis, S. B.
1999-01-01
significant modification of the pulsating boundary such that, for sufficiently large values of the temperature-sensitivity parameter, liquid-propellant combustion can become intrinsically unstable to this alternative form of hydrodynamic instability. For simplicity, further attention is confined here to the inviscid version of the problem since, despite the fact that viscous and surface-tension effects are comparable, the qualitative nature of the cellular boundary remains preserved in the zero-viscosity limit, as does the existence of the pulsating boundary. The mathematical model adopts the classical assumption that there is no distributed reaction in either the liquid or gas phases, but now the reaction sheet, representing either a pyrolysis reaction or an exothermic decomposition at the liquid/gas interface, is assumed to depend on local conditions there.
Energy Technology Data Exchange (ETDEWEB)
Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.; Nevmerzhitskii, N.V.; Nikiforov, V.V.; Razin, A.N.; Rogatchev, V.G.; Tolshmyakov, A.I.; Yanilkin, Yu.V. [Russian Federal Nuclear Center (Russian Federation)
1995-02-01
This report describes an extensive program of investigations conducted at Arzamas-16 in Russia over the past several decades. The focus of the work is on material interface instability and the mixing of two materials. Part 1 of the report discusses analytical and computational studies of hydrodynamic instabilities and turbulent mixing. The EGAK codes are described and results are illustrated for several types of unstable flow. Semiempirical turbulence transport equations are derived for the mixing of two materials, and their capabilities are illustrated for several examples. Part 2 discusses the experimental studies that have been performed to investigate instabilities and turbulent mixing. Shock-tube and jelly techniques are described in considerable detail. Results are presented for many circumstances and configurations.
Unstable oscillators based hyperchaotic circuit
DEFF Research Database (Denmark)
Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.;
1999-01-01
A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...
Algorithm refinement for fluctuating hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Williams, Sarah A.; Bell, John B.; Garcia, Alejandro L.
2007-07-03
This paper introduces an adaptive mesh and algorithmrefinement method for fluctuating hydrodynamics. This particle-continuumhybrid simulates the dynamics of a compressible fluid with thermalfluctuations. The particle algorithm is direct simulation Monte Carlo(DSMC), a molecular-level scheme based on the Boltzmann equation. Thecontinuum algorithm is based on the Landau-Lifshitz Navier-Stokes (LLNS)equations, which incorporate thermal fluctuations into macroscopichydrodynamics by using stochastic fluxes. It uses a recently-developedsolver for LLNS, based on third-order Runge-Kutta. We present numericaltests of systems in and out of equilibrium, including time-dependentsystems, and demonstrate dynamic adaptive refinement by the computationof a moving shock wave. Mean system behavior and second moment statisticsof our simulations match theoretical values and benchmarks well. We findthat particular attention should be paid to the spectrum of the flux atthe interface between the particle and continuum methods, specificallyfor the non-hydrodynamic (kinetic) time scales.
Hyperchaotic system with unstable oscillators
DEFF Research Database (Denmark)
Murali, K.; Tamasevicius, A.; Mykolaitis, G.;
2000-01-01
A simple electronic system exhibiting hyperchaotic behaviour is described. The system includes two nonlinearly coupled 2nd order unstable oscillators, each composed of an LC resonance loop and an amplifier. The system is investigated by means of numerical integration of appropriate differential e...... equations, PSPICE simulations and hardware experiments. The Lyapunov exponents are presented to confirm hyperchaotic mode of the oscillations....
Stabilization strategies for unstable dynamics.
Directory of Open Access Journals (Sweden)
Devjani J Saha
Full Text Available BACKGROUND: When humans are faced with an unstable task, two different stabilization mechanisms are possible: a high-stiffness strategy, based on the inherent elastic properties of muscles/tools/manipulated objects, or a low-stiffness strategy, based on an explicit positional feedback mechanism. Specific constraints related to the dynamics of the task and/or the neuromuscular system often force people to adopt one of these two strategies. METHODOLOGY/FINDINGS: This experiment was designed such that subjects could achieve stability using either strategy, with a marked difference in terms of effort and control requirements between the two strategies. The task was to balance a virtual mass in an unstable environment via two elastic linkages that connected the mass to each hand. The dynamics of the mass under the influence of the unstable force field and the forces applied through the linkages were simulated using a bimanual, planar robot. The two linkages were non-linear, with a stiffness that increased with the amount of stretch. The mass could be stabilized by stretching the linkages to achieve a stiffness that was greater than the instability coefficient of the unstable field (high-stiffness, or by balancing the mass with sequences of small force impulses (low-stiffness. The results showed that 62% of the subjects quickly adopted the high-stiffness strategy, with stiffness ellipses that were aligned along the direction of instability. The remaining subjects applied the low-stiffness strategy, with no clear preference for the orientation of the stiffness ellipse. CONCLUSIONS: The choice of a strategy was based on the bimanual coordination of the hands: high-stiffness subjects achieved stability quickly by separating the hands to stretch the linkages, while the low-stiffness subjects kept the hands close together and took longer to achieve stability but with lower effort. We suggest that the existence of multiple solutions leads to different types
Unstable mass-outflows in geometrically thick accretion flows around black holes
Okuda, Toru
2015-01-01
Accretion flows around black holes generally result in mass-outflows that exhibit irregular behavior quite often. Using 2D time-dependent hydrodynamical calculations, we show that the mass-outflow is unstable in the cases of thick accretion flows such as the low angular momentum accretion flow and the advection-dominated accretion flow. For the low angular momentum flow, the inward accreting matter on the equatorial plane interacts with the outflowing gas along the rotational axis and the centrifugally supported oblique shock is formed at the interface of both the flows, when the viscosity parameter $\\alpha$ is as small as $\\alpha \\le 10^{-3}$. The hot and rarefied blobs, which result in the eruptive mass-outflow, are generated in the inner shocked region and grow up toward the outer boundary. The advection-dominated accretion flow attains finally in the form of a torus disc with the inner edge of the disc at $3R_{\\rm g} \\le r \\le 6R_{\\rm g}$ and the center at $6R_ {\\rm g} \\le r \\le 10R_{\\rm g}$, and a series...
Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime
2015-07-01
The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (Ts≈0.96 ) is close to the theoretically derived value of Ts=1 at zero ambient pressure for this vdW fluid.
Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime
2015-07-01
The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.
Margolis, Stephen B.
1997-01-01
The burning of liquid propellants is a fundamental combustion problem that is applicable to various types of propulsion and energetic systems. The deflagration process is often rather complex, with vaporization and pyrolysis occurring at the liquid/gas interface and distributed combustion occurring either in the gas phase or in a spray. Nonetheless, there are realistic limiting cases in which combustion may be approximated by an overall reaction at the liquid/gas interface. In one such limit, the gas flame occurs under near-breakaway conditions, exerting little thermal or hydrodynamic influence on the burning propellant. In another such limit, distributed combustion occurs in an intrusive regime, the reaction zone lying closer to the liquid/gas interface than the length scale of any disturbance of interest. Finally, the liquid propellant may simply undergo exothermic decomposition at the surface without any significant distributed combustion, such as appears to occur in some types of HydroxylAmmonium Nitrate (HAN)-based liquid propellants at low pressures. Such limiting models have recently been formulated,thereby significantly generalizing earlier classical models that were originally introduced to study the hydrodynamic stability of a reactive liquid/gas interface. In all of these investigations, gravity appears explicitly and plays a significant role, along with surface tension, viscosity, and, in the more recent models, certain reaction-rate parameters associated with the pressure and temperature sensitivities of the reaction itself. In particular, these parameters determine the stability of the deflagration with respect to not only classical hydrodynamic disturbances, but also with respect to reactive/diffusive influences as well. Indeed, the inverse Froude number, representing the ratio of buoyant to inertial forces, appears explicitly in all of these models, and consequently, in the dispersion relation that determines the neutral stability boundaries beyond
Crustal fingering: solidification on a moving interface
Fu, Xiaojing; Jimenez-Martinez, Joaquin; Porter, Mark; Cueto-Felgueroso, Luis; Juanes, Ruben
2016-11-01
Viscous fingering-the hydrodynamic instability that takes place when a less viscous fluid displaces a more viscous fluid-is a well known phenomenon. Motivated by the formation of gas hydrates in seafloor sediments and during the ascent of gas bubbles through ocean water, here we study the interplay of immiscible viscous fingering with solidification of the evolving unstable interface. We present experimental observations of the dynamics of a bubble of Xenon in a water-filled and pressurized Hele-Shaw cell. The evolution is controlled by two processes: (1) the formation of a hydrate "crust" around the bubble, and (2) viscous fingering from bubble expansion. To reproduce the experimental observations, we propose a phase-field model that describes the nucleation and thickening of a porous solid shell on a moving gas-liquid interface. We design the free energy of the three-phase system (gas-liquid-hydrate) to rigorously account for interfacial effects, mutual solubility, and phase transformations (hydrate formation and disappearance). We introduce a pseudo-plasticity model with large variations in viscosity to describe the plate-like rheology of the hydrate shell. We present high-resolution numerical simulations of the model, which illustrate the emergence of complex "crustal fingering" patterns as a result of gas fingering dynamics modulated by hydrate growth at the interface.
A novel approach to modeling unstable EOR displacements. Final report
Energy Technology Data Exchange (ETDEWEB)
Peters, E.J.
1994-04-01
Most enhanced oil recovery schemes involve the displacement of a more dense and more viscous oil by a less dense and less viscous fluid in a heterogeneous porous medium. The interaction of heterogeneity with the several competing forces, namely, viscous, capillary, gravitational, and dispersive forces, can conspire to make the displacements unstable and difficult to model and to predict. The objective of this research was to develop a systematic methodology for modeling unstable fluid displacements in heterogeneous media. Flow visualization experiments were conducted using X-ray computed tomography imaging and a video imaging workstation to gain insights into the dynamics of unstable displacements, acquire detailed quantitative experimental image data for calibrating numerical models of unstable displacements, and image and characterize heterogeneities in laboratory cores geostatistically. High-resolution numerical models modified for use on vector-architecture supercomputers were used to replicate the image data. Geostatistical models of reservoir heterogeneity were incorporated in order to study the interaction of hydrodynamic instability and heterogeneity in reservoir displacements. Finally, a systematic methodology for matching the experimental data with the numerical models and scaling the laboratory results to other systems were developed. The result is a new method for predicting the performance of unstable EOR displacements in the field based on small-scale displacements in the laboratory. The methodology is general and can be applied to forecast the performance of most processes that involve fluid flow and transport in porous media. Therefore, this research should be of interest to those involved in forecasting the performance of enhanced oil recovery processes and the spreading of contaminants in heterogeneous aquifers.
Inherently Unstable Internal Gravity Waves
Liang, Y
2016-01-01
Here we show that there exist internal gravity waves that are inherently unstable, that is, they cannot exist in nature for a long time. The instability mechanism is a one-way (irreversible) harmonic-generation resonance that permanently transfers the energy of an internal wave to its higher harmonics. We show that, in fact, there are countably infinite number of such unstable waves. For the harmonic-generation resonance to take place, nonlinear terms in the free surface boundary condition play a pivotal role, and the instability does not obtain if a simplified boundary condition such as rigid lid or linear form is employed. Harmonic-generation resonance presented here also provides a mechanism for the transfer of the energy of the internal waves to the higher-frequency part of the spectrum where internal waves are more prone to breaking, hence losing energy to turbulence and heat and contributing to oceanic mixing.
Elasto-hydrodynamic lubrication
Dowson, D; Hopkins, D W
1977-01-01
Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio
Elementary classical hydrodynamics
Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C
1967-01-01
Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c
Unstable Fields in Kerr Spacetimes
Dotti, Gustavo; Ranea-Sandoval, Ignacio F
2011-01-01
We present a generalization of previous results regarding the stability under gravitational perturbations of nakedly singular super extreme Kerr spacetime and Kerr black hole interior beyond the Cauchy horizon. To do so we study solutions to the radial and angular Teukolsky's equations with different spin weights, particulary $s=\\pm 1$ representing electromagnetic perturbations, $s=\\pm 1/2$ representing a perturbation by a Dirac field and $s=0$ representing perturbations by a scalar field. By analizing the properties of radial and angular eigenvalues we prove the existence of an infinite family of unstable modes.
Is Quantum Spacetime Foam Unstable?
Redmount, I H; Redmount, Ian H.; Suen, Wai-Mo
1993-01-01
A very simple wormhole geometry is considered as a model of a mode of topological fluctutation in Planck-scale spacetime foam. Quantum dynamics of the hole reduces to quantum mechanics of one variable, throat radius, and admits a WKB analysis. The hole is quantum-mechanically unstable: It has no bound states. Wormhole wave functions must eventually leak to large radii. This suggests that stability considerations along these lines may place strong constraints on the nature and even the existence of spacetime foam.
Angulo, A. A.; Kuranz, C. C.; Drake, R. P.; Huntington, C. M.; Park, H.-S.; Remington, B. A.; Kalantar, D.; MacLaren, S.; Raman, K.; Miles, A.; Trantham, Matthew; Kline, J. L.; Flippo, K.; Doss, F. W.; Shvarts, D.
2016-10-01
This poster will describe simulations based on results from ongoing laboratory astrophysics experiments at the National Ignition Facility (NIF) relevant to the effects of radiative shock on hydrodynamically unstable surfaces. The experiments performed on NIF uniquely provide the necessary conditions required to emulate radiative shock that occurs in astrophysical systems. The core-collapse explosions of red supergiant stars is such an example wherein the interaction between the supernova ejecta and the circumstellar medium creates a region susceptible to Rayleigh-Taylor (R-T) instabilities. Radiative and nonradiative experiments were performed to show that R-T growth should be reduced by the effects of the radiative shocks that occur during this core-collapse. Simulations were performed using the radiation hydrodynamics code Hyades using the experimental conditions to find the mean interface acceleration of the instability and then further analyzed in the buoyancy drag model to observe how the material expansion contributes to the mix-layer growth. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas under Grant Number DE-FG52-09NA29548.
Inherently Unstable Internal Gravity Waves
Alam, Reza
2016-11-01
Here we show that there exist internal gravity waves that are inherently unstable, that is, they cannot exist in nature for a long time. The instability mechanism is a one-way (irreversible) harmonic-generation resonance that permanently transfers the energy of an internal wave to its higher harmonics. We show that, in fact, there are countably infinite number of such unstable waves. For the harmonic-generation resonance to take place, nonlinear terms in the free surface boundary condition play a pivotal role, and the instability does not obtain for a linearly-stratified fluid if a simplified boundary condition such as rigid lid or linear form is employed. Harmonic-generation resonance discussed here also provides a mechanism for the transfer of the energy of the internal waves to the higher-frequency part of the spectrum where internal waves are more prone to breaking, hence losing energy to turbulence and heat and contributing to oceanic mixing. Yong Liang (yong.liang@berkeley.edu).
Latest results from EPOS3 on the production of stable and unstable hadrons
Directory of Open Access Journals (Sweden)
Werner K.
2015-01-01
Full Text Available Evidence for hydrodynamical flow in AA or in pA collisons is to a large extent obtained from the observation of identified hadrons, such as pions, kaons, and protons. But much more information in particular about the late stage can be obtained by also considering unstable particles, which decay during the lifetime of the expanding hadronic matter. We therefore started to use EPOS3, a unified approach for pp, pA, and AA scattering, to investigate the production of stable and unstable particles.
Triggered fragmentation in gravitationally unstable discs: forming fragments at small radii
Directory of Open Access Journals (Sweden)
Meru Farzana
2013-04-01
Full Text Available We carry out three dimensional radiation hydrodynamical simulations of gravitationally unstable discs using to explore the movement of mass in a disc following its fragmentation. Compared to a more quiescent state before it fragments, the radial velocity of the gas increases by up to a factor of ≈ 2 – 3 after fragmentation. While the mass movement occurs both inwards and outwards, the inwards motion can cause the inner spirals to be suciently dense that they may become unstable and potentially fragment. Consequently, the dynamical behaviour of fragmented discs may cause subsequent fragmentation at smaller radii after an initial fragment has formed in the outer disc.
Quasiparticle anisotropic hydrodynamics
Alqahtani, Mubarak
2016-01-01
We study an azimuthally-symmetric boost-invariant quark-gluon plasma using quasiparticle anisotropic hydrodynamics including the effects of both shear and bulk viscosities. We compare results obtained using the quasiparticle method with the standard anisotropic hydrodynamics and viscous hydrodynamics. We consider the predictions of the three methods for the differential particle spectra and mean transverse momentum. We find that the three methods agree for small shear viscosity to entropy density ratio, $\\eta/s$, but show differences at large $\\eta/s$. Additionally, we find that the standard anisotropic hydrodynamics method shows suppressed production at low transverse-momentum compared to the other two methods, and the bulk-viscous correction can drive the primordial particle spectra negative at large $p_T$ in viscous hydrodynamics.
Three-dimensional simulations of ablative hydrodynamic instabilities in indirectly driven targets
Energy Technology Data Exchange (ETDEWEB)
Marinak, M.M.; Tipton, R.E.; Remington, B.A. [and others
1996-06-01
To model ignition in a National Ignition Facility (NIF) capsule implosion, the authors must understand the behavior of instabilities that can cause breakup of the pellet shell. During a capsule implosion, shocks that transit the shell cause growth of perturbations at the surface or at an interface because of a Richtmyer-Meshkov type of instability. Following shock breakout, or earlier for a shaped pulse, the low-density ablated plasma accelerates the pusher, and the ablation front is Rayleigh-Taylor (RT) unstable. Ablation and finite density gradients have the effect of stabilizing the short wavelength modes. Unstable modes present on the outer surface grow and feed through to the inner surface. Once the shell encounters the rebounding shock from the capsule center, it decelerates and the inner surface becomes RT unstable. If perturbations grow large enough, pusher material mixes into the core, degrading implosion performance. Capsule designs for the NIF depend on ablative stabilization and saturation to prevent perturbations initially present on the capsule surface from growing large enough to quench ignition. Here, the authors examine the first simulations and experiments to study the effect of 3-D perturbation shape on instability growth and saturation in indirectly driven targets. The first section discusses HYDRA, the radiation hydrodynamics code developed for these simulations. The subsequent section examines 3-D shape effects in single-mode perturbations in planar foil simulations and experiments. A discussion of the evolution of multimode perturbations on planar foils is followed by a discussion of 3-D simulations of instability growth in Nova capsule implosions.
Scaling supernova hydrodynamics to the laboratory
Energy Technology Data Exchange (ETDEWEB)
Kane, J.O.
1999-06-01
Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane et al., Astrophys. J.478, L75 (1997) The Nova laser is used to shock two-layer targets, producing Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the interfaces between the layers, analogous to instabilities seen at the interfaces of SN 1987A. Because the hydrodynamics in the laser experiments at intermediate times (3-40 ns) and in SN 1987A at intermediate times (5 s-10{sup 4} s) are well described by the Euler equations, the hydrodynamics scale between the two regimes. The experiments are modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS, thus serving as a benchmark for PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike and bubble velocities in the experiment using potential flow theory and a modified Ott thin shell theory is presented. A numerical study of 2D vs. 3D differences in instability growth at the O-He and He-H interface of SN 1987A, and the design for analogous laser experiments are presented. We discuss further work to incorporate more features of the SN in the experiments, including spherical geometry, multiple layers and density gradients. Past and ongoing work in laboratory and laser astrophysics is reviewed, including experimental work on supernova remnants (SNRs). A numerical study of RM instability in SNRs is presented.
Electro-hydrodynamics near Hydrophobic Surfaces
Maduar, S R; Lobaskin, V; Vinogradova, O I
2014-01-01
We show that the dynamics of the electrostatic diffuse layer at the slippery hydrophobic surface depends strongly on the mobility of surface charges. For a hydrophobic surface with immobile charges the fluid transport is considerably amplified by the existence of a hydrodynamic slippage. In contrast, near the hydrophobic surface with mobile adsorbed charges it is also controlled by an additional electric force, which increases the shear stress at the slipping interface. To account for this we formulate electro-hydrodynamic boundary conditions at the slipping interface, which are applied to quantify electro-osmotic flows. Our theoretical predictions are fully supported by dissipative particle dynamics simulations with explicit charges. These results lead to a new general concept of zeta-potential of hydrophobic surfaces.
Multiple front propagation into unstable states
Montagne, R; Hernández-García, E; Miguel, M S
1993-01-01
The dynamics of transient patterns formed by front propagation in extended nonequilibrium systems is considered. Under certain circumstances, the state left behind a front propagating into an unstable homogeneous state can be an unstable periodic pattern. It is found by a numerical solution of a model of the Fr\\'eedericksz transition in nematic liquid crystals that the mechanism of decay of such periodic unstable states is the propagation of a second front which replaces the unstable pattern by a another unstable periodic state with larger wavelength. The speed of this second front and the periodicity of the new state are analytically calculated with a generalization of the marginal stability formalism suited to the study of front propagation into periodic unstable states. PACS: 47.20.Ky, 03.40.Kf, 47.54.+r
Galaxy clusters as hydrodynamics laboratories
Roediger, Elke; Sheardown, Alexander; Fish, Thomas; ZuHone, John; Hunt, Matthew; Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.
2017-08-01
The intra-cluster medium (ICM) of galaxy clusters shows a wealth of hydrodynamical features that trace the growth of clusters via the infall of galaxies or smaller subclusters. Such hydrodynamical features include the wakes of the infalling objects as well as the interfaces between the host cluster’s ICM and the atmosphere of the infalling object. Furthermore, the cluster dynamics can be traced by merger shocks, bow shocks, and sloshing motions of the ICM.The characteristics of these dynamical features, e.g., the direction, length, brightness, and temperature of the galaxies' or subclusters' gas tails varies significantly between different objects. This could be due to either dynamical conditions or ICM transport coefficients such as viscosity and thermal conductivity. For example, the cool long gas tails of of some infalling galaxies and groups have been attributed to a substantial ICM viscosity suppressing mixing of the stripped galaxy or group gas with the hotter ambient ICM.Using hydrodynamical simulations of minor mergers we show, however, that these features can be explained naturally by the dynamical conditions of each particular galaxy or group infall. Specifically, we identify observable features to distinguish the first and second infall of a galaxy or group into its host cluster as well as characteristics during apocentre passage. Comparing our simulations with observations, we can explain several puzzling observations such as the long and cold tail of M86 in Virgo and the very long and tangentially oriented tail of the group LEDA 87445 in Hydra A.Using our simulations, we also assess the validity of the stagnation pressure method that is widely used to determine an infalling galaxy's velocity. We show that near pericentre passage the method gives reasonable results, but near apocentre it is not easily applicable.
[Exercise tests in unstable angina suspects].
2012-01-01
The review is devoted to exercise tests (ET) potential in patients with different forms of coronary heart disease (CHD) exacerbation and suspected unstable angina. It is well known that unstable angina untreated pharmacologically is a contraindication for ET. Of interest in clinical practice is diagnosis, risk assessment and treatment policy in patients with chest pain. The main focus is on ET conduction in unstable angina suspects with low and intermediate risk, on safety and validity of ET conduction in these patients.
Unstable fronts and stable "critters" formed by microrollers
Driscoll, Michelle; Youssef, Mena; Sacanna, Stefano; Donev, Aleksandar; Chaikin, Paul
2016-01-01
Condensation of objects into stable clusters occurs naturally in equilibrium and driven systems. It is commonly held that potential interactions, depletion forces, or sensing are the only mechanisms which can create long-lived compact structures. Here we show that persistent motile structures can form spontaneously from hydrodynamic interactions alone with no sensing or potential interactions. We study this structure formation in a system of colloidal rollers suspended and translating above a floor, using both experiments and large-scale 3D simulations. In this system, clusters originate from a previously unreported fingering instability, where fingers pinch off from an unstable front to form autonomous "critters", whose size is selected by the height of the particles above the floor. These critters are a stable state of the system, move much faster than individual particles, and quickly respond to a changing drive. With speed and direction set by a rotating magnetic field, these active structures offer inter...
Migration of Gas Giant Planets in a Gravitationally Unstable Disk
Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Durisen, Richard H.
2017-01-01
Understanding the migration of giant planets in gravitationally unstable protoplanetary disks is important for understanding planetary system architecture, especially the existence of planets orbiting close to and at large distances from their stars. Migration rates can determine the efficiency of planet formation and survival rates of planets. We present results from simulations of 0.3, 1, and 3 Jupiter-mass planets in a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star, where the disk is marginally unstable to gravitational instabilities (GIs). Each planet is simulated separately. We use CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include radiative cooling governed by realistic dust opacities. The planets are inserted into the disk, once the disk has settled into its quasi-steady GI-active phase. We simulate each of the 0.3, 1, and 3 Jupiter-mass planets by inserting it at three different locations in the disk, at the corotation radius and at the inner and outer Lindblad resonances. No matter where placed, the 3 Jupiter-mass planets tend to drift inexorably inward but with a rate that slows after many orbital periods. The 1 Jupiter-mass planets migrate mostly inward, but their motion can be delayed or reversed near the corotation of the two-armed wave. The 0.3 Jupiter-mass planets are much less predictable and frequently migrate outward. We analyze how the density of matter and waves in the disk at different azimuthal locations affect the migration.
Oz, Yaron
2015-01-01
This chapter describes how the AdS/CFT correspondence (the Holographic Principle) relates field theory hydrodynamics to perturbations of black hole (brane) gravitational backgrounds. The hydrodynamics framework is first presented from the field theory point of view, after which the dual gravitational description is outlined, first for relativistic fluids and then for the nonrelativistic case. Further details of the fluid/gravity correspondence are then discussed, including the bulk geometry and the dynamics of the black hole horizon.
Osteoporosis in unstable adult scoliosis
Energy Technology Data Exchange (ETDEWEB)
Velis, K.P.; Healey, J.H.; Schneider, R.
1988-12-01
New noninvasive techniques as well as conventional methods were used to evaluate skeletal mass in the following three populations of adult white women as follows: (1) 79 subjects with preexisting idiopathic scoliosis designated as unstable (US) because of the associated presence in the lumbar spine of lateral spondylolisthesis with segmental instability; (2) 67 subjects with preexisting idiopathic scoliosis without lateral spondylolisthesis designated as stable (SS); and (3) 248 age-matched nonscoliotic controls. Ages in all three groups were categorized into premenopausal (25-44 years), perimenopausal (45-54 years), and postmenopausal (55-84 years). The results showed higher scoliosis morbidity in the US compared to the SS populations. The prevalence and severity of osteoporosis were markedly increased in US versus SS populations. Femoral neck density determined by dual-photon absorptiometry techniques averaged 26% to 48% lower in all age categories of US patients compared to controls. These changes were found in the youngest age groups, indicating reductions in bone mineral content earlier in the adult life of white women with a specific type of high-morbidity US characterized by the marker of lateral spondylolisthesis.
Energy Technology Data Exchange (ETDEWEB)
Stephen B. Margolis
2000-01-01
A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.
Electromagnetic Radiation Originating from Unstable Electron Oscillations
DEFF Research Database (Denmark)
Juul Rasmussen, Jens; Pécseli, Hans
1975-01-01
Electromagnetic oscillations in the range 300 – 700 MHz were observed from an unmagnetized argon discharge with an unstable electron velocity distribution function.......Electromagnetic oscillations in the range 300 – 700 MHz were observed from an unmagnetized argon discharge with an unstable electron velocity distribution function....
Richtmyer-Meshkov unstable dynamics influenced by pressure fluctuations
Bhowmick, A. K.; Abarzhi, S. I.
2016-11-01
We theoretically study the effect of pressure fluctuations on the Richtmyer-Meshkov (RM) unstable interface in approximation of ideal incompressible immiscible fluids and two-dimensional flow. Pressure fluctuations are treated as an effective acceleration directed from the heavy to light fluid with inverse square time dependence. The group theory approach is applied to analyze large-scale coherent dynamics, solve the complete set of the governing equations, and find regular asymptotic solutions describing RM bubbles. A strong effect is found, for the first time to our knowledge, of pressure fluctuations on the interface morphology and dynamics. In the linear regime, a nearly flat bubble gets more curved, and its velocity increases for strong pressure fluctuations and decreases otherwise. In the nonlinear regime, solutions form a one-parameter family parameterized by the bubble front curvature. For the fastest stable solution in the family, the RM bubble is curved for strong pressure fluctuations and is flattened otherwise. The flow is characterized by the intense motion of the fluids in the vicinity of the interface, effectively no motion away from the interface, and presence of shear at the interface leading to formation of smaller scale vortical structures. Our theoretical results agree with and explain existing experiments and simulations and identify new qualitative and quantitative characteristics to evaluate the strength of pressure fluctuations in experiments and simulations.
Anisotropic hydrodynamics -- basic concepts
Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael
2013-01-01
Due to the rapid longitudinal expansion of the quark-gluon plasma created in relativistic heavy ion collisions, potentially large local rest frame momentum-space anisotropies are generated. The magnitude of these momentum-space anisotropies can be so large as to violate the central assumption of canonical viscous hydrodynamical treatments which linearize around an isotropic background. In order to better describe the early-time dynamics of the quark gluon plasma, one can consider instead expanding around a locally anisotropic background which results in a dynamical framework called anisotropic hydrodynamics. In this proceedings contribution we review the basic concepts of the anisotropic hydrodynamics framework presenting viewpoints from both the phenomenological and microscopic points of view.
Dispersive hydrodynamics: Preface
Biondini, G.; El, G. A.; Hoefer, M. A.; Miller, P. D.
2016-10-01
This Special Issue on Dispersive Hydrodynamics is dedicated to the memory and work of G.B. Whitham who was one of the pioneers in this field of physical applied mathematics. Some of the papers appearing here are related to work reported on at the workshop "Dispersive Hydrodynamics: The Mathematics of Dispersive Shock Waves and Applications" held in May 2015 at the Banff International Research Station. This Preface provides a broad overview of the field and summaries of the various contributions to the Special Issue, placing them in a unified context.
Magnetic Black Holes Are Also Unstable
Kim, Sang Pyo
2004-01-01
Most black holes are known to be unstable to emitting Hawking radiation (in asymptotically flat spacetime). If the black holes are non-extreme, they have positive temperature and emit thermally. If they are extremal rotating black holes, they still spontaneously emit particles like gravitons and photons. If they are extremal electrically charged black holes, they are unstable to emitting electrons or positrons. The only exception would be extreme magnetically charged black holes if there do not exist any magnetic monopoles for them to emit. However, here we show that even in this case, vacuum polarization causes all magnetic black holes to be unstable to emitting smaller magnetic black holes.
On the transfer of energy to an unstable liquid jet in a coflowing compressible airstream
Li, Hsi-Shang; Kelly, Robert E.
1993-01-01
The transfer of energy from a compressible airstream to a coflowing unstable liquid jet via the pressure perturbation at the interface is studied as the Mach number varies continuously from subsonic to supersonic values. The 'lift' component of the pressure perturbation has been demonstrated to predominate up to slightly supersonic free-stream Mach numbers, after which the 'drag' component predominates.
Rayleigh Taylor growth at an embedded interface driven by a radiative shock
Huntington, Channing
2016-10-01
Radiative shocks are those where the radiation generated by the shock influences the hydrodynamics of the matter in the system. Radiative shocks are common in astrophysics, including during type II supernovae, and have also been observed in the rebound phase of a compressed inertial confinement fusion (ICF) capsule. It is predicted that the radiative heating serves to stabilize hydrodynamic instabilities in these systems, but studying the effect is challenging. Only in recent experiments at the National Ignition Facility has the energy been available to drive a radiative shock across a planar, Rayleigh-Taylor unstable interface in solid-density materials. Because the generation of radiation at the shock front is a strong function of shock velocity (v8) , the RT growth rates in the presence of fast and slow shockas were directly compared. We observe reduced RT spike development when the driving shock is expected to be radiative. Both low drive (225 eV) hydrodynamic RT growth and high drive (325 eV), radiatively-stabilized growth rates are in good agreement with 2D models. This NIF Discovery Science result has important implications for our understanding of astrophysical radiative shocks, as well as the dynamics of ICF capsules. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Emergency coronary angioplasty in refractory unstable angina
P.J. de Feyter (Pim); P.W.J.C. Serruys (Patrick); M.J.B.M. van den Brand (Marcel); K. Balakumaran (Kulasekaram); A.L. Soward; P.G. Hugenholtz (Paul); A.E.R. Arnold (Alfred); B. Mochtar (Bas)
1985-01-01
textabstractWe performed percutaneous transluminal coronary angioplasty as an emergency procedure in 60 patients with unstable angina pectoris that was refractory to treatment with maximally tolerated doses of beta-blockers, calcium antagonists, and intravenous nitroglycerin. The initial success
Unstable attractors induce perpetual synchronization and desynchronization.
Timme, Marc; Wolf, Fred; Geisel, Theo
2003-03-01
Common experience suggests that attracting invariant sets in nonlinear dynamical systems are generally stable. Contrary to this intuition, we present a dynamical system, a network of pulse-coupled oscillators, in which unstable attractors arise naturally. From random initial conditions, groups of synchronized oscillators (clusters) are formed that send pulses alternately, resulting in a periodic dynamics of the network. Under the influence of arbitrarily weak noise, this synchronization is followed by a desynchronization of clusters, a phenomenon induced by attractors that are unstable. Perpetual synchronization and desynchronization lead to a switching among attractors. This is explained by the geometrical fact, that these unstable attractors are surrounded by basins of attraction of other attractors, whereas the full measure of their own basin is located remote from the attractor. Unstable attractors do not only exist in these systems, but moreover dominate the dynamics for large networks and a wide range of parameters.
Smoothed Particle Hydrodynamic Simulator
Energy Technology Data Exchange (ETDEWEB)
2016-10-05
This code is a highly modular framework for developing smoothed particle hydrodynamic (SPH) simulations running on parallel platforms. The compartmentalization of the code allows for rapid development of new SPH applications and modifications of existing algorithms. The compartmentalization also allows changes in one part of the code used by many applications to instantly be made available to all applications.
Directory of Open Access Journals (Sweden)
Franci Gabrovsek
2008-01-01
Full Text Available From a hydrological point of view, active caves are a series of connected conduits which drain water through an aquifer. Water tends to choose the easiest way through the system but different geological and morphological barriers act as flow restrictions. The number and characteristics of restrictions depends on the particular speleogenetic environment, which is a function of geological, geomorphological, climatological and hydrological settings. Such a variety and heterogeneity of underground systems has presented a challenge for human understanding for many centuries. Access to many underground passages, theoretical knowledge and recent methods (modeling, water pressure-resistant dataloggers, precise sensors etc. give us the opportunity to get better insight into the hydrodynamic aspect of caves. In our work we tried to approach underground hydrodynamics from both theoretical and practical points of view. We present some theoretical background of open surface and pressurized flow in underground rivers and present results of some possible scenarios. Moreover, two case studies from the Ljubljanica river basin are presented in more detail: the cave system between Planinsko polje and Ljubljansko barje, and the cave system between Bloško polje and Cerkniško polje. The approach and methodology in each case is somewhat different, as the aims were different at the beginning of exploration. However, they both deal with temporal and spatial hydrodynamics of underground waters. In the case of Bloško polje-Cerkniško polje system we also explain the feedback loop between hydrodynamics and Holocene speleogenesis.
Wavefunction Intensity Statistics from Unstable Periodic Orbits
Kaplan, L
1998-01-01
We examine the effect of short unstable periodic orbits on wavefunction statistics in a classically chaotic system, and find that the tail of the wavefunction intensity distribution in phase space is dominated by scarring associated with the least unstable periodic orbits. In an ensemble average over systems with classical orbits of different instabilities, a power law tail is found, in sharp contrast to the exponential prediction of random matrix theory. The calculations are compared with numerical data and quantitative agreement is obtained
VH1 Hydrodynamics for Introductory Astronomy
Christian, Wolfgang; Blondin, John
1997-05-01
Improvements in personal computer operating systems and hardware now makes it possible to run research grade Fortran simulations on student computers. Unfortunately, many legacy applications do not have a graphical user interface and are sometimes hard coded to a specific problem making them unsuitable for beginning students. A good way to re-purpose such legacy code for undergraduate teaching is to build a graphical front end using a Rapid Application Development, RAD, tool that starts the simulation as a separate thread. This technique is being used with Virginia Hydrodynamics One, VH1, to provide an introduction to computational hydrodynamics. Standard test problems including gravitational collapse of an interstellar cloud, radiation cooling, and formation of shocks are demonstrated using this on Microsoft Windows 95/NT.
Frictionless dispersive hydrodynamics of Stokes flows
Maiden, Michelle D; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A
2016-01-01
Effectively frictionless, dispersive flow characterizes superfluids, nonlinear optical diffraction, and geophysical fluid interfaces. Dispersive shock waves (DSWs) and solitons are fundamental nonlinear excitations in these media, but DSW studies to date have been severely constrained by a loss of coherence. Here we report on a novel dispersive hydrodynamics testbed: the effectively frictionless flow of interfacial waves between two high contrast, low Reynolds' number Stokes fluids. This system enables high fidelity observations of large amplitude DSWs, found to agree quantitatively with a nonlinear wave averaging theory. We then report on observations of highly coherent phenomena including DSW backflow, the refraction or absorption of solitons by DSWs, and multi-phase DSW-DSW merger. The complex, coherent, nonlinear mixing of DSWs and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.
Hydrodynamics of the Dirac spectrum
Energy Technology Data Exchange (ETDEWEB)
Liu, Yizhuang, E-mail: yizhuang.liu@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Warchoł, Piotr, E-mail: piotr.warchol@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Krakow (Poland); Zahed, Ismail, E-mail: ismail.zahed@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)
2016-02-10
We discuss a hydrodynamical description of the eigenvalues of the Dirac spectrum in even dimensions in the vacuum and in the large N (volume) limit. The linearized hydrodynamics supports sound waves. The hydrodynamical relaxation of the eigenvalues is captured by a hydrodynamical (tunneling) minimum configuration which follows from a pertinent form of Euler equation. The relaxation from a phase of unbroken chiral symmetry to a phase of broken chiral symmetry occurs over a time set by the speed of sound.
Hydrodynamic permeability of aggregates of porous particles with an impermeable core.
Deo, Satya; Filippov, Anatoly; Tiwari, Ashish; Vasin, Sergey; Starov, Victor
2011-05-11
A hydrodynamic permeability of membranes built up by porous cylindrical or spherical particles with impermeable core is investigated. Different versions of a cell method are used to calculate the hydrodynamic permeability of the membranes. Four known boundary conditions, namely, Happel's, Kuwabara's, Kvashnin's and Cunningham/Mehta-Morse's, are considered on the outer surface of the cell. Comparison of the resulting hydrodynamic permeability is undertaken. A possible jump of a shear stress at the fluid-membrane interface, its impact on the hydrodynamic permeability is also investigated. New results related to the calculated hydrodynamic permeability and the theoretical values of Kozeny constant are reported. Both transversal and normal flows of liquid with respect to the cylindrical fibers that compose the membrane are studied. The deduced theoretical results can be applied for the investigation of the hydrodynamic permeability of colloidal cake layers on the membrane surface, the hydrodynamic permeability of woven materials. Copyright © 2010 Elsevier B.V. All rights reserved.
Free Surface Hydrodynamics Laboratory
Federal Laboratory Consortium — FUNCTION: Investigates processes and interactions at the air-sea interface, and compares measurements to numerical simulations and field data. Typical phenomena of...
Scalability of Hydrodynamic Simulations
Tang, Shikui
2009-01-01
Many hydrodynamic processes can be studied in a way that is scalable over a vastly relevant physical parameter space. We systematically examine this scalability, which has so far only briefly discussed in astrophysical literature. We show how the scalability is limited by various constraints imposed by physical processes and initial conditions. Using supernova remnants in different environments and evolutionary phases as application examples, we demonstrate the use of the scaling as a powerful tool to explore the interdependence among relevant parameters, based on a minimum set of simulations. In particular, we devise a scaling scheme that can be used to adaptively generate numerous seed remnants and plant them into 3D hydrodynamic simulations of the supernova-dominated interstellar medium.
Relativistic Hydrodynamics with Wavelets
DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W
2015-01-01
Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...
Burst Mechanisms in Hydrodynamics
Knobloch, E
1999-01-01
Different mechanisms believed to be responsible for the generation of bursts in hydrodynamical systems are reviewed and a new mechanism capable of generating regular or irregular bursts of large dynamic range near threshold is described. The new mechanism is present in the interaction between oscillatory modes of odd and even parity in systems of large but finite aspect ratio, and provides an explanation for the bursting behavior observed in binary fluid convection. Additional applications of the new mechanism are proposed.
Relativistic cosmological hydrodynamics
Hwang, J
1997-01-01
We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.
False vacuum as an unstable state
Urbanowski, K.
2016-11-01
Calculations performed within the Standard Model suggest that the electroweak vacuum is unstable if MH Higgs particle). LHC discovery of the Higgs boson indicates that MH ≃ 125 GeV. So the vacuum in our Universe may be unstable. We analyze properties of unstable vacuum states from the point of view of the quantum theory. At asymptotically late times the survival probability as a function of time t has an inverse power-like form. We show that at this time region the energy of the false vacuum states tends to the energy of the true vacuum state as 1/t2 for t → ∞. This means that the energy density in the unstable vacuum state should have analogous properties and hence the cosmological constant Λ = Λ(t) too. So Λ in the Universe with the unstable vacuum should have a form of the sum of the "bare" cosmological constant and of the term of a type 1/t^2:Λ (t) ≡ Λbare + d/t^2, (where Λbare is the cosmological constant for the Universe with the true vacuum).
Unstable solar lentigo: A defined separate entity.
