WorldWideScience

Sample records for hydrodynamically enhance protrusions

  1. Random patterns in fish schooling enhance alertness: a hydrodynamic perspective

    CERN Document Server

    Kadri, Usama; Kadri, Anan

    2016-01-01

    One of the most highly debated questions in the field of animal swarming and social behaviour, is the collective random patterns and chaotic behaviour formed by some animal species, in particular if there is a danger. Is such a behaviour beneficial or unfavourable for survival? Here we report on one of the most remarkable forms of animal swarming and social behaviour - fish schooling - from a hydrodynamic point of view. We found that some fish species do not have preferred orientation and they swarm in a random pattern mode, despite the excess of energy consumed. Our analyses, which includes calculations of the hydrodynamic forces between slender bodies, show that such a behaviour enhances the transfer of hydrodynamic information, and thus enhances the survivability of the school. These findings support the general hypothesis that a disordered and non-trivial collective behaviour of individuals within a nonlinear dynamical system is essential for optimising transfer of information - an optimisation that might...

  2. CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces.

  3. Random patterns in fish schooling enhance alertness: A hydrodynamic perspective

    Science.gov (United States)

    Kadri, U.; Brümmer, F.; Kadri, A.

    2016-11-01

    One of the most highly debated questions in the field of animal swarming and social behaviour is the collective random patterns and chaotic behaviour formed by some animal species, in particular if there is a danger. Is such a behaviour beneficial or unfavourable for survival? Here we report on one of the most remarkable forms of animal swarming and social behaviour —fish schooling— from a hydrodynamic point of view. We found that some fish species do not have preferred orientation and they swarm in a random pattern mode, despite the excess of energy consumed. Our analyses, which include calculations of the hydrodynamic forces between slender bodies, show that such a behaviour may enhance the transfer of hydrodynamic information, and thus the survivability of the school could improve. These findings support the general hypothesis that a disordered and nontrivial collective behaviour of individuals within a nonlinear dynamical system is essential for optimising transfer of information —an optimisation that might be crucial for survival.

  4. Device for cutting protrusions

    Science.gov (United States)

    Bzorgi, Fariborz M.

    2011-07-05

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  5. Infantile perianal protrusion.

    Science.gov (United States)

    Ferrari, Bruno; Taliercio, Vanina; Luna, Paula; Eugenia, Maria; Larralde, Margarita

    2014-12-14

    Infantile perianal protrusion is characterized by a skin fold located in the perianal area. It is a relatively recent reported condition and affects both infants and prepubertal children with a clear female predominance. Three types are recognized: constitutional/congenital, acquired, and associated with lichen sclerosus et atrophicus. We report eleven new cases, three of whom have the defect in locations that have been reported only once before. We would like to increase the awareness of this condition to avoid erroneous diagnostic and therapeutic procedures.

  6. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation.

    Science.gov (United States)

    Li, Pan; Song, Yuan; Wang, Shuai; Tao, Zheng; Yu, Shuili; Liu, Yanan

    2015-01-01

    The rate of reduction reactions of zero-valent metal nanoparticles is restricted by their agglomeration. Hydrodynamic cavitation was used to overcome the disadvantage in this study. Experiments for decolorization of methyl orange azo dye by zero-valent copper nanoparticles were carried out in aqueous solution with and without hydrodynamic cavitation. The results showed that hydrodynamic cavitation greatly accelerated the decolorization rate of methyl orange. The size of nanoparticles was decreased after hydrodynamic cavitation treatment. The effects of important operating parameters such as discharge pressure, initial solution pH, and copper nanoparticle concentration on the degradation rates were studied. It was observed that there was an optimum discharge pressure to get best decolorization performance. Lower solution pH were favorable for the decolorization. The pseudo-first-order kinetic constant for the degradation of methyl orange increased linearly with the copper dose. UV-vis spectroscopic and Fourier transform infrared (FT-IR) analyses confirmed that many degradation intermediates were formed. The results indicated hydroxyl radicals played a key role in the decolorization process. Therefore, the enhancement of decolorization by hydrodynamic cavitation could due to the deagglomeration of nanoparticles as well as the oxidation by the in situ generated hydroxyl radicals. These findings greatly increase the potential of the Cu(0)/hydrodynamic cavitation technique for use in the field of treatment of wastewater containing hazardous materials.

  7. Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics.

    Directory of Open Access Journals (Sweden)

    Nima Khatibzadeh

    Full Text Available Protrusions are deformations that form at the surface of living cells during biological activities such as cell migration. Using combined optical tweezers and fluorescent microscopy, we quantified the mechanical properties of protrusions in adherent human embryonic kidney cells in response to application of an external force at the cell surface. The mechanical properties of protrusions were analyzed by obtaining the associated force-length plots during protrusion formation, and force relaxation at constant length. Protrusion mechanics were interpretable by a standard linear solid (Kelvin model, consisting of two stiffness parameters, k0 and k1 (with k0>k1, and a viscous coefficient. While both stiffness parameters contribute to the time-dependant mechanical behavior of the protrusions, k0 and k1 in particular dominated the early and late stages of the protrusion formation and elongation process, respectively. Lowering the membrane cholesterol content by 25% increased the k0 stiffness by 74%, and shortened the protrusion length by almost half. Enhancement of membrane cholesterol content by nearly two-fold increased the protrusion length by 30%, and decreased the k0 stiffness by nearly two-and-half-fold as compared with control cells. Cytoskeleton integrity was found to make a major contribution to protrusion mechanics as evidenced by the effects of F-actin disruption on the resulting mechanical parameters. Viscoelastic behavior of protrusions was further characterized by hysteresis and force relaxation after formation. The results of this study elucidate the coordination of plasma membrane composition and cytoskeleton during protrusion formation.

  8. Multi-focal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles

    CERN Document Server

    Toytman, Ilya; Simanovski, Dmitri; Palanker, Daniel

    2010-01-01

    Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 time...

  9. A novel airlift reactor enhanced by funnel internals and hydrodynamics prediction by the CFD method.

    Science.gov (United States)

    Zhang, Tao; Wei, Chaohai; Feng, Chunhua; Zhu, Jialiang

    2012-01-01

    Airlift reactors have been used widely in many industrial processes, but little work has been conducted on such reactors integrated with internals. In this study, a novel airlift reactor with a funnel internal was developed to achieve better flow conditions and advantages in biological processes. The CFD (computational fluid dynamics) simulation method was employed to investigate the effect of the funnel internals on hydrodynamic properties in the reactor. A CFD model was developed for gas-liquid two-phase flow simulation in a bench-scale reactor. Grid-independent simulation results were verified with global-scale experimental data. The results showed that the local or global gas holdup could be enhanced by 15% and that turbulent kinetic energy could be reduced by a maximum of 7.8% when the superficial gas velocity was 1 cm/s. These features are beneficial for applications in stress-sensitive biological processes.

  10. Research on Hydrodynamic Force Enhancement and Water Environment Protection Measures of Dachan Bay, Shenzhen

    Directory of Open Access Journals (Sweden)

    Lv Wenbin

    2015-01-01

    Full Text Available With the research purpose of protection of water environmental quality in Dachan Bay Area in Shenzhen City, especially in National Development Zone in Qianhai Area, this paper establishes a horizontal two-dimensional water quality model of Dachan Bay and its branches by the use of WQ Module of Delft 3D. And this paper respectively simulates distribution of water quality in full high flow year, normal flow year and low flow year before and after the implementation of protection measures, predicts the effect of the water environment protection measures and focuses on the analysis of two kinds of hydrodynamic force enhancement pat-terns, that is, “water replenishing in dead zones” and “pollution discharge at back doors”, and finally recommends water environment protection measures with the core of “pollution discharge at back gates” by taking full advantage of natural dynamic, thus obtaining a better effect than that of the traditional “water replenishing in dead zones”.

  11. Condensation of Plasmid DNA Enhances Mitochondrial Association in Skeletal Muscle Following Hydrodynamic Limb Vein Injection

    Directory of Open Access Journals (Sweden)

    Yukari Yasuzaki

    2014-08-01

    Full Text Available Mitochondrial gene therapy and diagnosis have the potential to provide substantial medical benefits. However, the utility of this approach has not yet been realized because the technology available for mitochondrial gene delivery continues to be a bottleneck. We previously reported on mitochondrial gene delivery in skeletal muscle using hydrodynamic limb vein (HLV injection. HLV injection, a useful method for nuclear transgene expression, involves the rapid injection of a large volume of naked plasmid DNA (pDNA. Moreover, the use of a condensed form of pDNA enhances the nuclear transgene expression by the HLV injection. The purpose of this study was to compare naked pDNA and condensed pDNA for mitochondrial association in skeletal muscle, when used in conjunction with HLV injection. PCR analysis showed that the use of condensed pDNA rather than naked pDNA resulted in a more effective mitochondrial association with pDNA, suggesting that the physicochemical state of pDNA plays a key role. Moreover, no mitochondrial toxicities in skeletal muscle following the HLV injection of condensed pDNA were confirmed, as evidenced by cytochrome c oxidase activity and mitochondrial membrane potential. These findings have the potential to contribute to the development for in vivo mitochondrial gene delivery system.

  12. Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles.

    Science.gov (United States)

    Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D

    2010-10-01

    Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.

  13. Enhancement of Hydrodynamic Processes in Oil Pipelines Considering Rheologically Complex High-Viscosity Oils

    Science.gov (United States)

    Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.

    2016-06-01

    This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.

  14. Heating of Micro-protrusions in Accelerating Structures

    CERN Document Server

    Keser, A C; Nusinovich, G S; Kashyn, D G; Jensen, K L

    2013-01-01

    The thermal and field emission of electrons from protrusions on metal surfaces is a possible limiting factor on the performance and operation of high-gradient room temperature accelerator structures. We present here the results of extensive numerical simulations of electrical and thermal behavior of protrusions. We unify the thermal and field emission in the same numerical framework, describe bounds for the emission current and geometric enhancement, then we calculate the Nottingham and Joule heating terms and solve the heat equation to characterize the thermal evolution of emitters under RF electric field. Our findings suggest that, heating is entirely due to the Nottingham effect, that thermal runaway scenarios are not likely, and that high RF frequency causes smaller swings in temperature and cooler tips. We build a phenomenological model to account for the effect of space charge and show that space charge eliminates the possibility of tip melting, although near melting temperatures reached.

  15. Morphological features of bimaxillary protrusion in Saudis.

    Science.gov (United States)

    Aldrees, Abdullah M; Shamlan, Manal A

    2010-05-01

    To analyze the pre-treatment cephalometric features in Saudi adults with bimaxillary protrusion and to develop cephalometric standards to clarify the overall presentation of this malocclusion for clinicians. A descriptive retrospective study was designed in which lateral cephalometric radiographs of 60 individuals with Class I skeletal and dental relationship and decreased interincisal angle were collected between June 2007 and December 2008 at the Orthodontic Clinic, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia. Radiographs were studied and compared to those of 60 individuals with similar skeletal and dental relationships, but with normal interincisal angle. The measurements were calculated electronically using Dolphin software. The data were analyzed using the t-test. Saudi individuals with bimaxillary protrusion had a vertical skeletal pattern that is similar to that of the control group, however, they demonstrated increased procumbency of the upper and lower lips. Comparing females to males with bimaxillary protrusion revealed significant increase in male lip thickness. On the other hand, no significant difference was detected in the amount of lip protrusion between males and females. Saudi subjects with bimaxillary protrusion demonstrated distinctive soft tissue features when compared to the control group and to other ethnic groups with bimaxillary protrusion.

  16. Transanal protrusion of intussusceptions in children

    Directory of Open Access Journals (Sweden)

    Ezomike Uchechukwu Obiora

    2014-01-01

    Full Text Available Background: The aim of the following study is to report our management experience and outcome of transanal protrusion of intussusceptions. Patients and Methods: Retrospective analysis of all cases of intussusceptions protruding through the anal opening from January 2008 to June 2013. Results: Of 62 cases of intussusceptions, transanal protrusion occurred in 10 patients (16% anal protrusion rate with a male:female ratio of 2:3. They were aged 4-96 months (mean 22.6 ± 30.7, median 7.5 months. Six were infants while four were above 1 year. Duration of symptoms ranged from 2 to 14 days (mean 5.9 days ± 3.4 with only two patients presenting within 48 h. Clinical features included vomiting (100%, abdominal pains (100%, bloody mucoid stool (100%, abdominal distension (90%, and palpable left iliac fossa mass (70%. Three patients had preceding diarrhoea (30% and two had preceding upper respiratory tract infection (20%. Duration of hospital stay ranged from 5 to 23 days (mean 12 days ± 5.6. Findings at surgery included seven ileocolic and two colocolic intussusceptions (one patient died before surgery. Operative procedures were right hemicolectomy (5, operative manual reduction (3, left hemicolectomy (1 giving a 67% bowel resection rate. One patient died giving a 10% mortality rate. Conclusion: Transanal protrusion occurred more in females and is associated with late presentation, older age, high bowel resection rate, and high mortality.

  17. Conservative treatment of abdominal stab wounds with omental protrusion

    DEFF Research Database (Denmark)

    Duus, B R; Damm, P; Jensen, F U

    1987-01-01

    Two cases of abdominal stab wounds with omental protrusion treated conservatively are presented. Omental protrusion in a patient without signs of shock or peritoneal irritation is not an absolute indication for explorative laparotomy.......Two cases of abdominal stab wounds with omental protrusion treated conservatively are presented. Omental protrusion in a patient without signs of shock or peritoneal irritation is not an absolute indication for explorative laparotomy....

  18. Numerical Investigation of Non-Newtonian Flow and Heat Transfer Characteristics in Rectangular Tubes with Protrusions

    Directory of Open Access Journals (Sweden)

    Yonghui Xie

    2015-01-01

    Full Text Available Flow characteristics and heat transfer performances in rectangular tubes with protrusions are numerically investigated in this paper. The thermal heat transfer enhancement of composite structures and flow resistance reduction of non-Newtonian fluid are taken advantage of to obtain a better thermal performance. Protrusion channels coupled with different CMC concentration solutions are studied, and the results are compared with that of smooth channels with water flow. The comprehensive influence of turbulence effects, structural effects, and secondary flow effects on the CMC’s flow in protrusion tubes is extensively investigated. The results indicate that the variation of flow resistance parameters of shear-thinning power-law fluid often shows a nonmonotonic trend, which is different from that of water. It can be concluded that protrusion structure can effectively enhance the heat transfer of CMC solution with low pressure penalty in specific cases. Moreover, for a specific protrusion structure and a fixed flow velocity, there exists an optimal solution concentration showing the best thermal performance.

  19. Lipid protrusions membrane softness, and enzymatic activity

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Høyrup, P.; Callisen, T.H.;

    2004-01-01

    The activity of phospholipase A(2) on lipid bilayers displays a characteristic lag burst behavior that has previously been shown to reflect the physical properties of the substrate. It has remained unclear which underlying molecular mechanism is responsible for this phenomenon. We propose here...... that protrusions of single lipid molecules out of the bilayer plane could provide such a mechanism. The proposal is supported by a combination of atomic-scale molecular dynamics simulations, theory, and experiments that have been performed in order to investigate the relationship between on the one side lipid...... protrusion modes and mechanical softness of phospholipid bilayers and on the other side the activity of enzymes acting on lipid bilayers composed of different unsaturated lipids. Specifically, our experiments show a correlation between the bilayer bending rigidity and the apparent Arrhenius activation energy...

  20. The Effects of Hydrodynamic Stretch on the Flame Propagation Enhancement of Ethylene by Addition of Ozone

    Science.gov (United States)

    2015-07-13

    the combustion of n-heptane in a HCCI engine . Proc. Combust. Inst. 34, 3005–3012. (doi:10.1016/j.proci.2012.05.042) 25. Schönborn A, Hellier P, Aliev... engineering , chemical physics, plasma physics Keywords: plasma, combustion, ozone, flame speed enhancement, Hencken flame, sub-atmospheric pressure... Engineering , University of Cincinnati, Cincinnati, OH, USA 2Aerospace Systems Directorate, US Air Force Research Laboratory, Wright-Patterson Air

  1. Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna.

    Science.gov (United States)

    Holzinger, A; Wasteneys, G O; Lütz, C

    2007-05-01

    Arctic and alpine plants like Oxyria digyna have to face enhanced environmental stress. This study compared leaves from Oxyria digyna collected in the Arctic at Svalbard (78 degrees N) and in the Austrian Alps (47 degrees N) at cellular, subcellular, and ultrastructural levels. Oxyria digyna plants collected in Svalbard had significantly thicker leaves than the samples collected in the Austrian Alps. This difference was generated by increased thickness of the palisade and spongy mesophyll layers in the arctic plants, while epidermal cells had no significant size differences between the two habitats. A characteristic feature of arctic, alpine, and cultivated samples was the occurrence of broad stroma-filled chloroplast protrusions, 2 - 5 microm broad and up to 5 microm long. Chloroplast protrusions were in close spatial contact with other organelles including mitochondria and microbodies. Mitochondria were also present in invaginations of the chloroplasts. A dense network of cortical microtubules found in the mesophyll cells suggested a potential role for microtubules in the formation and function of chloroplast protrusions. No direct interactions between microtubules and chloroplasts, however, were observed and disruption of the microtubule arrays with the anti-microtubule agent oryzalin at 5 - 10 microM did not alter the appearance or dynamics of chloroplast protrusions. These observations suggest that, in contrast to studies on stromule formation in Nicotiana, microtubules are not involved in the formation and morphology of chloroplast protrusions in Oxyria digyna. The actin microfilament-disrupting drug latrunculin B (5 - 10 microM for 2 h) arrested cytoplasmic streaming and altered the cytoplasmic integrity of mesophyll cells. However, at the ultrastructural level, stroma-containing, thylakoid-free areas were still visible, mostly at the concave sides of the chloroplasts. As chloroplast protrusions were frequently found to be mitochondria-associated in Oxyria

  2. Heat Transfer Enhancement and Hydrodynamic Characteristics of Nanofluid in Turbulent Flow Regime

    Directory of Open Access Journals (Sweden)

    Mohammad Nasiri-lohesara

    2015-01-01

    Full Text Available Turbulent forced convection of γ-Al2O3/water nanofluid in a concentric double tube heat exchanger has been investigated numerically using mixture two-phase model. Nanofluids are used as coolants flowing in the inner tube while hot pure water flows in outer tube. The studies are conducted for Reynolds numbers ranging from 20,000 to 50,000 and nanoparticle volume fractions of 2, 3, 4, and 6 percent. Results showed that nanofluid has no effects on fully developed length and average heat transfer coefficient enhances with lower slope than wall shear stress. Comparisons with experimental correlation in literature are conducted and good agreement with present numerical study is achieved.

  3. Infantile Perineal Protrusion in Two Monochorionic Twins

    Directory of Open Access Journals (Sweden)

    Paola Cavicchioli

    2014-11-01

    Full Text Available Case Report - Two female monochorionic-monoamniotic twins showed the same kind of infantile perineal protrusion (IPP at birth. Lesions in both twins progressively healed until resolution in 6 weeks' time; none of the twins have manifested, till date, alvus disturbances. Discussion and Literature Review - A literature review numbers approximately 100 reports of IPP. This condition has been classically classified into three categories: congenital/familiar (i.e., female sex, positive parental history of IPP, acquired (mainly due to constipation, and associated with lichen sclerosus et atrophicus. Conclusions and Final Remarks - This case report describes, for the first time, the presence of IPP in monochorionic-monoamniotic twins, supporting the existence of hereditary/genetic factors in the developing of this condition.

  4. Numerical investigation of heat transfer performance of synthetic jet impingement onto dimpled/protrusioned surface

    Directory of Open Access Journals (Sweden)

    Zhang Di

    2015-01-01

    Full Text Available Dynamic mesh methods and user defined functions are adopted and the shear stress transport k-ω turbulent model has been used in the numerical investigation of heat transfer performance of synthetic jet impingement onto dimple/protrusioned surface. The results show that the local time-averaged Nusselt number of the dimpled/protrusioned target surface tends to be much closer with that of flat cases with increasing of frequency. The heat transfer performance gets better when frequency increases. The area-averaged time-averaged Nusselt number of protrusioned target surface is the most close to that of flat cases when f = 320 Hz while it is the smallest among the synthetic jet cases in dimpled target surface. The heat transfer enhancement performance of synthetic jet is 30 times better than that of natural convection. The time-averaged Nusselt number of stagnation point in the protrusioned target surface is higher than that of flat target surface while it is lower in the dimpled surface than that of flat surface no matter in the synthetic jet, steady jet or natural convection cases. Meanwhile, the timeaveraged Nusselt number of stagnation point in the synthetic jet cases increases with the increasing of frequency. It is worth pointing out that the time-averaged Nusselt number of stagnation point is lower than that of steady cases when the frequency is low. However, it shows a bit higher than that of steady cases when f = 320 Hz.

  5. ERK reinforces actin polymerization to power persistent edge protrusion during motility.

    Science.gov (United States)

    Mendoza, Michelle C; Vilela, Marco; Juarez, Jesus E; Blenis, John; Danuser, Gaudenz

    2015-05-19

    Cells move through perpetual protrusion and retraction cycles at the leading edge. These cycles are coordinated with substrate adhesion and retraction of the cell rear. We tracked spatial and temporal fluctuations in the molecular activities of individual moving cells to elucidate how extracellular signal-regulated kinase (ERK) signaling controlled the dynamics of protrusion and retraction cycles. ERK is activated by many cell surface receptors, and we found that ERK signaling specifically reinforced cellular protrusions so that they translated into rapid, sustained forward motion of the leading edge. Using quantitative fluorescent speckle microscopy and cross-correlation analysis, we showed that ERK controlled the rate and timing of actin polymerization by promoting the recruitment of the actin nucleator Arp2/3 to the leading edge. These findings support a model in which surges in ERK activity induced by extracellular cues enhance Arp2/3-mediated actin polymerization to generate protrusion power phases with enough force to counteract increasing membrane tension and to promote sustained motility.

  6. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  7. A novel multilayer immunoisolating encapsulation system overcoming protrusion of cells

    NARCIS (Netherlands)

    Bhujbal, Swapnil V.; de Haan, Bart; Niclou, Simone P.; de Vos, Paul

    2014-01-01

    Application of alginate-microencapsulated therapeutic cells is a promising approach for diseases that require a local and constant supply of therapeutic molecules. However most conventional alginate microencapsulation systems are associated with low mechanical stability and protrusion of cells which

  8. Influence of bimaxillary protrusion on the perception of smile esthetics

    OpenAIRE

    Almutairi, Terki K.; AlBarakati, Sahar F.; Aldrees, Abdullah M.

    2015-01-01

    Objectives: To evaluate the impact of bimaxillary protrusion on smile esthetics as perceived by dental professionals and laypersons. Methods: One hundred and fifty evaluators, equally distributed into their respective panels (orthodontists, general dentists, and laypersons), participated in this cross-sectional study conducted in April to December 2012 in Riyadh, Saudi Arabia. The patient sample consisted of 14 female patients divided equally into 2 groups: bimaxillary protrusion patients, an...

  9. Theoretical hydrodynamics

    CERN Document Server

    Milne-Thomson, L M

    2011-01-01

    This classic exposition of the mathematical theory of fluid motion is applicable to both hydrodynamics and aerodynamics. Based on vector methods and notation with their natural consequence in two dimensions - the complex variable - it offers more than 600 exercises and nearly 400 diagrams. Prerequisites include a knowledge of elementary calculus. 1968 edition.

  10. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  11. Ship Hydrodynamics

    Science.gov (United States)

    Lafrance, Pierre

    1978-01-01

    Explores in a non-mathematical treatment some of the hydrodynamical phenomena and forces that affect the operation of ships, especially at high speeds. Discusses the major components of ship resistance such as the different types of drags and ways to reduce them and how to apply those principles for the hovercraft. (GA)

  12. A protrusion can "eclipse" looping of a long self-avoiding chain

    CERN Document Server

    Pollak, Yaroslav; Amit, Roee

    2016-01-01

    We simulate long self-avoiding chains using a weighted-biased sampling Monte-Carlo algorithm, and compute the probabilities for chain looping with and without a protrusion. We find that a protrusion near one of the chain's termini reduces the probability of looping, even for chains much longer than the protrusion-chain-terminus distance. This effect increases with protrusion size, and decreases with protrusion-terminus distance. We model the simulated results theoretically by considering how the protrusion "eclipses" the chain terminus closer to the protrusion from the more distant chain terminus. This eclipse mechanism has implications for understanding the regulatory role of proteins bound to DNA.

  13. Radiation Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is

  14. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  15. Nanoflow hydrodynamics

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Dyre, Jeppe C.; Daivis, Peter J.;

    2011-01-01

    We show by nonequilibrium molecular dynamics simulations that the Navier-Stokes equation does not correctly describe water flow in a nanoscale geometry. It is argued that this failure reflects the fact that the coupling between the intrinsic rotational and translational degrees of freedom becomes...... important for nanoflows. The coupling is correctly accounted for by the extended Navier-Stokes equations that include the intrinsic angular momentum as an independent hydrodynamic degree of freedom. © 2011 American Physical Society....

  16. Influence of bimaxillary protrusion on the perception of smile esthetics.

    Science.gov (United States)

    Almutairi, Terki K; Albarakati, Sahar F; Aldrees, Abdullah M

    2015-01-01

    To evaluate the impact of bimaxillary protrusion on smile esthetics as perceived by dental professionals and laypersons. One hundred and fifty evaluators, equally distributed into their respective panels (orthodontists, general dentists, and laypersons), participated in this cross-sectional study conducted in April to December 2012 in Riyadh, Saudi Arabia. The patient sample consisted of 14 female patients divided equally into 2 groups: bimaxillary protrusion patients, and patients who have had 4-premolar extraction treatment. Two standardized photographs (frontal and three-quarter close-up smile views), and a lateral cephalogram were taken for each patient. The evaluators were asked to rate the attractiveness of each photo according to a 100-mm visual analog scale. These esthetic ratings were correlated with the patients' cephalometric measurements. The bimaxillary protrusion group was rated significantly as less attractive than the treatment group by each evaluator panel. Panel comparison showed that laypeople were less receptive of bimaxillary protrusion than dental professionals. Frontal and three-quarter views of the same smiles were not similarly rated for esthetic perceptions. Correlational analysis revealed that the dentoalveolar measurement with the highest significant negative correlation to the smile esthetics was the upper incisors to palatal plane (U1-PP) angle. Patients with bimaxillary protrusion were found to be less attractive than patients who were treated for the condition. This was especially evident among the laypersons. An increase in the upper incisor inclination, as well as a decrease in the interincisal angle compounds the bimaxillary effect. 

  17. Traffic jams and shocks of molecular motors inside cellular protrusions.

    Science.gov (United States)

    Pinkoviezky, I; Gov, N S

    2014-05-01

    Molecular motors are involved in key transport processes inside actin-based cellular protrusions. The motors carry cargo proteins to the protrusion tip which participate in regulating the actin polymerization and play a key role in facilitating the growth and formation of such protrusions. It is observed that the motors accumulate at the tips of cellular protrusions and form aggregates that are found to drift towards the protrusion base at the rate of actin treadmilling. We present a one-dimensional driven lattice model, where motors become inactive after delivering their cargo at the tip, or by loosing their cargo to a cargoless neighbor. The results suggest that the experimental observations may be explained by the formation of traffic jams that form at the tip. The model is solved using a novel application of mean-field and shock analysis. We find a new class of shocks that undergo intermittent collapses. Extensions with attachment and detachment events and relevance to experiments are briefly described.

  18. A delta-catenin signaling pathway leading to dendritic protrusions.

    Science.gov (United States)

    Abu-Elneel, Kawther; Ochiishi, Tomoyo; Medina, Miguel; Remedi, Monica; Gastaldi, Laura; Caceres, Alfredo; Kosik, Kenneth S

    2008-11-21

    Delta-catenin is a synaptic adherens junction protein pivotally positioned to serve as a signaling sensor and integrator. Expression of delta-catenin induces filopodia-like protrusions in neurons. Here we show that the small GTPases of the Rho family act coordinately as downstream effectors of delta-catenin. A dominant negative Rac prevented delta-catenin-induced protrusions, and Cdc42 activity was dramatically increased by delta-catenin expression. A kinase dead LIMK (LIM kinase) and a mutant Cofilin also prevented delta-catenin-induced protrusions. To link the effects of delta-catenin to a physiological pathway, we noted that (S)-3,5-dihydroxyphenylglycine (DHPG) activation of metabotropic glutamate receptors induced dendritic protrusions that are very similar to those induced by delta-catenin. Furthermore, delta-catenin RNA-mediated interference can block the induction of dendritic protrusions by DHPG. Interestingly, DHPG dissociated PSD-95 and N-cadherin from the delta-catenin complex, increased the association of delta-catenin with Cortactin, and induced the phosphorylation of delta-catenin within the sites that bind to these protein partners.

  19. Traffic Jams and Shocks of Molecular Motors inside Cellular Protrusions

    CERN Document Server

    Pinkoviezky, Itai

    2013-01-01

    Molecular motors are involved in key transport processes inside actin-based cellular protrusions. The motors carry cargo proteins to the protrusion tip which participate in regulating the actin polymerization, and play a key role in facilitating the growth and formation of such protrusions. It is observed that the motors accumulate at the tips of cellular protrusions, and in addition form aggregates that are found to drift towards the protrusion base at the rate of actin treadmilling. We present a one-dimensional driven lattice model, where motors become inactive after delivering their cargo at the tip, or by loosing their cargo to a cargo-less neighbor. The results suggest that the experimental observations may be explained by the formation of traffic jams that form at the tip. The model is solved using a novel application of mean-field and shock analysis. We find a new class of shocks that undergo intermittent collapses, and on average do not obey the Rankine-Hugoniot relation.

  20. Formation of Combined Surface Features of Protrusion Array and Wrinkles atop Shape-Memory Polymer

    Science.gov (United States)

    Sun, L.; Zhao, Y.; Huang, W. M.; Tong, T. H.

    We demonstrate a simple and cost-effective approach to realize two combined surface features of different scales together, namely submillimeter-sized protrusion array and microwrinkles, atop a polystyrene shape-memory polymer. Two different types of protrusions, namely flat-top protrusion and crown-shaped protrusion, were studied. The array of protrusions was produced by the Indentation-Polishing-Heating (IPH) process. Compactly packed steel balls were used for making array of indents. A thin gold layer was sputter deposited atop the polymer surface right after polishing. After heating for shape recovery, array of protrusions with wrinkles on the top due to the buckling of gold layer was produced.

  1. Introduction to Hydrodynamics

    CERN Document Server

    Jeon, Sangyong

    2015-01-01

    We give a pedagogical review of relativistic hydrodynamics relevant to relativistic heavy ion collisions. Topics discussed include linear response theory derivation of 2nd order viscous hydrodynamics including the Kubo formulas, kinetic theory derivation of 2nd order viscous hydrodynamics, anisotropic hydrodynamics and a brief review of numerical algorithms. Emphasis is given to the theory of hydrodynamics rather than phenomenology.

  2. Simultaneous treatment (cell disruption and lipid extraction) of wet microalgae using hydrodynamic cavitation for enhancing the lipid yield.

    Science.gov (United States)

    Lee, Ilgyu; Han, Jong-In

    2015-06-01

    Simultaneous treatment (combining with cell disruption and lipid extraction) using hydrodynamic cavitation (HC) was applied to Nannochloropsis salina to demonstrate a simple and integrated way to produce oil from wet microalgae. A high lipid yield from the HC (25.9-99.0%) was observed compared with autoclave (16.2-66.5%) and ultrasonication (5.4-26.9%) in terms of the specific energy input (500-10,000 kJ/kg). The optimal conditions for the simultaneous treatment were established using a statistical approach. The efficiency of the simultaneous method was also demonstrated by comparing each separate treatment. The maximum lipid yield (predicted: 45.9% and experimental: 45.5%) was obtained using 0.89% sulfuric acid with a cavitation number of 1.17 for a reaction time of 25.05 min via response surface methodology. Considering its comparable extractability, energy-efficiency, and potential for scale-up, HC may be a promising method to achieve industrial-scale microalgae operation.

  3. Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation

    Science.gov (United States)

    Singh, A. K.; Suryawanshi, Sachin R.; More, M. A.; Basu, S.; Sinha, Sucharita

    2017-02-01

    This paper reports our results on femtosecond (fs) pulsed laser induced surface micro/nano structuring of stainless steel 304 (SS 304) samples and their characterization in terms of surface morphology, formed material phases on laser irradiation and field emission studies. Our investigations reveal that nearly uniform and dense array of hierarchical micro-protrusions (density: ∼5.6 × 105 protrusions/cm2) is formed upon laser treatment. Typical tip diameters of the generated protrusions are in the range of 2-5 μm and these protrusions are covered with submicron sized features. Grazing incidence X-ray diffraction (GIXRD) analysis of the laser irradiated sample surface has shown formation mainly of iron oxides and cementite (Fe3C) phases in the treated region. These laser micro-structured samples have shown good field emission properties such as low turn on field (∼4.1 V/μm), high macroscopic field enhancement factor (1830) and stable field emission current under ultra high vacuum conditions.

  4. Plasmonic nano-protrusions: hierarchical nanostructures for single-molecule Raman spectroscopy

    Science.gov (United States)

    Basuray, Sagnik; Pathak, Avinash; Bok, Sangho; Chen, Biyan; Hamm, Steven C.; Mathai, Cherian J.; Guha, Suchismita; Gangopadhyay, Keshab; Gangopadhyay, Shubhra

    2017-01-01

    Classical methods for enhancing the electromagnetic field from substrates for spectroscopic applications, such as surface-enhanced Raman spectroscopy (SERS), have involved the generation of hotspots through directed self-assembly of nanoparticles or by patterning nanoscale features using expensive nanolithography techniques. A novel large-area, cost-effective soft lithographic technique involving glancing angle deposition (GLAD) of silver on polymer gratings is reported here. This method produces hierarchical nanostructures with high enhancement factors capable of analyzing single-molecule SERS. The uniform ordered and patterned nanostructures provide extraordinary field enhancements that serve as excitatory hotspots and are herein interrogated by SERS. The high spatial homogeneity of the Raman signal and signal enhancement over a large area from a self-assembled monolayer (SAM) of 2-naphthalenethiol demonstrated the uniformity of the hotspots. The enhancement was shown to have a critical dependence on the underlying nanostructure via the surface energy landscape and GLAD angles for a fixed deposition thickness, as evidenced by atomic force microscopy and scanning electron microscopy surface analysis of the substrate. The nanostructured surface leads to an extremely concentrated electromagnetic field at sharp nanoscale peaks, here referred to as ‘nano-protrusions’, due to the coupling of surface plasmon resonance (SPR) with localized SPR. These nano-protrusions act as hotspots which provide Raman enhancement factors as high as 108 over a comparable SAM on silver. Comparison of our substrate with the commercial substrate Klarite™ shows higher signal enhancement and minimal signal variation with hotspot spatial distribution. By using the proper plasmon resonance angle corresponding to the laser source wavelength, further enhancement in signal intensity can be achieved. Single-molecule Raman spectra for rhodamine 6G are obtained from the best SERS substrate (a

  5. Submarine hydrodynamics

    CERN Document Server

    Renilson, Martin

    2015-01-01

    This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...

  6. Is orthodontics an option in the management of bimaxillary protrusion?

    Science.gov (United States)

    Dawjee, S M; Becker, P J; Hlongwa, P

    2010-10-01

    Successful orthodontic treatment is based on a clear perception by the clinician of a patient's facial preference and treatment needs. Bimaxillary protrusion is a normal facial trait seen in the Black population and the most acceptable bimaxillary facial profile in a sample of Black subjects was determined by Beukes et al in 2007. Variations from this ideal profile may require extractions as part of orthodontic treatment in order to attain the ideal. The objective of this study was to determine whether Black subjects with bimaxillary protrusion would want to change their facial profile to the ideal and at what financial cost. A sample of 586 school learners and 321 university students were presented with four silhouetted profiles of varying degrees of bimaxillary protrusion. One of the silhouette profiles represented the ideal and treatment procedures required to achieve this ideal were explained to the sample. They were then requested to answer a questionnaire that would assist in identifying their perception of their own profile and their desire to change their appearance. The ideal silhouette was confirmed to be the most attractive (91.51%) and the sample felt that any severe deviations from this ideal profile should be treated. The financial cost of treatment was found to be a concern, as more subjects (62.84%) would undergo the required treatment if it were free. Many subjects (43.55%) would be prepared to pay for the necessary treatment to achieve the ideal profile. Females were found to be more definite in their decision making, reflecting a greater awareness about their aesthetic appearance than their male counterparts. Findings from this study can serve as an essential tool to assist both orthodontists and maxillofacial surgeons in the treatment planning and management of Black patients with bimaxillary protrusion.

  7. Carotid artery protrusion and dehiscence in patients with acromegaly.

    Science.gov (United States)

    Sasagawa, Yasuo; Tachibana, Osamu; Doai, Mariko; Hayashi, Yasuhiko; Tonami, Hisao; Iizuka, Hideaki; Nakada, Mitsutoshi

    2016-10-01

    Acromegaly is a systemic disease which causes multiple bony alterations. Some authors reported that acromegalic patients have risk factors for an intraoperative vascular injury due to the specific anatomical features of their sphenoid sinus. The objective of our study was to analyze the anatomic characteristics of sphenoid sinus in acromegalic patients compared with controls, by evaluation of computed tomography (CT) findings. We examined 45 acromegalic (acromegaly group) and 45 non-acromegalic patients (control group) with pituitary adenomas who were matched for sex, age, height, tumor size, and cavernous sinus invasion (Knosp grade). Preoperative CT of the pituitary region including the sphenoid sinus was used to evaluate the following anatomic characteristics: type of sphenoid sinus (sellar or pre-sellar/conchal); intrasphenoid septa (non/single or multiple); carotid artery protrusion; carotid artery dehiscence; intercarotid distance. Sixteen acromegalic patients (35.5 %) and 6 controls (13.3 %) had carotid artery protrusion. Additionally, 10 acromegalic patients (22.2 %) and 3 controls (6.6 %) had carotid artery dehiscence. Carotid artery protrusion and dehiscence were more frequent in the acromegaly group than in control group (p = 0.013 and 0.035, respectively). Other anatomic characteristics (type of sphenoid sinus, intrasphenoid septa, and intracarotid distance) showed no significant differences between acromegaly and control groups. Our study suggests that carotid artery protrusion and dehiscence occur more frequently among acromegalic patients, compared with non-acromegalic patients. It is important for surgeons to be aware of these anatomic variations to avoid vital complications, such as carotid injuries, during surgery.

  8. The hydrodynamics of colloidal gelation.

    Science.gov (United States)

    Varga, Zsigmond; Wang, Gang; Swan, James

    2015-12-14

    Colloidal gels are formed during arrested phase separation. Sub-micron, mutually attractive particles aggregate to form a system spanning network with high interfacial area, far from equilibrium. Models for microstructural evolution during colloidal gelation have often struggled to match experimental results with long standing questions regarding the role of hydrodynamic interactions. In nearly all models, these interactions are neglected entirely. In the present work, we report simulations of gelation with and without hydrodynamic interactions between the suspended particles executed in HOOMD-blue. The disparities between these simulations are striking and mirror the experimental-theoretical mismatch in the literature. The hydrodynamic simulations agree with experimental observations, however. We explore a simple model of the competing transport processes in gelation that anticipates these disparities, and conclude that hydrodynamic forces are essential. Near the gel boundary, there exists a competition between compaction of individual aggregates which suppresses gelation and coagulation of aggregates which enhances it. The time scale for compaction is mildly slowed by hydrodynamic interactions, while the time scale for coagulation is greatly accelerated. This enhancement to coagulation leads to a shift in the gel boundary to lower strengths of attraction and lower particle concentrations when compared to models that neglect hydrodynamic interactions. Away from the gel boundary, differences in the nearest neighbor distribution and fractal dimension persist within gels produced by both simulation methods. This result necessitates a fundamental rethinking of how dynamic, discrete element models for gelation kinetics are developed as well as how collective hydrodynamic interactions influence the arrest of attractive colloidal dispersions.

  9. Mechanisms of leading edge protrusion in interstitial migration

    Science.gov (United States)

    Wilson, Kerry; Lewalle, Alexandre; Fritzsche, Marco; Thorogate, Richard; Duke, Tom; Charras, Guillaume

    2013-01-01

    While the molecular and biophysical mechanisms underlying cell protrusion on two-dimensional substrates are well understood, our knowledge of the actin structures driving protrusion in three-dimensional environments is poor, despite relevance to inflammation, development and cancer. Here we report that, during chemotactic migration through microchannels with 5 μm × 5 μm cross-sections, HL60 neutrophil-like cells assemble an actin-rich slab filling the whole channel cross-section at their front. This leading edge comprises two distinct F-actin networks: an adherent network that polymerizes perpendicular to cell-wall interfaces and a ‘free’ network that grows from the free membrane at the cell front. Each network is polymerized by a distinct nucleator and, due to their geometrical arrangement, the networks interact mechanically. On the basis of our experimental data, we propose that, during interstitial migration, medial growth of the adherent network compresses the free network preventing its retrograde movement and enabling new polymerization to be converted into forward protrusion. PMID:24305616

  10. Enhancing separation of histidine from amino acids via free-flow affinity electrophoresis with gravity-induced uniform hydrodynamic flow.

    Science.gov (United States)

    Pang, Bo; Shao, Jing; Zhang, Jie; Geng, Jia-Zhen; Fan, Liu-Yin; Cao, Cheng-Xi; Hou, Jing-Li

    2012-03-01

    In this paper, a novel mode of free-flow affinity electrophoresis (FFAE) was developed to indirectly enhance the separation of free-flow electrophoresis (FFE). In the mode of FFAE, a Ni(II) with high electric charge density and histidine (His) is chosen as a model ligand and target solute, respectively. Through the controlling of experimental conditions (10 mM pH 6.0 Na(2)HPO(4)-NaH(2)PO(4) with 2.0 mM NiCl(2)·6H(2)O background buffer), Ni(II) can combine with His and the combination leads to the high electric charge density of affinity complex of His-Ni(II) in contrast to the low density of free His molecule. But the ligand has weak interaction with uninterested amino acids. Thus, the mobility of His existing as His-Ni(II) is greatly increased from 14.5×10(-8) m(2) V(-1) s(-1) to 30.2 × 10(-8) m(2) V(-1) s(-1), while those mobilities of uninterested amino acids are almost constant. By virtue of the mode, we developed the FFAE procedure and conducted the relevant experiments. The experiments demonstrated the following merits of the FFAE technique: (i) clear enhancement of separation between the target solute of His and uninterested amino acids; (ii) simplicity, and (iii) low cost. Furthermore, the technique was used for the continuous separation of His from its complex sample, and the purity of His was near to 100%. All of the results demonstrate the feasibility of affinity separation in FFE. The developed FFAE may be used in the separation and pretreatment of some biological molecules (e.g. peptides).

  11. Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions.

    Directory of Open Access Journals (Sweden)

    Mario Schelhaas

    Full Text Available The lateral mobility of individual, incoming human papillomavirus type 16 pseudoviruses (PsV bound to live HeLa cells was studied by single particle tracking using fluorescence video microscopy. The trajectories were computationally analyzed in terms of diffusion rate and mode of motion as described by the moment scaling spectrum. Four distinct modes of mobility were seen: confined movement in small zones (30-60 nm in diameter, confined movement with a slow drift, fast random motion with transient confinement, and linear, directed movement for long distances. The directed movement was most prominent on actin-rich cell protrusions such as filopodia or retraction fibres, where the rate was similar to that measured for actin retrograde flow. It was, moreover, sensitive to perturbants of actin retrograde flow such as cytochalasin D, jasplakinolide, and blebbistatin. We found that transport along actin protrusions significantly enhanced HPV-16 infection in sparse tissue culture, cells suggesting a role for in vivo infection of basal keratinocytes during wound healing.

  12. Three carbon-enhanced metal-poor dwarf stars from the SDSS. Chemical abundances from CO5BOLD 3D hydrodynamical model atmospheres

    Science.gov (United States)

    Behara, N. T.; Bonifacio, P.; Ludwig, H.-G.; Sbordone, L.; González Hernández, J. I.; Caffau, E.

    2010-04-01

    Context. The origin of carbon-enhanced metal-poor stars enriched with both s and r elements is highly debated. Detailed abundances of these types of stars are crucial to understand the nature of their progenitors. Aims: The aim of this investigation is to study in detail the abundances of SDSS J1349-0229, SDSS J0912+0216 and SDSS J1036+1212, three dwarf CEMP stars, selected from the Sloan Digital Sky Survey. Methods: Using high resolution VLT/UVES spectra (R ~ 30 000) we determine abundances for Li, C, N, O, Na, Mg, Al, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni and 21 neutron-capture elements. We made use of CO5BOLD 3D hydrodynamical model atmospheres in the analysis of the carbon, nitrogen and oxygen abundances. NLTE corrections for Ci and Oi lines were computed using the Kiel code. Results: We classify SDSS J1349-0229 and SDSS J0912+0216 as CEMP-r+s stars. SDSS J1036+1212 belongs to the class CEMP-no/s, with enhanced Ba, but deficient Sr, of which it is the third member discovered to date. Radial-velocity variations have been observed in SDSS J1349-0229, providing evidence that it is a member of a binary system. Conclusions: The chemical composition of the three stars is generally compatible with mass transfer from an AGB companion. However, many details remain difficult to explain. Most notably of those are the abundance of Li at the level of the Spite plateau in SDSS J1036+1212 and the large over-abundance of the pure r-process element Eu in all three stars. Based on observations obtained with the ESO Very Large Telescope at Paranal Observatory, Chile (programmes 078.D-0217 and 383.D-0927).

  13. Epithelial-mesenchymal transition stimulates human cancer cells to extend microtubule-based invasive protrusions and suppresses cell growth in collagen gel.

    Directory of Open Access Journals (Sweden)

    Jun Oyanagi

    Full Text Available Epithelial-mesenchymal transition (EMT is a crucial event in tumor invasion and metastasis. However, most of past EMT studies have been conducted in the conventional two-dimensional (2D monolayer culture. Therefore, it remains unclear what invasive phenotypes are acquired by EMT-induced cancer cells. To address this point, we attempted to characterize EMT cells in more physiological, three-dimensional (3D collagen gel culture. EMT was induced by treating three human carcinoma cell lines (A549, Panc-1 and MKN-1 with TGF-ß. The TGF-ß treatment stimulated these cells to overexpress the invasion markers laminin γ2 and MT1-MMP in 2D culture, in addition to the induction of well-known morphological change and EMT marker expression. EMT induction enhanced cell motility and adhesiveness to fibronectin and collagen in 2D culture. Although EMT cells showed comparable cell growth to control cells in 2D culture, their growth rates were extremely suppressed in soft agar and collagen gel cultures. Most characteristically, EMT-induced cancer cells commonly and markedly extended invasive protrusions in collagen gel. These protrusions were mainly supported by microtubules rather than actin cytoskeleton. Snail-introduced, stable EMT cells showed similar protrusions in 3D conditions without TGF-ß. Moreover, these protrusions were suppressed by colchicine or inhibitors of heat shock protein 90 (HSP-90 and protein phosphatase 2A. However, MMP inhibitors did not suppress the protrusion formation. These data suggest that EMT enhances tumor cell infiltration into interstitial stroma by extending microtubule-based protrusions and suppressing cell growth. The elevated cell adhesion to fibronectin and collagen and high cell motility also seem important for the tumor invasion.

  14. ELECTROACUPUNCTURE TREATMENT OF 176 CASES OF LUMBAR INTERVERTEBRAL DISC PROTRUSION

    Institute of Scientific and Technical Information of China (English)

    LI Lanmin

    2002-01-01

    In the present paper, 176 cases of lumbar intervertebral disc protrusion are treated with electroacupuncture (EA) and topical heat irradiation. Local tender-point is used as the main acupoint, combined with Tunzhong, Tiaoyue, Weizhong (BL 40) and Yanglingquan (GB 34). The treatment is conducted once daily, with 15 sessions being a therapeutic course. Following treatment, of 176 cases, 46 (26. 1%) are cured, 90 (51. 1%) have prominent improvement, 35 (19.8%) have amelioration and 5 (2.8%) have no apparent changes, with a total effective rate of 97.0%.

  15. Dizziness due to intravestibular protrusion of prosthesis after stapedectomy

    Directory of Open Access Journals (Sweden)

    Suheil Artul

    2014-10-01

    Full Text Available We present a case of 37 year-old female with severe dizziness for the past six months whose past medical history revealed stapedectomy due to otosclerosis two years prior to visiting our hospital. Coronal high resolution computed tomography reconstruction showed the protrusion of a metallic device “peosthesis”, which had been used to replace the stape bone, to the vestibule of inner ear. The patient was re-operated for revision and replacing the prosthesis with good clinical outcome. 

  16. [Two Cases of Ruptured Cerebral Aneurysm Complicated with Delayed Coil Protrusion after Coil Embolization].

    Science.gov (United States)

    Furukawa, Takashi; Ogata, Atsushi; Ebashi, Ryo; Takase, Yukinori; Masuoka, Jun; Kawashima, Masatou; Abe, Tatsuya

    2016-07-01

    We report two cases of delayed coil protrusion after coil embolization for ruptured cerebral aneurysms. Case 1:An 82-year-old woman with a subarachnoid hemorrhage due to a ruptured small anterior communicating artery aneurysm underwent successful coil embolization. Eighteen days after the procedure, coil protrusion from the aneurysm into the right anterior cerebral artery was observed without any symptoms. Further coil protrusion did not develop after 28 days. Case 2:A 78-year-old woman with a subarachnoid hemorrhage due to a ruptured small left middle cerebral artery aneurysm underwent successful coil embolization. Twenty days after the procedure, coil protrusion from the aneurysm into the left middle cerebral artery was observed, with a transient ischemic attack. Further coil protrusion did not develop. Both patients recovered with antithrombotic treatment. Even though delayed coil protrusion after coil embolization is rare, it should be recognized as a long-term complication of coil embolization for cerebral aneurysms.

  17. Protrusion of the Rod Electrode in the Electrospinning Process

    Directory of Open Access Journals (Sweden)

    Jan Valtera

    2015-01-01

    Full Text Available The paper focuses on the influence of the protrusion of the rod electrode on critical voltage in the DC electrospinning process. On the testing and industrial DC electrospinning devices, electrodes of any kind are extended towards the counter electrode. This provides the maximal, that is, supercritical, electric field intensity on the spinning-electrode orifice that is found to be higher than on the other supplementary parts. The principal study and experiments with basic apparatus were carried out and presented by Taylor in 1966. This study is focused on the arrangement closely related to the design of the real electrospinning device with respect to the safety and technological aspects. Results of the carried out experiments of the rod spinning-electrode are compared with the electrostatic simulation and analytical calculation. The presented effect of the electrode protrusion on the potential difference and the critical field strength introduces valuable information for the designers of electrospinning machines as well as for the setting up of the optimal technological parameters for producing modern nonwoven textile products.