Byrom, Lisa; Barksdale, Sarah; Weedon, David; Muir, Jim
2016-08-01
An unstable solar lentigo is a solar lentigo with areas of melanocytic hyperplasia not extending past the margin of the lesion. They are discrete, macular, pigmented lesions arising on sun-damaged skin and a subset of typical solar lentigos. Clinically they differ from usual solar lentigines in often being solitary or larger and darker than adjacent solar lentigines. These lesions are of clinical importance as they can arise in close proximity to lentigo maligna and in a single lesion there can be demonstrated changes of solar lentigo, unstable solar lentigo and lentigo maligna. These observations led us to conjecture that unstable solar lentigos could be a precursor lesion to lentigo maligna. In this article we examine the possibility that lentigo maligna can arise within a solar lentigo through an intermediate lesion, the unstable solar lentigo. We propose that the histopathological recognition of this entity will allow for future research into its behaviour and thus management. We review difficulties in the diagnosis of single cell predominant melanocytic proliferations and the concept of unstable lentigo in view of the literature and clinical experience supporting the proposal of its recognition as a separate entity.
Hydrodynamics of insect spermatozoa
Pak, On Shun; Lauga, Eric
2010-11-01
Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.
Hydrodynamics of fossil fishes.
Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert
2014-08-07
From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms.
Hydrodynamics of fingering instability in the presence of a magnetic field
Mostaghimi, Peyman; Ashouri, Majid; Ebrahimi, Behnam
2016-10-01
The hydrodynamics of two immiscible fluids in a rectangular Hele-Shaw cell under the influence of a magnetic field is studied, both theoretically and numerically. A linear stability analysis is conducted to determine the effect of magnetic fields on the formation of viscous fingers. As a result, an analytical solution is found to calculate the growth rate of perturbations. For numerical simulation of the two-phase flow, the interfacial tension is treated as a body force using the continuum surface force model and the interface tracking is performed by the volume of fluid method. The variations of the width and growth rate of fingers in an unstable displacement versus Hartmann number, a dimensionless number characterizing the strength of the applied magnetic field, are investigated. By varying the value of Hartmann number systematically, a suppressing effect on the formation of viscous fingers is observed. Consequently, it is detected that there exists a minimum Hartmann number preventing the formation of viscous fingers and ensuring a stable displacement. Our numerical simulations are in agreement with the results of the linear stability analysis and quantify the effect of magnetic fields in mitigating viscous fingering effects and improving the efficiency of the fluid displacement.
Coupling between Hydrodynamics, Acoustics, and Heat Release in a Self-Excited Unstable Combustor
2015-04-07
analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver Phys. Fluids 27, 043602 (2015...10.1063/1.4918672 Ignition sequence of an annular multi-injector combustor Phys. Fluids 26, 091106 (2014); 10.1063/1.4893452 On the compressible...the expansion.4 Different source terms can then be interpreted as different contributing mechanisms. If only the first order linear terms are retained
Experiments showing dynamics of materials interfaces
Energy Technology Data Exchange (ETDEWEB)
Benjamin, R.F. [Los Alamos National Lab., NM (United States). Dynamic Experimentation Div.
1997-02-01
The discipline of materials science and engineering often involves understanding and controlling properties of interfaces. The authors address the challenge of educating students about properties of interfaces, particularly dynamic properties and effects of unstable interfaces. A series of simple, inexpensive, hands-on activities about fluid interfaces provides students with a testbed to develop intuition about interface dynamics. The experiments highlight the essential role of initial interfacial perturbations in determining the dynamic response of the interface. The experiments produce dramatic, unexpected effects when initial perturbations are controlled and inhibited. These activities help students to develop insight about unstable interfaces that can be applied to analogous problems in materials science and engineering. The lessons examine ``Rayleigh-Taylor instability,`` an interfacial instability that occurs when a higher-density fluid is above a lower-density fluid.
Chaos, Order Statistics and Unstable Periodic Orbits
Valsakumar, M C; Kanmani, S
1999-01-01
We present a new method for locating unstable periodic points of one dimensional chaotic maps. This method is based on order statistics. The densities of various maxima of the iterates are discontinuous exactly at unstable periodic points of the map. This is illustrated using logistic map where densities corresponding to a small number of iterates have been obtained in closed form. This technique can be applied to the class of continuous time systems where the successive maxima of the time series behave as if they were generated from a unimodal map. This is demonstrated using Lorenz model.
Unstable fronts and motile structures formed by microrollers
Driscoll, Michelle; Delmotte, Blaise; Youssef, Mena; Sacanna, Stefano; Donev, Aleksandar; Chaikin, Paul
2017-04-01
Condensation of objects into stable clusters occurs naturally in equilibrium and driven systems. It is commonly held that potential interactions, depletion forces, or sensing are the only mechanisms which can create long-lived compact structures. Here we show that persistent motile structures can form spontaneously from hydrodynamic interactions alone, with no sensing or potential interactions. We study this structure formation in a system of colloidal rollers suspended and translating above a floor, using both experiments and large-scale three-dimensional simulations. In this system, clusters originate from a previously unreported fingering instability, where fingers pinch off from an unstable front to form autonomous `critters’, whose size is selected by the height of the particles above the floor. These critters are a stable state of the system, move much faster than individual particles, and quickly respond to a changing drive. With speed and direction set by a rotating magnetic field, these active structures offer interesting possibilities for guided transport, flow generation, and mixing at the microscale.
Foundations of radiation hydrodynamics
Mihalas, Dimitri
1999-01-01
Radiation hydrodynamics is a broad subject that cuts across many disciplines in physics and astronomy: fluid dynamics, thermodynamics, statistical mechanics, kinetic theory, and radiative transfer, among others. The theory developed in this book by two specialists in the field can be applied to the study of such diverse astrophysical phenomena as stellar winds, supernova explosions, and the initial phases of cosmic expansion, as well as the physics of laser fusion and reentry vehicles. As such, it provides students with the basic tools for research on radiating flows.Largely self-contained,
40 CFR 258.15 - Unstable areas.
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Unstable areas. 258.15 Section 258.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL...) Karst terranes means areas where karst topography, with its characteristic surface and subterranean...
Coronary angioplasty for early postinfarction unstable angina
P.J. de Feyter (Pim); P.W.J.C. Serruys (Patrick); A. Soward; M.J.B.M. van den Brand (Marcel); E. Bos (Egbert); P.G. Hugenholtz (Paul)
1986-01-01
textabstractCoronary angioplasty was performed in 53 patients in whom unstable angina had reoccurred after 48 hr and within 30 days after sustained myocardial infarction. Single-vessel disease was present in 64% of the patients and multivessel disease in 36%. The preceding myocardial infarction had
Supersymmetric integrable scattering theories with unstable particles
Fring, A
2005-01-01
We propose scattering matrices for N=1 supersymmetric integrable quantum field theories in 1+1 dimensions which involve unstable particles in their spectra. By means of the thermodynamic Bethe ansatz we analyze the ultraviolet behaviour of some of these theories and identify the effective Virasoro central charge of the underlying conformal field theories.
Variability and Stability in Radiation Hydrodynamic Accretion Flows
Miller, G S; Miller, Guy S.; Park, Myeong-Gu
1997-01-01
In this paper we examine time-dependent and three-dimensional perturbations of spherical accretion flow onto a neutron star close to its Eddington limit. Our treatment assumes a Schwarzschild geometry for the spacetime outside the neutron star and is fully general relativistic. At all the accretion rates studied, the response of the accretion flow to perturbations includes weakly damped oscillatory modes. At sufficiently high luminosities --- but still well below the Eddington limit --- the flows become unstable to aspherical perturbations. These unstable radiation hydrodynamic modes resemble the onset of convection, and allow accretion to occur preferentially through more rapidly descending columns of gas, while the radiation produced escapes through neighboring columns in which the gas descends more slowly.
Molecular hydrodynamics from memory kernels
Lesnicki, Dominika; Carof, Antoine; Rotenberg, Benjamin
2016-01-01
The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as $t^{-3/2}$. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, at odds with incompressible hydrodynamics predictions. We finally discuss the various contributions to the friction, the associated time scales and the cross-over between the molecular and hydrodynamic regimes upon increasing the solute radius.
Probing the Hydrodynamic Limit of (Super)gravity
Di Dato, Adriana; Pedersen, Andreas Vigand
2015-01-01
We study the long-wavelength effective description of two general classes of charged dilatonic (asymptotically flat) black p-branes including D/NS/M-branes in ten and eleven dimensional supergravity. In particular, we consider gravitational brane solutions in a hydrodynamic derivative expansion (to first order) for arbitrary dilaton coupling and for general brane and co-dimension and determine their effective electro-fluid-dynamic descriptions by exacting the characterizing transport coefficients. We also investigate the stability properties of the corresponding hydrodynamic systems by analyzing their response to small long-wavelength perturbations. For branes carrying unsmeared charge, we find that in a certain regime of parameter space there exists a branch of stable charged configurations. This is in accordance with the expectation that D/NS/M-branes have stable configurations, except for the D5, D6, and NS5. In contrast, we find that Maxwell charged brane configurations are Gregory-Laflamme unstable indep...
Influence of viscosity contrast on buoyantly unstable miscible fluids in porous media
Pramanik, Satyajit; Mishra, Manoranjan
2015-01-01
The influence of viscosity contrast on buoyantly unstable miscible fluids in a porous medium is investigated through a linear stability analysis (LSA) as well as direct numerical simulations (DNS). The linear stability method implemented in this paper is based on an initial value approach, which helps to capture the onset of instability more accurately than the quasi-steady state analysis. In the absence of displacement, we show that viscosity contrast delays the onset of instability in buoyantly unstable miscible fluids. Further, it is observed that suitably choosing the viscosity contrast and injection velocity a gravitationally unstable miscible interface can be stabilized completely. Through LSA we draw a phase diagram, which shows three distinct stability regions in a parameter space spanned by the displacement velocity and the viscosity contrast. DNS are performed corresponding to parameters from each regime and the results obtained are in accordance with the linear stability results. Moreover, the conv...
Constructing stable 3D hydrodynamical models of giant stars
Ohlmann, Sebastian T.; Röpke, Friedrich K.; Pakmor, Rüdiger; Springel, Volker
2017-02-01
Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the one-dimensional stellar evolution code mesa. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code arepo. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Different reconstruction methods are tested that can specifically control the convective behaviour of the model. After mapping to a grid, a relaxation procedure that includes damping of spurious velocities yields stable models in three-dimensional hydrodynamical simulations. Initially convectively stable configurations lead to stable hydrodynamical models while for stratifications that are convectively unstable in the stellar evolution code, simulations recover the convective behaviour of the initial model and show large convective plumes with Mach numbers up to 0.8. Examples are shown for a 2 M⊙ red giant and a 0.67 M⊙ asymptotic giant branch star. A detailed analysis shows that the improved method reliably provides stable models of giant envelopes that can be used as initial conditions for subsequent hydrodynamical simulations of stellar interactions involving giant stars.
Lower bound on the electroweak wall velocity from hydrodynamic instability
Energy Technology Data Exchange (ETDEWEB)
Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D. [IFIMAR (CONICET-UNMdP), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes (7600) 3350 Mar del Plata (Argentina)
2015-03-27
The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.
Hydrodynamics of pronuclear migration
Nazockdast, Ehssan; Needleman, Daniel; Shelley, Michael
2014-11-01
Microtubule (MT) filaments play a key role in many processes involved in cell devision including spindle formation, chromosome segregation, and pronuclear positioning. We present a direct numerical technique to simulate MT dynamics in such processes. Our method includes hydrodynamically mediated interactions between MTs and other cytoskeletal objects, using singularity methods for Stokes flow. Long-ranged many-body hydrodynamic interactions are computed using a highly efficient and scalable fast multipole method, enabling the simulation of thousands of MTs. Our simulation method also takes into account the flexibility of MTs using Euler-Bernoulli beam theory as well as their dynamic instability. Using this technique, we simulate pronuclear migration in single-celled Caenorhabditis elegans embryos. Two different positioning mechanisms, based on the interactions of MTs with the motor proteins and the cell cortex, are explored: cytoplasmic pulling and cortical pushing. We find that although the pronuclear complex migrates towards the center of the cell in both models, the generated cytoplasmic flows are fundamentally different. This suggest that cytoplasmic flow visualization during pronuclear migration can be utilized to differentiate between the two mechanisms.
Dynamic density functional theory with hydrodynamic interactions and fluctuations
Energy Technology Data Exchange (ETDEWEB)
Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Vanden-Eijnden, Eric, E-mail: eve2@courant.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2014-06-21
We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, “Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps,” Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absence of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, “A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law,” J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions.
Electrokinetics of heterogeneous interfaces.
Zembala, Maria
2004-12-31
The influence of surface heterogeneity of various types on electrokinetic parameters is reviewed. The scope of the paper covers classical electrokinetic phenomena characterized by linear dependence of electrokinetic parameters vs. related driving forces. Neither non-linear effects nor the effects of non-equilibrium electric double layer are considered. A historical description of hydrodynamic aspect of electrokinetic phenomena exploiting the slip plane idea is briefly outlined. Attempts to estimate the slip plane location by comparing the diffuse layer and zeta potential values for some model systems are presented. The surface heterogeneity was divided into three categories. Heterogeneity of the first type was related to geometrical morphology of an interfacial region characterized by a considerable surface development producing a three-dimensional interfacial region. The effects of solid roughness, hairy surface, dense polymer layers and gel-like layers are discussed here. The very high surface conductivity detected for such interfaces seems to be a good indicator of the presence of structured layers of this type. Heterogeneous interfaces of the second class cover systems exhibiting non-uniform distribution of surface charge. The non-uniform surface charge distribution can be either of a molecular (discrete charges) or of a microscale (two-dimensional micropatches or three-dimensional structures formed by polyelectrolyte multilayers). The last class of systems examined includes interfaces composed of charged substrate covered by charged bulky objects (particles). In comparison to the homogeneous surfaces, adsorbed charged particles modify both hydrodynamic flow and the electrostatic field significantly altering the electrokinetic parameters. The new description of electrokinetics of composed interfaces presented here takes into account both hydrodynamic and electric field modification and is free of the previously assumed slip plane shift caused by adsorbed
Hydrodynamically Lubricated Rotary Shaft Having Twist Resistant Geometry
Dietle, Lannie; Gobeli, Jeffrey D.
1993-07-27
A hydrodynamically lubricated squeeze packing type rotary shaft with a cross-sectional geometry suitable for pressurized lubricant retention is provided which, in the preferred embodiment, incorporates a protuberant static sealing interface that, compared to prior art, dramatically improves the exclusionary action of the dynamic sealing interface in low pressure and unpressurized applications by achieving symmetrical deformation of the seal at the static and dynamic sealing interfaces. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication; this added compression makes the seal more tolerant of compression set, abrasive wear, mechanical misalignment, dynamic runout, and manufacturing tolerances, and also makes hydrodynamic seals with smaller cross-sections more practical. In alternate embodiments, the benefits enumerated above are achieved by cooperative configurations of the seal and the gland which achieve symmetrical deformation of the seal at the static and dynamic sealing interfaces. The seal may also be configured such that predetermined radial compression deforms it to a desired operative configuration, even through symmetrical deformation is lacking.
Fluctuations in Relativistic Causal Hydrodynamics
Kumar, Avdhesh; Mishra, Ananta P
2013-01-01
The formalism to calculate the hydrodynamics fluctuation using the quasi-stationary fluctuation theory of Onsager to the relativistic Navier-Stokes hydrodynamics is already known. In this work we calculate hydrodynamic fluctuations in relativistic causal theory of Muller, Israel and Stewart and other related causal hydrodynamic theories. We show that expressions for the Onsager coefficients and the correlation functions have form similar to the ones obtained by using Navier-Stokes equation. However, temporal evolution of the correlation functions obtained using MIS and the other causal theories can be significantly different than the correlation functions obtained using the Navier-Stokes equation. Finally, as an illustrative example, we explicitly plot the correlation functions obtained using the causal-hydrodynamics theories and compare them with correlation functions obtained by earlier authors using the expanding boost-invariant (Bjorken) flows.
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Spaliński, Michał
2016-01-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.
Lifshitz Superfluid Hydrodynamics
Chapman, Shira; Oz, Yaron
2014-01-01
We construct the first order hydrodynamics of quantum critical points with Lifshitz scaling and a spontaneously broken symmetry. The fluid is described by a combination of two flows, a normal component that carries entropy and a super-flow which has zero viscosity and carries no entropy. We analyze the new transport effects allowed by the lack of boost invariance and constrain them by the local second law of thermodynamics. Imposing time-reversal invariance, we find eight new parity even transport coefficients. The formulation is applicable, in general, to any superfluid/superconductor with an explicit breaking of boost symmetry, in particular to high $T_c$ superconductors. We discuss possible experimental signatures.
Hydrodynamics of Ship Propellers
DEFF Research Database (Denmark)
Breslin, John P.; Andersen, Poul
This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and moments which the propeller generates on the shaft and on the ship hull.The first part of the text is devoted to fundamentals of the flow about hydrofoil sections (with and without cavitation......) and about wings. It then treats propellers in uniform flow, first via advanced actuator disc modelling, and then using lifting-line theory. Pragmatic guidance is given for design and evaluation of performance, including the use of computer modelling.The second part covers the development of unsteady forces...... arising from operation in non-uniform hull wakes. First, by a number of simplifications, various aspects of the problem are dealt with separately until the full problem of a non-cavitating, wide-bladed propeller in a wake is treated by a new and completely developed theory. Next, the complicated problem...
Hydrodynamic effects on coalescence.
Energy Technology Data Exchange (ETDEWEB)
Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael (Yale University, New Haven, CT); Gorby, Allen D.; Brooks, Carlton, F.
2006-10-01
The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.
Expanded complexity of unstable repeat diseases
Polak, Urszula; McIvor, Elizabeth; Dent, Sharon Y.R.; Wells, Robert D.; Napierala, Marek.
2012-01-01
Unstable Repeat Diseases (URDs) share a common mutational phenomenon of changes in the copy number of short, tandemly repeated DNA sequences. More than 20 human neurological diseases are caused by instability, predominantly expansion, of microsatellite sequences. Changes in the repeat size initiate a cascade of pathological processes, frequently characteristic of a unique disease or a small subgroup of the URDs. Understanding of both the mechanism of repeat instability and molecular consequen...
Hydrodynamics of sediment threshold
Ali, Sk Zeeshan; Dey, Subhasish
2016-07-01
A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.
The Fate of Unstable Gauge Flux Compactifications
Burgess, C P; Zavala, I
2009-01-01
Fluxes are widely used to stabilise extra dimensions, but if they arise within a non-abelian gauge sector they are often unstable. We seek the fate of this instability, focussing on the simplest examples: sphere-monopole compactifications in six dimensions. Without gravity most non-abelian monopoles are unstable, decaying into the unique stable monopole in the same topological class. We show that the same is true in Einstein-YM systems, with the geometry adjusting accordingly: a Mink(d)xS2 geometry supported by an unstable monopole relaxes to an AdS(d)xS2. For 6D supergravity, the dilaton obstructs this simple evolution, acquiring a gradient and thus breaking some of the spacetime symmetries. We argue that it is the 4D symmetries that break, and examine several endpoint candidates. Oxidising the supergravity system into a higher-dimensional Einstein-YM monopole, we use the latter to guide us to the corresponding endpoint. The result is a singular Kasner-like geometry conformal to Mink(4)xS2. The solution has ...
High-order hydrodynamic algorithms for exascale computing
Energy Technology Data Exchange (ETDEWEB)
Morgan, Nathaniel Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-02-05
Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broad range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.
Dissolution patterns and mixing dynamics in unstable reactive flow
Hidalgo, Juan J.; Dentz, Marco; Cabeza, Yoar; Carrera, Jesus
2015-08-01
We study the fundamental problem of mixing and chemical reactions under a Rayleigh-Taylor-type hydrodynamic instability in a miscible two-fluid system. The dense fluid mixture, which is generated at the fluid-fluid interface, leads to the onset of a convective fingering instability and triggers a fast chemical dissolution reaction. Contrary to intuition, the dissolution pattern does not map out the finger geometry. Instead, it displays a dome-like, hierarchical structure that follows the path of the ascending fluid interface and the regions of maximum mixing. These mixing and reaction hot spots coincide with the flow stagnation points, at which the interfacial mixing layer is compressed and deformed. We show that the deformation of the boundary layer around the stagnation points controls the evolution of the global scalar dissipation and reaction rates and shapes the structure of the reacted zones. The persistent compression of the mixing layer explains the independence of the mixing rate from the Rayleigh number when convection dominates.
Conceptual Framework for Aquatic Interfaces
Lewandowski, J.; Krause, S.
2015-12-01
Aquatic interfaces are generally characterized by steep gradients of physical, chemical and biological properties due to the contrast between the two adjacent environments. Innovative measurement techniques are required to study the spatially heterogeneous and temporally variable processes. Especially the different spatial and temporal scales are a large challenge. Due to the steep biogeochemical gradients and the intensive structural and compositional heterogeneity, enhanced biogeochemical processing rates are inherent to aquatic interfaces. Nevertheless, the effective turnover depends strongly on the residence time distribution along the flow paths and in sections with particular biogeochemical milieus and reaction kinetics. Thus, identification and characterization of the highly complex flow patterns in and across aquatic interfaces are crucial to understand biogeochemical processing along exchange flow paths and to quantify transport across aquatic interfaces. Hydrodynamic and biogeochemical processes are closely coupled at aquatic interfaces. However, interface processing rates are not only enhanced compared to the adjacent compartments that they connect; also completely different reactions might occur if certain thresholds are exceeded or the biogeochemical milieu differs significantly from the adjacent environments. Single events, temporal variability and spatial heterogeneity might increase overall processing rates of aquatic interfaces and thus, should not be neglected when studying aquatic interfaces. Aquatic interfaces are key zones relevant for the ecological state of the entire ecosystem and thus, understanding interface functioning and controls is paramount for ecosystem management. The overall aim of this contribution is a general conceptual framework for aquatic interfaces that is applicable to a wide range of systems, scales and processes.
Garcia-Gonzalez, Sergio; Fernandez-Feria, Ramon
2017-01-01
We consider the motion and the linear hydrodynamic instabilities of two immiscible viscoelastic liquids above a horizontal solid surface induced by the periodic oscillations of the horizontal plate along its plane. A planar interface, parallel to the oscillating plate, separates the lower layer from the other viscoelastic fluid that extends vertically to infinity. The two-dimensional motion of these fluids is studied together with the conditions under which the flow becomes unstable, deforming the planar interface and promoting the mixing of both liquids. The study extends the previous work by Isakova et al. ["A model for the linear stability of the interface between aqueous humor and vitreous substitutes after vitreoretinal surgery," Phys. Fluids 26, 124101 (2014)] by considering non-Newtonian fluids, particularly liquids with weak viscoelasticity (neglecting normal stress differences), which may model more accurately the physical behavior of the aqueous humor and, especially, the vitreous humour substitute in the vitreous chamber of the eye after vitrectomy. A novel approach to the quasi-steady stability analysis of unsteady flows of Maxwell liquids is developed in the present paper. We focus on the effect of the small Deborah numbers on the motion and on the hydrodynamic instability of the two fluids as the other non-dimensional parameters are varied within the range of interest for the biofluiddynamics of the eye. The special case in which the lower layer modelling the aqueous humor is a Newtonian liquid and the upper vitreous substitute is a Maxwell liquid is considered with detail. We find that, even for a very small Deborah number of the vitreous substitute, the dynamics and the hydrodynamic stability of the two fluids can be qualitatively very different to the Newtonian case, especially as the viscosity ratio is varied, showing that weak viscoelasticity may change dramatically the dynamics of the eye. An exhaustive characterization of the influence of the
Recent development of hydrodynamic modeling
Hirano, Tetsufumi
2014-09-01
In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions
Three Dimensional Hydrodynamic Instabilities in Protostellar Disks with Cooling
Pickett, B. K.; Cassen, P.; Durisen, R. H.; Link, R.
1997-05-01
We present a series of extended three dimensional hydrodynamics calculations of protostellar cores in order to investigate the role of thermal energetics. One set of protostellar core models, denoted Hot Models, are isentropic equilibrium states formed by the axisymmetric collapse of uniformly rotating singular isothermal spheres. These objects are continuous star/disk systems, in which the star, the disk, and the star/disk boundary can be resolved in 3D in our hydrodynamics code. Since the disks of these equilibria are forced to have the same entropy as the stars, they are hotter than is typically considered appropriate for protostellar disks. Thus, the second set of models, denoted Cooled Models, are generated by first cooling the Hot Models in axisymmetry, and then calculating their subsequent nonaxisymmetric evolution. We compare evolutions of the Hot and Cooled models in which the disk is treated both adiabatically and isothermally, representing two extremes in cooling. The Hot models are marginally unstable to spiral disturbances that do not alter the protostellar core over many rotation periods. The Cooled models are highly unstable to multiple spirals, particularly two-armed spirals, which transport significant angular momentum and mass in a few dynamical times. In the isothermal evolution, the instability leads to the disruption of the disk and concentration of material into several dense, thin arcs. We compare these calculations with previous results and discuss the implications for star and solar system formation. This research is supported by grants NAGW-3399 DURISEN and RTOP 344-30-5101 CASSEN.
Hydrodynamic pairing of vesicles in a confined flow
Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelillah; Wagner, Christian; Misbah, Chaouqi
2016-01-01
The hydrodynamics-induced pairing mechanism of deformable closed bilayer membranes (vesicles, a model for red blood cells) is studied numerically with a special attention paid to the role of the confinement (the vesicles are within two rigid walls). This study unveils the complexity of the pairing mechanism due to hydrodynamic interactions. At weak confinement we find that two vesicles attract each other and form a stable pair if their initial distance is below a certain value. If the initial distance is beyond that distance, the vesicles repel each other and adopt a larger stable interdistance. This means that for the same confinement we have (at least) two stable branches and whether one branch prevails over the other depends only on initial conditions. An unstable branch is found between these two stable branches. At a critical confinement the stable branch corresponding to the smallest interdistance merges together with the unstable branch in the form of a saddle-node bifurcation. At this critical confine...
Special Relativistic Hydrodynamics with Gravitation
Hwang, Jai-chan; Noh, Hyerim
2016-12-01
Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.
Special relativistic hydrodynamics with gravitation
Hwang, Jai-chan
2016-01-01
The special relativistic hydrodynamics with weak gravity is hitherto unknown in the literature. Whether such an asymmetric combination is possible was unclear. Here, the hydrodynamic equations with Poisson-type gravity considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit are consistently derived from Einstein's general relativity. Analysis is made in the maximal slicing where the Poisson's equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the {\\it general} hypersurface condition. Our formulation includes the anisotropic stress.
Crisis-induced unstable dimension variability in a dynamical system
Energy Technology Data Exchange (ETDEWEB)
Kubo, Geraldo T. [Departamento de Fisica, Universidade Federal do Parana, 81531-990, Curitiba, Parana (Brazil); Viana, Ricardo L. [Departamento de Fisica, Universidade Federal do Parana, 81531-990, Curitiba, Parana (Brazil)], E-mail: viana@fisica.ufpr.br; Lopes, Sergio R. [Departamento de Fisica, Universidade Federal do Parana, 81531-990, Curitiba, Parana (Brazil); Grebogi, Celso [Department of Physics, King' s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)
2008-08-18
Unstable dimension variability is an extreme form of non-hyperbolic behavior in chaotic systems whose attractors have periodic orbits with a different number of unstable directions. We propose a new mechanism for the onset of unstable dimension variability based on an interior crisis, or a collision between a chaotic attractor and an unstable periodic orbit. We give a physical example by considering a high-dimensional dissipative physical system driven by impulsive periodic forcing.
Low torque hydrodynamic lip geometry for rotary seals
Energy Technology Data Exchange (ETDEWEB)
Dietle, Lannie L.; Schroeder, John E.
2015-07-21
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Dynamic forces between bubbles and surfaces and hydrodynamic boundary conditions.
Manor, Ofer; Vakarelski, Ivan U; Stevens, Geoffrey W; Grieser, Franz; Dagastine, Raymond R; Chan, Derek Y C
2008-10-21
A bubble attached to the end of an atomic force microscope cantilever and driven toward or away from a flat mica surface across an aqueous film is used to characterize the dynamic force that arises from hydrodynamic drainage and electrical double layer interactions across the nanometer thick intervening aqueous film. The hydrodynamic response of the air/water interface can range from a classical fully immobile, no-slip surface in the presence of added surfactants to a partially mobile interface in an electrolyte solution without added surfactants. A model that includes the convection and diffusion of trace surface contaminants can account for the observed behavior presented. This model predicts quantitatively different interfacial dynamics to the Navier slip model that can also be used to fit dynamic force data with a post hoc choice of a slip length.
The fate of unstable gauge flux compactifications
Energy Technology Data Exchange (ETDEWEB)
Burgess, C.P. [McMaster Univ., Hamilton, ON (Canada). Dept. of Physics and Astronomy]|[Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Parameswaran, S.L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Zavala, I. [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Inst.
2008-12-15
Fluxes are widely used to stabilise extra dimensions, but the supporting monopolelike configurations are often unstable, particularly if they arise as gauge flux within a non-abelian gauge sector. We here seek the endpoint geometries to which this instability leads, focussing on the simplest concrete examples: sphere-monopole compactifications in six dimensions. Without gravity most monopoles in non-abelian gauge groups are unstable, decaying into the unique stable monopole in the same topological class. We show that the same is true in Einstein-YM systems, with the new twist that the decay leads to a shrinkage in the size of the extra dimensions and curves the non-compact directions: in D dimensions a Mink{sub D-2} x S{sub 2} geometry supported by an unstable monopole relaxes to AdS{sub D-2} x S{sub 2}, with the endpoint sphere smaller than the initial one. For supergravity the situation is more complicated because the dilaton obstructs such a simple evolution. The endpoint instead acquires a dilaton gradient, thereby breaking some of the spacetime symmetries. For 6D supergravity we argue that it is the 4D symmetries that break, and examine several candidates for the endpoint geometry. By using the trick of dimensional oxidation it is possible to recast the supergravity system as a higher-dimensional Einstein-YM monopole, allowing understanding of this system to guide us to the corresponding endpoint. The result is a Kasner-like geometry conformal to Mink{sub 4} times S{sub 2}, with nontrivial conformal factor and dilaton breaking the maximal 4D symmetry and generating a singularity. Yet the resulting configuration has a lower potential energy than did the initial one, and is perturbatively stable, making it a sensible candidate endpoint for the evolution. (orig.)
Bosonization and quantum hydrodynamics
Indian Academy of Sciences (India)
Girish S Setlur
2006-03-01
It is shown that it is possible to bosonize fermions in any number of dimensions using the hydrodynamic variables, namely the velocity potential and density. The slow part of the Fermi field is defined irrespective of dimensionality and the commutators of this field with currents and densities are exponentiated using the velocity potential as conjugate to the density. An action in terms of these canonical bosonic variables is proposed that reproduces the correct current and density correlations. This formalism in one dimension is shown to be equivalent to the Tomonaga-Luttinger approach as it leads to the same propagator and exponents. We compute the one-particle properties of a spinless homogeneous Fermi system in two spatial dimensions with long-range gauge interactions and highlight the metal-insulator transition in the system. A general formula for the generating function of density correlations is derived that is valid beyond the random phase approximation. Finally, we write down a formula for the annihilation operator in momentum space directly in terms of number conserving products of Fermi fields.
Engineering Hydrodynamic AUV Hulls
Allen, J.
2016-12-01
AUV stands for autonomous underwater vehicle. AUVs are used in oceanography and are similar to gliders. MBARIs AUVs as well as other AUVs map the ocean floor which is very important. They also measure physical characteristics of the water, such as temperature and salinity. My science fair project for 4th grade was a STEM activity in which I built and tested 3 different AUV bodies. I wanted to find out which design was the most hydrodynamic. I tested three different lengths of AUV hulls to see which AUV would glide the farthest. The first was 6 inches. The second was 12 inches and the third was 18 inches. I used clay for the nosecone and cut a ruler into two and made it the fin. Each AUV used the same nosecone and fin. I tested all three designs in a pool. I used biomimicry to create my hypothesis. When I was researching I found that long slim animals swim fastest. So, my hypothesis is the longer AUV will glide farthest. In the end I was right. The longer AUV did glide the farthest.
String Fluid from Unstable D-branes
Gibbons, G W; Yi, P; Gibbons, Gary; Hori, Kentaro; Yi, Piljin
2001-01-01
We consider Sen's effective action for unstable D-branes, and study its classical dynamics exactly. In the true vacuum, the Hamiltonian dynamics remains well-defined despite a vanishing action, and is that of massive relativistic string fluid of freely moving electric flux lines. The energy(tension) density equals the flux density in the local co-moving frame. Furthermore, a finite dual Lagrangian exists and is related to the Nielsen-Olesen field theory of ``dual'' strings, supplemented by a crucial constraint. We conclude with discussion on the endpoint of tachyon condensation.
Unstable Resonator Mid-Infrared Laser Sources
2016-02-26
AFRL-AFOSR-VA-TR-2016-0110 Unstable Resonator Mid-Infrared Laser Sources Steven Brueck UNIVERSITY OF NEW MEXICO Final Report 02/26/2016 DISTRIBUTION...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) The Regents of the University of New Mexico 8...Transistors: State-of-the- Art ," IEEE J. Electron Device Soc. 2, 44 (2014). 43 A. M. Ionescu1 & H. Riel, "Tunnel field-effect transistors as energy
Cosmological constraints on unstable heavy neutrinos
Energy Technology Data Exchange (ETDEWEB)
Binetruy, P.; Girardi, G.; Salati, P. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules)
1984-01-12
We reconsider the evolution of the population of unstable heavy neutrinos in the early universe and we study numerically the kinetic equation describing this evolution in a wide range of masses and lifetimes. It appears that the scattering upon light matter whose contribution is usually overlooked, plays an important role. Such neutrinos can be frozen at a sizeable density and we use astrophysical information such as the present energy density of the universe and the measured solar neutrino flux to obtain upper limits on the lifetime of these particles.
Unstable Jefferson fractures: Results of transoral osteosynthesis
Directory of Open Access Journals (Sweden)
Yong Hu
2014-01-01
Full Text Available Background: Majority of C 1 fractures can be effectively treated conservatively by immobilization or traction unless there is an injury to the transverse ligament. Conservative treatment usually involves a long period of immobilization in a halo-vest. Surgical intervention generally involves fusion, eliminating the motion of the upper cervical spine. We describe the treatment of unstable Jefferson fractures designed to avoid these problems of both conservative and invasive methods. Materials and Methods: A retrospective review of 12 patients with unstable Jefferson fractures treated with transoral osteosynthesis of C 1 between July 2008 and December 2011 was performed. A steel plate and C 1 lateral mass screw fixation were used to repair the unstable Jefferson fractures. Our study group included eight males and four females with an average age of 33 years (range 23-62 years. Results: Patients were followed up for an average of 16 months after surgery. Range of motion of the cervical spine was by and large physiologic: Average flexion 35° (range 28-40°, average extension 42° (range 30-48°. Lateral bending to the right and left averaged 30° and 28° respectively (range 12-36° and 14-32° respectively. The average postoperative rotation of the atlantoaxial joint, evaluated by functional computed tomography scan was 60° (range 35-72°. Total average lateral displacement of the lateral masses was 7.0 mm before surgery (range 5-12 mm, which improved to 3.5 mm after surgery (range 1-6.5 mm. The total average difference of the atlanto-dens interval in flexion and extension after surgery was 1.0 mm (range 1-3 mm. Conclusions: Transoral osteosynthesis of the anterior ring using C 1 lateral mass screws is a viable option for treating unstable Jefferson fractures, which allows maintenance of rotation at the C 1-C 2 joint and restoration of congruency of the atlanto-occipital and atlantoaxial joints.
Stress distribution in unstable austenitic steel
Energy Technology Data Exchange (ETDEWEB)
Kubler, R.; Inal, K.; Berveiller, M. [LPMM, UMR CNRS, ENSAM, Metz (France)
2002-07-01
Tensile tests performed on unstable austenitic material lead to formation of martensite. Therefore, plasticity and transformation occur at the same time leading to inelastic strain and consequently internal stresses. The present work focuses on the stress distribution in each phase of a two-phase material with an evolving microstructure. Experimental results based on X-ray diffraction are presented to give a trend of the evolution of stress distribution inside austenite and martensite during a tensile test at -60 C. After unloading, first results show compression in martensite and tension in austenite. It is also noticed that mechanical anisotropy is enhanced in both phases. (orig.)
Emergency management of hemodynamically unstable pelvic fractures
Institute of Scientific and Technical Information of China (English)
ZHAO Xiao-gang
2011-01-01
Pelvic fractures are serious injuries.Death within 24 hours is most often a result of acute blood loss.The emergency management of these patients is challenging and controversial.The key issues in its management are identifying the site(s) of hemorrhage and then controlling the bleeding.Management of hemodynamically unstable patients with pelvic fracture requires a multidisciplinary team.The issues addressed in this management algorithm are diagnostic evaluation,damage control resuscitation,indications for noninvasive pelvic stabilization,preperitoneal pelvic packing and the critical decisions concerning surgical options and angiography.This review article focuses on the recent body of knowledge on those determinations.
Starting up unstable multivariable controllers safety
DEFF Research Database (Denmark)
Stoustrup, J.; Niemann, Hans Henrik
The problem of superimposing a multivariable controller on a running plant is considered. A simple but effective controller architecture is suggested which allows the transition from a conventional controller to a full multivariable controller to take place in a continuous way. This architecture...... allows for unstable controllers to be handled in a reliable way. Moreover, bandwidth properties can be tuned separately. It is shown how this architecture can be extended to provide a useful tool to implement gain scheduled controllers in the same fashion....
Boundary between stable and unstable regimes of accretion. Ordered and chaotic unstable regimes
Blinova, A. A.; Romanova, M. M.; Lovelace, R. V. E.
2016-07-01
We present a new study of the Rayleigh-Taylor unstable regime of accretion on to rotating magnetized stars in a set of high grid resolution three-dimensional magnetohydrodynamic simulations performed in low-viscosity discs. We find that the boundary between the stable and unstable regimes is determined almost entirely by the fastness parameter ωs = Ω⋆/ΩK(rm), where Ω⋆ is the angular velocity of the star and ΩK(rm) is the angular velocity of the Keplerian disc at the disc-magnetosphere boundary r = rm. We found that accretion is unstable if ωs ≲ 0.6. Accretion through instabilities is present in stars with different magnetospheric sizes. However, only in stars with relatively small magnetospheres, rm/R⋆ ≲ 7, do the unstable tongues produce chaotic hotspots on the stellar surface and irregular light curves. At even smaller values of the fastness parameter, ωs ≲ 0.45, multiple irregular tongues merge, forming one or two ordered unstable tongues that rotate with the angular frequency of the inner disc. This transition occurs in stars with even smaller magnetospheres, rm/R⋆ ≲ 4.2. Most of our simulations were performed at a small tilt of the dipole magnetosphere, Θ = 5°, and a small viscosity parameter α = 0.02. Test simulations at higher α values show that many more cases become unstable, and the light curves become even more irregular. Test simulations at larger tilts of the dipole Θ show that instability is present, however, accretion in two funnel streams dominates if Θ ≳ 15°. The results of these simulations can be applied to accreting magnetized stars with relatively small magnetospheres: Classical T Tauri stars, accreting millisecond X-ray pulsars, and cataclysmic variables.
Reciprocal relations in dissipationless hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Melnikovsky, L. A., E-mail: leva@kapitza.ras.ru [Russian Academy of Sciences, Kapitza Institute for Physical Problems (Russian Federation)
2014-12-15
Hidden symmetry in dissipationless terms of arbitrary hydrodynamics equations is recognized. We demonstrate that all fluxes are generated by a single function and derive conventional Euler equations using the proposed formalism.
Relativistic Hydrodynamics on Graphic Cards
Gerhard, Jochen; Bleicher, Marcus
2012-01-01
We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Ryblewski, Radoslaw; Spaliński, Michał
2016-12-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of nonhydrodynamic modes.
Mix and hydrodynamic instabilities on NIF
Smalyuk, V. A.; Robey, H. F.; Casey, D. T.; Clark, D. S.; Döppner, T.; Haan, S. W.; Hammel, B. A.; MacPhee, A. G.; Martinez, D.; Milovich, J. L.; Peterson, J. L.; Pickworth, L.; Pino, J. E.; Raman, K.; Tipton, R.; Weber, C. R.; Baker, K. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Dixit, S. N.; Edwards, M. J.; Felker, S.; Field, J. E.; Fittinghoff, D. N.; Gharibyan, N.; Grim, G. P.; Hamza, A. V.; Hatarik, R.; Hohenberger, M.; Hsing, W. W.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Khan, S.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; Ma, T.; MacGowan, B. J.; Masse, L.; Moore, A. S.; Nagel, S. R.; Nikroo, A.; Pak, A.; Patel, P. K.; Remington, B. A.; Sayre, D. B.; Spears, B. K.; Stadermann, M.; Tommasini, R.; Widmayer, C. C.; Yeamans, C. B.; Crippen, J.; Farrell, M.; Giraldez, E.; Rice, N.; Wilde, C. H.; Volegov, P. L.; Gatu Johnson, M.
2017-06-01
Several new platforms have been developed to experimentally measure hydrodynamic instabilities in all phases of indirect-drive, inertial confinement fusion implosions on National Ignition Facility. At the ablation front, instability growth of pre-imposed modulations was measured with a face-on, x-ray radiography platform in the linear regime using the Hydrodynamic Growth Radiography (HGR) platform. Modulation growth of "native roughness" modulations and engineering features (fill tubes and capsule support membranes) were measured in conditions relevant to layered DT implosions. A new experimental platform was developed to measure instability growth at the ablator-ice interface. In the deceleration phase of implosions, several experimental platforms were developed to measure both low-mode asymmetries and high-mode perturbations near peak compression with x-ray and nuclear techniques. In one innovative technique, the self-emission from the hot spot was enhanced with argon dopant to "self-backlight" the shell in-flight. To stabilize instability growth, new "adiabat-shaping" techniques were developed using the HGR platform and applied in layered DT implosions.
DEFF Research Database (Denmark)
2009-01-01
A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....