  18. Self-assembly of colloids with liquid protrusions.

    Science.gov (United States)

    Kraft, Daniela J; Vlug, Wessel S; van Kats, Carlos M; van Blaaderen, Alfons; Imhof, Arnout; Kegel, Willem K

    2009-01-28

    A facile and flexible synthesis for colloidal molecules with well-controlled shape and tunable patchiness is presented. Cross-linked polystyrene spheres with a liquid protrusion were found to assemble into colloidal molecules by coalescence of the liquid protrusions. Similarly, cross-linked poly(methyl methacrylate) particles carrying a wetting layer assembled into colloidal molecules by coalescence of the wetting layer. Driven by surface energy, a liquid droplet on which the solid spheres are attached is formed. Subsequent polymerization of the liquid yields a wide variety of colloidal molecules as well as colloidosomes with tunable patchiness. Precise control over the topology of the particles has been achieved by changing the amount and nature of the swelling monomer as well as the wetting angle between the liquid and the seed particles. The overall cluster size can be controlled by the seed size as well as the swelling ratio. Use of different swelling monomers and/or particles allows for chemical diversity of the patches and the center. For low swelling ratios assemblies of small numbers of seeds resemble clusters that minimize the second moment of the mass distribution. Assemblies comprised of a large number of colloids are similar to colloidosomes exhibiting elastic strain relief by scar formation.

  19. Treatment of Protrusion of the Lumbar Intervertebral Disc by Massotherapy

    Institute of Scientific and Technical Information of China (English)

    程斌

    2001-01-01

    @@Clinically, there is a higher incidence of protrusion of the lumbar intervertebral disc. It can cause a terrible pain. The author has treated 66 cases by massotherapy, who were confirmatively diagnosed as having protrusion of the lumbar intervertebral disc by X-ray film and computer-aided tomography, with satisfactory results as reported in the following. Clinical Data Among the 66 cases in this series, 49 were male and 17 female, ranging in age from 26 to 59 years, averaging 36.2 years. All the patients had got lumbago and unilateral ischialgia, with the left side affected in 37 cases and the right side in 29 cases. The leg pain radiating to lateral malleolus was found in 28 cases, to dorsum of the foot in 24 cases, and to the toes in 14 cases. Intermittent claudication was present in 22 cases, numbness of the affected foot in 16 cases, pain exacerbated when coughing in 35 cases, scoliosis in 21 cases, and positive Lasegue's sign in 48 cases.

  20. The Rise of Jaw Protrusion in Spiny-Rayed Fishes Closes the Gap on Elusive Prey.

    Science.gov (United States)

    Bellwood, David R; Goatley, Christopher H R; Bellwood, Orpha; Delbarre, Daniel J; Friedman, Matt

    2015-10-19

    Jaw protrusion is one of the most important innovations in vertebrate feeding over the last 400 million years [1, 2]. Protrusion enables a fish to rapidly decrease the distance between itself and its prey [2, 3]. We assessed the evolution and functional implications of jaw protrusion in teleost fish assemblages from shallow coastal seas since the Cretaceous. By examining extant teleost fishes, we identified a robust morphological predictor of jaw protrusion that enabled us to predict the extent of jaw protrusion in fossil fishes. Our analyses revealed increases in both average and maximum jaw protrusion over the last 100 million years, with a progressive increase in the potential impact of fish predation on elusive prey. Over this period, the increase in jaw protrusion was initially driven by a taxonomic restructuring of fish assemblages, with an increase in the proportion of spiny-rayed fishes (Acanthomorpha), followed by an increase in the extent of protrusion within this clade. By increasing the ability of fishes to catch elusive prey [2, 4], jaw protrusion is likely to have fundamentally changed the nature of predator-prey interactions and may have contributed to the success of the spiny-rayed fishes, the dominant fish clade in modern oceans [5].

  1. Infantil perineal protrusion er et harmløst fund med flere differentialdiagnoser

    DEFF Research Database (Denmark)

    Haastrup, Maija Dalgaard; Bygum, Anette

    2011-01-01

    Among girls the frequency of infantile perineal protrusion (IPP) is 13%. The skin-coloured protrusion is thought to represent a congenital weakness in the perineum and usually resolves spontaneously. We report a case of a 13 year-old girl who for nine years had been examined and treated for haemo......Among girls the frequency of infantile perineal protrusion (IPP) is 13%. The skin-coloured protrusion is thought to represent a congenital weakness in the perineum and usually resolves spontaneously. We report a case of a 13 year-old girl who for nine years had been examined and treated...

  2. Generic Transport Mechanisms for Molecular Traffic in Cellular Protrusions

    Science.gov (United States)

    Graf, Isabella R.; Frey, Erwin

    2017-03-01

    Transport of molecular motors along protein filaments in a half-closed geometry is a common feature of biologically relevant processes in cellular protrusions. Using a lattice-gas model we study how the interplay between active and diffusive transport and mass conservation leads to localized domain walls and tip localization of the motors. We identify a mechanism for task sharing between the active motors (maintaining a gradient) and the diffusive motion (transport to the tip), which ensures that energy consumption is low and motor exchange mostly happens at the tip. These features are attributed to strong nearest-neighbor correlations that lead to a strong reduction of active currents, which we calculate analytically using an exact moment identity, and might prove useful for the understanding of correlations and active transport also in more elaborate systems.

  3. Cellular blebs: pressure-driven, axisymmetric, membrane protrusions

    KAUST Repository

    Woolley, Thomas E.

    2013-07-16

    Blebs are cellular protrusions that are used by cells for multiple purposes including locomotion. A mechanical model for the problem of pressure-driven blebs based on force and moment balances of an axisymmetric shell model is proposed. The formation of a bleb is initiated by weakening the shell over a small region, and the deformation of the cellular membrane from the cortex is obtained during inflation. However, simply weakening the shell leads to an area increase of more than 4 %, which is physically unrealistic. Thus, the model is extended to include a reconfiguration process that allows large blebs to form with small increases in area. It is observed that both geometric and biomechanical constraints are important in this process. In particular, it is shown that although blebs are driven by a pressure difference across the cellular membrane, it is not the limiting factor in determining bleb size. © 2013 Springer-Verlag Berlin Heidelberg.

  4. Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles

    KAUST Repository

    Węgrzyn, Ilona

    2011-11-16

    Hydrophobic side groups on a stimuli-responsive polymer, encapsulated within a single giant unilamellar vesicle, enable membrane attachment during compartment formation at elevated temperatures. We thermally modulated the vesicle through implementation of an IR laser via an optical fiber, enabling localized directed heating. Polymer-membrane interactions were monitored using confocal imaging techniques as subsequent membrane protrusions occurred and lipid nanotubes formed in response to the polymer hydrogel contraction. These nanotubes, bridging the vesicle membrane to the contracting hydrogel, were retained on the surface of the polymer compartment, where they were transformed into smaller vesicles in a process reminiscent of cellular endocytosis. This development of a synthetic vesicle system containing a stimuli-responsive polymer could lead to a new platform for studying inter/intramembrane transport through lipid nanotubes. © 2011 American Chemical Society.

  5. Treatment of Protrusion of the Lumbar Intervertebral Disc by TCM Massage

    Institute of Scientific and Technical Information of China (English)

    龙亚军

    2002-01-01

    @@ Protrusion of the lumbar intervertebral disc is a common disorder frequently encountered in clinic. With TCM massage and the maneuver of manual reduction, we have treated 82 cases of protrusion of the lumbar intervertebral disc, with satisfactory therapeutic results reported in the following.

  6. The impact of development and sensory deprivation on dendritic protrusions in the mouse barrel cortex.

    Science.gov (United States)

    Chen, Chia-Chien; Bajnath, Adesh; Brumberg, Joshua C

    2015-06-01

    Dendritic protrusions (spines and filopodia) are structural indicators of synapses that have been linked to neuronal learning and memory through their morphological alterations induced by development and experienced-dependent activities. Although previous studies have demonstrated that depriving sensory experience leads to structural changes in neocortical organization, the more subtle effects on dendritic protrusions remain unclear, mostly due to focus on only one specific cell type and/or age of manipulation. Here, we show that sensory deprivation induced by whisker trimming influences the dendritic protrusions of basilar dendrites located in thalamocortical recipient lamina (IV and VI) of the mouse barrel cortex in a layer-specific manner. Following 1 month of whisker trimming after birth, the density of dendritic protrusions increased in layer IV, but decreased in layer VI. Whisker regrowth for 1 month returned protrusion densities to comparable level of age-matched controls in layer VI, but not in layer IV. In adults, chronic sensory deprivation led to an increase in protrusion densities in layer IV, but not in layer VI. In addition, chronic pharmacological blockade of N-methyl-d-aspartate receptors (NMDARs) increased protrusion density in both layers IV and VI, which returned to the control level after 1 month of drug withdrawal. Our data reveal that different cortical layers respond to chronic sensory deprivation in different ways, with more pronounced effects during developmental critical periods than adulthood. We also show that chronically blocking NMDARs activity during developmental critical period also influences the protrusion density and morphology in the cerebral cortex.

  7. Genioglossus and intrinsic electromyographic activities in impeded and unimpeded protrusion tasks.

    Science.gov (United States)

    Pittman, Lora J; Bailey, E Fiona

    2009-01-01

    Eight muscles invest the human tongue: four extrinsic muscles have external origins and insert into the tongue body and four intrinsic muscles originate and terminate within the tongue. Previously, we noted minimal activation of the genioglossus tongue muscle during impeded protrusion tasks (i.e., having subjects push the tongue against a force transducer), suggesting that other muscles play a role in the production of tongue force. Accordingly, we sought to characterize genioglossus tongue muscle activities during impeded and unimpeded protrusion tasks (i.e., having subjects slowly and smoothly move the tongue out of their mouth). Electromyographic (EMG) and single motor-unit potentials of the extrinsic genioglossus muscle were recorded with tungsten microelectrodes and EMG activities of intrinsic tongue muscles were recorded with hook-wire electrodes inserted into the anterior tongue body. Tongue position was detected by an isotonic transducer coupled to the tongue tip. Protrusive force was detected by a force transducer attached to a rigid bar. Genioglossus and intrinsic tongue muscles were simultaneously active in both impeded and unimpeded protrusion tasks. Genioglossus whole muscle EMG and single motor-unit activities changed faithfully as a function of tongue position, with increased discharge associated with protrusion and decreased discharge associated with retraction back to the rest position. In contrast, during the impeded protrusion task drive the genioglossus muscle remained constant as protrusion force increased. Conversely, intrinsic tongue muscle activities appropriately followed changes in both tongue position and force. Importantly, we observed significantly higher levels of intrinsic muscle activity in the impeded protrusion task. These observations suggest that protrusion of the human tongue requires activation of the genioglossus and intrinsic protrudor muscles, with the former more important for establishing anterior-posterior tongue location

  8. Elasto-hydrodynamic lubrication

    CERN Document Server

    Dowson, D; Hopkins, D W

    1977-01-01

    Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio

  9. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  10. Quasiparticle anisotropic hydrodynamics

    CERN Document Server

    Alqahtani, Mubarak

    2016-01-01

    We study an azimuthally-symmetric boost-invariant quark-gluon plasma using quasiparticle anisotropic hydrodynamics including the effects of both shear and bulk viscosities. We compare results obtained using the quasiparticle method with the standard anisotropic hydrodynamics and viscous hydrodynamics. We consider the predictions of the three methods for the differential particle spectra and mean transverse momentum. We find that the three methods agree for small shear viscosity to entropy density ratio, $\\eta/s$, but show differences at large $\\eta/s$. Additionally, we find that the standard anisotropic hydrodynamics method shows suppressed production at low transverse-momentum compared to the other two methods, and the bulk-viscous correction can drive the primordial particle spectra negative at large $p_T$ in viscous hydrodynamics.

  11. Morphological change of self-organized protrusions of fluoropolymer surface by ion beam irradiation

    Science.gov (United States)

    Kitamura (Ogawa), Akane; Kobayashi, Tomohiro; Satoh, Takahiro; Koka, Masashi; Kamiya, Tomihiro; Suzuki, Akihiro; Terai, Takayuki

    2013-07-01

    Polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) are typical fluoropolymers displaying several desirable technological properties such as electrical insulation and high chemical resistance. When their surfaces are irradiated with ion beams, dense micro-protrusions formed after the emergence and spread of micropores across the entire irradiated area, allowing culture cells to spread on the top of the protrusions. In this study, we investigate the morphological changes introduced in the fluoropolymer surfaces by ion beams as the energy of the beams is increased. When an FEP sample was irradiated with a nitrogen ion beam with an energy of less than 350 keV at 1.0 μA/cm2, protrusions were formed with a density between 2 × 107/cm2 and 2 × 108/cm2. However, at energies higher than 350 keV, the protrusions became sparse, and the density dropped to 5 × 102/cm2. Protrusions appeared sporadically during irradiation at high energies, and the top of the protrusions appeared as spots inside the sample, which were difficult to etch and became elongated as the erosion of the surface progressed. Erosion was caused by sputtering of FEP molecules and evaporation at notably elevated temperatures on the surface. Analysis based on attenuated total reflectance/Fourier transform infrared spectroscopy showed the presence of Cdbnd C bonds as well as -COOH, -Cdbnd O, and -OH bonds on all irradiated samples. Their concentration on the surface densely covered with micro-protrusions was higher than that on the surface with sparse protrusions after irradiation at energies exceeding 350 keV. Thus, we determined a suitable range for the ion energy for creating FEP surfaces densely covered with protrusions.

  12. Morphological change of self-organized protrusions of fluoropolymer surface by ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Akane, E-mail: ogawa.akane@jaea.go.jp [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Kobayashi, Tomohiro [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 350-0198 (Japan); Satoh, Takahiro; Koka, Masashi; Kamiya, Tomihiro [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Suzuki, Akihiro; Terai, Takayuki [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2013-07-15

    Polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) are typical fluoropolymers displaying several desirable technological properties such as electrical insulation and high chemical resistance. When their surfaces are irradiated with ion beams, dense micro-protrusions formed after the emergence and spread of micropores across the entire irradiated area, allowing culture cells to spread on the top of the protrusions. In this study, we investigate the morphological changes introduced in the fluoropolymer surfaces by ion beams as the energy of the beams is increased. When an FEP sample was irradiated with a nitrogen ion beam with an energy of less than 350 keV at 1.0 μA/cm{sup 2}, protrusions were formed with a density between 2 × 10{sup 7}/cm{sup 2} and 2 × 10{sup 8}/cm{sup 2}. However, at energies higher than 350 keV, the protrusions became sparse, and the density dropped to 5 × 10{sup 2}/cm{sup 2}. Protrusions appeared sporadically during irradiation at high energies, and the top of the protrusions appeared as spots inside the sample, which were difficult to etch and became elongated as the erosion of the surface progressed. Erosion was caused by sputtering of FEP molecules and evaporation at notably elevated temperatures on the surface. Analysis based on attenuated total reflectance/Fourier transform infrared spectroscopy showed the presence of C=C bonds as well as –COOH, –C=O, and –OH bonds on all irradiated samples. Their concentration on the surface densely covered with micro-protrusions was higher than that on the surface with sparse protrusions after irradiation at energies exceeding 350 keV. Thus, we determined a suitable range for the ion energy for creating FEP surfaces densely covered with protrusions.

  13. Single-Tooth Osteotomy Combined Wide Linear Corticotomy Under Local Anesthesia for Correcting Anterior Protrusion With Ectopically Erupted Canine.

    Science.gov (United States)

    Iskenderoglu, Nur Serife; Choi, Byung-Joon; Seo, Kyung Won; Lee, Yeon-Ji; Lee, Baek-Soo; Kim, Seong-Hun

    2017-01-01

    This article presents the alternative surgical treatments of both anterior protrusion by carrying out retraction on mandibular anterior fragment, meanwhile applying retraction force on maxilla anterior teeth and ectopically erupted canine with using platelet-rich fibrin (PRF). Anterior segmental osteotomy was combined with linear corticotomy under local anesthesia. The correction of right ectopic canine was achieved through 2 stages. First, dento-osseous osteotomy on palatal side was performed. Then second osteotomy with immediate manual repositioning of the canine with concomitant first premolar extraction was enhanced with PRF, which was prepared by centrifuging patient's blood, applied into buccal side of high canine during osteotomy. Mandibular retraction was accomplished by anterior segmental osteotomy. Single-tooth osteotomy is a more effective surgical method for ankylosed or ectopically erupted tooth in orthodontic treatment. It can reduce the total orthodontic treatment time and root resorption, 1 common complication. Significant improved bone formation was seen with the addition of PRF on noncritical size defects in the animal model. It is reasonable to think that PRF can promote bone regeneration. So early bone formation also can reduce the complication such as postoperative infection. As an alternative to anterior protrusion and ectopically erupted canine treatment, segmental osteotomy and corticotomy combined platelet-rich plasma can enhance orthodontic treatment outcome.

  14. PAOO technique for the bimaxillary protrusion: Perio-ortho interrelationship.

    Science.gov (United States)

    Bhat, Subraya G; Singh, Vishal; Bhat, Mahalinga K

    2012-10-01

    An increasing number of adult patients have been seeking orthodontic treatment, and a short treatment time has been a recurring request. To meet their expectations, a number of innovative techniques have been developed to accelerate orthodontic tooth movement. Significant acceleration in orthodontic tooth movement has been extensively reported following a combination of selective alveolar decortication and bone grafting surgery with the latter being responsible for the increased scope of tooth movement and the long-term improvement of the periodontium. Six patients who have been diagnosed as class I malocclusion with bimaxillary protrusion were selected. A modified corticotomy procedure was carried out The active orthodontic treatment was begun within 1 week after surgery and follow up. All the patients reported the minmalpain and mild swelling 2 days following the surgical procedure. The mean treatment time for these patients was 17.4 months, with the distalization of the canines being mostly completed in 8.5 months. Periodontallyaccelerated osteogenicsorthodontic tooth movement procedure or selective alveolar decortications or corticotomy approach is one of the surgical techniques developed to reduce the time for orthodontic treatment. This newer approach is leading to short orthodontic treatment time and great patient acceptance.

  15. Muscular hydrostat mechanism for lip protrusion in speech

    Science.gov (United States)

    Murano, Emi Z.; Stone, Maureen; Honda, Kiyoshi

    2005-09-01

    The lip is an organ consisting mostly of muscle similar to the tongue. While the tongue is known as a muscular hydrostat, it is unclear whether the lip is also. In this paper the muscular hydrostat issue was explored from the anatomical and functional point of view using high-resolution static MRI (hr-MRI 0.125 mm/pixel) and tagged-cineMRI (t-MRI). A 3-D reconstruction of the lips and its muscles was obtained from hr-MRI during sustained vowels /i/ and /u/. The muscular geometry of the orbicularis oris, mentalis, and depressor labii inferior muscles were superimposed onto the principal strains that depicts compression and expansion of the internal tissue obtained from t-MRI. It is shown that (1) orbicularis oris muscle shape can predict both the borderline of glabrous and hairy skin and the manner in which the lips are protruded; (2) the lips volume is almost identical for both speech tasks; and (3) direction and intensity of compression of orbicularis oris and mentalis muscle bundles imply the role of these muscles in the protrusion appearance. These results indicate that the muscular architecture and volume preserving characteristics of the lips are consistent with a muscular hydrostat. [This work was supported by NIH (USA) and NiCT (Japan).

  16. EDL configuration on a dissimilarly charged protrusion array via double Fourier series and perturbation method.

    Science.gov (United States)

    Lin, Sung-Hwa; Hsu, Jyh-Ping; Tseng, Shiojenn; Kuo, Yung-Chih; Liu, Bo-Tau

    2011-11-01

    In this study, through the extension of an one-dimensional, dissimilarly charged protrusions surface model set up in our previous work, a novel dissimilarly charged protrusion array (DCPA) model immersed in an electrolyte solution, which could simulate realistically both the surface morphology and the surface charged condition profoundly concerned on a biological cell membrane, or on the surface of a micro-scale, modified particle used in biomedical engineering and water treatment, is proposed. Considering the condition of small protrusions, the electrical potential field due to the electrical double layer (EDL) on DCPA model is solved semi-analytically using both the double Fourier series and the perturbation method. The analysis from the numerical result reveals that, a small, dissimilarly charged protrusion can lead to a steep variation in the local EDL configuration, especially compared with that in the condition when the charged surface is taken roughly as a flat surface using a lumped, mean surface charge density.

  17. Method for Measuring the Distribution of Adhesion Forces on Continuous Nanoscale Protrusions Using Carbon Nanofiber Tip on a Scanning Probe Microscope Cantilever.

    Science.gov (United States)

    Shimoi, Norihiro; Abe, Daisuke

    2015-07-01

    The adhesion force on surfaces has received attention in numerous scientific and technological fields, including catalysis, thin-film growth, and tribology. Many applications require knowledge of the strength of these forces as a function of position in three dimensions, but until now such information has only been theoretically proposed. Here, we demonstrate an approach based on scanning probe microscopy that can obtain such data and be used to image the three-dimensional surface force field of continuous nanoscale protrusions. We present adhesion force maps with nanometer and nanonewton resolution that allow detailed characterization of the interaction between a surface and a thin carbon nanofiber (CNF) rod synthesized by plasma-enhanced chemical vapor deposition (PECVD) at the end of a tip on a scanning probe microscope cantilever in three dimensions. In these maps, the positions of all continuous nanoscale protrusions are identified and the differences in the adhesive forces among limited areas at inequivalent sites are quantified.

  18. Hydrodynamics and black holes

    CERN Document Server

    Oz, Yaron

    2015-01-01

    This chapter describes how the AdS/CFT correspondence (the Holographic Principle) relates field theory hydrodynamics to perturbations of black hole (brane) gravitational backgrounds. The hydrodynamics framework is first presented from the field theory point of view, after which the dual gravitational description is outlined, first for relativistic fluids and then for the nonrelativistic case. Further details of the fluid/gravity correspondence are then discussed, including the bulk geometry and the dynamics of the black hole horizon.

  19. Skeletal anchorage for orthodontic correction of severe maxillary protrusion after previous orthodontic treatment.

    Science.gov (United States)

    Tanaka, Eiji; Nishi-Sasaki, Akiko; Hasegawa, Takuro; Nishio, Clarice; Kawai, Nobuhiko; Tanne, Kazuo

    2008-01-01

    The correction of a severe maxillary protrusion in an adult by distal movement of the maxillary molars has been one of the most difficult biomechanical problems in orthodontics. This article reports on the treatment of an adult case of severe maxillary protrusion and a large overjet treated with a skeletal anchorage system. A female patient, age 22 years and 3 months, complained of the difficulty of lip closure due to severe maxillary protrusion with a gummy smile. Overjet and overbite were +7.6 mm and -0.9 mm, respectively. She had a history of orthodontic treatment in which her maxillary first premolars were extracted. In order to conduct distal movement of the maxillary molars, anchor plates were placed in the zygomatic process. After achieving a Class I molar relationship, retraction and intrusion of the maxillary incisors were performed. After a 2-year treatment, an acceptable occlusion was achieved with a Class I molar relationship. Her convex facial profile with upper lip protrusion was considerably improved, and the lips showed less tension in lip closure. After a 2-year retention period, an acceptable occlusion was maintained without recurrence of maxillary protrusion, indicating a stability of the occlusion. The result of this treatment indicated that skeletal anchorage is of great importance as a remedy for achieving intrusion and retraction of the maxillary incisors in cases of severe maxillary protrusion with a patient who had previous orthodontic treatment.

  20. The actin regulators Enabled and Diaphanous direct distinct protrusive behaviors in different tissues during Drosophila development.

    Science.gov (United States)

    Nowotarski, Stephanie H; McKeon, Natalie; Moser, Rachel J; Peifer, Mark

    2014-10-15

    Actin-based protrusions are important for signaling and migration during development and homeostasis. Defining how different tissues in vivo craft diverse protrusive behaviors using the same genomic toolkit of actin regulators is a current challenge. The actin elongation factors Diaphanous and Enabled both promote barbed-end actin polymerization and can stimulate filopodia in cultured cells. However, redundancy in mammals and Diaphanous' role in cytokinesis limited analysis of whether and how they regulate protrusions during development. We used two tissues driving Drosophila dorsal closure--migratory leading-edge (LE) and nonmigratory amnioserosal (AS) cells--as models to define how cells shape distinct protrusions during morphogenesis. We found that nonmigratory AS cells produce filopodia that are morphologically and dynamically distinct from those of LE cells. We hypothesized that differing Enabled and/or Diaphanous activity drives these differences. Combining gain- and loss-of-function with quantitative approaches revealed that Diaphanous and Enabled each regulate filopodial behavior in vivo and defined a quantitative "fingerprint"--the protrusive profile--which our data suggest is characteristic of each actin regulator. Our data suggest that LE protrusiveness is primarily Enabled driven, whereas Diaphanous plays the primary role in the AS, and reveal each has roles in dorsal closure, but its robustness ensures timely completion in their absence.

  1. Anisotropic hydrodynamics -- basic concepts

    CERN Document Server

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael

    2013-01-01

    Due to the rapid longitudinal expansion of the quark-gluon plasma created in relativistic heavy ion collisions, potentially large local rest frame momentum-space anisotropies are generated. The magnitude of these momentum-space anisotropies can be so large as to violate the central assumption of canonical viscous hydrodynamical treatments which linearize around an isotropic background. In order to better describe the early-time dynamics of the quark gluon plasma, one can consider instead expanding around a locally anisotropic background which results in a dynamical framework called anisotropic hydrodynamics. In this proceedings contribution we review the basic concepts of the anisotropic hydrodynamics framework presenting viewpoints from both the phenomenological and microscopic points of view.

  2. Dispersive hydrodynamics: Preface

    Science.gov (United States)

    Biondini, G.; El, G. A.; Hoefer, M. A.; Miller, P. D.

    2016-10-01

    This Special Issue on Dispersive Hydrodynamics is dedicated to the memory and work of G.B. Whitham who was one of the pioneers in this field of physical applied mathematics. Some of the papers appearing here are related to work reported on at the workshop "Dispersive Hydrodynamics: The Mathematics of Dispersive Shock Waves and Applications" held in May 2015 at the Banff International Research Station. This Preface provides a broad overview of the field and summaries of the various contributions to the Special Issue, placing them in a unified context.

  3. Self-organization of waves and pulse trains by molecular motors in cellular protrusions.

    Science.gov (United States)

    Yochelis, A; Ebrahim, S; Millis, B; Cui, R; Kachar, B; Naoz, M; Gov, N S

    2015-09-03

    Actin-based cellular protrusions are an ubiquitous feature of cells, performing a variety of critical functions ranging from cell-cell communication to cell motility. The formation and maintenance of these protrusions relies on the transport of proteins via myosin motors, to the protrusion tip. While tip-directed motion leads to accumulation of motors (and their molecular cargo) at the protrusion tip, it is observed that motors also form rearward moving, periodic and isolated aggregates. The origins and mechanisms of these aggregates, and whether they are important for the recycling of motors, remain open puzzles. Motivated by novel myosin-XV experiments, a mass conserving reaction-diffusion-advection model is proposed. The model incorporates a non-linear cooperative interaction between motors, which converts them between an active and an inactive state. Specifically, the type of aggregate formed (traveling waves or pulse-trains) is linked to the kinetics of motors at the protrusion tip which is introduced by a boundary condition. These pattern selection mechanisms are found not only to qualitatively agree with empirical observations but open new vistas to the transport phenomena by molecular motors in general.

  4. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells.

    Science.gov (United States)

    Sarmiento, Corina; Wang, Weigang; Dovas, Athanassios; Yamaguchi, Hideki; Sidani, Mazen; El-Sibai, Mirvat; Desmarais, Vera; Holman, Holly A; Kitchen, Susan; Backer, Jonathan M; Alberts, Art; Condeelis, John

    2008-03-24

    We examined the role of the actin nucleation promoters neural Wiskott-Aldrich syndrome protein (N-WASP) and WAVE2 in cell protrusion in response to epidermal growth factor (EGF), a key regulator in carcinoma cell invasion. We found that WAVE2 knockdown (KD) suppresses lamellipod formation and increases filopod formation, whereas N-WASP KD has no effect. However, simultaneous KD of both proteins results in the formation of large jagged protrusions with lamellar properties and increased filopod formation. This suggests that another actin nucleation activity is at work in carcinoma cells in response to EGF. A mammalian Diaphanous-related formin, mDia1, localizes at the jagged protrusions in double KD cells. Constitutively active mDia1 recapitulated the phenotype, whereas inhibition of mDia1 blocked the formation of these protrusions. Increased RhoA activity, which stimulates mDia1 nucleation, was observed in the N-WASP/WAVE2 KD cells and was shown to be required for the N-WASP/WAVE2 KD phenotype. These data show that coordinate regulation between the WASP family and mDia proteins controls the balance between lamellar and lamellipodial protrusion activity.

  5. Local protrusions formed on Si(111) surface by surface melting and solidification under applied tensile stress

    Science.gov (United States)

    Nishimura, T.; Tomitori, M.

    2016-09-01

    The surface structure and composition of Si(111) was modified, by heating it to 1300 °C in ultrahigh vacuum under an external tensile stress. A stress of approximately 1 GPa was applied, by pressing on the center of the rear side of the sample. This process produced two protrusions of approximately 100 μm in height, to the left and right of the center. Scanning Auger electron spectroscopy revealed Fe, Cr, Ni, and C impurities at the top of one protrusion, and C at the top of the other. These impurities likely diffused into the tops of the protrusions during heating, and segregated to the local surface during cooling when the protrusions formed. The protrusion formation mechanism is discussed. Their formation was related to non-uniform surface temperature, electromigration, piezoresistivity, freezing-point depression due to surface alloying with the impurities, and volume expansion during solidification from surface melting. These findings provide a perspective on controlling surface structures and compositions using heat and stress to induce self-assembly.

  6. Lipid tail protrusion in simulations predicts fusogenic activity of influenza fusion peptide mutants and conformational models.

    Directory of Open Access Journals (Sweden)

    Per Larsson

    Full Text Available Fusion peptides from influenza hemagglutinin act on membranes to promote membrane fusion, but the mechanism by which they do so remains unknown. Recent theoretical work has suggested that contact of protruding lipid tails may be an important feature of the transition state for membrane fusion. If this is so, then influenza fusion peptides would be expected to promote tail protrusion in proportion to the ability of the corresponding full-length hemagglutinin to drive lipid mixing in fusion assays. We have performed molecular dynamics simulations of influenza fusion peptides in lipid bilayers, comparing the X-31 influenza strain against a series of N-terminal mutants. As hypothesized, the probability of lipid tail protrusion correlates well with the lipid mixing rate induced by each mutant. This supports the conclusion that tail protrusion is important to the transition state for fusion. Furthermore, it suggests that tail protrusion can be used to examine how fusion peptides might interact with membranes to promote fusion. Previous models for native influenza fusion peptide structure in membranes include a kinked helix, a straight helix, and a helical hairpin. Our simulations visit each of these conformations. Thus, the free energy differences between each are likely low enough that specifics of the membrane environment and peptide construct may be sufficient to modulate the equilibrium between them. However, the kinked helix promotes lipid tail protrusion in our simulations much more strongly than the other two structures. We therefore predict that the kinked helix is the most fusogenic of these three conformations.

  7. Effects of colchicine or demecolcine on cytoplasmic protrusions and assisted enucleation of golden hamster oocytes.

    Science.gov (United States)

    Wang, Lingyan; Jiang, Han; Su, Li; Tang, Bo; Li, Dexue; Li, Ziyi

    2009-12-01

    To establish experimental protocols for cloning golden hamsters, optimal concentrations of colchicine and demecolcine were determined for inducing cytoplasmic protrusion (containing chromosomes) and assisting enucleation of their oocytes. Denuded oocytes at different ages were treated with 2.5-10 microg/ml of colchicine for 1-4h or 0.02-0.6 microg/ml of demecolcine for 15-60 min. Cytoplasmic protrusions of oocytes were removed with a micromanipulation pipette. The results show that: 1) at 13.5-18h post-hCG injection, approximately 90% of oocytes treated for with 10 microg/ml of colchicine formed cytoplasmic protrusions, and in some oocytes enucleation occurred; 2) when treated with 0.4 microg/ml of demecolcine for 1h, cytoplasmic protrusions 13.5-18h post-hCG treatment were present in almost all oocytes; 3) after the protrusions induced by either treatment had been removed, the assisted enucleation rate was >80%, whereas it was approximately 32% with blind enucleation.

  8. Treatment of Class II malocclusion with bialveolar protrusion by means of unusual extractions and anchorage mini-implant

    OpenAIRE

    Jong-Moon Chae

    2012-01-01

    INTRODUCTION: Patients with dental Class II bialveolar protrusion are generally treated by extracting the four first premolars or two first and two second premolars, and retracting the anterior teeth. This case report describes the treatment of an adult patient with bialveolar protrusion, a Class II canine and molar relationship, and lip protrusion. METHODS: In this patient, the maxillary right second molar (1.7) had to be extracted due to extensive caries. To create sufficient space to retra...

  9. Smoothed Particle Hydrodynamic Simulator

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-05

    This code is a highly modular framework for developing smoothed particle hydrodynamic (SPH) simulations running on parallel platforms. The compartmentalization of the code allows for rapid development of new SPH applications and modifications of existing algorithms. The compartmentalization also allows changes in one part of the code used by many applications to instantly be made available to all applications.

  10. Hydrodynamic aspect of caves

    Directory of Open Access Journals (Sweden)

    Franci Gabrovsek

    2008-01-01

    Full Text Available From a hydrological point of view, active caves are a series of connected conduits which drain water through an aquifer. Water tends to choose the easiest way through the system but different geological and morphological barriers act as flow restrictions. The number and characteristics of restrictions depends on the particular speleogenetic environment, which is a function of geological, geomorphological, climatological and hydrological settings. Such a variety and heterogeneity of underground systems has presented a challenge for human understanding for many centuries. Access to many underground passages, theoretical knowledge and recent methods (modeling, water pressure-resistant dataloggers, precise sensors etc. give us the opportunity to get better insight into the hydrodynamic aspect of caves. In our work we tried to approach underground hydrodynamics from both theoretical and practical points of view. We present some theoretical background of open surface and pressurized flow in underground rivers and present results of some possible scenarios. Moreover, two case studies from the Ljubljanica river basin are presented in more detail: the cave system between Planinsko polje and Ljubljansko barje, and the cave system between Bloško polje and Cerkniško polje. The approach and methodology in each case is somewhat different, as the aims were different at the beginning of exploration. However, they both deal with temporal and spatial hydrodynamics of underground waters. In the case of Bloško polje-Cerkniško polje system we also explain the feedback loop between hydrodynamics and Holocene speleogenesis.

  11. Unique Asymmetric Protrusion of Nerve Cord in the Amphioxus, Branchiostoma belcheri

    Science.gov (United States)

    Nozaki, Masumi; Terakado, Kiyoshi; Kubokawa, Kaoru

    The amphioxus is the only surviving prevertebrate segmented chordate. In this animal Hatschek's pit has long been regarded as a putative homologue of the adenohypophysis because of the presence of secretory granules and immunoreactive cells to vertebrate gonadotrophic hormone in this organ. We found that the nerve cord extends a protrusion to the pit along the right side of the notochord. Furthermore, secretory granules were found not only in the pit but also in the protrusion of the nerve cord. These results suggest that Hatschek's pit and the nerve protrusion are homologous to the adenohypophysis and neurohypophysis, respectively. We believe that this is an evidence for the presence of the neuroendocrine link between the central nervous system and Hatschek's pit in the amphioxus.

  12. Bimaxillary protrusion with masseter muscle hypertrophy treated with titanium screw anchorage and masseter surgical reduction.

    Science.gov (United States)

    Hashimoto, Takashi; Kuroda, Shingo; Kamioka, Hiroshi; Mishima, Katsuaki; Sugahara, Toshio; Takano-Yamamoto, Teruko

    2009-04-01

    This case report describes the treatment of a patient with bimaxillary protrusion and masseter muscle hypertrophy. At age 21 years 7 months, this woman had temporomandibular disorder (TMD) symptoms, severe bimaxillary protrusion, and a prominent mandibular angle with facial asymmetry. After an attempt to alleviate the TMD symptoms with occlusal splint stabilization, portions of the masseter muscle and the mandible were surgically removed. Titanium screws were placed bilaterally in both arches, and a retraction force was applied. After active treatment for 38 months, the convexity of the facial profile with lip protrusion was improved remarkably, and good occlusion was achieved. The prominent mandibular angle with facial asymmetry was improved as a result of the surgical reduction of the masseter muscle and the modeling ostectomy near the masseteric tuberosity. The TMD symptoms disappeared, and the jaw movement pattern became normal. Therefore, our results suggest that this combination treatment would be useful for masseter muscle hypertrophy for morphologic and functional problems.

  13. Treatment of 116 Cases of Cervical Intervertebral Disc Protrusion by Tuina

    Institute of Scientific and Technical Information of China (English)

    WANG Guang-zong; XIAO Yuan-chun

    2007-01-01

    Objective: To observe the clinical efficacy of uplifting massage therapy in the treatment of cervical intervertebral disc protrusion and study the effectiveness of this massage therapy for cervical intervertebral disc protrusion. Methods: 116 subjects were randomized into two groups: treatment group in which 60 cases were treated by uplifting massage therapy and conventional massage, and control group in which 56 cases were treated by simple conventional massage. Results: After 1-2 courses of treatment, the total effective rate was 95.0% in treatment group and 80.4% in control group; the former rate was higher than the latter one(P<0.05).Conclusion: The uplifting massage therapy combined with conventional massage has better effects than simple conventional massage in the treatment of cervical intervertebral disc protrusion.

  14. Hydrodynamics of the Dirac spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yizhuang, E-mail: yizhuang.liu@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Warchoł, Piotr, E-mail: piotr.warchol@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Krakow (Poland); Zahed, Ismail, E-mail: ismail.zahed@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2016-02-10

    We discuss a hydrodynamical description of the eigenvalues of the Dirac spectrum in even dimensions in the vacuum and in the large N (volume) limit. The linearized hydrodynamics supports sound waves. The hydrodynamical relaxation of the eigenvalues is captured by a hydrodynamical (tunneling) minimum configuration which follows from a pertinent form of Euler equation. The relaxation from a phase of unbroken chiral symmetry to a phase of broken chiral symmetry occurs over a time set by the speed of sound.

  15. An RNAi Screen for Genes Involved in Nanoscale Protrusion Formation on Corneal Lens in Drosophila melanogaster.

    Science.gov (United States)

    Minami, Ryunosuke; Sato, Chiaki; Yamahama, Yumi; Kubo, Hideo; Hariyama, Takahiko; Kimura, Ken-Ichi

    2016-12-01

    The "moth-eye" structure, which is observed on the surface of corneal lens in several insects, supports anti-reflective and self-cleaning functions due to nanoscale protrusions known as corneal nipples. Although the morphology and function of the "moth-eye" structure, are relatively well studied, the mechanism of protrusion formation from cell-secreted substances is unknown. In Drosophila melanogaster, a compound eye consists of approximately 800 facets, the surface of which is formed by the corneal lens with nanoscale protrusions. In the present study, we sought to identify genes involved in "moth-eye" structure, formation in order to elucidate the developmental mechanism of the protrusions in Drosophila. We re-examined the aberrant patterns in classical glossy-eye mutants by scanning electron microscope and classified the aberrant patterns into groups. Next, we screened genes encoding putative structural cuticular proteins and genes involved in cuticular formation using eye specific RNAi silencing methods combined with the Gal4/UAS expression system. We identified 12 of 100 candidate genes, such as cuticular proteins family genes (Cuticular protein 23B and Cuticular protein 49Ah), cuticle secretion-related genes (Syntaxin 1A and Sec61 ββ subunit), ecdysone signaling and biosynthesis-related genes (Ecdysone receptor, Blimp-1, and shroud), and genes involved in cell polarity/cell architecture (Actin 5C, shotgun, armadillo, discs large1, and coracle). Although some of the genes we identified may affect corneal protrusion formation indirectly through general patterning defects in eye formation, these initial findings have encouraged us to more systematically explore the precise mechanisms underlying the formation of nanoscale protrusions in Drosophila.

  16. Agenesis of mandibular second premolar in patient with dental bimaxillary protrusion.

    Science.gov (United States)

    Tavares, Carlos Alberto Estevanell

    2017-01-01

    The present study reports the treatment carried out in a patient with mandibular second premolar agenesis associated with early loss of a deciduous second molar, deep overbite, severe overjet and dentoalveolar bimaxillary protrusion, which led to lip incompetence and a convex facial profile. The main objectives of this treatment were: to eliminate the spaces in mandibular arch, correct overbite, as well as eliminate bimaxillary protrusion and lip incompetence, thus leading to a balanced profile. The case was presented to the Brazilian Board of Orthodontics and Dentofacial Orthopedics (BBO) as part of the requirements to obtain the title of BBO diplomate.

  17. FMNL2 drives actin-based protrusion and migration downstream of Cdc42

    DEFF Research Database (Denmark)

    Block, Jennifer; Breitsprecher, Dennis; Kühn, Sonja;

    2012-01-01

    Cell migration entails protrusion of lamellipodia, densely packed networks of actin filaments at the cell front. Filaments are generated by nucleation, likely mediated by Arp2/3 complex and its activator Scar/WAVE. It is unclear whether formins contribute to lamellipodial actin filament nucleation...... ends generated by Arp2/3-mediated branching are captured and efficiently elongated by the formin. Consistent with these biochemical properties, RNAi-mediated silencing of FMNL2 expression decreases the rate of lamellipodia protrusion and, accordingly, the efficiency of cell migration. Our data...

  18. Short Lives with Long-Lasting Effects: Filopodia Protrusions in Neuronal Branching Morphogenesis.

    Directory of Open Access Journals (Sweden)

    George Leondaritis

    Full Text Available The branching behaviors of both dendrites and axons are part of a neuronal maturation process initiated by the generation of small and transient membrane protrusions. These are highly dynamic, actin-enriched structures, collectively called filopodia, which can mature in neurons to form stable branches. Consequently, the generation of filopodia protrusions is crucial during the formation of neuronal circuits and involves the precise control of an interplay between the plasma membrane and actin dynamics. In this issue of PLOS Biology, Hou and colleagues identify a Ca2+/CaM-dependent molecular machinery in dendrites that ensures proper targeting of branch formation by activation of the actin nucleator Cobl.

  19. TREATMENT OF 29 CASES OF LUMBAR INTERVETEBRAL DISC PROTRUSION WITH GINGER-SEPARATED MOXIBUSTION

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lixin; LI Wanting

    2002-01-01

    Objective: To observe the effect of ginger-separated moxibustion for treatment of lumbar intervertebrai disc prolapse. Methods: 29 Iumbar intervertebral disc protrusion patients including 21 males and 8 females were treated with ginger-separated moxibustion of Ashi-point and Jiaji (EX-B 2 , the affected region), 5 - 6 cones every time, once every other day, continuously for 5 times. Then the therapeutic effect was analyzed. Results: After treatment, of the 29 cases, 23(79.3% ) were cured, and the rest 6(20.7% ) experienced improvement. Conclusion: Ginger-separated moxibustion is fairly effective and safe in treatment of lumbar intervertebral disc protrusion.

  20. EXPERIMENTS ON HYDRODYNAMIC INTERACTION BETWEEN 3-D OVAL AND WALL

    Institute of Scientific and Technical Information of China (English)

    SUN Ke; SHENG Qi-hu; ZHANG Liang; LI Feng-lai

    2007-01-01

    The boundary hydrodynamic interaction of a 3-D oval body was experimentally surveyed for different cases. The regression method was employed to find the experimental formulae of hydrodynamic coefficients relating to the attack angle, clearance to wall, and moving speed. The mechanism of interaction was discussed. The experimental results show that there exists a lifting effect, similar to wings in flow. The lifting effect is remarkable. The boundary hydrodynamic interaction of the small aspect ratio model is almost linearly dependent on the attack angle, but the effect of the moving speed of the body on the hydrodynamic coefficients is very small. The effect of clearance is related to the geometric shape. The boundary hydrodynamic interaction always enhances the lifting effect if the clearance is small.

  1. Report of a Class I bimaxillary dental protrusion case with extraction of first premolars treated with Clarity™ SL MBT appliances

    Directory of Open Access Journals (Sweden)

    Hugo Trevisi

    2013-01-01

    Full Text Available Bimaxillary protrusion cases are common in orthodontic practice. For the best facial outcome, the biomechanics can often be challenging. A class I bimaxillary protrusion case is presented below illustrating the careful application of extractions and bracket prescription. The case highlights how self-ligating brackets and high precision bracket positioning can reduce the need for additional anchorage.

  2. Dynamic contact with friction of an ultra-low flying head-disk interface with thermal protrusion

    NARCIS (Netherlands)

    Vakis, A.I.; Lee, S.-C.; Polycarpou, A.A.

    2009-01-01

    A dynamic two-degree-of-freedom contact with friction model of the head-disk interface (HDI) is presented accounting for slider thermal protrusion and its influence on the HDI dynamics. Using this model, which includes roughness, the applied power to the thermal protrusion is calculated that leads t

  3. Scalability of Hydrodynamic Simulations

    CERN Document Server

    Tang, Shikui

    2009-01-01

    Many hydrodynamic processes can be studied in a way that is scalable over a vastly relevant physical parameter space. We systematically examine this scalability, which has so far only briefly discussed in astrophysical literature. We show how the scalability is limited by various constraints imposed by physical processes and initial conditions. Using supernova remnants in different environments and evolutionary phases as application examples, we demonstrate the use of the scaling as a powerful tool to explore the interdependence among relevant parameters, based on a minimum set of simulations. In particular, we devise a scaling scheme that can be used to adaptively generate numerous seed remnants and plant them into 3D hydrodynamic simulations of the supernova-dominated interstellar medium.

  4. Relativistic Hydrodynamics with Wavelets

    CERN Document Server

    DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W

    2015-01-01

    Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...

  5. Burst Mechanisms in Hydrodynamics

    CERN Document Server

    Knobloch, E

    1999-01-01

    Different mechanisms believed to be responsible for the generation of bursts in hydrodynamical systems are reviewed and a new mechanism capable of generating regular or irregular bursts of large dynamic range near threshold is described. The new mechanism is present in the interaction between oscillatory modes of odd and even parity in systems of large but finite aspect ratio, and provides an explanation for the bursting behavior observed in binary fluid convection. Additional applications of the new mechanism are proposed.

  6. Relativistic cosmological hydrodynamics

    CERN Document Server

    Hwang, J

    1997-01-01

    We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.

  7. Hydrodynamics of insect spermatozoa

    Science.gov (United States)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  8. Hydrodynamics of fossil fishes.

    Science.gov (United States)

    Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert

    2014-08-07

    From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms.

  9. Correlation between objective and subjective evaluation of profile in bimaxillary protrusion patients after orthodontic treatment.

    Science.gov (United States)

    Huang, Yi-Ping; Li, Wei-ran

    2015-07-01

    To correlate the objective cephalometric measurements with subjective facial esthetics in patients with bimaxillary protrusion. The sample consisted of 60 Asian-Chinese patients with bimaxillary protrusion who met the inclusion criteria. The facial esthetics of posttreatment profile and the change of profile on standardized lateral photographs were rated by a panel of 10 orthodontists and a panel of 10 lay persons with bimaxillary protrusion. All of the pretreatment and posttreatment cephalograms were digitized and traced. Twenty-five cephalometric measurements were constructed and analyzed. Correlations between the subjective facial esthetic scores and each cephalometric measurement were evaluated. The cephalometric measurements correlated with the facial esthetic scores of posttreatment profile given by the orthodontist and the lay persons were basically the same. For the evaluation of posttreatment profile in bimaxillary protrusion patients, the upper and lower lip to E-line, upper and lower incisor tip to AP plane, Pg-NB distance, mentolabial angle, and sulcus depth correlated significantly with the esthetic score. For the evaluation of profile change during orthodontic treatment, retraction of upper incisor relative to AP plane or the perpendicular line through sella (line Y), change of upper incisor inclination, change of mentolabial sulcus depth, and retraction of lips relative to E-line were correlated positively with the esthetic value. Cephalometric measurements of lip position, incisor position, and chin morphology were key parameters correlated to facial esthetics.

  10. Observation of a Ag protrusion on a Ag2S island using a scanning tunneling microscope

    Directory of Open Access Journals (Sweden)

    Takeo Ohno

    2015-01-01

    Full Text Available A silver sulfide (Ag2S island as an ionic conductor in resistive switching memories was formed and a protrusion of silver from the Ag2S formed by an electrochemical reaction was observed using a scanning tunneling microscope.

  11. Effects of tongue position and lung volume on voluntary maximal tongue protrusion force in humans.

    Science.gov (United States)

    Saboisky, Julian P; Luu, Billy L; Butler, Jane E; Gandevia, Simon C

    2015-01-15

    Maximal voluntary protrusion force of the human tongue has not been examined in positions beyond the incisors or at different lung volumes. Tongue force was recorded with the tongue tip at eight positions relative to the incisors (12 and 4mm protrusion, neutral and 4, 12, 16, 24 and 32mm retraction) at functional residual capacity (FRC), total lung capacity (TLC) and residual volume (RV) in 15 healthy subjects. Maximal force occurred between 12mm and 32mm retraction (median 16mm). Maximum force at FRC was reproducible at the optimal tongue position across sessions (P=0.68). Across all positions at FRC the average force was highest at 24mm retraction (28.3±5.3N, mean±95% CI) and lowest at 12mm protrusion (49.1±4.6% maximum; Ptongue positions, maximal force was on average 9.3% lower at FRC than TLC and RV (range: 4.5-12.7% maximum, P<0.05). Retracted positions produce higher-force protrusions with a small effect of lung volume.

  12. Effect of Tongue Exercise on Protrusive Force and Muscle Fiber Area in Aging Rats

    Science.gov (United States)

    Connor, Nadine P.; Russell, John A.; Wang, Hao; Jackson, Michelle A.; Mann, Laura; Kluender, Keith

    2009-01-01

    Purpose: Age-related changes in tongue function may contribute to dysphagia in elderly people. The authors' purpose was to investigate whether aged rats that have undergone tongue exercise would manifest increased protrusive tongue forces and increased genioglossus (GG) muscle fiber cross-sectional areas. Method: Forty-eight young adult,…

  13. Imitation of Tongue Protrusion in Human Neonates: Specificity of the Response in a Large Sample

    Science.gov (United States)

    Nagy, Emese; Pilling, Karen; Orvos, Hajnalka; Molnar, Peter

    2013-01-01

    Although a large body of evidence has accumulated on the young human infant's ability to imitate, the phenomenon has failed to gain unanimous acceptance. Imitation of tongue protrusion, the most tested gesture to date, was examined in a sample of 115 newborns in the first 5 days of life in 3 seating positions. An ethologically based…

  14. Neutron reflectivity of supported membranes incorporating terminally anchored polymers: Protrusions vs. blisters

    DEFF Research Database (Denmark)

    Fragneto, Giovanna; Halperin, Avraham; Klösgen-Buchkremer, Beate Maria

    2013-01-01

    was characterized by w 1/2 , the width at half-height of the scattering length density profile. The inner headgroup layer was essentially unperturbed while w 1/2 of the outer layer increased significantly. This suggests that the anchored PEG chains give rise to headgroup protrusions rather than to blister...

  15. Theoretical model for cellular shapes driven by protrusive and adhesive forces.

    Directory of Open Access Journals (Sweden)

    Doron Kabaso

    2011-05-01

    Full Text Available The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix.

  16. Extraction treatment of an adult patient with severe bimaxillary dentoalveolar protrusion using microscrew anchorage

    Institute of Scientific and Technical Information of China (English)

    OUYANG Li; ZHOU Yan-heng; FU Min-kui; DING Peng

    2007-01-01

    @@ Bimaxillary dentoalveolar protrusion is one of the most prevalent malocclusion in Asian population,1 Traditionally, orthodontic treatment often involves the extraction of four first premolars2 and demands the least amount of anchorage loss, therefore headgear used to be an unavoid- able fate of these patients.