An introduction to astrophysical hydrodynamics
Shore, Steven N
1992-01-01
This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.
Viscosity prescription for gravitationally unstable accretion disks
Rafikov, Roman R
2015-01-01
Gravitationally unstable accretion disks emerge in a variety of astrophysical contexts - giant planet formation, FU Orioni outbursts, feeding of AGNs, and the origin of Pop III stars. When a gravitationally unstable disk is unable to cool rapidly it settles into a quasi-stationary, fluctuating gravitoturbulent state, in which its Toomre Q remains close to a constant value Q_0~1. Here we develop an analytical formalism describing the evolution of such a disk, which is based on the assumptions of Q=Q_0 and local thermal equilibrium. Our approach works in the presence of additional sources of angular momentum transport (e.g. MRI), as well as external irradiation. Thermal balance dictates a unique value of the gravitoturbulent stress \\alpha_{gt} driving disk evolution, which is a function of the local surface density and angular frequency. We compare this approach with other commonly used gravitoturbulent viscosity prescriptions, which specify the explicit dependence of stress \\alpha_{gt} on Toomre Q in an ad hoc...
Existence of the fifth unstable nuclide series
Institute of Scientific and Technical Information of China (English)
张家骅
1996-01-01
The production of derived nuclides by the reaction of 238U with constant nuclear reactor neutron flux for long time is theoretically described.The concentration of each derived nuclide is zero at the beginning.then increases gradually and approaches a saturated value at a certain irradiation time.The whole system(including the parent nuclide 238U and all its derived nuclides)will be in a state of equilibrium.Upon the reaction with neutron flux,the whole system decreases its concentration at the same rate as 238U.It constitutes actually a new type of unstable nuclide series which is in owrk only in the presence of reactor neutron flux.It has been found that the amount of materials consumed by neutron flux reaction is almost converted entrely to fission product.This peculiar property is quite different from the well known four radioactive series,so that it is named the fifth unstable nuclide series.
Management of acute unstable acromioclavicular joint injuries.
Cisneros, Luis Natera; Reiriz, Juan Sarasquete
2016-12-01
Surgical management of acute unstable acromioclavicular joint injuries should be focused on realigning the torn ends of the ligaments to allow for healing potential. The most widely utilized treatment methods incorporate the use of metal hardware, which can alter the biomechanics of the acromioclavicular joint. This leads to a second surgical procedure for hardware removal once the ligaments have healed. Patients with unstable acromioclavicular joint injuries managed with arthroscopy-assisted procedures have shown good and excellent clinical outcomes, without the need for a second operation. These procedures incorporate a coracoclavicular suspension device aimed to function as an internal brace, narrowing the coracoclavicular space thus allowing for healing of the torn coracoclavicular ligaments. The lesser morbidity of a minimally invasive approach and the possibility to diagnose and treat concomitant intraarticular injuries; no obligatory implant removal, and the possibility of having a straight visualization of the inferior aspect of the base of the coracoid (convenient when placing coracoclavicular fixation systems) are the main advantages of the arthroscopic approach over classic open procedures. This article consists on a narrative review of the literature in regard to the management of acute acromioclavicular joint instability.
Slurry bubble column hydrodynamics
Rados, Novica
Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids
Directory of Open Access Journals (Sweden)
Sezar Gülbaz
2015-01-01
Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.
Multiverse as an ensemble of stable and unstable Universes
Urbanowski, K
2015-01-01
Calculations performed within the Standard Model suggest that the electroweak vacuum is unstable if the mass of the Higgs particle is around 125 --- 126 GeV. Recent LHC results concerning the mass of the Higgs boson indicate that its mass is around 125.7 GeV. So it is possible that the vacuum in our Universe may be unstable. This means that it is reasonable to analyze properties of Universes with unstable vacua. We analyze properties of an ensemble of Universes with unstable vacua considered as an ensemble of unstable systems from the point of view of the quantum theory of unstable states and we try to explain why the universes with the unstable vacuum needs not decay.
The hydrodynamics of colloidal gelation.
Varga, Zsigmond; Wang, Gang; Swan, James
2015-12-14
Colloidal gels are formed during arrested phase separation. Sub-micron, mutually attractive particles aggregate to form a system spanning network with high interfacial area, far from equilibrium. Models for microstructural evolution during colloidal gelation have often struggled to match experimental results with long standing questions regarding the role of hydrodynamic interactions. In nearly all models, these interactions are neglected entirely. In the present work, we report simulations of gelation with and without hydrodynamic interactions between the suspended particles executed in HOOMD-blue. The disparities between these simulations are striking and mirror the experimental-theoretical mismatch in the literature. The hydrodynamic simulations agree with experimental observations, however. We explore a simple model of the competing transport processes in gelation that anticipates these disparities, and conclude that hydrodynamic forces are essential. Near the gel boundary, there exists a competition between compaction of individual aggregates which suppresses gelation and coagulation of aggregates which enhances it. The time scale for compaction is mildly slowed by hydrodynamic interactions, while the time scale for coagulation is greatly accelerated. This enhancement to coagulation leads to a shift in the gel boundary to lower strengths of attraction and lower particle concentrations when compared to models that neglect hydrodynamic interactions. Away from the gel boundary, differences in the nearest neighbor distribution and fractal dimension persist within gels produced by both simulation methods. This result necessitates a fundamental rethinking of how dynamic, discrete element models for gelation kinetics are developed as well as how collective hydrodynamic interactions influence the arrest of attractive colloidal dispersions.
Directory of Open Access Journals (Sweden)
Rajinder Pal
2016-03-01
Full Text Available Entropy generation, and hence exergy destruction, in adiabatic flow of unstable and surfactant-stabilized emulsions was investigated experimentally in different diameter pipes. Four types of emulsion systems are investigated covering a broad range of the dispersed-phase concentration: (a unstable oil-in-water (O/W emulsions without surfactant; (b surfactant-stabilized O/W emulsions; (c unstable water-in-oil (W/O emulsions without surfactant; and (d surfactant-stabilized W/O emulsions. The entropy generation rate per unit pipe length is affected by the type of the emulsion as well as its stability. Unstable emulsions without any surfactant present at the interface generate less entropy in the turbulent regime as compared with the surfactant-stabilized emulsions of the same viscosity and density. The effect of surfactant is particularly severe in the case of W/O emulsions. In the turbulent regime, the rate of entropy generation in unstable W/O emulsions is much lower in comparison with that observed in the stable W/O emulsions. A significant delay in the transition from laminar to turbulent regime is also observed in the case of unstable W/O emulsion. Finally, the analysis and simulation results are presented on non-adiabatic pipeline flow of emulsions.
Effective Hamiltonians for Complexes of Unstable Particles
Urbanowski, K
2014-01-01
Effective Hamiltonians governing the time evolution in a subspace of unstable states can be found using more or less accurate approximations. A convenient tool for deriving them is the evolution equation for a subspace of state space sometime called the Krolikowski-Rzewuski (KR) equation. KR equation results from the Schr\\"{o}dinger equation for the total system under considerations. We will discuss properties of approximate effective Hamiltonians derived using KR equation for $n$--particle, two particle and for one particle subspaces. In a general case these affective Hamiltonians depend on time $t$. We show that at times much longer than times at which the exponential decay take place the real part of the exact effective Hamiltonian for the one particle subsystem (that is the instantaneous energy) tends to the minimal energy of the total system when $t \\rightarrow \\infty$ whereas the imaginary part of this effective Hamiltonian tends to the zero as $t\\rightarrow \\infty$.
Emergency management of hemodynamically unstable pelvic fractures
Directory of Open Access Journals (Sweden)
ZHAO Xiao-gang
2012-02-01
Full Text Available 【Abstract】Pelvic fractures are serious injuries. Death within 24 hours is most often a result of acute blood loss. The emergency management of these patients is challenging and controversial. The key issues in its management are identifying the site(s of hemorrhage and then controlling the bleeding. Management of hemodynamically unstable patients with pelvic fracture requires a multidisci- plinary team. The issues addressed in this management algorithm are diagnostic evaluation, damage control resuscitation, indications for noninvasive pelvic stabilization, preperitoneal pelvic packing and the critical decisions concerning surgical options and angiography. This review article focuses on the recent body of know- ledge on those determinations. Key words: Pelvis; Hemodynamic; Emergencies; Practice management
Coulomb dissociation of light unstable nuclei
Energy Technology Data Exchange (ETDEWEB)
Kido, Toshihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yabana, Kazuhiro; Suzuki, Yoshiyuki
1997-05-01
The aim of this study is that a simulation method applicable to the atomic nucleus with neutron halo structure developed till now is applied to a wider range unstable nucleus containing proton excess nucleus to also attribute understanding of nuclear reaction with interest in astronomical nuclear reaction. The proton dissociation energy in {sup 8}B nucleus is small value of 138 eV, which is thought to have a structure of proton at the most outer shell bound much weakly by core nucleus and spread in thinner thickness. For the coulomb excitation of such weak bound system, quantum theoretical and non-perturbational treatment is important. Therefore, 3-dimensional time-dependent Schroedinger equation on relative wave function of the core nucleus {sup 7}Be and halo proton p will be dissolved in time space and will execute a time developmental simulation. (G.K.)
Unstable Leidenfrost Drops on Roughened Surfaces
Boreyko, Jonathan B
2010-01-01
Drops placed on a surface with a temperature above the Leidenfrost point float atop an evaporative vapor layer. In this fluid dynamics video, it is shown that for roughened surfaces the Leidenfrost point depends on the drop size, which runs contrary to previous claims of size independence. The thickness of the vapor layer is known to increase with drop radius, suggesting that the surface roughness will not be able to penetrate the vapor layer for drops above a critical size. This size dependence was experimentally verified: at a given roughness and temperature, drops beneath a critical size exhibited transition boiling while drops above the critical size were in the Leidenfrost regime. These Leidenfrost drops were unstable; upon evaporation down to the critical size the vapor film suddenly collapsed.
Pipeline modeling and assessment in unstable slopes
Energy Technology Data Exchange (ETDEWEB)
Caceres, Carlos Nieves [Oleoducto Central S.A., Bogota, Cundinamarca (Colombia); Ordonez, Mauricio Pereira [SOLSIN S.A.S, Bogota, Cundinamarca (Colombia)
2010-07-01
The OCENSA pipeline system is vulnerable to geotechnical problems such as faults, landslides or creeping slopes, which are well-known in the Andes Mountains and tropical countries like Colombia. This paper proposes a methodology to evaluate the pipe behaviour during the soil displacements of slow landslides. Three different cases of analysis are examined, according to site characteristics. The process starts with a simplified analytical model and develops into 3D finite element numerical simulations applied to the on-site geometry of soil and pipe. Case 1 should be used when the unstable site is subject to landslides impacting significant lengths of pipeline, pipeline is straight, and landslide is simple from the geotechnical perspective. Case 2 should be used when pipeline is straight and landslide is complex (creeping slopes and non-conventional stabilization solutions). Case 3 should be used if the pipeline presents vertical or horizontal bends.
Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre
2014-12-14
We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber-except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.
Stability of algebraically unstable dispersive flows
King, Kristina R.; Weinstein, Steven J.; Zaretzky, Paula M.; Cromer, Michael; Barlow, Nathaniel S.
2016-11-01
A largely unexplored type of hydrodynamic instability is examined: long-time algebraic growth. Such growth is possible when the dispersion relation extracted from classical stability analysis indicates neutral stability. A physically motivated class of partial differential equations that describes the response of a system to disturbances is examined. Specifically, the propagation characteristics of the response are examined in the context of spatiotemporal stability theory. Morphological differences are identified between system responses that exhibit algebraic growth and the more typical case of exponential growth. One key attribute of predicted algebraically growing solutions is the prevalence of transient growth in almost all of the response, with the long-time growth occurring asymptotically at precisely one wave speed.
Breaking of Galilean Invariance in the Hydrodynamic Formulation of Ferromagnetic Thin Films
Iacocca, Ezio; Silva, T. J.; Hoefer, Mark A.
2017-01-01
Microwave magnetodynamics in ferromagnets are often studied in the small-amplitude or weakly nonlinear regime corresponding to modulations of a well-defined magnetic state. However, strongly nonlinear regimes, where the aforementioned approximations are not applicable, have become experimentally accessible. By reinterpreting the governing Landau-Lifshitz equation of motion, we derive an exact set of equations of dispersive hydrodynamic form that are amenable to analytical study even when full nonlinearity and exchange dispersion are included. The resulting equations are shown to, in general, break Galilean invariance. A magnetic Mach number is obtained as a function of static and moving reference frames. The simplest class of solutions are termed uniform hydrodynamic states (UHSs), which exhibit fluidlike behavior including laminar flow at subsonic speeds and the formation of a Mach cone and wave fronts at supersonic speeds. A regime of modulational instability is also possible, where the UHS is violently unstable. The hydrodynamic interpretation opens up novel possibilities in magnetic research.
Dynamics of swimming bacteria at complex interfaces
Lopez, Diego
2014-01-01
Flagellated bacteria exploiting helical propulsion are known to swim along circular trajectories near surfaces. Fluid dynamics predicts this circular motion to be clockwise (CW) above a rigid surface (when viewed from inside the fluid) and counter-clockwise (CCW) below a free surface. Recent experimental investigations showed that complex physicochemical processes at the nearby surface could lead to a change in the direction of rotation, both at solid surfaces absorbing slip-inducing polymers and interfaces covered with surfactants. Motivated by these results, we use a far-field hydrodynamic model to predict the kinematics of swimming near three types of interfaces: clean fluid-fluid interface, slipping rigid wall, and a fluid interface covered by incompressible surfactants. Representing the helical swimmer by a superposition of hydrodynamic singularities, we first show that in all cases the surfaces reorient the swimmer parallel to the surface and attract it, both of which are a consequence of the Stokes dip...
Recent progress in anisotropic hydrodynamics
Strickland, Michael
2016-01-01
The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, . In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.
Numerical Hydrodynamics in Special Relativity
Directory of Open Access Journals (Sweden)
Martí José Maria
2003-01-01
Full Text Available This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD. Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction.
Comparative hydrodynamics of bacterial polymorphism
Spagnolie, Saverio E
2011-01-01
Most bacteria swim through fluids by rotating helical flagella which can take one of twelve distinct polymorphic shapes. The most common helical waveform is the "normal" form, used during forward swimming runs. To shed light on the prevalence of the normal form in locomotion, we gather all available experimental measurements of the various polymorphic forms and compute their intrinsic hydrodynamic efficiencies. The normal helical form is found to be the most hydrodynamically efficient of the twelve polymorphic forms by a significant margin - a conclusion valid for both the peritrichous and polar flagellar families, and robust to a change in the effective flagellum diameter or length. The hydrodynamic optimality of the normal polymorph suggests that, although energetic costs of locomotion are small for bacteria, fluid mechanical forces may have played a significant role in the evolution of the flagellum.
Quantum Plasmas An Hydrodynamic Approach
Haas, Fernando
2011-01-01
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of...
HYDRODYNAMIC INTERACTIONS BETWEEN TWO BODIES
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
On the basis of model tests, potential flow theory, and viscous Computational Fluid Dynamics (CFD) method, the hydrodynamic interactions between two underwater bodies were investigated to determine the influencing factors, changing rule, interaction mechanism, and appropriate methods describing them. Some special phenomena were discovered in two series of near-wall interaction experiments. The mathematical model and predicting methods were presented for interacting forces near wall, and the calculation results agreed well with the experimental ones. From the comparisons among numerical results with respect to nonviscosity, numerical results with respect to viscosity, and measured results, data on the influence of viscosity on hydrodynamic interactions were obtained. For hydrodynamic interaction related to multi-body unsteady motions with six degrees of freedom that is difficult to simulate in tests, numerical predictions of unsteady interacting forces were given.
Hydrodynamic shocks in microroller suspensions
Delmotte, Blaise; Driscoll, Michelle; Chaikin, Paul; Donev, Aleksandar
2017-09-01
We combine experiments, large-scale simulations, and continuum models to study the emergence of coherent structures in a suspension of magnetically driven microrollers sedimented near a floor. Collective hydrodynamic effects are predominant in this system, leading to strong density-velocity coupling. We characterize a uniform suspension and show that density waves propagate freely in all directions in a dispersive fashion. When sharp density gradients are introduced in the suspension, we observe the formation of a shock. Unlike Burgers' shocklike structures observed in other active and driven confined hydrodynamic systems, the shock front in our system has a well-defined finite width and moves rapidly compared to the mean suspension velocity. We introduce a continuum model demonstrating that the finite width of the front is due to far-field nonlocal hydrodynamic interactions and governed by a geometric parameter, the average particle height above the floor.
Numerical Hydrodynamics in Special Relativity.
Martí, José Maria; Müller, Ewald
2003-01-01
This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction.
Interaction of Microphysical Aerosol Processes with Hydrodynamics Mixing
Alshaarawi, Amjad
2015-12-15
This work is concerned with the interaction between condensing aerosol dynamics and hydrodynamic mixing within ow configurations in which aerosol particles form (nucleate) from a supersaturated vapor and supersaturation is induced by the mixing of two streams (a saturated stream and a cold one). Two canonical hydrodynamic configurations are proposed for the investigation. The First is the steady one-dimensional opposed-ow configuration. The setup consists of the two (saturated and cold) streams owing from opposite nozzles. A mixing layer is established across a stagnation plane in the center where nucleation and other aerosol dynamics are triggered. The second is homogeneous isotropic turbulence in a three-dimensional periodic domain. Patches of a hot saturated gas mix with patches of a cold one. A mixing layer forms across the growing interface where the aerosol dynamics of interest occur. In both configurations, a unique analogy is observed. The results reveal a complex response to variations in the mixing rates. Depending on the mixing rate, the response of the number density falls into one of two regimes. For fast mixing rates, the maximum reached number density of the condensing droplets increases with the hydrodynamic time. We refer to this as the nucleation regime. On the contrary, for low mixing rates, the maximum reached number density decreases with the hydrodynamic time. We refer to this as the consumption regime. It is shown that vapor scavenging by the aerosol phase is key to explaining the transition between these two regimes.
Anisotropic hydrodynamics: Motivation and methodology
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael
2014-06-15
In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.
Hydrodynamics of oceans and atmospheres
Eckart, Carl
1960-01-01
Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear
Abnormal pressures as hydrodynamic phenomena
Neuzil, C.E.
1995-01-01
So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author
Unstable optical resonator loss calculations using the prony method.
Siegman, A E; Miller, H Y
1970-12-01
The eigenvalues for all the significant low-order resonant modes of an unstable optical resonator with circular mirrors are computed using an eigenvalue method called the Prony method. A general equivalence relation is also given, by means of which one can obtain the design parameters for a single-ended unstable resonator of the type usually employed in practical lasers, from the calculated or tabulated values for an equivalent symmetric or double-ended unstable resonator.
On the velocity of moving relativistic unstable quantum systems
Urbanowski, K
2015-01-01
We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of moving freely relativistic quantum unstable systems can not be constant in time. We show that this effect results from the fundamental principles of the quantum theory and physics: It is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not definite.
TPCI: The PLUTO-CLOUDY Interface
Salz, M; Mignone, A; Schneider, P C; Czesla, S; Schmitt, J H M M
2015-01-01
We present an interface between the (magneto-) hydrodynamics code PLUTO and the plasma simulation and spectral synthesis code CLOUDY. By combining these codes, we constructed a new photoionization hydrodynamics solver: The PLUTO-CLOUDY Interface (TPCI), which is well suited to simulate photoevaporative flows under strong irradiation. The code includes the electromagnetic spectrum from X-rays to the radio range and solves the photoionization and chemical network of the 30 lightest elements. TPCI follows an iterative numerical scheme: First, the equilibrium state of the medium is solved for a given radiation field by CLOUDY, resulting in a net radiative heating or cooling. In the second step, the latter influences the (magneto-) hydrodynamic evolution calculated by PLUTO. Here, we validated the one-dimensional version of the code on the basis of four test problems: Photoevaporation of a cool hydrogen cloud, cooling of coronal plasma, formation of a Stroemgren sphere, and the evaporating atmosphere of a hot Jupi...
Energy Technology Data Exchange (ETDEWEB)
Miles, A
2004-04-27
In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this dissertation, we present a computational study of unstable systems driven by high Mach number shock and blast waves. Using multi-physics radiation hydrodynamics codes and theoretical models, we consider the late nonlinear instability evolution of single mode, few mode, and multimode interfaces. We rely primarily on 2D calculations but present recent 3D results as well. For planar multimode systems, we show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Aspects of the IC's are shown to have a strong effect on the time to transition to the quasi-self-similar regime. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. We point to recent stellar calculations that predict IC's we find incompatible with self-similarity, and
Energy Technology Data Exchange (ETDEWEB)
Miles, Aaron R. [Univ. of Maryland, College Park, MD (United States)
2004-01-01
In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this dissertation, we present a computational study of unstable systems driven by high Mach number shock and blast waves. Using multi-physics radiation hydrodynamics codes and theoretical models, we consider the late nonlinear instability evolution of single mode, few mode, and multimode interfaces. We rely primarily on 2D calculations but present recent 3D results as well. For planar multimode systems, we show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Aspects of the IC's are shown to have a strong effect on the time to transition to the quasi-self-similar regime. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. We point to recent stellar calculations that predict IC's we find incompatible with self-similarity, and
On the Velocity of Moving Relativistic Unstable Quantum Systems
Directory of Open Access Journals (Sweden)
K. Urbanowski
2015-01-01
Full Text Available We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.
DEFF Research Database (Denmark)
Staunstrup, Jørgen
1998-01-01
This paper proposes that Interface Consistency is an important issue for the development of modular designs. Byproviding a precise specification of component interfaces it becomes possible to check that separately developedcomponents use a common interface in a coherent matter thus avoiding a very...... significant source of design errors. Awide range of interface specifications are possible, the simplest form is a syntactical check of parameter types.However, today it is possible to do more sophisticated forms involving semantic checks....
Liu, C.; Cheng, W.; Leung, D. Y.
2009-12-01
layer. Unstable stratification thus promotes pollutant dilution and removal in street canyons. Different locations of substantial turbulence kinetic energy (TKE) production were observed from the LES results of street canyons in neutral and unstable stratifications. In neutral stratification, TKE production is high at roof level because of the large velocity gradient there. In unstable stratification, because of the bottom heating, elevated TKE production locates near the windward facade. The large temperature gradient and the buoyancy force strengthen the recirculating wind at the ground-level windward corner. Therefore, the TKE production is peaked along the interface between the primary and secondary recirculations. Velocity and pollutant concentrations in a street canyon under: (a) neutral and (b) unstable stratifications.
Hydrodynamics of a quark droplet
DEFF Research Database (Denmark)
Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas
2012-01-01
We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...
Numerical Hydrodynamics in General Relativity
Directory of Open Access Journals (Sweden)
Font José A.
2003-01-01
Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.
Anomalous hydrodynamics in two dimensions
Indian Academy of Sciences (India)
Rabin Banerjee
2016-02-01
A new approach is presented to discuss two-dimensional hydrodynamics with gauge and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are obtained. Also, a connection between response parameters and anomaly coefficients is discussed. These are new results which, in the absence of the gauge sector, reproduce the results found by the gradient expansion approach.
Hydrodynamic Noise and Surface Compliance.
1982-09-08
Lighthill, 3,4 Ffowcs-Wiiliams, 5-7 and Morse and Ingard .8 Ffowcs-Williams’ 7 excellent review identifies five distinctly different theoretical...Williams, "Hydrodynamic Noise," Annual Review of Fluid Mechanics (Annual Reviews, Palo Alto, CA), vol. 1, 1969, pp. 197-222. 8. P. Morse and K. V. Ingard
Hydrodynamic slip in silicon nanochannels
Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.
2016-03-01
Equilibrium and nonequilibrium molecular dynamics simulations were performed to better understand the hydrodynamic behavior of water flowing through silicon nanochannels. The water-silicon interaction potential was calibrated by means of size-independent molecular dynamics simulations of silicon wettability. The wettability of silicon was found to be dependent on the strength of the water-silicon interaction and the structure of the underlying surface. As a result, the anisotropy was found to be an important factor in the wettability of these types of crystalline solids. Using this premise as a fundamental starting point, the hydrodynamic slip in nanoconfined water was characterized using both equilibrium and nonequilibrium calculations of the slip length under low shear rate operating conditions. As was the case for the wettability analysis, the hydrodynamic slip was found to be dependent on the wetted solid surface atomic structure. Additionally, the interfacial water liquid structure was the most significant parameter to describe the hydrodynamic boundary condition. The calibration of the water-silicon interaction potential performed by matching the experimental contact angle of silicon led to the verification of the no-slip condition, experimentally reported for silicon nanochannels at low shear rates.
DEFF Research Database (Denmark)
Ravn, Anders P.; Staunstrup, Jørgen
1994-01-01
This paper proposes a model for specifying interfaces between concurrently executing modules of a computing system. The model does not prescribe a particular type of communication protocol and is aimed at describing interfaces between both software and hardware modules or a combination of the two....... The model describes both functional and timing properties of an interface...
Hydrodynamic interaction induced mechanical properties of SGF reinforced polyethersulfone
Munirathnamma, L. M.; Ningaraju, S.; Kumar, K. V. Aneesh; Ravikumar, H. B.
2016-05-01
In order to explore the effect of short glass fiber (SGF) reinforcement on the mechanical properties of Polyethersulfone (PES), short glass fibers of different proportion (10 - 40 wt %) are reinforced into PES matrix. The free volume distribution of SGFR-PES composites derived from CONTIN-PALS2 program exhibits the narrow full width at half maximum (FWHM). This is attributed to the improved adhesion resulted by the hydrodynamic interaction between the polymeric chains of PES matrix and SGF. The hydrodynamic interaction parameter (h) decreases as a function of SGF wt% and becomes more negative for 40 wt% SGFR-PES composites suggest the generation of excess friction at the interface. This improves the adhesion between the polymeric chains of PES matrix and SGF and hence the mechanical strength of the SGFR-PES composites.
Local Radiative Hydrodynamic and Magnetohydrodynamic Instabilities in Optically Thick Media
Blaes, Omer M; Blaes, Omer; Socrates, Aristotle
2003-01-01
We examine the local conditions for radiative damping and driving of short wavelength, propagating hydrodynamic and magnetohydrodynamic (MHD) waves in static, optically thick, stratified equilibria. We show that so-called strange modes in stellar oscillation theory and magnetic photon bubbles are intimately related and are both fundamentally driven by the background radiation pressure acting on density and opacity fluctuations in compressible waves. We identify the necessary criteria for unstable driving of these waves, and show that this driving can exist in both gas and radiation pressure dominated media, as well as pure Thomson scattering media in the MHD case. We discuss the physical origin of these instabilities, and briefly describe the conditions under which they might be manifested in both stellar envelopes and accretion disks.
Cloutier, Ryan
2013-01-01
It has been suggested that long-period giant planets, such as HD 95086b and HR 8799bcde, may have formed through gravitational instability of protoplanetary discs. However, self-gravitating disc-satellite interaction can lead to the formation of a gravitationally unstable gap. Such an instability significantly affects the orbital migration of gap-opening perturbers in massive discs. We use 2D hydrodynamical simulations to examine the role of planet mass on the gravitational stability of gaps and its impact on orbital migration. We consider giant planets with planet-to-star mass ratio q=0.0003 to q=0.003, in a self-gravitating disc with disc-to-star mass ratio M_d/M_*=0.08, aspect ratio h=0.05, and Keplerian Toomre parameter Q = 1.5 at 2.5 times the planet's initial orbital radius. Fixed-orbit simulations show that all planet masses we consider open gravitationally unstable gaps, but the instability is stronger and develops sooner with increasing planet mass. The disc-on-planet torques typically become more po...
Detectability of f-mode Unstable Neutron Stars by the Schenberg Spherical Antenna
de Araujo, J C N; Aguiar, O D
2005-01-01
The Brazilian spherical antenna (Schenberg) is planned to detect high frequency gravitational waves (GWs) ranging from 3.0 kHz to 3.4 kHz. There is a host of astrophysical sources capable of being detected by the Brazilian antenna, namely: core collapse in supernova events; (proto)neutron stars undergoing hydrodynamical instability; f-mode unstable neutron stars, caused by quakes and oscillations; excitation of the first quadrupole normal mode of 4-9 solar mass black holes; coalescence of neutron stars and/or black holes; exotic sources such as bosonic or strange matter stars rotating at 1.6 kHz; and inspiralling of mini black hole binaries. We here address our study in particular to the neutron stars, which could well become f-mode unstable producing therefore GWs. We estimate, for this particular source of GWs, the event rates that in principle can be detected by Schenberg and by the Dutch Mini-Grail antenna.
Malygin, M. G.; Klahr, H.; Semenov, D.; Henning, Th.; Dullemond, C. P.
2017-09-01
Context. Hydrodynamic, non-magnetic instabilities can provide turbulent stress in the regions of protoplanetary discs, where the magneto-rotational instability can not develop. The induced motions influence the grain growth, from which formation of planetesimals begins. Thermal relaxation of the gas constrains origins of the identified hydrodynamic sources of turbulence in discs. Aims: We aim to estimate the radiative relaxation timescale of temperature perturbations in protoplanetary discs. We study the dependence of the thermal relaxation on the perturbation wavelength, the location within the disc, the disc mass, and the dust-to-gas mass ratio. We then apply thermal relaxation criteria to localise modes of the convective overstability, the vertical shear instability, and the zombie vortex instability. Methods: For a given temperature perturbation, we estimated two timescales: the radiative diffusion timescale tthick and the optically thin emission timescale tthin. The longest of these timescales governs the relaxation: trelax = max (tthick, tthin). We additionally accounted for the collisional coupling to the emitting species. Our calculations employed the latest tabulated dust and gas mean opacities. Results: The relaxation criterion defines the bulk of a typical T Tauri disc as unstable to the development of linear hydrodynamic instabilities. The midplane is unstable to the convective overstability from at most 2au and up to 40au, as well as beyond 140au. The vertical shear instability can develop between 15au and 180au. The successive generation of (zombie) vortices from a seeded noise can work within the inner 0.8au. Conclusions: A map of relaxation timescale constrains the origins of the identified hydrodynamic turbulence-driving mechanisms in protoplanetary discs. Dynamic disc modelling with the evolution of dust and gas opacities is required to clearly localise the hydrodynamic turbulence, and especially its non-linear phase.
Observable Signatures of Classical T Tauri Stars Accreting in an Unstable Regime
Directory of Open Access Journals (Sweden)
Kurosawa Ryuichi
2014-01-01
Full Text Available We discuss key observational signatures of Classical T Tauri stars (CTTSs accreting through Rayleigh-Taylor instability, which occurs at the interface between an accretion disk and a stellar magnetosphere. In this study, the results of global 3-D MHD simulations of accretion flows, in both stable and unstable regimes, are used to predict the variability of hydrogen emission lines and light curves associated with those two distinctive accretion flow patterns. In the stable regime, a redshifted absorption component (RAC periodically appears in some hydrogen lines, but only during a fraction of a stellar rotation period. In the unstable regime, the RAC is present rather persistently during a whole stellar rotation period, and its strength varies non-periodically. The latter is caused by multiple accreting streams, formed randomly due to the instability, passing across the line of sight to an observer during one stellar rotation. This results in the quasi-stationarity appearance of the RAC because at least one of the accretion stream is almost always in the line of sight to an observer. In the stable regime, two stable hot spots produce a smooth and periodic light curve that shows only one or two peaks per stellar rotation. In the unstable regime, multiple hot spots formed on the surface of the star, produce the stochastic light curve with several peaks per rotation period.
Hydrodynamic instability of nanofluids in a channel flow
Energy Technology Data Exchange (ETDEWEB)
Lin, Jianzhong; Xia, Yi [Department of Mechanics, Zhejiang University, Hangzhou 310027, People’s Republic of China (China); Bao, Fubing, E-mail: mecjzlin@zju.edu.cn [Institution of Fluid Mechanics, China Jiliang University, Hangzhou 310018, People’s Republic of China (China)
2014-10-01
A linear hydrodynamic instability of nanofluids in a channel flow is investigated. The instability equations of nanofluids are derived and solved numerically. The validity of the numerical formulations and schemes is tested by comparing the present results with the available experimental data and theoretical results. The results show that the existence of particles suppresses the flow instability, but cannot completely eliminate it. As particle mass loading is increased, the region of unstable wavenumbers is reduced from that of the pure Newtonian flow and the largest growth rate that governs the flow instability is reduced. The Stokes number has an effect on the instability behavior of the nanofluids. As the Stokes number and Knudsen number decrease, the critical Reynolds numbers increase and the unstable regions of small perturbations decrease, along with a decrease in the largest growth rates that govern the flow instability, therefore reinforcing the flow stability. Larger particles reduce the peak value of the velocity disturbance and hence attenuate the flow instability. (paper)
Numerical simulation of the hydrodynamic instability experiments and flow mixing
Institute of Scientific and Technical Information of China (English)
BAI JingSong; WANG Tao; LI Ping; ZOU LiYong; LIU CangLi
2009-01-01
Based on the numerical methods of volume of fluid (VOF) and piecewise parabolic method (PPM) and parallel circumstance of Message Passing Interface (MPI), a parallel multi-viscosity-fluid hydrodynamic code MVPPM (Multi-Viscosity-Fluid Piecewise Parabolic Method) is developed and performed to study the hydrodynamic instability and flow mixing. Firstly, the MVPPM code is verified and validated by simulating three instability cases: The first one is a Riemann problem of viscous flow on the shock tube;the second one is the hydrodynamic instability and mixing of gaseous flows under re-shocks; the third one is a half height experiment of interfacial instability, which is conducted on the AWE's shock tube. By comparing the numerical results with experimental data, good agreement is achieved. Then the MVPPM code is applied to simulate the two cases of the interfacial instabilities of jelly models accelerated by explosion products of a gaseous explosive mixture (GEM), which are adopted in our experiments. The first is implosive dynamic interfacial instability of cylindrical symmetry and mixing. The evolving process of inner and outer interfaces, and the late distribution of mixing mass caused by Rayleigh-Taylor (RT) instability in the center of different radius are given. The second is jelly layer experiment which is initialized with one periodic perturbation with different amplitude and wave length. It reveals the complex processes of evolution of interface, and presents the displacement of front face of jelly layer, bubble head and top of spike relative to initial equilibrium position vs. time. The numerical results are in excellent agreement with that experimental images, and show that the amplitude of initial perturbations affects the evolvement of fluid mixing zone (FMZ) growth rate extremely, especially at late times.
Numerical simulation of the hydrodynamic instability experiments and flow mixing
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Based on the numerical methods of volume of fluid (VOF) and piecewise parabolic method (PPM) and parallel circumstance of Message Passing Interface (MPI),a parallel multi-viscosity-fluid hydrodynamic code MVPPM (Multi-Viscosity-Fluid Piecewise Parabolic Method) is developed and performed to study the hydrodynamic instability and flow mixing. Firstly,the MVPPM code is verified and validated by simulating three instability cases:The first one is a Riemann problem of viscous flow on the shock tube; the second one is the hydrodynamic instability and mixing of gaseous flows under re-shocks; the third one is a half height experiment of interfacial instability,which is conducted on the AWE’s shock tube. By comparing the numerical results with experimental data,good agreement is achieved. Then the MVPPM code is applied to simulate the two cases of the interfacial instabilities of jelly models acceler-ated by explosion products of a gaseous explosive mixture (GEM),which are adopted in our experi-ments. The first is implosive dynamic interfacial instability of cylindrical symmetry and mixing. The evolving process of inner and outer interfaces,and the late distribution of mixing mass caused by Rayleigh-Taylor (RT) instability in the center of different radius are given. The second is jelly layer ex-periment which is initialized with one periodic perturbation with different amplitude and wave length. It reveals the complex processes of evolution of interface,and presents the displacement of front face of jelly layer,bubble head and top of spike relative to initial equilibrium position vs. time. The numerical results are in excellent agreement with that experimental images,and show that the amplitude of initial perturbations affects the evolvement of fluid mixing zone (FMZ) growth rate extremely,especially at late times.
Brain vascular and hydrodynamic physiology
Tasker, Robert C.
2013-01-01
Protecting the brain in vulnerable infants undergoing surgery is a central aspect of perioperative care. Understanding the link between blood flow, oxygen delivery and oxygen consumption leads to a more informed approach to bedside care. In some cases, we need to consider how high can we let the partial pressure of carbon dioxide go before we have concerns about risk of increased cerebral blood volume and change in intracranial hydrodynamics? Alternatively, in almost all such cases, we have to address the question of how low can we let the blood pressure drop before we should be concerned about brain perfusion? This review, provides a basic understanding of brain bioenergetics, hemodynamics, hydrodynamics, autoregulation and vascular homeostasis to changes in blood gases that is fundamental to our thinking about bedside care and monitoring. PMID:24331089
Hydrodynamic interactions in two dimensions
di Leonardo, R.; Keen, S.; Ianni, F.; Leach, J.; Padgett, M. J.; Ruocco, G.
2008-09-01
We measure hydrodynamic interactions between colloidal particles confined in a thin sheet of fluid. The reduced dimensionality, compared to a bulk fluid, increases dramatically the range of couplings. Using optical tweezers we force a two body system along the eigenmodes of the mobility tensor and find that eigenmobilities change logarithmically with particle separation. At a hundred radii distance, the mobilities for rigid and relative motions differ by a factor of 2, whereas in bulk fluids, they would be practically indistinguishable. A two dimensional counterpart of Oseen hydrodynamic tensor quantitatively reproduces the observed behavior, once the relevant boundary conditions are recognized. These results highlight the importance of dimensionality for transport and interactions in colloidal systems and proteins in biological membranes.
Hydrodynamics from Landau initial conditions
Energy Technology Data Exchange (ETDEWEB)
Sen, Abhisek [University of Tennessee, Knoxville (UTK); Gerhard, Jochen [Frankfurt Institute for Advanced Studies (FIAS), Germany; Torrieri, Giorgio [Universidade Estadual de Campinas, Instituto de Física " Gleb Wataghin" (IFGW), Sao Paulo, Brazil; Read jr, Kenneth F. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Wong, Cheuk-Yin [ORNL
2015-01-01
We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by-event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 - 30%) expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2
Boundary between Stable and Unstable Regimes of Accretion. Ordered and Chaotic Unstable Regimes
Blinova, A A; Lovelace, R V E
2015-01-01
We search for the boundary between stable and Rayleigh-Taylor unstable regimes of accretion to magnetized stars in a new set of high grid resolution simulations. We found that the boundary between stable and unstable regimes is mainly determined by the ratio of the corotation radius r_cor (where the Keplerian angular velocity in the disc matches the angular velocity of the star) to the magnetospheric radius r_m (where the magnetic stress in the magnetosphere matches the matter stress in the disc). Instability is stronger when r_cor is larger with respect to r_m, that is, when the gravitational force is larger than the centrifugal force at the inner disc. In the cases of a small tilt of the magnetosphere, Theta=5 deg, and a small alpha-parameter of viscosity, alpha=0.02, the boundary is located at r_cor approx. 1.4 r_m. Instability becomes stronger at higher values of viscosity, and occurs at lower values of r_cor/r_m. At higher values of Theta, the variability associated with instability decreases. Simulation...
Non-boost-invariant dissipative hydrodynamics
Florkowski, Wojciech; Strickland, Michael; Tinti, Leonardo
2016-01-01
The one-dimensional non-boost-invariant evolution of the quark-gluon plasma, presumably produced during the early stages of heavy-ion collisions, is analyzed within the frameworks of viscous and anisotropic hydrodynamics. We neglect transverse dynamics and assume homogeneous conditions in the transverse plane but, differently from Bjorken expansion, we relax longitudinal boost invariance in order to study the rapidity dependence of various hydrodynamical observables. We compare the results obtained using several formulations of second-order viscous hydrodynamics with a recent approach to anisotropic hydrodynamics, which treats the large initial pressure anisotropy in a non-perturbative fashion. The results obtained with second-order viscous hydrodynamics depend on the particular choice of the second-order terms included, which suggests that the latter should be included in the most complete way. The results of anisotropic hydrodynamics and viscous hydrodynamics agree for the central hot part of the system, ho...
Universality classes for unstable crystal growth.
Biagi, Sofia; Misbah, Chaouqi; Politi, Paolo
2014-06-01
Universality has been a key concept for the classification of equilibrium critical phenomena, allowing associations among different physical processes and models. When dealing with nonequilibrium problems, however, the distinction in universality classes is not as clear and few are the examples, such as phase separation and kinetic roughening, for which universality has allowed to classify results in a general spirit. Here we focus on an out-of-equilibrium case, unstable crystal growth, lying in between phase ordering and pattern formation. We consider a well-established 2+1-dimensional family of continuum nonlinear equations for the local height h(x,t) of a crystal surface having the general form ∂_{t}h(x,t)=-∇·[j(∇h)+∇(∇^{2}h)]: j(∇h) is an arbitrary function, which is linear for small ∇h, and whose structure expresses instabilities which lead to the formation of pyramidlike structures of planar size L and height H. Our task is the choice and calculation of the quantities that can operate as critical exponents, together with the discussion of what is relevant or not to the definition of our universality class. These aims are achieved by means of a perturbative, multiscale analysis of our model, leading to phase diffusion equations whose diffusion coefficients encapsulate all relevant information on dynamics. We identify two critical exponents: (i) the coarsening exponent, n, controlling the increase in time of the typical size of the pattern, L∼t^{n}; (ii) the exponent β, controlling the increase in time of the typical slope of the pattern, M∼t^{β}, where M≈H/L. Our study reveals that there are only two different universality classes, according to the presence (n=1/3, β=0) or the absence (n=1/4, β>0) of faceting. The symmetry of the pattern, as well as the symmetry of the surface mass current j(∇h) and its precise functional form, is irrelevant. Our analysis seems to support the idea that also space dimensionality is irrelevant.
Diffuse-Interface Methods in Fluid Mechanics
Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.