  17. Neutron reflectivity of supported membranes incorporating terminally anchored polymers: Protrusions vs. blisters

    DEFF Research Database (Denmark)

    Fragneto, Giovanna; Halperin, Avraham; Klösgen-Buchkremer, Beate Maria;

    2013-01-01

    was characterized by w 1/2 , the width at half-height of the scattering length density profile. The inner headgroup layer was essentially unperturbed while w 1/2 of the outer layer increased significantly. This suggests that the anchored PEG chains give rise to headgroup protrusions rather than to blister...

  18. Effect of Tongue Exercise on Protrusive Force and Muscle Fiber Area in Aging Rats

    Science.gov (United States)

    Connor, Nadine P.; Russell, John A.; Wang, Hao; Jackson, Michelle A.; Mann, Laura; Kluender, Keith

    2009-01-01

    Purpose: Age-related changes in tongue function may contribute to dysphagia in elderly people. The authors' purpose was to investigate whether aged rats that have undergone tongue exercise would manifest increased protrusive tongue forces and increased genioglossus (GG) muscle fiber cross-sectional areas. Method: Forty-eight young adult,…

  19. Measurements of the Curvature of Protrusions/Retrusions on Migrating Recrystallization Boundaries

    DEFF Research Database (Denmark)

    Zhang, Yubin; Godfrey, A.; Juul Jensen, Dorte

    2009-01-01

    in thickness. The results reveal that the values calculated by both these methods are reasonable when compared with the stored energy measured by differential scanning calorimetry. The relationship between protrusions and the average stored energy density in the deformed matrix is also investigated...

  20. Measurements of the Curvature of Protrusions/Retrusions on Migrating Recrystallization Boundaries

    DEFF Research Database (Denmark)

    Zhang, Yubin; Godfrey, A.; Juul Jensen, Dorte

    2009-01-01

    in thickness. The results reveal that the values calculated by both these methods are reasonable when compared with the stored energy measured by differential scanning calorimetry. The relationship between protrusions and the average stored energy density in the deformed matrix is also investigated...

  1. Preferential control of basal dendritic protrusions by EphB2.

    Directory of Open Access Journals (Sweden)

    Matthew S Kayser

    Full Text Available The flow of information between neurons in many neural circuits is controlled by a highly specialized site of cell-cell contact known as a synapse. A number of molecules have been identified that are involved in central nervous system synapse development, but knowledge is limited regarding whether these cues direct organization of specific synapse types or on particular regions of individual neurons. Glutamate is the primary excitatory neurotransmitter in the brain, and the majority of glutamatergic synapses occur on mushroom-shaped protrusions called dendritic spines. Changes in the morphology of these structures are associated with long-lasting modulation of synaptic strength thought to underlie learning and memory, and can be abnormal in neuropsychiatric disease. Here, we use rat cortical slice cultures to examine how a previously-described synaptogenic molecule, the EphB2 receptor tyrosine kinase, regulates dendritic protrusion morphology in specific regions of the dendritic arbor in cortical pyramidal neurons. We find that alterations in EphB2 signaling can bidirectionally control protrusion length, and knockdown of EphB2 expression levels reduces the number of dendritic spines and filopodia. Expression of wild-type or dominant negative EphB2 reveals that EphB2 preferentially regulates dendritic protrusion structure in basal dendrites. Our findings suggest that EphB2 may act to specify synapse formation in a particular subcellular region of cortical pyramidal neurons.

  2. Direct Observation of the Formation of Liquid Protrusions on Polymer Colloids and their Coalescence

    NARCIS (Netherlands)

    Peng, B.; van Blaaderen, A.; Imhof, A.

    2013-01-01

    Monodisperse nonspherical poly (methyl methacrylate) (PMMA) particles where a central core particle had grown two extra “lobes”, or protrusions, placed opposite each other were successfully synthesized by swelling and subsequent polymerization of cross-linked PMMA spheres with methyl methacrylate an

  3. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Raman Deep, E-mail: Takhter.Ramandeep@mayo.edu; Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L., E-mail: Marks.david@mayo.edu; Pagano, Richard E.

    2013-05-10

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily

  4. Foundations of radiation hydrodynamics

    CERN Document Server

    Mihalas, Dimitri

    1999-01-01

    Radiation hydrodynamics is a broad subject that cuts across many disciplines in physics and astronomy: fluid dynamics, thermodynamics, statistical mechanics, kinetic theory, and radiative transfer, among others. The theory developed in this book by two specialists in the field can be applied to the study of such diverse astrophysical phenomena as stellar winds, supernova explosions, and the initial phases of cosmic expansion, as well as the physics of laser fusion and reentry vehicles. As such, it provides students with the basic tools for research on radiating flows.Largely self-contained,

  5. Podosome Force Generation Machinery: A Local Balance between Protrusion at the Core and Traction at the Ring.

    Science.gov (United States)

    Bouissou, Anaïs; Proag, Amsha; Bourg, Nicolas; Pingris, Karine; Cabriel, Clément; Balor, Stéphanie; Mangeat, Thomas; Thibault, Christophe; Vieu, Christophe; Dupuis, Guillaume; Fort, Emmanuel; Lévêque-Fort, Sandrine; Maridonneau-Parini, Isabelle; Poincloux, Renaud

    2017-04-25

    Determining how cells generate and transduce mechanical forces at the nanoscale is a major technical challenge for the understanding of numerous physiological and pathological processes. Podosomes are submicrometer cell structures with a columnar F-actin core surrounded by a ring of adhesion proteins, which possess the singular ability to protrude into and probe the extracellular matrix. Using protrusion force microscopy, we have previously shown that single podosomes produce local nanoscale protrusions on the extracellular environment. However, how cellular forces are distributed to allow this protruding mechanism is still unknown. To investigate the molecular machinery of protrusion force generation, we performed mechanical simulations and developed quantitative image analyses of nanoscale architectural and mechanical measurements. First, in silico modeling showed that the deformations of the substrate made by podosomes require protrusion forces to be balanced by local traction forces at the immediate core periphery where the adhesion ring is located. Second, we showed that three-ring proteins are required for actin polymerization and protrusion force generation. Third, using DONALD, a 3D nanoscopy technique that provides 20 nm isotropic localization precision, we related force generation to the molecular extension of talin within the podosome ring, which requires vinculin and paxillin, indicating that the ring sustains mechanical tension. Our work demonstrates that the ring is a site of tension, balancing protrusion at the core. This local coupling of opposing forces forms the basis of protrusion and reveals the podosome as a nanoscale autonomous force generator.

  6. Molecular hydrodynamics from memory kernels

    CERN Document Server

    Lesnicki, Dominika; Carof, Antoine; Rotenberg, Benjamin

    2016-01-01

    The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as $t^{-3/2}$. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, at odds with incompressible hydrodynamics predictions. We finally discuss the various contributions to the friction, the associated time scales and the cross-over between the molecular and hydrodynamic regimes upon increasing the solute radius.

  7. Effect of microscale protrusions on local fluid flow and mass transport in the presence of forced convection

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Gehard W. [Univ. of California, Berkeley, CA (United States)

    1997-01-01

    Three-dimensional creeping flow around single, axisymmetric protrusions is studied numerically using the boundary-integral technique. Emphasis is placed upon cylindrical protrusions on plane walls for various height-to-radius (h-to-a) aspect ratios, but cones and sections of spheres protruding from plane walls are also briefly examined. The presented items include shear-stress distributions, shear-stress contours, extents of the fluid-flow disturbance, total forces and torques on the cylinders, streamlines, and skin-friction lines. Also included is a discussion of flow topology around axisymmetric geometries. No flow reversal is observed for cylindrical protrusions with aspect ratios greater than 2.4 to 2.6. At higher aspect ratios, the fluid tends to be swept around cylindrical protrusions with little vertical motion. At lower aspect ratios, the strength of the recirculation increases, and the recirculation region becomes wider in the transverse direction and narrower in the flow direction. Also, the recirculation pattern begins to resemble the closed streamline patterns in two-dimensional flow over square ridges. However, unlike two-dimensional flow, closed streamline patterns are not observed. For arbitrary axisymmetric geometries, the extent of the fluid-flow disturbance can be estimated with the total force that is exerted on the protrusion. When the same force is exerted on protrusions with different aspect ratios, the protrusion with the higher aspect ratio tends to have a greater disturbance in the flow direction and a smaller disturbance in the transverse direction. The total force exerted on cylindrical protrusions with rounded corners is only slightly lower than the total force exerted on cylindrical protrusions with sharp corners.

  8. Hydrodynamics of pronuclear migration

    Science.gov (United States)

    Nazockdast, Ehssan; Needleman, Daniel; Shelley, Michael

    2014-11-01

    Microtubule (MT) filaments play a key role in many processes involved in cell devision including spindle formation, chromosome segregation, and pronuclear positioning. We present a direct numerical technique to simulate MT dynamics in such processes. Our method includes hydrodynamically mediated interactions between MTs and other cytoskeletal objects, using singularity methods for Stokes flow. Long-ranged many-body hydrodynamic interactions are computed using a highly efficient and scalable fast multipole method, enabling the simulation of thousands of MTs. Our simulation method also takes into account the flexibility of MTs using Euler-Bernoulli beam theory as well as their dynamic instability. Using this technique, we simulate pronuclear migration in single-celled Caenorhabditis elegans embryos. Two different positioning mechanisms, based on the interactions of MTs with the motor proteins and the cell cortex, are explored: cytoplasmic pulling and cortical pushing. We find that although the pronuclear complex migrates towards the center of the cell in both models, the generated cytoplasmic flows are fundamentally different. This suggest that cytoplasmic flow visualization during pronuclear migration can be utilized to differentiate between the two mechanisms.

  9. Electro-hydrodynamic synchronization of piezoelectric flags

    CERN Document Server

    Xia, Yifan; Michelin, Sebastien

    2016-01-01

    Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dynamics, in particular driving their synchronization. This work investigates the effect of such coupling on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation into an electrical current. Considering two flags connected to a single output circuit, we investigate using numerical simulations the relative importance of hydrodynamic coupling to electrodynamic coupling of the flags through the output circuit due to the inverse piezoelectric effect. It is shown that electrodynamic coupling is dominant beyond a critical distance, and induces a synchronization of the flags' motion resulting in enhanced energy harvesting performance. We further show that this electrodynamic coupling can be strengthened using resonant harvesting circuits.

  10. Unusual treatment of bimaxillary dentoalveolar protrusion via miniscrews and molar extraction.

    Science.gov (United States)

    Al-Fraidi, Ahmad; Afify, Ahmed R

    2012-04-01

    This case report describes the treatment of a Saudi female patient, aged 13 years 8 months at the start of treatment, with a Class I bimaxillary dentoalveolar protrusion and extracted maxillary first molars. Miniscrews were placed bilaterally in the interdental space between both the upper and the lower posterior teeth. The treatment plan consisted of extraction of both lower first permanent molars, distalization of upper and lower premolars using miniscrews followed by en masse retraction of the upper and lower six anterior teeth. The active treatment period was 2 years 8 months. Arch retention was done using upper wrap-around retainer and lower fixed 3-3 retainer. The use of miniscrews helped to resolve the bimaxillary protrusion regardless of extraction pattern used.

  11. Sudden progression of lumbar disk protrusion during vertebral axial decompression traction therapy.

    Science.gov (United States)

    Deen, H Gordon; Rizzo, Thomas D; Fenton, Douglas S

    2003-12-01

    Vertebral axial decompression (VAX-D) is a form of spinal traction that is widely promoted as an effective and safe treatment of degenerated and herniated lumbar intervertebral disks. Information targeted at the general public emphasizes that the treatment is completely risk-free. We describe a patient with a large lumbar disk protrusion who experienced sudden, severe exacerbation of radicular pain during a VAX-D therapy session. Follow-up magnetic resonance imaging of the lumbar region showed marked enlargement of the disk protrusion, and urgent microdiskectomy was required. To our knowledge, this is the first reported complication of VAX-D therapy. This case shows that VAX-D therapy has the potential to cause sudden deterioration requiring urgent surgical intervention.

  12. [Coblation of nucleus pulposus in treatment of military men's lumbar disc protrusions].

    Science.gov (United States)

    Manukovskiĭ, V A; Badalov, V I; Tiulikov, K V; Korostelev, K E

    2012-06-01

    Mini-invasive surgery is used more often for the treatment of spinal disc herniations today. Coblation is one of such contemporary methods. The aim of our investigation was to evaluate results of percutaneous disc nucleoplasty using coblation. 35 patients with disc protrusions diagnosed by MRI underwent operations using this method. We used Visual Analogue Pain Scale, took into account time of painless sitting, standing and walking position, and also patients' satisfaction to assess the immediate results of treatment and short-time outcomes. It was noted the better immediate results in group of operated patients in comparison with the non-operated group. It was obvious either on the table or the day after operation. There were 84 and 93% of good results in 3 months and in 1 year after operation, respectively. Coblation is definitely modern and effective way to treat disc protrusions with different types, sizes, and may be used in lumbar spine wherever.

  13. TREATMENT OF 29 CASES OF LUMBAR INTERVETEBRAL DISC PROTRUSION WITH GINGER—SEPARATED MOXIBUSTION

    Institute of Scientific and Technical Information of China (English)

    赵立新; 李万婷

    2002-01-01

    Objective:To observe the effect of ginger-separated moxibustion for treatment of lumbar intervertepral disc prolapse.Methods:29 lumbar intervertebral disc protrusion patients including 21 males and 8 temales were treated with ginger-separated moxibustion of Ashi-point and Jiaji(EX-B 2,.the affected region),5-6 cones every time,once every other day,continuously for 5 times,Then the therapeutic effect was analyzed.Results:After treatment,of the 29 cases,23(79.3%) were cured,and the rest 6(20.7%)experienced improvement.Conclusion:Ginger-separated moxibustion is farily effective and safe in treatment of lumbar intervertebral disc protrusion.

  14. Human Newborns Match Tongue Protrusion of Disembodied Human and Robotic Mouths

    Science.gov (United States)

    Soussignan, Robert; Courtial, Alexis; Canet, Pierre; Danon-Apter, Gisele; Nadel, Jacqueline

    2011-01-01

    No evidence had been provided so far of newborns' capacity to give a matching response to 2D stimuli. We report evidence from 18 newborns who were presented with three types of stimuli on a 2D screen. The stimuli were video-recorded displays of tongue protrusion shown by: (a) a human face, (b) a human tongue from a disembodied mouth, and (c) an…

  15. Genioglossus and Intrinsic Electromyographic Activities in Impeded and Unimpeded Protrusion Tasks

    OpenAIRE

    2008-01-01

    Eight muscles invest the human tongue: four extrinsic muscles have external origins and insert into the tongue body and four intrinsic muscles originate and terminate within the tongue. Previously, we noted minimal activation of the genioglossus tongue muscle during impeded protrusion tasks (i.e., having subjects push the tongue against a force transducer), suggesting that other muscles play a role in the production of tongue force. Accordingly, we sought to characterize genioglossus tongue m...

  16. Case Reports of Angle Class II Maxillary Protrusion With Upper Premolar Extraction

    OpenAIRE

    水本, 恭史; 小川, 康; 岡藤, 範正; 栗原, 三郎

    2000-01-01

    We report two cases of Angle Class II maxillary protrusion with upper premolar extraction, considering differences of skeletal pattern, denture pattern, diagnosis, treat planning and treatment result between these cases. One case demonstrated favorable mandibular growth during the treatment, helping correction of maxillary and mandibular discrepancy, but the other showed only minimal mandibular growth because of her age, necessitating anterior incisal changes to reduce her large overjet. Post...

  17. [Effects of articulating paper on mandibular paths in lateral and protrusive excursions].

    Science.gov (United States)

    Mori, T; Kawaguchi, T; Katto, K; Kano, N; Takeuchi, K; Tanaka, K; Usami, H; Naka, Y; Asakura, Y

    1989-12-01

    Mandibular movements in 7 normal dentulous subjects during lateral and protrusive excursions were studied to investigate the effects of the clinical use of articulating paper on mandibular paths. Mandibular movements with or without the intraoral articulating paper (thickness: 35 microns) were detected as the lower incisal point displacement and were recorded three-dimensionally with the Selspot system. The date displayed on the X-Y chart recorder on the selected plane were analyzed quantitatively. 1. The paths of the mandible differed between the outward (from the intercuspal position) and the return (backward to the intercuspal position) movements. In lateral excursions the return path tended to be antero-inferior to the outward path, whereas in protrusive excursions the former tended to be dextro-inferior to the latter. 2. In lateral excursions the return path tended to be less stable than the outward path. In protrusive excursions no significant difference was found between the two paths. 3. In lateral excursions, 21-34% of the movements performed using the articulating paper deviated from the normal paths made without using the paper, and in the case of protrusive excursions, deviation was found in 21-50%. At or near the intercuspal position, the return path showed a greater deviation than the outward path. Near the edge-to-edge position, however, the relationship between these two path was reversed. 4. It is suggested that, when the articulating paper is used, the directions of the movement should be taken into account and sufficient care should be paid in occlusal adjustment because the range of functional movement may be overestimated.

  18. Effect of large incisor retraction on upper airway morphology in adult bimaxillary protrusion patients.

    Science.gov (United States)

    Chen, Yu; Hong, Liu; Wang, Chun-ling; Zhang, Shi-jie; Cao, Cong; Wei, Fulan; Lv, Tao; Zhang, Fan; Liu, Dong-xu

    2012-11-01

    To evaluate, using multislice computed tomography (MSCT), the morphologic changes in the upper airway after large incisor retraction in adult bimaxillary protrusion patients. Thirty adult patients with bimaxillary protrusion had four first premolars extracted, and then miniscrews were placed to provide anchorage. A CT scan was performed before incisor retraction and again posttreatment. Three-dimensional (3D) reconstruction of the pre- (T1) and post- (T2) CT data was used to assess for morphological changes of the upper airway. A paired t-test was used to compare changes from T1 to T2. The relationship among the three variables (upper incisor retraction amount, upper airway size, and hyoid position) was analyzed by Pearson correlation coefficient. The amounts of upper incisor retraction at the incisal edge and apex were 7.64 ± 1.68 mm and 3.91 ± 2.10 mm, respectively. The hyoid was retracted 2.96 ± 0.54 mm and 9.87 ± 2.92 mm, respectively, in the horizontal and vertical directions. No significant difference was observed in the mean cross-sectional area of the nasopharynx (P > .05) between T1 and T2, while significant differences between T1 and T2 were found in the mean cross-sectional areas of the palatopharynx, glossopharynx, and hypopharynx (P bimaxillary protrusion patients.

  19. Friction-induced nanofabrication method to produce protrusive nanostructures on quartz

    Science.gov (United States)

    Song, Chenfei; Li, Xiaoying; Yu, Bingjun; Dong, Hanshan; Qian, Linmao; Zhou, Zhongrong

    2011-12-01

    In this paper, a new friction-induced nanofabrication method is presented to fabricate protrusive nanostructures on quartz surfaces through scratching a diamond tip under given normal loads. The nanostructures, such as nanodots, nanolines, surface mesas and nanowords, can be produced on the target surface by programming the tip traces according to the demanded patterns. The height of these nanostructures increases with the increase of the number of scratching cycles or the normal load. Transmission electron microscope observations indicated that the lattice distortion and dislocations induced by the mechanical interaction may have played a dominating role in the formation of the protrusive nanostructures on quartz surfaces. Further analysis reveals that during scratching, a contact pressure ranged from 0.4 P y to P y ( P y is the critical yield pressure of quartz) is apt to produce protuberant nanostructures on quartz under the given experimental conditions. Finally, it is of great interest to find that the protrusive nanostructures can be selectively dissolved in 20% KOH solution. Since the nanowords can be easily 'written' by friction-induced fabrication and 'erased' through selective etching on a quartz surface, this friction-induced method opens up new opportunities for future nanofabrication.

  20. Par3/Bazooka and phosphoinositides regulate actin protrusion formation during Drosophila dorsal closure and wound healing.

    Science.gov (United States)

    Pickering, Karen; Alves-Silva, Juliana; Goberdhan, Deborah; Millard, Tom H

    2013-02-01

    Effective wound closure mechanisms are essential for maintenance of epithelial structure and function. The repair of wounded epithelia is primarily driven by the cells bordering the wound, which become motile after wounding, forming dynamic actin protrusions along the wound edge. The molecular mechanisms that trigger wound edge cells to become motile following tissue damage are not well understood. Using wound healing and dorsal closure in Drosophila, we identify a direct molecular link between changes in cell-cell adhesion at epithelial edges and induction of actin protrusion formation. We find that the scaffolding protein Par3/Bazooka and the lipid phosphatase Pten are specifically lost from cell-cell junctions at epithelial edges. This results in a localized accumulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3), which promotes the formation of actin protrusions along the epithelial edge. Depleting PIP3 results in defective epithelial closure during both dorsal closure and wound healing. These data reveal a novel mechanism that directly couples loss of epithelial integrity to activation of epithelial closure.

  1. Autosomal recessive mental retardation syndrome with anterior maxillary protrusion and strabismus: MRAMS syndrome.

    Science.gov (United States)

    Basel-Vanagaite, Lina; Rainshtein, Limor; Inbar, Dov; Gothelf, Doron; Hennekam, Raoul; Straussberg, Rachel

    2007-08-01

    We report on a family in whom the combination of mental retardation (MR), anterior maxillary protrusion, and strabismus segregates. The healthy, consanguineous parents (first cousins) of Israeli-Arab descent had 11 children, 7 of whom (5 girls) were affected. They all had severe MR. Six of the seven had anterior maxillary protrusion with vertical maxillary excess, open bite, and prominent crowded teeth. None of the sibs with normal intelligence had jaw or dental anomalies. The child with MR but without a jaw anomaly was somewhat less severely retarded, had seizures and severe psychosis, which may point to his having a separate disorder. Biochemical and neurological studies, including brain MRI and standard cytogenetic studies, yielded normal results; fragile X was excluded, no subtelomeric rearrangements were detectable, and X-inactivation studies in the mother showed random inactivation. We have been unable to find a similar disorder in the literature, and suggest that this is a hitherto unreported autosomal recessive disorder, which we propose to name MRAMS (mental retardation, anterior maxillary protrusion, and strabismus).

  2. Friction-induced nanofabrication method to produce protrusive nanostructures on quartz

    Directory of Open Access Journals (Sweden)

    Li Xiaoying

    2011-01-01

    Full Text Available Abstract In this paper, a new friction-induced nanofabrication method is presented to fabricate protrusive nanostructures on quartz surfaces through scratching a diamond tip under given normal loads. The nanostructures, such as nanodots, nanolines, surface mesas and nanowords, can be produced on the target surface by programming the tip traces according to the demanded patterns. The height of these nanostructures increases with the increase of the number of scratching cycles or the normal load. Transmission electron microscope observations indicated that the lattice distortion and dislocations induced by the mechanical interaction may have played a dominating role in the formation of the protrusive nanostructures on quartz surfaces. Further analysis reveals that during scratching, a contact pressure ranged from 0.4Py to Py (Py is the critical yield pressure of quartz is apt to produce protuberant nanostructures on quartz under the given experimental conditions. Finally, it is of great interest to find that the protrusive nanostructures can be selectively dissolved in 20% KOH solution. Since the nanowords can be easily 'written' by friction-induced fabrication and 'erased' through selective etching on a quartz surface, this friction-induced method opens up new opportunities for future nanofabrication.

  3. Fluctuations in Relativistic Causal Hydrodynamics

    CERN Document Server

    Kumar, Avdhesh; Mishra, Ananta P

    2013-01-01

    The formalism to calculate the hydrodynamics fluctuation using the quasi-stationary fluctuation theory of Onsager to the relativistic Navier-Stokes hydrodynamics is already known. In this work we calculate hydrodynamic fluctuations in relativistic causal theory of Muller, Israel and Stewart and other related causal hydrodynamic theories. We show that expressions for the Onsager coefficients and the correlation functions have form similar to the ones obtained by using Navier-Stokes equation. However, temporal evolution of the correlation functions obtained using MIS and the other causal theories can be significantly different than the correlation functions obtained using the Navier-Stokes equation. Finally, as an illustrative example, we explicitly plot the correlation functions obtained using the causal-hydrodynamics theories and compare them with correlation functions obtained by earlier authors using the expanding boost-invariant (Bjorken) flows.

  4. Gradient expansion for anisotropic hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Spaliński, Michał

    2016-01-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.

  5. Lifshitz Superfluid Hydrodynamics

    CERN Document Server

    Chapman, Shira; Oz, Yaron

    2014-01-01

    We construct the first order hydrodynamics of quantum critical points with Lifshitz scaling and a spontaneously broken symmetry. The fluid is described by a combination of two flows, a normal component that carries entropy and a super-flow which has zero viscosity and carries no entropy. We analyze the new transport effects allowed by the lack of boost invariance and constrain them by the local second law of thermodynamics. Imposing time-reversal invariance, we find eight new parity even transport coefficients. The formulation is applicable, in general, to any superfluid/superconductor with an explicit breaking of boost symmetry, in particular to high $T_c$ superconductors. We discuss possible experimental signatures.

  6. Hydrodynamics of Ship Propellers

    DEFF Research Database (Denmark)

    Breslin, John P.; Andersen, Poul

    This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and moments which the propeller generates on the shaft and on the ship hull.The first part of the text is devoted to fundamentals of the flow about hydrofoil sections (with and without cavitation......) and about wings. It then treats propellers in uniform flow, first via advanced actuator disc modelling, and then using lifting-line theory. Pragmatic guidance is given for design and evaluation of performance, including the use of computer modelling.The second part covers the development of unsteady forces...... arising from operation in non-uniform hull wakes. First, by a number of simplifications, various aspects of the problem are dealt with separately until the full problem of a non-cavitating, wide-bladed propeller in a wake is treated by a new and completely developed theory. Next, the complicated problem...

  7. Hydrodynamic effects on coalescence.

    Energy Technology Data Exchange (ETDEWEB)

    Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael (Yale University, New Haven, CT); Gorby, Allen D.; Brooks, Carlton, F.

    2006-10-01

    The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.

  8. Hydrodynamics of sediment threshold

    Science.gov (United States)

    Ali, Sk Zeeshan; Dey, Subhasish

    2016-07-01

    A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.

  9. A clinico-radiographic analysis of sagittal condylar guidance determined by protrusive interocclusal registration and panoramic radiographic images in humans

    OpenAIRE

    Krishna Prasad, D.; Namrata Shah; Chethan Hegde

    2012-01-01

    Purpose: To evaluate the correlation between sagittal condylar guidance obtained by protrusive interocclusal records and panoramic radiograph tracing methods in human dentulous subjects. Materials and Methods: The sagittal condylar guidance was determined in 75 dentulous subjects by protrusive interocclusal records using Aluwax through a face bow transfer (HANAU™ Spring Bow, Whip Mix Corporation, USA) to a semi-adjustable articulator (HANAU™ Wide-Vue Articulator, Whip Mix Corporation, USA). I...

  10. The Correction of Bimaxillary Protrusion Experience%双颌前突的矫治体会

    Institute of Scientific and Technical Information of China (English)

    胥宏; 袁晓蓉; 吴萍

    2016-01-01

    [AbstractPurpose]:Exploration of Treatment methods and results for different degree of Bimaxillary protrusion and Orthodontics. Methords:For mild Bimaxillary protrusion during Permanent Dentition or narrow Upper and lower dental arch and Moderate protrusion patients who refused to tooth extraction,the methord of RPE and Push back molars has been respectively used to adduct the upper and lower incisor after acquiring adequate space. For the Mild cases of protrusion who require for higher aesthetic and Moderate and severe bimaxillary protrusion,the method of extraction has been used to adduct the upper and lower incisor after acquiring adequate space. Results:In the follow up observation from 1.7 years to 4.5 years,there were 7 recurrences with different degree in 19 Non-extraction cases after corretation,and there were 2 recurrences because of non-wearing retainer in 61extraction cases. Conclusion:Extraction cases were inlow recurrence rate because of giving a more generous space to Bimaxillarey protrusion.It is an effective treatment measure expacially for Moderate and severe bimaxillary protrusion.%目的:探索不同程度的双颌前突口腔正畸的治疗方法与效果。方法:对于恒牙期双颌轻度前突或上下牙弓狭窄以及中度前突但拒绝拔牙的患者,我们分别采用扩弓,推磨牙向后等方法获得足够的间隙后,内收上下切牙。对于美观要求较高的轻度前突病例以及中、重度双颌前突病例我们采用拔牙的方法,利用拔牙后所产生的间隙,内收上下切牙。结果:在矫治结束后,追踪观察1.7~4.5年,19例非拔牙病例中有7例出现不同程度的复发。61例拔牙病例中,仅2例因没有按规定戴保持器而复发。结论:拔牙病例因给予双颌前突较为宽松的间隙,故复发的机率较低。特别是对于中、重度双颌前突者是一种行之有效的治疗方法。

  11. Recent development of hydrodynamic modeling

    Science.gov (United States)

    Hirano, Tetsufumi

    2014-09-01

    In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions

  12. Crystallization: Key thermodynamic, kinetic and hydrodynamic aspects

    Indian Academy of Sciences (India)

    Sreepriya Vedantam; Vivek V Ranade

    2013-12-01

    Crystallization is extensively used in different industrial applications, including the production of a wide range of materials such as fertilizers, detergents, food and pharmaceutical products, as well as in the mineral processing industries and treatment of waste effluents. In spite of the wide-spread use of crystallization, a clear understanding of the thermodynamic, kinetic and hydrodynamic aspects of the design methodologies are not yet well established. More often than not crystallization is still considered an art especially in fine-chemicals, pharmaceuticals and life-sciences sector. It is essential to understand and relate key thermodynamic, kinetic and hydrodynamic aspects to crystallizer performance, not just in terms of yield but also in terms of product quality (characterized by particle size distribution, morphology, polymorphism and the amount of strain as well as the uptake of solvent or impurities in the crystal lattice). This paper attempts to do that by critically reviewing published experimental and modelling studies on establishing and enhancing state-of-the-art thermodynamic, kinetic and hydrodynamic aspects of crystallization. Efforts are made to discuss and raise points for emerging modelling tools needed for a flexible design and operation of crystallizers and crystallization processes that are needed to meet the ever increasing demand on precise product specifications. Focus is on bringing out the trends which can be used as perspectives for future studies in this field.

  13. Bimaxillary protrusion with an atrophic alveolar defect: orthodontics, autogenous chin-block graft, soft tissue augmentation, and an implant.

    Science.gov (United States)

    Chiu, Grace S C; Chang, Chris H N; Roberts, W Eugene

    2015-01-01

    Bimaxillary protrusion in a 28-year-old woman was complicated by multiple missing, restoratively compromised, or hopeless teeth. The maxillary right central incisor had a history of avulsion and replantation that subsequently evolved into generalized external root resorption with Class III mobility and severe loss of the supporting periodontium. This complex malocclusion had a discrepancy index of 21, and 8 additional points were scored for the atrophic dental implant site (maxillary right central incisor). The comprehensive treatment plan included extraction of 4 teeth (both maxillary first premolars, the maxillary right central incisor, and the mandibular right first molar), orthodontic closure of all spaces except for the future implant site (maxillary right central incisor), augmentation of the alveolar defect with an autogenous chin-block graft, enhancement of the gingival biotype with a connective tissue graft, and an implant-supported prosthesis. Orthodontists must understand the limitations of bone grafts. Augmented alveolar defects are slow to completely turn over to living bone, so they are usually good sites for implants but respond poorly to orthodontic space closure. However, postsurgical orthodontic treatment is often indicated to optimally finish the esthetic zone before placing the final prosthesis. The latter was effectively performed for this patient, resulting in a total treatment time of about 36 months for comprehensive interdisciplinary care. An excellent functional and esthetic result was achieved.

  14. Special Relativistic Hydrodynamics with Gravitation

    Science.gov (United States)

    Hwang, Jai-chan; Noh, Hyerim

    2016-12-01

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  15. Special relativistic hydrodynamics with gravitation

    CERN Document Server

    Hwang, Jai-chan

    2016-01-01

    The special relativistic hydrodynamics with weak gravity is hitherto unknown in the literature. Whether such an asymmetric combination is possible was unclear. Here, the hydrodynamic equations with Poisson-type gravity considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit are consistently derived from Einstein's general relativity. Analysis is made in the maximal slicing where the Poisson's equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the {\\it general} hypersurface condition. Our formulation includes the anisotropic stress.

  16. Bosonization and quantum hydrodynamics

    Indian Academy of Sciences (India)

    Girish S Setlur

    2006-03-01

    It is shown that it is possible to bosonize fermions in any number of dimensions using the hydrodynamic variables, namely the velocity potential and density. The slow part of the Fermi field is defined irrespective of dimensionality and the commutators of this field with currents and densities are exponentiated using the velocity potential as conjugate to the density. An action in terms of these canonical bosonic variables is proposed that reproduces the correct current and density correlations. This formalism in one dimension is shown to be equivalent to the Tomonaga-Luttinger approach as it leads to the same propagator and exponents. We compute the one-particle properties of a spinless homogeneous Fermi system in two spatial dimensions with long-range gauge interactions and highlight the metal-insulator transition in the system. A general formula for the generating function of density correlations is derived that is valid beyond the random phase approximation. Finally, we write down a formula for the annihilation operator in momentum space directly in terms of number conserving products of Fermi fields.

  17. Engineering Hydrodynamic AUV Hulls

    Science.gov (United States)

    Allen, J.

    2016-12-01

    AUV stands for autonomous underwater vehicle. AUVs are used in oceanography and are similar to gliders. MBARIs AUVs as well as other AUVs map the ocean floor which is very important. They also measure physical characteristics of the water, such as temperature and salinity. My science fair project for 4th grade was a STEM activity in which I built and tested 3 different AUV bodies. I wanted to find out which design was the most hydrodynamic. I tested three different lengths of AUV hulls to see which AUV would glide the farthest. The first was 6 inches. The second was 12 inches and the third was 18 inches. I used clay for the nosecone and cut a ruler into two and made it the fin. Each AUV used the same nosecone and fin. I tested all three designs in a pool. I used biomimicry to create my hypothesis. When I was researching I found that long slim animals swim fastest. So, my hypothesis is the longer AUV will glide farthest. In the end I was right. The longer AUV did glide the farthest.

  18. Reciprocal relations in dissipationless hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Melnikovsky, L. A., E-mail: leva@kapitza.ras.ru [Russian Academy of Sciences, Kapitza Institute for Physical Problems (Russian Federation)

    2014-12-15

    Hidden symmetry in dissipationless terms of arbitrary hydrodynamics equations is recognized. We demonstrate that all fluxes are generated by a single function and derive conventional Euler equations using the proposed formalism.

  19. Relativistic Hydrodynamics on Graphic Cards

    CERN Document Server

    Gerhard, Jochen; Bleicher, Marcus

    2012-01-01

    We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.

  20. Gradient expansion for anisotropic hydrodynamics

    Science.gov (United States)

    Florkowski, Wojciech; Ryblewski, Radoslaw; Spaliński, Michał

    2016-12-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of nonhydrodynamic modes.

  1. An introduction to astrophysical hydrodynamics

    CERN Document Server

    Shore, Steven N

    1992-01-01

    This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.

  2. [Treatment of adult bimaxillary arch protrusion with micro-implant anchorage].

    Science.gov (United States)

    Chen, Cheng; Zhang, Xiao-Rong

    2015-02-01

    In this study, micro-implants were used in 15 adult patients with mild and moderate bimaxillary arch protrusion or crowding. Cephalometric analysis was used to analyze hard and soft-tissues change before and after treatment, with the aim to investigate the effects of treatment on adult bimaxillary arch protrusion with micro-implant anchorage. Fifteen adult patients with mild and moderate bimaxillary arch protrusion were selected in this study. Micro-implants were inserted into the zygomaticoalveolar ridge of maxilla and the external oblique line of mandible. A NiTi coil spring was attached to the micro-implant to drag the whole upper and lower dentition for distal movement. Cephalometrics were taken before and after treatment, and the changes of soft and hard-tissue profile were studied. SPSS13.0 software package was used to analyze the data. (1)Sixty micro-implants remained stable.(2)SNA, SNB had no significant changes (P>0.05), and the relationship between the maxilla and the mandible did not change significantly. U1/NA, U1-NA, L1/NB, L1-NB and U1/L1 changes in hard tissue had significant difference in cephalometric measurement (P<0.05). The upper and lower anterior teeth were more retrusive, and the tipping of incisor decreased significantly.(3)Cephalometric analysis showed that lateral appearance improved and soft tissue cephalometric-related measurements such as Cm-Sn-UL,LL-B'-Pos increased significantly (P<0.01). (4)Molars and incisors acquired distal movement. Micro-implant can provide not only excellent skeletal anchorage but also a novel way to distalize the whole dentition efficiently.

  3. A mechanism of leading-edge protrusion in the absence of Arp2/3 complex.

    Science.gov (United States)

    Suraneni, Praveen; Fogelson, Ben; Rubinstein, Boris; Noguera, Philippe; Volkmann, Niels; Hanein, Dorit; Mogilner, Alex; Li, Rong

    2015-03-01

    Cells employ protrusive leading edges to navigate and promote their migration in diverse physiological environments. Classical models of leading-edge protrusion rely on a treadmilling dendritic actin network that undergoes continuous assembly nucleated by the Arp2/3 complex, forming ruffling lamellipodia. Recent work demonstrated, however, that, in the absence of the Arp2/3 complex, fibroblast cells adopt a leading edge with filopodia-like protrusions (FLPs) and maintain an ability to move, albeit with altered responses to different environmental signals. We show that formin-family actin nucleators are required for the extension of FLPs but are insufficient to produce a continuous leading edge in fibroblasts lacking Arp2/3 complex. Myosin II is concentrated in arc-like regions of the leading edge in between FLPs, and its activity is required for coordinated advancement of these regions with formin-generated FLPs. We propose that actomyosin contraction acting against membrane tension advances the web of arcs between FLPs. Predictions of this model are verified experimentally. The dependence of myosin II in leading-edge advancement helps explain the previously reported defect in directional movement in the Arpc3-null fibroblasts. We provide further evidence that this defect is cell autonomous during chemotaxis. © 2015 Suraneni et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. EFFECT OF INTRAVESICAL PROSTATIC PROTRUSION (IVPP ON LOWER URINARY TRACT FUNCTION AND MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Rajaraman T

    2016-07-01

    Full Text Available AIMS AND OBJECTIVES To correlate Intravesical Prostatic Protrusion (IVPP with International Prostate Symptoms Score (IPSS, Quality of Life Index (QOL, Uroflowmetry, Post Void Urine (PVR and Pressure Flow Study (PFS and to assess whether the presence and increasing grades of Intravesical prostatic protrusion are directly correlated with the severity of Bladder outlet obstruction due to Benign prostatic hypertrophy. MATERIALS AND METHODS Non-randomized prospective cohort study, conducted in Department of Urology, Govt. Stanley Hospital, from June 2012 to June 2015, on a sample of 100 patients with IVPP. IVPP was correlated with IPSS, Quality of life index, Uroflowmetry, Effects of drug therapy, Response to surgical therapy. Response of patients with Intravesical prostatic protrusion of same grade to surgical therapy and drug therapy are compared to decide which modality of management is best. RESULTS The incidence of IVPP in patients presenting with LUTS due to BPH is 1 in 5. Majority present with grade 2 IVPP. The increasing grades of IVPP are significantly directly correlated with IPSS score, Q-max and Post void residual. Statistical analysis showed IVPP to correlate significantly with BOO. TURP showed a very good and significant mean decrease of IPSS and Q-max, whereas those who had medical treatment showed only a mean decrease of 2 in IPSS score and 1 in Q-max. CONCLUSION The increasing grades of IVPP are significantly directly correlated with IPSS score max and Post void residual. IVPP have a very good positive and negative predictive value and also a good accuracy rate in comparison with all other parameters in predicting the BOO. The surgical intervention statistically proved to be superior to medical treatment in IVPP patients.

  5. Treatment of dental and skeletal bimaxillary protrusion in patient with Angle Class I malocclusion

    Directory of Open Access Journals (Sweden)

    Claudio José Ramos

    2013-12-01

    Full Text Available In the orthodontic clinic, skeletal and dental bimaxillary protrusion is presented frequently as one of the factors leading patients to seek orthodontic treatment, mainly due to the esthetic involvement it has. The patient of this article illustrates this situation, being deeply uncomfortable with her esthetic appearance, due to the excessive upper incisors exposure and problems with lip sealing. This case was presented to the Brazilian Board of Orthodontics and Facial Orthopedics (BBO, as part of the requisites to become a BBO Diplomate.

  6. Domain wall pinning and potential landscapes created by constrictions and protrusions in ferromagnetic nanowires

    Science.gov (United States)

    Petit, Dorothée; Jausovec, Ana-Vanessa; Read, Dan; Cowburn, Russell P.

    2008-06-01

    The potential experienced by transverse domain walls (TDWs) in the vicinity of asymmetric constrictions or protrusions in thin Permalloy nanowires is probed using spatially resolved magneto-optical Kerr effect measurements. Both types of traps are found to act as pinning centers for DWs. The strength of pinning is found to depend on the trap type as well as on the chirality of the incoming DW; both types of traps are seen to act either as potential wells or potential barriers, also depending on the chirality of the DW. Micromagnetic simulations have been performed that are in good qualitative agreement with the experimental results.

  7. Effect of shape of protrusions and roughness on the hydrophilicity of a surface

    Science.gov (United States)

    Chowdhury, Sheelan Sengupta; Pandey, Prithvi Raj; Kumar, Rajnish; Roy, Sudip

    2017-10-01

    We have investigated wetting of model rough surfaces made up of hydrophilic triangular and hexagonal pillars (protrusions). The surface roughnesses are altered by varying the area of the rough surface, the height of the pillars, and the surface interactions to the water. We have established a correlation between structure i.e., the shape of a pillar, which actually depends on the number of edges (due to shape), and the wetting phenomena. We have found that surface with higher number of edges repels water at lower roughness value. We explain the correlation by analyzing the variation of interactions energy components and density profiles of water on the structured surfaces.

  8. Clinical Experience on Treatment of Lumbar Intervertebral Disc Protrusion by Traditional Manual Techniques plus Electric Acupuncture

    Institute of Scientific and Technical Information of China (English)

    LIANG Hao-wen; WU Fang; YANG Wan-zhang; ZHANG Min; HUANG Guo-qi

    2007-01-01

    52 cases of the patients with L4-S1 intervertebral disc protrusion were first treated by traditional Tuina manual techniques, including the rolling method, pressing method,oblique-plucking method and shaking method, and then treated by electric acupuncture on Shenshu (BL 23), Yaoyangguan (GV 3), Dachangshu (BL 25), Xiaochangshu (BL 27),Mingmen (GV 4) and Shangliao (BL 31). After 7-28 sessions of the treatments, the results showed cure in 40 cases, remarkable effect in 8 cases, effect in 3 cases, failure in 1 case, and the total effective rate in 98.1%.

  9. Slurry bubble column hydrodynamics

    Science.gov (United States)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids

  10. CALIBRATED HYDRODYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Sezar Gülbaz

    2015-01-01

    Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.

  11. Direct RNA sequencing mediated identification of mRNA localized in protrusions of human MDA-MB-231 metastatic breast cancer cells

    DEFF Research Database (Denmark)

    Jakobsen, Kristine Raaby; Sørensen, Emilie; Brøndum, Karin Kathrine;

    2013-01-01

    Background Protrusions of cancer cells conferrers a vital function for cell migration and metastasis. Protein and RNA localization mechanisms have been extensively examined and shown to play pivotal roles for the functional presence of specific protein components in cancer cell protrusions. Methods...... To describe genome wide RNA localized in protrusions of the metastatic human breast cancer cell line MDA-MB-231 we used Boyden chamber based methodology followed by direct mRNA sequencing. Results In the hereby identified group of protrusion localized mRNA some previously were described to be localized...... exemplified by mRNA for Ras-Related protein 13 (RAB13) and p0071 (Plakophilin-4/PKP4). For other transcripts, exemplified by mRNA for SH3PXD2A/TKS5 and PPFIA1/Liprin-α1, only the corresponding proteins previously were described to have protrusion localization. Finally, a cohort of MDA-MB-231 protrusion...

  12. Activity of superior head of human lateral pterygoid increases with increases in contralateral and protrusive jaw displacement.

    Science.gov (United States)

    Bhutada, Manish K; Phanachet, Intira; Whittle, Terry; Peck, Chris C; Murray, Greg M

    2007-08-01

    The hypothesis was that the superior head of human lateral pterygoid muscle (SHLP) plays a similar role in jaw movement as the inferior head of human lateral pterygoid muscle (IHLP). The aims were to determine the functional properties of SHLP single motor units (SMUs) and root mean square activity (RMS) of the SHLP during contralateral and protrusive jaw movement tasks and to compare these features with those identified previously for the IHLP. In 22 human subjects, SMUs were recorded intramuscularly from computer tomography-verified sites within the SHLP during standardized contralateral and protrusive jaw movement tasks recorded by a jaw-tracking device. Of the 50 SMUs discriminated, 39 were active during contralateral and 29 during protrusive jaw movements. The firing rates and RMS of the SHLP motor units increased with an increase in jaw displacement. The RMS activity across the entire trial during contralateral jaw movement was significantly greater than that during protrusion. Similarly to conclusions previously identified for the IHLP, the data are consistent with an important role for the SHLP in the control of contralateral and protrusive jaw movements. The similarities in SHLP and IHLP functional properties support the proposal that both heads should be regarded as a system of fibers acting as one muscle.

  13. Fluxes of water through aquaporin 9 weaken membrane-cytoskeleton anchorage and promote formation of membrane protrusions.

    Directory of Open Access Journals (Sweden)

    Thommie Karlsson

    Full Text Available All modes of cell migration require rapid rearrangements of cell shape, allowing the cell to navigate within narrow spaces in an extracellular matrix. Thus, a highly flexible membrane and a dynamic cytoskeleton are crucial for rapid cell migration. Cytoskeleton dynamics and tension also play instrumental roles in the formation of different specialized cell membrane protrusions, viz. lamellipodia, filopodia, and membrane blebs. The flux of water through membrane-anchored water channels, known as aquaporins (AQPs has recently been implicated in the regulation of cell motility, and here we provide novel evidence for the role of AQP9 in the development of various forms of membrane protrusion. Using multiple imaging techniques and cellular models we show that: (i AQP9 induced and accumulated in filopodia, (ii AQP9-associated filopodial extensions preceded actin polymerization, which was in turn crucial for their stability and dynamics, and (iii minute, local reductions in osmolarity immediately initiated small dynamic bleb-like protrusions, the size of which correlated with the reduction in osmotic pressure. Based on this, we present a model for AQP9-induced membrane protrusion, where the interplay of water fluxes through AQP9 and actin dynamics regulate the cellular protrusive and motile activity of cells.

  14. Space closure with loop mechanics for treatment of bimaxillary protrusion: a case report.

    Science.gov (United States)

    Sanjay, N; Rajesh, R N G; Scindia, Rajat; Ajith, Sreedevi D

    2015-05-01

    This case report intends to highlight the space closure with tear drop loop mechanics for bimaxillary protrusion. Loops can be fabricated in a sectional or full arch wire, and closing loops are usually used in loop mechanics for extraction space closure. The major advantage of loop mechanics is the lack of friction between the bracket and arch wire during space closure. An adult patient with bimaxillary protrusion reported to the clinic. The patient was treated successfully by maximum retraction of maxillary and mandibular anterior teeth after extraction of all first premolars. Space closure was begun using a moment differential between posterior and anterior segments created by a Tear drop loop. Anterior teeth were moved with bodily movement, and no anchorage loss of the posterior segments was seen using a Tear drop loop spring. A stable result with normal over jet and overbite was achieved with retraction of maxillary and mandibular anterior teeth. With a Tear drop loop, individual biomechanical responses can be achieved, and it is possible to calculate force magnitude for every patient.

  15. Predicting outcome of trial of voiding without catheter in acute urinary retention with intravesical prostatic protrusion.

    Science.gov (United States)

    Syazarina Sharis, Osman; Zulkifli, Md Zainuddin; Hamzaini, Abdul Hamid

    2013-01-01

    Acute urinary retention (AUR) is one of the most serious complications of benign prostatic hypertrophy. This study was done to predict the outcome of trial of voiding without catheter (TWOC) in patients with AUR with intravesical prostatic protrusion (IPP) detected on transabdominal ultrasound. Other factors such as prostatic volume and patient's age were also assessed. Patients with a first episode of AUR secondary to benign prostatic hypertrophy were assessed with ultrasound following bladder catheterization. The IPP was measured and graded (grade 1 is 5 mm or less, grade 2 is 5-10 mm and grade 3 is more than 10 mm). Success of TWOC was then correlated with the degree of IPP. A total of 32 patients with AUR were included in the study. Patients with grade 3 IPP were found to have a significant failure rate compared to grade 1 (P = 0.022) and grade 2 (P = 0.041). Intravesical prostatic protrusion is a useful predictor of success of TWOC in patients with AUR. Patients with grade 3 IPP on ultrasound would benefit from TWOC and warrant earlier definitive surgical treatment.

  16. New perspective on Herbst therapy for skeletal Class II malocclusions: a proposal for maxillary protrusion management.

    Science.gov (United States)

    Filho, Leopoldino Capelozza; Siqueira, Danilo Furquim; de Castro, Renata Cristina Faria Ribeiro; An, Tien-Li; Cardoso, Mauricio de Almeida

    2012-01-01

    Angle Class II malocclusions may present morphologic deviations originated from the maxilla, mandible, or both. Since its reintroduction by Pancherz, the Herbst appliance has demonstrated effectiveness in the management of patients with mandibular deficiency. Because of the intermaxillary anchorage, the action of mandibular advancement provokes simultaneous reaction of maxillary restriction, similar to high-pull headgear. This aimed of this report is to compare two cases treated in two phases. In the first interceptive phase, the transverse problem was corrected by rapid maxillary expansion, which was followed by a Herbst appliance for mandibular advancement; in the second corrective phase, the cases were finished with fixed appliances. Although Herbst appliances were used in both patients, one patient with maxillary protrusion and another with mandibular deficiency, their use targeted different types of skeletal discrepancies. This difference allowed for the comparison of treatment effects, and although both patients had their malocclusion corrected, it seems reasonable to conclude that the final outcome was more favorable for the patient with maxillary protrusion.

  17. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.

    Directory of Open Access Journals (Sweden)

    Carsten Schwan

    2009-10-01

    Full Text Available Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase, which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 microm microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host-pathogen interactions.