1997-01-01
The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.
Hydrodynamics of catheter biofilm formation
Sotolongo-Costa, Oscar; Rodriguez-Perez, Daniel; Martinez-Escobar, Sergio; Fernandez-Barbero, Antonio
2009-01-01
A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equation leads to the conclusion that biofilms grow on the internal catheter wall due to the counter-stream diffusion of blood through a very thin layer close to the wall. This biological deposition is the first necessary step for the subsequent bacteria colonization.
Soliton propagation in relativistic hydrodynamics
Fogaça, D A; 10.1016/j.nuclphysa.2007.03.104
2013-01-01
We study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. In a previous work we have derived a KdV equation from Euler and continuity equations in non-relativistic hydrodynamics. In the present contribution we extend our formalism to relativistic fluids. We present results for a given equation of state, which is based on quantum hadrodynamics (QHD).
Hydrodynamic Evolution of GRB Afterglow
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
We investigate the dynamics of a relativistic fireball which decelerates as it sweeps up ambient matter. Not only the radiative and adiabatic cases, but also the realistic intermediate cases are calculated. We perform numerical calcula-tion for various ambient media and sizes of beaming expansion, and find that the deceleration radius R0 may play an important role for the hydrodynamic evolution of GRB afterglow.
Assessing qualitative usability in life-threatening, time-critical and unstable situations
Directory of Open Access Journals (Sweden)
Nestler, Simon
2011-01-01
Full Text Available We developed a heuristic for assessing the usability of mobile user-interfaces in life-threating, time-critical and unstable situations in a qualitative way. The major advantages of our approach as opposed to standardized quantitative questionnaires is the independence from a baseline, the possibility to make absolute statements and the potential for adaptations. When creating a qualitative semi structured interview we adhere to the common modus operandi of the qualitative social research. On the basis of 17 common quantitative questionnaires on usability we identified the five major categories Utility, Intuitiveness, Memorability, Learnability and Personal Effect. We selected all questions from the questionnaires which are useful for assessing the usability of user-interfaces in emergencies. Furthermore, we rephrased the closed-ended questions to open-ended ones. The quantification of research results is possible by weighting the qualitative results in dependence to the research question.
Nanofluidics, from bulk to interfaces.
Bocquet, Lydéric; Charlaix, Elisabeth
2010-03-01
Nanofluidics has emerged recently in the footsteps of microfluidics, following the quest for scale reduction inherent to nanotechnologies. By definition, nanofluidics explores transport phenomena of fluids at nanometer scales. Why is the nanometer scale specific? What fluid properties are probed at nanometric scales? In other words, why does 'nanofluidics' deserve its own brand name? In this critical review, we will explore the vast manifold of length scales emerging for fluid behavior at the nanoscale, as well as the associated mechanisms and corresponding applications. We will in particular explore the interplay between bulk and interface phenomena. The limit of validity of the continuum approaches will be discussed, as well as the numerous surface induced effects occurring at these scales, from hydrodynamic slippage to the various electro-kinetic phenomena originating from the couplings between hydrodynamics and electrostatics. An enlightening analogy between ion transport in nanochannels and transport in doped semi-conductors will be discussed (156 references).
Recent progress in anisotropic hydrodynamics
Directory of Open Access Journals (Sweden)
Strickland Michael
2017-01-01
Full Text Available The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, 〈 pL2〉 ≪ 〈 pT2〉. In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.
Hydrodynamic Boundary Conditions and Dynamic Forces between Bubbles and Surfaces
Manor, Ofer; Vakarelski, Ivan U.; Tang, Xiaosong; O'Shea, Sean J.; Stevens, Geoffrey W.; Grieser, Franz; Dagastine, Raymond R.; Chan, Derek Y. C.
2008-07-01
Dynamic forces between a 50μm radius bubble driven towards and from a mica plate using an atomic force microscope in electrolyte and in surfactant exhibit different hydrodynamic boundary conditions at the bubble surface. In added surfactant, the forces are consistent with the no-slip boundary condition at the mica and bubble surfaces. With no surfactant, a new boundary condition that accounts for the transport of trace surface impurities explains variations of dynamic forces at different speeds and provides a direct connection between dynamic forces and surface transport effects at the air-water interface.
Smoothed Particle Hydrodynamics Method for Two-dimensional Stefan Problem
Tarwidi, Dede
2016-01-01
Smoothed particle hydrodynamics (SPH) is developed for modelling of melting and solidification. Enthalpy method is used to solve heat conduction equations which involved moving interface between phases. At first, we study the melting of floating ice in the water for two-dimensional system. The ice objects are assumed as solid particles floating in fluid particles. The fluid and solid motion are governed by Navier-Stokes equation and basic rigid dynamics equation, respectively. We also propose a strategy to separate solid particles due to melting and solidification. Numerical results are obtained and plotted for several initial conditions.
Projection-free approximate balanced truncation of large unstable systems
Flinois, Thibault L. B.; Morgans, Aimee S.; Schmid, Peter J.
2015-08-01
In this article, we show that the projection-free, snapshot-based, balanced truncation method can be applied directly to unstable systems. We prove that even for unstable systems, the unmodified balanced proper orthogonal decomposition algorithm theoretically yields a converged transformation that balances the Gramians (including the unstable subspace). We then apply the method to a spatially developing unstable system and show that it results in reduced-order models of similar quality to the ones obtained with existing methods. Due to the unbounded growth of unstable modes, a practical restriction on the final impulse response simulation time appears, which can be adjusted depending on the desired order of the reduced-order model. Recommendations are given to further reduce the cost of the method if the system is large and to improve the performance of the method if it does not yield acceptable results in its unmodified form. Finally, the method is applied to the linearized flow around a cylinder at Re = 100 to show that it actually is able to accurately reproduce impulse responses for more realistic unstable large-scale systems in practice. The well-established approximate balanced truncation numerical framework therefore can be safely applied to unstable systems without any modifications. Additionally, balanced reduced-order models can readily be obtained even for large systems, where the computational cost of existing methods is prohibitive.
Directory of Open Access Journals (Sweden)
Rajiv Joshi
2013-01-01
Full Text Available Interface dermatitis includes diseases in which the primary pathology involves the dermo-epidermal junction. The salient histological findings include basal cell vacuolization, apoptotic keratinocytes (colloid or Civatte bodies, and obscuring of the dermo-epidermal junction by inflammatory cells. Secondary changes of the epidermis and papillary dermis along with type, distribution and density of inflammatory cells are used for the differential diagnoses of the various diseases that exhibit interface changes. Lupus erythematosus, dermatomyositis, lichen planus, graft versus host disease, erythema multiforme, fixed drug eruptions, lichen striatus, and pityriasis lichenoides are considered major interface diseases. Several other diseases (inflammatory, infective, and neoplastic may show interface changes.
Hydrodynamics of marine and offshore structures
Institute of Scientific and Technical Information of China (English)
FALTINSEN O. M
2014-01-01
An overview of hydrodynamic problems related to the broad variety of ships and sea structures involved in transportation, oil and gas exploration and production, marine operations, recovery of oil-spill, renewable energy, infrastructure and aquaculture is given. An approximate hydroelastic model for wave and current induced response of a floating fish farm with circular plastic collar and net cage is discussed. Weakly nonlinear potential-flow problems such as slow-drift motions and stationkeeping, springing of ships and ringing are given special attention. Body-fixed coordinate system is recommended in weakly nonlinear potential-flow ana-lysis of bodies with sharp corners. Dynamic ship instabilities, Mathieu-type instabilities, chaos and two-phase flow involving inter-face instabilities are discussed. It is advocated that slamming must be coupled with structural mechanics in order to find important time scales of the many physical effects associated with slamming and that both water entry and exit matter in describing the global wetdeck slamming effects. Further, sloshing-induced slamming in prismatic LNG tanks is perhaps the most complicated slamming problem because many fluid mechanic and thermodynamic parameters as well as hydroelasticity may matter.
A Smoothed Particle Hydrodynamics approach for poroelasticity
Osorno, Maria; Steeb, Holger
2016-04-01
Within the framework of the SHynergie project we look to investigate hydraulic fracturing and crack evolving in poroelastic media. We model biphasic media assuming incompressible solid grain and incompressible pore liquid. Modeling evolving fractures and fracture networks in elastic and poroelastic media by mesh-based numerical approaches, like X-FEM, is especially in 3-dim a challenging task. Therefore, we propose a meshless particle method for fractured media based on the Smoothed Particle Hydrodynamics (SPH) approach. SPH is a meshless Lagrangian method highly suitable for the simulation of large deformations including free surfaces and/or interfaces. Within the SPH method, the computational domain is discretized with particles, avoiding the computational expenses of meshing. Our SPH solution is implemented in a parallel computational framework, which allows to simulate large domains more representative of the scale of our study cases. Our implementation is carefully validated against classical mesh-based approaches and compared with classical solutions for consolidation problems. Furthermore, we discuss fracture initiation and propagation in poroelastic rocks at the reservoir scale.
Kulikov, Igor
2016-01-01
An approach for constructing a low-dissipation numerical method is described. The method is based on a combination of the operator-splitting method, Godunov method, and piecewise-parabolic method on the local stencil. Numerical method was tested on a standard suite of hydrodynamic test problems. In addition, the performance of the method is demonstrated on a global test problem showing the development of a spiral structure in a gravitationally unstable gaseous galactic disk.
Indian Academy of Sciences (India)
V Ganesh; M Subbiah
2009-02-01
For the extended Taylor–Goldstein problem of hydrodynamic stability governing the stability of shear flows of an inviscid, incompressible but density stratified fluid in sea straits of arbitrary cross-section a new estimate for the growth rate of an arbitrary unstable normal mode is given for a class of basic flows. Furthermore the Howard’s conjecture, namely, the growth rate $kc_i→ 0$ as the wave number $k→∞$ is proved for two classes of basic flows.
Entropy-limited hydrodynamics: a novel approach to relativistic hydrodynamics
Guercilena, Federico; Radice, David; Rezzolla, Luciano
2017-07-01
We present entropy-limited hydrodynamics (ELH): a new approach for the computation of numerical fluxes arising in the discretization of hyperbolic equations in conservation form. ELH is based on the hybridisation of an unfiltered high-order scheme with the first-order Lax-Friedrichs method. The activation of the low-order part of the scheme is driven by a measure of the locally generated entropy inspired by the artificial-viscosity method proposed by Guermond et al. (J. Comput. Phys. 230(11):4248-4267, 2011, doi: 10.1016/j.jcp.2010.11.043). Here, we present ELH in the context of high-order finite-differencing methods and of the equations of general-relativistic hydrodynamics. We study the performance of ELH in a series of classical astrophysical tests in general relativity involving isolated, rotating and nonrotating neutron stars, and including a case of gravitational collapse to black hole. We present a detailed comparison of ELH with the fifth-order monotonicity preserving method MP5 (Suresh and Huynh in J. Comput. Phys. 136(1):83-99, 1997, doi: 10.1006/jcph.1997.5745), one of the most common high-order schemes currently employed in numerical-relativity simulations. We find that ELH achieves comparable and, in many of the cases studied here, better accuracy than more traditional methods at a fraction of the computational cost (up to {˜}50% speedup). Given its accuracy and its simplicity of implementation, ELH is a promising framework for the development of new special- and general-relativistic hydrodynamics codes well adapted for massively parallel supercomputers.
DEFF Research Database (Denmark)
Thomsen, Bodil Marie Stavning
2015-01-01
and memories. From a transvisual perspective, the question is whether or not these (by now realized) diagrammatic modes involving the body in ubiquitous global media can be analysed in terms of the affects and events created in concrete interfaces. The examples used are filmic as felt sensations...... of an interface are invisible and not easy to describe....
DEFF Research Database (Denmark)
Hansen, Klaus Marius
2001-01-01
Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....
DEFF Research Database (Denmark)
Pold, Søren
2005-01-01
This article argues for seeing the interface as an important representational and aesthetic form with implications for postmodern culture and digital aesthetics. The interface emphasizes realism due in part to the desire for transparency in Human-Computer Interaction (HCI) and partly to the devel...
DEFF Research Database (Denmark)
Holbøll, Joachim T.; Henriksen, Mogens; Nilson, Jesper K.;
1999-01-01
The wide use of solid insulating materials combinations in combinations has introduced problems in the interfaces between components. The most common insulating materials are cross-linked polyethylene (XLPE), silicone rubber (SIR) and ethylene-propylene rubbers (EPR). Assemblies of these materials...... have caused major failures. In the Netherlands, a major black out was caused by interface problems in 150kV cable terminations, causing a cascade of breakdowns. There is a need to investigate the reasons for this and other similar breakdowns.The major problem is expected to lie in the interface between...... two different materials. Environmental influence, surface treatment, defects in materials and interface, design, pressure and rubbing are believed to have an effect on interface degradation. These factors are believed to increase the possibility of partial discharges (PD). PD will, with time, destroy...
The effect of nonlinearity on unstable zones of Mathieu equation
Indian Academy of Sciences (India)
M GH SARYAZDI
2017-03-01
Mathieu equation is a well-known ordinary differential equation in which the excitation term appears as the non-constant coefficient. The mathematical modelling of many dynamic systems leads to Mathieu equation. The determination of the locus of unstable zone is important for the control of dynamic systems. In this paper, the stable and unstable regions of Mathieu equation are determined for three cases of linear and nonlinear equations using the homotopy perturbation method. The effect of nonlinearity is examined in the unstable zone. The results show that the transition curves of linear Mathieu equation depend on the frequency of the excitation term. However, for nonlinear equations, the curves depend also on initial conditions. In addition, increasing the amplitude of response leads to an increase in the unstable zone.
Unstable dimension variability and synchronization of chaotic systems
Viana, R L; Viana, Ricardo L.; Grebogi, Celso
1999-01-01
An aspect of the synchronization dynamics is investigated in this work. We argue analytically and confirm numerically that the chaotic dynamics on the synchronization manifold exhibits unstable dimension variability. Unstable dimension variability is a cause of severe modeling difficulty for physical phenomena, since trajectories obtained from the mathematical model may not be related to trajectories of the actual system. We present and example of unstable dimension variability occurring in a system of two coupled chaotic maps, considering the dynamics in the synchronization manifold and its corresponding transversal direction, where a tongue-like structure is formed. The unstable dimension variability is revealed in the statistical distribution of the finite-time transversal Lyapunov exponent, having both negative and positive values.
THE UNSTABLE MODES OF NATURAL CONVECTION BOUNDARY LAYER
Institute of Scientific and Technical Information of China (English)
Tao Jianjun; Zhuang Fenggan; Yan Dachun
2000-01-01
The instability of natural convection boundary layer around a vertical heated flat plate is analyzed theoretically in this paper. The results illustrate that the “loop” in the neutral curve is not a real loop but a twist of the curve is the frequencywave number-Grashof number space, and there is only one unstable mode at small Prandtl numbers. Specially, when the Prandtl number is large enough two unstable modes will be found in the “loop” region. Along the amplifying surface intersection the two unstable modes have the same Grashof number, wave number and frequency but different amplifying rates. Their instability characteristics are analyzed and the criterion for determining the existence of the multi-unstable modes is also discussed.
Absence of quantum states corresponding to unstable classical channels
DEFF Research Database (Denmark)
Herbst, Ira; Skibsted, Erik
2008-01-01
We develop a general theory of absence of quantum states corresponding to unstable classical scattering channels. We treat in detail Hamiltonians arising from symbols of degree zero in x and outline a generalization in an Appendix....
Investigation for Electromechanical Coupling Unstability of Rolling Mill
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The unsteady condition of rolling Mill vibration that was caused by flexural vibration of strip was investigated. The parametric flexural vibration equation of rolled strip was established. The parametric flexural vibration stability of rolled strip was studied and region of stability and unstability was determined based on Floquet theory and perturbation method. The flexural-vibration of strip was unstable if the frequency of variable tension was twice as the natural frequency of flexural-vibration strip. ...
Tracking unstable fixed points in parametrically dynamic systems
Mondragón, Raúl J.; Arrowsmith, David K.
1997-02-01
The method of Ott, Grebogi and Yorke is extended to control a two-parameter system when one of the parameters is time dependent and the other is used as the control-parameter. As one of the parameters changes, the unstable fixed point follows its branch of the bifurcation tree. We control a chaotic orbit such that it tracks this “moving” unstable fixed point using an adaptive control method.
How to define physical properties of unstable particles
Gegelia, J.; Scherer, S.
2009-01-01
In the framework of effective quantum field theory we address the definition of physical quantities characterizing unstable particles. With the aid of a one-loop calculation, we study this issue in terms of the charge and the magnetic moment of a spin-1/2 resonance. By appealing to the invariance of physical observables under field redefinitions we demonstrate that physical properties of unstable particles should be extracted from the residues at complex (double) poles of the corresponding S-...
Particle unstable nuclei in the Hartree-Fock theory
Energy Technology Data Exchange (ETDEWEB)
Kruppa, A.T. [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete; Heenen, P.H. [Brussels Univ. (Belgium). Service de Physique Nucleaire Theorique; Flocard, H. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Liotta, R.J. [Manne Siegbahn Inst. of Physics, Stockholm (Sweden)
1997-12-31
Ground state energies and decay widths of particle unstable nuclei are calculated within the Hartree-Fock approximation by performing a complex scaling of the many-body Hamiltonian. Through this transformation, the wave functions of the resonant state become square integrable. The method is implemented with Skyrme effective interactions. Several Skyrme parametrizations are tested on four unstable nuclei: {sup 10}He, {sup 12}O, {sup 26}O and {sup 28}O. (author). 24 refs.
Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications
Energy Technology Data Exchange (ETDEWEB)
R. Paul Drake
2005-12-01
We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.
Neutron Capture Experiments on Unstable Nuclei
Energy Technology Data Exchange (ETDEWEB)
Jon M. Schwantes; Ralf Sudowe; Heino Nitsche; Darleane C. Hoffman
2003-12-16
A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. The information obtained will also be important in astrophysical modeling of nucleosynthesis. During this reporting period, the emphasis has been on preparing a radioactive target of {sup 155}Eu (half-life = 4.7 years), and several stable targets, including isotopically separated {sup 154}Sm, {sup 151}Eu, and {sup 153}Eu. Measurements of their neutron capture cross sections will be conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the Detector for Advanced Neutron Capture Experiments (DANCE). A suitable backing material (beryllium) for the targets has been selected after careful calculations of its contribution to the background of the measurements. In addition, a high voltage plating procedure has been developed and optimized. Stable targets of {sup 151}Eu and {sup 153}Eu and a target of natural Eu ({approx}50% {sup 151}Eu and {approx}50% {sup 153}Eu) have each been plated to a mass thickness of >1 mg/cm{sup 2} and delivered to the DANCE collaboration at Los Alamos National Laboratory (LANL). Natural Eu targets will be tested first to confirm that the target dimensions and backing are appropriate prior to performing measurements on the extremely valuable targets of separated isotopes. In order to prepare a target of the radioactive {sup 155}Eu, it must first be separated from the {sup 154}Sm target material that was irradiated in a very high neutron flux of 1.5x1015 neutrons/cm{sup 2}/s for 50 days. The reaction is {sup 154}Sm (n,f){sup 155}Sm (half-life = 22 minutes) {sup 155}Eu. Considerable progress has been made in developing a suitable high-yield and high-purity separation method for separating Eu from targets
Hydrodynamic characteristics of UASB bioreactors.
John, Siby; Tare, Vinod
2011-10-01
The hydrodynamic characteristics of UASB bioreactors operated under different organic loading and hydraulic loading rates were studied, using three laboratory scale models treating concocted sucrose wastewater. Residence time distribution (RTD) analysis using dispersion model and tanks-in-series model was directed towards the characterization of the fluid flow pattern in the reactors and correlation of the hydraulic regime with the biomass content and biogas production. Empty bed reactors followed a plug flow pattern and the flow pattern changed to a large dispersion mixing with biomass and gas production. Effect of increase in gas production on the overall hydraulics was insignificant.
Disruptive Innovation in Numerical Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Waltz, Jacob I. [Los Alamos National Laboratory
2012-09-06
We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.
Turbulence Models of Hydrodynamic Lubrication
Institute of Scientific and Technical Information of China (English)
张直明; 王小静; 孙美丽
2003-01-01
The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models on flow fields in turbulent Couette flows and shear-induced countercurrent flows were compared to existing measurements, and Zhang & Zhang' s combined k-ε model was shown to have surpassingly satisfactory results. The method of application of this combined k-ε model to high speed journal bearings and annular seals was summarized, and the predicted results were shown to be satisfactory by comparisons with existing experiments of journal bearings and annular seals.
Highly-anisotropic hydrodynamics for central collisions
Ryblewski, Radoslaw
2016-01-01
The framework of leading-order anisotropic hydrodynamics is supplemented with realistic equation of state and self-consistent freeze-out prescription. The model is applied to central proton-nucleus collisions. The results are compared to those obtained within standard Israel-Stewart second-order viscous hydrodynamics. It is shown that the resulting hadron spectra are highly-sensitive to the hydrodynamic approach that has been used.
Numerical Prediction of Hydrodynamic Forces on A Ship Passing Through A Lock
Institute of Scientific and Technical Information of China (English)
王宏志; 邹早建
2014-01-01
While passing through a lock, a ship usually undergoes a steady forward motion at low speed. Owing to the size restriction of lock chamber, the shallow water and bank effects on the hydrodynamic forces acting on the ship may be remarkable, which may have an adverse effect on navigation safety. However, the complicated hydrodynamics is not yet fully understood. This paper focuses on the hydrodynamic forces acting on a ship passing through a lock. The unsteady viscous flow and hydrodynamic forces are calculated by applying an unsteady RANS code with a RNG k-εturbulence model. User-defined function (UDF) is compiled to define the ship motion. Meanwhile, the grid regeneration is dealt with by using the dynamic mesh method and sliding interface technique. Numerical study is carried out for a bulk carrier ship passing through the Pierre Vandamme Lock in Zeebrugge at the model scale. The proposed method is validated by comparing the numerical results with the data of captive model tests. By analyzing the numerical results obtained at different speeds, water depths and eccentricities, the influences of speed, water depth and eccentricity on the hydrodynamic forces are illustrated. The numerical method proposed in this paper can qualitatively predict the ship-lock hydrodynamic interaction. It can provide certain guidance on the manoeuvring and control of ships passing through a lock.
Vears, R E
2014-01-01
Microprocessor Interfacing provides the coverage of the Business and Technician Education Council level NIII unit in Microprocessor Interfacing (syllabus U86/335). Composed of seven chapters, the book explains the foundation in microprocessor interfacing techniques in hardware and software that can be used for problem identification and solving. The book focuses on the 6502, Z80, and 6800/02 microprocessor families. The technique starts with signal conditioning, filtering, and cleaning before the signal can be processed. The signal conversion, from analog to digital or vice versa, is expl
Vergara, Jaime; de la Fuente, Alberto
2016-04-01
Salars are landscapes formed by evapo-concentration of salts that usually have extremely shallow terminal lagoons (de la Fuente & Niño, 2010). They are located in the altiplanic region of the Andes Mountains of Chile, Argentina, Bolivia and Peru, and they sustain highly vulnerable and isolated ecosystems in the Andean Desert. These ecosystems are sustained by benthic primary production, which is directly linked to mass, heat and momentum transfer between the water column and the atmosphere (de la Fuente, 2014). Despite the importance of these transport processes across the air-water interface, there are few studies describing their intraday variation and how they are influenced by the stability of the atmospheric boundary layer in the altiplano. The main objective of this work is to analyze the intraday vertical transport variation of water vapor, temperature and momentum between the atmosphere and a shallow water body on Salar del Huasco located in northern Chile (20°19'40"S, 68°51'25"W). To achieve this goal, we measured atmospheric and water variables in a campaign realized on late October 2015, using high frequency meteorological instruments (a sonic anemometer with an incorporated infrared gas analyzer, and a standard meteorological station) and water sensors. From these data, we characterize the intraday variation of water vapor, temperature and momentum fluxes, we quantify the influence of the atmospheric boundary layer stability on them, and we estimate transfer coefficients associated to latent heat, sensible heat, hydrodynamic drag and vertical transport of water vapor. As first results, we found that latent and sensible heat fluxes are highly influenced by wind speed rather buoyancy, and we can identify four intraday intervals with different thermo-hydrodynamic features: (1) cooling under stable condition with wind speed near 0 from midnight until sunrise; (2) free convection with nearly no wind speed under unstable condition from sunrise until midday
Long duration gamma-ray bursts: hydrodynamic instabilities in collapsar disks
Taylor, Paul A; Podsiadlowski, Philipp
2010-01-01
We present 3D numerical simulations of the early evolution of long-duration gamma-ray bursts in the collapsar scenario. Starting from the core-collapse of a realistic progenitor model, we follow the formation and evolution of a central black hole and centrifugally balanced disk. The dense, hot accretion disk produces freely-escaping neutrinos and is hydrodynamically unstable to clumping and to forming non-axisymmetric (m=1, 2) modes. We show that these spiral structures, which form on dynamical timescales, can efficiently transfer angular momentum outward and can drive the high required accretion rates (>=0.1-1 M_sun) for producing a jet. We utilise the smoothed particle hydrodynamics code, Gadget-2, modified to implement relevant microphysics, such as cooling by neutrinos, a plausible treatment approximating the central object and relativistic effects. Finally, we discuss implications of this scenario as a source of energy to produce relativistically beamed gamma-ray jets.
Hydrodynamic instabilities in the developing region of an axially rotating pipe flow
Energy Technology Data Exchange (ETDEWEB)
Miranda-Barea, A; Fabrellas-García, C; Parras, L; Pino, C del, E-mail: cpino@uma.es [Universidad de Málaga, Escuela Técnica Superior de Ingeniería Industrial, Ampliación Campus de Teatinos, 29071, Málaga, España (Spain)
2015-06-15
We conduct experiments in a rotating Hagen–Poiseuille flow (RHPF) through flow visualizations when the flow becomes convectively and absolutely unstable at low-to-moderate Reynolds numbers, Re. We characterize periodic patterns at a very high swirl parameter, L, when the flow overcomes the absolutely unstable region. These non-steady helical filaments wrapped around the axis appear in the developing region of the pipe. Experimentally, we compute the onset of these oscillations in the (L, Re)-plane finding that the rotation rate decreases as the Reynolds number increases in the process of achieving the time-dependent state. Additionally, we report information regarding frequencies and wavelengths that appear downstream of the rotating pipe for convectively and absolutely unstable flows, even for very high swirl parameters at which the flow becomes time-dependent in the developing region. We do not observe variations in the trends of these parameters, so these hydrodynamic instabilities in the developing region do not affect the unstable travelling waves downstream of the pipe. (paper)
2015-01-01
We investigate the dynamics of large dust grains in massive lopsided transition discs via 2D hydrodynamical simulations including both gas and dust. Our simulations adopt a ring-like gas density profile that becomes unstable against the Rossby-wave instability and forms a large crescent-shaped vortex. When gas self-gravity is discarded, but the indirect force from the displacement of the star by the vortex is included, we confirm that dust grains with stopping times of order the orbital time,...
Movahed, Pooya
High-speed flows are prone to hydrodynamic interfacial instabilities that evolve to turbulence, thereby intensely mixing different fluids and dissipating energy. The lack of knowledge of these phenomena has impeded progress in a variety of disciplines. In science, a full understanding of mixing between heavy and light elements after the collapse of a supernova and between adjacent layers of different density in geophysical (atmospheric and oceanic) flows remains lacking. In engineering, the inability to achieve ignition in inertial fusion and efficient combustion constitute further examples of this lack of basic understanding of turbulent mixing. In this work, my goal is to develop accurate and efficient numerical schemes and employ them to study compressible turbulence and mixing generated by interactions between shocked (Richtmyer-Meshkov) and accelerated (Rayleigh-Taylor) interfaces, which play important roles in high-energy-density physics environments. To accomplish my goal, a hybrid high-order central/discontinuity-capturing finite difference scheme is first presented. The underlying principle is that, to accurately and efficiently represent both broadband motions and discontinuities, non-dissipative methods are used where the solution is smooth, while the more expensive and dissipative capturing schemes are applied near discontinuous regions. Thus, an accurate numerical sensor is developed to discriminate between smooth regions, shocks and material discontinuities, which all require a different treatment. The interface capturing approach is extended to central differences, such that smooth distributions of varying specific heats ratio can be simulated without generating spurious pressure oscillations. I verified and validated this approach against a stringent suite of problems including shocks, interfaces, turbulence and two-dimensional single-mode Richtmyer-Meshkov instability simulations. The three-dimensional code is shown to scale well up to 4000 cores
Some open questions in hydrodynamics
Dyndal, Mateusz
2014-01-01
When speaking of unsolved problems in physics, this is surprising at first glance to discuss the case of fluid mechanics. However, there are many deep open questions that come with the theory of fluid mechanics. In this paper, we discuss some of them that we classify in two categories, the long term behavior of solutions of equations of hydrodynamics and the definition of initial (boundary) conditions. The first set of questions come with the non-relativistic theory based on the Navier-Stokes equations. Starting from smooth initial conditions, the purpose is to understand if solutions of Navier-Stokes equations remain smooth with the time evolution. Existence for just a finite time would imply the evolution of finite time singularities, which would have a major influence on the development of turbulent phenomena. The second set of questions come with the relativistic theory of hydrodynamics. There is an accumulating evidence that this theory may be relevant for the description of the medium created in high en...
Analysis of Plasma Homocysteine Levels in Patients with Unstable Angina
Directory of Open Access Journals (Sweden)
José Roberto Tavares
2002-08-01
Full Text Available OBJECTIVE - To determine the prevalence of hyperhomocystinemia in patients with acute ischemic syndrome of the unstable angina type. METHODS - We prospectively studied 46 patients (24 females with unstable angina and 46 control patients (19 males, paired by sex and age, blinded to the laboratory data. Details of diets, smoking habits, medication used, body mass index, and the presence of hypertension and diabetes were recorded, as were plasma lipid and glucose levels, C-reactive protein, and lipoperoxidation in all participants. Patients with renal disease were excluded. Plasma homocysteine was estimated using high-pressure liquid chromatography. RESULTS - Plasma homocysteine levels were significantly higher in the group of patients with unstable angina (12.7±6.7 µmol/L than in the control group (8.7±4.4 µmol/L (p<0.05. Among males, homocystinemia was higher in the group with unstable angina than in the control group, but this difference was not statistically significant (14.1±5.9 µmol/L versus 11.9±4.2 µmol/L. Among females, however, a statistically significant difference was observed between the 2 groups: 11.0±7.4 µmol/L versus 6.4±2.9 µmol/L (p<0.05 in the unstable angina and control groups, respectively. Approximately 24% of the patients had unstable angina at homocysteine levels above 15 µmol/L. CONCLUSION - High homocysteine levels seem to be a relevant prevalent factor in the population with unstable angina, particularly among females.
Unstable genes unstable mind: beyond the central dogma of molecular biology.
Hegde, Mahabaleshwar V; Saraph, Arundhati A
2011-08-01
Schizophrenia has a polygenic mode of inheritance and an estimated heritability of over 80%, but success in understanding its genetic underpinnings to date has been modest. Unlike in trinucleotide neurodegenerative disorders, the phenomenon of genetic anticipation observed in schizophrenia or bipolar disorder has not been explained. For the first time, we provide a plausible molecular explanation of genetic anticipation and pathophysiology of schizophrenia, at least in part, with supporting evidence. We postulate that abnormally increased numbers of CAG repeats in many genes being expressed in the brain, coding for glutamine, cumulatively press for higher demand of glutamine in the respective brain cells, resulting in a metabolic crisis and dysregulation of the glutamate-glutamine cycle. This can adversely affect the functioning of both glutamate and GABA receptors, which are known to be involved in psychosis, and may also affect glutathione levels, increasing oxidative stress. The resulting psychosis (gain in function), originating from unstable genes, is described as an effect "beyond the central dogma of molecular biology". The hypothesis explains genetic anticipation, as further expansions in subsequent generations may result in increased severity and earlier occurrence. Many other well described findings provide proof of concept. This is a testable hypothesis, does not deny any known facts and opens up new avenues of research.
Projection-free approximate balanced truncation of large unstable systems
Flinois, Thibault L B; Schmid, Peter J
2015-01-01
In this article, we show that the projection-free, snapshot-based, balanced truncation method can be applied directly to unstable systems. We prove that even for unstable systems, the unmodified balanced proper orthogonal decomposition algorithm theoretically yields a converged transformation that balances the Gramians (including the unstable subspace). We then apply the method to a spatially developing unstable system and show that it results in reduced-order models of similar quality to the ones obtained with existing methods. Due to the unbounded growth of unstable modes, a practical restriction on the final impulse response simulation time appears, which can be adjusted depending on the desired order of the reduced-order model. Recommendations are given to further reduce the cost of the method if the system is large and to improve the performance of the method if it does not yield acceptable results in its unmodified form. Finally, the method is applied to the linearized flow around a cylinder at Re = 100...
Effects of Unstable Links on AODV Performance in Real Testbeds
Directory of Open Access Journals (Sweden)
Borgia Eleonora
2007-01-01
Full Text Available A link between a pair of nodes is defined unstable if it is characterized by a packet loss which is not negligible in one or both directions. The presence of unstable links in multihop ad hoc networks is very likely and it depends on several factors (e.g., different transmission capabilities of the devices, interferences caused by additional wireless devices. Their management by the routing protocols is of paramount importance since they negatively affect applications performance. In our previous experimental studies, we found that AODV is characterized by very low performance in some specific situations and, in this work, we demonstrate that it mainly depends on the wrong management of unstable links as valid routes. We present some policies that have been proposed in literature to avoid this problem, and we validate two of them through experimental results, exploiting also a direct comparison with the proactive routing protocol OLSR. Our results show that AODV is not able to avoid the use of unstable links, even when an alternative stable route exists. In the same conditions, OLSR outperforms AODV by correctly managing unstable links. In fact, it is able to guarantee a higher packet delivery ratio to the application by using the most stable path to reach the destination.
Hysteresis and Wavenumber Vacillation in Unstable Baroclinic Flows
Chou, Shih-Hung; Goodman, H. Michael (Technical Monitor)
2001-01-01
Hysteresis and wavenumber vacillation are studied numerically in a weakly stratified quasigeostrophic model. In general, the amplitude of the most unstable wave increases, as the flow becomes more unstable. When the wave becomes saturated, the next longer wave will grow at the expanse of the most unstable wave and becomes the dominant wave. However, once the longwave state is established, it may remain in that regime even as the instability is decreased beyond the threshold where it first developed, thus constituting a hysteresis loop. In a highly unstable case, the flow may not show a preference for any single wave. Instead, the dominant wave aperiodically varies among several long waves. This phenomenon is known as wavenumber vacillation. Hysteresis is further examined in terms of eddy heat flux. It is shown that total eddy heat flux increases as the flow becomes more unstable, but displays a sharp drop when transition to a longer wave occurs. However, in a longwave state, the heat flux always decreases with decreasing instability even pass the threshold when wave transition first occurs.
Relativistic Hydrodynamics for Heavy-Ion Collisions
Ollitrault, Jean-Yves
2008-01-01
Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…
Hydrodynamic models of a Cepheid atmosphere
Karp, A. H.
1975-01-01
Instead of computing a large number of coarsely zoned hydrodynamic models covering the entire atmospheric instability strip, the author computed a single model as well as computer limitations allow. The implicit hydrodynamic code of Kutter and Sparks was modified to include radiative transfer effects in optically thin zones.
Hydrodynamic correlation functions in nematic liquid crystals
Lekkerkerker, H.N.W.; Carle, D.; Laidlaw, W.G.
1976-01-01
The result, recently discovered by Forster, that the strength factors of the nonpropagating modes in certain hydrodynamic correlation functions in nematic liquid crystals are not fully determined by the hydrodynamic matrix is reconsidered. Using time reversal and space inversion symmetry one finds t
Hydrodynamic Overview at Hot Quarks 2016
Noronha-Hostler, Jacquelyn
2016-01-01
This presents an overview of relativistic hydrodynamic modeling in heavy-ion collisions prepared for Hot Quarks 2016, at South Padre Island, TX, USA. The influence of the initial state and viscosity on various experimental observables are discussed. Specific problems that arise in the hydrodynamical modeling at the Beam Energy Scan are briefly discussed.
Measurement of the hydrodynamic resistance of microdroplets.
Jakiela, Slawomir
2016-10-07
Here, we demonstrate a novel method of measurement which determines precisely the hydrodynamic resistance of a droplet flowing through a channel. The obtained results show that the hydrodynamic resistance of a droplet in a microchannel achieves its maximum for lengths of the droplet ranging from 3w to 4w and that interactions between beads in a train exist.
Hydrodynamic correlation functions in nematic liquid crystals
Lekkerkerker, H.N.W.; Carle, D.; Laidlaw, W.G.
1976-01-01
The result, recently discovered by Forster, that the strength factors of the nonpropagating modes in certain hydrodynamic correlation functions in nematic liquid crystals are not fully determined by the hydrodynamic matrix is reconsidered. Using time reversal and space inversion symmetry one finds t
Quasiparticle anisotropic hydrodynamics for central collisions
Alqahtani, Mubarak; Strickland, Michael
2016-01-01
We use quasiparticle anisotropic hydrodynamics to study an azimuthally-symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state. We compare results obtained using the quasiparticle method with the standard method of imposing the equation of state in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio eta/s. We find that the three methods agree well for small shear viscosity to entropy density ratio, eta/s, but differ at large eta/s. We find, in particular, that when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative...
Hydrodynamic Approaches in Relativistic Heavy Ion Reactions
de Souza, Rafael Derradi; Kodama, Takeshi
2016-01-01
We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation with the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to...
Hydrodynamics research of wastewater treatment bioreactors
Institute of Scientific and Technical Information of China (English)
REN Nan-qi; ZHANG Bing; ZHOU Xue-fei
2009-01-01
To optimize the design and improve the performance of wastewater treatment bioreactors, the review concerning the hydrodynamics explored by theoretical equations, process experiments, modeling of the hydrody-namics and flow field measurement is presented. Results of different kinds of experiments show that the hydro-dynamic characteristics can affect sludge characteristics, mass transfer and reactor performance significantly. A-long with the development of theoretical equations, turbulence models including large eddy simulation models and Reynolds-averaged Navier-Stokes (RANS) models are widely used at present. Standard and modified k-ε models are the most widely used eddy viscosity turbulence models for simulating flows in bioreactors. Numericalsimulation of hydrodynamics is proved to be efficient for optimizing design and operation. The development of measurement techniques with high accuracy and low intrusion enables the flow filed in the bioreactors to be transparent. Integration of both numerical simulation and experimental measurement can describe the hydrody-namics very well.
Hydrodynamic Nambu Brackets derived by Geometric Constraints
Blender, Richard
2015-01-01
A geometric approach to derive the Nambu brackets for ideal two-dimensional (2D) hydrodynamics is suggested. The derivation is based on two-forms with vanishing integrals in a periodic domain, and with resulting dynamics constrained by an orthogonality condition. As a result, 2D hydrodynamics with vorticity as dynamic variable emerges as a generic model, with conservation laws which can be interpreted as enstrophy and energy functionals. Generalized forms like surface quasi-geostrophy and fractional Poisson equations for the stream-function are also included as results from the derivation. The formalism is extended to a hydrodynamic system coupled to a second degree of freedom, with the Rayleigh-B\\'{e}nard convection as an example. This system is reformulated in terms of constitutive conservation laws with two additive brackets which represent individual processes: a first representing inviscid 2D hydrodynamics, and a second representing the coupling between hydrodynamics and thermodynamics. The results can b...
Hydrodynamics of evaporating sessile drops
Barash, L Yu
2010-01-01
Several dynamical stages of the Marangoni convection of an evaporating sessile drop are obtained. We jointly take into account the hydrodynamics of an evaporating sessile drop, effects of the thermal conduction in the drop and the diffusion of vapor in air. The stages are characterized by different number of vortices in the drop and the spatial location of vortices. During the early stage the array of vortices arises near a surface of the drop and induces a non-monotonic spatial distribution of the temperature over the drop surface. The number of near-surface vortices in the drop is controlled by the Marangoni cell size, which is calculated similar to that given by Pearson for flat fluid layers. The number of vortices quickly decreases with time, resulting in three bulk vortices in the intermediate stage. The vortex structure finally evolves into the single convection vortex in the drop, existing during about 1/2 of the evaporation time.
Decoherent Histories and Hydrodynamic Equations
Halliwell, J J
1998-01-01
For a system consisting of a large collection of particles, a set of variables that will generally become effectively classical are the local densities (number, momentum, energy). That is, in the context of the decoherent histories approach to quantum theory, it is expected that histories of these variables will be approximately decoherent, and that their probabilites will be strongly peaked about hydrodynamic equations. This possibility is explored for the case of the diffusion of the number density of a dilute concentration of foreign particles in a fluid. It is shown that, for certain physically reasonable initial states, the probabilities for histories of number density are strongly peaked about evolution according to the diffusion equation. Decoherence of these histories is also shown for a class of initial states which includes non-trivial superpositions of number density. Histories of phase space densities are also discussed. The case of histories of number, momentum and energy density for more general...
Hydrodynamic stability and stellar oscillations
Indian Academy of Sciences (India)
H M Antia
2011-07-01
Chandrasekhar’s monograph on Hydrodynamic and hydromagnetic stability, published in 1961, is a standard reference on linear stability theory. It gives a detailed account of stability of ﬂuid ﬂow in a variety of circumstances, including convection, stability of Couette ﬂow, Rayleigh–Taylor instability, Kelvin–Helmholtz instability as well as the Jean’s instability for star formation. In most cases he has extended these studies to include effects of rotation and magnetic ﬁeld. In a later paper he has given a variational formulation for equations of non-radial stellar oscillations. This forms the basis for helioseismic inversion techniques as well as extension to include the effect of rotation, magnetic ﬁeld and other large-scale ﬂows using a perturbation treatment.