  18. MICROSTRUCTURE CHARACTERISATION OF PROTRUSIONS BY ELECTRON BEAM SURFI-SCULPT ON THE SURFACE OF TA15 Ti ALLOY%TA15钛合金表面电子束毛化处理的组织特征

    Institute of Scientific and Technical Information of China (English)

    许恒栋; 赵海燕; 孟令瑶; 王西昌; 巩水利; 白秉哲

    2012-01-01

    利用电子束毛化技术在TA15薄板(Ti-6A1-2Zr-1Mo-1V)表面生成“毛刺”,通过OM,SEM,EDS和XRD分析了“毛刺”的组织、元素成分和性能.研究发现,“毛刺”组织可分为边缘区、中心区、热影响区、基体;边缘区为粗大晶粒和大量片状马氏体,硬度最低;中心区为大晶粒和规则排列的片状马氏体,硬度次低;热影响区晶粒较小,晶界为α相,晶内为平行排列的片状马氏体组织,硬度最高;不同区域的A1含量有明显差异.“毛刺”不同区域的硬度主要取决于A1含量和晶粒尺寸.%Electron beam surfi-sculpt is a novel surface processing technology, in which electron beam is controlled by magnetic field and deflected quickly over a substrate surface to displace materials in a settled manner, thus producing customized textured surface consisting of an array of protrusions above the original surface and a corresponding array of cavities in the substrate. This technology could be used in dissimilar materials connection between metals and composites, as the protrusions on metal surface would increase the interface area, which results in great improvements in both strength and absorbed energy. It could also be applied to improve the surface coating quality by tailor-making protrusions throughout a component surface so as to enhance the adhesive capacity between coating and substrate, as well as to optimize the stress distribution that occurs in coating process. The application performance of textured surface depends on the microstructure characterisation of protrusions, while the investigation on the microstructures and mechanical properties of the protrusion is lack. In this work, electron beam surfi-sculpt was carried out to produce protrusions on TA15 (Ti-6Al-2Zr-1Mo-1V) surface through multi-beam technique. The microstructure features of protrusions were investigated by OM, SEM and XR.D, and the weight percentages of alloy elements were analyzed by EDS. In

  19. Treatment of Angle Class I Malocclusion with Severe Bimaxillary Protrusion using Miniscrew Implants and Periodontal Ligament Distraction

    Directory of Open Access Journals (Sweden)

    K C Prabhat

    2014-01-01

    Full Text Available Bimaxillary dentoalveolar protrusion is common in Asian population. In this patient with procumbent upper and lower lips, excessive lip strain, proclined and protruded maxillary and mandibular incisors with vertical growth pattern, an acceptable treatment result, was achieved with 4-first-premolar extractions. This case report is presented with the aim, to describe the treatment approach for bimaxillary dentoalveolar protrusion using miniscrew implants for anchorage in upper arch and periodontal ligament distraction for canine retraction in lower arch and then retraction of incisors into the newly formed bone distal to lateral incisor. Treatment was completed in 18 months. The patient profile was improved, with reduction in lip procumbency, decrease in lip eversion and protrusion, and decrease mentalis strain. Dentally, the interincisal angulation improved significantly because both the maxillary and mandibular incisors were uprighted after space closer.

  20. Recent progress in anisotropic hydrodynamics

    CERN Document Server

    Strickland, Michael

    2016-01-01

    The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, . In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.

  1. Numerical Hydrodynamics in Special Relativity

    Directory of Open Access Journals (Sweden)

    Martí José Maria

    2003-01-01

    Full Text Available This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD. Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction.

  2. Comparative hydrodynamics of bacterial polymorphism

    CERN Document Server

    Spagnolie, Saverio E

    2011-01-01

    Most bacteria swim through fluids by rotating helical flagella which can take one of twelve distinct polymorphic shapes. The most common helical waveform is the "normal" form, used during forward swimming runs. To shed light on the prevalence of the normal form in locomotion, we gather all available experimental measurements of the various polymorphic forms and compute their intrinsic hydrodynamic efficiencies. The normal helical form is found to be the most hydrodynamically efficient of the twelve polymorphic forms by a significant margin - a conclusion valid for both the peritrichous and polar flagellar families, and robust to a change in the effective flagellum diameter or length. The hydrodynamic optimality of the normal polymorph suggests that, although energetic costs of locomotion are small for bacteria, fluid mechanical forces may have played a significant role in the evolution of the flagellum.

  3. Quantum Plasmas An Hydrodynamic Approach

    CERN Document Server

    Haas, Fernando

    2011-01-01

    This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of...

  4. HYDRODYNAMIC INTERACTIONS BETWEEN TWO BODIES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of model tests, potential flow theory, and viscous Computational Fluid Dynamics (CFD) method, the hydrodynamic interactions between two underwater bodies were investigated to determine the influencing factors, changing rule, interaction mechanism, and appropriate methods describing them. Some special phenomena were discovered in two series of near-wall interaction experiments. The mathematical model and predicting methods were presented for interacting forces near wall, and the calculation results agreed well with the experimental ones. From the comparisons among numerical results with respect to nonviscosity, numerical results with respect to viscosity, and measured results, data on the influence of viscosity on hydrodynamic interactions were obtained. For hydrodynamic interaction related to multi-body unsteady motions with six degrees of freedom that is difficult to simulate in tests, numerical predictions of unsteady interacting forces were given.

  5. Hydrodynamic shocks in microroller suspensions

    Science.gov (United States)

    Delmotte, Blaise; Driscoll, Michelle; Chaikin, Paul; Donev, Aleksandar

    2017-09-01

    We combine experiments, large-scale simulations, and continuum models to study the emergence of coherent structures in a suspension of magnetically driven microrollers sedimented near a floor. Collective hydrodynamic effects are predominant in this system, leading to strong density-velocity coupling. We characterize a uniform suspension and show that density waves propagate freely in all directions in a dispersive fashion. When sharp density gradients are introduced in the suspension, we observe the formation of a shock. Unlike Burgers' shocklike structures observed in other active and driven confined hydrodynamic systems, the shock front in our system has a well-defined finite width and moves rapidly compared to the mean suspension velocity. We introduce a continuum model demonstrating that the finite width of the front is due to far-field nonlocal hydrodynamic interactions and governed by a geometric parameter, the average particle height above the floor.

  6. Numerical Hydrodynamics in Special Relativity.

    Science.gov (United States)

    Martí, José Maria; Müller, Ewald

    2003-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction.

  7. Optimal measurement for "posterolateral protrusion" of the vertebral artery at the craniovertebral junction using computed tomography angiography

    Directory of Open Access Journals (Sweden)

    Junichi Ohya

    2014-01-01

    Full Text Available Purpose: Among extraosseous abnormalities of the vertebral artery (VA at the craniovertebral junction (CVJ, available evidence regarding "posterolateral protrusion," the VA running distant from the groove over the superior surface of the posterior arch of the atlas, is limited. The purpose of this study was to determine the optimal measurement to indicate posterolateral protrusion of the VA. Materials and Methods: Computed tomography angiography (CTA images of 40 consecutive patients with cervical disease were reviewed. Ultimately, 66 arteries were included in this study. Five parameters predicted to indicate posterolateral protrusion of the VA were defined (A-E and measured by two surgeons twice over a 2-week interval. Intraclass correlation coefficients (ICC were used to examine intra-observer reproducibility and inter-observer reliability. Receiver operating characteristic (ROC curve analysis was performed to determine the most optimal parameter to predict posterolateral protrusion of the VA. Results: Excellent inter-observer reliability and intra-observer reproducibility were obtained for all parameters (ICC = 0.87-0.99. Among them, parameter A, defined as the maximal length from the outer surface of the VA to the outer surface of the posterior arch of the atlas, was most accurately described posterolateral protrusion of the VA. The optimal cut-off value of parameter A obtained with ROC curves was 8.3 mm (sensitivity 97.5%, specificity 100%. Conclusions: The measurement in this study can quantitatively evaluate the posterolateral protrusion of the VA. Before posterior surgery at the CVJ, pre-operative CTA can help surgeons detect anomalous VA and reduce the risk of intra-operative VA injury.

  8. Effect of retraction of anterior teeth on pharyngeal airway and hyoid bone position in Class I bimaxillary dentoalveolar protrusion.

    Science.gov (United States)

    Bhatia, S; Jayan, B; Chopra, S S

    2016-12-01

    To test the hypothesis that the retraction of anterior teeth has no effect on the dimensions of pharyngeal airway and to evaluate the retraction of anterior teeth on each parameter of pharyngeal airway. Twenty-two adult patients of Class I bimaxillary protrusion requiring first premolar extractions with maximum anchorage requirements were selected. The pharyngeal airway and dentofacial parameters of the patients were compared using pre- and post-treatment lateral cephalograms with the help of Student's paired t-test (P bimaxillary protrusive adult patients.

  9. Subperitoneal approach in revision arthroplasty for acetabular component protrusion: Analysis of practices within the French Hip and Knee Society (SFHG).

    Science.gov (United States)

    Gouin, F; Crenn, V; Tabutin, J

    2017-02-01

    The complications related to revision for acetabular component protrusion with material migrating into the intrapelvic region remain rare but potentially serious. Today, the literature reports no epidemiological data on the subperitoneal approach (SPA) in revision total hip arthroplasty (RTHA) for protrusion. Therefore we conducted a retrospective study on a large revision arthroplasty database to answer the following questions: (1) What is the frequency of this approach in this population? (2) What are the factors related to this procedure? (3) Is morbidity and mortality of the SPA higher than for an isolated conventional approach? Major protrusions with material in the superomedial quadrant (SMQ) have a higher probability of being operated using a SPA. This multicenter retrospective study included 260 cases of THA with endopelvic protrusion of material at least 15mm inside the Kohler line. The degree of protrusion was assessed on the AP pelvic X-ray with the construction of the SMQ. The reason for the subperitoneal approach, the duration of surgery, and the preoperative exams were also collected. Nineteen procedures out of the 260 RTHAs included (7.8%) had a SPA in addition to the approach for the revision THA. The frequency of the SPA varied among centers (range: 1.7-50%). In four cases, the SPA was indicted to care for a vascular complication identified preoperatively. For one patient, the SPA was indicated intraoperatively. The other indications were either to extract the implant (n=7) or prevent a potential intraoperative assault of neurovascular structures (n=9). The cases presenting major protrusion on the AP X-ray with material in the SMQ were more often operated through the SPA (12/19; 63.2%) than cases with no SMQ involvement (4/241; 1.7%) (P0.05). Despite the limitations related to the retrospective and multicenter design of this study, to our knowledge it is the only one that examines SPA procedures within the context of severe material protrusion with

  10. Bulk Viscosity Effects in Event-by-Event Relativistic Hydrodynamics

    CERN Document Server

    Noronha-Hostler, Jacquelyn; Noronha, Jorge; Andrade, Rone P G; Grassi, Frederique

    2013-01-01

    Bulk viscosity effects on the collective flow harmonics in heavy ion collisions are investigated, on an event by event basis, using a newly developed 2+1 Lagrangian hydrodynamic code named v-USPhydro which implements the Smoothed Particle Hydrodynamics (SPH) algorithm for viscous hydrodynamics. A new formula for the bulk viscous corrections present in the distribution function at freeze-out is derived starting from the Boltzmann equation for multi-hadron species. Bulk viscosity is shown to enhance the collective flow Fourier coefficients from $v_2(p_T)$ to $v_5(p_T)$ when $% p_{T}\\sim 1-3$ GeV even when the bulk viscosity to entropy density ratio, $% \\zeta/s$, is significantly smaller than $1/(4\\pi)$.

  11. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  12. Hydrodynamics of oceans and atmospheres

    CERN Document Server

    Eckart, Carl

    1960-01-01

    Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear

  13. Abnormal pressures as hydrodynamic phenomena

    Science.gov (United States)

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  14. Potassium-chloride cotransporter 3 interacts with Vav2 to synchronize the cell volume decrease response with cell protrusion dynamics.

    Directory of Open Access Journals (Sweden)

    Adèle Salin-Cantegrel

    Full Text Available Loss-of-function of the potassium-chloride cotransporter 3 (KCC3 causes hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC, a severe neurodegenerative disease associated with defective midline crossing of commissural axons in the brain. Conversely, KCC3 over-expression in breast, ovarian and cervical cancer is associated with enhanced tumor cell malignancy and invasiveness. We identified a highly conserved proline-rich sequence within the C-terminus of the cotransporter which when mutated leads to loss of the KCC3-dependent regulatory volume decrease (RVD response in Xenopus Laevis oocytes. Using SH3 domain arrays, we found that this poly-proline motif is a binding site for SH3-domain containing proteins in vitro. This approach identified the guanine nucleotide exchange factor (GEF Vav2 as a candidate partner for KCC3. KCC3/Vav2 physical interaction was confirmed using GST-pull down assays and immuno-based experiments. In cultured cervical cancer cells, KCC3 co-localized with the active form of Vav2 in swelling-induced actin-rich protruding sites and within lamellipodia of spreading and migrating cells. These data provide evidence of a molecular and functional link between the potassium-chloride co-transporters and the Rho GTPase-dependent actin remodeling machinery in RVD, cell spreading and cell protrusion dynamics, thus providing new insights into KCC3's involvement in cancer cell malignancy and in corpus callosum agenesis in HMSN/ACC.

  15. An overview of hydrodynamic studies of mineralization

    Directory of Open Access Journals (Sweden)

    Guoxiang Chi

    2011-07-01

    Full Text Available Fluid flow is an integral part of hydrothermal mineralization, and its analysis and characterization constitute an important part of a mineralization model. The hydrodynamic study of mineralization deals with analyzing the driving forces, fluid pressure regimes, fluid flow rate and direction, and their relationships with localization of mineralization. This paper reviews the principles and methods of hydrodynamic studies of mineralization, and discusses their significance and limitations for ore deposit studies and mineral exploration. The driving forces of fluid flow may be related to fluid overpressure, topographic relief, tectonic deformation, and fluid density change due to heating or salinity variation, depending on specific geologic environments and mineralization processes. The study methods may be classified into three types, megascopic (field observations, microscopic analyses, and numerical modeling. Megascopic features indicative of significantly overpressured (especially lithostatic or supralithostatic fluid systems include horizontal veins, sand injection dikes, and hydraulic breccias. Microscopic studies, especially microthermometry of fluid inclusions and combined stress analysis and microthermometry of fluid inclusion planes (FIPs can provide important information about fluid temperature, pressure, and fluid-structural relationships, thus constraining fluid flow models. Numerical modeling can be carried out to solve partial differential equations governing fluid flow, heat transfer, rock deformation and chemical reactions, in order to simulate the distribution of fluid pressure, temperature, fluid flow rate and direction, and mineral precipitation or dissolution in 2D or 3D space and through time. The results of hydrodynamic studies of mineralization can enhance our understanding of the formation processes of hydrothermal deposits, and can be used directly or indirectly in mineral exploration.

  16. Hydrodynamics of a quark droplet

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas

    2012-01-01

    We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...

  17. Numerical Hydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2003-01-01

    Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.

  18. Anomalous hydrodynamics in two dimensions

    Indian Academy of Sciences (India)

    Rabin Banerjee

    2016-02-01

    A new approach is presented to discuss two-dimensional hydrodynamics with gauge and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are obtained. Also, a connection between response parameters and anomaly coefficients is discussed. These are new results which, in the absence of the gauge sector, reproduce the results found by the gradient expansion approach.

  19. Hydrodynamic Noise and Surface Compliance.

    Science.gov (United States)

    1982-09-08

    Lighthill, 3,4 Ffowcs-Wiiliams, 5-7 and Morse and Ingard .8 Ffowcs-Williams’ 7 excellent review identifies five distinctly different theoretical...Williams, "Hydrodynamic Noise," Annual Review of Fluid Mechanics (Annual Reviews, Palo Alto, CA), vol. 1, 1969, pp. 197-222. 8. P. Morse and K. V. Ingard

  20. Hydrodynamic slip in silicon nanochannels

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-03-01

    Equilibrium and nonequilibrium molecular dynamics simulations were performed to better understand the hydrodynamic behavior of water flowing through silicon nanochannels. The water-silicon interaction potential was calibrated by means of size-independent molecular dynamics simulations of silicon wettability. The wettability of silicon was found to be dependent on the strength of the water-silicon interaction and the structure of the underlying surface. As a result, the anisotropy was found to be an important factor in the wettability of these types of crystalline solids. Using this premise as a fundamental starting point, the hydrodynamic slip in nanoconfined water was characterized using both equilibrium and nonequilibrium calculations of the slip length under low shear rate operating conditions. As was the case for the wettability analysis, the hydrodynamic slip was found to be dependent on the wetted solid surface atomic structure. Additionally, the interfacial water liquid structure was the most significant parameter to describe the hydrodynamic boundary condition. The calibration of the water-silicon interaction potential performed by matching the experimental contact angle of silicon led to the verification of the no-slip condition, experimentally reported for silicon nanochannels at low shear rates.

  1. An Innovative Treatment Approach with Atypical Orthodontic Extraction Pattern in Bimaxillary Protrusion Case

    Directory of Open Access Journals (Sweden)

    Anil Miglani

    2013-01-01

    Full Text Available This case report describes the treatment of a 23-year-old female with severe bimaxillary dentoalveolar protrusion and missing left mandibular first molar. Her chief concern was significant facial convexity. Generally treatment plan of such cases involves extraction of first premolars but absence of first molar complicates situation with problem of space management, anchorage requirement and post-treatment occlusion. This case report introduces thought provoking treatment approach of selecting atypical teeth for orthodontic extraction without compromising the quality of treatment outcomes. However, three first bicuspids were extracted while the mandibular left second premolar was distalized into the missing molar space and used as an abutment for replacement of the missing first molar by prosthesis. Despite the unusual asymmetric extraction of teeth, superimposition of the pretreatment and post-treatment cephalometric tracings shows excellent treatment outcomes and reduction of facial convexity by maximum retraction of the anterior teeth.

  2. Exclusion and Hierarchy of Time Scales Lead to Spatial Segregation of Molecular Motors in Cellular Protrusions

    Science.gov (United States)

    Pinkoviezky, I.; Gov, N. S.

    2017-01-01

    Molecular motors that carry cargo along biopolymer filaments within cells play a crucial role in the functioning of the cell. In particular, these motors are essential for the formation and maintenance of the cellular protrusions that play key roles in motility and specific functionalities, such as the stereocilia in hair cells. Typically, there are several species of motors, carrying different cargos, that share the same track. Furthermore, it was observed that in the mature stereocilia, the different motors occupy well-segregated bands as a function of distance from the tip. We use a totally asymmetric exclusion process model with two- and three-motor species, to study the conditions that give rise to such spatial patterns. We find that the well-segregated bands appear for motors with a strong hierarchy of attachment or detachment rates. This is a striking example of pattern formation in nonequilibrium, low-dimensional systems.

  3. Evaluating the Upset Protrusion Joining (UPJ) Method to Join magnesium Castings to Dissimilar Metals

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Stephen D. [FCA US LLC

    2015-08-19

    This presentation discusses advantages and best practices for incorporating magnesium in automotive component applications to achieve substantial mass reduction, as well as some of the key challenges with respect to joining, coating, and galvanic corrosion, before providing an introduction and status update of the U.S. Department of Energy and Department of Defense jointly sponsored Upset Protrusion Joining (UPJ) process development and evaluation project. This update includes sharing performance results of a benchmark evaluation of the self-pierce riveting (SPR) process for joining dissimilar magnesium (Mg) to aluminum (Al) materials in four unique coating configurations before introducing the UPJ concept and comparing performance results of the joints made with the UPJ process to those made with the SPR process.

  4. Role of rf electric and magnetic fields in heating of micro-protrusions in accelerating structures

    CERN Document Server

    Nusinovich, Gregory S

    2011-01-01

    It is known that high-gradient operation in metallic accelerating structures causes significant deterioration of structure surfaces that, in turn, greatly increases the probability of microwave breakdown. At the same time, the physical reason for this deterioration so far is not well understood. In the present paper, the role of two effects is analyzed, viz. (a) the microwave heating caused by penetration of the rf magnetic field into microprotrusion of a radius on the order of the skin depth and (b) the Joule heating caused by the field emitted current, i.e. the effect of the rf electric field magnified by a sharp protrusion. Corresponding expressions for the power densities of both effects are derived and the criterion for evaluating the dominance of one of these two is formulated. This criterion is analyzed and illustrated by the discussion of an example with parameters typical for recent experiments at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory.

  5. Successful treatment of Class II malocclusion with bidental protrusion using standard edgewise prescription

    Directory of Open Access Journals (Sweden)

    Mohd Ayaz

    2016-01-01

    Full Text Available This case report deals with the successful orthodontic treatment of a 14-year-old female patient having Class II malocclusion with bidental protrusion using standard edgewise prescription. She reported with forwardly placed upper front teeth and difficulty in closing lips. She had prognathic maxilla, retrognathic mandible, and full cusp Class II molar and canine relation bilaterally with overjet of 7 mm. She was in cervical vertebrae maturation indicator Stage IV. The case was treated by fixed extraction mechanotherapy. Interarch Class II mechanics was used to retract the upper incisor and to mesialize the lower molars. Simultaneously, Class I mechanics was used to upright lower incisors. Tip back bend, curve of Spee, and extra palatal root torque were incorporated in upper archwire to maintain molars in upright position and prevent extrusion and deepening of bite, respectively. There was satisfactory improvement in facial profile at the end of 24 months. After a follow-up of 6 months, occlusion was stable.

  6. Severe bidentoalveolar protrusion treated with orthodontic microimplant-dependent en-masse retraction.

    Science.gov (United States)

    Chung, Kyu-Rhim; Nelson, Gerald; Kim, Seong-Hun; Kook, Yoon-Ah

    2007-07-01

    This article describes the orthodontic treatment of a 14.5-year-old girl with severe bidentoalveolar protrusion. Specially designed sandblasted, large-grit, acid-etched (SLA) orthodontic microimplants (C-implants, Cimplant Co, Seoul, Korea) were placed in the alveolar bone in all 4 quadrants to provide anchorage for en-masse retraction without the help of banded or bonded molars. Successful retraction was achieved. The mandibular dentition was detailed by using conventional orthodontic appliances during the finishing stage. The osseointegration potential of these microimplants allows them to resist rotational force moments and control 3-dimensional movements of the anterior teeth during retraction. Facial esthetics improved for the patient, fullness of the upper and lower lips was reduced, and the interdental relationship was corrected. Biomechanical considerations, efficacy, and potential complications of the treatment technique are discussed.

  7. The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule.

    Science.gov (United States)

    Brookes, Emre; Demeler, Borries; Rosano, Camillo; Rocco, Mattia

    2010-02-01

    The interpretation of solution hydrodynamic data in terms of macromolecular structural parameters is not a straightforward task. Over the years, several approaches have been developed to cope with this problem, the most widely used being bead modeling in various flavors. We report here the implementation of the SOMO (SOlution MOdeller; Rai et al. in Structure 13:723-734, 2005) bead modeling suite within one of the most widely used analytical ultracentrifugation data analysis software packages, UltraScan (Demeler in Modern analytical ultracentrifugation: techniques and methods, Royal Society of Chemistry, UK, 2005). The US-SOMO version is now under complete graphical interface control, and has been freed from several constraints present in the original implementation. In the direct beads-per-atoms method, virtually any kind of residue as defined in the Protein Data Bank (e.g., proteins, nucleic acids, carbohydrates, prosthetic groups, detergents, etc.) can be now represented with beads whose number, size and position are all defined in user-editable tables. For large structures, a cubic grid method based on the original AtoB program (Byron in Biophys J 72:408-415, 1997) can be applied either directly on the atomic structure, or on a previously generated bead model. The hydrodynamic parameters are then computed in the rigid-body approximation. An extensive set of tests was conducted to further validate the method, and the results are presented here. Owing to its accuracy, speed, and versatility, US-SOMO should allow to fully take advantage of the potential of solution hydrodynamics as a complement to higher resolution techniques in biomacromolecular modeling.

  8. Mix and hydrodynamic instabilities on NIF

    Science.gov (United States)

    Smalyuk, V. A.; Robey, H. F.; Casey, D. T.; Clark, D. S.; Döppner, T.; Haan, S. W.; Hammel, B. A.; MacPhee, A. G.; Martinez, D.; Milovich, J. L.; Peterson, J. L.; Pickworth, L.; Pino, J. E.; Raman, K.; Tipton, R.; Weber, C. R.; Baker, K. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Dixit, S. N.; Edwards, M. J.; Felker, S.; Field, J. E.; Fittinghoff, D. N.; Gharibyan, N.; Grim, G. P.; Hamza, A. V.; Hatarik, R.; Hohenberger, M.; Hsing, W. W.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Khan, S.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; Ma, T.; MacGowan, B. J.; Masse, L.; Moore, A. S.; Nagel, S. R.; Nikroo, A.; Pak, A.; Patel, P. K.; Remington, B. A.; Sayre, D. B.; Spears, B. K.; Stadermann, M.; Tommasini, R.; Widmayer, C. C.; Yeamans, C. B.; Crippen, J.; Farrell, M.; Giraldez, E.; Rice, N.; Wilde, C. H.; Volegov, P. L.; Gatu Johnson, M.

    2017-06-01

    Several new platforms have been developed to experimentally measure hydrodynamic instabilities in all phases of indirect-drive, inertial confinement fusion implosions on National Ignition Facility. At the ablation front, instability growth of pre-imposed modulations was measured with a face-on, x-ray radiography platform in the linear regime using the Hydrodynamic Growth Radiography (HGR) platform. Modulation growth of "native roughness" modulations and engineering features (fill tubes and capsule support membranes) were measured in conditions relevant to layered DT implosions. A new experimental platform was developed to measure instability growth at the ablator-ice interface. In the deceleration phase of implosions, several experimental platforms were developed to measure both low-mode asymmetries and high-mode perturbations near peak compression with x-ray and nuclear techniques. In one innovative technique, the self-emission from the hot spot was enhanced with argon dopant to "self-backlight" the shell in-flight. To stabilize instability growth, new "adiabat-shaping" techniques were developed using the HGR platform and applied in layered DT implosions.

  9. Comparison of intraoperative blood loss between four different surgical procedures in the treatment of bimaxillary protrusion.

    Science.gov (United States)

    Tseng, Yu-Chuan; Ting, Chun-Chan; Kao, Yu-Hsun; Chen, Chun-Ming

    2017-01-01

    This study was aimed at investigating the correlation between intraoperative blood loss and operation-related factors in the treatment of bimaxillary protrusion with four different procedures. Ninety-four patients were separated into the following four surgical groups: group 1: anterior subapical osteotomy of the maxilla (ASO Mx) + bilateral parasymphyseal osteotomy of the mandible (BPsO Md) + genioplasty (GeP); group 2: ASO Mx + BPsO Md; group 3: ASO Mx + ASO Md + GeP; and group 4: ASO Mx + ASO Md. Patient- and operation-related factors (age, intraoperative blood loss, operation time, and preoperative and postoperative blood parameters) were compared among the four groups. The mean operation time and intraoperative blood loss were 438.7 minutes and 369.9 mL in group 1; 432.5 minutes and 356.5 mL in group 2; 393.3 minutes and 387.3 mL in group 3; and 353.5 minutes and 289.5 mL in group 4. Intergroup differences in intraoperative blood loss were not significant. A significant correlation between intraoperative blood loss and operation time was found in group 4 but not in the other groups. No significant differences in blood loss were found among the four different surgical procedures in the treatment of bimaxillary protrusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The epithelia of the protrusible tongue of Eurycea longicauda guttolineata (Hoolbrook 1838) (Urodela: Plethodontidae).

    Science.gov (United States)

    Opolka, Alfred; Effing, Ute; Wistuba, Joachim; Clemen, Günter

    2003-02-01

    In this study the lingual and sublingual glands, the lingual stem and the epithelial surface of the protrusible secondary tongue were investigated by light, scanning and transmission electron microscopy. The quality of the secretions of the epithelia was characterized histochemically. The lingual epithelium is formed by superficial (pavement) and goblet cells and at the margin of the tongue pad are also regions covered by ciliated cells. On the dorsal part of the tongue there are goblet cells of type A with mainly acidic secretions and of type B containing neutral secretions. Most of the goblet cells on the ventral side of the tongue (hypoglottis) show a strong alcian blue/PAS positive reaction (type I) and some produce neutral secretions (type II). The glandular cells of the lingual gland react positively to alcian blue and PAS in the apical region of the gland. In contrast there is only alcian blue-positive staining in the basal part of the gland. The size and complexity of the inclusion bodies of the secretory granules increase in a basal direction. In addition, there are ciliated cells in the glandular epithelium. Although the epithelium of the lingual stem is thin, it is double-layered. The cell types observed in this region are identical to those of the ventral part of the protrusible tongue. At the margin of the sublingual gland are trough-like structures. In the center, tubular parts are observed. The cells of this gland are stain strongly with alcian blue (pH 1.0) mainly in the basal part of the gland. The results of this are compared to the tongue pad and the lingual gland of Salamandra salamandra and Ambystoma mexicanum.

  11. Cortico-muscular synchronization by proprioceptive afferents from the tongue muscles during isometric tongue protrusion.

    Science.gov (United States)

    Maezawa, Hitoshi; Mima, Tatsuya; Yazawa, Shogo; Matsuhashi, Masao; Shiraishi, Hideaki; Funahashi, Makoto

    2016-03-01

    Tongue movements contribute to oral functions including swallowing, vocalizing, and breathing. Fine tongue movements are regulated through efferent and afferent connections between the cortex and tongue. It has been demonstrated that cortico-muscular coherence (CMC) is reflected at two frequency bands during isometric tongue protrusions: the beta (β) band at 15-35Hz and the low-frequency band at 2-10Hz. The CMC at the β band (β-CMC) reflects motor commands from the primary motor cortex (M1) to the tongue muscles through hypoglossal motoneuron pools. However, the generator mechanism of the CMC at the low-frequency band (low-CMC) remains unknown. Here, we evaluated the mechanism of low-CMC during isometric tongue protrusion using magnetoencephalography (MEG). Somatosensory evoked fields (SEFs) were also recorded following electrical tongue stimulation. Significant low-CMC and β-CMC were observed over both hemispheres for each side of the tongue. Time-domain analysis showed that the MEG signal followed the electromyography signal for low-CMC, which was contrary to the finding that the MEG signal preceded the electromyography signal for β-CMC. The mean conduction time from the tongue to the cortex was not significantly different between the low-CMC (mean, 80.9ms) and SEFs (mean, 71.1ms). The cortical sources of low-CMC were located significantly posterior (mean, 10.1mm) to the sources of β-CMC in M1, but were in the same area as tongue SEFs in the primary somatosensory cortex (S1). These results reveal that the low-CMC may be driven by proprioceptive afferents from the tongue muscles to S1, and that the oscillatory interaction was derived from each side of the tongue to both hemispheres. Oscillatory proprioceptive feedback from the tongue muscles may aid in the coordination of sophisticated tongue movements in humans.

  12. Effects of tongue-hold swallows on suprahyoid muscle activation according to the relative tongue protrusion length: a preliminary study.

    Science.gov (United States)

    Oh, Jong-Chi

    2016-01-01

    Tongue-hold swallow (THS) is a therapeutic maneuver used to increase the posterior pharyngeal wall motion during swallowing. This maneuver has also been reported to result in increased activation of the suprahyoid muscles. The hypothesis of this study was that the degree of suprahyoid muscle activation would depend on the tongue protrusion-length. The aim of this study was to investigate the activation levels of the suprahyoid muscles by surface electromyography (sEMG) while performing the THS maneuver at three tongue-protrusion lengths. Suprahyoid muscle activity during THSs was recorded in 25 adult volunteers (17 women and 8 men; age range 20-38 years). To record the activity of the suprahyoid muscles while the participants performed the maneuver, surface wireless EMG electrodes separated by a distance of 1 cm were placed on the skin on both sides of the midline under the chin. Each activity was recorded three times. Data analysis was performed by repeated-measures analysis of variance. Our results revealed that participants exhibited greater electrical activity during THS with 2/3rd or maximal tongue protrusion as compared to THS with 1/3rd tongue protrusion (p ≤ 0.001). To maximize the therapeutic effect of the THS maneuver, it is advised to protrude the tongue maximally as long as swallowing is possible.

  13. Role of Nottingham and Thomson effects in heating of micro-protrusion in high-gradient accelerating structures

    Science.gov (United States)

    Keser, Aydin; Nusinovich, Gregory; Kashyn, Dmytro; Antonsen, Thomas

    2012-10-01

    It is widely accepted that one of the reasons for appearance of the RF breakdown which limits operation of high-gradient accelerating structures is the electron dark current [1]. This field emitted current, usually considered as a precursor of the breakdown, can be emitted from apexes of micro-protrusions on a structure surface. Therefore field and thermal processes in such protrusions deserve careful studies [2, 3]. The goal of our first study [3] was to analyze 2D process of RF field penetration inside protrusion of a metal with finite conductivity and to study corresponding Joule heating. In the current study, it is found that space charges can have a stabilizing effect on the electric field. We include a modification of the 1D model described in [4]. Moreover, we include into consideration, first, the Nottingham effect which may significantly change the protrusion heating. We also investigate the interplay between high temperature gradients and electric fields (Thomson heating).[4pt] [1] Wang and Loew, SLAC PUB 7684 October 1997.[0pt] [2] K.L. Jensen, Y.Y. Lau, D.W. Feldman, P.G. O'Shea, Phys. Rev. ST Accel. Beams 11, 081001(2008).[0pt] [3] Kashyn et al, AAC-2010.[0pt] [4] K.L. Jensen, J. LEbowitz, Y.Y. LAu, J. Luginsland, Journal of Applied Physics 111, 054917(2012).

  14. Effects of an oral appliance with different mandibular protrusion positions at a constant vertical dimension on obstructive sleep apnea

    NARCIS (Netherlands)

    Aarab, G.; Lobbezoo, F.; Hamburger, H.L.; Naeije, M.

    2010-01-01

    The aim of the study was to assess the influence of four mandibular protrusion positions, at a constant vertical dimension, on obstructive sleep apnea (OSA). Seventeen OSA patients (49.2 ± 8.5 years) received an adjustable mandibular advancement device (MAD). The patients underwent four polysomnogra

  15. Cancer-associated mutations in the protrusion-targeting region of p190RhoGAP impact tumor cell migration.

    Science.gov (United States)

    Binamé, Fabien; Bidaud-Meynard, Aurélien; Magnan, Laure; Piquet, Léo; Montibus, Bertille; Chabadel, Anne; Saltel, Frédéric; Lagrée, Valérie; Moreau, Violaine

    2016-09-26

    Spatiotemporal regulation of RhoGTPases such as RhoA is required at the cell leading edge to achieve cell migration. p190RhoGAP (p190A) is the main negative regulator of RhoA and localizes to membrane protrusions, where its GTPase-activating protein (GAP) activity is required for directional migration. In this study, we investigated the molecular processes responsible for p190A targeting to actin protrusions. By analyzing the subcellular localization of truncated versions of p190A in hepatocellular carcinoma cells, we identified a novel functional p190A domain: the protrusion localization sequence (PLS) necessary and sufficient for p190A targeting to leading edges. Interestingly, the PLS is also required for the negative regulation of p190A RhoGAP activity. Further, we show that the F-actin binding protein cortactin binds the PLS and is required for p190A targeting to protrusions. Lastly, we demonstrate that cancer-associated mutations in PLS affect p190A localization and function, as well as tumor cell migration. Altogether, our data unveil a new mechanism of regulation of p190A in migrating tumor cells.

  16. Improved MR imaging of the cervical spine, 2; Study of disk protrusion in the cervical spine in flexion-versus-extension views

    Energy Technology Data Exchange (ETDEWEB)

    Tanno, Munehiko; Kyomasu, Yoshinori; Nakayama, Masafumi (Tokyo Metropolitan Geriatric Hospital, Tokyo (Japan)) (and others)

    1990-12-01

    Comparative study of incidence of disk protrusion was performed on the basis of MR imaging in a state of flexion versus extension. The results showed that the incidnece of disk protrusion at each disk level was generally higher on the extension images than on the flexion images at the corresponding levels. The degree of difference in the incidence of the disk protrusion on flexion and extension was the greatest at the mid-cervical level spine. Based on the results with respect to features of the cervical spine in extension and flexion, it appears that the difference in incidence of disk protrusion is probably caused by movement in response to bending of the cervical spine. These results may provide information concerning the dynamic of cervical disks and may partly explain cases in which patients have symptoms of cervical myelopathy and/or radiculopathy but have no disk protrusion on images in the neutral position. (author).

  17. Brain vascular and hydrodynamic physiology

    Science.gov (United States)

    Tasker, Robert C.

    2013-01-01

    Protecting the brain in vulnerable infants undergoing surgery is a central aspect of perioperative care. Understanding the link between blood flow, oxygen delivery and oxygen consumption leads to a more informed approach to bedside care. In some cases, we need to consider how high can we let the partial pressure of carbon dioxide go before we have concerns about risk of increased cerebral blood volume and change in intracranial hydrodynamics? Alternatively, in almost all such cases, we have to address the question of how low can we let the blood pressure drop before we should be concerned about brain perfusion? This review, provides a basic understanding of brain bioenergetics, hemodynamics, hydrodynamics, autoregulation and vascular homeostasis to changes in blood gases that is fundamental to our thinking about bedside care and monitoring. PMID:24331089

  18. Hydrodynamic interactions in two dimensions

    Science.gov (United States)

    di Leonardo, R.; Keen, S.; Ianni, F.; Leach, J.; Padgett, M. J.; Ruocco, G.

    2008-09-01

    We measure hydrodynamic interactions between colloidal particles confined in a thin sheet of fluid. The reduced dimensionality, compared to a bulk fluid, increases dramatically the range of couplings. Using optical tweezers we force a two body system along the eigenmodes of the mobility tensor and find that eigenmobilities change logarithmically with particle separation. At a hundred radii distance, the mobilities for rigid and relative motions differ by a factor of 2, whereas in bulk fluids, they would be practically indistinguishable. A two dimensional counterpart of Oseen hydrodynamic tensor quantitatively reproduces the observed behavior, once the relevant boundary conditions are recognized. These results highlight the importance of dimensionality for transport and interactions in colloidal systems and proteins in biological membranes.

  19. Algorithm refinement for fluctuating hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Sarah A.; Bell, John B.; Garcia, Alejandro L.

    2007-07-03

    This paper introduces an adaptive mesh and algorithmrefinement method for fluctuating hydrodynamics. This particle-continuumhybrid simulates the dynamics of a compressible fluid with thermalfluctuations. The particle algorithm is direct simulation Monte Carlo(DSMC), a molecular-level scheme based on the Boltzmann equation. Thecontinuum algorithm is based on the Landau-Lifshitz Navier-Stokes (LLNS)equations, which incorporate thermal fluctuations into macroscopichydrodynamics by using stochastic fluxes. It uses a recently-developedsolver for LLNS, based on third-order Runge-Kutta. We present numericaltests of systems in and out of equilibrium, including time-dependentsystems, and demonstrate dynamic adaptive refinement by the computationof a moving shock wave. Mean system behavior and second moment statisticsof our simulations match theoretical values and benchmarks well. We findthat particular attention should be paid to the spectrum of the flux atthe interface between the particle and continuum methods, specificallyfor the non-hydrodynamic (kinetic) time scales.

  20. Hydrodynamics from Landau initial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Abhisek [University of Tennessee, Knoxville (UTK); Gerhard, Jochen [Frankfurt Institute for Advanced Studies (FIAS), Germany; Torrieri, Giorgio [Universidade Estadual de Campinas, Instituto de Física " Gleb Wataghin" (IFGW), Sao Paulo, Brazil; Read jr, Kenneth F. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Wong, Cheuk-Yin [ORNL

    2015-01-01

    We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by-event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 - 30%) expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2

  1. Non-boost-invariant dissipative hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Strickland, Michael; Tinti, Leonardo

    2016-01-01

    The one-dimensional non-boost-invariant evolution of the quark-gluon plasma, presumably produced during the early stages of heavy-ion collisions, is analyzed within the frameworks of viscous and anisotropic hydrodynamics. We neglect transverse dynamics and assume homogeneous conditions in the transverse plane but, differently from Bjorken expansion, we relax longitudinal boost invariance in order to study the rapidity dependence of various hydrodynamical observables. We compare the results obtained using several formulations of second-order viscous hydrodynamics with a recent approach to anisotropic hydrodynamics, which treats the large initial pressure anisotropy in a non-perturbative fashion. The results obtained with second-order viscous hydrodynamics depend on the particular choice of the second-order terms included, which suggests that the latter should be included in the most complete way. The results of anisotropic hydrodynamics and viscous hydrodynamics agree for the central hot part of the system, ho...

  2. Hydrodynamics of catheter biofilm formation

    CERN Document Server

    Sotolongo-Costa, Oscar; Rodriguez-Perez, Daniel; Martinez-Escobar, Sergio; Fernandez-Barbero, Antonio

    2009-01-01

    A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equation leads to the conclusion that biofilms grow on the internal catheter wall due to the counter-stream diffusion of blood through a very thin layer close to the wall. This biological deposition is the first necessary step for the subsequent bacteria colonization.

  3. Soliton propagation in relativistic hydrodynamics

    CERN Document Server

    Fogaça, D A; 10.1016/j.nuclphysa.2007.03.104

    2013-01-01

    We study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. In a previous work we have derived a KdV equation from Euler and continuity equations in non-relativistic hydrodynamics. In the present contribution we extend our formalism to relativistic fluids. We present results for a given equation of state, which is based on quantum hadrodynamics (QHD).

  4. Hydrodynamic Evolution of GRB Afterglow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We investigate the dynamics of a relativistic fireball which decelerates as it sweeps up ambient matter. Not only the radiative and adiabatic cases, but also the realistic intermediate cases are calculated. We perform numerical calcula-tion for various ambient media and sizes of beaming expansion, and find that the deceleration radius R0 may play an important role for the hydrodynamic evolution of GRB afterglow.

  5. Recent progress in anisotropic hydrodynamics

    Directory of Open Access Journals (Sweden)

    Strickland Michael

    2017-01-01

    Full Text Available The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, 〈 pL2〉 ≪ 〈 pT2〉. In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.

  6. Evaluating the Upset Protrusion Joining (UPJ) Method to Join Magnesium Castings to Dissimilar Metals

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Stephen [FCA US LLC

    2016-02-24

    This presentation discusses advantages and best practices for incorporating magnesium in automotive component applications to achieve substantial mass reduction, as well as some of the key challenges with respect to joining, coating, and galvanic corrosion, before providing an introduction and status update of the U.S. Department of Energy and Department of Defense jointly sponsored Upset Protrusion Joining (UPJ) process development and evaluation project. This update includes sharing performance results of a benchmark evaluation of the self-pierce riveting (SPR) process for joining dissimilar magnesium (Mg) to aluminum (Al) materials in four unique coating configurations before introducing the UPJ concept and comparing performance results of the joints made with the UPJ process to those made with the SPR process. Key results presented include: • The benchmark SPR process can produce good joints in the MgAM60B-Al 6013 joint configuration with minimal cracking in the Mg coupons if the rivet is inserted from the Mg side into the Al side. • Numerous bare Mg to bare Al joints made with the SPR process separated after only 6-wks of accelerated corrosion testing due to fracture of the rivet as a result of hydrogen embrittlement • For the same joint configurations, UPJ demonstrated substantially higher pre-corrosion joint strengths and post-corrosion joint strengths, primarily because of the larger diameter protrusion compared to smaller SPR rivet diameter and reduced degradation due to accelerated corrosion exposure • As with the SPR process, numerous bare Mg to bare Al joints made with the UPJ process also separated after 6-wks of accelerated corrosion testing, but unlike the SPR experience, the UPJ joints experienced degradation of the boss and head because of galvanic corrosion of the Mg casting, not hydrogen embrittlement of the steel rivet. • In the configuration where both the Mg and Al were pretreated with Alodine 5200 prior to joining and the complete

  7. Supported lipid bilayer nanosystems: stabilization by undulatory-protrusion forces and destabilization by lipid bridging.

    Science.gov (United States)

    Savarala, Sushma; Monson, Frederick; Ilies, Marc A; Wunder, Stephanie L

    2011-05-17

    Control of the stabilization/destabilization of supported lipid bilayers (SLBs) on nanoparticles is important for promotion of their organized assembly and for their use as delivery vehicles. At the same time, understanding the mechanism of these processes can yield insight into nanoparticle-cell interactions and nanoparticle toxicity. In this study, the suspension/precipitation process of zwitterionic lipid/SiO(2) nanosystems was analyzed as a function of ionic strength and as a function of the ratio of lipid/SiO(2) surface areas, at pH = 7.6. Salt is necessary to induce supported lipid bilayer (SLB) formation for zwitterionic lipids on silica (SiO(2)) (Seantier, B.; Kasemo, B., Influence of Mono- and Divalent Ions on the Formation of Supported Phospholipid Bilayers via Vesicle Adsorption. Langmuir 2009, 25 (10), 5767-5772). However, for zwitterionic SLBs on SiO(2) nanoparticles, addition of salt can cause precipitation of the SLBs, due to electrostatic shielding by both the lipid and the salt and to the suppression of thermal undulation/protrusion repulsive forces for lipids on solid surfaces. At ionic strengths that cause precipitation of SLBs, it was found that addition of excess SUVs, at ratios where there were equal populations of SUVs and SLBs, restored the undulation/protrusion repulsive forces and restabilized the suspensions. We suggest that SUVs separate SLBs in the suspension, as observed by TEM, and that SLB-SLB interactions are replaced by SLB-SUV interactions. Decreasing the relative amount of lipid, to the extent that there was less lipid available than the amount required for complete bilayer coverage of the SiO(2), resulted in precipitation of the nanosystem by a process of nanoparticle lipid bridging. For this case, we postulate a process in which lipid bilayer patches on one nanoparticle collide with bare silica patches on another SiO(2) nanoparticle, forming a single bilayer bridge between them. TEM data confirmed these findings, thus

  8. Entropy-limited hydrodynamics: a novel approach to relativistic hydrodynamics

    Science.gov (United States)

    Guercilena, Federico; Radice, David; Rezzolla, Luciano

    2017-07-01

    We present entropy-limited hydrodynamics (ELH): a new approach for the computation of numerical fluxes arising in the discretization of hyperbolic equations in conservation form. ELH is based on the hybridisation of an unfiltered high-order scheme with the first-order Lax-Friedrichs method. The activation of the low-order part of the scheme is driven by a measure of the locally generated entropy inspired by the artificial-viscosity method proposed by Guermond et al. (J. Comput. Phys. 230(11):4248-4267, 2011, doi: 10.1016/j.jcp.2010.11.043). Here, we present ELH in the context of high-order finite-differencing methods and of the equations of general-relativistic hydrodynamics. We study the performance of ELH in a series of classical astrophysical tests in general relativity involving isolated, rotating and nonrotating neutron stars, and including a case of gravitational collapse to black hole. We present a detailed comparison of ELH with the fifth-order monotonicity preserving method MP5 (Suresh and Huynh in J. Comput. Phys. 136(1):83-99, 1997, doi: 10.1006/jcph.1997.5745), one of the most common high-order schemes currently employed in numerical-relativity simulations. We find that ELH achieves comparable and, in many of the cases studied here, better accuracy than more traditional methods at a fraction of the computational cost (up to {˜}50% speedup). Given its accuracy and its simplicity of implementation, ELH is a promising framework for the development of new special- and general-relativistic hydrodynamics codes well adapted for massively parallel supercomputers.

  9. A lattice Boltzmann study of non-hydrodynamic effects in shell models of turbulence

    Science.gov (United States)

    Benzi, R.; Biferale, L.; Sbragaglia, M.; Succi, S.; Toschi, F.

    2004-10-01

    A lattice Boltzmann scheme simulating the dynamics of shell models of turbulence is developed. The influence of high-order kinetic modes (ghosts) on the dissipative properties of turbulence dynamics is studied. It is analytically found that when ghost fields relax on the same timescale as the hydrodynamic ones, their major effect is a net enhancement of the fluid viscosity. The bare fluid viscosity is recovered by letting ghost fields evolve on a much longer timescale. Analytical results are borne out by high-resolution numerical simulations. These simulations indicate that the hydrodynamic manifold is very robust towards large fluctuations of non-hydrodynamic fields.

  10. Horizontal and vertical changes in anchor molars after extractions in bimaxillary protrusion cases

    Directory of Open Access Journals (Sweden)

    Pratik Chandra

    2016-01-01

    Full Text Available Objective: To evaluate changes in the anchor molar position (horizontal, vertical after retraction in bimaxillary protrusion maximum anchorage cases. Materials and Methods: Thirty patients requiring maximum anchorage after extraction of the first premolars were selected for this study. The second molars were banded in both arches along with trans-palatal arch in the maxillary arch and lingual arch in the mandibular arch. En mass retraction was done using sliding mechanics. Horizontal and vertical positions of the anchor first molars were evaluated cephalometrically before and after orthodontic retraction. Results: In the horizontal plane, maxillary first molars showed net mesial movement of 1.72 mm, and there was a statistical difference between the pre- and post-values (P < 0.001. The mandibular molars showed a net horizontal movement of 2.26 mm, and there was a statistically significant difference between the pre- and post-values (P < 0.001. In the vertical plane, there was vertical movement of the maxillary anchor molars by a net value of 0.95 mm which was statistically significant (P < 0.001. The mandibular anchor molars moved vertically by a net value of 0.45 mm. This difference was statistically not significant. Conclusion: There was anchorage loss seen in both the planes (horizontal, vertical of the maxillary anchor molars. In the mandibular anchor molars, there was anchorage loss seen only in the horizontal plane. No anchorage loss was seen in the vertical plane.

  11. The Dorsal Mesenchymal Protrusion and the Pathogenesis of Atrioventricular Septal Defects

    Science.gov (United States)

    Burns, Tara; Yang, Yanping; Hiriart, Emilye; Wessels, Andy

    2017-01-01

    Congenital heart malformations are the most common type of defects found at birth. About 1% of infants are born with one or more heart defect on a yearly basis. Congenital Heart Disease (CHD) causes more deaths in the first year of life than any other congenital abnormality, and each year, nearly twice as many children die in the United States from CHD as from all forms of childhood cancers combined. Atrioventricular septal defects (AVSD) are congenital heart malformations affecting approximately 1 in 2000 live births. Babies born with an AVSD often require surgical intervention shortly after birth. However, even after successful surgery, these individuals typically have to deal with lifelong complications with the most common being a leaky mitral valve. In recent years the understanding of the molecular etiology and morphological mechanisms associated with the pathogenesis of AVSDs has significantly changed. Specifically, these studies have linked abnormal development of the Dorsal Mesenchymal Protrusion (DMP), a Second Heart Field-derived structure, to the development of this congenital defect. In this review we will be discuss some of the latest insights into the role of the DMP in the normal formation of the atrioventricular septal complex and in the pathogenesis of AVSDs. PMID:28133602

  12. Biomechanical implications of excessive endograft protrusion into the aortic arch after thoracic endovascular repair.

    Science.gov (United States)

    Rinaudo, Antonino; Raffa, Giuseppe Maria; Scardulla, Francesco; Pilato, Michele; Scardulla, Cesare; Pasta, Salvatore

    2015-11-01

    Endografts placed in the aorta for thoracic endovascular aortic repair (TEVAR) may determine malappositioning to the lesser curvature of the aortic wall, thus resulting in a devastating complication known as endograft collapse. This premature device failure commonly occurs in young individuals after TEVAR for traumatic aortic injuries as a result of applications outside the physical conditions for which the endograft was designed. In this study, an experimentally-calibrated fluid-structure interaction (FSI) model was developed to assess the hemodynamic and stress/strain distributions acting on the excessive protrusion extension (PE) of endografts deployed in four young patients underwent TEVAR. Endograft infolding was experimentally measured for different hemodynamic scenarios by perfusion testing and then used to numerically calibrate the mechanical behavior of endograft PE. Results evinced that the extent of endograft can severely alter the hemodynamic and structural loads exerted on the endograft PE. Specifically, PE determined a physiological aortic coarctation into the aortic arch characterized by a helical flow in the distal descending aorta. High device displacement and transmural pressure across the stent-graft wall were found for a PE longer than 21 mm. Finally, marked intramural stress and principal strain distributions on the protruded segment of the endograft wall may suggest failure due to material fatigue. These critical parameters may contribute to the endograft collapse observed clinically and can be used to design new devices more suitable for young individuals to be treated with an endoprosthesis for TEVAR of blunt traumatic aortic injuries.