Integration of quantum hydrodynamical equation
Ulyanova, Vera G.; Sanin, Andrey L.
2007-04-01
Quantum hydrodynamics equations describing the dynamics of quantum fluid are a subject of this report (QFD).These equations can be used to decide the wide class of problem. But there are the calculated difficulties for the equations, which take place for nonlinear hyperbolic systems. In this connection, It is necessary to impose the additional restrictions which assure the existence and unique of solutions. As test sample, we use the free wave packet and study its behavior at the different initial and boundary conditions. The calculations of wave packet propagation cause in numerical algorithm the division. In numerical algorithm at the calculations of wave packet propagation, there arises the problem of division by zero. To overcome this problem we have to sew together discrete numerical and analytical continuous solutions on the boundary. We demonstrate here for the free wave packet that the numerical solution corresponds to the analytical solution.
Particle hydrodynamics with tessellation techniques
Hess, S
2009-01-01
Lagrangian smoothed particle hydrodynamics (SPH) is a well-established approach to model fluids in astrophysical problems, thanks to its geometric flexibility and ability to automatically adjust the spatial resolution to the clumping of matter. However, a number of recent studies have emphasized inaccuracies of SPH in the treatment of fluid instabilities. The origin of these numerical problems can be traced back to spurious surface effects across contact discontinuities, and to SPH's inherent prevention of mixing at the particle level. We here investigate a new fluid particle model where the density estimate is carried out with the help of an auxiliary mesh constructed as the Voronoi tessellation of the simulation particles instead of an adaptive smoothing kernel. This Voronoi-based approach improves the ability of the scheme to represent sharp contact discontinuities. We show that this eliminates spurious surface tension effects present in SPH and that play a role in suppressing certain fluid instabilities. ...
Nonstandard Gaits in Unsteady Hydrodynamics
Fairchild, Michael; Rowley, Clarence
2016-11-01
Marine biology has long inspired the design and engineering of underwater vehicles. The literature examining the kinematics and dynamics of fishes, ranging from undulatory anguilliform swimmers to oscillatory ostraciiform ones, is vast. Past numerical studies of these organisms have principally focused on gaits characterized by sinusoidal pitching and heaving motions. It is conceivable that more sophisticated gaits could perform better in some respects, for example as measured by thrust generation or by cost of transport. This work uses an unsteady boundary-element method to numerically investigate the hydrodynamics and propulsive efficiency of high-Reynolds-number swimmers whose gaits are encoded by Fourier series or by Jacobi elliptic functions. Numerical results are presented with an emphasis on identifying particular wake structures and modes of motion that are associated with optimal swimming. This work was supported by the Office of Naval Research through MURI Grant N00014-14-1-0533.
Introduction to Magneto-Hydrodynamics
Pelletier, Guy
Magneto-Hydrodynamics (hereafter MHD) describes plasmas on large scales and more generally electrically conducting fluids. This description does not discriminate between the various fluids that constitute the medium. In laboratory, it allows to globally describe a plasma machine, for instance a toroidal nuclear fusion reactor like a Tokamak. In astrophysics it plays an essential role in the description of cosmic objects and their environments, as well as the media, such as the interstellar or the intergalactic medium. A set of phenomena are specific to MHD description. Some of them will be presented in this lecture such as the tension effect, confinement, magnetic diffusivity, magnetic field freezing, Alfvén waves, magneto-sonic waves, reconnection. A celebrated phenomenon of MHD will not be introduced in this brief lecture, namely the dynamo effect.
Symmetry energy, unstable nuclei, and neutron star crusts
Iida, Kei
2013-01-01
Phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters.
Symmetry energy, unstable nuclei and neutron star crusts
Energy Technology Data Exchange (ETDEWEB)
Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)
2014-02-15
The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)
Hydrodynamic dispersion within porous biofilms
Davit, Y.
2013-01-23
Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.
The hydrodynamics of dolphin drafting
Directory of Open Access Journals (Sweden)
Weihs Daniel
2004-05-01
Full Text Available Abstract Background Drafting in cetaceans is defined as the transfer of forces between individuals without actual physical contact between them. This behavior has long been surmised to explain how young dolphin calves keep up with their rapidly moving mothers. It has recently been observed that a significant number of calves become permanently separated from their mothers during chases by tuna vessels. A study of the hydrodynamics of drafting, initiated in the hope of understanding the mechanisms causing the separation of mothers and calves during fishing-related activities, is reported here. Results Quantitative results are shown for the forces and moments around a pair of unequally sized dolphin-like slender bodies. These include two major effects. First, the so-called Bernoulli suction, which stems from the fact that the local pressure drops in areas of high speed, results in an attractive force between mother and calf. Second is the displacement effect, in which the motion of the mother causes the water in front to move forwards and radially outwards, and water behind the body to move forwards to replace the animal's mass. Thus, the calf can gain a 'free ride' in the forward-moving areas. Utilizing these effects, the neonate can gain up to 90% of the thrust needed to move alongside the mother at speeds of up to 2.4 m/sec. A comparison with observations of eastern spinner dolphins (Stenella longirostris is presented, showing savings of up to 60% in the thrust that calves require if they are to keep up with their mothers. Conclusions A theoretical analysis, backed by observations of free-swimming dolphin schools, indicates that hydrodynamic interactions with mothers play an important role in enabling dolphin calves to keep up with rapidly moving adult school members.
Non-Abelian Magnetized Blackholes and Unstable Attractors
Mosaffa, A. E.; Randjbar-Daemi, S.; Sheikh-Jabbari, M. M.
2006-01-01
Fluctuations of non-Abelian gauge fields in a background magnetic flux contain tachyonic modes and hence the background is unstable. We extend these results to the cases where the background flux is coupled to Einstein gravity and show that the corresponding spherically symmetric geometries, which in the absence of a cosmological constant are of the form of Reissner-Nordstrom blackholes or the AdS_2xS^2, are also unstable. We discuss the relevance of these instabilities to several places in s...
Generation of Solitary Rossby Waves by Unstable Topography
Institute of Scientific and Technical Information of China (English)
YANG Hong-Wei; YIN Bao-Shu; DONG Huan-He
2012-01-01
The effect of topography on generation of the solitary Rossby waves is researched. Here, the topography, as a forcing for waves generation, is taken as a function of longitude variable x and time variable t, which is called unstable topography. With the help of a perturbation expansion method, a forced mKdv equation governing the evolution of amplitude of the solitary Rossby waves is derived from quasi-geostrophic vortieity equation and is solved by the pseudo-spectral method. Basing on the waterfall plots, the generational features of the solitary Rossby waves under the influence of unstable topography and stable topography are compared and some conclusions are obtained.
TREATMENT OF UNSTABLE THORACOLUMBAR FRACTURES IN PEDIATRIC PATIENTS
Directory of Open Access Journals (Sweden)
Roberto Chapa Sosa
2015-09-01
Full Text Available Objective:To analyze the characteristics of unstable thoracolumbar fractures in the pediatric population.Methods:A retrospective cross-sectional study was conducted with pediatric patients (0 to 15 years who presented with unstable thoracolumbar fracture with or without neurological damage. Twenty-four operated patients were analyzed: 13 male and 11 female.Results:Falls from height are the most common cause, being the thoracolumbar junction the anatomical site most frequently injured.Conclusion:The thoracolumbar fractures are rare in the pediatric population, as well as post-surgical instrumentation structural deformities.
Flame spectra of solid propellants during unstable combustion.
Eisel, J. L.; Ryan, N. W.; Baer, A. D.
1972-01-01
The spectral and temporal details of the flames of a series of ammonium perchlorate-polyurethane propellants during both unstable and stable combustion were observed experimentally. A 400-scan per second optical spectrometer operating in the middle infrared region was used. During unstable combustion at low ratios of chamber free volume to nozzle throat area, three different frequencies were observed simultaneously. These were attributable to at least two mechanisms. During stable combustion periodic fluctuations in flame temperature and composition were also observed. Some aspects of theory of bulk mode instability were confirmed, but the assumptions of constant flame temperature and constant composition were found to be inaccurate.
Tidwell, Jenifer
2010-01-01
Despite all of the UI toolkits available today, it's still not easy to design good application interfaces. This bestselling book is one of the few reliable sources to help you navigate through the maze of design options. By capturing UI best practices and reusable ideas as design patterns, Designing Interfaces provides solutions to common design problems that you can tailor to the situation at hand. This updated edition includes patterns for mobile apps and social media, as well as web applications and desktop software. Each pattern contains full-color examples and practical design advice th
Introduction to the focus issue: chemo-hydrodynamic patterns and instabilities.
De Wit, A; Eckert, K; Kalliadasis, S
2012-09-01
Pattern forming instabilities are often encountered in a wide variety of natural phenomena and technological applications, from self-organization in biological and chemical systems to oceanic or atmospheric circulation and heat and mass transport processes in engineering systems. Spatio-temporal structures are ubiquitous in hydrodynamics where numerous different convective instabilities generate pattern formation and complex spatiotemporal dynamics, which have been much studied both theoretically and experimentally. In parallel, reaction-diffusion processes provide another large family of pattern forming instabilities and spatio-temporal structures which have been analyzed for several decades. At the intersection of these two fields, "chemo-hydrodynamic patterns and instabilities" resulting from the coupling of hydrodynamic and reaction-diffusion processes have been less studied. The exploration of the new instability and symmetry-breaking scenarios emerging from the interplay between chemical reactions, diffusion and convective motions is a burgeoning field in which numerous exciting problems have emerged during the last few years. These problems range from fingering instabilities of chemical fronts and reactive fluid-fluid interfaces to the dynamics of reaction-diffusion systems in the presence of chaotic mixing. The questions to be addressed are at the interface of hydrodynamics, chemistry, engineering or environmental sciences to name a few and, as a consequence, they have started to draw the attention of several communities including both the nonlinear chemical dynamics and hydrodynamics communities. The collection of papers gathered in this Focus Issue sheds new light on a wide range of phenomena in the general area of chemo-hydrodynamic patterns and instabilities. It also serves as an overview of the current research and state-of-the-art in the field.
Spectral variability of classical T Tauri stars accreting in an unstable regime
Kurosawa, Ryuichi
2013-01-01
Classical T Tauri stars (CTTSs) are variable in different time-scales. One type of variability is possibly connected with the accretion of matter through the Rayleigh-Taylor instability that occurs at the interface between an accretion disc and a stellar magnetosphere. In this regime, matter accretes in a several temporarily formed accretion streams or `tongues' which appear in random locations, and produce stochastic photometric and line variability. We use the results of global three-dimensional magnetohydrodynamic simulations of matter flows in both stable and unstable accretion regimes to calculate time-dependent hydrogen line profiles and study their variability behaviours. In the stable regime, some hydrogen lines (e.g. H-beta, H-gamma, H-delta, Pa-beta and Br-gamma) show a redshifted absorption component only during a fraction of a stellar rotation period, and its occurrence is periodic. However, in the unstable regime, the redshifted absorption component is present rather persistently during a whole s...
Unstable patterns and robust synchronization in a model of motor pathway in birdsong
Energy Technology Data Exchange (ETDEWEB)
Moukam Kakmeni, F.M. [Department of Physics, Faculty of Science, University of Buea, P.O. Box 63, Buea (Cameroon); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)], E-mail: fmoukam@uycdc.uninet.cm; Bowong, S. [Laboratory of Applied Mathematics, Department of Mathematics and Computer Science, Faculty of Science, University of Douala, P.O. Box 24157, Douala (Cameroon); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)], E-mail: sbowong@uycdc.uninet.cm; Nana, L. [Laboratory of Applied Mathematics, Department of Mathematics and Computer Science, Faculty of Science, University of Douala, P.O. Box 24157, Douala (Cameroon)], E-mail: Inana@uycdc.uninet.cm; Kofane, T.C. [Laboratoire de Mecanique, Faculte des Sciences, Universite de Yaounde I, B.P. 812 Yaounde (Cameroon); The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)], E-mail: tkofane@uycdc.uninet.cm
2009-01-15
This paper investigates the fundamental dynamical mechanism responsible for transition to chaos in periodically modulated Duffing-Van der Pol oscillator. It is shown that a modulationally unstable pattern appears into an initially stable motionless state. A further spatiotemporal transition occurs with a sharp interface from the selected stable pattern to a stabilized pattern or chaotic state. Also, the synchronization of the chaotic state of the model is investigated. The results are discussed in the context of generalized synchronization. The main idea is to construct an augmented dynamical system from the synchronization error system, which is itself uncertain. The advantage of this method over existing results is that the synchronization time is explicitly computed. Numerical simulations are provided to verify the operation of the proposed algorithm.
Fikkert, F.W.
2007-01-01
Take away mouse and keyboard. Now, how do you interact with a computer? Especially one that has a display that is the size of an entire wall. One possibility is through gesture interfaces. Remember Minority Report? Cool stuff, but that was already five years ago.. So, what is already possible now an
Houten, van F.J.A.M.
1992-01-01
The paper identifies the changing needs and requirements with respect to the interfacing of manufacturing functions. It considers the manufacturing system, its components and their relationships from the technological and logistic point of view, against the background of concurrent engineering. Desi
DEFF Research Database (Denmark)
Holbøll, Joachim T.; Henriksen, Mogens; Nilson, Jesper K.;
1999-01-01
The wide use of solid insulating materials combinations in combinations has introduced problems in the interfaces between components. The most common insulating materials are cross-linked polyethylene (XLPE), silicone rubber (SIR) and ethylene-propylene rubbers (EPR). Assemblies of these materials...
FLUID-STRUCTURE INTERACTION OF HYDRODYNAMIC DAMPER DURING THE RUSH INTO THE WATER CHANNEL
Institute of Scientific and Technical Information of China (English)
XU Qing-xin; SHEN Rong-ying
2008-01-01
The hydrodynamic damper is a device to decrease the motion of armament carrier by use of the water resistance. When hydrodynamic damper rushes into the water channel with high velocity, it is a complicated flow phenomenon with fluid-structure interaction, free surface and moving interface. Numerical simulation using the Smoothed Particle Hydrodynamics (SPH) method coupled with the Finite Element (FE) method was successfully conducted to predict the dynamic characteristics of hydrodynamic damper. The water resistance, the pressure in the interface and the stress of structure were investigated, and the relationship among the peak of water resistance, initial velocity and actual draught was also discussed. The empirical formula was put forward to predict the water resistance. And it is found that the resistance coefficient is commonly in the range of 0.3≤C ≤0.5, when the initial velocity is larger than 50 m/s. It can be seen that the SPH method coupled with the FE method has many obvious advantages over other numerical methods for this complicated flow problem with fluid-structure interaction.
Effects of basin bottom slope on jet hydrodynamics and river mouth bar formation
Jiménez-Robles, A. M.; Ortega-Sánchez, M.; Losada, M. A.
2016-06-01
River mouth bars are strategic morphological units primarily responsible for the development of entire deltaic systems. This paper addresses the role of receiving basin slope in the hydrodynamics of an exiting sediment-laden turbulent jet and in resulting mouth bar morphodynamics. We use Delft3D, a coupled hydrodynamic and morphodynamic numerical model, along with a theoretical formulation to reproduce the physics of the problem, characterized by a fluvially dominated inlet free of waves and tides. We propose an updated theoretical model with a slope-dependent entrainment coefficient, showing that the rate at which ambient fluid is incorporated into a jet increases with higher basin slopes. Transient results reveal that the magnitude of a basin slope can alter the stability of a jet, favoring the formation of an unstable meandering jet. While a stable jet gives rise to "middle-ground" bars accompanied by diverging channels, a "lunate" mouth bar results from unstable jets. Additional morphodynamic simulations demonstrate that the time required for mouth bar stagnation in its final position increases linearly with the basin slope. In contrast, the distance at which the mouth bar eventually forms decreases until reaching an asymptotic value for slopes higher than 2%. Moreover, the basin slope highly influences sedimentary processes responsible for bar formation: for milder slopes, progradation processes prevail, while in steeper basins aggradation is more relevant. Finally, the minimum relative water depth over a bar crest that forces the flow to bifurcate around a fully developed bar decreases with the basin slope.
Unstable volatility functions: the break preserving local linear estimator
DEFF Research Database (Denmark)
Casas, Isabel; Gijbels, Irene
The objective of this paper is to introduce the break preserving local linear (BPLL) estimator for the estimation of unstable volatility functions. Breaks in the structure of the conditional mean and/or the volatility functions are common in Finance. Markov switching models (Hamilton, 1989) and t...
Creation of unstable particles and decoherence in semiclassical cosmology
Castagnino, M A; Lombardo, F C; Castagnino, Mario; Landau, Susana; Lombardo, Fernando C.
1999-01-01
We consider a simple cosmological model in order to show the importance of unstable particle creation for the validity of the semiclassical approximation. Using the mathematical structure of rigged Hilbert spaces we show that particle creation is the seed of decoherence which enables the quantum to classical transition.
Properties of the false vacuum as the quantum unstable state
Urbanowski, K
2016-01-01
We analyze properties of unstable vacuum states from the point of view of the quantum theory. In the literature one can find some suggestions that some of false (unstable) vacuum states may survive up to times when their survival probability has a non-exponential form. At asymptotically late times the survival probability as a function of time $t$ has an inverse power--like form. We show that at this time region the energy of the false vacuum states tends to the energy of the true vacuum state as $1/t^{2}$ for $t \\to \\infty$. This means that the energy density in the unstable vacuum state should have analogous properties and hence the cosmological constant $\\Lambda = \\Lambda (t)$ too. The conclusion is that $\\Lambda$ in the Universe with the unstable vacuum should have a form of the sum of the "bare" cosmological constant and of the term of a type $1/t^{2}$: $\\Lambda(t) \\equiv \\Lambda_{bare} + d/ t^{2}$ (where $\\Lambda_{bare}$ is the cosmological constant for the Universe with the true vacuum).
RAYLEIGH–TAYLOR UNSTABLE FLAMES—FAST OR FASTER?
Energy Technology Data Exchange (ETDEWEB)
Hicks, E. P., E-mail: eph2001@columbia.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States)
2015-04-20
Rayleigh–Taylor (RT) unstable flames play a key role in the explosions of supernovae Ia. However, the dynamics of these flames are still not well understood. RT unstable flames are affected by both the RT instability of the flame front and by RT-generated turbulence. The coexistence of these factors complicates the choice of flame speed subgrid models for full-star Type Ia simulations. Both processes can stretch and wrinkle the flame surface, increasing its area and, therefore, the burning rate. In past research, subgrid models have been based on either the RT instability or turbulence setting the flame speed. We evaluate both models, checking their assumptions and their ability to correctly predict the turbulent flame speed. Specifically, we analyze a large parameter study of 3D direct numerical simulations of RT unstable model flames. This study varies both the simulation domain width and the gravity in order to probe a wide range of flame behaviors. We show that RT unstable flames are different from traditional turbulent flames: they are thinner rather than thicker when turbulence is stronger. We also show that none of the several different types of turbulent flame speed models accurately predicts measured flame speeds. In addition, we find that the RT flame speed model only correctly predicts the measured flame speed in a certain parameter regime. Finally, we propose that the formation of cusps may be the factor causing the flame to propagate more quickly than predicted by the RT model.
Stabilizing control for a class of delay unstable processes.
Lee, See Chek; Wang, Qing-Guo; Nguyen, Le Binh
2010-07-01
The stabilization of unstable first-order plus time-delay processes with a zero by means of simple controllers is investigated in detail. Explicit stabilizability conditions are established. And the computational methods for determining stabilizing controller parameters are also presented with illustrative examples.
Breath markers of oxidative stress in patients with unstable angina.
Phillips, Michael; Cataneo, Renee N; Greenberg, Joel; Grodman, Richard; Salazar, Manuel
2003-01-01
Cardiac chest pain is accompanied by oxidative stress, which generates alkanes and other volatile organic compounds (VOCs). These VOCs are excreted in the breath and could potentially provide a rational diagnostic marker of disease. The breath methylated alkane contour (BMAC), a 3-dimensional surface plot of C4-C20 alkanes and monomethylated alkanes, provides a comprehensive set of markers of oxidative stress. In this pilot study, we compared BMACs in patients with unstable angina pectoris and in healthy volunteers. Breath VOCs were analyzed in 30 patients with unstable angina confirmed by coronary angiography and in 38 age-matched healthy volunteers with no known history of heart disease (mean age +/- SD, 62.7 +/- 12.3 years and 62.5 +/- 10.0, not significant). BMACs in both groups were compared to identify the combination of VOCs that provided the best discrimination between the 2 groups. Forward stepwise entry discriminant analysis selected 8 VOCs to construct a predictive model that correctly classified unstable angina patients with sensitivity of 90% (27 of 30) and specificity of 73.7% (28 of 38). On cross-validation, sensitivity was 83.3% (25 of 30) and specificity was 71.1% (27 of 38). We conclude that the breath test distinguished between patients with unstable angina and healthy control subjects.
Beam shaping characteristics of an unstable-waveguide hybrid resonator.
Xiao, Longsheng; Qin, Yingxiong; Tang, Xiahui; Wan, Chenhao; Li, Gen; Zhong, Lijing
2014-04-01
The unstable-waveguide hybrid resonator emits a rectangular, simple astigmatic beam with a large number of high-spatial-frequency oscillations in the unstable direction. To equalize the beam quality, in this paper, a beam shaping system with a spatial filter for the hybrid resonator was investigated by numerical simulation and experimental method. The high-frequency components and fundamental mode of the output beam of the hybrid resonator in the unstable direction are separated by a focus lens. The high-frequency components of the beam are eliminated by the following spatial filter. A nearly Gaussian-shaped beam with approximately equal beam propagation factor M² in the two orthogonal directions was obtained. The effects of the width of the spatial filter on the beam quality, power loss, and intensity distribution of the shaped beam were investigated. The M² factor in the unstable direction is changed from 1.6 to 1.1 by optimum design. The power loss is only 9.5%. The simulation results are in good agreement with the experimental results.
Wear Behavior of an Unstable Knee: Stabilization via Implant Design?
Directory of Open Access Journals (Sweden)
Jörn Reinders
2014-01-01
Full Text Available Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates (P≤0.001 were observed for the unstable knee (14.58±0.56 mg/106 cycles compared to the stable knee (7.97 ± 0.87 mg/106 cycles. A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P≤0.01. This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study.
Control of an under activated unstable nonlinear object
DEFF Research Database (Denmark)
Andersen, Nils Axel; Skovgaard, L.; Ravn, Ole
2001-01-01
This paper presents a comprehensive comparative study of several nonlinear controllers for stabilisation of the under actuated unstable nonlinear object known as the Acrobot in the literature. The object is a two DOF robot arm only actuated at the elbow. The study compares several control...
Towards pair production near threshold with unstable particle effective theory
Energy Technology Data Exchange (ETDEWEB)
Beneke, M.; Kauer, N.; /Aachen, Tech. Hochsch.; Signer, A.; /Durham U., IPPP; Zanderighi, G.; /Fermilab
2004-10-01
We illustrate the use of effective theory techniques to describe processes involving unstable particles close to resonance. First, we present the main ideas in the context of a scalar resonance in an Abelian gauge-Yukawa model. We then outline the necessary modifications to describe W-pair production close to threshold in electron-positron collisions.
Note About Unstable D-Brane with Dynamical Tension
Kluson, J
2016-01-01
We propose an action for unstable Dp-brane with dynamical tension. We show that the equations of motion are equivalent to the equations of motion derived from DBI and WZ actions for non-BPS Dp-brane. We also find Hamiltonian formulation of this action and analyze properties of the solutions corresponding to the tachyon vacuum and zero tension solution.
Control of an under activated unstable nonlinear object
DEFF Research Database (Denmark)
Andersen, Nils Axel; Skovgaard, L.; Ravn, Ole
2001-01-01
This paper presents a comprehensive comparative study of several nonlinear controllers for stabilisation of the under actuated unstable nonlinear object known as the Acrobot in the literature. The object is a two DOF robot arm only actuated at the elbow. The study compares several control...
Unstable angina following intracavernous injection of alprostadil: a case study
Delongchamps, Nicolas Barry; Legrand, Guillaume; Zerbib, Marc; Peyromaure, Michael
2009-01-01
Intracavernous injection of alprostadil is the gold standard treatment for erectile dysfunction following radical prostatectomy. After surgery, low doses of alprostadil can be delivered for the sole purpose of penile rehabilitation. The only reported systemic side effects of such injections are arterial hypotension and headache. In the current report, a case of unstable angina immediately following an intracavernous injection of alprostadil is described.
A Displayer of Stellar Hydrodynamics Processes
Vigo, José Antonio Escartín; Senz, Domingo García
The graphics display tool that we present here was originally developed to meet the needs of the Astronomy and Astrophysics group at the UPC (GAA). At present, it is used to display the plots obtained from hydrodynamic simulations using the SPH (smoothed particle hydrodynamics) method. It is, however, a generic program that can be used for other multidimensional hydrodynamic methods. The application combines the most widely used features of other programs (most of them commercial) such as GnuPlot, Surfer, Grapher, IDL, Voxler, etc.
Non abelian hydrodynamics and heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Calzetta, E. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina)
2014-01-14
The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.
Quantum ideal hydrodynamics on the lattice
Burch, Tommy
2013-01-01
After discussing the problem of defining the hydrodynamic limit from microscopic scales, we give an introduction to ideal hydrodynamics in the Lagrange picture, and show that it can be viewed as a field theory, which can be quantized using the usual Feynman sum-over-paths prescription. We then argue that this picture can be connected to the usually neglected thermal microscopic scale in the hydrodynamic expansion. After showing that this expansion is generally non-perturbative, we show how the lattice can be used to understand the impact quantum and thermal fluctuations can have on the fluid behavior.
Non abelian hydrodynamics and heavy ion collisions
Calzetta, Esteban
2013-01-01
The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.
Rayleigh-Taylor finger instability mixing in hydrodynamic shell convection models
Mocak, Miroslav
2010-01-01
Mixing processes in stars driven by composition gradients as a result of the Rayleigh-Taylor instability are not anticipated. They are supported only by hydrodynamic studies of stellar convection. We find that such mixing occurs below the bottom edge of convection zones in our multidimensional hydrodynamic shell convection models. It operates at interfaces created by off-center nuclear burning, where less dense gas with higher mean molecular weight is located above denser gas with a lower mean molecular weight. We discuss the mixing under various conditions with hydrodynamic convection models based on stellar evolutionary calculations of the core helium flash in a 1.25 Msun star, the core carbon flash in a 9.3 Msun star, and of oxygen burning shell in a star with a mass of 23 Msun. We simulate the hydrodynamic behavior of shell convection during various phases of stellar evolution with the Eulerian hydrodynamics code HERAKLES in two and three spatial dimensions. Initial models for this purpose are obtained by...
Low torque hydrodynamic lip geometry for bi-directional rotation seals
Dietle, Lannie L.; Schroeder, John E.
2009-07-21
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Energy Technology Data Exchange (ETDEWEB)
Tartakovsky, Alexandre M.; Panchenko, Alexander
2016-01-01
We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics Model (PF-SPH) and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the accuracy of the model under static and dynamic conditions. Finally, to demonstrate the capabilities and robustness of the model we use it to simulate flow of three fluids in a porous material.
Tartakovsky, Alexandre M.; Panchenko, Alexander
2016-01-01
We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.
Unstable Dynamical Properties of Spiral Cloud Bands in Tropical Cyclones
Institute of Scientific and Technical Information of China (English)
HUANG Hong; ZHANG Ming
2009-01-01
A nondivergent barotropic model (Model 1) and a barotropic primitive equation vortex model (Model 2) are linearized respectively in this paper. Then their perturbation wave spectrums are computed with a normal mode approach to study the instability problem on an appointed tropical cyclone (TC)-like vortex, thereby, the dynamic instability properties of spiral cloud bands of TCs are discussed. The results show that the unstable mode of both models exhibits a spiral band-like structure that propagates away from the vortex outside the radius of maximum winds. The discrete modal instability of the pure vortex Rossby wave can account for the generation of the eyewall and the inner spiral band. The unstable mode in Model 2 has three parts, i.e., eyewall, inner and outer spiral bands. This mode can be interpreted as a mixed vortex Rossby-inertia gravitational wave. The unbalanced property of the wave outside the stagnation radius of the vortex Rossby wave is one of the important reasons for the formation of the outer spiral band in TCs. Accordingly, the outer spiral band can be identified to possess properties of an inertial-gravitational wave.When the formation of unstable inner and outer spiral bands is studied, a barotropic vortex model shall be used. In this model, the most unstable perturbation bears the attributes of either the vortex Rossby wave or the inertial-gravitational wave, depending on the vortex radius. So such perturbations shall be viewed as an unbalanced and unstable mixed wave of these two kinds of waves.
Hydrodynamic Instabilities in High-Energy-Density Settings
Smalyuk, Vladimir
2016-10-01
Our understanding of hydrodynamic instabilities, such as the Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities, in high-energy-density (HED) settings over past two decades has progressed enormously. The range of conditions where hydrodynamic instabilities are experimentally observed now includes direct and indirect drive inertial confinement fusion (ICF) where surprises continue to emerge, linear and nonlinear regimes, classical interfaces vs. stabilized ablation fronts, tenuous ideal plasmas vs. high density Fermi degenerate plasmas, bulk fluid interpenetration vs. mixing down to the atomic level, in the presence of magnetic fields and/or intense radiation, and in solid state plastic flow at high pressures and strain rates. Regimes in ICF can involve extreme conditions of matter with temperatures up to kilovolts, densities of a thousand times solid densities, and time scales of nanoseconds. On the other hand, scaled conditions can be generated that map to exploding stars (supernovae) with length and time scales of millions of kilometers and hours to days or even years of instability evolution, planetary formation dynamics involving solid-state plastic flow which severely modifies the RT growth and continues to challenge reliable theoretical descriptions. This review will look broadly at progress in probing and understanding hydrodynamic instabilities in these very diverse HED settings, and then will examine a few cases in more depth to illustrate the detailed science involved. Experimental results on large-scale HED facilities such as the Omega, Nike, Gekko, and Shenguang lasers will be reviewed and the latest developments at the National Ignition Facility (NIF) and Z machine will be covered. Finally, current overarching questions and challenges will be summarized to motivate research directions for future. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
Smoothed particle hydrodynamics and magnetohydrodynamics
Price, Daniel J.
2012-02-01
This paper presents an overview and introduction to smoothed particle hydrodynamics and magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several 'urban myths' regarding SPH, in particular the idea that one can simply increase the 'neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.
Fluctuating hydrodynamics for ionic liquids
Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos
2017-04-01
We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.
DEFF Research Database (Denmark)
Thorhauge, Sally
2014-01-01
"Interface learning - New goals for museum and upper secondary school collaboration" investigates and analyzes the learning that takes place when museums and upper secondary schools in Denmark work together in local partnerships to develop and carry out school-related, museum-based coursework...... for students. The research focuses on the learning that the students experience in the interface of the two learning environments: The formal learning environment of the upper secondary school and the informal learning environment of the museum. Focus is also on the learning that the teachers and museum...... professionals experience as a result of their collaboration. The dissertation demonstrates how a given partnership’s collaboration affects the students’ learning experiences when they are doing the coursework. The dissertation presents findings that museum-school partnerships can use in order to develop...
DEFF Research Database (Denmark)
Pold, Søren
2007-01-01
Søren Pold gør sig overvejelser med udgangspunkt i museumsprojekterne Kongedragter.dk og Stigombord.dk. Han argumenterer for, at udviklingen af internettets interfaces skaber nye måder at se, forstå og interagere med kulturen på. Brugerne får nye medievaner og perceptionsmønstre, der må medtænkes i...
DEFF Research Database (Denmark)
Pold, Søren
2007-01-01
Søren Pold gør sig overvejelser med udgangspunkt i museumsprojekterne Kongedragter.dk og Stigombord.dk. Han argumenterer for, at udviklingen af internettets interfaces skaber nye måder at se, forstå og interagere med kulturen på. Brugerne får nye medievaner og perceptionsmønstre, der må medtænkes i...
Hydrodynamically driven colloidal assembly in dip coating.
Colosqui, Carlos E; Morris, Jeffrey F; Stone, Howard A
2013-05-01
We study the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth substrates. Below a critical withdrawal speed where the coating film is thinner than the particle diameter, capillary forces induced by deformation of the free surface prevent the convective transport of single particles through the meniscus beneath the film. Capillary-induced forces are balanced by hydrodynamic drag only after a minimum number of particles assemble within the meniscus. The particle assembly can thus enter the thin film where it moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces produces periodic and regular structures below a critical ratio Ca(2/3)/sqrt[Bo] particles in suspension. The hydrodynamically driven assembly documented here is consistent with stripe pattern formations observed experimentally in dip coating.
Adiabatic hydrodynamics: The eightfold way to dissipation
Haehl, Felix M; Rangamani, Mukund
2015-01-01
We provide a complete solution to hydrodynamic transport at all orders in the gradient expansion compatible with the second law constraint. The key new ingredient we introduce is the notion of adiabaticity, which allows us to take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid compensates for entropy production. The space of adiabatic fluids is quite rich, and admits a decomposition into seven distinct classes. Together with the dissipative class this establishes the eightfold way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms beyond leading order in the gradient expansion are agnostic of the second law. While this completes a transport taxonomy, we go on to argue for a new symmetry principle, an Abelian gauge invariance that guarantees adiabaticity in hydrodynamics. We suggest that this symmetry is the macroscopic manifestation of the microscopic KMS invariance. We demonstrate its utility by explicitly constructing effective ac...
CHOLLA: A New Massively Parallel Hydrodynamics Code for Astrophysical Simulation
Schneider, Evan E.; Robertson, Brant E.
2015-04-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳2563) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
Nano thermo-hydrodynamics method for investigating cell membrane fluidity
Institute of Scientific and Technical Information of China (English)
2008-01-01
As a barrier to compartmentalize cells,mem-branes form the interface between a cell and its surround-ings.The essential function of a membrane is to maintain a relatively stable environment in the cell,exchange sub-stances selectively and transfer energy and information continually from the outside.It is intriguing that above the phase transition temperature,the membrane lipid molecule will have three modes-lateral diffusion,rotational movement and flip-flop activity.These thermodynamic processes are vital to cell existence,growth,division,differentiation and are also responsible for hundreds of thousands of phenomena in life.Previously,species transport across the membrane was interpreted mainly from a phenomenological view using a lumped system model.Therefore,detailed flow processes occurred in the membrane domain and clues related to life mechanism were not sufficiently tackled.Such important issues can be clarifled by modeling nano scale thermal hydrodynamics over the gap space of a cell membrane.Previously observed complex membrane behaviors will be shown in this paper and explained by the thermally induced fluidic convections inside the membrane.A correlation between nano scale hydrodynamics,non-equilibrium thermodynamics and eell membrane activities is set up.The disclosed mechanisms are expected to provide a new viewpoint on the interaction between intracellular and extracellular processes through the membrane.
Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies
Energy Technology Data Exchange (ETDEWEB)
Susoeff, A.R.; Hawke, R.S.; Morrison, J.J.; Dimonte, G.; Remington, B.A.
1993-12-08
An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. The Rayleigh- Taylor instability is investigated by accelerating two dissimilar density fluids using the LEM to achieve a wide variety of acceleration and deceleration profiles. The acceleration profiles are achieved by independent control of rail and augmentation currents. A variety of acceleration-time profiles are possible including: (1) constant, (2) impulsive and (3) shaped. The LEM and support structure are a robust design in order to withstand high loads with deflections and to mitigate operational vibration. Vibration of the carriage during acceleration could create artifacts in the data which would interfere with the intended study of the Rayleigh-Taylor instability. The design allows clear access for diagnostic techniques such as laser induced fluorescence radiography, shadowgraphs and particle imaging velocimetry. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Results of contemporary studies for non-arcing sliding contact of solid armatures are used for the design of the driving armature and the dynamic electromagnetic braking system. A 0. 6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM design which will accelerate masses of up to 3kg to a maximum of about 3000g{sub o}, where g{sub o} is accelerated due to gravity.
Hydrodynamic simulations of He-shell flash convection
Herwig, F; Hückstädt, R M; Timmes, F X; Freytag, Bernd; Herwig, Falk; Hueckstaedt, Robert M.; Timmes, Francis X.
2006-01-01
We present the first hydrodynamic, multi-dimensional simulations of He-shell flash convection. Specifically, we investigate the properties of shell convection at a time immediately before the He- luminosity peak during the 15th thermal pulse of a stellar evolution track with initially two solar masses and metallicity Z=0.01. This choice is a representative example of a low-mass asymptotic giant branch thermal pulse. We construct the initial vertical stratification with a set of polytropes to resemble the stellar evolution structure. Convection is driven by a constant volume heating in a thin layer at the bottom of the unstable layer. We calculate a grid of 2D simulations with different resolutions and heating rates. Our set of simulations includes one low-resolution 3D run. The computational domain includes 11.4 pressure scale heights. He-shell flash convection is dominated by large convective cells that are centered in the lower half of the convection zone. Convective rolls have an almost circular appearance...
Hydrodynamics of Leidenfrost droplets in one-component fluids
Xu, Xinpeng
2013-04-24
Using the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], we numerically investigate the hydrodynamics of Leidenfrost droplets under gravity in two dimensions. Some recent theoretical predictions and experimental observations are confirmed in our simulations. A Leidenfrost droplet larger than a critical size is shown to be unstable and break up into smaller droplets due to the Rayleigh-Taylor instability of the bottom surface of the droplet. Our simulations demonstrate that an evaporating Leidenfrost droplet changes continuously from a puddle to a circular droplet, with the droplet shape controlled by its size in comparison with a few characteristic length scales. The geometry of the vapor layer under the droplet is found to mainly depend on the droplet size and is nearly independent of the substrate temperature, as reported in a recent experimental study [Phys. Rev. Lett. 109, 074301 (2012)]. Finally, our simulations demonstrate that a Leidenfrost droplet smaller than a characteristic size takes off from the hot substrate because the levitating force due to evaporation can no longer be balanced by the weight of the droplet, as observed in a recent experimental study [Phys. Rev. Lett. 109, 034501 (2012)].
Hydrodynamical Simulations of the Barred Spiral Galaxy NGC 1097
Lin, Lien-Hsuan; Hsieh, Pei-Ying; Taam, Ronald E; Yang, Chao-Chin; Yen, David C C
2013-01-01
NGC 1097 is a nearby barred spiral galaxy believed to be interacting with the elliptical galaxy NGC 1097A located to its northwest. It hosts a Seyfert 1 nucleus surrounded by a circumnuclear starburst ring. Two straight dust lanes connected to the ring extend almost continuously out to the bar. The other ends of the dust lanes attach to two main spiral arms. To provide a physical understanding of its structural and kinematical properties, two-dimensional hydrodynamical simulations have been carried out. Numerical calculations reveal that many features of the gas morphology and kinematics can be reproduced provided that the gas flow is governed by a gravitational potential associated with a slowly rotating strong bar. By including the self-gravity of the gas disk in our calculation, we have found the starburst ring to be gravitationally unstable which is consistent with the observation in \\citet{hsieh11}. Our simulations show that the gas inflow rate is 0.17 M$_\\sun$ yr$^{-1}$ into the region within the starbu...
Nassiri, Ali; Vivek, Anupam; Abke, Tim; Liu, Bert; Lee, Taeseon; Daehn, Glenn
2017-06-01
Numerical simulations of high-velocity impact welding are extremely challenging due to the coupled physics and highly dynamic nature of the process. Thus, conventional mesh-based numerical methodologies are not able to accurately model the process owing to the excessive mesh distortion close to the interface of two welded materials. A simulation platform was developed using smoothed particle hydrodynamics, implemented in a parallel architecture on a supercomputer. Then, the numerical simulations were compared to experimental tests conducted by vaporizing foil actuator welding. The close correspondence of the experiment and modeling in terms of interface characteristics allows the prediction of local temperature and strain distributions, which are not easily measured.
Thermo--hydrodynamics As a Field Theory
Jezierski, Jacek
2011-01-01
The field theoretical description of thermo-hydrodynamics is given. It is based on the duality between the physical space--time and the "material space-time" which we construct here. The material space appearing in a natural way in the canonical formulation of the hydrodynamics is completed with a material time playing role of the field potential for temperature. Both Lagrangian and Hamiltonian formulations, the canonical structure, Poisson bracket, N\\"other theorem and conservation laws are discussed.
Hydrodynamics of bacterial colonies: Phase diagrams
Lega, J.; Passot, T.
2004-09-01
We present numerical simulations of a recent hydrodynamic model describing the growth of bacterial colonies on agar plates. We show that this model is able to qualitatively reproduce experimentally observed phase diagrams, which relate a colony shape to the initial quantity of nutrients on the plate and the initial wetness of the agar. We also discuss the principal features resulting from the interplay between hydrodynamic motions and colony growth, as described by our model.
Improvements to SOIL: An Eulerian hydrodynamics code
Energy Technology Data Exchange (ETDEWEB)
Davis, C.G.
1988-04-01
Possible improvements to SOIL, an Eulerian hydrodynamics code that can do coupled radiation diffusion and strength of materials, are presented in this report. Our research is based on the inspection of other Eulerian codes and theoretical reports on hydrodynamics. Several conclusions from the present study suggest that some improvements are in order, such as second-order advection, adaptive meshes, and speedup of the code by vectorization and/or multitasking. 29 refs., 2 figs.
Relabeling symmetries in hydrodynamics and magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Padhye, N.; Morrison, P.J.
1996-04-01
Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel`s theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism.
The numerical study of shock-induced hydrodynamic instability and mixing
Institute of Scientific and Technical Information of China (English)
Wang Tao; Bai Jing-Song; Li Ping; Zhong Min
2009-01-01
Based on multi-fluid volume fraction and piecewise parabolic method (PPM), a multi-viscosity-fluid hydrodynamic code MVPPM (Multi-Viscosity-Fluid Piecewise Parabolic Method) is developed and applied to the problems of shock-induced hydrodynamic interfacial instability and mixing. Simulations of gas/liquid interface instability show that the influences of initial perturbations on the fluid mixing zone (FMZ) growth are significant, especially at the late stages, while grids have only a slight effect on the FMZ width, when the interface is impulsively accelerated by a shock wave passing through it. A numerical study of the hydrodynamic interfacial instability and mixing of gaseous flows impacted by re-shocks is presented. It reveals that the numerical results are in good agreement with the experimental results and the mixing growth rate strongly depends on initial conditions. Ultimately, the jelly layer experiment relevant to the instability impacted by exploding is simulated. The shape of jelly interface, position of front face of jelly layer, crest and trough of perturbation versus time are given; their simulated results are in good agreement with experimental results.
Relativistic Hydrodynamics and Non-Equilibrium Steady States
Spillane, Michael
2015-01-01
We review recent interest in the relativistic Riemann problem as a method for generating a non-equilibrium steady state. In the version of the problem under con- sideration, the initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The new double shock solutions are in contrast with older solutions that involve one shock and one rarefaction wave. We use numerical simulations to show that the older solutions are preferred. Briefly we discuss the effects of a conserved charge. Finally, we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids.
Surfactant effect on drop coalescence and film drainage hydrodynamics
Weheliye, Weheliye; Chinaud, Maxime; Voulgaropoulos, Victor; Angeli, Panagiota
2015-11-01
Coalescence of a drop on an aqueous-organic interface is studied in two test geometries A rectangular acrylic vessel and a Hele-Shaw cell (two parallel plates placed 2mm apart) are investigated for the experiments. Time resolved Particle Image Velocimetry (PIV) measurements provide information on the hydrodynamics during the bouncing stage of the droplet and on the vortices generated at the bulk fluid after the droplet has coalesced. The velocity field inside the droplet during its coalescence is presented. By localizing the rupture point of the coalescence in the quasi two dimensional cell, the film drainage dynamics are discussed by acquiring its flow velocity by PIV measurements with a straddling camera. The effect of surface tension forces in the coalescence of the droplet is investigated by introducing surface active agents at various concentrations extending on both sides of the critical micelle concentration.
Modelling free surface flows with smoothed particle hydrodynamics
Directory of Open Access Journals (Sweden)
L.Di G.Sigalotti
2006-01-01
Full Text Available In this paper the method of Smoothed Particle Hydrodynamics (SPH is extended to include an adaptive density kernel estimation (ADKE procedure. It is shown that for a van der Waals (vdW fluid, this method can be used to deal with free-surface phenomena without difficulties. In particular, arbitrary moving boundaries can be easily handled because surface tension is effectively simulated by the cohesive pressure forces. Moreover, the ADKE method is seen to increase both the accuracy and stability of SPH since it allows the width of the kernel interpolant to vary locally in a way that only the minimum necessary smoothing is applied at and near free surfaces and sharp fluid-fluid interfaces. The method is robust and easy to implement. Examples of its resolving power are given for both the formation of a circular liquid drop under surface tension and the nonlinear oscillation of excited drops.
External fixation in early treatment of unstable pelvic fractures
Institute of Scientific and Technical Information of China (English)
HU San-bao; XU Hong; GUO Heng-bing; SUN Tong; WANG Chang-jun
2012-01-01
Background Patients with pelvic fractures are often treated in hospitals without the capacity to implement an open reduction internal fixation (ORIF).This often leads to pelvic malunion in patients with unstable pelvic fracture,shock or even death due to uncontrollable pelvic hemorrhage and unstable hemodynamics.This study explored the role of early external fixation (within 7 days) for patients with unstable pelvic fractures.Methods A retrospective analysis was conducted on 32 patients with unstable pelvic fractures treated with early external fixation from January 2005 to January 2010 (file type B:18 cases; C:14 cases).The study comprised 28 males and 4 females,with a mean age of (32±8) years (range,21-56 years).Of these patients,22 were treated with emergency pelvic external fixation and 10 were treated with external fixation within 1-7 days.Fifteen cases suffered traumatic hemorrhagic shock.A statistical analysis was conducted to compare fluid infusion and blood transfusion volumes within the first 24 hours of these shock patients with another cohort of patients treated without early external fixation from January 1993 to January 1998.Results The average follow-up was (34.7±14.6) months (range,6-66 months).Six to eight weeks after external fixation,patients could walk with crutches; by 12 weeks,external fixation was removed and all fractures had healed.Seven patients presented with sequelae,including 3 patients with long-term lumbosacral pain,3 patients with erectile dysfunction and 1 patient with Morel-Lavallee lesion and other complications.The 15 shock patients in this study (2005-2010 group) required significantly lower volumes of fluid infusion and blood transfusion (Pfluid=0.000;Ptransfusion=0.000) as compared to the 1993-1998 cohort.Conclusions The early application of external fixation in unstable pelvic fracture patients positively affects hemodynamic stability,with outstanding efficacy as a final fixation option for unstable pelvic fractures.
Hydrodynamics of soft active matter
Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, Madan; Simha, R. Aditi
2013-07-01
This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are “dry” systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or “wet” systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.
Extracting unstable periodic orbits from chaotic time series data
Energy Technology Data Exchange (ETDEWEB)
So, P.; Schiff, S.; Gluckman, B.J., [Center for Neuroscience, Childrens Research Institute, Childrens National Medical Center and the George Washington University, NW, Washington, D.C. 20010 (United States); So, P.; Ott, E.; Grebogi, C., [Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States); Sauer, T., [Department of Mathematics, The George Mason University, Fairfax, Virginia 22030 (United States); Gluckman, B.J., [Naval Surface Warfare Center, Carderock Division, Bethesda, Maryland 20054-5000 (United States)
1997-05-01
A general nonlinear method to extract unstable periodic orbits from chaotic time series is proposed. By utilizing the estimated local dynamics along a trajectory, we devise a transformation of the time series data such that the transformed data are concentrated on the periodic orbits. Thus, one can extract unstable periodic orbits from a chaotic time series by simply looking for peaks in a finite grid approximation of the distribution function of the transformed data. Our method is demonstrated using data from both numerical and experimental examples, including neuronal ensemble data from mammalian brain slices. The statistical significance of the results in the presence of noise is assessed using surrogate data. {copyright} {ital 1997} {ital The American Physical Society}
Buckling and unstable collapse of seamless pipes and tubes
Energy Technology Data Exchange (ETDEWEB)
Jakani, S.; Van den Abeele, F. [ArcelorMittal Global RnD Ghent, Zelzate, (Belgium); Bar, J. [ArcelorMittal Tubular Products Ostrava, Ostrava, (Czech Republic)
2010-07-01
Off-shore pipelines and high pressure casings are subject to buckling and unstable collapse. This paper investigated the unstable collapse of seamless pipes under compressive loading. Collapse pressure tests for high collapse casing grades L80HC and P110HC were carried out by enclosing end-capped specimens in a pressure vessel, and applying hydrostatic pressure. Analytical calculations were performed to predict the critical collapse pressure for pipes with different values of diameter to wall thickness. Four regimes were identified and studied: yielding collapse, plastic collapse, transition range and elastic collapse. Simplified design equations were produced for each regime to estimate the collapse pressure more efficiently. The influence of initial geometric imperfections and material properties was studied with the aim of developing a modified design equation for collapse able to predict the critical collapse pressure of dented seamless pipes. Experimental tests showed that the pipes complied with API standards and the modified equation was validated.
Stabilization of switched nonlinear systems with unstable modes
Yang, Hao; Cocquempot, Vincent
2014-01-01
This book provides its reader with a good understanding of the stabilization of switched nonlinear systems (SNS), systems that are of practical use in diverse situations: design of fault-tolerant systems in space- and aircraft; traffic control; and heat propagation control of semiconductor power chips. The practical background is emphasized throughout the book; interesting practical examples frequently illustrate the theoretical results with aircraft and spacecraft given particular prominence. Stabilization of Switched Nonlinear Systems with Unstable Modes treats several different subclasses of SNS according to the characteristics of the individual system (time-varying and distributed parameters, for example), the state composition of individual modes and the degree and distribution of instability in its various modes. Achievement and maintenance of stability across the system as a whole is bolstered by trading off between individual modes which may be either stable or unstable, or by exploiting areas of part...
Stable and unstable thermo -current states of high temperature superconductors
Energy Technology Data Exchange (ETDEWEB)
Romanovskii, V; Lavrov, N; Ozhogina, V [Russian Research Center ' Kurchatov Institute' , Moscow 123182 (Russian Federation)], E-mail: vromanovskii@netscape.net
2008-02-01
Formation peculiarities of the stable and unstable states of high-T{sub c} superconductors are discussed. To understand the basic physical trends, which are characteristic for the current penetration mechanism in high temperature superconductors, the operating states of Bi2212 slab without stabilizing matrix placed in DC external magnetic fields at low coolant temperature are theoretically investigated. It is proved that the temperature of a high-T{sub c} superconductor is not equals to the coolant temperature before instability onset. Therefore, the voltage-current characteristic of a high-T{sub c} superconductor has only a positive slope during continuous current charging. As a result, it does not allow one to find the boundary between stable and unstable thermo - current states. This peculiarity has to be considered during experiments at which the critical current of high-T{sub c} superconductors is defined.
Traveling circumferential unstable wave of cylindrical flame front
Trilis, A. V.; Vasiliev, A. A.; Sukhinin, S. V.
2016-06-01
The researches of stability of cylindrical front of deflagration combustion in an annular combustion chamber were made using phenomenological model. The flame front is described as discontinuity of gasdynamic parameters. It is considered that the combustion products are under chemical equilibrium. The combustible mixture and the combustion products are ideal gases. The velocity of deflagration combustion is determined using the Chapman-Jouget theory. It depends on the temperature of combustible mixture only. It is found that the combustible flame front is unstable for several types of small disturbances in the system Mechanics of instabilities are examined using both the numeric and analytical methods. The cases of evolution of the unstable waves rotating in circular channel are presented.
External Fixation of Unstable Distal Radius Fracture. A Case Report
Directory of Open Access Journals (Sweden)
Yaniel Truffin Rodríguez
2014-12-01
Full Text Available Unstable fracture of the distal radius is a common injury. If not properly treated, it can cause major disturbance in the radiocarpal joint and impaired hand function. A case of a 42-year-old patient of rural origin without a history of previous conditions treated at the Gustavo Aldereguía Lima Hospital in Cienfuegos is presented. He suffered a fall on the outstretched hand, which led to an unstable fracture of the left distal radius. Emergency surgery consisting of manual fracture reduction under general anesthesia and fixation with RALCA minifixator plus a percutaneously placed Kirschner wire was performed. Since this fracture is often inadequately treated, the presentation of this case can be helpful to many orthopedic surgeons.
Crisis and unstable dimension variability in the bailout embedding map
Indian Academy of Sciences (India)
N Nirmal Thyagu; Neelima Gupta
2008-06-01
The dynamics of inertial particles in 2-d incompressible flows can be modeled by 4-d bailout embedding maps. The density of the inertial particles, relative to the density of the fluid, is a crucial parameter which controls the dynamical behaviour of the particles. We study here the dynamical behaviour of aerosols, i.e. particles heavier than the flow. An attractor widening and merging crisis is seen in the phase space in the aerosol case. Crisis-induced intermittency is seen in the time series and the laminar length distribution of times before bursts give rise to a power law with the exponent = -1/3. The maximum Lyapunov exponent near the crisis fluctuates around zero indicating unstable dimension variability (UDV) in the system. The presence of unstable dimension variability is confirmed by the behaviour of the probability distributions of the finite time Lyapunov exponents.
Mirror-type Boundary Condition in Smoothed Particle Hydrodynamics
Marjani, A.; Edge, B. L.
2013-12-01
The main purpose of this study is to enhance the Smoothed Particle Hydrodynamics (SPH) method that can accurately simulate the hydrodynamic forces on a structure and can be used for determining efficient designs for wave energy devices. Smoothed particle hydrodynamics is a method used in various fields of study. Unlike the finite difference method (FDM), SPH is a Lagrangian mesh-free method in which each particle moves according to the property of the surrounding flow and governing conservation equations, and carries the properties of water such as density, pressure and mass. Smoothed Particle Hydrodynamics is recently applied to a wide range of fluid mechanics problems. Although it is known as a highly accurate model, slow performance in 3D interface is one of its drawbacks. Not only the computational time becomes very long but also the number of processors and required memory are not easily available. Practical applications deal with high Reynolds numbers that requires high resolution to achieve adequate accuracy. A large number of coastal engineering problems are geometrically symmetric; hence, as a solution, mirror boundary condition is introduced and applied to two different tests in this paper, one is the impact of solitary wave on a large circular cylinder and the other is the interaction of dam break wave and structure. Mirror boundary condition can either produce a remarkable speedup with the same number of processors or the same running time with less number of processors. Regarding the fact that SPH algorithm yields Np log(Np) particle interactions at each time step, reducing the number of particles by a factor of 2 decreases the total number of interactions by a factor greater than 2. In other words, the relation between computational time and the number of particles does not behave like a linear function. Results show that smaller number of particles results in fewer particle interactions and less communications between processors. We believe that this
Energy Spread of the Unstable State and Proton Decay Observation
Salesi, Giovanni
2009-01-01
Because of the extreme smallness of the energy spread of the unstable state describing the decaying proton, due in its turn to the anomalous smallness of the resonance width expected for the proton decay, the application of the Heisenberg time-energy relation predicts the measurement times for the proton decay observation to be so long as to forbid a "continuous" observation of the decay. This might account for the missing observation of the proton decay.
Inherently unstable networks collapse to a critical point.
Sheinman, M; Sharma, A; Alvarado, J; Koenderink, G H; MacKintosh, F C
2015-07-01
Nonequilibrium systems that are driven or drive themselves towards a critical point have been studied for almost three decades. Here we present a minimalist example of such a system, motivated by experiments on collapsing active elastic networks. Our model of an unstable elastic network exhibits a collapse towards a critical point from any macroscopically connected initial configuration. Taking into account steric interactions within the network, the model qualitatively and quantitatively reproduces results of the experiments on collapsing active gels.
Evolution of inhomogeneities in unstable-neutrino cosmologies
Energy Technology Data Exchange (ETDEWEB)
Doroshkevich, A.G.; Klypin, A.A.; Kotok, E.V.
1986-06-01
An attempt is made to show that many of the problems associated with the standard stable-particle pancake cosmology can be resolved by modifying the cosmological model and the spectrum of primordial irregularities. Equations describing the growth of primordial perturbations in a cosmological model initially dominated by heavy unstable neutrinos are derived. The one-dimensional approximation is used to study evolution during the nonlinear growth phase. 25 references.
Development of structure in a model universe containing unstable particles
Energy Technology Data Exchange (ETDEWEB)
Doroshkevich, A.G.; Klypin, A.A.; Khlopov, M.Y.
1985-07-01
Computer analysis of model universe containing unstable elementary particles discloses parameter domains for which the two-point galaxy autocorrelation function, the time scale for nonlinear evolution of structure, and the fractional mass in galaxy clusters and superclusters all are compatible with the observations. A low density for the cold missing-mass component can reconcile the low random velocities measured for galaxies in superclusters with inflationary-universe models having a critical mean density.
Fluorination utilizing thermodynamically unstable fluorides and fluoride salts thereof
Energy Technology Data Exchange (ETDEWEB)
Bartlett, Neil (Orinda, CA); Whalen, J. Marc (Corning, NY); Chacon, Lisa (Corning, NY)
2000-12-12
A method for fluorinating a carbon compound or cationic carbon compound utilizes a fluorination agent selected from thermodynamically unstable nickel fluorides and salts thereof in liquid anhydrous hydrogen fluoride. The desired carbon compound or cationic organic compound to undergo fluorination is selected and reacted with the fluorination agent by contacting the selected organic or cationic organic compound and the chosen fluorination agent in a reaction vessel for a desired reaction time period at room temperature or less.
Note about unstable D-branes with dynamical tension
KlusoÅ, J.
2016-08-01
We propose an action for an unstable Dp-brane with dynamical tension. We show that the equations of motion are equivalent to the equations of motion derived from Dirac-Born-Infeld and Wess-Zumino actions for a non-Bogomol'nyi-Prasad-Sommerfield Dp-brane. We also find the Hamiltonian formulation of this action and analyze the properties of the solutions corresponding to the tachyon vacuum and zero-tension solution.
Anterior internal fixation to treat vertical unstable pelvic fracture
Institute of Scientific and Technical Information of China (English)
王世松; 张鹏程; 杜敦进; 杨泗华
2002-01-01
With the Chinese development of industry, agriculture and communication, various traffic and work related accidents are increasing, leading to an increase in pelvic fractures. Among the different kinds of fractures, pelvic fracture is the third largest cause of death.1 The treatment of pelvic fractures is a “hot spot” and a difficult point in orthopedic surgery. Since 1998 we have treated 20 patients with vertical unstable pelvic fracture using anterior internal fixation. Satisfactory results have been obtained.
From stable to unstable anomaly-induced inflation
Energy Technology Data Exchange (ETDEWEB)
Paula Netto, Tiberio de [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Pelinson, Ana M. [Universidade Federal de Santa Catarina, Departamento de Fisica, CFM, Bairro da Trindade, Florianopolis, SC (Brazil); Shapiro, Ilya L. [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Tomsk State Pedagogical University and Tomsk State University, Tomsk (Russian Federation); Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics RAS, Moscow (Russian Federation); Utrecht University, Department of Physics and Astronomy, Institute for Theoretical Physics, Utrecht (Netherlands)
2016-10-15
Quantum effects derived through conformal anomaly lead to an inflationary model that can be either stable or unstable. The unstable version requires a large dimensionless coefficient of about 5 x 10{sup 8} in front of the R{sup 2} term that results in the inflationary regime in the R+R{sup 2} (''Starobinsky'') model being a generic intermediate attractor. In this case the non-local terms in the effective action are practically irrelevant, and there is a 'graceful exit' to a low curvature matter-like dominated stage driven by high-frequency oscillations of R - scalarons, which later decay to pairs of all particles and antiparticles, with the amount of primordial scalar (density) perturbations required by observations. The stable version is a genuine generic attractor, so there is no exit from it. We discuss a possible transition from stable to unstable phases of inflation. It is shown that this transition is automatic if the sharp cut-off approximation is assumed for quantum corrections in the period of transition. Furthermore, we describe two different quantum mechanisms that may provide a required large R{sup 2}-term in the transition period. (orig.)
Generating Unstable Resonances for Extraction Schemes Based on Transverse Splitting
Giovannozzi, M; Turchetti, G
2009-01-01
A few years ago, a novel multi-turn extraction scheme was proposed, based on particle trapping inside stable resonances. Numerical simulations and experimental tests have confirmed the feasibility of such a scheme for low order resonances. While the third-order resonance is generically unstable and those higher than fourth-order are generically stable, the fourth-order resonance can be either stable or unstable depending on the specifics of the system under consideration. By means of the Normal Form a general approach to control the stability of the fourth-order resonance has been derived. This approach is based on the control of the amplitude detuning and the general form for a lattice with an arbitrary number of sextupole and octupole families is derived in this paper. Numerical simulations have confirmed the analytical results and have shown that, when crossing the unstable fourth-order resonance, the region around the centre of the phase space is depleted and particles are trapped in only the four stable ...
Oxygen Consumption While Standing with Unstable Shoe Design
Directory of Open Access Journals (Sweden)
Gasser Benedikt A.
2014-09-01
Full Text Available Purpose. This study explored the effects of unstable shoe design on oxygen consumption. Methods. Oxygen consumption (VO2 and heart rate (HR were measured in 16 individuals while barefoot, wearing unstable shoes (Masai Barefoot Technology and wearing conventional sport shoes while standing and walking on a treadmill and for 5 individuals while walking around a 400 m track. Results. When wearing the MBT shoes, a significant (p < 0.01 increase of 9.3 ± 5.2% in VO2 was measured while standing quietly for 6 min. No differences in VO2 and HR were observed between the MBT shoes or weight-adjusted conventional shoes (to match the weight of the MBT shoes while walking on a treadmill. However, significant increases (p < 0.01 in VO2 (4.4 ± 8.2% and HR (3.6 ± 7.3% were observed for the MBT shoes compared with being barefoot. No significant differences in VO2 and HR were recorded while walking around a 400 m track either with MBT shoes, weight-adjusted conventional shoes or barefoot. Nonetheless, a comparison of the MBT shoes with barefoot revealed a tendency for VO2 to be higher when wearing the MBT shoes (7.1 ± 6.5%, p < 0.1 although HR was not significantly affected. Conclusions. The unstable shoe design predominantly effects oxygen consumption while standing, most likely due to increased muscle activity of the lower extremities.
Momentum broadening in unstable quark-gluon plasma
Carrington, M E; Schenke, B
2016-01-01
Quark-gluon plasma produced at the early stage of ultrarelativistic heavy ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes much exceeding typical values of the fields in equilibrated plasma. We consider a high energy test parton traversing an unstable plasma that is populated with strong fields. We study the momentum broadening parameter $\\hat q$ which determines the radiative energy loss of the test parton. We develop a formalism which gives $\\hat q$ as the solution of an initial value problem, and we focus on extremely oblate plasmas which are physically relevant for relativistic heavy ion collisions. The parameter $\\hat q$ is found to be strongly dependent on time. For short times it is of the order of the equilibrium value, but at later times $\\hat q$ grows exponentially due to the interaction of the test parton with unstable modes and becomes much bigger than the value in equilibri...
CP Violation in Correlated Production and Decay of Unstable Particles
Kittel, Olaf
2012-01-01
We study resonant CP-violating Einstein--Podolsky--Rosen correlations that may take place in the production and decay of unstable scalar particles at high-energy colliders. We show that as a consequence of unitarity and CPT invariance of the S-matrix, in 2 --> 2 scatterings mediated by mixed scalar particles, at least three linearly independent decay matrices associated with the unstable scalar states are needed to obtain non-zero CP-odd observables that are also odd under C-conjugation. Instead, for the correlated production and decay of two unstable particle systems in 2 --> 4 processes, we find that only two independent decay matrices are sufficient to induce a net non-vanishing CP-violating phenomenon. As an application of this theorem, we present numerical estimates of CP asymmetries for the correlated production and decay of supersymmetric scalar top--anti-top pairs at the LHC, and demonstrate that these could reach values of order one. As a byproduct of our analysis, we develop a novel spinorial trace ...
CP violation in correlated production and decay of unstable particles
Kittel, Olaf; Pilaftsis, Apostolos
2012-03-01
We study resonant CP-violating Einstein-Podolsky-Rosen correlations that may take place in the production and decay of unstable scalar particles at high-energy colliders. We show that as a consequence of unitarity and CPT invariance of the S-matrix, in 2→2 scatterings mediated by mixed scalar particles, at least three linearly independent decay matrices associated with the unstable scalar states are needed to obtain non-zero CP-odd observables that are also odd under C-conjugation. Instead, for the correlated production and decay of two unstable particle systems in 2→4 processes, we find that only two independent decay matrices are sufficient to induce a net non-vanishing CP-violating phenomenon. As an application of this theorem, we present numerical estimates of CP asymmetries for the correlated production and decay of supersymmetric scalar top-anti-top pairs at the LHC, and demonstrate that these could reach values of order one. As a byproduct of our analysis, we develop a novel spinorial trace technique, which enables us to efficiently evaluate lengthy expressions of squared amplitudes describing the resonant scalar transitions.
CP violation in correlated production and decay of unstable particles
Energy Technology Data Exchange (ETDEWEB)
Kittel, Olaf, E-mail: kittel@th.physik.uni-bonn.de [Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, E-18071 Granada (Spain); Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Theory Division, CERN, CH-1211 Geneva 23 (Switzerland); Pilaftsis, Apostolos, E-mail: apostolos.pilaftsis@manchester.ac.uk [Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Theory Division, CERN, CH-1211 Geneva 23 (Switzerland); Department of Theoretical Physics and IFIC, University of Valencia - CSIC, E-46100 Valencia (Spain)
2012-03-21
We study resonant CP-violating Einstein-Podolsky-Rosen correlations that may take place in the production and decay of unstable scalar particles at high-energy colliders. We show that as a consequence of unitarity and CPT invariance of the S-matrix, in 2{yields}2 scatterings mediated by mixed scalar particles, at least three linearly independent decay matrices associated with the unstable scalar states are needed to obtain non-zero CP-odd observables that are also odd under C-conjugation. Instead, for the correlated production and decay of two unstable particle systems in 2{yields}4 processes, we find that only two independent decay matrices are sufficient to induce a net non-vanishing CP-violating phenomenon. As an application of this theorem, we present numerical estimates of CP asymmetries for the correlated production and decay of supersymmetric scalar top-anti-top pairs at the LHC, and demonstrate that these could reach values of order one. As a byproduct of our analysis, we develop a novel spinorial trace technique, which enables us to efficiently evaluate lengthy expressions of squared amplitudes describing the resonant scalar transitions.
Stability of relativistic plasma-vacuum interfaces
Trakhinin, Yuri
2010-01-01
We study the plasma-vacuum interface problem in relativistic magnetohydrodynamics for the case when the plasma density does not go to zero continuously, but jumps. Unlike the nonrelativistic version of this problem, we have to assume that the plasma expands into the vacuum (otherwise, the problem is underdetermined). We show that even if this necessary condition is satisfied the planar interface can be still violently unstable. By using a suitable secondary symmetrization of the Maxwell equations in vacuum, we find a sufficient condition that precludes violent instabilities. Under this condition we derive a basic a priori estimate in the anisotropic weighted Sobolev space $H^1_*$ for the variable coefficients linearized problem for nonplanar plasma-vacuum interfaces and prove the well-posedness of this problem.
Energy Technology Data Exchange (ETDEWEB)
Kijima, K.; Yukawa, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Maekawa, K. [Hokkaido University, Sapporo (Japan). Faculty of Fisheries
1996-04-10
Estimation of the maneuvering performance of ships is very important from the viewpoint of safe navigation. Using three types of VLCCs (SR221A, B, C) with locally different stern frame lines as computational models, the estimation method of hull hydrodynamic force in turning motion was studied theoretically taking frame line shapes into account. The unstable behavior of courses was also studied using linear differential coefficients obtained from the estimation result on hull hydrodynamic force in oblique navigation and turning motion. As a result, the estimation result on hull hydrodynamic force was slightly different quantitatively from model test results in a range of large drift angle or turning angular velocity, while that was relatively well agreed with test results in a range of small such angle and velocity. As the study result on the unstable behavior of courses by using linear differential coefficients obtained from the estimation result on hull hydrodynamic force, determination of a course stability was possible by considering local difference in hull shape. 4 refs., 8 figs., 1 tab.
Hydrodynamic Modeling and Its Application in AUC.
Rocco, Mattia; Byron, Olwyn
2015-01-01
The hydrodynamic parameters measured in an AUC experiment, s(20,w) and D(t)(20,w)(0), can be used to gain information on the solution structure of (bio)macromolecules and their assemblies. This entails comparing the measured parameters with those that can be computed from usually "dry" structures by "hydrodynamic modeling." In this chapter, we will first briefly put hydrodynamic modeling in perspective and present the basic physics behind it as implemented in the most commonly used methods. The important "hydration" issue is also touched upon, and the distinction between rigid bodies versus those for which flexibility must be considered in the modeling process is then made. The available hydrodynamic modeling/computation programs, HYDROPRO, BEST, SoMo, AtoB, and Zeno, the latter four all implemented within the US-SOMO suite, are described and their performance evaluated. Finally, some literature examples are presented to illustrate the potential applications of hydrodynamics in the expanding field of multiresolution modeling.
Anisotropic hydrodynamics for conformal Gubser flow
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)
2016-12-15
In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.
Incidence and follow-up of Braunwald subgroups in unstable angina pectoris
A.J.M. van Miltenburg-van Zijl (Addy); M.L. Simoons (Maarten); R.J. Veerhoek (Rinus); P.M.M. Bossuyt (Patrick)
1995-01-01
textabstractObjectives. This study was performed to establish the prognosis of patients with unstable angina within the subgroups of the Braunwald classification. Background. Among many classifications of unstable angina, the Braunwald classification is frequently used. However, the incidence and
Status and future of hydrodynamical model atmospheres
Ludwig, H G
2004-01-01
Since about 25 years ago work has been dedicated to the development of hydrodynamical model atmospheres for cool stars (of A to T spectral type). Despite their obviously sounder physical foundation in comparison with standard hydrostatic models, their general application has been rather limited. In order to understand why this is, and how to progress, we review the present status of hydrodynamical modelling of cool star atmospheres. The development efforts were and are motivated by the theoretical interest of understanding the dynamical processes operating in stellar atmospheres. To show the observational impact, we discuss examples in the fields of spectroscopy and stellar structure where hydrodynamical modelling provided results on a level qualitatively beyond standard models. We stress present modelling challenges, and highlight presently possible and future observations that would be particularly valuable in the interplay between model validation and interpretation of observables, to eventually widen the ...
First Numerical Simulations of Anomalous Hydrodynamics
Hongo, Masaru; Hirano, Tetsufumi
2013-01-01
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters ($v_2^\\pm$) as a function of the net charge asymmetry $A_\\pm$, we quantitatively verify that the linear dependence of $\\Delta v_2 \\equiv v_2^- - v_2^+$ on the net charge asymmetry $A_\\pm$ cannot be regarded as a sensitive signal of anomalous transports, contrary to previous studies. We, however, find that the intercept $\\Delta v_2(A_\\pm=0)$ is sensitive to anomalous transport effects.
Hydrodynamics of a unitary Bose gas
Man, Jay; Fletcher, Richard; Lopes, Raphael; Navon, Nir; Smith, Rob; Hadzibabic, Zoran
2016-05-01
In general, normal-phase Bose gases are well described by modelling them as ideal gases. In particular, hydrodynamic flow is usually not observed in the expansion dynamics of normal gases, and is more readily observable in Bose-condensed gases. However, by preparing strongly-interacting clouds, we observe hydrodynamic behaviour in normal-phase Bose gases, including the `maximally' hydrodynamic unitary regime. We avoid the atom losses that often hamper experimental access of this regime by using radio-frequency injection, which switches on interactions much faster than trap or loss timescales. At low phase-space densities, we find excellent agreement with a collisional model based on the Boltzmann equation. At higher phase-space densities our results show a deviation from this model in the vicinity of an Efimov resonance, which cannot be accounted for by measured losses.
Hydrodynamics of the Chiral Dirac Spectrum
Liu, Yizhuang; Zahed, Ismail
2016-01-01
We derive a hydrodynamical description of the eigenvalues of the chiral Dirac spectrum in the vacuum and in the large $N$ (volume) limit. The linearized hydrodynamics supports sound waves. The stochastic relaxation of the eigenvalues is captured by a hydrodynamical instanton configuration which follows from a pertinent form of Euler equation. The relaxation from a phase of localized eigenvalues and unbroken chiral symmetry to a phase of de-localized eigenvalues and broken chiral symmetry occurs over a time set by the speed of sound. We show that the time is $\\Delta \\tau=\\pi\\rho(0)/2\\beta N$ with $\\rho(0)$ the spectral density at zero virtuality and $\\beta=1,2,4$ for the three Dyson ensembles that characterize QCD with different quark representations in the ergodic regime.
Hydrodynamics of bacterial colonies: A model
Lega, J.; Passot, T.
2003-03-01
We propose a hydrodynamic model for the evolution of bacterial colonies growing on soft agar plates. This model consists of reaction-diffusion equations for the concentrations of nutrients, water, and bacteria, coupled to a single hydrodynamic equation for the velocity field of the bacteria-water mixture. It captures the dynamics inside the colony as well as on its boundary and allows us to identify a mechanism for collective motion towards fresh nutrients, which, in its modeling aspects, is similar to classical chemotaxis. As shown in numerical simulations, our model reproduces both usual colony shapes and typical hydrodynamic motions, such as the whirls and jets recently observed in wet colonies of Bacillus subtilis. The approach presented here could be extended to different experimental situations and provides a general framework for the use of advection-reaction-diffusion equations in modeling bacterial colonies.
Dynamo efficiency controlled by hydrodynamic bistability.
Miralles, Sophie; Herault, Johann; Herault, Johann; Fauve, Stephan; Gissinger, Christophe; Pétrélis, François; Daviaud, François; Dubrulle, Bérengère; Boisson, Jean; Bourgoin, Mickaël; Verhille, Gautier; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas
2014-06-01
Hydrodynamic and magnetic behaviors in a modified experimental setup of the von Kármán sodium flow-where one disk has been replaced by a propeller-are investigated. When the rotation frequencies of the disk and the propeller are different, we show that the fully turbulent hydrodynamic flow undergoes a global bifurcation between two configurations. The bistability of these flow configurations is associated with the dynamics of the central shear layer. The bistable flows are shown to have different dynamo efficiencies; thus for a given rotation rate of the soft-iron disk, two distinct magnetic behaviors are observed depending on the flow configuration. The hydrodynamic transition controls the magnetic field behavior, and bifurcations between high and low magnetic field branches are investigated.
Hydrodynamics, resurgence and trans-asymptotics
Basar, Gokce
2015-01-01
The second-order hydrodynamical description of a homogeneous conformal plasma that undergoes a boost- invariant expansion is given by a single nonlinear ordinary differential equation, whose resurgent asymptotic properties we study, developing further the recent work of Heller and Spalinski [Phys. Rev. Lett. 115, 072501 (2015)]. Resurgence clearly identifies the non-hydrodynamic modes that are exponentially suppressed at late times, analogous to the quasi-normal-modes in gravitational language, organizing these modes in terms of a trans-series expansion. These modes are analogs of instantons in semi-classical expansions, where the damping rate plays the role of the instanton action. We show that this system displays the generic features of resurgence, with explicit quantitative relations between the fluctuations about different orders of these non-hydrodynamic modes. The imaginary part of the trans-series parameter is identified with the Stokes constant, and the real part with the freedom associated with init...
Holography, Hydrodynamization and Heavy-Ion Collisions
Heller, Michal P
2016-01-01
In the course of the past several years holography has emerged as an ab initio tool in exploring strongly-time-dependent phenomena in gauge theories. These lecture notes overview recent developments in this area driven by phenomenological questions concerning applicability of hydrodynamics under extreme conditions occurring in ultrarelativistic heavy-ion collisions at RHIC and LHC. The topics include equilibration time scales, holographic collisions and hydrodynamization from the point of view of the asymptotic character of the hydrodynamic gradient expansion. The emphasis is put on concepts rather than calculational techniques and particular attention is devoted to present these developments in the context of the most recent advances and some of the open problems.
The RAGE radiation-hydrodynamic code
Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob; Ranta, Dale; Stefan, Ryan
2008-01-01
We describe RAGE, the ``Radiation Adaptive Grid Eulerian'' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm.
Hydrodynamic simulations with the Godunov SPH
Murante, Giuseppe; Brunino, Riccardo; Cha, Suneg-Hoon
2011-01-01
We present results based on an implementation of the Godunov Smoothed Particle Hydrodynamics (GSPH), originally developed by Inutsuka (2002), in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear flow test, and the "blob" test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha (2010): (i) GSPH provi...
Hydrodynamic dispersion broadening of a sedimentation front
Martin, J.; Rakotomalala, N.; Salin, D.
1994-10-01
Hydrodynamic dispersion is responsible for the spreading of the sedimentation front even in a noncolloidal monodisperse suspension. Measurements of the broadening of the top front observed during sedimentation have been used in determining the hydrodynamic dispersion coefficient. Hindered settling has an opposed effect and leads to the self-sharpening of the front. Both effects have to be taken into account simultaneously. This Letter provides a simple, but complete determination of the space and time concentration profile and shows that the final front should consist of a steady-shape profile propagating at constant velocity. With such a solution, the data of Davis et al. [AIChE J. 34, 123 (1988); J. Fluid Mech. 196, 107 (1988)] give hydrodynamic dispersion coefficient five times larger than their former analysis, in agreement with Lee et al. [Phys. Fluids A 4, 2601 (1992)].
Edelmann, P. V. F.; Röpke, F. K.; Hirschi, R.; Georgy, C.; Jones, S.
2017-07-01
Context. The treatment of mixing processes is still one of the major uncertainties in 1D stellar evolution models. This is mostly due to the need to parametrize and approximate aspects of hydrodynamics in hydrostatic codes. In particular, the effect of hydrodynamic instabilities in rotating stars, for example, dynamical shear instability, evades consistent description. Aims: We intend to study the accuracy of the diffusion approximation to dynamical shear in hydrostatic stellar evolution models by comparing 1D models to a first-principle hydrodynamics simulation starting from the same initial conditions. Methods: We chose an initial model calculated with the stellar evolution code GENEC that is just at the onset of a dynamical shear instability but does not show any other instabilities (e.g., convection). This was mapped to the hydrodynamics code SLH to perform a 2D simulation in the equatorial plane. We compare the resulting profiles in the two codes and compute an effective diffusion coefficient for the hydro simulation. Results: Shear instabilities develop in the 2D simulation in the regions predicted by linear theory to become unstable in the 1D stellar evolution model. Angular velocity and chemical composition is redistributed in the unstable region, thereby creating new unstable regions. After a period of time, the system settles in a symmetric, steady state, which is Richardson stable everywhere in the 2D simulation, whereas the instability remains for longer in the 1D model due to the limitations of the current implementation in the 1D code. A spatially resolved diffusion coefficient is extracted by comparing the initial and final profiles of mean atomic mass. Conclusions: The presented simulation gives a first insight on hydrodynamics of shear instabilities in a real stellar environment and even allows us to directly extract an effective diffusion coefficient. We see evidence for a critical Richardson number of 0.25 as regions above this threshold remain
Radiation hydrodynamics integrated in the PLUTO code
Kolb, Stefan M.; Stute, Matthias; Kley, Wilhelm; Mignone, Andrea
2013-11-01
Aims: The transport of energy through radiation is very important in many astrophysical phenomena. In dynamical problems the time-dependent equations of radiation hydrodynamics have to be solved. We present a newly developed radiation-hydrodynamics module specifically designed for the versatile magnetohydrodynamic (MHD) code PLUTO. Methods: The solver is based on the flux-limited diffusion approximation in the two-temperature approach. All equations are solved in the co-moving frame in the frequency-independent (gray) approximation. The hydrodynamics is solved by the different Godunov schemes implemented in PLUTO, and for the radiation transport we use a fully implicit scheme. The resulting system of linear equations is solved either using the successive over-relaxation (SOR) method (for testing purposes) or using matrix solvers that are available in the PETSc library. We state in detail the methodology and describe several test cases to verify the correctness of our implementation. The solver works in standard coordinate systems, such as Cartesian, cylindrical, and spherical, and also for non-equidistant grids. Results: We present a new radiation-hydrodynamics solver coupled to the MHD-code PLUTO that is a modern, versatile, and efficient new module for treating complex radiation hydrodynamical problems in astrophysics. As test cases, either purely radiative situations, or full radiation-hydrodynamical setups (including radiative shocks and convection in accretion disks) were successfully studied. The new module scales very well on parallel computers using MPI. For problems in star or planet formation, we added the possibility of irradiation by a central source.
Unstable Roche-Lobe Overflow of Gaseous Planets
Jackson, Brian
The discoveries of more than 100 roughly Earth-sized bodies with orbital periods less than 1 day, ultra-short-period planets or candidates (USPs), have challenged planet formation theories, and evidence suggests USPs may be the remnants of gaseous planets that shed their atmospheres. Indeed, many hot Jupiters are near Roche-Lobe overflow (RLO), and tidal decay can push them the rest of the way in. Recent work has shown stable RLO (atmospheres lost via a steady outflow and thin accretion disk) probably cannot produce USPs on its own but suggested unstable RLO (atmospheres quickly shed on dynamical timescales) may. In fact, stable RLO may drive overflowing hot Jupiters into unstable RLO, and by analogy with the common-envelope binaries, the core that remains can drive off the gaseous envelope at the cost of its orbital energy. Wellestablished mass-radius relations for gaseous planets, coupled to simple energy and angular momentum considerations, provide a connection between the observed masses and periods for USPs and their putative progenitor gaseous planets, with few free parameters. We propose to investigate the hypothesis that USPs originate through tidal decay and a combination of stable and unstable Roche-lobe overflow of short-period gaseous planets through the following studies: -We will explore the planetary masses, orbital periods, etc. that produce unstable RLO using the Modules for Experiments in Stellar Astrophysics (MESA) suite. -We will relate the observed periods and masses of USPs to their putative progenitor masses and periods to see whether they are consistent with the unstable RLO hypothesis. This proposal is directly relevant to the Exoplanets Research Program since it seeks to "understand the ... physical processes of exoplanets" and "improve understanding of [their] origins" through "theoretical studies ... and modeling'". We also expect that it will have broad impacts on a variety of astrophysical topics: -Ultra-short period planets could
Institute of Scientific and Technical Information of China (English)
王宏志; 邹早建
2014-01-01
A CFD method is used to numerically predict the hydrodynamic forces and moments acting on a ship passing through a lock with a constant speed. By solving the RANS equations in combination with the RNG k-e turbulence model, the unsteady viscous flow around the ship is simulated and the hydrodynamic forces and moments acting on the ship are calculated. UDF is com-piled to define the ship motion. Meanwhile, grid regeneration is dealt with by using the dynamic mesh method and sliding interface technique. Under the assumption of low ship speed, the effects of free surface elevation are neglected in the numerical simulation. A bulk carrier ship model is taken as an example for the numerical study. The numerical results are presented and compared with the available experimental results. By analyzing the numerical results obtained for locks with different configurations, the influences of approach wall configuration, lock configuration symmetry and lock chamber breadth on the hydrodynamic forces and moments are demonstrated. The numerical method applied in this paper can qualitatively predict the ship-lock hydrodynamic interaction and pro-vide certain guidance on lock design.