  13. Formation of Mitochondrial Outer Membrane Derived Protrusions and Vesicles in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Akihiro Yamashita

    Full Text Available Mitochondria are dynamic organelles that have inner and outer membranes. In plants, the inner membrane has been well studied but relatively little is known about the outer membrane. Here we report that Arabidopsis cells have mitochondrial outer membrane-derived structures, some of which protrude from the main body of mitochondria (mitochondrial outer-membrane protrusions; MOPs, while others form vesicle-like structures without a matrix marker. The latter vesicle-like structures are similar to some mammalian MDVs (mitochondrial-derived vesicles. Live imaging demonstrated that a plant MDV budded off from the tip of a MOP. MDVs were also observed in the drp3a drp3b double mutant, indicating that they could be formed without the mitochondrial fission factors DRP3A and DRP3B. Double staining studies showed that the MDVs were not peroxisomes, endosomes, Golgi apparatus or trans-Golgi network (TGN. The numbers of MDVs and MOPs increased in senescent leaves and after dark treatment. Together, these results suggest that MDVs and MOPs are related to leaf senescence.

  14. Formation of Mitochondrial Outer Membrane Derived Protrusions and Vesicles in Arabidopsis thaliana.

    Science.gov (United States)

    Yamashita, Akihiro; Fujimoto, Masaru; Katayama, Kenta; Yamaoka, Shohei; Tsutsumi, Nobuhiro; Arimura, Shin-Ichi

    2016-01-01

    Mitochondria are dynamic organelles that have inner and outer membranes. In plants, the inner membrane has been well studied but relatively little is known about the outer membrane. Here we report that Arabidopsis cells have mitochondrial outer membrane-derived structures, some of which protrude from the main body of mitochondria (mitochondrial outer-membrane protrusions; MOPs), while others form vesicle-like structures without a matrix marker. The latter vesicle-like structures are similar to some mammalian MDVs (mitochondrial-derived vesicles). Live imaging demonstrated that a plant MDV budded off from the tip of a MOP. MDVs were also observed in the drp3a drp3b double mutant, indicating that they could be formed without the mitochondrial fission factors DRP3A and DRP3B. Double staining studies showed that the MDVs were not peroxisomes, endosomes, Golgi apparatus or trans-Golgi network (TGN). The numbers of MDVs and MOPs increased in senescent leaves and after dark treatment. Together, these results suggest that MDVs and MOPs are related to leaf senescence.

  15. Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications

    Energy Technology Data Exchange (ETDEWEB)

    R. Paul Drake

    2005-12-01

    We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  16. Galaxy clusters as hydrodynamics laboratories

    Science.gov (United States)

    Roediger, Elke; Sheardown, Alexander; Fish, Thomas; ZuHone, John; Hunt, Matthew; Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.

    2017-08-01

    The intra-cluster medium (ICM) of galaxy clusters shows a wealth of hydrodynamical features that trace the growth of clusters via the infall of galaxies or smaller subclusters. Such hydrodynamical features include the wakes of the infalling objects as well as the interfaces between the host cluster’s ICM and the atmosphere of the infalling object. Furthermore, the cluster dynamics can be traced by merger shocks, bow shocks, and sloshing motions of the ICM.The characteristics of these dynamical features, e.g., the direction, length, brightness, and temperature of the galaxies' or subclusters' gas tails varies significantly between different objects. This could be due to either dynamical conditions or ICM transport coefficients such as viscosity and thermal conductivity. For example, the cool long gas tails of of some infalling galaxies and groups have been attributed to a substantial ICM viscosity suppressing mixing of the stripped galaxy or group gas with the hotter ambient ICM.Using hydrodynamical simulations of minor mergers we show, however, that these features can be explained naturally by the dynamical conditions of each particular galaxy or group infall. Specifically, we identify observable features to distinguish the first and second infall of a galaxy or group into its host cluster as well as characteristics during apocentre passage. Comparing our simulations with observations, we can explain several puzzling observations such as the long and cold tail of M86 in Virgo and the very long and tangentially oriented tail of the group LEDA 87445 in Hydra A.Using our simulations, we also assess the validity of the stagnation pressure method that is widely used to determine an infalling galaxy's velocity. We show that near pericentre passage the method gives reasonable results, but near apocentre it is not easily applicable.

  17. The use of mini-implants in en masse retraction for the treatment of bimaxillary dentoalveolar protrusion

    Science.gov (United States)

    Aljhani, Ali; Zawawi, Khalid H.

    2009-01-01

    This case report describes the treatment of a 22-year-old girl who had incompetent lips with severe bimaxillary dentoalveolar protrusion. The treatment of choice for such patients is usually extraction of four first premolars and retraction of the anterior teeth. To maintain the extraction space, maximum anchorage is required. Mini-implants were used to provide maximum anchorage for obtaining a good facial profile. PMID:24151405

  18. Significant intravesical prostatic protrusion and prostatic calcification predict unfavorable outcomes of medical treatment for male lower urinary tract symptoms

    OpenAIRE

    Chia-Hao Kuei; Chun-Hou Liao; Bing-Juin Chiang

    2016-01-01

    Objective: To evaluate the impact of intravesical prostatic protrusion (IPP) and prostatic calcification on medical treatment for male lower urinary tract symptoms (LUTS). Materials and methods: Men over the age of 40 years with total International Prostate Symptom Score (IPSS) ≥ 8 were recruited from January to August 2013. The maximal flow rate, postvoiding residual (PVR) urine volume, total prostate volume (TPV), transitional zone volume (TZV), transitional zone index (TZI), and grades ...

  19. Hydrodynamic characteristics of UASB bioreactors.

    Science.gov (United States)

    John, Siby; Tare, Vinod

    2011-10-01

    The hydrodynamic characteristics of UASB bioreactors operated under different organic loading and hydraulic loading rates were studied, using three laboratory scale models treating concocted sucrose wastewater. Residence time distribution (RTD) analysis using dispersion model and tanks-in-series model was directed towards the characterization of the fluid flow pattern in the reactors and correlation of the hydraulic regime with the biomass content and biogas production. Empty bed reactors followed a plug flow pattern and the flow pattern changed to a large dispersion mixing with biomass and gas production. Effect of increase in gas production on the overall hydraulics was insignificant.

  20. Disruptive Innovation in Numerical Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Waltz, Jacob I. [Los Alamos National Laboratory

    2012-09-06

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  1. Turbulence Models of Hydrodynamic Lubrication

    Institute of Scientific and Technical Information of China (English)

    张直明; 王小静; 孙美丽

    2003-01-01

    The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models on flow fields in turbulent Couette flows and shear-induced countercurrent flows were compared to existing measurements, and Zhang & Zhang' s combined k-ε model was shown to have surpassingly satisfactory results. The method of application of this combined k-ε model to high speed journal bearings and annular seals was summarized, and the predicted results were shown to be satisfactory by comparisons with existing experiments of journal bearings and annular seals.

  2. Highly-anisotropic hydrodynamics for central collisions

    CERN Document Server

    Ryblewski, Radoslaw

    2016-01-01

    The framework of leading-order anisotropic hydrodynamics is supplemented with realistic equation of state and self-consistent freeze-out prescription. The model is applied to central proton-nucleus collisions. The results are compared to those obtained within standard Israel-Stewart second-order viscous hydrodynamics. It is shown that the resulting hadron spectra are highly-sensitive to the hydrodynamic approach that has been used.

  3. Differences of treatment outcomes between self-ligating brackets with microimplant and headgear anchorages in adults with bimaxillary protrusion.

    Science.gov (United States)

    Chen, Mu; Li, Zheng-Ming; Liu, Xue; Cai, Bin; Wang, Da-Wei; Feng, Zhi-Cai

    2015-04-01

    Our aim was to determine differences between the outcomes of treatment using microimplant anchorage compared with headgear anchorage in adult patients with bimaxillary protrusion treated with self-ligating brackets. Thirty-one adult orthodontic patients (13 men, 18 women; age, 25.87 ± 3.37 years) who were diagnosed with bimaxillary protrusion were selected. All patients were treated with self-ligating brackets and maximum anchorage after extraction of 4 first premolars. Group 1 received microimplant anchorage, and group 2 received headgear. Lateral cephalometric radiographs were obtained before and after treatment. Differences in the skeletal and dental parameters between and within groups were analyzed. No significant difference was observed in the mean treatment times between the groups (21.93 ± 3.10 vs 23.88 ± 2.68 months). There was no significant difference in skeletal measurements before or after treatment in patients who received microimplant anchorage. Patients who received headgear anchorage had an increase of the mandibular plane angle. The microimplant anchorage group had greater anterior tooth retraction and less maxillary molar mesialization than did the headgear group. In both the anteroposterior and vertical directions, microimplant anchorage achieved better control than did the traditional headgear appliance during the treatment of bimaxillary protrusion. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  4. Comparative evaluation of anchorage reinforcement between orthodontic implants and conventional anchorage in orthodontic management of bimaxillary dentoalveolar protrusion.

    Science.gov (United States)

    Chopra, S S; Mukherjee, Manish; Mitra, Rajat; Kochar, Gagan Deep; Kadu, Abhijeet

    2017-04-01

    Increased upper lip procumbency is commonly associated with maxillary dentoalveolar protrusion with the major goal of reducing maxillary dentoalveolar protrusion. The treatment plan usually includes extraction of the maxillary first premolars, followed by retraction of anterior teeth with maximum anchorage. Dental implants have been widely accepted as successful adjuncts for obtaining maximum anchorage in orthodontic treatment. 50 subjects between the ages of 13 and 17 years having bimaxillary dentoalveolar protrusion were included in the study. The patients were divided into two groups. Both groups received treatment with 0.022″ MBT prescription preadjusted edgewise appliance system. In addition, subjects of Group 'I' received the Nance button and lingual arch as anchorage reinforcement in the upper and lower arches, respectively. Subjects of Group 'II' received self-drilling titanium OI for anchorage reinforcement. Significant retraction was achieved in all cases with good vertical control. Anchor loss was observed in both groups. Anchor loss was much higher in Group I compared to Group II, and an intergroup comparison for anchor loss was highly significant. Implants as anchorage, for en masse retraction, can be incorporated into orthodontic practice. The use of orthodontic implants for anchorage is a viable alternative to conventional molar anchorage.

  5. [Evaluation of alveolar bone defects on anterior region in patients with bimaxillary protrusion by using cone-beam CT].

    Science.gov (United States)

    Zhou, Lin; Li, Wei-ran

    2015-06-18

    To investigate the alveolar bone defects of anterior alveolar bone in patients with bimaxillary protrusion by using cone-beam computed tomography (CBCT). The samples consisted of 50 patients with bimaxillary protrusion, who were assigned to the teenage group[20 cases, (13.1±1.0) years] and adult group[30 cases, (22.9±4.2) years]. The adult group included 9 hypo-divergent, 11 normo-divergent and 10 hyper-divergent patients. The images were obtained by using NewTom VG CBCT and the alveolar defects were evaluated. The ratio of the patients had alveolar bone defects was 94.00%. Meanwhile, the defects were associated with 38.60% of all the teeth. Most defects occurred on labial alveolar bone (98.66%); fenestration was found more in the maxillary alveolar region and dehiscence occurred more in the mandible. The dehiscences (3.06%) and defects prevalence (30.13%) of the teenage group were significant lower than those of the adult group (11.73% vs. 42.46%), P0.05). The hypo-divergent group had lower fenestrations prevalence (22.22%) than the normo-divergent (33.84%) and hyper-divergent groups (37.50%), Pbimaxillary protrusion before orthodontic treatment. The prevalence of defects is affected by age and vertical-growth type.

  6. Severe unilateral scissor bite and bimaxillary protrusion treated by horseshoe Le Fort I osteotomy combined with mid-alveolar osteotomy.

    Science.gov (United States)

    Shimazaki, Kazuo; Otsubo, Kunihiko; Yonemitsu, Ikuo; Kimizuka, Sachiko; Omura, Susumu; Ono, Takashi

    2014-03-01

    This report describes an orthognathic surgical case employing horseshoe Le Fort I osteotomy (HLFO) combined with mid-alveolar osteotomy and bilateral sagittal split ramus osteotomy (BSSRO) for a patient with severe unilateral scissor bite and bimaxillary protrusion. A female patient (aged 26 years, 2 months) presented with a chief complaint of dysmasesis caused by scissor bite on the right side. The clinical examination revealed difficulty in lip closure and a convex profile. Overerupted right maxillary premolars and molars and lingual tipping of the right mandibular premolars and molars were indicated before treatment. After 3 months of presurgical orthodontic treatment, two-jaw surgery involving a combination of HLFO with mid-alveolar osteotomy and BSSRO was performed. A good interdigitation in the right side was established by superior-posterior-medial movement of the dento-alveolar segment of the maxilla. Next, both the maxilla and mandible were moved superiorly and posteriorly to correct the improper lip protrusion, thereby improving the patient's profile. Our results suggest that this new orthognathic surgery technique-achieved by combining HLFO with mid-alveolar osteotomy and BSSRO-is effective for adult patients exhibiting severe unilateral scissor bite and bimaxillary protrusion.

  7. Genomic and pathogenic analysis of a Muscovy duck parvovirus strain causing short beak and dwarfism syndrome without tongue protrusion.

    Science.gov (United States)

    Fu, Qiuling; Huang, Yu; Wan, Chunhe; Fu, Guanghua; Qi, Baomin; Cheng, Longfei; Shi, Shaohua; Chen, Hongmei; Liu, Rongchang; Chen, Zhenhai

    2017-07-12

    In 2008, clinical cases of short beak and dwarfism syndrome (SBDS) caused by Muscovy duck parvovirus (MDPV) infection were found in mule duck and Taiwan white duck farms in Fujian, China. A MDPV LH strain causing duck SBDS without tongue protrusion was isolated in this study. Phylogenetic analysis show that the MDPV LH strain was clustered together with other MDPV strains, but divergent from GPV isolates. Two major fragment deletions were found in the inverted terminal repeats (ITR) of MDPV LH similar to the ones in the ITR of MDPV GX5, YY and SAAS-SHNH strains. To investigate the pathogenicity of the MDPV LH strain, virus infection of young mule ducks was performed. The infected ducks showed SBDS symptoms including retard growth and shorten beaks without tongue protrusion. Atrophy of thymus, spleen and bursa of Fabricius was identified in the infected ducks. The results show that MDPV LH strain is moderately pathogenic to mule duck, leading to occurrence of SBDS. As far as we know, it is the first study showing that SBDS without tongue protrusion, and atrophy of thymus, spleen and bursa of Fabricius possibly associated with immunosuppression were found in the MDPV-infected ducks. The established duck-MDPV-SBDS system will help us to further work on the virus pathogenesis and develop efficacious vaccine against MDPV infection. Copyright © 2017. Published by Elsevier Ltd.

  8. Comparison between prostate volume and intravesical prostatic protrusion in detecting bladder outlet obstruction due to benign prostatic hyperplasia.

    Science.gov (United States)

    Hossain, A K M S; Alam, A K M K; Habib, A K M K; Rashid, M M; Rahman, H; Islam, A K M A; Jahan, M U

    2012-04-01

    The objectives of this study were to determine and compare the correlation of intravesical prostatic protrusion (IPP) and prostate volume (PV) with bladder outlet obstruction (BOO). This study was conducted in the department of urology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh, between July 2009 to September 2010. Fifty benign prostatic hyperplasia (BPH) patients were included in the study. Their evaluation consisted of history along with International Prostate Symptoms Score (IPSS), digital rectal examination (DRE), transabdominal ultrasonography to measure prostate volume, intravesical prostatic protrusion & post voidal residual (PVR) urine and pressure-flow studies to detect bladder outflow obstruction (BOO). Statistical analysis included Unpaired 't' test, Chi-square test and Spearman's Rank correlation test. Receiver Operator Characteristic (ROC) curves were used to compare the correlation of PV and IPP with BOO. Mean prostate volume was significantly larger in bladder outlet obstructed patients (PProstate volume & intravesical prostatic protrusion measured through transabdominal ultrasonography are noninvasive and accessible method that significantly correlates with bladder outlet obstruction in patients with benign prostatic hyperplasia and the correlation of IPP is much more stronger than that of prostate volume.

  9. A randomized optical coherence tomography study of coronary stent strut coverage and luminal protrusion with rapamycin-eluting stents.

    Science.gov (United States)

    Moore, Philip; Barlis, Peter; Spiro, Jonathan; Ghimire, Gopal; Roughton, Michael; Di Mario, Carlo; Wallis, William; Ilsley, Charles; Mitchell, Andrew; Mason, Mark; Kharbanda, Rajesh; Vincent, Peter; Sherwin, Spencer; Dalby, Miles

    2009-05-01

    We used optical coherence tomography, which has a resolution of Translumina, Hechingen, Germany) to examine neointimal thickness, stent strut coverage, and protrusion at 90 days. Twenty-four patients (n = 12 for each group) underwent stent deployment and invasive follow-up at 90 days with optical coherence tomography. The primary end point was binary stent strut coverage. Coprimary end points were neointimal thickness and stent strut luminal protrusion. No patient had angiographic restenosis. For polymer-coated and nonpolymer rapamycin-eluting stents, respectively, mean (SD), neointimal thickness was 77.2 (25.6) microm versus 191.2 (86.7) mum (p 10% of struts being uncovered. High-resolution imaging allowed development of the concept of the protrusion index, and >25% of struts protruded into the vessel lumen with the polymer-coated rapamycin-eluting stent compared with <5% with the nonpolymer rapamycin-eluting stent. These findings may have important implications for the risk of stent thrombosis and, therefore, future stent design. (An optical coherence tomography study to determine stent coverage in polymer coated versus bare metal rapamycin eluting stents. ORCA 1, from the Optimal Revascularization of the Coronary Arteries group; ISRCTN42475919).

  10. Computational fluid dynamics simulation of the upper airway response to large incisor retraction in adult class I bimaxillary protrusion patients

    Science.gov (United States)

    Zheng, Zhe; Liu, Hong; Xu, Qi; Wu, Wei; Du, Liling; Chen, Hong; Zhang, Yiwen; Liu, Dongxu

    2017-04-01

    The changes of the upper airway after large retraction of the incisors in adult class I bimaxillary protrusion patients were assessed mainly focused on the anatomic variation and ignored the functional changes. This study aimed to investigate the changes of the upper airway in adult class I bimaxillary protrusion patients after extraction treatment using the functional images based on computational fluid dynamics (CFD). CFD was implemented after 3D reconstruction based on the CBCT of 30 patients who have completed extraction treatment. After treatment, pressure drop in the minimum area, oropharynx, and hypopharynx increased significantly. The minimum pressure and the maximum velocity mainly located in the hypopharynx in pre-treatment while they mostly occured in the oropharynx after treatment. Statistically significant correlation between pressure drop and anatomic parameters, pressure drop and treatment outcomes was found. No statistical significance changes in pressure drop and volume of nasopharynx was found. This study suggested that the risk of pharyngeal collapsing become higher after extraction treatment with maximum anchorage in bimaxillary protrusion adult patients. Those adverse changes should be taken into consideration especially for high-risk patients to avoid undesired weakening of the respiratory function in clinical treatment.

  11. Physiotherapy of postoperation of lumbar disc protrusion%腰椎间盘突出症术后的理疗康复

    Institute of Scientific and Technical Information of China (English)

    孙艳霞

    2002-01-01

    Background:The common treatment of lumbar disc protrusion is operation.After the extirpation of intervertebral disc,patients always need processes of plerosis and healing and always have edema of nerve root and aseptic inflammation.

  12. Some open questions in hydrodynamics

    CERN Document Server

    Dyndal, Mateusz

    2014-01-01

    When speaking of unsolved problems in physics, this is surprising at first glance to discuss the case of fluid mechanics. However, there are many deep open questions that come with the theory of fluid mechanics. In this paper, we discuss some of them that we classify in two categories, the long term behavior of solutions of equations of hydrodynamics and the definition of initial (boundary) conditions. The first set of questions come with the non-relativistic theory based on the Navier-Stokes equations. Starting from smooth initial conditions, the purpose is to understand if solutions of Navier-Stokes equations remain smooth with the time evolution. Existence for just a finite time would imply the evolution of finite time singularities, which would have a major influence on the development of turbulent phenomena. The second set of questions come with the relativistic theory of hydrodynamics. There is an accumulating evidence that this theory may be relevant for the description of the medium created in high en...

  13. Evaluation of condylar inclination of dentulous subjects determined by axiograph and to compare with manual programming of articulators using protrusive interocclusal record

    OpenAIRE

    Prasad, Krishna D.; Manoj Shetty; Chandy, Binoj K.

    2015-01-01

    Aims: To determine the average condylar inclination using ultrasonic axiograph; to determine the average condylar inclination using protrusive interocclusal bite records; to compare whether there is any marked difference in the values obtained by these techniques. Settings and Design: This clinical study compares the mean horizontal condylar inclination of the ultrasonic axiograph (Axioquick system) and the manual programming using protrusive interocclusal records. Materials and Methods: The ...

  14. Treatment of Class II malocclusion with bialveolar protrusion by means of unusual extractions and anchorage mini-implant

    Directory of Open Access Journals (Sweden)

    Jong-Moon Chae

    2012-10-01

    Full Text Available INTRODUCTION: Patients with dental Class II bialveolar protrusion are generally treated by extracting the four first premolars or two first and two second premolars, and retracting the anterior teeth. This case report describes the treatment of an adult patient with bialveolar protrusion, a Class II canine and molar relationship, and lip protrusion. METHODS: In this patient, the maxillary right second molar (1.7 had to be extracted due to extensive caries. To create sufficient space to retract the anterior teeth, the maxillary right posterior teeth were distalized with a maxillary posterior mini-implant (1.2~1.3 mm in diameter, 10 mm long, which was placed into the maxillary tuberosity area and allowed an en masse retraction of the maxillary anterior teeth. RESULTS: Overall, mini-implant can provide anchorage to produce a good facial profile even without additional premolar extraction in cases of dental Class II bialveolar protrusion with the hopeless second molar. CONCLUSION: The total treatment period was 42 months and the results were acceptable for 34 months after debonding.INTRODUÇÃO: os pacientes com Classe II e biprotrusão alveolar são, geralmente, tratados com extração de quatro primeiros pré-molares ou dois primeiros e dois segundos pré-molares, e retração dos dentes anteriores. Este relato de caso descreve o tratamento de um paciente adulto com biprotrusão alveolar, relação de caninos e de molares em Classe II e protrusão labial. MÉTODOS: nesse paciente, o segundo molar superior direito precisou ser extraído devido a cáries extensas. Para criar espaço suficiente para retração dos dentes anteriores, os dentes posterossuperiores direitos foram distalizados com um mini-implante posterossuperior (1,2 ~ 1,3mm de diâmetro, 10mm de comprimento, que foi colocado na área da tuberosidade maxilar e permitiu uma retração em massa dos dentes anteriores. RESULTADOS: em geral, mini-implantes podem fornecer ancoragem para

  15. Modeling the Excess Cell Surface Stored in a Complex Morphology of Bleb-Like Protrusions

    Science.gov (United States)

    Wessler, Timothy; Yang, Xiaofeng; Chen, Alex; Roach, Nathan; Elston, Timothy C.; Wang, Qi; Jacobson, Ken; Forest, M. Gregory

    2016-01-01

    Cells transition from spread to rounded morphologies in diverse physiological contexts including mitosis and mesenchymal-to-amoeboid transitions. When these drastic shape changes occur rapidly, cell volume and surface area are approximately conserved. Consequently, the rounded cells are suddenly presented with a several-fold excess of cell surface whose area far exceeds that of a smooth sphere enclosing the cell volume. This excess is stored in a population of bleb-like protrusions (BLiPs), whose size distribution is shown by electron micrographs to be skewed. We introduce three complementary models of rounded cell morphologies with a prescribed excess surface area. A 2D Hamiltonian model provides a mechanistic description of how discrete attachment points between the cell surface and cortex together with surface bending energy can generate a morphology that satisfies a prescribed excess area and BLiP number density. A 3D random seed-and-growth model simulates efficient packing of BLiPs over a primary rounded shape, demonstrating a pathway for skewed BLiP size distributions that recapitulate 3D morphologies. Finally, a phase field model (2D and 3D) posits energy-based constitutive laws for the cell membrane, nematic F-actin cortex, interior cytosol, and external aqueous medium. The cell surface is equipped with a spontaneous curvature function, a proxy for the cell surface-cortex couple, that is a priori unknown, which the model “learns” from the thin section transmission electron micrograph image (2D) or the “seed and growth” model image (3D). Converged phase field simulations predict self-consistent amplitudes and spatial localization of pressure and stress throughout the cell for any posited stationary morphology target and cell compartment constitutive properties. The models form a general framework for future studies of cell morphological dynamics in a variety of biological contexts. PMID:27015526

  16. Modeling the Excess Cell Surface Stored in a Complex Morphology of Bleb-Like Protrusions.

    Directory of Open Access Journals (Sweden)

    Maryna Kapustina

    2016-03-01

    Full Text Available Cells transition from spread to rounded morphologies in diverse physiological contexts including mitosis and mesenchymal-to-amoeboid transitions. When these drastic shape changes occur rapidly, cell volume and surface area are approximately conserved. Consequently, the rounded cells are suddenly presented with a several-fold excess of cell surface whose area far exceeds that of a smooth sphere enclosing the cell volume. This excess is stored in a population of bleb-like protrusions (BLiPs, whose size distribution is shown by electron micrographs to be skewed. We introduce three complementary models of rounded cell morphologies with a prescribed excess surface area. A 2D Hamiltonian model provides a mechanistic description of how discrete attachment points between the cell surface and cortex together with surface bending energy can generate a morphology that satisfies a prescribed excess area and BLiP number density. A 3D random seed-and-growth model simulates efficient packing of BLiPs over a primary rounded shape, demonstrating a pathway for skewed BLiP size distributions that recapitulate 3D morphologies. Finally, a phase field model (2D and 3D posits energy-based constitutive laws for the cell membrane, nematic F-actin cortex, interior cytosol, and external aqueous medium. The cell surface is equipped with a spontaneous curvature function, a proxy for the cell surface-cortex couple, that is a priori unknown, which the model "learns" from the thin section transmission electron micrograph image (2D or the "seed and growth" model image (3D. Converged phase field simulations predict self-consistent amplitudes and spatial localization of pressure and stress throughout the cell for any posited stationary morphology target and cell compartment constitutive properties. The models form a general framework for future studies of cell morphological dynamics in a variety of biological contexts.

  17. Comparison of Mallampati test with lower jaw protrusion maneuver in predicting difficult laryngoscopy and intubation

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan Ul Haq

    2013-01-01

    Full Text Available Background: Failure to maintain a patent airway is one of the commonest causes of anesthesia-related morbidity and mortality. Many protocols, algorithms, and different combinations of tested methods for airway assessment have been developed to predict difficult laryngoscopy and intubation. The reported incidence of a difficult intubation varies from 1.5% to 13%. The objective of this study was to compare Mallampati test (MT with lower jaw protrusion (LJP maneuver in predicting difficult laryngoscopy and intubation. Materials and Methods: Seven hundred and sixty patients were included in the study. All the patients underwent MT and LJP maneuver for their airway assessment. After a standardized technique of induction of anesthesia, primary anesthetist performed laryngoscopy and graded it according to the grades described by Cormack and Lehane. Sensitivity, specificity, accuracy, and positive predictive value (PPV and negative predictive value (NPV were calculated for both these tests with 95% confidence interval (CI using conventional laryngoscopy as gold standard. Area under curve was also calculated for both, MT and LJP maneuver. A P < 0.05 was taken as significant. Results: LJP maneuver had higher sensitivity (95.9% vs. 27.1%, NPV (98.7% vs. 82.0%, and accuracy (90.1% vs. 80.3% when compared to MT in predicting difficult laryngoscopy and intubation. Both tests, however, had similar specificity and PPV. There was marked difference in the positive and negative likelihood ratio between LJP and MT. Similarly, the area under the curve favored LJP maneuver over MT. Conclusion: The results of this study show that LJP maneuver is a better test to predict difficult laryngoscopy and tracheal intubation. We recommend the addition of this maneuver to the routine preoperative evaluation of airway.

  18. Learning to school in the presence of hydrodynamic interactions

    CERN Document Server

    Gazzola, Mattia; Alexeev, Dmitry; de Brauer, Alexia; Koumoutsakos, Petros

    2015-01-01

    Schooling, an archetype of collective behavior, emerges from the interactions of fish responding to visual and other informative cues mediated by their aqueous environment. In this context, a fundamental and largely unexplored question concerns the role of hydrodynamics. Here, we investigate schooling by modeling swimmers as vortex dipoles whose interactions are governed by the Biot-Savart law. When we enhance these dipoles with behavioral rules from classical agent based models we find that they do not lead robustly to schooling due to flow mediated interactions. In turn, we present dipole swimmers equipped with adaptive decision-making that learn, through a reinforcement learning algorithm, to adjust their gaits in response to non-linearly varying hydrodynamic loads. The dipoles maintain their relative position within a formation by adapting their strength and school in a variety of prescribed geometrical arrangements. Furthermore, we identify schooling patterns that minimize the individual and the collecti...

  19. Key role of hydrodynamic interactions in colloidal gelation.

    Science.gov (United States)

    Furukawa, Akira; Tanaka, Hajime

    2010-06-18

    Colloidal gelation is caused by the formation of a percolated network of colloidal particles suspended in a liquid. Thus far the major transport process leading to gelation has been believed to be the brownian diffusion of particles. Contrary to this common belief, we reveal by numerical simulations that many-body hydrodynamic interactions between colloidal particles also play an essential role in gelation: They significantly promote gelation, or lower the colloid volume fraction threshold for percolation, as compared to their absence. We find that the incompressible nature of a liquid component and the resulting self-organization of hydrodynamic flow with a transverse (rotational) character are responsible for this enhancement of network-forming ability.

  20. Low torque hydrodynamic lip geometry for rotary seals

    Energy Technology Data Exchange (ETDEWEB)

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  1. Hydrodynamic synchronization of nonlinear oscillators at low Reynolds number.

    Science.gov (United States)

    Leoni, M; Liverpool, T B

    2012-04-01

    We introduce a generic model of a weakly nonlinear self-sustained oscillator as a simplified tool to study synchronization in a fluid at low Reynolds number. By averaging over the fast degrees of freedom, we examine the effect of hydrodynamic interactions on the slow dynamics of two oscillators and show that they can lead to synchronization. Furthermore, we find that synchronization is strongly enhanced when the oscillators are nonisochronous, which on the limit cycle means the oscillations have an amplitude-dependent frequency. Nonisochronity is determined by a nonlinear coupling α being nonzero. We find that its (α) sign determines if they synchronize in phase or antiphase. We then study an infinite array of oscillators in the long-wavelength limit, in the presence of noise. For α>0, hydrodynamic interactions can lead to a homogeneous synchronized state. Numerical simulations for a finite number of oscillators confirm this and, when α<0, show the propagation of waves, reminiscent of metachronal coordination.

  2. Relativistic Hydrodynamics for Heavy-Ion Collisions

    Science.gov (United States)

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  3. Hydrodynamic models of a Cepheid atmosphere

    Science.gov (United States)

    Karp, A. H.

    1975-01-01

    Instead of computing a large number of coarsely zoned hydrodynamic models covering the entire atmospheric instability strip, the author computed a single model as well as computer limitations allow. The implicit hydrodynamic code of Kutter and Sparks was modified to include radiative transfer effects in optically thin zones.

  4. Hydrodynamic correlation functions in nematic liquid crystals

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; Carle, D.; Laidlaw, W.G.

    1976-01-01

    The result, recently discovered by Forster, that the strength factors of the nonpropagating modes in certain hydrodynamic correlation functions in nematic liquid crystals are not fully determined by the hydrodynamic matrix is reconsidered. Using time reversal and space inversion symmetry one finds t

  5. Hydrodynamic Overview at Hot Quarks 2016

    CERN Document Server

    Noronha-Hostler, Jacquelyn

    2016-01-01

    This presents an overview of relativistic hydrodynamic modeling in heavy-ion collisions prepared for Hot Quarks 2016, at South Padre Island, TX, USA. The influence of the initial state and viscosity on various experimental observables are discussed. Specific problems that arise in the hydrodynamical modeling at the Beam Energy Scan are briefly discussed.

  6. Measurement of the hydrodynamic resistance of microdroplets.

    Science.gov (United States)

    Jakiela, Slawomir

    2016-10-07

    Here, we demonstrate a novel method of measurement which determines precisely the hydrodynamic resistance of a droplet flowing through a channel. The obtained results show that the hydrodynamic resistance of a droplet in a microchannel achieves its maximum for lengths of the droplet ranging from 3w to 4w and that interactions between beads in a train exist.

  7. Hydrodynamic correlation functions in nematic liquid crystals

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; Carle, D.; Laidlaw, W.G.

    1976-01-01

    The result, recently discovered by Forster, that the strength factors of the nonpropagating modes in certain hydrodynamic correlation functions in nematic liquid crystals are not fully determined by the hydrodynamic matrix is reconsidered. Using time reversal and space inversion symmetry one finds t

  8. Quasiparticle anisotropic hydrodynamics for central collisions

    CERN Document Server

    Alqahtani, Mubarak; Strickland, Michael

    2016-01-01

    We use quasiparticle anisotropic hydrodynamics to study an azimuthally-symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state. We compare results obtained using the quasiparticle method with the standard method of imposing the equation of state in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio eta/s. We find that the three methods agree well for small shear viscosity to entropy density ratio, eta/s, but differ at large eta/s. We find, in particular, that when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative...

  9. Hydrodynamic Approaches in Relativistic Heavy Ion Reactions

    CERN Document Server

    de Souza, Rafael Derradi; Kodama, Takeshi

    2016-01-01

    We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation with the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to...

  10. Hydrodynamics research of wastewater treatment bioreactors

    Institute of Scientific and Technical Information of China (English)

    REN Nan-qi; ZHANG Bing; ZHOU Xue-fei

    2009-01-01

    To optimize the design and improve the performance of wastewater treatment bioreactors, the review concerning the hydrodynamics explored by theoretical equations, process experiments, modeling of the hydrody-namics and flow field measurement is presented. Results of different kinds of experiments show that the hydro-dynamic characteristics can affect sludge characteristics, mass transfer and reactor performance significantly. A-long with the development of theoretical equations, turbulence models including large eddy simulation models and Reynolds-averaged Navier-Stokes (RANS) models are widely used at present. Standard and modified k-ε models are the most widely used eddy viscosity turbulence models for simulating flows in bioreactors. Numericalsimulation of hydrodynamics is proved to be efficient for optimizing design and operation. The development of measurement techniques with high accuracy and low intrusion enables the flow filed in the bioreactors to be transparent. Integration of both numerical simulation and experimental measurement can describe the hydrody-namics very well.

  11. Hydrodynamic Nambu Brackets derived by Geometric Constraints

    CERN Document Server

    Blender, Richard

    2015-01-01

    A geometric approach to derive the Nambu brackets for ideal two-dimensional (2D) hydrodynamics is suggested. The derivation is based on two-forms with vanishing integrals in a periodic domain, and with resulting dynamics constrained by an orthogonality condition. As a result, 2D hydrodynamics with vorticity as dynamic variable emerges as a generic model, with conservation laws which can be interpreted as enstrophy and energy functionals. Generalized forms like surface quasi-geostrophy and fractional Poisson equations for the stream-function are also included as results from the derivation. The formalism is extended to a hydrodynamic system coupled to a second degree of freedom, with the Rayleigh-B\\'{e}nard convection as an example. This system is reformulated in terms of constitutive conservation laws with two additive brackets which represent individual processes: a first representing inviscid 2D hydrodynamics, and a second representing the coupling between hydrodynamics and thermodynamics. The results can b...

  12. Hydrodynamics of evaporating sessile drops

    CERN Document Server

    Barash, L Yu

    2010-01-01

    Several dynamical stages of the Marangoni convection of an evaporating sessile drop are obtained. We jointly take into account the hydrodynamics of an evaporating sessile drop, effects of the thermal conduction in the drop and the diffusion of vapor in air. The stages are characterized by different number of vortices in the drop and the spatial location of vortices. During the early stage the array of vortices arises near a surface of the drop and induces a non-monotonic spatial distribution of the temperature over the drop surface. The number of near-surface vortices in the drop is controlled by the Marangoni cell size, which is calculated similar to that given by Pearson for flat fluid layers. The number of vortices quickly decreases with time, resulting in three bulk vortices in the intermediate stage. The vortex structure finally evolves into the single convection vortex in the drop, existing during about 1/2 of the evaporation time.

  13. Decoherent Histories and Hydrodynamic Equations

    CERN Document Server

    Halliwell, J J

    1998-01-01

    For a system consisting of a large collection of particles, a set of variables that will generally become effectively classical are the local densities (number, momentum, energy). That is, in the context of the decoherent histories approach to quantum theory, it is expected that histories of these variables will be approximately decoherent, and that their probabilites will be strongly peaked about hydrodynamic equations. This possibility is explored for the case of the diffusion of the number density of a dilute concentration of foreign particles in a fluid. It is shown that, for certain physically reasonable initial states, the probabilities for histories of number density are strongly peaked about evolution according to the diffusion equation. Decoherence of these histories is also shown for a class of initial states which includes non-trivial superpositions of number density. Histories of phase space densities are also discussed. The case of histories of number, momentum and energy density for more general...

  14. Hydrodynamic stability and stellar oscillations

    Indian Academy of Sciences (India)

    H M Antia

    2011-07-01

    Chandrasekhar’s monograph on Hydrodynamic and hydromagnetic stability, published in 1961, is a standard reference on linear stability theory. It gives a detailed account of stability of fluid flow in a variety of circumstances, including convection, stability of Couette flow, Rayleigh–Taylor instability, Kelvin–Helmholtz instability as well as the Jean’s instability for star formation. In most cases he has extended these studies to include effects of rotation and magnetic field. In a later paper he has given a variational formulation for equations of non-radial stellar oscillations. This forms the basis for helioseismic inversion techniques as well as extension to include the effect of rotation, magnetic field and other large-scale flows using a perturbation treatment.

  15. Integration of quantum hydrodynamical equation

    Science.gov (United States)

    Ulyanova, Vera G.; Sanin, Andrey L.

    2007-04-01

    Quantum hydrodynamics equations describing the dynamics of quantum fluid are a subject of this report (QFD).These equations can be used to decide the wide class of problem. But there are the calculated difficulties for the equations, which take place for nonlinear hyperbolic systems. In this connection, It is necessary to impose the additional restrictions which assure the existence and unique of solutions. As test sample, we use the free wave packet and study its behavior at the different initial and boundary conditions. The calculations of wave packet propagation cause in numerical algorithm the division. In numerical algorithm at the calculations of wave packet propagation, there arises the problem of division by zero. To overcome this problem we have to sew together discrete numerical and analytical continuous solutions on the boundary. We demonstrate here for the free wave packet that the numerical solution corresponds to the analytical solution.

  16. Particle hydrodynamics with tessellation techniques

    CERN Document Server

    Hess, S

    2009-01-01

    Lagrangian smoothed particle hydrodynamics (SPH) is a well-established approach to model fluids in astrophysical problems, thanks to its geometric flexibility and ability to automatically adjust the spatial resolution to the clumping of matter. However, a number of recent studies have emphasized inaccuracies of SPH in the treatment of fluid instabilities. The origin of these numerical problems can be traced back to spurious surface effects across contact discontinuities, and to SPH's inherent prevention of mixing at the particle level. We here investigate a new fluid particle model where the density estimate is carried out with the help of an auxiliary mesh constructed as the Voronoi tessellation of the simulation particles instead of an adaptive smoothing kernel. This Voronoi-based approach improves the ability of the scheme to represent sharp contact discontinuities. We show that this eliminates spurious surface tension effects present in SPH and that play a role in suppressing certain fluid instabilities. ...

  17. Nonstandard Gaits in Unsteady Hydrodynamics

    Science.gov (United States)

    Fairchild, Michael; Rowley, Clarence

    2016-11-01

    Marine biology has long inspired the design and engineering of underwater vehicles. The literature examining the kinematics and dynamics of fishes, ranging from undulatory anguilliform swimmers to oscillatory ostraciiform ones, is vast. Past numerical studies of these organisms have principally focused on gaits characterized by sinusoidal pitching and heaving motions. It is conceivable that more sophisticated gaits could perform better in some respects, for example as measured by thrust generation or by cost of transport. This work uses an unsteady boundary-element method to numerically investigate the hydrodynamics and propulsive efficiency of high-Reynolds-number swimmers whose gaits are encoded by Fourier series or by Jacobi elliptic functions. Numerical results are presented with an emphasis on identifying particular wake structures and modes of motion that are associated with optimal swimming. This work was supported by the Office of Naval Research through MURI Grant N00014-14-1-0533.

  18. Introduction to Magneto-Hydrodynamics

    Science.gov (United States)

    Pelletier, Guy

    Magneto-Hydrodynamics (hereafter MHD) describes plasmas on large scales and more generally electrically conducting fluids. This description does not discriminate between the various fluids that constitute the medium. In laboratory, it allows to globally describe a plasma machine, for instance a toroidal nuclear fusion reactor like a Tokamak. In astrophysics it plays an essential role in the description of cosmic objects and their environments, as well as the media, such as the interstellar or the intergalactic medium. A set of phenomena are specific to MHD description. Some of them will be presented in this lecture such as the tension effect, confinement, magnetic diffusivity, magnetic field freezing, Alfvén waves, magneto-sonic waves, reconnection. A celebrated phenomenon of MHD will not be introduced in this brief lecture, namely the dynamo effect.

  19. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.

    2013-01-23

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.

  20. The hydrodynamics of dolphin drafting

    Directory of Open Access Journals (Sweden)

    Weihs Daniel

    2004-05-01

    Full Text Available Abstract Background Drafting in cetaceans is defined as the transfer of forces between individuals without actual physical contact between them. This behavior has long been surmised to explain how young dolphin calves keep up with their rapidly moving mothers. It has recently been observed that a significant number of calves become permanently separated from their mothers during chases by tuna vessels. A study of the hydrodynamics of drafting, initiated in the hope of understanding the mechanisms causing the separation of mothers and calves during fishing-related activities, is reported here. Results Quantitative results are shown for the forces and moments around a pair of unequally sized dolphin-like slender bodies. These include two major effects. First, the so-called Bernoulli suction, which stems from the fact that the local pressure drops in areas of high speed, results in an attractive force between mother and calf. Second is the displacement effect, in which the motion of the mother causes the water in front to move forwards and radially outwards, and water behind the body to move forwards to replace the animal's mass. Thus, the calf can gain a 'free ride' in the forward-moving areas. Utilizing these effects, the neonate can gain up to 90% of the thrust needed to move alongside the mother at speeds of up to 2.4 m/sec. A comparison with observations of eastern spinner dolphins (Stenella longirostris is presented, showing savings of up to 60% in the thrust that calves require if they are to keep up with their mothers. Conclusions A theoretical analysis, backed by observations of free-swimming dolphin schools, indicates that hydrodynamic interactions with mothers play an important role in enabling dolphin calves to keep up with rapidly moving adult school members.

  1. Hydrodynamic design of the humpback whale flipper.

    Science.gov (United States)

    Fish, F E; Battle, J M

    1995-07-01

    The humpback whale (Megaptera novaeangliae) is reported to use its elongate pectoral flippers during swimming maneuvers. The morphology of the flipper from a 9.02-m whale was evaluated with regard to this hydrodynamic function. The flipper had a wing-like, high aspect ratio planform. Rounded tubercles were regularly interspersed along the flipper's leading edge. The flipper was cut into 71 2.5-cm cross-sections and photographed. Except for sections near the distal tip, flipper sections were symmetrical with no camber. Flipper sections had a blunt, rounded leading edge and a highly tapered trailing edge. Placement of the maximum thickness placement for each cross-section varied from 49% of chord at the tip to 19% at mid-span. Section thickness ratio averaged 0.23 with a range of 0.20-0.28. The humpback whale flipper had a cross-sectional design typical of manufactured aerodynamic foils for lift generation. The morphology and placement of leading edge tubercles suggest that they function as enhanced lift devices to control flow over the flipper and maintain lift at high angles of attack. The morphology of the humpback whale flipper suggests that it is adapted for high maneuverability associated with the whale's unique feeding behavior.

  2. A clinico-radiographic analysis of sagittal condylar guidance determined by protrusive interocclusal registration and panoramic radiographic images in humans

    Directory of Open Access Journals (Sweden)

    D Krishna Prasad

    2012-01-01

    Full Text Available Purpose: To evaluate the correlation between sagittal condylar guidance obtained by protrusive interocclusal records and panoramic radiograph tracing methods in human dentulous subjects. Materials and Methods: The sagittal condylar guidance was determined in 75 dentulous subjects by protrusive interocclusal records using Aluwax through a face bow transfer (HANAU™ Spring Bow, Whip Mix Corporation, USA to a semi-adjustable articulator (HANAU™ Wide-Vue Articulator, Whip Mix Corporation, USA. In the same subjects, the sagittal outline of the articular eminence and glenoid fossa was traced in panoramic radiographs. The sagittal condylar path inclination was constructed by joining the heights of curvature in the glenoid fossa and the corresponding articular eminence. This was then related to the constructed Frankfurt′s horizontal plane to determine the radiographic angle of sagittal condylar guidance. Results: A strong positive correlation existed between right and left condylar guidance by the protrusive interocclusal method (P 0.000 and similarly by the radiographic method (P 0.013. The mean difference between the condylar guidance obtained using both methods were 1.97° for the right side and 3.18° for the left side. This difference between the values by the two methods was found to be highly significant for the right (P 0.003 and left side (P 0.000, respectively. The sagittal condylar guidance obtained from both methods showed a significant positive correlation on right (P 0.000 and left side (P 0.015, respectively. Conclusion: Panoramic radiographic tracings of the sagittal condylar path guidance may be made relative to the Frankfurt′s horizontal reference plane and the resulting condylar guidance angles used to set the condylar guide settings of semi-adjustable articulators.

  3. Distalization of the maxillary and mandibular dentitions with miniscrew anchorage in a patient with moderate Class I bimaxillary dentoalveolar protrusion.

    Science.gov (United States)

    Chen, Gui; Teng, Fei; Xu, Tian-Min

    2016-03-01

    This case report describes the treatment of a 25-year-old woman with a skeletal Class I pattern and moderate bimaxillary dentoalveolar protrusion. The orthodontic treatment included distal movement of her maxillary and mandibular dentitions using 1-stage miniscrews. The total active treatment time was about 12 months. Her tooth alignment and profile were significantly improved by the orthodontic treatment. The 2-year posttreatment records show a stable occlusion and satisfactory facial esthetics. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  4. Direct Laryngoscopy and Endotracheal Intubation Complicated by Anterior Tracheal Laceration Secondary to Protrusion of Preloaded Endotracheal Tube Stylet.

    Science.gov (United States)

    Warner, Matthew A; Fox, Jonathan F

    2016-02-15

    Tracheal wall disruption is a rare complication of endotracheal intubation, typically occurring in the posterior (membranous) trachea lacking cartilaginous support. We present the case of a 68-year-old man who developed an anterior tracheal tear after routine endotracheal intubation, most likely occurring secondary to protrusion of a factory-preloaded stylet beyond the distal orifice of the endotracheal tube. Tracheal disruption should be considered in any patient with subcutaneous emphysema and respiratory distress after tracheal extubation and confirmed with bronchoscopy. Conservative management may be appropriate for those with small tears, hemodynamic stability, and the ability to isolate the tear from positive pressure ventilation.

  5. Extreme hydrodynamic atmospheric loss near the critical thermal escape regime

    CERN Document Server

    Erkaev, N V; Odert, P; Kulikov, Yu N; Kislyakova, K G

    2015-01-01

    By considering martian-like planetary embryos inside the habitable zone of solar-like stars we study the behavior of the hydrodynamic atmospheric escape of hydrogen for small values of the Jeans escape parameter $\\beta < 3$, near the base of the thermosphere, that is defined as a ratio of the gravitational and thermal energy. Our study is based on a 1-D hydrodynamic upper atmosphere model that calculates the volume heating rate in a hydrogen dominated thermosphere due to the absorption of the stellar soft X-ray and extreme ultraviolet (XUV) flux. We find that when the $\\beta$ value near the mesopause/homopause level exceeds a critical value of $\\sim$2.5, there exists a steady hydrodynamic solution with a smooth transition from subsonic to supersonic flow. For a fixed XUV flux, the escape rate of the upper atmosphere is an increasing function of the temperature at the lower boundary. Our model results indicate a crucial enhancement of the atmospheric escape rate, when the Jeans escape parameter $\\beta$ decr...

  6. A Displayer of Stellar Hydrodynamics Processes

    Science.gov (United States)

    Vigo, José Antonio Escartín; Senz, Domingo García

    The graphics display tool that we present here was originally developed to meet the needs of the Astronomy and Astrophysics group at the UPC (GAA). At present, it is used to display the plots obtained from hydrodynamic simulations using the SPH (smoothed particle hydrodynamics) method. It is, however, a generic program that can be used for other multidimensional hydrodynamic methods. The application combines the most widely used features of other programs (most of them commercial) such as GnuPlot, Surfer, Grapher, IDL, Voxler, etc.

  7. Non abelian hydrodynamics and heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Calzetta, E. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina)

    2014-01-14

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  8. Quantum ideal hydrodynamics on the lattice

    CERN Document Server

    Burch, Tommy

    2013-01-01

    After discussing the problem of defining the hydrodynamic limit from microscopic scales, we give an introduction to ideal hydrodynamics in the Lagrange picture, and show that it can be viewed as a field theory, which can be quantized using the usual Feynman sum-over-paths prescription. We then argue that this picture can be connected to the usually neglected thermal microscopic scale in the hydrodynamic expansion. After showing that this expansion is generally non-perturbative, we show how the lattice can be used to understand the impact quantum and thermal fluctuations can have on the fluid behavior.

  9. Non abelian hydrodynamics and heavy ion collisions

    CERN Document Server

    Calzetta, Esteban

    2013-01-01

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  10. Retrieval of vegetation hydrodynamic parameters from satellite multispectral data

    Science.gov (United States)

    Forzieri, Giovanni; Degetto, Massimo; Righetti, Maurizio; Castelli, Fabio; Preti, Federico

    2013-04-01

    Riparian vegetation plays a crucial role on affecting the floodplain hydraulic roughness, which in turn significantly influences the dynamics of flood waves. This work explores the potential accuracies of retrieving vegetation hydrodynamic parameters through satellite multispectral data. The method is focused on estimation of vegetation height and flexural rigidity for herbaceous patterns and of plant density, tree height, stem diameter, crown base height and crown diameter of high-forest and coppice consociations for arboreal and shrub patterns. The retrieval algorithm performs: (1) classification procedure of riparian corridor; (2) land cover-based Principal Component Analysis of spectral channels; (3) explorative analysis of correlation structure between principal components and biomechanical properties and (4) model identification/estimation/validation for floodplain roughness parameterization. To capture the impacts of stiff/flexible vegetation, a GIS hydrodynamic model has been coupled with a flow resistance external routine that estimates the hydraulic roughness by using simulated water stages and the remote sensing-derived vegetation parameters. The procedure is tested along a 3-km reach of the Avisio river (Trentino Alto Adige, Italy) by comparing extended field surveys and a synchronous SPOT-5 multispectral image acquired on 28/08/2004. Results showed significant correlation values between spectral-derived information and hydrodynamic parameters. Predictive models provided high coefficients of determination, especially for mixed arboreal and shrub land covers. The generated structural parameter maps represent spatially explicit data layers that can be used as inputs to hydrodynamic models to analyze flow resistance effects in different submergence conditions of vegetation. The hydraulic modelling results showed that the new method is able to provide accurate hydraulic output data and to enhance the roughness estimation up to 73% with respect to a

  11. Smoothed particle hydrodynamics and magnetohydrodynamics

    Science.gov (United States)

    Price, Daniel J.