Fish stocking density impacts tank hydrodynamics
DEFF Research Database (Denmark)
Rasmussen, Michael R.; Lunger, Angela; Laursen, Jesper;
2006-01-01
hydrodynamics was established using in-tank-based Rhodamine WT fluorometry at a flow rate of 0.23 l s-1 (tank exchange rate of 1.9 h-1). With increasing numbers of animals, curvilinear relationships were observed for dispersion coefficients and tank mixing times. Stocking densities of 3, 6, 9 and 12 kg m-3......The effect of stocking density upon the hydrodynamics of a circular tank, configured in a recirculation system, was investigated. Red drums Sciaenops ocellatus of approximately 140 g wet weight, were stocked at five rates varying from 0 to 12 kg m-3. The impact of the presence of fish upon tank...
Bounce-free Spherical Hydrodynamic Implosion
Kagan, Grigory; Hsu, Scott C; Awe, Thomas J
2011-01-01
In a bounce-free spherical hydrodynamic implosion, the post-stagnation hot core plasma does not expand against the imploding flow. Such an implosion scheme has the advantage of improving the dwell time of the burning fuel, resulting in a higher fusion burn-up fraction. The existence of bounce-free spherical implosions is demonstrated by explicitly constructing a family of self-similar solutions to the spherically symmetric ideal hydrodynamic equations. When applied to a specific example of plasma liner driven magneto-inertial fusion, the bounce-free solution is found to produce at least a factor of four improvement in dwell time and fusion energy gain.
Introduction to physics mechanics, hydrodynamics thermodynamics
Frauenfelder, P
2013-01-01
Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o
Supernova hydrodynamics experiments using the Nova laser
Energy Technology Data Exchange (ETDEWEB)
Remington, B.A.; Glendinning, S.G.; Estabrook, K.; Wallace, R.J.; Rubenchik, A. [Lawrence Livermore National Lab., CA (United States); Kane, J.; Arnett, D. [Arizona Univ., Tucson, AZ (United States). Stewart Observatory; Drake, R.P. [Michigan Univ., Ann Arbor, MI (United States); McCray, R. [Colorado Univ., Boulder, CO (United States)
1997-04-01
We are developing experiments using the Nova laser to investigate two areas of physics relevant to core-collapse supernovae (SN): (1) compressible nonlinear hydrodynamic mixing and (2) radiative shock hydrodynamics. In the former, we are examining the differences between the 2D and 3D evolution of the Rayleigh-Taylor instability, an issue critical to the observables emerging from SN in the first year after exploding. In the latter, we are investigating the evolution of a colliding plasma system relevant to the ejecta-stellar wind interactions of the early stages of SN remnant formation. The experiments and astrophysical implications are discussed.
Broken Lifshitz invariance, spin waves and hydrodynamics
Roychowdhury, Dibakar
2016-01-01
In this paper, based on the basic principles of thermodynamics, we explore the hydrodynamic regime of interacting Lifshitz field theories in the presence of broken rotational invariance. We compute the entropy current and discover new dissipative effects those are consistent with the principle of local entropy production in the fluid. In our analysis, we consider both the parity even as well as the parity odd sector upto first order in the derivative expansion. Finally, we argue that the present construction of the paper could be systematically identified as that of the hydrodynamic description associated with \\textit{spin waves} (away from the domain of quantum criticality) under certain limiting conditions.
Colliding shockwaves and hydrodynamics in extreme conditions
Chesler, Paul M
2015-01-01
Using numerical holography, we study the collision of a planar sheet of energy with a bounded localized distribution of energy. The collision, which mimics proton-nucleus collisions, produces a localized lump of debris with transverse size $R \\sim 1/T_{\\rm eff}$ with $T_{\\rm eff}$ the effective temperature, and has large gradients and large transverse flow. Nevertheless, the post-collision evolution is well-described by viscous hydrodynamics. Our results bolster the notion that debris produced in proton-nucleus collisions may be modeled using hydrodynamics.
Hydrodynamic interactions between nearby slender filaments
Man, Yi; Lauga, Eric
2016-01-01
Cellular biology abound with filaments interacting through fluids, from intracellular microtubules, to rotating flagella and beating cilia. While previous work has demonstrated the complexity of capturing nonlocal hydrodynamic interactions between moving filaments, the problem remains difficult theoretically. We show here that when filaments are closer to each other than their relevant length scale, the integration of hydrodynamic interactions can be approximately carried out analytically. This leads to a set of simplified local equations, illustrated on a simple model of two interacting filaments, which can be used to tackle theoretically a range of problems in biology and physics.
Holography and hydrodynamics in small systems
Chesler, Paul M.
2016-12-01
Using holographic duality, we present results for the off-center collision of Gaussian wave packets in strongly coupled N = 4 supersymmetric Yang-Mills theory. The wave packets are thin along the collision axis and superficially at least resemble Lorentz contracted colliding protons. The collision results in the formation of a droplet of liquid of size R ∼ 1 /Teff where Teff is the effective temperature, which is the characteristic microscopic scale in strongly coupled plasma. These results demonstrate the applicability of hydrodynamics to microscopically small systems and bolster the notion that hydrodynamics can be applied to heavy-light ion collisions as well as proton-proton collisions.
Unstable Distal Radius Fractures Treated by Volar Locking Anatomical Plates
Jose, Anto; Deniese, Pascal Noel; Babu, Abey Thomas; Rengasamy, Kanagasabai; Najimudeen, Syed
2017-01-01
Introduction Fracture of the distal end of radius represents the most common fracture of the upper extremity accounting for 16-20% of all fractures. Plating is now emerging as the gold standard for management of distal radius fractures due to increased rate of complications such as malunion, subluxation/dislocation of distal radio-ulnar joint or late collapse of fracture. Procedures such as closed reduction and cast immobilization, ligamentotaxis with external fixator and percutaneous pin fixation are no longer acceptable. Aim The purpose of the study was to evaluate the functional and radiological outcome of unstable distal radius fractures treated with the volar locking plate. Materials and Methods We reviewed 53 patients from January 2011 to December 2015, treated for unstable distal radius fractures using a volar locking compression plate. Standard radiographic and clinical assessment after 12 months (range 12-16 months) were measured and final functional and radiological outcome were assessed using the Modified Mayo wrist scoring system and Sarmiento’s modification of Lindstorm criteria respectively. Results There were 42 males and 11 females with an average age of 39.12±31.78 years (18-71 years). At the end of 12 months, 36 patients had an excellent radiological outcome and 10 patients had good radiological outcome as per Sarmiento’s modification of Lindstorm criteria. Eleven patients had an excellent functional outcome and 26 patients had a good functional outcome as per modified Mayo wrist scoring system. There was one case of superficial wound infection which subsided with intravenous antibiotics. Conclusion The volar locking plate fixation helps in early mobilization of the wrist, restores anatomy, allows early return to function, prevents secondary loss of reduction and hence is an effective treatment for unstable fractures of the distal radius. PMID:28274009
Strategy switching in the stabilization of unstable dynamics.
Directory of Open Access Journals (Sweden)
Jacopo Zenzeri
Full Text Available In order to understand mechanisms of strategy switching in the stabilization of unstable dynamics, this work investigates how human subjects learn to become skilled users of an underactuated bimanual tool in an unstable environment. The tool, which consists of a mass and two hand-held non-linear springs, is affected by a saddle-like force-field. The non-linearity of the springs allows the users to determine size and orientation of the tool stiffness ellipse, by using different patterns of bimanual coordination: minimal stiffness occurs when the two spring terminals are aligned and stiffness size grows by stretching them apart. Tool parameters were set such that minimal stiffness is insufficient to provide stable equilibrium whereas asymptotic stability can be achieved with sufficient stretching, although at the expense of greater effort. As a consequence, tool users have two possible strategies for stabilizing the mass in different regions of the workspace: 1 high stiffness feedforward strategy, aiming at asymptotic stability and 2 low stiffness positional feedback strategy aiming at bounded stability. The tool was simulated by a bimanual haptic robot with direct torque control of the motors. In a previous study we analyzed the behavior of naïve users and we found that they spontaneously clustered into two groups of approximately equal size. In this study we trained subjects to become expert users of both strategies in a discrete reaching task. Then we tested generalization capabilities and mechanism of strategy-switching by means of stabilization tasks which consist of tracking moving targets in the workspace. The uniqueness of the experimental setup is that it addresses the general problem of strategy-switching in an unstable environment, suggesting that complex behaviors cannot be explained in terms of a global optimization criterion but rather require the ability to switch between different sub-optimal mechanisms.
Studies of Unstable Nuclei with Spin-Polarized Proton Target
Sakaguchi, Satoshi; Uesaka, Tomohiro; Wakui, Takashi; Chebotaryov, Sergey; Kawahara, Tomomi; Kawase, Shoichiro; Milman, Evgeniy; Tang, Tsz Leung; Tateishi, Kenichiro; Teranishi, Takashi
2016-02-01
Roles of spin-dependent interactions in unstable nuclei have been investigated via the direct reaction of radioactive ions with a solid spin-polarized proton target. The target has a unique advantage of a high polarization of 20-30% under low magnetic field of 0.1 T and at a high temperature of 100 K, which allow us to detect recoil protons with good angular resolution. Present status of on-going experimental studies at intermediate energies, such as proton elastic scattering and (p, 2p) knockout reaction, and new physics opportunities expected with low-energy RI beams are overviewed.
Correlations of decay times of entangled composite unstable systems
Durt, Thomas
2012-01-01
The role played by Time in the quantum theory is still mysterious by many aspects. In particular it is not clear today whether the distribution of decay times of unstable particles could be described by a Time Operator. As we shall discuss, different approaches to this problem (one could say interpretations) can be found in the literature on the subject. As we shall show, it is possible to conceive crucial experiments aimed at distinguishing the different approaches, by measuring with accuracy the statistical distribution of decay times of entangled particles. Such experiments can be realized in principle with entangled kaon pairs.
Correlations of Decay Times of Entangled Composite Unstable Systems
Durt, Thomas
2013-01-01
The role played by time in the quantum theory is still mysterious by many aspects. In particular it is not clear today whether the distribution of decay times of unstable particles could be described by a time operator (TO). As we shall discuss, different approaches to this problem (one could say interpretations) can be found in the literature on the subject. As we shall show, it is possible to conceive crucial experiments aimed at distinguishing the different approaches, by measuring with accuracy the statistical distribution of decay times of entangled particles. Such experiments can be realized in principle with entangled kaon pairs.
Quantum field theory of classically unstable Hamiltonian dynamics
Energy Technology Data Exchange (ETDEWEB)
Strauss, Y., E-mail: ystrauss@cs.bgu.ac.il [Department of Mathematics, Ben-Gurion University of the Negev, Be’er Sheva 8410501 (Israel); Department of Physics, Ariel University, Ariel 4070000 (Israel); Horwitz, L. P. [Department of Physics, Ariel University, Ariel 4070000 (Israel); School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv university, Tel-Aviv 6997801 (Israel); Department of Physics, Bar-Ilan University, Ramat-Gan 5290002 (Israel); Levitan, J. [Department of Physics, Ariel University, Ariel 4070000 (Israel); Yahalom, A. [Department of Electrical and Electronic Engineering, Ariel 4070000 (Israel)
2015-07-15
We study a class of dynamical systems for which the motions can be described in terms of geodesics on a manifold (ordinary potential models can be cast into this form by means of a conformal map). It is rigorously proven that the geodesic deviation equation of Jacobi, constructed with a second covariant derivative, is unitarily equivalent to that of a parametric harmonic oscillator, and we study the second quantization of this oscillator. The excitations of the Fock space modes correspond to the emission and absorption of quanta into the dynamical medium, thus associating unstable behavior of the dynamical system with calculable fluctuations in an ensemble with possible thermodynamic consequences.
Output Error Method for Tiltrotor Unstable in Hover
Directory of Open Access Journals (Sweden)
Lichota Piotr
2017-03-01
Full Text Available This article investigates unstable tiltrotor in hover system identification from flight test data. The aircraft dynamics was described by a linear model defined in Body-Fixed-Coordinate System. Output Error Method was selected in order to obtain stability and control derivatives in lateral motion. For estimating model parameters both time and frequency domain formulations were applied. To improve the system identification performed in the time domain, a stabilization matrix was included for evaluating the states. In the end, estimates obtained from various Output Error Method formulations were compared in terms of parameters accuracy and time histories. Evaluations were performed in MATLAB R2009b environment.
Stability conditions of complex switched systems with unstable subsystems
Institute of Scientific and Technical Information of China (English)
肖扬
2004-01-01
New stability conditions for complex switched systems are presented. We propose the concepts of attractive region and semi-attractive region, which are used as a tool for analyzing the stability of switched systems with unstable subsystems. Based on attractive region the sufficient conditions with less conservative for stability of switched systems have been established, there is no limitation for all members of the system set to be stable. Since our results have considered and utilized the decreasing span of oscillating solutions of the switched systems, they are more practical than the other presented ones of stability of switched systems, and need not resort to multiple Lyapunov functions.
Optimal Sensor and Actuator Location for Unstable Systems
DEFF Research Database (Denmark)
Shaker, Hamid Reza; Tahavori, Maryamsadat
2013-01-01
on the processes. Dually the problem of placing actuators on the processes is equally important. In this paper, the problem of determining optimal sensor and actuator locations for the linear systems is addressed. The problem of the sensor locations is viewed as the problem of maximizing the output energy...... proposed so far, only support stable systems. However, in industrial practices it is often the case that the system, which is needed to be controlled, is not stable. The method which is proposed in this paper is a general method in the sense that it supports both stable and unstable systems. The technique...
Stabilizing unstable steady states using multiple delay feedback control.
Ahlborn, Alexander; Parlitz, Ulrich
2004-12-31
Feedback control with different and independent delay times is introduced and shown to be an efficient method for stabilizing fixed points (equilibria) of dynamical systems. In comparison to other delay based chaos control methods multiple delay feedback control is superior for controlling steady states and works also for relatively large delay times (sometimes unavoidable in experiments due to system dead times). To demonstrate this approach for stabilizing unstable fixed points we present numerical simulations of Chua's circuit and a successful experimental application for stabilizing a chaotic frequency doubled Nd-doped yttrium aluminum garnet laser.
Directory of Open Access Journals (Sweden)
María Teresa Soto Sanfiel
2012-04-01
Full Text Available Este artículo describe y piensa al fenómeno de las Interfaces habladas (IH desde variados puntos de vista y niveles de análisis. El texto se ha concebido con los objetivos específicos de: 1.- procurar una visión panorámica de aspectos de la producción y consumo comunicativo de las IH; 2.- ofrecer recomendaciones para su creación y uso eficaz, y 3.- llamar la atención sobre su proliferación e inspirar su estudio desde la comunicación. A pesar de la creciente presencia de las IF en nues-tras vidas cotidianas, hay ausencia de textos que las caractericen y analicen por sus aspectos comunicativos. El trabajo es pertinente porque el fenómeno significa un cambio respecto a estadios comunica-tivos precedentes con consecuencias en las concepciones intelectuales y emocionales de los usuarios. La proliferación de IH nos abre a nue-vas realidades comunicativas: hablamos con máquinas.
A Modelling Approach to Multibody Dynamics of Fluid Power Machinery with Hydrodynamic Lubrication
DEFF Research Database (Denmark)
Johansen, Per; Rømer, Daniel; Andersen, Torben Ole
2013-01-01
The efficiency potential of the digital displacement technology and the increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for development of high efficiency fluid power machinery. Modelling and analysis of fluid power machinery loss...... to be coupled with multibody dynamics models. The focus of the current paper is an approach where the transient pressure field in hydrodynamic lubricated joint clearances are modelled by a set of control volumes and coupled with the fluid power machinery mechanics....... mechanisms is necessary in order to accommodate this demand. At present fully coupled thermo-elastic models for various tribological interfaces has been presented. However, in order to analyse the interaction between tribological interfaces in fluid power pumps and motors, these interface models needs...
Eigenmodes of misaligned unstable optical resonators with circular mirrors.
Bowers, M S
1992-03-20
It is shown numerically that the diffractive transverse (Fox-Li) eigenmodes supported by an unstable cavity with tilted end mirrors can be computed by expanding these modes in terms of the fully aligned (aberration-free) eigenmodes of the same cavity. Circular mirror resonators are considered in which the aligned cavity eigenmodes can be decomposed into different azimuthal components. The biorthogonality property of the aligned cavity eigenmodes is used to obtain the coefficients in the modal expansion of the misaligned modes. Results are given for two different resonators: a conventional hard-edge unstable cavity with a small tilt of the output coupler and one that uses a graded reflectivity output mirror with a small tilt of the primary mirror. It is shown that the series expansion of the misaligned modes in terms of the aligned modes converges, and the converged eigenvalues are virtually identical to those computed by using the Prony method. Symmetry considerations and other new insights into the effects of a mirror tilt on the modes of a resonator are also discussed.
Predictors of early outcome in unstable pelvic fractures
Institute of Scientific and Technical Information of China (English)
Ramesh K Sen; Nirmal Raj Gopinathan; Tajir Tamuk; Rajesh Kumar; Vibhu Krishnan; Radheshyam Sament
2013-01-01
Objective:To define the preoperative and intraoperative variables which may affect the immediate postoperative outcome in surgically managed patients with unstable pelvic fractures.Methods:This study was performed prospectively from January 2009 to June 2011 on 36 consecutive patients admitted to the trauma ward of Postgraduate Institute of Medical Education and Research,Chandigarh,with unstable pelvic injuries.Results:In the present study of 36 patients,29 were managed surgically.Surgical duration was 2 hours in patients operated on within 1 week and 3.4 hours in those operated on after 1 week.The blood loss was 550 ml when surgery was done after a week,but when done within a week it was 350 ml.The average blood loss through Pfanenstial approach was 360 ml,through posterior approach was 408 ml and through combined approach was 660 ml which was significantly high.Conclusion:Anterior approach to the pelvis would cause significantly more amount of blood loss than posterior approach and external fixation.Surgical approaches do not have any influence on the surgical duration or the infection rate.The blood loss significantly increases when the surgical time is more than 1 h.The infection rate is not influenced by the duration of surgery.Presence or absence of associated injuries to the head,chest or abdomen is the main determinants of patient's survival and it greatly influences the duration of hospital stay.
Unstable Behavior of Anodic Arc Discharge for Synthesis of Nanomaterials
Gershman, Sophia; Raitses, Yevgeny
2016-09-01
Fast imaging and electrical current measurements reveal unstable behavior of the carbon arc discharge for synthesis of nanomaterials. The arc column and the arc attachment region to the anode move in a somewhat sporadic way with a characteristic time in a 10-3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. A physical mechanism is proposed based on the thermal processes in the arc plasma region interacting with the ablating anode which leads to the shift of the arc to a new anode region. According to the transient heat transfer analysis, the time needed to heat a new anode region is also in a 10-3 sec range. For a 0.6 cm diameter anode used in our experiments, this time yields a frequency of about 200-300 Hz, comparable to the measured frequency of the arc motion. The voltage and current measurements show oscillations with a similar characteristic frequency. The thermal model is indirectly supported by the measured negative differential resistance of the arc discharge during arc oscillations. The observed unstable behavior of the arc may be responsible for the mixing of the flow of nanoparticles during the synthesis of nanoparticles leading to poor selectivity typical for the arc synthesis. The work was supported by US DOE under Contract No. DE-AC02-09CH11466.
A chaotic system with a single unstable node
Energy Technology Data Exchange (ETDEWEB)
Sprott, J.C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Jafari, Sajad, E-mail: sajadjafari@aut.ac.ir [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Pham, Viet-Thanh [School of Electronics and Telecommunications, Hanoi University of Science and Technology, 01 Dai Co Viet, Hanoi (Viet Nam); Hosseini, Zahra Sadat [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)
2015-09-25
This paper describes an unusual example of a three-dimensional dissipative chaotic flow with quadratic nonlinearities in which the only equilibrium is an unstable node. The region of parameter space with bounded solutions is relatively small as is the basin of attraction, which accounts for the difficulty of its discovery. Furthermore, for some values of the parameters, the system has an attracting torus, which is uncommon in three-dimensional systems, and this torus can coexist with a strange attractor or with a limit cycle. The limit cycle and strange attractor exhibit symmetry breaking and attractor merging. All the attractors appear to be hidden in that they cannot be found by starting with initial conditions in the vicinity of the equilibrium, and thus they represent a new type of hidden attractor with important and potentially problematic engineering consequences. - Highlights: • An unusual example of a three-dimensional dissipative chaotic flow is introduced. • In this system the only equilibrium is an unstable node. • For some values of the parameters, the system has an attracting torus. • This torus can coexist with a strange attractor or with a limit cycle. • These properties are uncommon in three-dimensional systems.
EXTERNAL FIXATOR IN THE MANAGEMENT OF UNSTABLE PELVIC FRACTURES
Directory of Open Access Journals (Sweden)
Devi prasad
2014-08-01
Full Text Available Universally, high- energy trauma is the major cause of mortality and morbidity in the younger age group. Usually pelvic fractures are caused by high energy trauma. Hence it affects not only the musculoskeletal system, but also the soft tissues and viscera contained in the pelvis leading to increased mortality and morbidity. Management of such patients remains a challenge to the trauma surgeon, even in the most sophisticated trauma centers. The aim of our study is to evaluate the role of external fixation in the management of pelvic fractures, both as a resuscitative measure and definitive treatment of unstable pelvic fractures (Type B & Type C. In our study, all patients underwent stabilization with external fixator and the mortality rate was zero with additional internal fixation with reconstruction plating being done in three patients. The primary advantage of external fixation in pelvic injury is to maintain the reduction by which it produces a tamponade effect and results in reduction in haemorrhage, and helps transportation of the patient. External stabilization for unstable pelvic fractures with external fixator is an established treatment procedure and we in our study confirm the usefulness of the procedure in an emergency situation and can be continued effectively as a definitive management for type B & C Pelvic injuries
[Unstable angina pectoris in intermittent left bundle branch block].
Albert, S; Flury, G
1997-11-19
We present a case report of a 57 year old woman with recurrent chest pain, initially exclusively at exercise and later also at rest. This led to an emergency hospitalization for suspected myocardial infarction. As there were no enzymatic and electrocardiographic signs of acute infarction she was treated, as unstable angina pectoris. Coronary angiography revealed but a modest coronary atheromatosis without significant coronary stenosis. Therefore her symptoms were interpreted as primary manifestation of an intermittant Left Bundle Branch Block (LBBB) with changing heart-rate dependency. A majority of patients with LBBB and chest pain have a relevant Coronary Artery Disease (CAD). There is a small number of reports in literature about patients with intermittant LBBB without significant CAD but with both typical (exercise-induced) and atypical (at rest) chest pain. Special features of our case are presentation of LBBB as unstable angina, documentation of an intermittant LBBB with changing heart-rate dependency and heart-rate-dependent supranormal conduction in the left bundle branch. We review some important aspects of LBBB with regard to this case.
Boundary Between Stable and Unstable Regimes of Accretion
Directory of Open Access Journals (Sweden)
Blinova A. A.
2014-01-01
Full Text Available We investigated the boundary between stable and unstable regimes of accretion and its dependence on different parameters. Simulations were performed using a “cubed sphere" code with high grid resolution (244 grid points in the azimuthal direction, which is twice as high as that used in our earlier studies. We chose a very low viscosity value, with alpha-parameter α=0.02. We observed from the simulations that the boundary strongly depends on the ratio between magnetospheric radius rm (where the magnetic stress in the magnetosphere matches the matter stress in the disk and corotation radius rcor (where the Keplerian velocity in the disk is equal to the angular velocity of the star. For a small misalignment angle of the dipole field, Θ = 5°, accretion is unstable if rcor/rm> 1.35, and is stable otherwise. In cases of a larger misalignment angle of the dipole, Θ = 20°, instability occurs at slightly larger values, rcor/rm> 1.41
Capillary-mediated interface perturbations: Deterministic pattern formation
Glicksman, Martin E.
2016-09-01
Leibniz-Reynolds analysis identifies a 4th-order capillary-mediated energy field that is responsible for shape changes observed during melting, and for interface speed perturbations during crystal growth. Field-theoretic principles also show that capillary-mediated energy distributions cancel over large length scales, but modulate the interface shape on smaller mesoscopic scales. Speed perturbations reverse direction at specific locations where they initiate inflection and branching on unstable interfaces, thereby enhancing pattern complexity. Simulations of pattern formation by several independent groups of investigators using a variety of numerical techniques confirm that shape changes during both melting and growth initiate at locations predicted from interface field theory. Finally, limit cycles occur as an interface and its capillary energy field co-evolve, leading to synchronized branching. Synchronous perturbations produce classical dendritic structures, whereas asynchronous perturbations observed in isotropic and weakly anisotropic systems lead to chaotic-looking patterns that remain nevertheless deterministic.
Stabilizing geometry for hydrodynamic rotary seals
Dietle, Lannie L.; Schroeder, John E.
2010-08-10
A hydrodynamic sealing assembly including a first component having first and second walls and a peripheral wall defining a seal groove, a second component having a rotatable surface relative to said first component, and a hydrodynamic seal comprising a seal body of generally ring-shaped configuration having a circumference. The seal body includes hydrodynamic and static sealing lips each having a cross-sectional area that substantially vary in time with each other about the circumference. In an uninstalled condition, the seal body has a length defined between first and second seal body ends which varies in time with the hydrodynamic sealing lip cross-sectional area. The first and second ends generally face the first and second walls, respectively. In the uninstalled condition, the first end is angulated relative to the first wall and the second end is angulated relative to the second wall. The seal body has a twist-limiting surface adjacent the static sealing lip. In the uninstalled condition, the twist-limiting surface is angulated relative to the peripheral wall and varies along the circumference. A seal body discontinuity and a first component discontinuity mate to prevent rotation of the seal body relative to the first component.
Hydrodynamic modelling of hydrostatic magnesium extrusion
Moodij, E.; Rooij, de M.B.; Schipper, D.J.
2006-01-01
Wilson’s hydrodynamic model of the hydrostatic extrusion process is extended to meet the geometry found on residual billets. The transition from inlet to work zone of the process is not considered sharp as in the model of Wilson but as a rounded edge, modelled by a parabolic function. It is shown th
Hydrodynamic limits of the Vlasov equation
Energy Technology Data Exchange (ETDEWEB)
Caprino, S. (Universita' de L' Aquila Coppito (Italy)); Esposito, R.; Marra, R. (Universita' di Roma tor Vergata, Roma (Italy)); Pulvirenti, M. (Universita' di Roma la Sapienza, Roma (Italy))
1993-01-01
In the present work, the authors study the Vlasov equation for repulsive forces in the hydrodynamic regime. For initial distributions at zero temperature the limit equations turn out to be the compressible and incompressible Euler equations under suitable space-time scalings. 17 refs.
Microflow Cytometers with Integrated Hydrodynamic Focusing
Directory of Open Access Journals (Sweden)
Martin Schmidt
2013-04-01
Full Text Available This study demonstrates the suitability of microfluidic structures for high throughput blood cell analysis. The microfluidic chips exploit fully integrated hydrodynamic focusing based on two different concepts: Two-stage cascade focusing and spin focusing (vortex principle. The sample—A suspension of micro particles or blood cells—is injected into a sheath fluid streaming at a substantially higher flow rate, which assures positioning of the particles in the center of the flow channel. Particle velocities of a few m/s are achieved as required for high throughput blood cell analysis. The stability of hydrodynamic particle positioning was evaluated by measuring the pulse heights distributions of fluorescence signals from calibration beads. Quantitative assessment based on coefficient of variation for the fluorescence intensity distributions resulted in a value of about 3% determined for the micro-device exploiting cascade hydrodynamic focusing. For the spin focusing approach similar values were achieved for sample flow rates being 1.5 times lower. Our results indicate that the performances of both variants of hydrodynamic focusing suit for blood cell differentiation and counting. The potential of the micro flow cytometer is demonstrated by detecting immunologically labeled CD3 positive and CD4 positive T-lymphocytes in blood.
Hydrodynamics and Roughness of Irregular Boundaries
2011-01-01
principle component analysis (PCA) similar to that used by Preston (2009) for ship- mounted multibeam data. Several variables derived from the...complex boundaries as well as characterization of acoustic and optical processes. Turbulent processes at the seabed are at the foundation of littoral...nearshore hydrodynamics, turbulence over rough beds influences optical and acoustic properties. Bed roughness also directly affects acoustic propagation in
Impact of Hydrodynamics on Oral Biofilm Strength
Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.
2009-01-01
Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of S
Hydrodynamic erosion process of undisturbed clay
Zhao, G.; Visser, P.J.; Vrijling, J.K.
2011-01-01
This paper describes the hydrodynamic erosion process of undisturbed clay due to the turbulent flow, based on theoretical analysis and experimental results. The undisturbed clay has the unique and complicated characteristics of cohesive force among clay particles, which are highly different from dis
Hydrodynamic impact response, a flexible view
Vredeveldt, A.W.; Hoogeland, M.; Janssen, G.Th.M.
2001-01-01
The popularity of high-speed craft is steadily increasing. Until now, much attention has been focussed on the hydrodynamic aspects of these craft. The structural design of these vessels is usually considered in a quasi static sense. However, due to the requirement of light ship structures, fast ship
Hydrodynamics: Fluctuating initial conditions and two-particle correlations
Energy Technology Data Exchange (ETDEWEB)
Andrade, R.P.G.; Grassi, F. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Hama, Y., E-mail: hama@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Qian, W.-L. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)
2011-03-15
Event-by-event hydrodynamics (or hydrodynamics with fluctuating initial conditions) has been developed in the past few years. Here we discuss how it may help to understand the various structures observed in two-particle correlations.
Three Dimensional Hydrodynamics of Protostars and Protostellar Disks
Pickett, Brian Keith
1995-01-01
Stars form when a rotating cloud of gas and dust collapses under the influence of its own gravity. Modern studies of the collapse and fragmentation of rotating protostellar clouds suggest a wide variety of outcomes, depending on the assumed initial conditions. The post-collapse objects are subject to dynamic instabilities which may produce significant mass and angular momentum transport or, if violent enough, could lead to the breakup of the original object. I have considered the isentropic equilibrium states that might form from the collapse of uniformly rotating spherical clouds. By varying the central concentration of the assumed initial cloud, I obtain equilibrium states distinguished primarily by their different specific angular momentum distributions. Using a new code to generate the axisymmetric equilibrium states and an improved adiabatic 3D hydrodynamics code to evolve them, I have investigated the onset and nature of global dynamic instabilities in these objects. The objects corresponding to uniform initial conditions are unstable to barlike distortions at high rotation rates. These instabilities are vigorous and lead to violent ejection of mass and angular momentum. In contrast, the rapidly rotating equilibrium objects that correspond to highly centrally condensed initial clouds are subject to low-order spiral instabilities. In extremely flattened models, one -armed spirals dominate all other disturbances but do not lead to fragmentation. Significant amounts of angular momentum can be transported on very short time scales; in the most extreme case, 30% of the total angular momentum is moved from the central regions outward in about half a year. Even when the instabilities do not lead to transport or ejection of material, the original object can be significantly restructured, leading to flaring and surface distortions at large radii. The central concentration of the assumed initial cloud appears to be a good predictor of the dynamic instabilities which
Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.
2013-12-01
Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.
Effect of hydrodynamic interaction on the free volume distribution of SGFR-PBT composites
Munirathnamma, L. M.; Ningaraju, S.; Kumar, K. V. Aneesh; Ravikumar, H. B.
2016-05-01
In order to explore the effect of short glass fiber (SGF) reinforcement on the mechanical properties of Polybutylene terephthalate (PBT), short glass fibers of different proportion (10 - 40 wt %) are reinforced into PBT matrix. The free volume distribution of SGFR-PBT composites derived from CONTIN-PALS2 program exhibits the narrow full width at half maximum (FWHM). This is attributed to the improved adhesion resulted by the hydrodynamic interaction between the polymeric chains of PBT matrix and SGF. The hydrodynamic interaction parameter (h) decreases as a function of SGF wt% and becomes more negative for 40 wt% SGFR-PBT composites suggest the generation of excess friction at the interface. This improves the adhesion between the polymeric chains of PBT matrix and SGF and hence the mechanical strength of the SGFR-PBT composites.
Colosqui, Carlos E; Papathanasiou, Athanasios G; Kevrekidis, Ioannis G
2012-01-01
We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibrium contact angle; and the static and dynamic hysteresis of the contact angles. The pseudo- potentials employed for fluid-solid interactions are composed of a repulsive core and an attractive tail that can be independently adjusted. This enables effective modification of the functional form of the disjoining pressure so that one can vary the static and dynamic hysteresis on surfaces that exhibit the same equilibrium contact angle. The modeled solid-fluid interface is diffuse, represented by a wall probability function which...
Nejad-Asghar, Mohsen
2008-01-01
The heating of the ion-neutral (or ambipolar) diffusion may affect the thermal phases of the molecular clouds. We present an investigation on the effect of this heating mechanism in the thermal instability of the molecular clouds. A weakly ionized one dimensional slab geometry, which is allowed for self-gravity and ambipolar diffusion, is chosen to study its thermal phases. We use the thermodynamic evolution of the slab to obtain the regions where slab cloud becomes thermally unstable. We investigate this evolution using the model of ambipolar diffusion with two-fluid smoothed particle hydrodynamics, as outlined by Hosking & Whitworth. Firstly, some parts of the technique are improved to test the pioneer works on behavior of the ambipolar diffusion in an isothermal self-gravitating slab. Afterwards, the improved two-fluid technique is used for thermal evolution of the slab. The results show that the thermal instability may persist inhomogeneities with a large density contrast at the intermediate parts of ...
Sliding friction in the hydrodynamic lubrication regime for a power-law fluid
Warren, P. B.
2017-02-01
A scaling analysis is undertaken for the load balance in sliding friction in the hydrodynamic lubrication regime, with a particular emphasis on power-law shear-thinning typical of a structured liquid. It is argued that the shear-thinning regime is mechanically unstable if the power-law index n < 1/2, where n is the exponent that relates the shear stress to the shear rate. Consequently the Stribeck (friction) curve should be discontinuous, with possible hysteresis. Further analysis suggests that normal stress and flow transience (stress overshoot) do not destroy this basic picture, although they may provide stabilising mechanisms at higher shear rates. Extensional viscosity is also expected to be insignificant unless the Trouton ratio is large. A possible application to shear thickening in non-Brownian particulate suspensions is indicated.
The Nature of the Radiative Hydrodynamic Instabilities in Radiatively Supported Thomson Atmospheres
Shaviv, N J
2001-01-01
Atmospheres having a significant radiative support are shown to be intrinsically unstable at luminosities above a critical fraction Gamma_crit ~ 0.5-0.85 of the Eddington limit, with the exact value depending on the boundary conditions. Two different types of absolute radiation-hydrodynamic instabilities of acoustic waves are found to take place even in the electron scattering dominated limit. Both instabilities grow over dynamical time scales and both operate on non radial modes. One is stationary and arises only after the effects of the boundary conditions are taken into account, while the second is a propagating wave and is insensitive to the boundary conditions. Although a significant wind can be generated by these instabilities even below the classical Eddington luminosity limit, quasi-stable configurations can exist beyond the Eddington limit due to the generally reduced effective opacity. The study is done using a rigorous numerical linear analysis of a gray plane parallel atmosphere under the Eddingto...
How Do Hydrodynamic Instabilities Affect 3D Transport in Geophysical Vortices?
Wang, P.; Ozgokmen, T. M.
2014-12-01
Understanding three-dimensional (3D) transport in ocean eddies is important for processes at a variety of scales, ranging from plankton production to climate variability. It is well known that geophysical vortices are subject to various hydrodynamic instabilities. Yet the influence of these instabilities on 3D material transport in vortex systems is not well investigated. Focusing on barotropic, inertial and 3D instabilities, we analyze these instabilities with normal-mode method, and reproduce their characteristics via highly-resolved numerical simulations using a spectral element Navier-Stokes solver. By comparing the simulation results of stable and unstable vortices, we investigate the joint impacts of instabilities on 3D transport through three major aspects: (i) energy transfer, (ii) overturning transport of the secondary circulation, and (iii) rates of vertical exchange and mixing. It is found that instabilities can enhance local nonlinear interactions and cause the kinetic energy wavenumber spectrum to have slopes between the conventional -5/3 and -3 at inertial ranges. The cascade of a new quantity is proposed to explain these non-conventional slopes. One of our main results is the discovery of material exchange between the central vortex and satellite vortices through 3D pathways, called funnels. These funnels modify the concept of elliptic regions that can trap material when confined to 2D dynamics. Thus, we show that a family of vortices, created by the hydrodynamic instabilities of the initially unstable vortex, can still continue to operate in unity in order to complete the 3D transport in these systems. We also show that flow instabilities can double the magnitude of vertical velocity, increase the rate of vertical exchange by an order of magnitude and enhance mixing rate more than 100%.
Unstable Pore-Water Flow in Intertidal Wetlands
Barry, D. A.; Shen, C.; Li, L.
2014-12-01
Salt marshes are important intertidal wetlands strongly influenced by interactions between surface water and groundwater. Bordered by coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur over vastly different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil condition, particularly aeration, which influences the marsh plant growth. Numerous studies have been carried out to examine the pore-water flow process in the marsh soil driven by tides, focusing on stable flow with the assumption of homogeneity in soil and fluid properties. This assumption, however, is questionable given the actual inhomogeneous conditions in the field. For example, the salinity of surface water in the tidal creek varies temporally and spatially due to the influence of rainfall and evapotranspiration as well as the freshwater input from upland areas to the estuary, creating density gradients across the marsh surface and within the marsh soil. Many marshes possess soil stratigraphy with low-permeability mud typically overlying high-permeability sandy deposits. Macropores such as crab burrows are commonly distributed in salt marsh sediments. All these conditions are prone to the development of non-uniform, unstable preferential pore-water flow in the marsh soil, for example, funnelling and fingering. Here we present results from laboratory experiments and numerical simulations to explore such unstable flow. In particular, the analysis aims to address how the unstable flow modifies patterns of local pore-water movement and solute transport, as well as the overall exchange between the marsh soil and
Modeling shallow-water hydrodynamics: Rotations, rips, and rivers
Long, Joseph W.
Hydrodynamic models are used as a diagnostic tool to understand the temporal variability of shallow-water processes that are difficult to completely resolve with traditional field measurements. For all simulations, modeled quantities are qualitatively or quantitatively compared with available measurements to gain confidence in conclusions derived from the modeled results. In this work we consider both vorticity motions and rip currents, which arise from alongshore inhomogeneities in the wave momentum flux but occur at much different time scales (O(min) vs. O(hours-weeks)). They each have an effect on sediment transport processes and dispersion of sediments or pollutants in the surf zone, which makes understanding their structure and persistence essential. The vorticity motions of interest here are associated with spatial and temporal wave height variations caused by wave grouping and can exist with either normally or obliquely incident wave conditions. We find that these flows persist for O(1000s) but their lifespan is controlled by the sequence of wave forcing rather than bottom friction as previously hypothesized. These motions can also be observed in combination with either stable or unstable alongshore currents. Our results suggest that, at times, these alongshore propagating wave group forced vortices are misinterpreted as instabilities of the alongshore current. Alternately, the rip currents considered in this research are controlled by strong wave height gradients in the surf zone generated by the refraction of incident waves over variable offshore depth contours. Thus, this type of circulation is governed by timescales associated with changing offshore wave conditions (O(hours - days)). We consider a four- week time period when variable offshore wave spectra were observed during a large-scale field experiment. The model and data are in good agreement for all wave conditions during the month and estimated model errors are similar to those found previously
Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan
2017-05-01
Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has
How to react to shallow water hydrodynamics: The larger benthic foraminifera solution.
Briguglio, Antonino; Hohenegger, Johann
2011-11-01
Symbiont-bearing larger benthic foraminifera inhabit the photic zone to provide their endosymbiotic algae with light. Because of the hydrodynamic conditions of shallow water environments, tests of larger foraminifera can be entrained and transported by water motion. To resist water motion, these foraminifera have to build a test able to avoid transport or have to develop special mechanisms to attach themselves to substrate or to hide their test below sediment grains. For those species which resist transport by the construction of hydrodynamic convenient shapes, the calculation of hydrodynamic parameters of their test defines the energetic input they can resist and therefore the scenario where they can live in. Measuring the density, size and shape of every test, combined with experimental data, helps to define the best mathematical approach for the settling velocity and Reynolds number of every shell. The comparison between water motion at the sediment-water interface and the specimen-specific settling velocity helps to calculate the water depths at which, for a certain test type, transport, deposition and accumulation may occur. The results obtained for the investigated taxa show that the mathematical approach gives reliable results and can discriminate the hydrodynamic behaviour of different shapes. Furthermore, the study of the settling velocities, calculated for all the investigated taxa, shows that several species are capable to resist water motion and therefore they appear to be functionally adapted to the hydrodynamic condition of its specific environment. The same study is not recommended on species which resist water motion by adopting hiding or anchoring strategies to avoid the effect of water motion.
Structure of Colloidal Flocs in relation to the Dynamic Properties of Unstable Suspension
Directory of Open Access Journals (Sweden)
Yasuhisa Adachi
2012-01-01
Full Text Available Dynamic behaviors of unstable colloidal dispersions are reviewed in terms of floc formation. Geometrical structure of flocs in terms of chemical conditions and formation mechanics is a key to predict macroscopic transportation properties. The rate of sedimentation and rheological properties can be described with the help of fractal dimension (D that is the function of the number of contacts between clusters (Nc. It is also well known that the application of water soluble polymers and polyelectrolytes, which are usually used as a conditioner or flocculants in colloidal dispersions, critically affects the process of flocculation. The resulted floc structure is also influenced by the application of polymer. In order to reveal the roles of the polymers, the elementary rate process of polymer reaching to colloidal interface and subsequent reconformation process into more stable adsorption state are needed to be analyzed. The properties of permeable flocs and adsorbed polymer (polyelectrolyte layers formed on the colloidal surfaces remain to be worked out in relation to inhomogeneous porous structure and electrokinetics in the future.
Convection onset induced by a density stratification whose unstable part is infinitely thin
Aljahdaly, N H
2016-01-01
We consider a vertical cavity composed of two chambers separated by a retractable thermally insulated thin membrane. The upper and lower chambers are filled with an incompressible Boussinesq fluid and maintained at temperatures $T_2$ and $T_1>T_2$, respectively by two separate heaters. Upon retraction of the membrane, the two fluid masses form an unstably stratified configuration with cold and heavy fluid overlying a warmer and lighter fluid and separated by a non-free interface across which there is a jump in the density. The aim of this paper is to determine the threshold conditions for convection onset and associated fluid flow patterns induced by this discontinuous density stratification. We find that the discontinuity of the density profile leads to the appearance of temperature perturbation iso-contours that have a lens shape instead of the classical oval shape and that the mixing is confined to near the location of the density jump with stagnant and isothermal fluid away from the discontinuity. We deri...
Wanstall, Taber; Hadji, Layachi
2016-11-01
The convective stability associated with carbon sequestration is modeled by adopting an unstably stratified basic profile having a step function density with top heavy carbon saturated layer overlying a lighter carbon free layer. The model takes into account the anisotropy in both permeability and carbon dioxide diffusion, and chemical reactions between the CO2 rich brine and host mineralogy. We carry out a linear stability analysis to derive the instability threshold parameters for a variety of CO2 boundary conditions. We solve for the minimum thickness of the carbon-rich layer at which convection sets in and quantify how its value is influenced by diffusion, anisotropy, permeability, reaction and type of boundary conditions. The discontinuity leads to convective concentration contours that have the shape of an asymmetric lens which we quantify by deriving and making use of the CO2 flux expressions at the interface. The linear problem is extended to the nonlinear regime, the analysis of which leads to the determination of a uniformly valid super critical steady solution.
Neutron Capture Measurements on Unstable Nuclei at LANSCE
Energy Technology Data Exchange (ETDEWEB)
Ullmann, J.; Haight, R.; Wilhelmy, J.; Fowler, M.; Rundberg, R.; Miller, G.
1998-11-04
Although neutron capture by stable isotopes has been extensively measured, there are very few measurements on unstable isotopes. The intense neutron flux at the Manual Lujan Jr. Neutron Scattering Center at LANSCE enables us to measure capture on targets with masses of about 1 mg over the energy range from 1 eV to 100 keV. These measurements are important not only for understanding the basic physics, but also for calculations of stellar nucleosynthesis and Science-Based Stockpile Stewardship. Preliminary measurements on {sup 169}Tm and {sup 171}Tm have been made with deuterated benzene detectors. A new detector array at the Lujan center and a new radioactive isotope separator will combine to give Los Alamos a unique capability for making these measurements.
Analysis of modes in an unstable strip laser resonator
Rowley, J. E.
1980-12-01
The mode eigenvalue equation for an unstable strip laser resonator is developed from scalar diffraction theory. The field distributions are expressed as a series and the integral is then evaluated using a first order approximation to the method of stationary phase. The resulting approximate closed form is rearranged to form an eigenvalue polynomial, the roots of which are the mode eigenvalues. Eigenfunction expressions are then developed using second order approximation to the method of stationary phase. Modifications to these expressions are then made to account for the presence of uniform gain in the resonator. The results of a computer program using the derived expressions are presented. Comparisons to previously published results are made for the bare cavity case, and results for the loaded cavity case follow.
Some cases of terrain unstability from the Dolenjska karst area
Directory of Open Access Journals (Sweden)
Magda Čarman
2010-12-01
Full Text Available The paper presents some cases of terrain unstability from the Dolenjska karst area formed in the last yearsaround Žužemberk and Dolenjske Toplice. The Dolenjska karst has its own characteristic way of development. Themain features are thick soil top, mainly composed of clay, and high and strongly fluctuating water table. Presentedare a landslide, two rockfalls and a sinkhole collapse. A landslide nearby Žužemberk was initiated in soil top. Bothrockfalls appeared in tectonically highly disturbed carbonate rocks along the Žužemberk fault. The sinkhole collapsein the area around Dolenjske Toplice developed in tectonically damaged rocks inside the Dolenjska - Notranjskahorst and during a period of heavy rain.
Postural control responses sitting on unstable board during visual stimulation
Mizuno, Y.; Shindo, M.; Kuno, S.; Kawakita, T.; Watanabe, S.
2001-08-01
Concerning with the relation of vection induced by the optokinetic stimulation and the body movement, especially we attended to the neck joint movement, which counteracted to the shoulder movement. Then, we analyzed the mechanisms of the sitting postural control by using the seesaw board. By the optokinetic stimulation through the head mounted display (H.M.D.), the vection was leaded, and it affected to the sway of the body on the seesaw board. In this experiment, we found that the movement of upper part of body except for the head was the same direction to the seesaw board but the head moved out of phase to the seesaw board. This phenomenon will be suggested that the unstable condition of sway is balanced by the counter swing of head and the neck muscle tonus is controlled by acting of the vestiburo-collic reflex.
The dynamic behavior of sliding tribosystems in unstable operating conditions
Postaru, A.; Postaru, Ghe; Ceban, V.; Spânu, C.; Stoicev, P.
2017-02-01
The paper addresses the issue of the influence that the law of friction has on the dynamic behavior of the mechanical system that interacts with a tribosystem. The emergence of certain nonlinearities of higher order into the law of friction leads to an intensification of the dissipative process and to tribosystem destabilization. Consequently, friction excited self-oscillations are generated into the elements of the mechanical system with a wide spectrum of frequencies, sustained from the external source of energy. The theoretical and experimental modelling of the dissipative process and of the generation of is based on the frictional harmonic oscillator that interacts with the tribosystem. The oscillator is used as a sensitive element to the fluctuations of the frictional force and as a measure of the dissipated energy. Starting from the model, the elaboration of a method and of devices for experimental research provided the opportunity to study the behavior of the tribosystem in unstable operating
[Myocardial infarct and unstable angina pectoris: diagnostics and therapy].
Weber, M; Hamm, C
2007-04-01
Acute coronary syndromes include ST-elevation and non-ST elevation myocardial infarction, and unstable angina pectoris. These are characterised by the acute onset of chest pain. For the diagnostic work up in the acute phase, ECG and the assessment of cardiac markers play a central role. For patients with ST-elevation, primary interventional therapy is the first choice. For patients with an acute coronary syndrome without ST-elevation, a risk adapted therapeutic strategy should be chosen. High risk patients (elevated troponins, clinical, rhythmological and hemodynamic instability, ST-depression and diabetes mellitus) should be treated by an early invasive approach with angiography performed within 48-72 h. Low risk patients should be treated conservatively. For all patients who are treated interventionally, the administration of an aggressive antiaggregatory therapy including aspirin, clopidogrel, glycoprotein IIb/IIIa inhibitors and heparin is indicated in the acute phase. In the chronic phase, the treatment of cardiovascular risk factors is of paramount importance.
Active Feedback Control of Unstable Wells at the Brage Field
Directory of Open Access Journals (Sweden)
Morten Dalsmo
2005-04-01
Full Text Available In this paper we will present new results on stabilization of horizontal wells with gas lift. The stabilization is achieved by a novel dynamic feedback control solution using the production choke at the wellhead. The primary input to the dynamic feedback controller is a measurement of the downhole pressure. The field results to be presented are from the Brage field operated by Norsk Hydro in the North sea. Production at Brage began in 1993 and the field went off plateau in 1998. As the production has decreased, the problems related to unstable production from some of the wells have escalated steadily. The results from the extensive field tests on the Brage wells arc very promising. The tests have confirmed the stabilization feature of the control solution. The pressure and flow variations have been dramatically reduced, and it is possible to produce the wells at a lower downhole pressure leading to increased production.
Resonances, Unstable Systems and Irreversibility: Matter Meets Mind
Bishop, R C
2005-01-01
The fundamental time-reversal invariance of dynamical systems can be broken in various ways. One way is based on the presence of resonances and their interactions giving rise to unstable dynamical systems, leading to well-defined time arrows. Associated with these time arrows are semigroups bearing time orientations. Usually, when time symmetry is broken, two time-oriented semigroups result, one directed toward the future and one directed toward the past. If time-reversed states and evolutions are excluded due to resonances, then the status of these states and their associated backwards-in-time oriented semigroups is open to question. One possible role for these latter states and semigroups is as an abstract representation of mental systems as opposed to material systems. The beginnings of this interpretation will be sketched.
Wetting reversal at gelation transition freezes thermodynamically unstable states.
Hirayama, Shinya; Sano, Masahito
2013-07-23
The contact angle of a drop of gelling solution on a flat, solid surface was monitored as the hot solution was allowed to cool. When a solvent with a high cohesive energy and a wettable solid surface was used, a wetting solution turned into a dewetting solid at the gelation transition. The density profiles in gel as probed by confocal Raman microscopy reveal that the adsorption of both gelator and solvent shifts at the transition and the solvent is severely depleted from the interfacial region. Thus, the wetting reversal is accompanied by the interfacial desolvation. As a result of the adsorption shift during the gelation process in progress, a locally concentrated region of the gelator is frozen in space far away from the surface. This is a thermodynamically unstable state but can be realized reproducibly. The profile analysis also shows that the effect of the surface extends out to a few hundred micrometers, 2 orders of magnitude larger than the bulk correlation length.
Synthesis of unstable cyclic peroxides for chemiluminescence studies
Energy Technology Data Exchange (ETDEWEB)
Bartoloni, Fernando H.; Oliveira, Marcelo A. de; Augusto, Felipe A.; Ciscato, Luiz Francisco M.L.; Bastos, Erick L.; Baader, Wilhelm J., E-mail: wjbaader@iq.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Fundamental
2012-11-15
Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, a-peroxy lactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to study the properties of these substances. In this study, the synthesis, purification and characterization of three 1,2-dioxetanones are reported and a detailed procedure for the known synthesis of diphenoyl peroxide, another important model compound for the chemical generation of electronically excited states, is provided. For most of these peroxides, the complete spectroscopic characterization is reported here for the first time. (author)
Neutron capture measurements on unstable nuclei at LANSCE
Energy Technology Data Exchange (ETDEWEB)
Ullmann, J.L.; Haight, R.C. [LANSCE-3, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Fowler, M.M.; Miller, G.G.; Rundberg, R.S.; Wilhelmy, J.B. [CST-11, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
1999-06-01
Although neutron capture by stable isotopes has been extensively measured, there are very few measurements on unstable isotopes. The intense neutron flux at the Manual Lujan Jr. Neutron Scattering Center at LANSCE enables us to measure capture on targets with masses of about 1 mg over the energy range from 1 eV to 100 keV. These measurements are important not only for understanding the basic physics, but also for calculations of stellar nucleosynthesis and Science-Based Stockpile Stewardship. Preliminary measurements on {sup 169}Tm and {sup 171}Tm have been made with deuterated benzene detectors. A new detector array at the Lujan center and a new radioactive isotope separator will combine to give Los Alamos a unique capability for making these measurements. {copyright} {ital 1999 American Institute of Physics.}
GENERALIZED ENERGY CONSERVATION AND UNSTABLE PERTURBATION PROPERTY IN BAROTROPIC VORTEX
Institute of Scientific and Technical Information of China (English)
HUANG Hong; ZHANG Ming
2006-01-01
Based on a barotropic vortex model, generalized energy-conserving equation was derived and two necessary conditions of basic flow destabilization are gained. These conditions correspond to generalized barotropic instability and super speed instability. They are instabilities of vortex and gravity inertial wave respectively. In order to relate to practical situation, a barotropic vortex was analyzed, the basic flow of which is similar to lower level basic wind field of tropical cyclones and the maximum wind radius of which is 500 km.The results show that generalized barotropic instability depending upon the radial gradient of relative vorticity can appear in this vortex. It can be concluded that unstable vortex Rossby wave may appear in barotropic vortex.
Hot-warm unstable supersymmetric dark matter and galaxy formation
Energy Technology Data Exchange (ETDEWEB)
Asselin, X.; Girardi, G.; Salati, P.; Blanchard, A.
1988-12-12
Recent observational results had lead to a revival of interest in neutrino-dominated universe. However, we recall that current constraints make the neutrino an unlikely candidate for the dark matter. In this paper, we show that a supersymmetric particle with a typical mass of a few tens of eV will be a much better candidate. Such a particle is radiatively unstable, and its lifetime is a few times larger than the age of the universe. This can drastically change the thermal history of the universe. We investigate in detail the heating of the intergalactic medium in the period z=100-z=10. In particular, we find that the universe can be fully reionized for lifetime less than or equal to 10/sup 24/. This, in turn, lowers the level of temperature fluctuations of the background radiation. We conclude that this model avoids the major problems of the neutrino picture.
One Loop Mass Renormalization of Unstable Particles in Superstring Theory
Sen, Ashoke
2016-01-01
Most of the massive states in superstring theory are expected to undergo mass renormalization at one loop order. Typically these corrections should contain imaginary parts, indicating that the states are unstable against decay into lighter particles. However in such cases, direct computation of the renormalized mass using superstring perturbation theory yields divergent result. Previous approaches to this problem involve various analytic continuation techniques, or deforming the integral over the moduli space of the torus with two punctures into the complexified moduli space near the boundary. In this paper we use insights from string field theory to describe a different approach that gives manifestly finite result for the mass shift satisfying unitarity relations. The procedure is applicable to all states of (compactified) type II and heterotic string theories. We illustrate this by computing the one loop correction to the mass of the first massive state on the leading Regge trajectory in SO(32) heterotic st...
Unstable, self-limiting thermochemical temperature oscillations in Macrozamia cycads.
Roemer, Robert B; Terry, L Irene; Walter, Gimme H
2008-06-01
Field measurements and laboratory experiments on the Australian cycads Macrozamia lucida and Macrozamia macleayi demonstrate that their cones' diel peak thermogenic temperature increase varies systematically with cone stage, with single thermogenic temperature peaks occurring daily for up to 2 weeks and reaching 12 degrees C above ambient at midstage. The initiation, magnitude and timing of those peaks are strongly modulated by ambient temperature; the period between successive thermogenic temperature peaks is not circadian, and light is neither necessary nor sufficient to initiate a thermogenic event. A mathematical analysis is developed that provides a unified explanation of the experimental results. It describes these unstable, self-limiting thermogenic events in terms of conservation of energy and a first-order chemical reaction rate model that includes an Arrhenius equation dependence of the cone's metabolic heating rate on the cone temperature.
Oscillation structure of localized perturbations in modulationally unstable media
Biondini, Gino; Li, Sitai; Mantzavinos, Dionyssios
2016-12-01
We characterize the properties of the asymptotic stage of modulational instability arising from localized perturbations of a constant background, including the number and location of the individual peaks in the oscillation region. We show that, for long times, the solution tends to an ensemble of classical (i.e., sech-shaped) solitons of the focusing nonlinear Schrödinger equation (as opposed to the various breatherlike solutions of the same equation with a nonzero background). We also confirm the robustness of the theoretical results by comparing the analytical predictions with careful numerical simulations with a variety of initial conditions, which confirm that the evolution of modulationally unstable media in the presence of localized initial perturbations is indeed described by the same asymptotic state.
Mixed convection in turbulent channels with unstable stratification
Pirozzoli, Sergio; Verzicco, Roberto; Orlandi, Paolo
2016-01-01
We study turbulent flows in planar channels with unstable thermal stratification, using direct numerical simulations in a wide range of Reynolds and Rayleigh numbers and reaching flow conditions which are representative of asymptotic developed turbulence. The combined effect of forced and free convection produces a peculiar pattern of quasi--streamwise rollers occupying the full channel thickness with aspect--ratio considerably higher than unity; it has been observed that they have an important redistributing effect on temperature and momentum. The mean values and the variances of the flow variables do not appear to follow Prandtl's scaling in the flow regime near free convection, except for the temperature and vertical velocity fluctuations, which are more affected by turbulent plumes. Nevertheless, we find that the Monin--Obukhov theory still yields a useful representation of the main flow features. In particular, the widely used Businger--Dyer relationships provide a convenient way of accounting for the bu...
Two-Loop Threshold Singularities, Unstable Particles and Complex Masses
Actis, S; Sturm, C; Uccirati, S
2008-01-01
The effect of threshold singularities induced by unstable particles on two-loop observables is investigated and it is shown how to cure them working in the complex-mass scheme. The impact on radiative corrections around thresholds is thoroughly analyzed and shown to be relevant for two selected LHC and ILC applications: Higgs production via gluon fusion and decay into two photons at two loops in the Standard Model. Concerning Higgs production, it is essential to understand possible sources of large corrections in addition to the well-known QCD effects. It is shown that NLO electroweak corrections can incongruently reach a 10 % level around the WW vector-boson threshold without a complete implementation of the complex-mass scheme in the two-loop calculation.
Breit-Wigner approximation for propagators of mixed unstable states
Fuchs, Elina
2016-01-01
For systems of unstable particles that mix with each other, an approximation of the fully momentum-dependent propagator matrix is presented in terms of a sum of simple Breit-Wigner propagators that are multiplied with finite on-shell wave function normalisation factors. The latter are evaluated at the complex poles of the propagators. The pole structure of general propagator matrices is carefully analysed, and it is demonstrated that in the proposed approximation imaginary parts arising from absorptive parts of loop integrals are properly taken into account. Applying the formalism to the neutral MSSM Higgs sector with complex parameters, very good numerical agreement is found between cross sections based on the full propagators and the corresponding cross sections based on the described approximation. The proposed approach does not only technically simplify the treatment of propagators with non-vanishing off-diagonal contributions, it is shown that it can also facilitate an improved theoretical prediction of ...
Quantization of black hole entropy from unstable circular null geodesics
Wei, Shao-Wen; Liu, Yu-Xiao; Fu, Chun-E.
2016-04-01
The quasinormal mode frequencies can be understood from the massless particles trapped at the unstable circular null geodesics and slowly leaking out to infinity. Based on this viewpoint, in this paper, we semiclassically construct the entropy spectrum of the static and stationary black holes from the null geodesics. The result shows that the spacing of the entropy spectrum only depends on the property of the black hole in the eikonal limit. Moreover, for a black hole far from the extremal case, the spacing is found to be smaller than 2πħ for any dimension, which is very different from the result of the previous work by using the usual quasinormal mode frequencies.
Antisocial personality disorder--stable and unstable subtypes.
Ullrich, Simone; Coid, Jeremy
2010-04-01
There have been criticisms that the criteria for antisocial personality disorder (ASPD) are over-dependent on criminal behavior. This study aimed to identify unrelated criteria of social and behavioral problems and instability, and to investigate their associations in a representative household sample of adults in the UK. Approximately one third of adults with ASPD did not fulfill any of the criteria for instability. They were less aggressive and involved in illegal activities but expressed less remorse for their behaviors. Instability in ASPD was mediated primarily through comorbid anxiety disorders and borderline personality disorder. The concept of Secondary Psychopathy, which has not generally been applied to ASPD, demonstrated many similarities to the unstable subtype.
Unstable periodic orbits in human epileptic hippocampal slices.
Pen-Ning Yu; Min-Chi Hsiao; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W
2014-01-01
Inter-ictal activity is studied in hippocampal slices resected from patients with epilepsy using local field potential recording. Inter-ictal activity in the dentate gyrus (DG) is induced by high-potassium (8 mM), low-magnesium (0.25 mM) aCSF with additional 100 μM 4-aminopyridine(4-AP). The dynamics of the inter-ictal activity is investigated by developing the first return map with inter-pulse intervals. Unstable periodic orbits (UPOs) are detected in the hippocampal slice at the DG area according to both the topological recurrence method and the periodic orbit transform method. Surrogate analysis suggests the presence of UPOs in hippocampal slices from patients with epilepsy. This finding also suggests that inter-ictal activity is a chaotic system and will allow us to apply chaos control techniques to manipulate inter-ictal activity.
Atypical presentations among Medicare beneficiaries with unstable angina pectoris.
Canto, John G; Fincher, Contessa; Kiefe, Catarina I; Allison, Jeroan J; Li, Qing; Funkhouser, Ellen; Centor, Robert M; Selker, Harry P; Weissman, Norman W
2002-08-01
Chest pain is a hallmark symptom in patients with unstable angina pectoris (UAP). However, little is known regarding the prevalence of an atypical presentation among these patients and its relation to subsequent care. We examined the medical records of 4,167 randomly sampled Medicare patients hospitalized with unstable angina at 22 Alabama hospitals between 1993 and 1999. We defined typical presentation as (1) chest pain located substernally in the left or right chest, or (2) chest pain characterized as squeezing, tightness, aching, crushing, arm discomfort, dullness, fullness, heaviness, pressure, or pain aggravated by exercise or relieved with rest or nitroglycerin. Atypical presentation was defined as confirmed UAP without typical presentation. Among patients with confirmed UAP, 51.7% had atypical presentations. The most frequent symptoms associated with atypical presentation were dyspnea (69.4%), nausea (37.7%), diaphoresis (25.2%), syncope (10.6%), or pain in the arms (11.5%), epigastrium (8.1%), shoulder (7.4%), or neck (5.9%). Independent predictors of atypical presentation for patients with UAP were older age (odds ratio 1.09, 95% confidence interval 1.01 to 1.17/decade), history of dementia (odds ratio 1.49, 95% confidence interval 1.10 to 2.03), and absence of prior myocardial infarction, hypercholesterolemia, or family history of heart disease. Patients with atypical presentation received aspirin, heparin, and beta-blocker therapy less aggressively, but there was no difference in mortality. Thus, over half of Medicare patients with confirmed UAP had "atypical" presentations. National educational initiatives may need to redefine the classic presentation of UAP to include atypical presentations to ensure appropriate quality of care.
Serum cardiac troponin T in unstable angina pectoris patients.
Leowattana, W; Mahanonda, N; Bhuripanyo, K; Pokum, S; Kiartivich, S
2000-11-01
Cardiac troponin T (cTnT) is a regulatory contractile protein not normally found in blood. Its detection in the circulation has been shown to be a sensitive and specific marker for myocardial cell damage. In this study, we used a second-generation enzyme immunoassay for cTnT to determine whether its presence in the serum of patients with unstable angina was a prognostic indicator. Thirty patients with unstable angina pectoris (UAP) and 30 patients with Q-wave acute myocardial infarction (AMI) were screened for serum CK-MB activity and cTnT at 6, 12, 24 and 48 hours after the onset of chest pain, All of the mean concentrations of CK-MB activity determined in UAP patients were less than the upper limit of normal (25 U/L). Meanwhile, the mean concentration of cTnT at 6, 12, 24 and 48 hours after onset of chest pain were higher than the cutoff values (0.1 microg/L), We found that one third of UAP patients had serum cTnT at the time of admission more than 0.1 microg/L and that these groups of patients were associated with a high risk for cardiac events. Our results suggested that patients with elevated serum cTnT could be considered as high-risk patients for developing myocardial infarction, Patients with normal cTnT levels and a low or intermediate clinical risk could be stabilized and further stratified noninvasively.
Formation of complex and unstable chromosomal translocations in yeast.
Directory of Open Access Journals (Sweden)
Kristina H Schmidt
Full Text Available Genome instability, associated with chromosome breakage syndromes and most human cancers, is still poorly understood. In the yeast Saccharomyces cerevisiae, numerous genes with roles in the preservation of genome integrity have been identified. DNA-damage-checkpoint-deficient yeast cells that lack Sgs1, a RecQ-like DNA helicase related to the human Bloom's-syndrome-associated helicase BLM, show an increased rate of genome instability, and we have previously shown that they accumulate recurring chromosomal translocations between three similar genes, CAN1, LYP1 and ALP1. Here, the chromosomal location, copy number and sequence similarity of the translocation targets ALP1 and LYP1 were altered to gain insight into the formation of complex translocations. Among 844 clones with chromosomal rearrangements, 93 with various types of simple and complex translocations involving CAN1, LYP1 and ALP1 were identified. Breakpoint sequencing and mapping showed that the formation of complex translocation types is strictly dependent on the location of the initiating DNA break and revealed that complex translocations arise via a combination of interchromosomal translocation and template-switching, as well as from unstable dicentric intermediates. Template-switching occurred between sequences on the same chromosome, but was inhibited if the genes were transferred to different chromosomes. Unstable dicentric translocations continuously gave rise to clones with multiple translocations in various combinations, reminiscent of intratumor heterogeneity in human cancers. Base substitutions and evidence of DNA slippage near rearrangement breakpoints revealed that translocation formation can be accompanied by point mutations, and their presence in different translocation types within the same clone provides evidence that some of the different translocation types are derived from each other rather than being formed de novo. These findings provide insight into eukaryotic
Ambient vibrations of unstable rock slopes - insights from numerical modeling
Burjanek, Jan; Kleinbrod, Ulrike; Fäh, Donat
2017-04-01
The recent events in Nepal (2015 M7.8 Gorkha) and New Zealand (2016 M7.8 Kaikoura) highlighted the importance of earthquake-induced landslides, which caused significant damages. Moreover, landslide created dams present a potential developing hazard. In order to reduce the costly consequences of such events it is important to detect and characterize earthquake susceptible rock slope instabilities before an event, and to take mitigation measures. For the characterisation of instable slopes, acquisition of ambient vibrations might be a new alternative to the already existing methods. We present both observations and 3D numerical simulations of the ambient vibrations of unstable slopes. In particular, models of representative real sites have been developed based on detailed terrain mapping and used for the comparison between synthetics and observations. A finite-difference code has been adopted for the seismic wave propagation in a 3D inhomogeneous visco-elastic media with irregular free surface. It utilizes a curvilinear grid for a precise modeling of curved topography and local mesh refinement to make computational mesh finer near the free surface. Topographic site effects, controlled merely by the shape of the topography, do not explain the observed seismic response. In contrast, steeply-dipping compliant fractures have been found to play a key role in fitting observations. Notably, the synthetized response is controlled by inertial mass of the unstable rock, and by stiffness, depth and network density of the fractures. The developed models fit observed extreme amplification levels (factors of 70!) and show directionality as well. This represents a possibility to characterize slope structure and infer depth or volume of the slope instability from the ambient noise recordings in the future.
Plasma resistin is increased in patients with unstable angina
Institute of Scientific and Technical Information of China (English)
HU Wen-lan; QIAO Shu-bin; HOU Qing; YUAN Jian-song
2007-01-01
Background Resistin, a novel adipokine linked to insulin resistance and obesity in rodents, which is derived mainly from macrophages and identified in atheromas in human, has been shown to play a potential role in atherosclerosis.Resistin levels were reported to increase in coronary artery disease (CAD), while data concerning resistin in different stages of CAD in Chinese people are lacking. The aim of this study was to assess whether plasma concentrations of resistin differed between patients with unstable and stable angina pectoris.Methods Plasma resistin levels were determined by means of enzyme-linked immunosorbent assay (ELISA) in 46 patients with unstable angina (UAP), 37 with stable angina (SAP) and 31 control subjects.Results Plasma concentrations of resistin were significantly increased in UAP group (geometric mean (interquartile range) 12.09 ng/ml (8.40, 18.08)) in comparison with SAP (9.04 ng/ml (7.09, 11.44)) and control groups (8.71 ng/ml (6.58,11.56)). No differences in resistin levels were found between patients with SAP and controls. We also found that plasma resistin positively correlated with leukocyte counts (r=0.21, P=0.027), high sensitive C-reactive protein (hs-CRP) (r=0.25,P=0.008), and endothelin-1 (r=0.21, P=0.025) after adjustment for age, sex and BMI.Conclusion Resistin may be involved in the development of CAD by influencing systemic inflammation and endothelial activation.
An Unstable Truth: How Massive Stars get their Mass
Rosen, Anna L; McKee, Christopher F; Klein, Richard I
2016-01-01
The pressure exerted by massive stars' radiation fields is an important mechanism regulating their formation. Detailed simulation of massive star formation therefore requires an accurate treatment of radiation. However, all published simulations have either used a diffusion approximation of limited validity; have only been able to simulate a single star fixed in space, thereby suppressing potentially-important instabilities; or did not provide adequate resolution at locations where instabilities may develop. To remedy this we have developed a new, highly accurate radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform three-dimensional radiation-hydrodynamic simulations of the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the stellar system via ...
An empirical theory for gravitationally unstable flow in porous media
Farajzadeh, R.; Meulenbroek, B.J.; Daniel, D.; Riaz, A.; Bruining, J.
2013-01-01
In this paper, we follow a similar procedure as proposed by Koval (SPE J 3(2):145–154, 1963) to analytically model CO2 transfer between the overriding carbon dioxide layer and the brine layer below it. We show that a very thin diffusive layer on top separates the interface from a gravitationally
A Hydrodynamic Model for Slug Frequency in Horizontal Gas-Liquid Two-Phase Flow
Institute of Scientific and Technical Information of China (English)
刘磊; 孙贺东; 胡志华; 周芳德
2003-01-01
The prediction of slug frequency has important significance on gas-liquid two-phase flow. A hydrodynamic model was put forward to evaluate slug frequency for horizontal two-phase flow, based on the dependence of slug frequency on the frequency of unstable interfacial wave. Using air and water, experimental verification of the model was carried out in a large range of flow parameters. Six electrical probes were installed at different positions of a horizontal plexiglass pipe to detect slug frequency development. The pipe is 30 m long and its inner diameter is 24 ram. It is observed experimentally that the interracial wave frequency at the inlet is about i to 3 times the frequency of stable slug. The slug frequencies predicted by the model fit well with Tronconi (1990) model and the experimental data. The combination of the hydrodynamic model and the experimental data results in a conclusion that the frequency of equilibrium liquid slug is approximately half the minimum frequency of interfacial wave.
Effective Hydrodynamic Boundary Conditions for Corrugated Surfaces
Mongruel, Anne; Asmolov, Evgeny S; Vinogradova, Olga I
2012-01-01
We report measurements of the hydrodynamic drag force acting on a smooth sphere falling down under gravity to a plane decorated with microscopic periodic grooves. Both surfaces are lyophilic, so that a liquid (silicone oil) invades the surface texture being in the Wenzel state. A significant decrease in the hydrodynamic resistance force as compared with that predicted for two smooth surfaces is observed. To quantify the effect of roughness we use the effective no-slip boundary condition, which is applied at the imaginary smooth homogeneous isotropic surface located at an intermediate position between top and bottom of grooves. Such an effective condition fully characterizes the force reduction measured with the real surface, and the location of this effective plane is related to geometric parameters of the texture by a simple analytical formula.
Axially symmetric pseudo-Newtonian hydrodynamics code
Kim, Jinho; Choptuik, Matthew William; Lee, Hyung Mok
2012-01-01
We develop a numerical hydrodynamics code using a pseudo-Newtonian formulation that uses the weak field approximation for the geometry, and a generalized source term for the Poisson equation that takes into account relativistic effects. The code was designed to treat moderately relativistic systems such as rapidly rotating neutron stars. The hydrodynamic equations are solved using a finite volume method with High Resolution Shock Capturing (HRSC) techniques. We implement several different slope limiters for second order reconstruction schemes and also investigate higher order reconstructions. We use the method of lines (MoL) to convert the mixed spatial-time partial differential equations into ordinary differential equations (ODEs) that depend only on time. These ODEs are solved using 2nd and 3rd order Runge-Kutta methods. The Poisson equation for the gravitational potential is solved with a multigrid method. In order to confirm the validity of our code, we carry out four different tests including one and two...
Kinetic and hydrodynamic models of chemotactic aggregation
Chavanis, Pierre-Henri
2007-01-01
We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the anal...
SPHGR: Smoothed-Particle Hydrodynamics Galaxy Reduction
Thompson, Robert
2015-02-01
SPHGR (Smoothed-Particle Hydrodynamics Galaxy Reduction) is a python based open-source framework for analyzing smoothed-particle hydrodynamic simulations. Its basic form can run a baryonic group finder to identify galaxies and a halo finder to identify dark matter halos; it can also assign said galaxies to their respective halos, calculate halo & galaxy global properties, and iterate through previous time steps to identify the most-massive progenitors of each halo and galaxy. Data about each individual halo and galaxy is collated and easy to access. SPHGR supports a wide range of simulations types including N-body, full cosmological volumes, and zoom-in runs. Support for multiple SPH code outputs is provided by pyGadgetReader (ascl:1411.001), mainly Gadget (ascl:0003.001) and TIPSY (ascl:1111.015).
Filter-less submicron hydrodynamic size sorting.
Fouet, M; Mader, M-A; Iraïn, S; Yanha, Z; Naillon, A; Cargou, S; Gué, A-M; Joseph, P
2016-02-21
We propose a simple microfluidic device able to separate submicron particles (critical size ∼0.1 μm) from a complex sample with no filter (minimum channel dimension being 5 μm) by hydrodynamic filtration. A model taking into account the actual velocity profile and hydrodynamic resistances enables prediction of the chip sorting properties for any geometry. Two design families are studied to obtain (i) small sizes within minutes (low-aspect ratio, two-level chip) and (ii) micron-sized sorting with a μL flow rate (3D architecture based on lamination). We obtain quantitative agreement of sorting performances both with experiments and with numerical solving, and determine the limits of the approach. We therefore demonstrate a passive, filter-less sub-micron size sorting with a simple, robust, and easy to fabricate design.
Electro-hydrodynamic synchronization of piezoelectric flags
Xia, Yifan; Michelin, Sebastien
2016-01-01
Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dynamics, in particular driving their synchronization. This work investigates the effect of such coupling on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation into an electrical current. Considering two flags connected to a single output circuit, we investigate using numerical simulations the relative importance of hydrodynamic coupling to electrodynamic coupling of the flags through the output circuit due to the inverse piezoelectric effect. It is shown that electrodynamic coupling is dominant beyond a critical distance, and induces a synchronization of the flags' motion resulting in enhanced energy harvesting performance. We further show that this electrodynamic coupling can be strengthened using resonant harvesting circuits.
Application of hydrodynamics to heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Felsberger, Lukas
2014-12-02
The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.
Simple Waves in Ideal Radiation Hydrodynamics
Johnson, Bryan M
2008-01-01
In the dynamic diffusion limit of radiation hydrodynamics, advection dominates diffusion; the latter primarily affects small scales and has negligible impact on the large scale flow. The radiation can thus be accurately regarded as an ideal fluid, i.e., radiative diffusion can be neglected along with other forms of dissipation. This viewpoint is applied here to an analysis of simple waves in an ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries over by simply replacing the material sound speed, pressure and index with the values appropriate for a radiating fluid. A complete analysis is performed for a centered rarefaction wave, and expressions are provided for the Riemann invariants and characteristic curves of the one-dimensional system of equations. The analytical solution is checked for consistency against a finite difference numerical integration, and the validity of neglecting the diffusion operator is demonstrated. An interesting physical result is that for a material comp...
Pursuit and Synchronization in Hydrodynamic Dipoles
Kanso, Eva
2015-01-01
We study theoretically the behavior of a class of hydrodynamic dipoles. This study is motivated by recent experiments on synthetic and biological swimmers in microfluidic \\textit{Hele-Shaw} type geometries. Under such confinement, a swimmer's hydrodynamic signature is that of a potential source dipole, and the long-range interactions among swimmers are obtained from the superposition of dipole singularities. Here, we recall the equations governing the positions and orientations of interacting asymmetric swimmers in doubly-periodic domains, and focus on the dynamics of swimmer pairs. We obtain two families of `relative equilibria'-type solutions that correspond to pursuit and synchronization of the two swimmers, respectively. Interestingly, the pursuit mode is stable for large tail swimmers whereas the synchronization mode is stable for large head swimmers. These results have profound implications on the collective behavior reported in several recent studies on populations of confined microswimmers.
Hydrodynamic Electron Flow and Hall Viscosity
Scaffidi, Thomas; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P.; Moore, Joel E.
2017-06-01
In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we......We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
Low Mach Number Fluctuating Hydrodynamics for Electrolytes
Péraud, Jean-Philippe; Chaudhri, Anuj; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L
2016-01-01
We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm...
Hydrodynamics of charge fluctuations and balance functions
Ling, B; Stephanov, M
2013-01-01
We apply stochastic hydrodynamics to the study of charge density fluctuations in QCD matter undergoing Bjorken expansion. We find that the charge density correlations are given by a time integral over the history of the system, with the dominant contribution coming from the QCD crossover region where the change of susceptibility per entropy, chi T/s, is most significant. We study the rapidity and azimuthal angle dependence of the resulting charge balance function using a simple analytic model of heavy-ion collision evolution. Our results are in agreement with experimental measurements, indicating that hydrodynamic fluctuations contribute significantly to the measured charge correlations in high energy heavy-ion collisions. The sensitivity of the balance function to the value of the charge diffusion coefficient D allows us to estimate the typical value of this coefficient in the crossover region to be rather small, of the order of 1/(2pi T), characteristic of a strongly coupled plasma.
Hydrodynamic theory of tissue shear flow
Popović, Marko; Merkel, Matthias; Etournay, Raphaël; Eaton, Suzanne; Jülicher, Frank; Salbreux, Guillaume
2016-01-01
We propose a hydrodynamic theory to describe shear flows in developing epithelial tissues. We introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a contribution to overall tissue shear flow due to rearrangements in cell network topology. We then construct a constitutive equation for the shear rate due to topological rearrangements. We identify a novel rheological behaviour resulting from memory effects in the tissue. We show that anisotropic deformation of tissue and cells can arise from two distinct active cellular processes: generation of active stress in the tissue, and actively driven cellular rearrangements. These two active processes result in distinct cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our findings have consequences for the understanding of tissue morphogenesis during development.
Hydrodynamics of ultra-relativistic bubble walls
Directory of Open Access Journals (Sweden)
Leonardo Leitao
2016-04-01
Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.
Chaos in hydrodynamic BL Herculis models
Smolec, R
2014-01-01
We present non-linear, convective, BL Her-type hydrodynamic models that show complex variability characteristic for deterministic chaos. The bifurcation diagram reveals a rich structure, with many phenomena detected for the first time in hydrodynamic models of pulsating stars. The phenomena include not only period doubling cascades en route to chaos (detected in earlier studies) but also periodic windows within chaotic band, type-I and type-III intermittent behaviour, interior crisis bifurcation and others. Such phenomena are known in many textbook chaotic systems, from the simplest discrete logistic map, to more complex systems like Lorenz equations. We discuss the physical relevance of our models. Although except of period doubling such phenomena were not detected in any BL Her star, chaotic variability was claimed in several higher luminosity siblings of BL Her stars - RV Tau variables, and also in longer-period, luminous irregular pulsators. Our models may help to understand these poorly studied stars. Pa...
2013-09-01
that goes into developing specialized code and also the amount of labor needed to maintain such specialized code . The partitioned approach treats...the advantage of using the existing legacy codes , keeping up with the interface boundary which changes in time is a challenge. Partitioned approach... SPH ) Smoothed Particle Hydrodynamics, and (CFD/FSI) Coupling between fluid and structure model. FSI methods have been used for coupled
Novel techniques for slurry bubble column hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Dudukovic, M.P.
1999-05-14
The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.
VH-1: Multidimensional ideal compressible hydrodynamics code
Hawley, John; Blondin, John; Lindahl, Greg; Lufkin, Eric
2012-04-01
VH-1 is a multidimensional ideal compressible hydrodynamics code written in FORTRAN for use on any computing platform, from desktop workstations to supercomputers. It uses a Lagrangian remap version of the Piecewise Parabolic Method developed by Paul Woodward and Phil Colella in their 1984 paper. VH-1 comes in a variety of versions, from a simple one-dimensional serial variant to a multi-dimensional version scalable to thousands of processors.
On the convexity of Relativistic Hydrodynamics
Ibáñez, José María; Martí, José María; Miralles, Juan Antonio; 10.1088/0264-9381/30/5/057002
2013-01-01
The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 {\\it Relativistic Fluids and Magneto-Fluids} (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr 1989 {\\it Rev. Mod. Phys.} {\\bf 61} 75). The classical limit is recovered.
Modeling Water Waves with Smoothed Particle Hydrodynamics
2013-09-30
flows, such as undertow, longshore currents, and rip currents. APPROACH The approach is based on improving various aspects of the SPH code ...Smoothed Particle Hydrodynamics ( SPH ) is a meshless numerical method that is being developed for the study of nearshore waves and other Navy needs. The...Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes
An Owner's Guide to Smoothed Particle Hydrodynamics
Martin, T.J.; Pearce, F. R.; Thomas, P. A.
1993-01-01
We present a practical guide to Smoothed Particle Hydrodynamics (\\SPH) and its application to astrophysical problems. Although remarkably robust, \\SPH\\ must be used with care if the results are to be meaningful since the accuracy of \\SPH\\ is sensitive to the arrangement of the particles and the form of the smoothing kernel. In particular, the initial conditions for any \\SPH\\ simulation must consist of particles in dynamic equilibrium. We describe some of the numerical difficulties that may be...
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity
Directory of Open Access Journals (Sweden)
Font José A.
2008-09-01
Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable
Laser driven hydrodynamic instability experiments. Revision 1
Energy Technology Data Exchange (ETDEWEB)
Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.
1993-02-17
An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes.
Smoothed Particle Hydrodynamics: Applications Within DSTO
2006-10-01
dimensional SPH code. They used SPH to model wave overtopping on the decks of offshore platforms and ships and used moving boundary particles to create...loading on offshore structures is a subject area which is now becoming amenable to detailed study using sophisticated computational fluid dynamics codes...incorporation of bending, torsional stiffness, and hydrodynamic loads, thus making it ideal for the simulation of umbilical cables on ROVs and AUVs
A hydrodynamic approach to QGP instabilities
Calzetta, E
2013-01-01
We show that the usual linear analysis of QGP Weibel instabilities based on the Maxwell-Boltzmann equation may be reproduced in a purely hydrodynamic model. The latter is derived by the Entropy Production Variational Method from a transport equation including collisions, and can describe highly nonequilibrium flow. We find that, as expected, collisions slow down the growth of Weibel instabilities. Finally, we discuss the strong momentum anisotropy limit.