    2012-02-01

    This paper presents an overview and introduction to smoothed particle hydrodynamics and magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several 'urban myths' regarding SPH, in particular the idea that one can simply increase the 'neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.

  12. Fluctuating hydrodynamics for ionic liquids

    Science.gov (United States)

    Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos

    2017-04-01

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.

  13. Series of spinal balance therapy in treatment of 196 cases of protrusion of intervertebral disc%脊柱系列平衡疗法治疗椎间盘突出症196例

    Institute of Scientific and Technical Information of China (English)

    高维亮; 米宏义; 任秀琴; 任秀琴

    2002-01-01

    @@ Background:Protrusion of intervertebral disc was a clinical syndrom resulted from intervertevral disc degeneration, fibrous ring rupture,protrusion of pulpiform nucleus that stimulate and compresses nerve root,and comprehensive conservative therapy was often adopted.In this group of data,196 cases of protrusion of intervertebral disc treated by series of spinal balance therapy were collected from January 2000 to December 2001.

  14. A novel brewing process via controlled hydrodynamic cavitation

    CERN Document Server

    Albanese, Lorenzo; Meneguzzo, Francesco; Pagliaro, Mario

    2016-01-01

    This paper describes a completely new brewing equipment and process based upon controlled hydrodynamic cavitation, providing significant advantages in terms of lowered capital cost, reduced production time, enhanced energy and production efficiency, food safety, while preserving beer organoleptic qualities. Experiments carried out on real microbrewery volume scale using the new and conventional technology unquestionably confirm the relevance of the new findings. Impacts of these discoveries are potentially far reaching, as beer is the worldwide most widely consumed alcoholic beverage, therefore highly relevant to health, environment the economy and even to local identities.

  15. Thermophoresis at a charged surface: the role of hydrodynamic slip.

    Science.gov (United States)

    Morthomas, Julien; Würger, Alois

    2009-01-21

    By matching boundary layer hydrodynamics with slippage to the force-free flow at larger distances, we obtain the thermophoretic mobility of charged particles as a function of the Navier slip length b. A moderate value of b augments Ruckenstein's result by a term 2b/λ, where λ is the Debye length. If b exceeds the particle size a, the enhancement coefficient a/λ is independent of b but proportional to the particle size. Similar effects occur for transport driven by a salinity gradient or by an electric field.

  16. Hydrodynamically driven colloidal assembly in dip coating.

    Science.gov (United States)

    Colosqui, Carlos E; Morris, Jeffrey F; Stone, Howard A

    2013-05-01

    We study the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth substrates. Below a critical withdrawal speed where the coating film is thinner than the particle diameter, capillary forces induced by deformation of the free surface prevent the convective transport of single particles through the meniscus beneath the film. Capillary-induced forces are balanced by hydrodynamic drag only after a minimum number of particles assemble within the meniscus. The particle assembly can thus enter the thin film where it moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces produces periodic and regular structures below a critical ratio Ca(2/3)/sqrt[Bo] particles in suspension. The hydrodynamically driven assembly documented here is consistent with stripe pattern formations observed experimentally in dip coating.

  17. Adiabatic hydrodynamics: The eightfold way to dissipation

    CERN Document Server

    Haehl, Felix M; Rangamani, Mukund

    2015-01-01

    We provide a complete solution to hydrodynamic transport at all orders in the gradient expansion compatible with the second law constraint. The key new ingredient we introduce is the notion of adiabaticity, which allows us to take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid compensates for entropy production. The space of adiabatic fluids is quite rich, and admits a decomposition into seven distinct classes. Together with the dissipative class this establishes the eightfold way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms beyond leading order in the gradient expansion are agnostic of the second law. While this completes a transport taxonomy, we go on to argue for a new symmetry principle, an Abelian gauge invariance that guarantees adiabaticity in hydrodynamics. We suggest that this symmetry is the macroscopic manifestation of the microscopic KMS invariance. We demonstrate its utility by explicitly constructing effective ac...

  18. Gingival Zenith Positions and Levels of Maxillary Anterior Dentition in Cases of Bimaxillary Protrusion: A Morphometric Analysis.

    Science.gov (United States)

    Gowd, Snigdha; Shankar, T; Chatterjee, Suravi; Mohanty, Pritam; Sahoo, Nivedita; Baratam, Srinivas

    2017-08-01

    To investigate the two clinical parameters, such as gingival zenith positions (GZPs) and gingival zenith levels (GZLs), of maxillary anterior dentition in bimaxillary protrusion cases and collate it with severiety of crown inclination. Gingival zenith position and GZL in 40 healthy patients (29 females and 11 males) with an average age of 21.5 years were assessed. Inclusion criteria involved absence of periodontal diseases, Angle's class I molar relationship, and upper anterior proclination within 25 to 45° based on Steiner's analysis; exclusion criteria included spacing, crowding, anterior restoration and teeth with incisor attrition or rotation. The GZP was evaluated using digital calipers from voxel-based morphometry (VBM), and GZL was assessed from the tangent drawn from GZP of central incisor and canines to the linear vertical distance of GZP of lateral incisor. All the central incisors showed a GZP distal to VBM with a mean average of 1 mm. Severe proclination between 40 and 45° showed a statistically significant variation. Lateral incisors displayed a mean of 0.5 mm deviation of GZP from the vertically bisected midline. In 80% of canine population, GZP was centralized. We conclude that the degree of proclination of maxillary anterior dentition was correlated to the gingival contour in bimaxillary cases. The investigation revealed that there is a variation in the location of GZP as the severity of proclination increases. This study highlights the importance of microesthetics in fixed orthodontic treatment. The gingival contour should be unaltered while retraction during management of bimaxillary protrusion.

  19. En masse retraction versus two-step retraction of anterior teeth in extraction treatment of bimaxillary protrusion.

    Science.gov (United States)

    Felemban, Nayef H; Al-Sulaimani, Fahad F; Murshid, Zuhair A; Hassan, Ali H

    2013-01-01

    In the present report, two techniques of space closure; two-step anterior teeth retraction (TSR) and en masse retraction (ER) were used in two adult patients who had bimaxillary protrusion and were treated with four premolar extractions and fixed orthodontic appliance therapy. Both patients had a Class I dental malocclusion and the same chief complaint, which is protrusive lips. Anterior teeth were retracted by two-step retraction; canine sliding followed by retraction of incisors with T-loop archwire in the first patient and by en masse retraction using Beta titanium alloy T-loop archwire in the second case. At the end of treatment, good balance and harmony of lips was achieved with maintenance of Class I relationships. The outcome of treatment was similar in the two patients with similar anchorage control. ER can be an acceptable alternative to the TSR during space closure since it is esthetically more acceptable. However, it requires accurate bending and positioning of the T-loop.

  20. Treatment of 96 Cases of Prolapse of Lumbar Intervertebral Disc of Posterior Protrusion Type by the Comprehensive Therapy

    Institute of Scientific and Technical Information of China (English)

    LIU Kong-jiang; LU Jian-hu; SONG Ling

    2004-01-01

    选择腰椎间盘突出症后凸型患者96例,随机分为观察组50例和对照组46例,观察组采用针刺牵引推拿综合治疗,对照组仅用针刺治疗,对患者治疗后进行疗效评定.治疗组和对照组治疗后的疗效有显著差异(P<0.05).综合治疗腰椎间盘突出症后凸型疗效确切,方法简便,具有一定的临床指导意义.%s: Ninety-six cases of prolapse of lumbar intervertebral disc of posterior protrusion type were divided randomly into observation group including 50 cases and control group including 46 cases.Patients in observation group were treated with combined use of acupuncture, traction and Tuina, and patients in control group were only treated with acupuncture. After treatment, the significant difference was found between the observation group and control group in therapeutic affect. The comprehensive therapy is definitely effective and simple in the treatment of prolapse of lumbar intervertebral disc of posterior protrusion type, which has guiding significance to the clinical practice.

  1. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Szepesi

    Full Text Available Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs, a family of extracellularly acting and Zn(2+-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.

  2. Thermo--hydrodynamics As a Field Theory

    CERN Document Server

    Jezierski, Jacek

    2011-01-01

    The field theoretical description of thermo-hydrodynamics is given. It is based on the duality between the physical space--time and the "material space-time" which we construct here. The material space appearing in a natural way in the canonical formulation of the hydrodynamics is completed with a material time playing role of the field potential for temperature. Both Lagrangian and Hamiltonian formulations, the canonical structure, Poisson bracket, N\\"other theorem and conservation laws are discussed.

  3. Hydrodynamics of bacterial colonies: Phase diagrams

    Science.gov (United States)

    Lega, J.; Passot, T.

    2004-09-01

    We present numerical simulations of a recent hydrodynamic model describing the growth of bacterial colonies on agar plates. We show that this model is able to qualitatively reproduce experimentally observed phase diagrams, which relate a colony shape to the initial quantity of nutrients on the plate and the initial wetness of the agar. We also discuss the principal features resulting from the interplay between hydrodynamic motions and colony growth, as described by our model.

  4. Improvements to SOIL: An Eulerian hydrodynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.G.

    1988-04-01

    Possible improvements to SOIL, an Eulerian hydrodynamics code that can do coupled radiation diffusion and strength of materials, are presented in this report. Our research is based on the inspection of other Eulerian codes and theoretical reports on hydrodynamics. Several conclusions from the present study suggest that some improvements are in order, such as second-order advection, adaptive meshes, and speedup of the code by vectorization and/or multitasking. 29 refs., 2 figs.

  5. Relabeling symmetries in hydrodynamics and magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Padhye, N.; Morrison, P.J.

    1996-04-01

    Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel`s theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism.

  6. Comprehensive treatment and rehabilitation nursing of protrusion of lumbar intervertebral discs%腰椎间盘突出症的综合治疗与康复护理

    Institute of Scientific and Technical Information of China (English)

    程利萍

    2003-01-01

    @@ INTRODUCTION Comprehensive treatment by drug, manipulation reduction, attacking avital point on patients with protrusion can achieve satisfying clinicaleffects combined with rehabilitation nursing.

  7. Hydrodynamics of soft active matter

    Science.gov (United States)

    Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, Madan; Simha, R. Aditi

    2013-07-01

    This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are “dry” systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or “wet” systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.

  8. On TCM Therapy for Lumbar Intervertebral Disc Protrusion%腰椎间盘突出症的中医药治疗概述

    Institute of Scientific and Technical Information of China (English)

    张海清; 赵继荣; 陈文

    2012-01-01

    Curative effects of internal treatment, external treatment, traction, massage, small needle-knife in treating lumbar Intervertebral disc protrusion were summarized through analyzing related literature of TCM in treating lumbar Intervertebral disc protrusion, therefore to illustrate the effectiveness of TCM in treating lumbar Intervertebral disc protrusion.%通过分析中医药治疗腰椎间盘突出症的相关文献,就中药内治法、中药外治法、牵引、推拿、小针刀等方法治疗腰椎间盘突出症的临床疗效进行概述,进一步说明中医药在治疗腰椎间盘突出症的有效性.

  9. AN EXPERIMENTAL INVESTIGATION OF PRESSURE AND CAVITATION CHARACTERISTICS OF HIGH VELOCITY FLOW OVER A CYLINDRICAL PROTRUSION IN THE PRESENCE AND ABSENCE OF AERATION

    Institute of Scientific and Technical Information of China (English)

    DONG Zhi-yong; LIU Zhi-ping; WU Yi-hong; ZHANG Dong

    2008-01-01

    This article experimentally investigated the pressure and cavitation characteristics of high velocity flow over a surface irregularity with and without aeration in a non-circulating water tunnel system. The surface irregularity is a cylindrical protrusion made of stainless steel of 6 mm diameter and 2 mm height. Pressures with and without aeration were measured with MPX400D pressure transducers and real-timely acquired by a SINOCERA YE6263 data acquisition system. Variations in flow regimes with and without aeration were observed. Pressure profiles and their variations with air concentration upper and lower cylindrical protrusion on the invert and obvert walls were determined. Variations of cavitation number with air concentration lower cylindrical protrusion were analyzed. Also, cavitation numbers in the presence and absence of aeration were compared.

  10. Simulating frictional contact in smoothed particle hydrodynamics

    Institute of Scientific and Technical Information of China (English)

    WANG; Jian; WU; Hao; GU; ChongShi; HUA; Hui

    2013-01-01

    Smoothed Particle Hydrodynamics (SPH) is a powerful tool for large deformation computation of soil flow. However, the method to simulate frictional contact in the framework of SPH is still absent and needs to be developed. This paper presents an algorithm to simulate frictional contact between soil and rigid or deformable structure in the framework of SPH. In this algo-rithm, the computational domain is divided into several sub-domains according to the existing contact boundaries, and contact forces are used as bridges of these sub-domains to fulfill problem solving. In the process of the SPH discretization for govern-ing equation of each sub-domain, the inherent problem of boundary deficiency of SPH is handled properly. Therefore, the par-ticles located at contact boundary can have precise acceleration, which is critical for contact detection. Then, based on the as-sumption that the SPH particle of soil can slightly penetrate into the structure, the contact forces along normal and tangential directions of the contact surface are computed by momentum principle, and the frictional force is modified if sliding occurs.Compared with previous methods, in which only particle-to-particle contact is considered or frictional sliding is just ignored,the method proposed in this study is more efficient and accurate, and is suitable for simulating interaction between soft materi-als and rigid or deformable structures, which are very common in geotechnical engineering. A number of numerical tests have been carried out to verify the accuracy and stability of the proposed algorithm, and the results have been compared with ana-lytical solutions or FEM results. The consistency obtained from these comparisons indicates that the algorithm is robust and can enhance the computing capability of SPH.

  11. Rehabilitation treatment after operation for lower back interveterbral disc protrusion%腰椎间盘突出症术后的康复治疗

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Background: Most operation treating the lower back interveterbral disc protrusion apply posterior vertebral lamina fenestration an half vertebral lamina removing or vertebral lamina removing, the vertebral tube was opened and the nucleus pulposus was removed, while all these methods caused weakened spinal column stability. Satisfactory treating results may be gained with the horizontal and vertical chiseling and reserved replanting of vertebral lamina designed according to biodynamic principles. Objective: To discuss the treating effects of reserved replanting of vertebral lamina and rehabilitation treatment after operation in lower back intervertebral disc protrusion. Unit:Second People's Hospital of Ningxia.

  12. Hydrodynamic pressure processing: Impact on the quality attributes of fresh and further-processed meat products

    Science.gov (United States)

    This book chapter reviews hydrodynamic pressure processing (HDP) as an innovative, postharvest technology for enhancing the quality attributes of fresh and further-processed meat products. A variety of meat products have been tested for their response to the high pressure shockwaves of HDP. The st...

  13. Intensification of biogas production using pretreatment based on hydrodynamic cavitation.

    Science.gov (United States)

    Patil, Pankaj N; Gogate, Parag R; Csoka, Levente; Dregelyi-Kiss, Agota; Horvath, Miklos

    2016-05-01

    The present work investigates the application of hydrodynamic cavitation (HC) for the pretreatment of wheat straw with an objective of enhancing the biogas production. The hydrodynamic cavitation reactor is based on a stator and rotor assembly. The effect of three different speeds of rotor (2300, 2500, 2700 rpm), wheat straw to water ratios (0.5%, 1% and 1.5% wt/wt) and also treatment times as 2, 4 and 6 min have been investigated in the work using the design of experiments (DOE) approach. It was observed that the methane yield of 31.8 ml was obtained with untreated wheat straw whereas 77.9 ml was obtained with HC pre-treated wheat straw confirming the favourable changes during the pre-treatment. The combined pre-treatment using KOH and HC gave maximum yield of biogas as 172.3 ml. Overall, it has been established that significant enhancement in the biogas production can be obtained due to the pretreatment using HC which can also be further intensified by combination with chemical treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Hydrodynamic Modeling and Its Application in AUC.

    Science.gov (United States)

    Rocco, Mattia; Byron, Olwyn

    2015-01-01

    The hydrodynamic parameters measured in an AUC experiment, s(20,w) and D(t)(20,w)(0), can be used to gain information on the solution structure of (bio)macromolecules and their assemblies. This entails comparing the measured parameters with those that can be computed from usually "dry" structures by "hydrodynamic modeling." In this chapter, we will first briefly put hydrodynamic modeling in perspective and present the basic physics behind it as implemented in the most commonly used methods. The important "hydration" issue is also touched upon, and the distinction between rigid bodies versus those for which flexibility must be considered in the modeling process is then made. The available hydrodynamic modeling/computation programs, HYDROPRO, BEST, SoMo, AtoB, and Zeno, the latter four all implemented within the US-SOMO suite, are described and their performance evaluated. Finally, some literature examples are presented to illustrate the potential applications of hydrodynamics in the expanding field of multiresolution modeling.

  15. Anisotropic hydrodynamics for conformal Gubser flow

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)

    2016-12-15

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  16. Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect

    Institute of Scientific and Technical Information of China (English)

    Zhao Min; Sun Di-Hua; Tian Chuan

    2012-01-01

    By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model,we present a new anticipation effect lattice hydrodynamic (AELH) model,and obtain the linear stability condition of the model by applying the linear stability theory.Through nonlinear analysis,we derive the Burgers equation and Korteweg-de Vries (KdV) equation,to describe the propagating behaviour of traffic density waves in the stable and the metastable regions,respectively.The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered.

  17. Intraoral Vertical Ramus Osteotomy Improved the Stomatognathic Function in an Elderly Patient with Mandibular Protrusion:A Case Report

    Directory of Open Access Journals (Sweden)

    Ishihara,Yoshihito

    2010-10-01

    Full Text Available This article reports the successful surgical-orthodontic treatment of an elderly patient with dentofacial deformity and signs and symptoms of temporomandibular disorder (TMD. The patient was a 63-year-old woman with a concave profile due to mandibular protrusion. To correct skeletal deformities, the mandible was posteriorly repositioned by employing intraoral vertical ramus osteotomy (IVRO following presurgical orthodontic treatment. After active treatment for 31 months, the facial profile was significantly improved and satisfactory occlusion was achieved. In addition, TMD symptoms of clicking sounds on the left side and difficulty in mouth opening were resolved. Regarding the findings of magnetic resonance imaging, anterior disc displacement in the opening phase was improved in the temporomandibular joint on the left side. Furthermore, stomatognathic functions were also improved without any aggravation of age-related problems. In conclusion, surgical repositioning of the mandible using IVRO leads to both morphological and functional improvements even in elderly patients.

  18. SUMMARY OF RESEARCHES ON THE TREATMENT OF PROTRUSION OF LUMBAR INTERVERTEBRAL DISC BY "SHE-BIE" OINTMENT-PARTITION MOXIBUSTION

    Institute of Scientific and Technical Information of China (English)

    蒋松鹤; 郁引飞; 叶天申

    2003-01-01

    In the present paper the authors sum up their research results about "She-Bie" (black-tail snake-ground beetle) Ointment-partition moxibustion for treatment of Iumbar intervertebral disc protrusion (LIDP). Animal ex-perirments showed that when used externally, "She-Bie" Ointment had striking anti-infllammation and pain-relief actionsbut had no irritant and no allergic effects to the skin. In the treatment of mild type of LIDP, "She-Bie" Ointment parti-tion moxibustion could work well in improving clinical symptoms; and in the treatment of moderate type of LIDP, itcould be used as a supplementary measure and raise the excellent and good rates of the therapeutic effect further. Forthis reason, "She-Bie" Ointment partition moxibustion deserves being Popularized in clinical treatment of LIDP.

  19. Hydrodynamics of stratified epithelium: steady state and linearized dynamics

    CERN Document Server

    Yeh, Wei-Ting

    2015-01-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue is assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description for tissue dynamics at long-wavelength, long-time limit is developed, and the analysis reveals important insight for the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface could enhance small perturbations. This destabilizing mechanism is general for continuous self-renewal multi-layered tissues, it could be related to the origin of certain tissue morphology and developing pattern.

  20. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    Science.gov (United States)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  1. A quantitative description of the extension and retraction of surface protrusions in spreading 3T3 mouse fibroblasts.

    Science.gov (United States)

    Albrecht-Buehler, G; Lancaster, R M

    1976-11-01

    We suggest a method of quantitating the motile actions of surface protrusions in spreading animal cells in culture. Its basis is the determination of the percentage of freshly plated cells which produce particle-free areas around them on a gold particle-coated glass cover slip within 50 min. Studying 3T3 cells with this assay, we found that the presence of Na+, K+, Cl-, and Mg++ or Ca++ in a neutral or slightly alkaline phosphate or bicarbonate buffered solution is sufficient to support the optimal particle removal by the cells for at least 50 min. Two metabolic inhibitors, 2,4-dinitrophenol and Na-azide, inhibit the particle removal. If D-glucose is added along with the inhibitors, particle removal can be restored, whereas the addition of three glucose analogues which are generally believed to be nonmetabolizable cannot restore the activity. Serum is not required for the mechanism(s) of the motile actions of surface protrusions in spreading 3T3 cells. However, it contains components which can neutralize the inhibitory actions of bovine serum albumin and several amino acids, particularly L-cystine or L-cystein and L-methionine. Furthermore, serum codetermines which of the major surface extension, filopodia, lamellipodia, or lobopodia, is predominantly active. We found three distinct classes of extracellular conditions under which the active surface projections are predominantly either lamellipodia, (sheetlike projections), lobopodia (blebs), or filopodia (microspikes). The quantitated dependencies on temperature, pH and the inhibition by cytochalasin B or the particle removal are very similar in all three cases. Preventing the cells from anchoring themselves for 15-20 min before plating in serum-free medium seems to stimulate particle removal threefold.

  2. Tetraspanin CD82 inhibits protrusion and retraction in cell movement by attenuating the plasma membrane-dependent actin organization.

    Directory of Open Access Journals (Sweden)

    Wei M Liu

    Full Text Available To determine how tetraspanin KAI1/CD82, a tumor metastasis suppressor, inhibits cell migration, we assessed which cellular events critical for motility are altered by KAI1/CD82 and how KAI1/CD82 regulates these events. We found that KAI1/CD82-expressing cells typically exhibited elongated cellular tails and diminished lamellipodia. Live imaging demonstrated that the polarized protrusion and retraction of the plasma membrane became deficient upon KAI1/CD82 expression. The deficiency in developing these motility-related cellular events was caused by poor formations of actin cortical network and stress fiber and by aberrant dynamics in actin organization. Rac1 activity was reduced by KAI1/CD82, consistent with the diminution of lamellipodia and actin cortical network; while the growth factor-stimulated RhoA activity was blocked by KAI1/CD82, consistent with the loss of stress fiber and attenuation in cellular retraction. Upon KAI1/CD82 expression, Rac effector cofilin was not enriched at the cell periphery to facilitate lamellipodia formation while Rho kinase exhibited a significantly lower activity leading to less retraction. Phosphatidylinositol 4, 5-biphosphate, which initiates actin polymerization from the plasma membrane, became less detectable at the cell periphery in KAI1/CD82-expressing cells. Moreover, KAI1/CD82-induced phenotypes likely resulted from the suppression of multiple signaling pathways such as integrin and growth factor signaling. In summary, at the cellular level KAI1/CD82 inhibited polarized protrusion and retraction events by disrupting actin reorganization; at the molecular level, KAI1/CD82 deregulated Rac1, RhoA, and their effectors cofilin and Rho kinase by perturbing the plasma membrane lipids.

  3. Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension.

    Science.gov (United States)

    Davidson, L A; Keller, R E

    1999-10-01

    We have characterized the cell movements and prospective cell identities as neural folds fuse during neural tube formation in Xenopus laevis. A newly developed whole-mount, two-color fluorescent RNA in situ hybridization method, visualized with confocal microscopy, shows that the dorsal neural tube gene xpax3 and the neural-crest-specific gene xslug are expressed far lateral to the medial site of neural fold fusion and that expression moves medially after fusion. To determine whether cell movements or dynamic changes in gene expression are responsible, we used low-light videomicroscopy followed by fluorescent in situ and confocal microscopy. These methods revealed that populations of prospective neural crest and dorsal neural tube cells near the lateral margin of the neural plate at the start of neurulation move to the dorsal midline using distinctive forms of motility. Before fold fusion, superficial neural cells apically contract, roll the neural plate into a trough and appear to pull the superficial epidermal cell sheet medially. After neural fold fusion, lateral deep neural cells move medially by radially intercalating between other neural cells using two types of motility. The neural crest cells migrate as individual cells toward the dorsal midline using medially directed monopolar protrusions. These movements combine the two lateral populations of neural crest into a single medial population that form the roof of the neural tube. The remaining cells of the dorsal neural tube extend protrusions both medially and laterally bringing about radial intercalation of deep and superficial cells to form a single-cell-layered, pseudostratified neural tube. While ours is the first description of medially directed cell migration during neural fold fusion and re-establishment of the neural tube, these complex cell behaviors may be involved during cavitation of the zebrafish neural keel and secondary neurulation in the posterior axis of chicken and mouse.

  4. Training for motor function after removal of nucleus pulposus in protrusion of lumbar intervertebral discs%腰椎间盘突出症髓核摘除术后运动功能训练

    Institute of Scientific and Technical Information of China (English)

    王媛

    2003-01-01

    @@ INTRODUCIION Protrusion of lumbar intervertebral discs is a kind of disease causedby protrusion of nucleus pulposus to vertebral canal due to degen-eration and rupture of lumbar intervertebral discs and stimulationand compression on neighboring nerve roots. Therapeutic effects afteroperation has a direct relationship with postoperative rehabilitationnursing.

  5. Status and future of hydrodynamical model atmospheres

    CERN Document Server

    Ludwig, H G

    2004-01-01

    Since about 25 years ago work has been dedicated to the development of hydrodynamical model atmospheres for cool stars (of A to T spectral type). Despite their obviously sounder physical foundation in comparison with standard hydrostatic models, their general application has been rather limited. In order to understand why this is, and how to progress, we review the present status of hydrodynamical modelling of cool star atmospheres. The development efforts were and are motivated by the theoretical interest of understanding the dynamical processes operating in stellar atmospheres. To show the observational impact, we discuss examples in the fields of spectroscopy and stellar structure where hydrodynamical modelling provided results on a level qualitatively beyond standard models. We stress present modelling challenges, and highlight presently possible and future observations that would be particularly valuable in the interplay between model validation and interpretation of observables, to eventually widen the ...

  6. First Numerical Simulations of Anomalous Hydrodynamics

    CERN Document Server

    Hongo, Masaru; Hirano, Tetsufumi

    2013-01-01

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters ($v_2^\\pm$) as a function of the net charge asymmetry $A_\\pm$, we quantitatively verify that the linear dependence of $\\Delta v_2 \\equiv v_2^- - v_2^+$ on the net charge asymmetry $A_\\pm$ cannot be regarded as a sensitive signal of anomalous transports, contrary to previous studies. We, however, find that the intercept $\\Delta v_2(A_\\pm=0)$ is sensitive to anomalous transport effects.

  7. Hydrodynamics of a unitary Bose gas

    Science.gov (United States)

    Man, Jay; Fletcher, Richard; Lopes, Raphael; Navon, Nir; Smith, Rob; Hadzibabic, Zoran

    2016-05-01

    In general, normal-phase Bose gases are well described by modelling them as ideal gases. In particular, hydrodynamic flow is usually not observed in the expansion dynamics of normal gases, and is more readily observable in Bose-condensed gases. However, by preparing strongly-interacting clouds, we observe hydrodynamic behaviour in normal-phase Bose gases, including the `maximally' hydrodynamic unitary regime. We avoid the atom losses that often hamper experimental access of this regime by using radio-frequency injection, which switches on interactions much faster than trap or loss timescales. At low phase-space densities, we find excellent agreement with a collisional model based on the Boltzmann equation. At higher phase-space densities our results show a deviation from this model in the vicinity of an Efimov resonance, which cannot be accounted for by measured losses.

  8. Hydrodynamics of the Chiral Dirac Spectrum

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2016-01-01

    We derive a hydrodynamical description of the eigenvalues of the chiral Dirac spectrum in the vacuum and in the large $N$ (volume) limit. The linearized hydrodynamics supports sound waves. The stochastic relaxation of the eigenvalues is captured by a hydrodynamical instanton configuration which follows from a pertinent form of Euler equation. The relaxation from a phase of localized eigenvalues and unbroken chiral symmetry to a phase of de-localized eigenvalues and broken chiral symmetry occurs over a time set by the speed of sound. We show that the time is $\\Delta \\tau=\\pi\\rho(0)/2\\beta N$ with $\\rho(0)$ the spectral density at zero virtuality and $\\beta=1,2,4$ for the three Dyson ensembles that characterize QCD with different quark representations in the ergodic regime.

  9. Hydrodynamics of bacterial colonies: A model

    Science.gov (United States)

    Lega, J.; Passot, T.

    2003-03-01

    We propose a hydrodynamic model for the evolution of bacterial colonies growing on soft agar plates. This model consists of reaction-diffusion equations for the concentrations of nutrients, water, and bacteria, coupled to a single hydrodynamic equation for the velocity field of the bacteria-water mixture. It captures the dynamics inside the colony as well as on its boundary and allows us to identify a mechanism for collective motion towards fresh nutrients, which, in its modeling aspects, is similar to classical chemotaxis. As shown in numerical simulations, our model reproduces both usual colony shapes and typical hydrodynamic motions, such as the whirls and jets recently observed in wet colonies of Bacillus subtilis. The approach presented here could be extended to different experimental situations and provides a general framework for the use of advection-reaction-diffusion equations in modeling bacterial colonies.

  10. Dynamo efficiency controlled by hydrodynamic bistability.

    Science.gov (United States)

    Miralles, Sophie; Herault, Johann; Herault, Johann; Fauve, Stephan; Gissinger, Christophe; Pétrélis, François; Daviaud, François; Dubrulle, Bérengère; Boisson, Jean; Bourgoin, Mickaël; Verhille, Gautier; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas

    2014-06-01

    Hydrodynamic and magnetic behaviors in a modified experimental setup of the von Kármán sodium flow-where one disk has been replaced by a propeller-are investigated. When the rotation frequencies of the disk and the propeller are different, we show that the fully turbulent hydrodynamic flow undergoes a global bifurcation between two configurations. The bistability of these flow configurations is associated with the dynamics of the central shear layer. The bistable flows are shown to have different dynamo efficiencies; thus for a given rotation rate of the soft-iron disk, two distinct magnetic behaviors are observed depending on the flow configuration. The hydrodynamic transition controls the magnetic field behavior, and bifurcations between high and low magnetic field branches are investigated.

  11. Hydrodynamics, resurgence and trans-asymptotics

    CERN Document Server

    Basar, Gokce

    2015-01-01

    The second-order hydrodynamical description of a homogeneous conformal plasma that undergoes a boost- invariant expansion is given by a single nonlinear ordinary differential equation, whose resurgent asymptotic properties we study, developing further the recent work of Heller and Spalinski [Phys. Rev. Lett. 115, 072501 (2015)]. Resurgence clearly identifies the non-hydrodynamic modes that are exponentially suppressed at late times, analogous to the quasi-normal-modes in gravitational language, organizing these modes in terms of a trans-series expansion. These modes are analogs of instantons in semi-classical expansions, where the damping rate plays the role of the instanton action. We show that this system displays the generic features of resurgence, with explicit quantitative relations between the fluctuations about different orders of these non-hydrodynamic modes. The imaginary part of the trans-series parameter is identified with the Stokes constant, and the real part with the freedom associated with init...

  12. Holography, Hydrodynamization and Heavy-Ion Collisions

    CERN Document Server

    Heller, Michal P

    2016-01-01

    In the course of the past several years holography has emerged as an ab initio tool in exploring strongly-time-dependent phenomena in gauge theories. These lecture notes overview recent developments in this area driven by phenomenological questions concerning applicability of hydrodynamics under extreme conditions occurring in ultrarelativistic heavy-ion collisions at RHIC and LHC. The topics include equilibration time scales, holographic collisions and hydrodynamization from the point of view of the asymptotic character of the hydrodynamic gradient expansion. The emphasis is put on concepts rather than calculational techniques and particular attention is devoted to present these developments in the context of the most recent advances and some of the open problems.

  13. The RAGE radiation-hydrodynamic code

    CERN Document Server

    Gittings, Michael; Clover, Michael; Betlach, Thomas; Byrne, Nelson; Coker, Robert; Dendy, Edward; Hueckstaedt, Robert; New, Kim; Oakes, W Rob; Ranta, Dale; Stefan, Ryan

    2008-01-01

    We describe RAGE, the ``Radiation Adaptive Grid Eulerian'' radiation-hydrodynamics code, including its data structures, its parallelization strategy and performance, its hydrodynamic algorithm(s), its (gray) radiation diffusion algorithm, and some of the considerable amount of verification and validation efforts. The hydrodynamics is a basic Godunov solver, to which we have made significant improvements to increase the advection algorithm's robustness and to converge stiffnesses in the equation of state. Similarly, the radiation transport is a basic gray diffusion, but our treatment of the radiation-material coupling, wherein we converge nonlinearities in a novel manner to allow larger timesteps and more robust behavior, can be applied to any multi-group transport algorithm.

  14. Hydrodynamic simulations with the Godunov SPH

    CERN Document Server

    Murante, Giuseppe; Brunino, Riccardo; Cha, Suneg-Hoon

    2011-01-01

    We present results based on an implementation of the Godunov Smoothed Particle Hydrodynamics (GSPH), originally developed by Inutsuka (2002), in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear flow test, and the "blob" test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha (2010): (i) GSPH provi...

  15. Hydrodynamic dispersion broadening of a sedimentation front

    Science.gov (United States)

    Martin, J.; Rakotomalala, N.; Salin, D.

    1994-10-01

    Hydrodynamic dispersion is responsible for the spreading of the sedimentation front even in a noncolloidal monodisperse suspension. Measurements of the broadening of the top front observed during sedimentation have been used in determining the hydrodynamic dispersion coefficient. Hindered settling has an opposed effect and leads to the self-sharpening of the front. Both effects have to be taken into account simultaneously. This Letter provides a simple, but complete determination of the space and time concentration profile and shows that the final front should consist of a steady-shape profile propagating at constant velocity. With such a solution, the data of Davis et al. [AIChE J. 34, 123 (1988); J. Fluid Mech. 196, 107 (1988)] give hydrodynamic dispersion coefficient five times larger than their former analysis, in agreement with Lee et al. [Phys. Fluids A 4, 2601 (1992)].

  16. Radiation hydrodynamics integrated in the PLUTO code

    Science.gov (United States)

    Kolb, Stefan M.; Stute, Matthias; Kley, Wilhelm; Mignone, Andrea

    2013-11-01

    Aims: The transport of energy through radiation is very important in many astrophysical phenomena. In dynamical problems the time-dependent equations of radiation hydrodynamics have to be solved. We present a newly developed radiation-hydrodynamics module specifically designed for the versatile magnetohydrodynamic (MHD) code PLUTO. Methods: The solver is based on the flux-limited diffusion approximation in the two-temperature approach. All equations are solved in the co-moving frame in the frequency-independent (gray) approximation. The hydrodynamics is solved by the different Godunov schemes implemented in PLUTO, and for the radiation transport we use a fully implicit scheme. The resulting system of linear equations is solved either using the successive over-relaxation (SOR) method (for testing purposes) or using matrix solvers that are available in the PETSc library. We state in detail the methodology and describe several test cases to verify the correctness of our implementation. The solver works in standard coordinate systems, such as Cartesian, cylindrical, and spherical, and also for non-equidistant grids. Results: We present a new radiation-hydrodynamics solver coupled to the MHD-code PLUTO that is a modern, versatile, and efficient new module for treating complex radiation hydrodynamical problems in astrophysics. As test cases, either purely radiative situations, or full radiation-hydrodynamical setups (including radiative shocks and convection in accretion disks) were successfully studied. The new module scales very well on parallel computers using MPI. For problems in star or planet formation, we added the possibility of irradiation by a central source.

  17. Automatic Prompting and Positive Attention to Reduce Tongue Protrusion and Head Tilting by Two Adults with Severe to Profound Intellectual Disabilities

    Science.gov (United States)

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Didden, Robert; Pichierri, Sabrina

    2010-01-01

    This study assessed a simple behavioral strategy for reducing stereotypic tongue protrusion and forward head tilting displayed by a woman and a man with severe to profound intellectual disabilities. The strategy involved (a) auditory prompting (i.e., verbal encouragements to keep the tongue in the mouth or the head upright) delivered automatically…

  18. Evaluation of condylar inclination of dentulous subjects determined by axiograph and to compare with manual programming of articulators using protrusive interocclusal record

    Directory of Open Access Journals (Sweden)

    Krishna D Prasad

    2015-01-01

    Full Text Available Aims: To determine the average condylar inclination using ultrasonic axiograph; to determine the average condylar inclination using protrusive interocclusal bite records; to compare whether there is any marked difference in the values obtained by these techniques. Settings and Design: This clinical study compares the mean horizontal condylar inclination of the ultrasonic axiograph (Axioquick system and the manual programming using protrusive interocclusal records. Materials and Methods: The study was conducted on a group of 30 subjects reporting to Department of Prosthodontics. Axioquick software system of SAM III (School Articulator Munich fully-adjustable articulator was used, and interocclusal recording of condylar inclination is the manual method used in semi-adjustable articulators using Aluwax. The condylar inclination of the articulator was adjusted and set using protrusive interocclusal record. Statistical Analysis: The horizontal condylar inclination values of both methods were collected, and the mean of right and left condylar inclination was compared using paired t-test. Results: A statistically significant difference exists between Axioquick system and the manual method of programming articulator with protrusive interocclusal records (P ≤ 0.001. Conclusions: Within the limitations of the present study, the following conclusions were drawn: The average condylar inclination by axiograph is 42.125°. The average condylar inclination by interocclusal record is 33.25°. Comparison of both values shows a difference of 8.88° ± 4.03° that showed a significant difference (P < 0.001.

  19. Automatic Prompting and Positive Attention to Reduce Tongue Protrusion and Head Tilting by Two Adults With Severe to Profound Intellectual Disabilities

    NARCIS (Netherlands)

    Lancioni, G.E.; Singh, N.N.; O'Reilly, M.F.; Sigafoos, J.; Didden, H.C.M.; Pichierri, S.

    2010-01-01

    This study assessed a simple behavioral strategy for reducing stereotypic tongue protrusion and forward head tilting displayed by a woman and a man with severe to profound intellectual disabilities. The strategy involved (a) auditory prompting (i.e., verbal encouragements to keep the tongue in the m

  20. Evaluation of condylar inclination of dentulous subjects determined by axiograph and to compare with manual programming of articulators using protrusive interocclusal record

    Science.gov (United States)

    Prasad, Krishna D.; Shetty, Manoj; Chandy, Binoj K.

    2015-01-01

    Aims: To determine the average condylar inclination using ultrasonic axiograph; to determine the average condylar inclination using protrusive interocclusal bite records; to compare whether there is any marked difference in the values obtained by these techniques. Settings and Design: This clinical study compares the mean horizontal condylar inclination of the ultrasonic axiograph (Axioquick system) and the manual programming using protrusive interocclusal records. Materials and Methods: The study was conducted on a group of 30 subjects reporting to Department of Prosthodontics. Axioquick software system of SAM III (School Articulator Munich) fully-adjustable articulator was used, and interocclusal recording of condylar inclination is the manual method used in semi-adjustable articulators using Aluwax. The condylar inclination of the articulator was adjusted and set using protrusive interocclusal record. Statistical Analysis: The horizontal condylar inclination values of both methods were collected, and the mean of right and left condylar inclination was compared using paired t-test. Results: A statistically significant difference exists between Axioquick system and the manual method of programming articulator with protrusive interocclusal records (P ≤ 0.001). Conclusions: Within the limitations of the present study, the following conclusions were drawn: The average condylar inclination by axiograph is 42.125°. The average condylar inclination by interocclusal record is 33.25°. Comparison of both values shows a difference of 8.88° ± 4.03° that showed a significant difference (P < 0.001). PMID:26321837

  1. CT检查在牵引治疗腰椎间盘突出症中的评估作用%Evaluation function of CT examination to traction therapy to lumbar disc protrusion

    Institute of Scientific and Technical Information of China (English)

    丁长伟; 刘丽君; 林楠; 王天君

    2002-01-01

    Objective To investigate whether there is morphological change at intervertebral disc after traction therapy to lumbar disc protrusion. Methods We observed 58 lumbar disc protrusion cases diagnosed by CT and treated with traction therapy with CT again, and compared morphological change of intervertebral disc on CT image before and after treatment. Result Effective rate of traction therapy to lumbar disc protrusion was 84.48% , there was no apparent difference in degree of lumbar disc protrusion, anterior posterior diameter of vertebral canal and lateral crypt width between before and after treatment. Conclusion Traction can relieve effectively clinical symptoms of lumbar disc protrusion, but can't make great change in shape of protruded intervertebral disc.

  2. Fish stocking density impacts tank hydrodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Lunger, Angela; Laursen, Jesper;

    2006-01-01

    hydrodynamics was established using in-tank-based Rhodamine WT fluorometry at a flow rate of 0.23 l s-1 (tank exchange rate of 1.9 h-1). With increasing numbers of animals, curvilinear relationships were observed for dispersion coefficients and tank mixing times. Stocking densities of 3, 6, 9 and 12 kg m-3......The effect of stocking density upon the hydrodynamics of a circular tank, configured in a recirculation system, was investigated. Red drums Sciaenops ocellatus of approximately 140 g wet weight, were stocked at five rates varying from 0 to 12 kg m-3. The impact of the presence of fish upon tank...

  3. Bounce-free Spherical Hydrodynamic Implosion

    CERN Document Server

    Kagan, Grigory; Hsu, Scott C; Awe, Thomas J

    2011-01-01

    In a bounce-free spherical hydrodynamic implosion, the post-stagnation hot core plasma does not expand against the imploding flow. Such an implosion scheme has the advantage of improving the dwell time of the burning fuel, resulting in a higher fusion burn-up fraction. The existence of bounce-free spherical implosions is demonstrated by explicitly constructing a family of self-similar solutions to the spherically symmetric ideal hydrodynamic equations. When applied to a specific example of plasma liner driven magneto-inertial fusion, the bounce-free solution is found to produce at least a factor of four improvement in dwell time and fusion energy gain.

  4. Introduction to physics mechanics, hydrodynamics thermodynamics

    CERN Document Server

    Frauenfelder, P

    2013-01-01

    Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o

  5. Supernova hydrodynamics experiments using the Nova laser

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B.A.; Glendinning, S.G.; Estabrook, K.; Wallace, R.J.; Rubenchik, A. [Lawrence Livermore National Lab., CA (United States); Kane, J.; Arnett, D. [Arizona Univ., Tucson, AZ (United States). Stewart Observatory; Drake, R.P. [Michigan Univ., Ann Arbor, MI (United States); McCray, R. [Colorado Univ., Boulder, CO (United States)

    1997-04-01

    We are developing experiments using the Nova laser to investigate two areas of physics relevant to core-collapse supernovae (SN): (1) compressible nonlinear hydrodynamic mixing and (2) radiative shock hydrodynamics. In the former, we are examining the differences between the 2D and 3D evolution of the Rayleigh-Taylor instability, an issue critical to the observables emerging from SN in the first year after exploding. In the latter, we are investigating the evolution of a colliding plasma system relevant to the ejecta-stellar wind interactions of the early stages of SN remnant formation. The experiments and astrophysical implications are discussed.

  6. Broken Lifshitz invariance, spin waves and hydrodynamics

    CERN Document Server

    Roychowdhury, Dibakar

    2016-01-01

    In this paper, based on the basic principles of thermodynamics, we explore the hydrodynamic regime of interacting Lifshitz field theories in the presence of broken rotational invariance. We compute the entropy current and discover new dissipative effects those are consistent with the principle of local entropy production in the fluid. In our analysis, we consider both the parity even as well as the parity odd sector upto first order in the derivative expansion. Finally, we argue that the present construction of the paper could be systematically identified as that of the hydrodynamic description associated with \\textit{spin waves} (away from the domain of quantum criticality) under certain limiting conditions.

  7. Colliding shockwaves and hydrodynamics in extreme conditions

    CERN Document Server

    Chesler, Paul M

    2015-01-01

    Using numerical holography, we study the collision of a planar sheet of energy with a bounded localized distribution of energy. The collision, which mimics proton-nucleus collisions, produces a localized lump of debris with transverse size $R \\sim 1/T_{\\rm eff}$ with $T_{\\rm eff}$ the effective temperature, and has large gradients and large transverse flow. Nevertheless, the post-collision evolution is well-described by viscous hydrodynamics. Our results bolster the notion that debris produced in proton-nucleus collisions may be modeled using hydrodynamics.

  8. Hydrodynamic interactions between nearby slender filaments

    CERN Document Server

    Man, Yi; Lauga, Eric

    2016-01-01

    Cellular biology abound with filaments interacting through fluids, from intracellular microtubules, to rotating flagella and beating cilia. While previous work has demonstrated the complexity of capturing nonlocal hydrodynamic interactions between moving filaments, the problem remains difficult theoretically. We show here that when filaments are closer to each other than their relevant length scale, the integration of hydrodynamic interactions can be approximately carried out analytically. This leads to a set of simplified local equations, illustrated on a simple model of two interacting filaments, which can be used to tackle theoretically a range of problems in biology and physics.

  9. Holography and hydrodynamics in small systems

    Science.gov (United States)

    Chesler, Paul M.

    2016-12-01

    Using holographic duality, we present results for the off-center collision of Gaussian wave packets in strongly coupled N = 4 supersymmetric Yang-Mills theory. The wave packets are thin along the collision axis and superficially at least resemble Lorentz contracted colliding protons. The collision results in the formation of a droplet of liquid of size R ∼ 1 /Teff where Teff is the effective temperature, which is the characteristic microscopic scale in strongly coupled plasma. These results demonstrate the applicability of hydrodynamics to microscopically small systems and bolster the notion that hydrodynamics can be applied to heavy-light ion collisions as well as proton-proton collisions.

  10. Experimental hydrodynamics of fish locomotion: functional insights from wake visualization.

    Science.gov (United States)

    Drucker, Eliot G; Lauder, George V

    2002-04-01

    Despite enormous progress during the last twenty years in understanding the mechanistic basis of aquatic animal propulsion-a task involving the construction of a substantial data base on patterns of fin and body kinematics and locomotor muscle function-there remains a key area in which biologists have little information: the relationship between propulsor activity and water movement in the wake. How is internal muscular force translated into external force exerted on the water? What is the pattern of fluid force production by different fish fins (e.g., pectoral, caudal, dorsal) and how does swimming force vary with speed and among species? These types of questions have received considerable attention in analyses of terrestrial locomotion where force output by limbs can be measured directly with force plates. But how can forces exerted by animals moving through fluid be measured? The advent of digital particle image velocimetry (DPIV) has provided an experimental hydrodynamic approach for quantifying the locomotor forces of freely moving animals in fluids, and has resulted in significant new insights into the mechanisms of fish propulsion. In this paper we present ten "lessons learned" from the application of DPIV to problems of fish locomotion over the last five years. (1) Three-dimensional DPIV analysis is critical for reconstructing wake geometry. (2) DPIV analysis reveals the orientation of locomotor reaction forces. (3) DPIV analysis allows calculation of the magnitude of locomotor forces. (4) Swimming speed can have a major impact on wake structure. (5) DPIV can reveal interspecific differences in vortex wake morphology. (6) DPIV analysis can provide new insights into the limits to locomotor performance. (7) DPIV demonstrates the functional versatility of fish fins. (8) DPIV reveals hydrodynamic force partitioning among fins. (9) DPIV shows that wake interaction among fins may enhance thrust production. (10) Experimental hydrodynamic analysis can provide

  11. Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis.

    Science.gov (United States)

    Bagal, Manisha V; Gogate, Parag R

    2014-05-01

    Diclofenac sodium, a widely detected pharmaceutical drug in wastewater samples, has been selected as a model pollutant for degradation using novel combined approach of hydrodynamic cavitation and heterogeneous photocatalysis. A slit venturi has been used as cavitating device in the hydrodynamic cavitation reactor. The effect of various operating parameters such as inlet fluid pressure (2-4 bar) and initial pH of the solution (4-7.5) on the extent of degradation have been studied. The maximum extent of degradation of diclofenac sodium was obtained at inlet fluid pressure of 3 bar and initial pH as 4 using hydrodynamic cavitation alone. The loadings of TiO2 and H2O2 have been optimised to maximise the extent of degradation of diclofenac sodium. Kinetic study revealed that the degradation of diclofenac sodium fitted first order kinetics over the selected range of operating protocols. It has been observed that combination of hydrodynamic cavitation with UV, UV/TiO2 and UV/TiO2/H2O2 results in enhanced extents of degradation as compared to the individual schemes. The maximum extent of degradation as 95% with 76% reduction in TOC has been observed using hydrodynamic cavitation in conjunction with UV/TiO2/H2O2 under the optimised operating conditions. The diclofenac sodium degradation byproducts have been identified using LC/MS analysis.

  12. ``Oenodynamic'': hydrodynamic of wine swirling

    Science.gov (United States)

    Reclari, Martino; Dreyer, Matthieu; Tissot, Stephanie; Obreschkow, Danail; Wurm, Florian; Farhat, Mohamed

    2011-11-01

    A crucial step in wine tasting is the so called ``swirling,'' necessary to release the bouquet of the wine: a gentle circular movement of the glass generates a wave propagating along the glass walls, enhancing oxygenation and mixing. Although being used in a large variety of other applications (e.g. cells cultures in orbital shaken bioreactors) this motion is not yet well understood. Using a simplified model we experimentally investigated the shape of the free surface and the mixing, and we identified a group of dimensionless parameters governing the flow. SNSF Grant CRSII2_125444.

  13. "Oenodynamic": Hydrodynamic of wine swirling

    CERN Document Server

    Reclari, Martino; Tissot, Stephanie; Obreschkow, Danail; Wurm, Florian; Farhat, Mohamed

    2011-01-01

    A crucial step in wine tasting is the so called swirling, necessary to release the bouquet of the wine: a gentle circular movement of the glass generates a wave propagating along the glass walls, enhancing oxygenation and mixing. Although being used in a large variety of other applications (e.g. cells cultures in orbital shaken bioreactors) this motion is not yet well understood. In this fluid dynamics video we show the large variety of waves shapes generated by this simple movement, and we identify a group of dimensionless parameters governing the flow.

  14. Hydrodynamic Energy Saving Enhancements for DDG 51 Class Ships

    Science.gov (United States)

    2012-02-01

    evaluate the annual fuel reduction for the Retrofit Bow Bulb in calm and rough water combined. Annual sea state occurrences for the open ocean northern... temperature and pressure in the hydraulic pitch control system, expansion and contraction of the pitch control rods, improper pitch calibration procedure... Chronicle of Success at Sea (1989-2002)”, SNAME Innovations in Marine Transportation, Pacific Grove CA (May 2002). [10] Karafiath, G., D.S

  15. Stabilizing geometry for hydrodynamic rotary seals

    Science.gov (United States)

    Dietle, Lannie L.; Schroeder, John E.

    2010-08-10

    A hydrodynamic sealing assembly including a first component having first and second walls and a peripheral wall defining a seal groove, a second component having a rotatable surface relative to said first component, and a hydrodynamic seal comprising a seal body of generally ring-shaped configuration having a circumference. The seal body includes hydrodynamic and static sealing lips each having a cross-sectional area that substantially vary in time with each other about the circumference. In an uninstalled condition, the seal body has a length defined between first and second seal body ends which varies in time with the hydrodynamic sealing lip cross-sectional area. The first and second ends generally face the first and second walls, respectively. In the uninstalled condition, the first end is angulated relative to the first wall and the second end is angulated relative to the second wall. The seal body has a twist-limiting surface adjacent the static sealing lip. In the uninstalled condition, the twist-limiting surface is angulated relative to the peripheral wall and varies along the circumference. A seal body discontinuity and a first component discontinuity mate to prevent rotation of the seal body relative to the first component.

  16. Hydrodynamic modelling of hydrostatic magnesium extrusion

    NARCIS (Netherlands)

    Moodij, E.; Rooij, de M.B.; Schipper, D.J.

    2006-01-01

    Wilson’s hydrodynamic model of the hydrostatic extrusion process is extended to meet the geometry found on residual billets. The transition from inlet to work zone of the process is not considered sharp as in the model of Wilson but as a rounded edge, modelled by a parabolic function. It is shown th

  17. Hydrodynamic limits of the Vlasov equation

    Energy Technology Data Exchange (ETDEWEB)

    Caprino, S. (Universita' de L' Aquila Coppito (Italy)); Esposito, R.; Marra, R. (Universita' di Roma tor Vergata, Roma (Italy)); Pulvirenti, M. (Universita' di Roma la Sapienza, Roma (Italy))

    1993-01-01

    In the present work, the authors study the Vlasov equation for repulsive forces in the hydrodynamic regime. For initial distributions at zero temperature the limit equations turn out to be the compressible and incompressible Euler equations under suitable space-time scalings. 17 refs.

  18. Microflow Cytometers with Integrated Hydrodynamic Focusing

    Directory of Open Access Journals (Sweden)

    Martin Schmidt

    2013-04-01

    Full Text Available This study demonstrates the suitability of microfluidic structures for high throughput blood cell analysis. The microfluidic chips exploit fully integrated hydrodynamic focusing based on two different concepts: Two-stage cascade focusing and spin focusing (vortex principle. The sample—A suspension of micro particles or blood cells—is injected into a sheath fluid streaming at a substantially higher flow rate, which assures positioning of the particles in the center of the flow channel. Particle velocities of a few m/s are achieved as required for high throughput blood cell analysis. The stability of hydrodynamic particle positioning was evaluated by measuring the pulse heights distributions of fluorescence signals from calibration beads. Quantitative assessment based on coefficient of variation for the fluorescence intensity distributions resulted in a value of about 3% determined for the micro-device exploiting cascade hydrodynamic focusing. For the spin focusing approach similar values were achieved for sample flow rates being 1.5 times lower. Our results indicate that the performances of both variants of hydrodynamic focusing suit for blood cell differentiation and counting. The potential of the micro flow cytometer is demonstrated by detecting immunologically labeled CD3 positive and CD4 positive T-lymphocytes in blood.

  19. Hydrodynamics and Roughness of Irregular Boundaries

    Science.gov (United States)

    2011-01-01

    principle component analysis (PCA) similar to that used by Preston (2009) for ship- mounted multibeam data. Several variables derived from the...complex boundaries as well as characterization of acoustic and optical processes. Turbulent processes at the seabed are at the foundation of littoral...nearshore hydrodynamics, turbulence over rough beds influences optical and acoustic properties. Bed roughness also directly affects acoustic propagation in

  20. Impact of Hydrodynamics on Oral Biofilm Strength

    NARCIS (Netherlands)

    Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.

    2009-01-01

    Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of S

  1. Hydrodynamic erosion process of undisturbed clay

    NARCIS (Netherlands)

    Zhao, G.; Visser, P.J.; Vrijling, J.K.

    2011-01-01

    This paper describes the hydrodynamic erosion process of undisturbed clay due to the turbulent flow, based on theoretical analysis and experimental results. The undisturbed clay has the unique and complicated characteristics of cohesive force among clay particles, which are highly different from dis

  2. Hydrodynamic impact response, a flexible view

    NARCIS (Netherlands)

    Vredeveldt, A.W.; Hoogeland, M.; Janssen, G.Th.M.

    2001-01-01

    The popularity of high-speed craft is steadily increasing. Until now, much attention has been focussed on the hydrodynamic aspects of these craft. The structural design of these vessels is usually considered in a quasi static sense. However, due to the requirement of light ship structures, fast ship

  3. Hydrodynamics: Fluctuating initial conditions and two-particle correlations

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, R.P.G.; Grassi, F. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Hama, Y., E-mail: hama@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Qian, W.-L. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2011-03-15

    Event-by-event hydrodynamics (or hydrodynamics with fluctuating initial conditions) has been developed in the past few years. Here we discuss how it may help to understand the various structures observed in two-particle correlations.

  4. Anticipating the Role of SWOT in Hydrologic and Hydrodynamic Modeling

    Science.gov (United States)

    Pavelsky, T.; Biancamaria, S.; Andreadis, K.; Durand, M. T.; Schumann, G.

    2015-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA and CNES, the French space agency. It aims to provide the first simultaneous, space-based measurements of inundation extent and water surface elevation in rivers, lakes, and wetlands around the world. Although the orbit repeat time is approximately 21 days, many areas of the earth will be viewed multiple times during this window. SWOT will observe rivers as narrow as 50-100 m and lakes as small as 0.01-0.06 km2, with height accuracies of ~10 cm for water bodies 1 km2 in area. Because SWOT will measure temporal variations in the height, width, and slope of rivers, several algorithms have been developed to estimate river discharge solely from SWOT measurements. Additionally, measurements of lake height and area will allow estimation of variability in lake water storage. These new hydrologic measurements will provide important sources of information both hydrologic and hydrodynamic models at regional to global scales. SWOT-derived estimates of water storage change and discharge will help to constrain simulation of the water budget in hydrologic models. Measurements of water surface elevation will provide similar constraints on hydrodynamic models of river flow. SWOT data will be useful for model calibration and validation, but perhaps the most exciting applications involve assimilation of SWOT data into models to enhance model robustness and provide denser temporal sampling than available from SWOT observations alone.

  5. Learning to school in the presence of hydrodynamic interactions

    Science.gov (United States)

    Gazzola, M.; Tchieu, A. A.; Alexeev, D.; de Brauer, A.; Koumoutsakos, P.

    2016-02-01

    Schooling, an archetype of collective behavior, emerges from the interactions of fish responding to visual and other informative cues mediated by their aqueous environment. In this context, a fundamental and largely unexplored question concerns the role of hydrodynamics. Here, we investigate schooling by modeling swimmers as vortex dipoles whose interactions are governed by the Biot-Savart law. When we enhance these dipoles with behavioral rules from classical agent based models we find that they do not lead robustly to schooling due to flow mediated interactions. In turn, we present dipole swimmers equipped with adaptive decision-making that learn, through a reinforcement learning algorithm, to adjust their gaits in response to non-linearly varying hydrodynamic loads. The dipoles maintain their relative position within a formation by adapting their strength and school in a variety of prescribed geometrical arrangements. Furthermore, we identify schooling patterns that minimize the individual and the collective swimming effort, through an evolutionary optimization. The present work suggests that the adaptive response of individual swimmers to flow-mediated interactions is critical in fish schooling.

  6. Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows

    Science.gov (United States)

    Bernstein, J. P.; Hughes, P. A.

    2009-09-01

    We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.

  7. Mirror-type Boundary Condition in Smoothed Particle Hydrodynamics

    Science.gov (United States)

    Marjani, A.; Edge, B. L.

    2013-12-01

    The main purpose of this study is to enhance the Smoothed Particle Hydrodynamics (SPH) method that can accurately simulate the hydrodynamic forces on a structure and can be used for determining efficient designs for wave energy devices. Smoothed particle hydrodynamics is a method used in various fields of study. Unlike the finite difference method (FDM), SPH is a Lagrangian mesh-free method in which each particle moves according to the property of the surrounding flow and governing conservation equations, and carries the properties of water such as density, pressure and mass. Smoothed Particle Hydrodynamics is recently applied to a wide range of fluid mechanics problems. Although it is known as a highly accurate model, slow performance in 3D interface is one of its drawbacks. Not only the computational time becomes very long but also the number of processors and required memory are not easily available. Practical applications deal with high Reynolds numbers that requires high resolution to achieve adequate accuracy. A large number of coastal engineering problems are geometrically symmetric; hence, as a solution, mirror boundary condition is introduced and applied to two different tests in this paper, one is the impact of solitary wave on a large circular cylinder and the other is the interaction of dam break wave and structure. Mirror boundary condition can either produce a remarkable speedup with the same number of processors or the same running time with less number of processors. Regarding the fact that SPH algorithm yields Np log(Np) particle interactions at each time step, reducing the number of particles by a factor of 2 decreases the total number of interactions by a factor greater than 2. In other words, the relation between computational time and the number of particles does not behave like a linear function. Results show that smaller number of particles results in fewer particle interactions and less communications between processors. We believe that this

  8. Simulation of Helical Flow Hydrodynamics in Meanders and Advection-Turbulent Diffusion Using Smoothed Particle Hydrodynamics

    Science.gov (United States)

    Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.

    2013-12-01

    Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.

  9. Scaling supernova hydrodynamics to the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kane, J.O.

    1999-06-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane et al., Astrophys. J.478, L75 (1997) The Nova laser is used to shock two-layer targets, producing Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the interfaces between the layers, analogous to instabilities seen at the interfaces of SN 1987A. Because the hydrodynamics in the laser experiments at intermediate times (3-40 ns) and in SN 1987A at intermediate times (5 s-10{sup 4} s) are well described by the Euler equations, the hydrodynamics scale between the two regimes. The experiments are modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS, thus serving as a benchmark for PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike and bubble velocities in the experiment using potential flow theory and a modified Ott thin shell theory is presented. A numerical study of 2D vs. 3D differences in instability growth at the O-He and He-H interface of SN 1987A, and the design for analogous laser experiments are presented. We discuss further work to incorporate more features of the SN in the experiments, including spherical geometry, multiple layers and density gradients. Past and ongoing work in laboratory and laser astrophysics is reviewed, including experimental work on supernova remnants (SNRs). A numerical study of RM instability in SNRs is presented.

  10. Tratamento da má oclusão de Classe II, divisão 1 de Angle, com protrusão maxilar utilizando-se recursos ortopédicos Class II, division 1, with maxillar protrusion's treatment employing orthopedic approachs

    Directory of Open Access Journals (Sweden)

    Carla Maria Melleiro Gimenez

    2007-12-01

    Full Text Available OBJETIVO: o presente trabalho tem o propósito de apresentar uma revisão da literatura acerca do tratamento da má oclusão de Classe II, divisão 1 de Angle, tendo a protrusão maxilar como o principal componente dessa má oclusão, durante a fase de crescimento e desenvolvimento craniofacial. Serão apresentadas as características de cada um desses aparelhos, os seus componentes, a forma adequada de utilização, os seus mecanismos de ação e, principalmente, os seus efeitos em todo o complexo dentofacial. CONCLUSÃO: nos casos em que se verifica apenas a protrusão maxilar, sem envolvimento mandibular, e se faz necessário o controle vertical, pode ser indicado o AEB, conjugado ao aparelho removível derivado do aparelho preconizado por Thurow. Já nas situações de combinação da protrusão maxilar com a retrusão mandibular, uma opção de tratamento é o ativador combinado à ancoragem extrabucal.AIM: The purpose of this research is to review the literature about the treatment of Class II, division 1 malocclusion with maxillary protrusion, during the growth and development period. This review addresses the characteristics of these appliances, their components, correct use, action mechanisms, and mainly their consequences in dentofacial complex. CONCLUSIONS: In patients with maxillary protrusion and with no mandibular component, it may be indicated the use of a maxillary splint similar to the one suggested by Thurow. However, in patients with maxillary protrusion and mandibular retrusion, it may be indicated an activator associated with extra oral anchorage.

  11. Hydrodynamic schooling of flapping swimmers

    Science.gov (United States)

    Becker, Alexander D.; Masoud, Hassan; Newbolt, Joel W.; Shelley, Michael; Ristroph, Leif

    2015-10-01

    Fish schools and bird flocks are fascinating examples of collective behaviours in which many individuals generate and interact with complex flows. Motivated by animal groups on the move, here we explore how the locomotion of many bodies emerges from their flow-mediated interactions. Through experiments and simulations of arrays of flapping wings that propel within a collective wake, we discover distinct modes characterized by the group swimming speed and the spatial phase shift between trajectories of neighbouring wings. For identical flapping motions, slow and fast modes coexist and correspond to constructive and destructive wing-wake interactions. Simulations show that swimming in a group can enhance speed and save power, and we capture the key phenomena in a mathematical model based on memory or the storage and recollection of information in the flow field. These results also show that fluid dynamic interactions alone are sufficient to generate coherent collective locomotion, and thus might suggest new ways to characterize the role of flows in animal groups.

  12. Hydrodynamic Boundary Effects on Thermophoresis of Confined Colloids

    Science.gov (United States)

    Würger, Alois

    2016-04-01

    We study hydrodynamic slowing down of a particle moving in a temperature gradient perpendicular to a wall. At distances much smaller than the particle radius, h ≪a , the lubrication approximation leads to the reduced velocity u /u0=3 (h /a )[ln (a /h )-9/4 ] , where u0 is the velocity in the bulk. With Brenner's result for confined diffusion, we find that the trapping efficiency, or effective Soret coefficient, increases logarithmically as the particle gets very close to the wall. Our results provide a quantitative explanation for the recently observed enhancement of thermophoretic trapping at short distances. Our discussion of parallel and perpendicular thermophoresis in a capillary reveals a good agreement with experiments on charged polystyrene particles, and sheds some light on a controversy concerning the size dependence and the nonequilibrium nature of the Soret effect.

  13. Hydrodynamic Fluctuations in Laminar Fluid Flow. II. Fluctuating Squire Equation

    Science.gov (United States)

    Ortiz de Zárate, José M.; Sengers, Jan V.

    2013-02-01

    We use fluctuating hydrodynamics to evaluate the enhancement of thermally excited fluctuations in laminar fluid flow using plane Couette flow as a representative example. In a previous publication (J. Stat. Phys. 144:774, 2011) we derived the energy amplification arising from thermally excited wall-normal fluctuations by solving a fluctuating Orr-Sommerfeld equation. In the present paper we derive the energy amplification arising from wall-normal vorticity fluctuation by solving a fluctuating Squire equation. The thermally excited wall-normal vorticity fluctuations turn out to yield the dominant contribution to the energy amplification. In addition, we show that thermally excited streaks, even in the absence of any externally imposed perturbations, are present in laminar fluid flow.

  14. Hydrodynamic length-scale selection in microswimmer suspensions

    Science.gov (United States)

    Heidenreich, Sebastian; Dunkel, Jörn; Klapp, Sabine H. L.; Bär, Markus

    2016-08-01

    A universal characteristic of mesoscale turbulence in active suspensions is the emergence of a typical vortex length scale, distinctly different from the scale invariance of turbulent high-Reynolds number flows. Collective length-scale selection has been observed in bacterial fluids, endothelial tissue, and active colloids, yet the physical origins of this phenomenon remain elusive. Here, we systematically derive an effective fourth-order field theory from a generic microscopic model that allows us to predict the typical vortex size in microswimmer suspensions. Building on a self-consistent closure condition, the derivation shows that the vortex length scale is determined by the competition between local alignment forces, rotational diffusion, and intermediate-range hydrodynamic interactions. Vortex structures found in simulations of the theory agree with recent measurements in Bacillus subtilis suspensions. Moreover, our approach yields an effective viscosity enhancement (reduction), as reported experimentally for puller (pusher) microorganisms.

  15. Preparing for an Explosion: Hydrodynamic Instabilities and Turbulence in Presupernovae

    CERN Document Server

    Smith, Nathan

    2013-01-01

    Both observations and direct numerical simulations are discordant with predictions of conventional stellar evolution codes for the latest stages of a massive star's life prior to core collapse. We suggest that the problem lies in the treatment of turbulent convection in these codes, which ignores finite amplitude fluctuations in velocity and temperature, and their nonlinear interaction with nuclear burning. The hydrodynamic instabilities that may arise prompt us to discuss a number of far-reaching implications for the fates of massive stars. In particular, we explore connections to enhanced presupernova mass loss, unsteady nuclear burning and consequent eruptions, swelling of the stellar radius that may trigger violent interactions with a companion star, and potential modifications to the core structure that could dramatically impact calculations of the core-collapse mechanism itself. These modifications may be of fundamental importance to the interpretation of measured isotopic anomalies in meteorites, chang...

  16. Laser-induced asymmetric faceting and growth of a nano-protrusion on a tungsten tip

    Science.gov (United States)

    Yanagisawa, Hirofumi; Zadin, Vahur; Kunze, Karsten; Hafner, Christian; Aabloo, Alvo; Kim, Dong Eon; Kling, Matthias F.; Djurabekova, Flyura; Osterwalder, Jürg; Wuensch, Walter

    2016-12-01

    Irradiation of a sharp tungsten tip by a femtosecond laser and exposed to a strong DC electric field led to reproducible surface modifications. By a combination of field emission microscopy and scanning electron microscopy, we observed asymmetric surface faceting with sub-ten nanometer high steps. The presence of faceted features mainly on the laser-exposed side implies that the surface modification was driven by a laser-induced transient temperature rise on a scale of a couple of picoseconds in the tungsten tip apex. Moreover, we identified the formation of a nano-tip a few nanometers high located at one of the corners of a faceted plateau. The results of simulations emulating the experimental conditions are consistent with the experimental observations. The presented technique would be a new method to fabricate a nano-tip especially for generating coherent electron pulses. The features may also help to explain the origin of enhanced field emission, which leads to vacuum arcs, in high electric field devices such as radio-frequency particle accelerators.

  17. Laser-induced asymmetric faceting and growth of a nano-protrusion on a tungsten tip

    Directory of Open Access Journals (Sweden)

    Hirofumi Yanagisawa

    2016-12-01

    Full Text Available Irradiation of a sharp tungsten tip by a femtosecond laser and exposed to a strong DC electric field led to reproducible surface modifications. By a combination of field emission microscopy and scanning electron microscopy, we observed asymmetric surface faceting with sub-ten nanometer high steps. The presence of faceted features mainly on the laser-exposed side implies that the surface modification was driven by a laser-induced transient temperature rise on a scale of a couple of picoseconds in the tungsten tip apex. Moreover, we identified the formation of a nano-tip a few nanometers high located at one of the corners of a faceted plateau. The results of simulations emulating the experimental conditions are consistent with the experimental observations. The presented technique would be a new method to fabricate a nano-tip especially for generating coherent electron pulses. The features may also help to explain the origin of enhanced field emission, which leads to vacuum arcs, in high electric field devices such as radio-frequency particle accelerators.

  18. Lumbar disc protrusion therapy by combination drug administration in epidural space%硬膜外腔联合用药治疗腰椎间盘突出症

    Institute of Scientific and Technical Information of China (English)

    尹美华; 杨德荣; 许晶; 马玉清

    2003-01-01

    @@ BACKGROUND: Lumbar disc protrusion was a syndrome dueto degeneration of disc, disruption of fibrous tings and protrusion ofnucleus pulposus and stimulation of cauda equina. It was the mostcommon cause of leg and back pain. it had a high incidence rate andthe patients suffered too greatly to normal work and life. Afternon-operative therapy, symptoms of most patients disappeared orrelieved. Only 10% to 15% of the patients needed operation. Re-cently, combination drug administration in epidural space were usedin lumbar disc protrusion therapy with a highly successful rate andhttle danger.

  19. Clinical value of intravesical prostatic protrusion in the evaluation and management of prostatic and other lower urinary tract diseases

    Directory of Open Access Journals (Sweden)

    Darab Mehraban

    2017-07-01

    Full Text Available Intravesical prostatic protrusion (IPP has emerged as a new prostatic morphometric parameter of significance to aid the clinicians in various aspects of managing the patients with some diseases of the lower urinary tract and the prostate. These include but may not be limited to its role in such conditions as: bladder outlet obstruction, trial without catheter, medical treatment effect, progression of lower urinary tract symptoms related to benign prostatic hypertrophy (LUTS/BPH, risk factor for bladder stone in BPH, overactive bladder, prostate carcinoma, and early urinary continence recovery after laparoscopic radical prostatectomy. In this review, I will try to summarize the different researchers' efforts on the potential practical application of this clinical tool. Technology is ever evolving to help us in the diagnosis and management of our patients. However, we as clinicians should contemplate their cost and possible suffering for the patient by wise and judicious utilization based on our clinical experience and tools. IPP seems to be one such promising clinical tool.

  20. Tongue diagnosis:relationship between sublingual tongue morphology in three tongue protrusion angles and menstrual clinical symptoms

    Institute of Scientific and Technical Information of China (English)

    Tim Hideaki Tanaka

    2015-01-01

    OBJECTIVE:The morphological and color characteristics of the tongue sublingual veins (SLVs) can manifest differently within the subjects, depending on the way their tongue is curled upward. This study was conducted in order to investigate the clinical relevancy of tongue SLV diagnosis in relation to menstrual clinical symptoms (pain, clots, heavy, and scanty), using three different inspection procedures (IP1, IP2, and IP3). METHODS: Three-hundred and seventy-seven female patients were asked to stick out their tongues in three speciifc ways which were intended to create different tongue protrusion angles. The SLV parameters for thickness (TK), length (LE), color (CL), shape (SP), and nodules (ND) were then evaluated. RESULTS: According to the results of the Waldχ2 test, IP1 provides the best model for pain (R2 = 0.155), IP3 for clots (R2 = 0.437), IP2 for heavy (R2 = 0.268), and scanty (R2 = 0.192). Abnormal SLV diagnostic parameters were most strongly associated with the clinical symptom of clots (R2= 0.492). CONCLUSION: While the study showed the relations between tongue SLV features and menstrual clinical symptoms, as wel it showed that IP2 was the best overal predictor for the symptomatic indexes used in this study, and using one particular SLV inspection procedure may not be sufifcient. The application of a particular inspection method alone may cause under- or over-estimation of SLV abnormalities.

  1. Drosophila Dachsous and Fat polarize actin-based protrusions over a restricted domain of the embryonic denticle field.

    Science.gov (United States)

    Lawlor, Kynan T; Ly, Daniel C; DiNardo, Stephen

    2013-11-15

    Atypical cadherins Dachsous (Ds) and Fat coordinate the establishment of planar polarity, essential for the patterning of complex tissues and organs. The precise mechanisms by which this system acts, particularly in cases where Ds and Fat act independently of the 'core' frizzled system, are still the subject of investigation. Examining the deployment of the Ds-Fat system in different tissues of the model organism Drosophila, has provided insights into the general mechanisms by which polarity is established and propagated to coordinate outcomes across a field of cells. The Drosophila embryonic epidermis provides a simple model epithelia where the establishment of polarity can be observed from start to finish, and in the absence of proliferation, over a fixed number of cells. Using the asymmetric placement of f-actin during denticle assembly as a read-out of polarity, we examine the requirement for Ds and Fat in establishing polarity across the denticle field. Comparing detailed phenotypic analysis with steady state protein enrichment revealed a spatially restricted requirement for the Ds-Fat system within the posterior denticle field. Ectopic Ds signaling provides evidence for a model whereby Ds acts to asymmetrically enrich Fat in a neighboring cell, in turn polarizing the cell to specify the position of the actin-based protrusions at the cell cortex.

  2. Interference of wedge-shaped protrusions on the faces of a Griffith crack in biaxial stress. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, J.A.M. [Tennessee Univ., Knoxville, TN (United States)

    1992-04-01

    An initial investigation of the influence of protrusion interference on the fracture toughness required to prevent unstable propagation of a Griffith crack in a brittle material is described. The interference is caused by relative shear displacement of the crack faces when subjected to remote biaxial stress with neither principal stress parallel to the crack. It is shown that for room temperature cracks smaller than about one centimeter in silicon carbide, or about one millimeter in silicon nitride, the presence of interference changes the fracture stress. A mathematical model based on linear elasticity solutions and including multiple interference sites at arbitrarily specified positions on the crack is presented. Computations of the change in required fracture toughness and its dependence on wedge geometry (size and vertex angle), applied stresses (orientation and magnitude), and location of the interference site are discussed. Results indicate that a single interference site has only a slight effect on required toughness. However, the influence of interference increases monotonically with the number of interference sites. The two-dimensional model described herein is not accurate when the interference sites are closely spaced.

  3. High density infill in cracks and protrusions from the articular calcified cartilage in osteoarthritis in standardbred horse carpal bones.

    Science.gov (United States)

    Laverty, Sheila; Lacourt, Mathieu; Gao, Chan; Henderson, Janet E; Boyde, Alan

    2015-04-28

    We studied changes in articular calcified cartilage (ACC) and subchondral bone (SCB) in the third carpal bones (C3) of Standardbred racehorses with naturally-occurring repetitive loading-induced osteoarthritis (OA). Two osteochondral cores were harvested from dorsal sites from each of 15 post-mortem C3 and classified as control or as showing early or advanced OA changes from visual inspection. We re-examined X-ray micro-computed tomography (µCT) image sets for the presence of high-density mineral infill (HDMI) in ACC cracks and possible high-density mineralized protrusions (HDMP) from the ACC mineralizing (tidemark) front (MF) into hyaline articular cartilage (HAC). We hypothesized and we show that 20-µm µCT resolution in 10-mm diameter samples is sufficient to detect HDMI and HDMP: these are lost upon tissue decalcification for routine paraffin wax histology owing to their predominant mineral content. The findings show that µCT is sufficient to discover HDMI and HDMP, which were seen in 2/10 controls, 6/9 early OA and 8/10 advanced OA cases. This is the first report of HDMI and HDMP in the equine carpus and in the Standardbred breed and the first to rely solely on µCT. HDMP are a candidate cause for mechanical tissue destruction in OA.

  4. High Density Infill in Cracks and Protrusions from the Articular Calcified Cartilage in Osteoarthritis in Standardbred Horse Carpal Bones

    Directory of Open Access Journals (Sweden)

    Sheila Laverty

    2015-04-01

    Full Text Available We studied changes in articular calcified cartilage (ACC and subchondral bone (SCB in the third carpal bones (C3 of Standardbred racehorses with naturally-occurring repetitive loading-induced osteoarthritis (OA. Two osteochondral cores were harvested from dorsal sites from each of 15 post-mortem C3 and classified as control or as showing early or advanced OA changes from visual inspection. We re-examined X-ray micro-computed tomography (µCT image sets for the presence of high-density mineral infill (HDMI in ACC cracks and possible high-density mineralized protrusions (HDMP from the ACC mineralizing (tidemark front (MF into hyaline articular cartilage (HAC. We hypothesized and we show that 20-µm µCT resolution in 10-mm diameter samples is sufficient to detect HDMI and HDMP: these are lost upon tissue decalcification for routine paraffin wax histology owing to their predominant mineral content. The findings show that µCT is sufficient to discover HDMI and HDMP, which were seen in 2/10 controls, 6/9 early OA and 8/10 advanced OA cases. This is the first report of HDMI and HDMP in the equine carpus and in the Standardbred breed and the first to rely solely on µCT. HDMP are a candidate cause for mechanical tissue destruction in OA.

  5. Effective Hydrodynamic Boundary Conditions for Corrugated Surfaces

    CERN Document Server

    Mongruel, Anne; Asmolov, Evgeny S; Vinogradova, Olga I

    2012-01-01

    We report measurements of the hydrodynamic drag force acting on a smooth sphere falling down under gravity to a plane decorated with microscopic periodic grooves. Both surfaces are lyophilic, so that a liquid (silicone oil) invades the surface texture being in the Wenzel state. A significant decrease in the hydrodynamic resistance force as compared with that predicted for two smooth surfaces is observed. To quantify the effect of roughness we use the effective no-slip boundary condition, which is applied at the imaginary smooth homogeneous isotropic surface located at an intermediate position between top and bottom of grooves. Such an effective condition fully characterizes the force reduction measured with the real surface, and the location of this effective plane is related to geometric parameters of the texture by a simple analytical formula.

  6. Axially symmetric pseudo-Newtonian hydrodynamics code

    CERN Document Server

    Kim, Jinho; Choptuik, Matthew William; Lee, Hyung Mok

    2012-01-01

    We develop a numerical hydrodynamics code using a pseudo-Newtonian formulation that uses the weak field approximation for the geometry, and a generalized source term for the Poisson equation that takes into account relativistic effects. The code was designed to treat moderately relativistic systems such as rapidly rotating neutron stars. The hydrodynamic equations are solved using a finite volume method with High Resolution Shock Capturing (HRSC) techniques. We implement several different slope limiters for second order reconstruction schemes and also investigate higher order reconstructions. We use the method of lines (MoL) to convert the mixed spatial-time partial differential equations into ordinary differential equations (ODEs) that depend only on time. These ODEs are solved using 2nd and 3rd order Runge-Kutta methods. The Poisson equation for the gravitational potential is solved with a multigrid method. In order to confirm the validity of our code, we carry out four different tests including one and two...

  7. Kinetic and hydrodynamic models of chemotactic aggregation

    CERN Document Server

    Chavanis, Pierre-Henri

    2007-01-01

    We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the anal...

  8. SPHGR: Smoothed-Particle Hydrodynamics Galaxy Reduction

    Science.gov (United States)

    Thompson, Robert

    2015-02-01

    SPHGR (Smoothed-Particle Hydrodynamics Galaxy Reduction) is a python based open-source framework for analyzing smoothed-particle hydrodynamic simulations. Its basic form can run a baryonic group finder to identify galaxies and a halo finder to identify dark matter halos; it can also assign said galaxies to their respective halos, calculate halo & galaxy global properties, and iterate through previous time steps to identify the most-massive progenitors of each halo and galaxy. Data about each individual halo and galaxy is collated and easy to access. SPHGR supports a wide range of simulations types including N-body, full cosmological volumes, and zoom-in runs. Support for multiple SPH code outputs is provided by pyGadgetReader (ascl:1411.001), mainly Gadget (ascl:0003.001) and TIPSY (ascl:1111.015).

  9. Filter-less submicron hydrodynamic size sorting.

    Science.gov (United States)

    Fouet, M; Mader, M-A; Iraïn, S; Yanha, Z; Naillon, A; Cargou, S; Gué, A-M; Joseph, P

    2016-02-21

    We propose a simple microfluidic device able to separate submicron particles (critical size ∼0.1 μm) from a complex sample with no filter (minimum channel dimension being 5 μm) by hydrodynamic filtration. A model taking into account the actual velocity profile and hydrodynamic resistances enables prediction of the chip sorting properties for any geometry. Two design families are studied to obtain (i) small sizes within minutes (low-aspect ratio, two-level chip) and (ii) micron-sized sorting with a μL flow rate (3D architecture based on lamination). We obtain quantitative agreement of sorting performances both with experiments and with numerical solving, and determine the limits of the approach. We therefore demonstrate a passive, filter-less sub-micron size sorting with a simple, robust, and easy to fabricate design.

  10. VH1 Hydrodynamics for Introductory Astronomy

    Science.gov (United States)

    Christian, Wolfgang; Blondin, John

    1997-05-01

    Improvements in personal computer operating systems and hardware now makes it possible to run research grade Fortran simulations on student computers. Unfortunately, many legacy applications do not have a graphical user interface and are sometimes hard coded to a specific problem making them unsuitable for beginning students. A good way to re-purpose such legacy code for undergraduate teaching is to build a graphical front end using a Rapid Application Development, RAD, tool that starts the simulation as a separate thread. This technique is being used with Virginia Hydrodynamics One, VH1, to provide an introduction to computational hydrodynamics. Standard test problems including gravitational collapse of an interstellar cloud, radiation cooling, and formation of shocks are demonstrated using this on Microsoft Windows 95/NT.

  11. Application of hydrodynamics to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Felsberger, Lukas

    2014-12-02

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  12. Simple Waves in Ideal Radiation Hydrodynamics

    CERN Document Server

    Johnson, Bryan M

    2008-01-01

    In the dynamic diffusion limit of radiation hydrodynamics, advection dominates diffusion; the latter primarily affects small scales and has negligible impact on the large scale flow. The radiation can thus be accurately regarded as an ideal fluid, i.e., radiative diffusion can be neglected along with other forms of dissipation. This viewpoint is applied here to an analysis of simple waves in an ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries over by simply replacing the material sound speed, pressure and index with the values appropriate for a radiating fluid. A complete analysis is performed for a centered rarefaction wave, and expressions are provided for the Riemann invariants and characteristic curves of the one-dimensional system of equations. The analytical solution is checked for consistency against a finite difference numerical integration, and the validity of neglecting the diffusion operator is demonstrated. An interesting physical result is that for a material comp...

  13. Pursuit and Synchronization in Hydrodynamic Dipoles

    CERN Document Server

    Kanso, Eva

    2015-01-01

    We study theoretically the behavior of a class of hydrodynamic dipoles. This study is motivated by recent experiments on synthetic and biological swimmers in microfluidic \\textit{Hele-Shaw} type geometries. Under such confinement, a swimmer's hydrodynamic signature is that of a potential source dipole, and the long-range interactions among swimmers are obtained from the superposition of dipole singularities. Here, we recall the equations governing the positions and orientations of interacting asymmetric swimmers in doubly-periodic domains, and focus on the dynamics of swimmer pairs. We obtain two families of `relative equilibria'-type solutions that correspond to pursuit and synchronization of the two swimmers, respectively. Interestingly, the pursuit mode is stable for large tail swimmers whereas the synchronization mode is stable for large head swimmers. These results have profound implications on the collective behavior reported in several recent studies on populations of confined microswimmers.

  14. Hydrodynamic Electron Flow and Hall Viscosity

    Science.gov (United States)

    Scaffidi, Thomas; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P.; Moore, Joel E.

    2017-06-01

    In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.

  15. Hyperbolic metamaterial lens with hydrodynamic nonlocal response

    DEFF Research Database (Denmark)

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we......We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...

  16. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    Science.gov (United States)

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

  17. Low Mach Number Fluctuating Hydrodynamics for Electrolytes

    CERN Document Server

    Péraud, Jean-Philippe; Chaudhri, Anuj; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2016-01-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm...

  18. Hydrodynamics of charge fluctuations and balance functions

    CERN Document Server

    Ling, B; Stephanov, M

    2013-01-01

    We apply stochastic hydrodynamics to the study of charge density fluctuations in QCD matter undergoing Bjorken expansion. We find that the charge density correlations are given by a time integral over the history of the system, with the dominant contribution coming from the QCD crossover region where the change of susceptibility per entropy, chi T/s, is most significant. We study the rapidity and azimuthal angle dependence of the resulting charge balance function using a simple analytic model of heavy-ion collision evolution. Our results are in agreement with experimental measurements, indicating that hydrodynamic fluctuations contribute significantly to the measured charge correlations in high energy heavy-ion collisions. The sensitivity of the balance function to the value of the charge diffusion coefficient D allows us to estimate the typical value of this coefficient in the crossover region to be rather small, of the order of 1/(2pi T), characteristic of a strongly coupled plasma.

  19. Frictionless dispersive hydrodynamics of Stokes flows

    CERN Document Server

    Maiden, Michelle D; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A

    2016-01-01

    Effectively frictionless, dispersive flow characterizes superfluids, nonlinear optical diffraction, and geophysical fluid interfaces. Dispersive shock waves (DSWs) and solitons are fundamental nonlinear excitations in these media, but DSW studies to date have been severely constrained by a loss of coherence. Here we report on a novel dispersive hydrodynamics testbed: the effectively frictionless flow of interfacial waves between two high contrast, low Reynolds' number Stokes fluids. This system enables high fidelity observations of large amplitude DSWs, found to agree quantitatively with a nonlinear wave averaging theory. We then report on observations of highly coherent phenomena including DSW backflow, the refraction or absorption of solitons by DSWs, and multi-phase DSW-DSW merger. The complex, coherent, nonlinear mixing of DSWs and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.

  20. Electro-hydrodynamics near Hydrophobic Surfaces

    CERN Document Server

    Maduar, S R; Lobaskin, V; Vinogradova, O I

    2014-01-01

    We show that the dynamics of the electrostatic diffuse layer at the slippery hydrophobic surface depends strongly on the mobility of surface charges. For a hydrophobic surface with immobile charges the fluid transport is considerably amplified by the existence of a hydrodynamic slippage. In contrast, near the hydrophobic surface with mobile adsorbed charges it is also controlled by an additional electric force, which increases the shear stress at the slipping interface. To account for this we formulate electro-hydrodynamic boundary conditions at the slipping interface, which are applied to quantify electro-osmotic flows. Our theoretical predictions are fully supported by dissipative particle dynamics simulations with explicit charges. These results lead to a new general concept of zeta-potential of hydrophobic surfaces.

  1. Hydrodynamic theory of tissue shear flow

    CERN Document Server

    Popović, Marko; Merkel, Matthias; Etournay, Raphaël; Eaton, Suzanne; Jülicher, Frank; Salbreux, Guillaume

    2016-01-01

    We propose a hydrodynamic theory to describe shear flows in developing epithelial tissues. We introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a contribution to overall tissue shear flow due to rearrangements in cell network topology. We then construct a constitutive equation for the shear rate due to topological rearrangements. We identify a novel rheological behaviour resulting from memory effects in the tissue. We show that anisotropic deformation of tissue and cells can arise from two distinct active cellular processes: generation of active stress in the tissue, and actively driven cellular rearrangements. These two active processes result in distinct cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our findings have consequences for the understanding of tissue morphogenesis during development.

  2. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  3. Chaos in hydrodynamic BL Herculis models

    CERN Document Server

    Smolec, R

    2014-01-01

    We present non-linear, convective, BL Her-type hydrodynamic models that show complex variability characteristic for deterministic chaos. The bifurcation diagram reveals a rich structure, with many phenomena detected for the first time in hydrodynamic models of pulsating stars. The phenomena include not only period doubling cascades en route to chaos (detected in earlier studies) but also periodic windows within chaotic band, type-I and type-III intermittent behaviour, interior crisis bifurcation and others. Such phenomena are known in many textbook chaotic systems, from the simplest discrete logistic map, to more complex systems like Lorenz equations. We discuss the physical relevance of our models. Although except of period doubling such phenomena were not detected in any BL Her star, chaotic variability was claimed in several higher luminosity siblings of BL Her stars - RV Tau variables, and also in longer-period, luminous irregular pulsators. Our models may help to understand these poorly studied stars. Pa...

  4. Novel techniques for slurry bubble column hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dudukovic, M.P.

    1999-05-14

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.

  5. VH-1: Multidimensional ideal compressible hydrodynamics code

    Science.gov (United States)

    Hawley, John; Blondin, John; Lindahl, Greg; Lufkin, Eric

    2012-04-01

    VH-1 is a multidimensional ideal compressible hydrodynamics code written in FORTRAN for use on any computing platform, from desktop workstations to supercomputers. It uses a Lagrangian remap version of the Piecewise Parabolic Method developed by Paul Woodward and Phil Colella in their 1984 paper. VH-1 comes in a variety of versions, from a simple one-dimensional serial variant to a multi-dimensional version scalable to thousands of processors.

  6. On the convexity of Relativistic Hydrodynamics

    CERN Document Server

    Ibáñez, José María; Martí, José María; Miralles, Juan Antonio; 10.1088/0264-9381/30/5/057002

    2013-01-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 {\\it Relativistic Fluids and Magneto-Fluids} (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr 1989 {\\it Rev. Mod. Phys.} {\\bf 61} 75). The classical limit is recovered.

  7. Modeling Water Waves with Smoothed Particle Hydrodynamics

    Science.gov (United States)

    2013-09-30

    flows, such as undertow, longshore currents, and rip currents. APPROACH The approach is based on improving various aspects of the SPH code ...Smoothed Particle Hydrodynamics ( SPH ) is a meshless numerical method that is being developed for the study of nearshore waves and other Navy needs. The...Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes

  8. An Owner's Guide to Smoothed Particle Hydrodynamics

    OpenAIRE

    Martin, T.J.; Pearce, F. R.; Thomas, P. A.

    1993-01-01

    We present a practical guide to Smoothed Particle Hydrodynamics (\\SPH) and its application to astrophysical problems. Although remarkably robust, \\SPH\\ must be used with care if the results are to be meaningful since the accuracy of \\SPH\\ is sensitive to the arrangement of the particles and the form of the smoothing kernel. In particular, the initial conditions for any \\SPH\\ simulation must consist of particles in dynamic equilibrium. We describe some of the numerical difficulties that may be...

  9. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2008-09-01

    Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable

  10. Laser driven hydrodynamic instability experiments. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1993-02-17

    An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes.

  11. Smoothed Particle Hydrodynamics: Applications Within DSTO

    Science.gov (United States)

    2006-10-01

    dimensional SPH code. They used SPH to model wave overtopping on the decks of offshore platforms and ships and used moving boundary particles to create...loading on offshore structures is a subject area which is now becoming amenable to detailed study using sophisticated computational fluid dynamics codes...incorporation of bending, torsional stiffness, and hydrodynamic loads, thus making it ideal for the simulation of umbilical cables on ROVs and AUVs

  12. A hydrodynamic approach to QGP instabilities

    CERN Document Server

    Calzetta, E

    2013-01-01

    We show that the usual linear analysis of QGP Weibel instabilities based on the Maxwell-Boltzmann equation may be reproduced in a purely hydrodynamic model. The latter is derived by the Entropy Production Variational Method from a transport equation including collisions, and can describe highly nonequilibrium flow. We find that, as expected, collisions slow down the growth of Weibel instabilities. Finally, we discuss the strong momentum anisotropy limit.

  13. 2D Transonic Hydrodynamics in General Relativity

    CERN Document Server

    Beskin, V S

    2002-01-01

    The goal of my lecture is to present the introduction into the hydrodynamical version of the Grad-Shafranov equation. Although not so well-known as the full MHD one, it allows us to clarify the nontrivial structure of the Grad-Shafranov approach as well as to discuss the simplest version of the 3+1-split language -- the most convenient one for the description of the ideal flows in the vicinity of a rotating black hole.

  14. Testing hydrodynamics schemes in galaxy disc simulations

    Science.gov (United States)

    Few, C. G.; Dobbs, C.; Pettitt, A.; Konstandin, L.

    2016-08-01

    We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretized mesh-less code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans length with a greater number of grid cells, we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and time-scales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.

  15. MUFASA: galaxy formation simulations with meshless hydrodynamics

    Science.gov (United States)

    Davé, Romeel; Thompson, Robert; Hopkins, Philip F.

    2016-11-01

    We present the MUFASA suite of cosmological hydrodynamic simulations, which employs the GIZMO meshless finite mass (MFM) code including H2-based star formation, nine-element chemical evolution, two-phase kinetic outflows following scalings from the Feedback in Realistic Environments zoom simulations, and evolving halo mass-based quenching. Our fiducial (50 h-1 Mpc)3 volume is evolved to z = 0 with a quarter billion elements. The predicted galaxy stellar mass functions (GSMFs) reproduces observations from z = 4 → 0 to ≲ 1.2σ in cosmic variance, providing an unprecedented match to this key diagnostic. The cosmic star formation history and stellar mass growth show general agreement with data, with a strong archaeological downsizing trend such that dwarf galaxies form the majority of their stars after z ˜ 1. We run 25 and 12.5 h-1 Mpc volumes to z = 2 with identical feedback prescriptions, the latter resolving all hydrogen-cooling haloes, and the three runs display fair resolution convergence. The specific star formation rates broadly agree with data at z = 0, but are underpredicted at z ˜ 2 by a factor of 3, re-emphasizing a longstanding puzzle in galaxy evolution models. We compare runs using MFM and two flavours of smoothed particle hydrodynamics, and show that the GSMF is sensitive to hydrodynamics methodology at the ˜×2 level, which is sub-dominant to choices for parametrizing feedback.

  16. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  17. Hydrodynamics of an Electrochemical Membrane Bioreactor

    Science.gov (United States)

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-05-01

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment.

  18. Hydrodynamics of spacetime and vacuum viscosity

    CERN Document Server

    Eling, Christopher

    2008-01-01

    It has recently been shown that the Einstein equation can be derived by demanding a non-equilibrium entropy balance law dS = dQ/T + dS_i hold for all local acceleration horizons through each point in spacetime. The entropy change dS is proportional to the change in horizon area while dQ and T are the energy flux across the horizon and Unruh temperature seen by an accelerating observer just inside the horizon. The internal entropy production term dS_i is proportional to the squared shear of the horizon and the ratio of the proportionality constant to the area entropy density must be \\hbar/4\\pi. Here we will show that this derivation can be reformulated in the language of hydrodynamics. We postulate that the vacuum thermal state in the Rindler wedge of spacetime obeys the holographic principle. Hydrodynamic perturbations of this state exist and are manifested in the dynamics of a stretched horizon fluid at the horizon boundary. Using the equations of hydrodynamics we derive the entropy balance law and show the ...

  19. Hydrodynamic simulations of the core helium flash

    CERN Document Server

    Mocak, M; Weiss, A; Kifonidis, K; 10.1017/S1743921308022813

    2009-01-01

    We describe and discuss hydrodynamic simulations of the core helium flash using an initial model of a 1.25 M_sol star with a metallicity of 0.02 near at its peak. Past research concerned with the dynamics of the core helium flash is inconclusive. Its results range from a confirmation of the standard picture, where the star remains in hydrostatic equilibrium during the flash (Deupree 1996), to a disruption or a significant mass loss of the star (Edwards 1969; Cole & Deupree 1980). However, the most recent multidimensional hydrodynamic study (Dearborn 2006) suggests a quiescent behavior of the core helium flash and seems to rule out an explosive scenario. Here we present partial results of a new comprehensive study of the core helium flash, which seem to confirm this qualitative behavior and give a better insight into operation of the convection zone powered by helium burning during the flash. The hydrodynamic evolution is followed on a computational grid in spherical coordinates using our new version of th...

  20. Hydrodynamic slip length as a surface property.

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G P

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  1. Accurate, Meshless Methods for Magneto-Hydrodynamics

    CERN Document Server

    Hopkins, Philip F

    2016-01-01

    Recently, we developed a pair of meshless finite-volume Lagrangian methods for hydrodynamics: the 'meshless finite mass' (MFM) and 'meshless finite volume' (MFV) methods. These capture advantages of both smoothed-particle hydrodynamics (SPH) and adaptive mesh-refinement (AMR) schemes. Here, we extend these to include ideal magneto-hydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains div*B~0 to high accuracy. We implement these in the code GIZMO, together with a state-of-the-art implementation of SPH MHD. In every one of a large suite of test problems, the new methods are competitive with moving-mesh and AMR schemes using constrained transport (CT) to ensure div*B=0. They are able to correctly capture the growth and structure of the magneto-rotational instability (MRI), MHD turbulence, and the launching of magnetic jets, in some cases converging more rapidly than AMR codes. Compared to SPH, the MFM/MFV methods e...

  2. Comparative analysis of sagittal condylar guidance by protrusive interocclusal records with panoramic and lateral cephalogram radiographs in dentulous population: A clinico-radiographic study

    Directory of Open Access Journals (Sweden)

    Girish Galagali

    2016-01-01

    Conclusion: This study highlighted on the correlation between protrusive interocclusal records and the lateral cephalogram radiograph tracings which were more positively related than the panoramic radiograph. The values of lateral cephalogram radiograph tracings are closer as separate radiographs for left and right side were taken, causing the amount and quality of image distortion less. Lateral cephalogram radiograph may be taken as an important tool to rely on for recording the Sagittal condylar guidance angle.

  3. T-Stenting-and-Small-Protrusion Technique for Bifurcation Stenoses After End-to-Side Anastomosis of Transplant Renal Artery and External Iliac Artery: Report of Two Cases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong, E-mail: cheny102@163.com; Ye, Peng, E-mail: thomas19871223@163.com [Southern Medical University, Department of Interventional Radiology, Nanfang Hospital (China); Jiang, Wen-jin, E-mail: 18653501187@163.com [Yantai Yuhuangding Hospital (China); Ma, Shuo-yi, E-mail: mazelong123456789@126.com; Zhao, Jian-bo, E-mail: zhaojianbohgl@163.com; Zeng, Qing-le, E-mail: doctorzengqingle@126.com [Southern Medical University, Department of Interventional Radiology, Nanfang Hospital (China)

    2015-10-15

    Bifurcation stenoses after end-to-side anastomosis of transplant renal artery (TRA) and external iliac artery (EIA), including stenoses at the anastomosis and the iliac artery proximal to the TRA, are rare. In the present article, we report two successfully managed cases of bifurcation stenoses after end-to-side anastomosis of the TRA and EIA using the technique of T-stenting and small protrusion (TAP stenting)

  4. Systematic analysis of clinical outcomes of anterior maxillary and mandibular subapical osteotomy with preoperative modeling in the treatment of bimaxillary protrusion.

    Science.gov (United States)

    Xie, Fang; Teng, Li; Jin, Xiaolei; Zheng, Jinlong; Xu, Jiajie; Lu, Jianjian; Zhang, Chao; Xu, Meibang; Zeng, Haifeng; Li, Shuyuan; Sun, Xuejian

    2013-11-01

    The purpose of this study was to determine the changes in teeth and hard tissues after preoperative modeling and bimaxillary anterior subapical osteotomy for the treatment of bimaxillary protrusion. Cephalometric analysis was used to evaluate the aesthetic effects and occlusal relationships obtained. The subjects included 19 women and 1 man (aged 19-41 years; average, 29 years) with bimaxillary protrusion who underwent anterior subapical osteotomy of both the maxilla and mandible, with simultaneous genioplasty, if required. Based on a preoperative computer-aided manufacturing/design-assisted and model surgical design and an occlusal guide plate, new occlusal relationships were established for the patients. In addition, the preoperative and postoperative cephalometric radiographs were systematically analyzed. In all patients, the surgical incisions underwent primary healing, with no infection or osteonecrosis. Significant differences were observed in the preoperative and postoperative values of all hard tissue and teeth parameters, except for SGn-FH degrees and Co-MP. The most obvious significant differences were seen in L1-OP°, Id-Pog-Go°, IIA°, U1E-Apog, L1E-Apog, U1E-NA, and L1-NA° (P bimaxillary protrusion with satisfactory postoperative occlusal relationship and facial aesthetic appearance and minimal postoperative complications.

  5. Effect of comprehensive rehabilitation treatment on protrusion of lumbar intervertebral disc%综合康复疗法对腰椎间盘突出症的作用

    Institute of Scientific and Technical Information of China (English)

    陈淑娥

    2003-01-01

    @@ BACKGROUND:Conservative therapy is very important in treatment of lumbar protrusion of lumbar intervertebral disc and symptoms can be alleviated or disappear in most patients by physical therapy,traction and other comprehensive methods.

  6. Stochastic-hydrodynamic model of halo formation in charged particle beams

    Directory of Open Access Journals (Sweden)

    Nicola Cufaro Petroni

    2003-03-01

    Full Text Available The formation of the beam halo in charged particle accelerators is studied in the framework of a stochastic-hydrodynamic model for the collective motion of the particle beam. In such a stochastic-hydrodynamic theory the density and the phase of the charged beam obey a set of coupled nonlinear hydrodynamic equations with explicit time-reversal invariance. This leads to a linearized theory that describes the collective dynamics of the beam in terms of a classical Schrödinger equation. Taking into account space-charge effects, we derive a set of coupled nonlinear hydrodynamic equations. These equations define a collective dynamics of self-interacting systems much in the same spirit as in the Gross-Pitaevskii and Landau-Ginzburg theories of the collective dynamics for interacting quantum many-body systems. Self-consistent solutions of the dynamical equations lead to quasistationary beam configurations with enhanced transverse dispersion and transverse emittance growth. In the limit of a frozen space-charge core it is then possible to determine and study the properties of stationary, stable core-plus-halo beam distributions. In this scheme the possible reproduction of the halo after its elimination is a consequence of the stationarity of the transverse distribution which plays the role of an attractor for every other distribution.

  7. Method of internal 3D flow field numerical simulation for hydrodynamic torque converter

    Institute of Scientific and Technical Information of China (English)

    Tao SHANG; Dingxuan ZHAO; Yuankun ZHANG; Xiangen GUO; Xiangzhong SHI

    2008-01-01

    To enhance the performance of a hydrody-namic torque converter and thoroughly understand the trait of inside flow, a numerical simulation method of internal 3D flow for the three-element centrifugal hydrodynamic torque converter was systematically researched and expatiated in this paper. First, the internal flow field of each impeller was calculated. The curves that illustrate the relationships between the pressure differences of the inlet and outlet versus flux were drawn. Second, the concurrent working point of each impeller was approximately estimated. Finally, a calculation was performed considering the influence on each impeller. The flow field of a working point was solved by multiple calculations and the actual working condition was gradually determined. The pressure and velocity distributions of the flow field were proposed. The performance parameters of the hydrodynamic torque converter were predicted. The calculation method, and the proposed pressure and velocity distribution of the flow field, have practical significance for the design and improvement of a hydrodynamic torque converter.

  8. Fin-Body Interaction and its Hydrodynamic Benefits in Fish's Steady Swimming

    Science.gov (United States)

    Liu, Geng; Ren, Yan; Dong, Haibo; Lauder, George

    2016-11-01

    In many past studies on fish swimming, the hydrodynamics of fish caudal fins were investigated separately. However, fish body inevitably interacts with the caudal fin since the fin flaps in the wake of the body during swimming. In this work, an integrated experimental and computational approach has been used to investigate hydrodynamic performance improvement and the vortex dynamics associated with the fin-body interactions of a jack fish in steady swimming. Realistic 3D jack fish geometry and the undulatory kinematics are reconstructed based on the output of a high-speed photogrammetry system. Hydrodynamic performance and wake structures are simulated by an in-house immersed-boundary-method flow solver. It is found that the body-fin interactions enhance the thrust production of the caudal fin by more than 30% compared to that produced by an isolated caudal fin. Further analysis on the vortex dynamics has shown that the vortices shed from the posterior part of the fish body are captured by the leading edge portion of the caudal fin. This further enhances the strength of the leading-edge vortex attaching to the caudal fin and results in larger thrust production. This work reveals a potential performance enhancement mechanism in fish's steady swimming. This work was supported by NSF CBET-1313217 and ONR MURI N00014-14-1-0533.

  9. [Morphometric evaluation of changes in the alveolar bone of adolescents with bimaxillary protrusion via cone beam computed tomography].

    Science.gov (United States)

    Yinghong, Liu; Zeyuan, Zhou; Kui, Zhao; Caomin, Tang; Jun, Wang

    2016-02-01

    This study aimed to evaluate the morphometric changes in the alveolar bone of the maxillary and mandibular anterior regions after retraction in adolescents. The sample size comprised 30 adolescent patients with class 1 bimaxillary protrusion (12 males and 18 females, age: 12-18 years old) and were treated by extracting four first pre-molars. Cone beam computed tomography (CBCT) was performed 1 month before and 1 month after the retraction. For each maxillary and mandibular anterior tooth, the labial and palatal alveolar plates at cervical 1/3, middle 1/3, and apical 1/3 levels for bone thickness changes during the retraction of the maxillary and mandibular anterior regions were checked. The movements of cervical 1/3, middle 1/3, and apical 1/3 levels of the maxillary central incisor were measured. Statistical analyses were performed with SPSS 16.0. For the adolescents, alveolar bone thickness increased on the labial side and decreased on the palatal side. The alveolar bone thicknesses of cervical 1/3 and middle 1/3 of maxillary central incisor, cervical 1/3 and apical 1/3 of maxillary lateral incisor, middle 1/3 of mandibular central incisor, apical 1/3 of mandibular lateral incisor, and middle 1/3 and apical 1/3 of mandibular canine all increased after retraction. By contrast, the alveolar bone thickness of the apical 1/3 of maxillary canine and the cervical 1/3 of mandibular canine decreased after retraction. No statistically significant difference was observed in other region. During retraction, a controlled tipping movement occur in adolescents. After retraction, the alveolar bone thickness of the labial side increase, whereas that of the palatal side decrease. Moreover, the thicknesses of major areas in the alveolar bone significantly increase.

  10. Lyman α radiation hydrodynamics of galactic winds before cosmic reionization

    Science.gov (United States)

    Smith, Aaron; Bromm, Volker; Loeb, Abraham

    2017-01-01

    The dynamical impact of Lyman α (Lyα) radiation pressure on galaxy formation depends on the rate and duration of momentum transfer between Lyα photons and neutral hydrogen gas. Although photon trapping has the potential to multiply the effective force, ionizing radiation from stellar sources may relieve the Lyα pressure before appreciably affecting the kinematics of the host galaxy or efficiently coupling Lyα photons to the outflow. We present self-consistent Lyα radiation-hydrodynamics simulations of high-z galaxy environments by coupling the Cosmic Lyα Transfer code (COLT) with spherically symmetric Lagrangian frame hydrodynamics. The accurate but computationally expensive Monte Carlo radiative transfer calculations are feasible under the one-dimensional approximation. The initial starburst drives an expanding shell of gas from the centre and in certain cases, Lyα feedback significantly enhances the shell velocity. Radiative feedback alone is capable of ejecting baryons into the intergalactic medium (IGM) for protogalaxies with a virial mass of Mvir ≲ 108 M⊙. We compare the Lyα signatures of Population III stars with 105 K blackbody emission to that of direct collapse black holes with a non-thermal Compton-thick spectrum and find substantial differences if the Lyα spectra are shaped by gas pushed by Lyα radiation-driven winds. For both sources, the flux emerging from the galaxy is reprocessed by the IGM such that the observed Lyα luminosity is reduced significantly and the time-averaged velocity offset of the Lyα peak is shifted redward.

  11. Cosmological Structure Formation Shocks and Cosmic Rays in Hydrodynamical Simulations

    Science.gov (United States)

    Pfrommer, C.; Springel, V.; Enβlin, T. A.; Jubelgas, M.

    Cosmological shock waves during structure formation not only play a decisive role for the thermalization of gas in virializing structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration. We discuss a novel numerical treatment of the physics of cosmic rays in combination with a formalism for identifying and measuring the shock strength on-the-fly during a smoothed particle hydrodynamics simulation. In our methodology, the non-thermal CR population is treated self-consistently in order to assess its dynamical impact on the thermal gas as well as other implications on cosmological observables. Using this formalism, we study the history of the thermalization process in high-resolution hydrodynamic simulations of the Lambda cold dark matter model. Collapsed cosmological structures are surrounded by shocks with high Mach numbers up to 1000, but they play only a minor role in the energy balance of thermalization. However, this finding has important consequences for our understanding of the spatial distribution of CRs in the large-scale structure. In high resolution simulations of galaxy clusters, we find a low contribution of the averaged CR pressure, due to the small acceleration efficiency of lower Mach numbers of flow shocks inside halos and the softer adiabatic index of CRs. These effects disfavour CRs when a composite of thermal gas and CRs is adiabatically compressed. However, within cool core regions, the CR pressure reaches equipartition with the thermal pressure leading, to a lower effective adiabatic index and thus to an enhanced compressibility of the central intracluster medium. This effect increases the central density and pressure of the cluster, and thus the resulting X-ray emission and the central Sunyaev-Zel'dovich flux decrement. The integrated Sunyaev-Zel'dovich effect, however, is only slightly changed.

  12. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    MA GuoJun; WU ChengWei; ZHOU Ping

    2007-01-01

    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geometrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hydrodynamic load support as high as 2.5 times of what the geometrical convergent-wedge can produce. Wall slip usually gives a small surface friction.

  13. Assessment for hydrodynamic masses of HANARO flow tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Cho, Yeong Garp; Kim, Doo Kie; Woo, Jong Sug; Park, Jin Ho

    2000-06-01

    The effect of hydrodynamic masses is investigated in dynamic characteristics and seismic response analyses of the submerged HANARO hexagonal flow tubes. Consistent hydrodynamic masses of the surrounding water are evaluated by the prepared program using the finite element method, in which arbitrary cross-sections of submerged structures and boundary conditions of the surrounding fluid can be considered. Also lumped hydrodynamic masses are calculated using simple formula applied to hexagonal flow tubes in the infinite fluid. Modal analyses and seismic response spectrum analyses were performed using hydrodynamic masses obtained by the finite element method and the simple formula. The results of modal analysis were verified by comparing the results measured from modal tests. And the displacement results of the seismic response spectrum analysis were assessed by comparing the consistent and the lumped hydrodynamic masses obtained by various methods. Finally practical criteria based on parametric studies are proposed as the lumped hydrodynamic masses for HANARO flow tubes.

  14. Kinetics and Hydrodynamics of Silver Ion Flotation

    OpenAIRE

    2012-01-01

    This paper studies and determines the dispersion properties (Jg, Eg and Db), kinetics parameters and hydrodynamics of the process and its effect on the recovery of silver contained in spent diluted fixers by techniques of ion flotation in columns. The experimental results show silver recoveries of 97 % using sodium isopropyl xanthate (SIX) 0.06 g·L-1 and 0.04 g·L-1 of frother, at a Jg of 1.0 cm·s-1 and Jl of 0.72 cm·s-1. Xanthate-promoter combinations do not improve the separation; however, r...

  15. Anomalous transport in second order hydrodynamics

    Science.gov (United States)

    Megías, Eugenio; Valle, Manuel

    2016-11-01

    We study the non-dissipative transport effects appearing at second order in the hydrodynamic expansion for a non-interacting gas of chiral fermions by using the partition function formalism. We discuss some features of the corresponding constitutive relations, derive the explicit expressions for the conductivities and compare with existing results in the literature. Talk given by E. Megías at the 4th International Conference on New Frontiers in Physics (ICNFP 2015), 23-30 August 2015, Kolymbari, Crete, Greece.

  16. Dual-support Smoothed Particle Hydrodynamics

    CERN Document Server

    Ren, Huilong; Zhuang, Xiaoying; Rabczuk, Timon

    2016-01-01

    In this paper we develop a dual-support smoothed particle hydrodynamics (DS-SPH) that naturally satisfies the conservation of momentum, angular momentum and energy when the varying smoothing length is utilized. The DS-SPH is based on the concept of dual-support, which is introduced to consider the unbalanced interactions between the particles with different smoothing lengths. Our DS-SPH formulation can be implemented in traditional SPH with little changes and improve the computational efficiency. Several numerical examples are presented to demonstrate the capability of the method.

  17. Hydrodynamic approach to p–Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bożek, Piotr, E-mail: piotr.bozek@ifj.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, PL-30059 Kraków (Poland); Institute of Nuclear Physics PAN, PL-31342 Kraków (Poland); Broniowski, Wojciech, E-mail: wojciech.broniowski@ifj.edu.pl [Institute of Nuclear Physics PAN, PL-31342 Kraków (Poland); Institute of Physics, Jan Kochanowski University, PL-25406 Kielce (Poland)

    2014-06-15

    The formation and collective expansion of the fireball formed in ultrarelativistic p–A and d–A collisions is discussed. Predictions of the hydrodynamic model are compared to recent experimental results. The presence of strong final state interaction effects in the small dense systems is consistent with the observed azimuthal anisotropy of the flow and with the mass dependence of the average transverse momentum and of the elliptic flow. This raises the question of the mechanism explaining such a rapid build-up of the collective flow and the large degree of local equilibration needed to justify this scenario.

  18. Postexplosion hydrodynamics of supernovae in red supergiants

    Science.gov (United States)

    Herant, Marc; Woosley, S. E.

    1994-01-01

    Shock propagation, mixing, and clumping are studied in the explosion of red supergiants as Type II supernovae using a two-dimensional smooth particle hydrodynamic (SPH) code. We show that extensive Rayleigh-Talor instabilities develop in the ejecta in the wake of the reverse shock wave. In all cases, the shell structure of the progenitor is obliterated to leave a clumpy, well-mixed supernova remnant. However, the occurrence of mass loss during the lifetime of the progenitor can significantly reduce the amount of mixing. These results are independent of the Type II supernova explosion mechanism.

  19. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    Science.gov (United States)

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  20. Hydrodynamic modeling of ns-laser ablation

    Directory of Open Access Journals (Sweden)

    David Autrique

    2013-10-01

    Full Text Available Laser ablation is a versatile and widespread technique, applied in an increasing number of medical, industrial and analytical applications. A hydrodynamic multiphase model describing nanosecond-laser ablation (ns-LA is outlined. The model accounts for target heating and mass removal mechanisms as well as plume expansion and plasma formation. A copper target is placed in an ambient environment consisting of helium and irradiated by a nanosecond-laser pulse. The effect of variable laser settings on the ablation process is explored in 1-D numerical simulations.

  1. The flow of heavy flavor in hydrodynamics

    CERN Document Server

    Song, Taesoo; Lee, Su Houng

    2011-01-01

    The flow of charm is calculated in 2+1 ideal hydrodynamics by introducing the charge of $c\\bar{c}$ pair assuming that the number of $c\\bar{c}$ pairs is conserved in relativistic heavy-ion collisions. It is found that the mean radial flow velocity of charm quarks is smaller than that of bulk matter by 10$\\sim$15 \\% and the measured $v_2$ of heavy-flavor electrons is reproduced up to $p_T^e=$ 1.5 GeV/c in Au+Au collision at RHIC. The same flow is applied to regenerated $J/\\psi$ and its $v_2$ is discussed.

  2. Impact modeling with Smooth Particle Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Stellingwerf, R.F.; Wingate, C.A.

    1993-07-01

    Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.

  3. Hydrodynamics of anisotropic quark and gluon fluids

    Science.gov (United States)

    Florkowski, Wojciech; Maj, Radoslaw; Ryblewski, Radoslaw; Strickland, Michael

    2013-03-01

    The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory, with the collisional kernel treated in the relaxation-time approximation, allowing for different relaxation times for quarks and gluons. Baryon number conservation is enforced in the quark and antiquark components of the fluid, but overall parton number nonconservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

  4. Hydrodynamics of anisotropic quark and gluon fluids

    CERN Document Server

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael

    2012-01-01

    The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory with the collisional kernel treated in the relaxation-time approximation. Baryon number conservation is enforced in the quark and anti-quark components of the fluid, but overall parton number non-conservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

  5. Effect of geometry on hydrodynamic film thickness

    Science.gov (United States)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  6. Hydrodynamic Study Of Column Bioleaching Processes

    Directory of Open Access Journals (Sweden)

    Sadowski Zygmunt

    2015-06-01

    Full Text Available The modelling of flow leaching solution through the porous media has been considered. The heap bioleaching process can be tested using the column experimental equipment. This equipment was employed to the hydrodynamic studies of copper ore bioleaching. The copper ore (black shale ore with the support, inertial materials (glass small balls and polyethylene beads was used to the bioleaching tests. The packed beds were various composition, the ore/support ratio was changed. The correlation between the bed porosity and bioleaching kinetics, and copper recovery was investigated.

  7. Rapidity Correlation Structures from Causal Hydrodynamics

    CERN Document Server

    Gavin, Sean; Zin, Christopher

    2016-01-01

    Viscous diffusion can broaden the rapidity dependence of two-particle transverse momentum fluctuations. Surprisingly, measurements at RHIC by the STAR collaboration demonstrate that this broadening is accompanied by the appearance of unanticipated structure in the rapidity distribution of these fluctuations in the most central collisions. Although a first order classical Navier-Stokes theory can roughly explain the rapidity broadening, it cannot explain the additional structure. We propose that the rapidity structure can be explained using the second order causal Israel-Stewart hydrodynamics with stochastic noise.

  8. Hydrodynamic instabilities in an ablation front

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2004-06-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.

  9. Computer simulation of the fire-tube boiler hydrodynamics

    OpenAIRE

    Khaustov Sergei A.; Zavorin Alexander S.; Buvakov Konstantin V.; Sheikin Vyacheslav A.

    2015-01-01

    Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  10. Hydrodynamic Analysis to Process of Hydrostatic Extrusion for Tungsten Alloy

    Institute of Scientific and Technical Information of China (English)

    Fuchi WANG; Zhaohui ZHANG; Shukui LI

    2001-01-01

    The hydrodynamic analysis to the process of the hydrostatic extrusion for tungsten alloy is carried through the hydrodynamic lubrication theory and Reynolds equation in this paper. The critical velocity equation when the hydrodynamic lubrication conditions appear between the surfaces of the work- piece and the die is obtained, and the relationship between the critical velocity and the extrusion parameters is discussed, which build the theoretical bases to the application of the hydrostatic extrusion for tungsten alloy.

  11. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  12. Intrinsic ambiguity in second order viscosity parameters in relativistic hydrodynamics

    CERN Document Server

    Nakayama, Yu

    2012-01-01

    We show that relativistic hydrodynamics in Minkowski space-time has intrinsic ambiguity in second order viscosity parameters in the Landau-Lifshitz frame. This stems from the possibility of improvements of energy-momentum tensor. There exist at least two viscosity parameters which can be removed by using this ambiguity in scale invariant hydrodynamics in (1+3) dimension, and seemingly non-conformal hydrodynamic theories can be hiddenly conformal invariant.

  13. Hydrodynamic Coefficients of Ships with Forward Speed in Shallow Waters

    Institute of Scientific and Technical Information of China (English)

    M.HASANADIL; DUANWen-yang; WANGYu

    2004-01-01

    Effects of depth and forward speed on hydrodynamic coefficients of ships are presented in this paper. A modified simple Green function technique was used to calculate 2D coefficients while strip theory was used to calculate 3D coefficients. Numerical results are provided for hydrodynamic coefficients of parabolic hull ship. It is found out that both depth and forward speed have considerable effects on hydrodynamic coefficients of ship.

  14. Size fractionation by slalom chromatography and hydrodynamic chromatography

    OpenAIRE

    Dias, Ricardo P.

    2008-01-01

    Hydrodynamic chromatography, also called separation by flow, is based on the use of the parabolic flow profile occurring in open capillaries or in the pores from a column filled with non-porous particles. The hydrodynamic chromatography separation medium, if any, is much simpler than that from size exclusion chromatography (porous particles), the former technique being used in the size-fractionation of many colloids and macromolecules. The transition between hydrodynamic chromatography (obtai...

  15. PREDICTION OF HYDRODYNAMIC PERFORMANCE OF THE FLAP RUDDER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The paper presents a new method for predicting the hydrodynamic performance of the flap rudder behind a propeller. The hydrodynamics of the rudder was calculated by the panel method and the performance of the propeller was predicted by the simplified propeller theoty. The interaction between the rudder and propeller was determined by iterative procedure. The pressure distribution on rudder surface and the hydrodynamic performance of the flap rudder are discussed in the paper.

  16. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.

    Science.gov (United States)

    Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji

    2007-03-01

    To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear.

  17. Nonlocal transport and the hydrodynamic shear viscosity in graphene

    Science.gov (United States)

    Torre, Iacopo; Tomadin, Andrea; Geim, Andre K.; Polini, Marco

    2015-10-01

    Motivated by recent experimental progress in preparing encapsulated graphene sheets with ultrahigh mobilities up to room temperature, we present a theoretical study of dc transport in doped graphene in the hydrodynamic regime. By using the continuity and Navier-Stokes equations, we demonstrate analytically that measurements of nonlocal resistances in multiterminal Hall bar devices can be used to extract the hydrodynamic shear viscosity of the two-dimensional (2D) electron liquid in graphene. We also discuss how to probe the viscosity-dominated hydrodynamic transport regime by scanning probe potentiometry and magnetometry. Our approach enables measurements of the viscosity of any 2D electron liquid in the hydrodynamic transport regime.

  18. Hydrodynamization and transient modes of expanding plasma in kinetic theory

    CERN Document Server

    Heller, Michal P; Spalinski, Michal

    2016-01-01

    We study the transition to hydrodynamics in a weakly-coupled model of quark-gluon plasma given by kinetic theory in the relaxation time approximation. Our studies uncover qualitative similarities to the results on hydrodynamization in strongly coupled gauge theories. In particular, we demonstrate that the gradient expansion in this model has vanishing radius of convergence. The asymptotic character of the hydrodynamic gradient expansion is crucial for the recently discovered applicability of hydrodynamics at large gradients. Furthermore, the analysis of the resurgent properties of the series provides, quite remarkably, indication for the existence of a novel transient, damped oscillatory mode of expanding plasmas in kinetic theory.

  19. Hydrodynamic force between a sphere and a soft, elastic surface.

    Science.gov (United States)

    Kaveh, Farzaneh; Ally, Javed; Kappl, Michael; Butt, Hans-Jürgen

    2014-10-07

    The hydrodynamic drainage force between a spherical silica particle and a soft, elastic polydimethylsiloxane surface was measured using the colloidal probe technique. The experimental force curves were compared to finite element simulations and an analytical model. The hydrodynamic repulsion decreased when the particle approached the soft surface as compared to a hard substrate. In contrast, when the particle was pulled away from the surface again, the attractive hydrodynamic force was increased. The hydrodynamic attraction increased because the effective area of the narrow gap between sphere and the plane on soft surfaces is larger than on rigid ones.

  20. Hydrodynamic regulation of monocyte inflammatory response to an intracellular pathogen.

    Directory of Open Access Journals (Sweden)

    Shankar J Evani

    Full Text Available Systemic bacterial infections elicit inflammatory response that promotes acute or chronic complications such as sepsis, arthritis or atherosclerosis. Of interest, cells in circulation experience hydrodynamic shear forces, which have been shown to be a potent regulator of cellular function in the vasculature and play an important role in maintaining tissue homeostasis. In this study, we have examined the effect of shear forces due to blood flow in modulating the inflammatory response of cells to infection. Using an in vitro model, we analyzed the effects of physiological levels of shear stress on the inflammatory response of monocytes infected with chlamydia, an intracellular pathogen which causes bronchitis and is implicated in the development of atherosclerosis. We found that chlamydial infection alters the morphology of monocytes and trigger the release of pro-inflammatory cytokines TNF-α, IL-8, IL-1β and IL-6. We also found that the exposure of chlamydia-infected monocytes to short durations of arterial shear stress significantly enhances the secretion of cytokines in a time-dependent manner and the expression of surface adhesion molecule ICAM-1. As a functional consequence, infection and shear stress increased monocyte adhesion to endothelial cells under flow and in the activation and aggregation of platelets. Overall, our study demonstrates that shear stress enhances the inflammatory response of monocytes to infection, suggesting that mechanical forces may contribute to disease pathophysiology. These results provide a novel perspective on our understanding of systemic infection and inflammation.

  1. Hydrodynamics of nearly smooth granular gases.

    Science.gov (United States)

    Goldhirsch, I; Noskowicz, S H; Bar-Lev, O

    2005-11-17

    Hydrodynamic equations of motion for a monodisperse collection of nearly smooth homogeneous spheres have been derived from the corresponding Boltzmann equation, using a Chapman-Enskog expansion around the elastic smooth spheres limit. Because in the smooth limit the rotational degrees of freedom are uncoupled from the translational ones, it turns out that the required hydrodynamic fields include (in addition to the standard density, velocity, and translational granular temperature fields) the (infinite) set of number densities, n(s,r, t), corresponding to the continuum of values of the angular velocities. The Chapman-Enskog expansion was carried out to high (up to 10th) order in a Sonine polynomial expansion by using a novel computer-aided method. One of the consequences of these equations is that the asymptotic spin distribution in the homogeneous cooling state for nearly smooth, nearly elastic spheres, is highly non-Maxwellian. The simple sheared flow possesses a highly non-Maxwellian distribution as well. In the case of wall-bounded shear, it is shown that the angular velocity injected at the boundaries has a finite penetration length.

  2. Particle Mesh Hydrodynamics for Astrophysics Simulations

    Science.gov (United States)

    Chatelain, Philippe; Cottet, Georges-Henri; Koumoutsakos, Petros

    We present a particle method for the simulation of three dimensional compressible hydrodynamics based on a hybrid Particle-Mesh discretization of the governing equations. The method is rooted on the regularization of particle locations as in remeshed Smoothed Particle Hydrodynamics (rSPH). The rSPH method was recently introduced to remedy problems associated with the distortion of computational elements in SPH, by periodically re-initializing the particle positions and by using high order interpolation kernels. In the PMH formulation, the particles solely handle the convective part of the compressible Euler equations. The particle quantities are then interpolated onto a mesh, where the pressure terms are computed. PMH, like SPH, is free of the convection CFL condition while at the same time it is more efficient as derivatives are computed on a mesh rather than particle-particle interactions. PMH does not detract from the adaptive character of SPH and allows for control of its accuracy. We present simulations of a benchmark astrophysics problem demonstrating the capabilities of this approach.

  3. Building a Hydrodynamics Code with Kinetic Theory

    CERN Document Server

    Sagert, Irina; Colbry, Dirk; Pickett, Rodney; Strother, Terrance

    2013-01-01

    We report on the development of a test-particle based kinetic Monte Carlo code for large systems and its application to simulate matter in the continuum regime. Our code combines advantages of the Direct Simulation Monte Carlo and the Point-of-Closest-Approach methods to solve the collision integral of the Boltzmann equation. With that, we achieve a high spatial accuracy in simulations while maintaining computational feasibility when applying a large number of test-particles. The hybrid setup of our approach allows us to study systems which move in and out of the hydrodynamic regime, with low and high particle densities. To demonstrate our code's ability to reproduce hydrodynamic behavior we perform shock wave simulations and focus here on the Sedov blast wave test. The blast wave problem describes the evolution of a spherical expanding shock front and is an important verification problem for codes which are applied in astrophysical simulation, especially for approaches which aim to study core-collapse supern...

  4. Flagellar synchronization through direct hydrodynamic interactions.

    Science.gov (United States)

    Brumley, Douglas R; Wan, Kirsty Y; Polin, Marco; Goldstein, Raymond E

    2014-07-29

    Flows generated by ensembles of flagella are crucial to development, motility and sensing, but the mechanisms behind this striking coordination remain unclear. We present novel experiments in which two micropipette-held somatic cells of Volvox carteri, with distinct intrinsic beating frequencies, are studied by high-speed imaging as a function of their separation and orientation. Analysis of time series shows that the interflagellar coupling, constrained by lack of connections between cells to be hydrodynamical, exhibits a spatial dependence consistent with theory. At close spacings it produces robust synchrony for thousands of beats, while at increasing separations synchrony is degraded by stochastic processes. Manipulation of the relative flagellar orientation reveals in-phase and antiphase states, consistent with dynamical theories. Flagellar tracking with exquisite precision reveals waveform changes that result from hydrodynamic coupling. This study proves unequivocally that flagella coupled solely through a fluid can achieve robust synchrony despite differences in their intrinsic properties.DOI: http://dx.doi.org/10.7554/eLife.02750.001.

  5. Anisotropic matching principle for the hydrodynamic expansion

    Science.gov (United States)

    Tinti, Leonardo

    2016-10-01

    Following the recent success of anisotropic hydrodynamics, I propose here a new, general prescription for the hydrodynamic expansion around an anisotropic background. The anisotropic distribution fixes exactly the complete energy-momentum tensor, just like the effective temperature fixes the proper energy density in the ordinary expansion around local equilibrium. This means that momentum anisotropies are already included at the leading order, allowing for large pressure anisotropies without the need of a next-to-leading-order treatment. The first moment of the Boltzmann equation (local four-momentum conservation) provides the time evolution of the proper energy density and the four-velocity. Differently from previous prescriptions, the dynamic equations for the pressure corrections are not derived from the zeroth or second moment of the Boltzmann equation, but they are taken directly from the exact evolution given by the Boltzmann equation. As known in the literature, the exact evolution of the pressure corrections involves higher moments of the Boltzmann distribution, which cannot be fixed by the anisotropic distribution alone. Neglecting the next-to-leading-order contributions corresponds to an approximation, which depends on the chosen form of the anisotropic distribution. I check the the effectiveness of the leading-order expansion around the generalized Romatschke-Stricklad distribution, comparing with the exact solution of the Boltzmann equation in the Bjorken limit with the collisional kernel treated in the relaxation-time approximation, finding an unprecedented agreement.

  6. Three Dimensional Hydrodynamic Model With Multiquadtree Meshes

    Directory of Open Access Journals (Sweden)

    G. P. Vanegas

    2008-01-01

    Full Text Available This study presents a three dimensional model for the transport of conservative contaminants, which can be used for bodies of water which are affected by winds and/or tides. The model solves the equation of mass transport, based on results obtained using a hydrodynamic model for shallow waters that works in a finite volume scheme and a type of hierarchical grid, called multi-quadtree, which is adaptable to the bathymetry. To solve the vertical coordinates, the coordinate z is transformed into a sigma (σ coordinate, thus allowing the same number of layers in the vertical, regardless of depth. This hydrodynamic model is validated using two cases: a long wave propagated in a channel of variable width and bottom and wind action in a rectangular basin. Finally, the results obtained are presented for a hypothetical single port outfall in the bay of Campeche, México. The model developed here is both quick and easy to use and is efficient when compared with models presented by other authors since it uses adaptable grids which allow detailed solutions to be obtained for areas of interest such as coastlines and the area around an outfall.

  7. Relativistic hydrodynamics on graphics processing units

    CERN Document Server

    Sikorski, Jan; Porter-Sobieraj, Joanna; Słodkowski, Marcin; Krzyżanowski, Piotr; Książek, Natalia; Duda, Przemysław

    2016-01-01

    Hydrodynamics calculations have been successfully used in studies of the bulk properties of the Quark-Gluon Plasma, particularly of elliptic flow and shear viscosity. However, there are areas (for instance event-by-event simulations for flow fluctuations and higher-order flow harmonics studies) where further advancement is hampered by lack of efficient and precise 3+1D~program. This problem can be solved by using Graphics Processing Unit (GPU) computing, which offers unprecedented increase of the computing power compared to standard CPU simulations. In this work, we present an implementation of 3+1D ideal hydrodynamics simulations on the Graphics Processing Unit using Nvidia CUDA framework. MUSTA-FORCE (MUlti STAge, First ORder CEntral, with a~slope limiter and MUSCL reconstruction) and WENO (Weighted Essentially Non-Oscillating) schemes are employed in the simulations, delivering second (MUSTA-FORCE), fifth and seventh (WENO) order of accuracy. Third order Runge-Kutta scheme was used for integration in the t...

  8. Multithread Hydrodynamic Modeling of a Solar Flare

    Science.gov (United States)

    Warren, Harry P.

    2006-01-01

    Past hydrodynamic simulations have been able to reproduce the high temperatures and densities characteristic of solar flares. These simulations, however, have not been able to account for the slow decay of the observed flare emission or the absence of blueshifts in high spectral resolution line profiles. Recent work has suggested that modeling a flare as a sequence of independently heated threads instead of as a single loop may resolve the discrepancies between the simulations and observations. In this paper, we present a method for computing multithread, time-dependent hydrodynamic simulations of solar flares and apply it to observations of the Masuda flare of 1992 January 13. We show that it is possible to reproduce the temporal evolution of high temperature thermal flare plasma observed with the instruments on the GOES and Yohkoh satellites. The results from these simulations suggest that the heating timescale for a individual thread is on the order of 200 s. Significantly shorter heating timescales (20 s) lead to very high temperatures and are inconsistent with the emission observed by Yohkoh.

  9. Low Mach number fluctuating hydrodynamics for electrolytes

    Science.gov (United States)

    Péraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.

    2016-11-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids [A. Donev et al., Phys. Fluids 27, 037103 (2015), 10.1063/1.4913571], we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second order in the deterministic setting and for length scales much greater than the Debye length gives results consistent with an electroneutral approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field.

  10. (Non)-Dissipative Hydrodynamics on Embedded Surfaces

    CERN Document Server

    Armas, Jay

    2014-01-01

    We construct the theory of dissipative hydrodynamics of uncharged fluids living on embedded space-time surfaces to first order in a derivative expansion in the case of codimension-1 surfaces (including fluid membranes) and the theory of non-dissipative hydrodynamics to second order in a derivative expansion in the case of codimension higher than one under the assumption of no angular momenta in transverse directions to the surface. This construction includes the elastic degrees of freedom, and hence the corresponding transport coefficients, that take into account transverse fluctuations of the geometry where the fluid lives. Requiring the second law of thermodynamics to be satisfied leads us to conclude that in the case of codimension-1 surfaces the stress-energy tensor is characterized by 2+1 independent transport coefficients to first order in the expansion while for codimension higher than one, and for non-dissipative flows, the stress-energy tensor is characterized by 7+3 independent transport coefficient...

  11. Testing Hydrodynamics Schemes in Galaxy Disc Simulations

    CERN Document Server

    Few, C G; Pettitt, A; Konstandin, L

    2016-01-01

    We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (sphNG), and a volume-discretised meshless code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the sphNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the sphNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans' length with a greater number of grid cells we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful i...

  12. Antibacterial activity of silver: the role of hydrodynamic particle size at nanoscale.

    Science.gov (United States)

    Khurana, Chandni; Vala, Anjana K; Andhariya, Nidhi; Pandey, O P; Chudasama, Bhupendra

    2014-10-01

    Silver shows the highest antimicrobial activities amongst all metals. It is better than many first line antibiotics. The antimicrobial properties of silver can be tuned by altering its physical and surface properties. Researchers have demonstrated enhancement in the antibacterial properties of silver with decreasing particle size from bulk to nano. In the present article, we study the effect of particle size of silver at nanoscale on their antimicrobial properties. Two samples of silver nanoparticles (SNPs) of same physical size (≈8 nm) but different hydrodynamic size (59 and 83 nm) are prepared by chemical reduction of AgNO3 with oleylamine followed by phase transfer with triblock copolymer Pluronic F-127. Their antimicrobial properties are investigated by microdilution method against clinically important strains of gram positive (S. aureus and B. megaterium) and gram negative (P. vulgaris and S. sonnei) bacteria. Nearly 38-50% enhancement in the antibacterial action of SNPs was observed when their hydrodynamic size was reduced to 59 nm from 83 nm. It has been observed that the antibacterial action of SNPs was governed by their hydrodynamic size and not by their crystallite and physical size. The phenomenological model was also proposed which makes an attempt to explain the microscopic mechanism responsible for the size dependent antibacterial activities of silver.

  13. FMC46, a cell protrusion-associated leukocyte adhesion molecule-1 epitope on human lymphocytes and thymocytes.

    Science.gov (United States)

    Pilarski, L M; Turley, E A; Shaw, A R; Gallatin, W M; Laderoute, M P; Gillitzer, R; Beckman, I G; Zola, H

    1991-07-01

    In this report, we describe a 76-kDa glycoprotein recognized by mAb FMC46 that, by virtue of its concentration on cell protrusions involved in motility, may be important in lymphoid cell locomotion. FMC46 detects an epitope of the leukocyte adhesion molecule-1 (LAM-1), a member of the selecting family (LAM-1, Endothelial Leukocyte Adhesion Molecular-1 (ELAM-1), and Granule Membrane Protein-140 (GMP-140), that is expressed on LAM-1-transfected cell lines, is a glycosylation epitope based on its loss after culture in tunicamycin, and is closely related to the LAM-1.2 epitope. FMC46 is expressed at high density on the majority of CD45RA+ and CD45RO+ peripheral blood T cells (60 to 70%) and on a subset of thymocytes that includes the multinegative CD3- CD4- CD8- progenitor cells (100% FMC46hi) and the CD45R0- presumptive thymic generative lineage (70% FMC46hi). It appears at reduced density and frequency on CD45RA- thymocytes (50% FMC46lo), comprised mainly of death-committed thymocytes. Among thymic subsets defined by expression of CD4 and/or CD8, FMC46 is expressed at high density predominantly on a subset of single-positive cells and not on double-positive cells. These results suggest a fundamental role for LAM-1 in thymic development, with a high density preferentially expressed on cells involved in thymic generative processes and a low density on cells progressing to intrathymic death. A major subset of peripheral blood B cells and thymic B cells also express FMC46. Immunohistochemistry on frozen sections indicated strong staining in splenic follicles and around blood vessels, staining of the thymic medulla and subcapsular areas, and staining of the mantle zone of germinal centers of the lymph node. FMC46+ lymphocytes accumulated along high endothelial venules in the lymph node. On locomoting multinegative thymocytes, FMC46 is concentrated on the leading tip of extended processes, on pseudopods, and on ruffles, unlike the distribution of either CD44 or TQ1 (LAM 1

  14. Influence of salt marsh on bacterial activity in two estuaries with different hydrodynamic characteristics (Ria de Aveiro and Tagus Estuary).

    Science.gov (United States)

    Santos, Luísa; Cunha, Angela; Silva, Helena; Caçador, Isabel; Dias, Joao M; Almeida, Adelaide

    2007-06-01

    The influence of salt marsh on estuarine bacterioplankton was investigated in two estuaries with different hydrodynamic characteristics (Ria de Aveiro and Tagus Estuary). In the Ria de Aveiro, bacteria in the flood water overlying the marsh were two times more abundant and five to six times more active than in the main channel. In the Tagus Estuary, bacterial abundance was similar in flooding and channel water, but bacterial activity was up to two times higher in the main channel. The two salt marshes have distinct influences on estuarine bacterioplankton abundance and activity. In the Ria de Aveiro, salt marsh enhanced estuarine bacterial communities, increasing their size and stimulating their activity. By contrast, the salt marsh in the Tagus Estuary does not seem to increase the bacterial abundance and production in the channel water. These distinct influences may be explained by the hydrodynamic characteristics of the salt marshes, which were confirmed by the hydrodynamic model implemented for both systems.

  15. Numerical Study on Flow and Heat Transfer Performance of Rectangular Heat Sink with Compound Heat Transfer Enhancement Structures

    Directory of Open Access Journals (Sweden)

    Di Zhang

    2014-04-01

    Full Text Available Modern gas turbine blade is operating at high temperature which requires abundant cooling. Considering both heat transfer rate and pumping power for internal passages, developing efficient cooling passages is of great importance. Ribbed channel has been proved as effective heat transfer enhancement technology for considerable heat transfer characteristics; however, the pressure loss is impressive. Dimple and protrusion are frequently considered as new heat transfer augmentation tools for their low friction loss in recent years. Numerical simulations are adopted to investigate the thermal performance of rectangular channel with compound heat transfer enhancement structures with ribs, dimples, and protrusions. Among all configurations, the nondimensional dimple/protrusion depths are 0.2. The results present the flow structures of all channel configurations. The Nu/Nu0 distributions of channel section are discussed for each case. The pressure penalty f/f0 and the thermal performance TP are also considered as important parameters for heat transfer enhancement. It can be concluded that the optimal structure of the compound heat transfer enhancement structure is rib + protrusion (D = 6 mm + dimple (D = 15 mm.

  16. Low torque hydrodynamic lip geometry for bi-directional rotation seals

    Science.gov (United States)

    Dietle, Lannie L.; Schroeder, John E.

    2009-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  17. Lyman-alpha radiation hydrodynamics of galactic winds before cosmic reionization

    CERN Document Server

    Smith, Aaron; Loeb, Abraham

    2016-01-01

    The dynamical impact of Lyman-alpha (Ly{\\alpha}) radiation pressure on galaxy formation depends on the rate and duration of momentum transfer between Ly{\\alpha} photons and neutral hydrogen gas. Although photon trapping has the potential to multiply the effective force, ionizing radiation from stellar sources may relieve the Ly{\\alpha} pressure before appreciably affecting the kinematics of the host galaxy or efficiently coupling Ly{\\alpha} photons to the outflow. We present self-consistent Ly{\\alpha} radiation-hydrodynamics simulations of high-$z$ galaxy environments by coupling the Cosmic Ly{\\alpha} Transfer code (COLT) with spherically symmetric Lagrangian frame hydrodynamics. The accurate but computationally expensive Monte-Carlo radiative transfer calculations are feasible under the one-dimensional approximation. In certain cases Ly{\\alpha} feedback significantly enhances the velocity of the shell of gas expanding around a central source. Radiative feedback alone is capable of ejecting baryons into the i...

  18. Insights in hydrodynamics of bubbling fluidized beds at elevated pressure by DEM-CFD approach

    Institute of Scientific and Technical Information of China (English)

    Zahra Mansourpour; Sedighe Karimi; Reza Zarghami; Navid Mostoufi; Rahmat Sotudeh-Gharebagh

    2010-01-01

    A numerical simulation was conducted to study the effect of pressure on bubble dynamics in a gas-solid fluidized bed. The gas flow was modeled using the continuum theory and the solid phase, by the dis-crete element method (DEM). To validate the simulation results, calculated local pressure fluctuations were compared with corresponding experimental data of 1-mm polyethylene particles. It was shown that the model successfully predicts the hydrodynamic features of the fluidized bed as observed in the experiments. Influence of pressure on bubble rise characteristics such as bubble rise path, bubble sta-bility, average bubbles diameter and bubble velocity through the bed was investigated. The simulation results are in conformity with current hydrodynamic theories and concepts for fluidized beds at high pressures. The results show further that elevated pressure reduces bubble growth, velocity and stability and enhances bubble gyration through the bed, leading to change in bed flow structure.

  19. Numerical analysis of the texture effect on the hydrodynamic performance of a mechanical seal

    Science.gov (United States)

    Adjemout, M.; Brunetiere, N.; Bouyer, J.

    2016-03-01

    The purpose of this paper is to analyze the effect of the main geometrical characteristics of texture on the hydrodynamic lubrication of a mechanical seal. A parametric study was carried out in order to improve the performance of a mechanical seal. The numerical model used in this study solves the Reynolds equation coupled with a mass conservative model which takes into account the cavitation phenomenon. It is shown that among the six dimple shapes tested herein, namely cylinder, square, triangle, truncated cone, truncated pyramid, and spherical cap, the triangular dimples placed symmetrically with respect to their bases are more effective for enhancing the hydrodynamic performance of the mechanical seal. The effect of the area and depth ratios is studied and optimized as well. The optimized solution is able to minimize friction and leakage under a range of operating conditions.

  20. Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming

    Science.gov (United States)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2016-01-01

    Leatherback sea turtles (Dermochelys coriacea) are known to have a superior diving ability and be highly adapted to pelagic swimming. They have five longitudinal ridges on their carapace. Although it was conjectured that these ridges might be an adaptation for flow control, no rigorous study has been performed to understand their hydrodynamic roles. Here we show that these ridges are slightly misaligned to the streamlines around the body to generate streamwise vortices, and suppress or delay flow separation on the carapace, resulting in enhanced hydrodynamic performances during different modes of swimming. Our results suggest that shapes of some morphological features of living creatures, like the longitudinal ridges of the leatherback turtles, need not be streamlined for excellent hydro- or aerodynamic performances, contrary to our common physical intuition. PMID:27694826

  1. Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming

    Science.gov (United States)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2016-10-01

    Leatherback sea turtles (Dermochelys coriacea) are known to have a superior diving ability and be highly adapted to pelagic swimming. They have five longitudinal ridges on their carapace. Although it was conjectured that these ridges might be an adaptation for flow control, no rigorous study has been performed to understand their hydrodynamic roles. Here we show that these ridges are slightly misaligned to the streamlines around the body to generate streamwise vortices, and suppress or delay flow separation on the carapace, resulting in enhanced hydrodynamic performances during different modes of swimming. Our results suggest that shapes of some morphological features of living creatures, like the longitudinal ridges of the leatherback turtles, need not be streamlined for excellent hydro- or aerodynamic performances, contrary to our common physical intuition.

  2. Posterior Correction Without Rib-head Resection for Patients With Neurofibromatosis Type 1, Dystrophic Scoliosis, and Rib-head Protrusion Into the Spinal Canal.

    Science.gov (United States)

    Cai, Siyi; Zhang, Jianguo; Shen, Jianxiong; Zhao, Hong; Weng, Xisheng; Qiu, Guixing

    2017-02-01

    A retrospective study. The objective of this study is to report the result of patients with neurofibromatosis type 1(NF-1), dystrophic scoliosis, and rib-head protrusion into the spinal canal who received posterior scoliosis correction surgery without rib-head resection. A total of 124 patients with NF-1 and dystrophic scoliosis were treated at our institution during the study period. Eight patients with a median age of 12 years had rib-head protrusion into the spinal canal and received surgery and were included in the analysis. All 8 patients (6 male, 2 female) were treated from 2003 to 2013 and received posterior correction with a pedicle screw-rod 3-dimensional correction system or screw-hook hybrid system. Scoliosis correction rate and percentage of spinal canal occupied by the rib head were analyzed. The median patient age, number of segments fused, and follow-up duration were 12 years, 10.5, and 22.5 months, respectively. There were no surgery-related complications, and symptoms in all patients improved after surgery. The median postoperative and 1-year follow-up sagittal kyphotic angles were significantly smaller as compared with the preoperative value (28.5 and 31 vs. 62.5 degrees, P=0.012). The median postoperative coronal Cobb angle of the main thoracic curve was significantly smaller compared with the preoperative value (29 vs. 64.5 degrees, P=0.012). The median percentage of the spinal canal occupied by the intraspinal rib was significantly lower at 1-year follow-up compared with the preoperative value (23.1% vs. 28.6%, P=0.018). Posterior correction without rib-head excision can provide good outcomes for patients with NF-1 and dystrophic scoliosis and rib-head protrusion into the spinal canal.

  3. Fifty-six cases of protrusion of lumbar intervertebral disc treated by penetration and oral administration of Chinese decoction plus traction.

    Science.gov (United States)

    Zhong, Q

    2000-12-01

    Fifty-six cases of the protrusion of the lumbar intervertebral disc in the treatment group were treated by drug-penetration and oral administration of traditional Chinese decoction plus traction, and the other 35 cases in the control group by oral administration of Chinese decoction and traction. The results showed that the cure rate in the treatment group was 83.9%, and that in the control group was 57.1%, with a statistically significant difference between the two groups (P lumbar intervertebral disc.

  4. Trajetoria condilar sagital em protrusão : comparação entre articuladores e metodos de determinaç$ão

    OpenAIRE

    Paulo Renato Junqueira Zuim

    1998-01-01

    Resumo: O estudo dos movimentos mandibulares e a determinação da trajetória condilar sagital, durante o movimento de protrusão, têm sido observado em diversos trabalhos da literatura odontológica, cujos resultados demonstraram grande variação. O objetivo deste trabalho foi verificar a relação entre os diferentes métodos propostos para o registro e ajuste da TSCM, empregando, no método Intra-Oral, um articulador do tipo "arcon" (Gnatus 8600) e outro "não-arcon" (Dentatus ARL), verificando t...

  5. pyro: Python-based tutorial for computational methods for hydrodynamics

    Science.gov (United States)

    Zingale, Michael

    2015-07-01

    pyro is a simple python-based tutorial on computational methods for hydrodynamics. It includes 2-d solvers for advection, compressible, incompressible, and low Mach number hydrodynamics, diffusion, and multigrid. It is written with ease of understanding in mind. An extensive set of notes that is part of the Open Astrophysics Bookshelf project provides details of the algorithms.

  6. SPHYNX: SPH hydrocode for subsonic hydrodynamical instabilities and strong shocks

    Science.gov (United States)

    Cabezon, Ruben M.; Garcia-Senz, Domingo

    2017-09-01

    SPHYNX addresses subsonic hydrodynamical instabilities and strong shocks; it is Newtonian, grounded on the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique, and density based. SPHYNX uses an integral approach for estimating gradients, a flexible family of interpolators to suppress pairing instability, and incorporates volume elements to provides better partition of the unity.

  7. On the Coefficients of a Hyperbolic Hydrodynamic Model

    CERN Document Server

    Muroya, Shin

    2012-01-01

    Based on the Nakajima-Zubarev type nonequilibrium density operator, we derive a hyperbolic hydrodynamical equation. Microscopic Kubo-formulas for all coefficients in the hyperbolic hydrodynamics are obtained. Coefficients $\\alpha_{i}$'s and $\\beta_{i}$'s in the Israel-Stewart equation are given as current-weighted correlation lengths which are to be calculated in statistical mechanics.

  8. Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions

    Science.gov (United States)

    Said, M. M.; Manyele, S. V.; Raphael, M. L.

    2012-01-01

    The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…

  9. Turbulent behaviour in magnetic hydrodynamics is not universal

    CERN Document Server

    Dmitriy, W

    1996-01-01

    A short distance expansion method (SDE) that is well known in the quantum field theory for analysis of turbulent behaviour of stochastic magnetic hydrodynamics of incompressible conductive fluid is applied. As a result is shown that in an inertial range the turbulent spectra of magnetic hydrodynamics depend on a scale of arising of curls.

  10. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geo- metrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hy- drodynamic load support as high as 2.5 times of what the geometrical conver- gent-wedge can produce. Wall slip usually gives a small surface friction.

  11. Elasto-hydrodynamic network analysis of colloidal gels

    Science.gov (United States)

    Swan, James; Varga, Zsigmond

    Colloidal gels formed at low particle volume fractions result from a competition between two rate processes: aggregation of colloids and compaction of pre-gel aggregates. Recent work has shown that the former process is highly sensitive to the nature of the hydrodynamic interactions between suspended colloids. This same sensitivity to hydrodynamic flows within the gel leads to pronounced differences in the spectrum of relaxation times and response to deformation of the gel. This talk explores those differences and their consequences through computational simulations and the framework of elasto-hydrodynamic network analysis. We demonstrate a significant impact of hydrodynamic interactions between gelled colloids on macroscopic gel dynamics and rheology as well as the effect of hydrodynamic screening in gelled materials.

  12. Optimization of Submarine Hydrodynamic Coefficients Based on Immune Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    HU Kun; XU Yi-fan

    2010-01-01

    Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations, an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations. Some hydrody-namic coefficients of high sensitivity to control and maneuver were chosen as the optimization objects in the algorithm. By using adaptive weight method to determine the weight and target function, the multi-objective optimization could be transla-ted into single-objective optimization. For a certain kind of submarine, three typical maneuvers were chosen to be the objects of study: overshoot maneuver in horizontal plane, overshoot maneuver in vertical plane and turning circle maneuver in horizontal plane. From the results of computer simulations using primal hydrodynamic coefficient and optimized hydrody-namic coefficient, the efficiency of proposed method is proved.

  13. Radiation-Hydrodynamics of Hot Jupiter Atmospheres

    CERN Document Server

    Menou, Kristen

    2009-01-01

    Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, formally in the regime of radiation-hydrodynamics. To lowest order in v/c, relativistic Doppler shifts distort line profiles along optical paths with finite wind velocity gradients. This leads to flow-dependent deviations in the effective emission and absorption properties of the atmospheric medium. Evaluating the overall impact of these distortions on the radiative structure of a dynamic atmosphere is non-trivial. We present transmissivity and systematic equivalent width excess calculations which suggest possibly important consequences for radiation transport in hot Jupiter atmospheres. If winds are fast and bulk Doppler shifts are indeed important for the global radiative balance, accurate modeling and reliable data interpretation for hot Jupiter atmospheres may p...

  14. Preliminary study of disc hydrodynamic polishing.

    Science.gov (United States)

    Li, Yan; Lin, Bin; Zhang, XiaoFeng; Liu, PengFei

    2016-10-01

    In this paper, a developed polishing method based on elastic emission machining and Jules Verne-a variation on fluid jet polishing-is presented. This method is named disc hydrodynamic polishing (DHDP). A computational fluid dynamics (CFD)-based model that consists of a CFD model and an erosion model is introduced to predict the surface roughness obtained by DHDP. The performance of DHDP is studied by experiments. The slurry used in the experiments comprises 95% deionized water and 5% cerium oxide particles. Fused-silica glass is chosen as the workpiece. After the experiments, an ultrasmooth surface without cracks is obtained. The simulation results principally coincide with the experimental results. The experimental results show that the actual roughness is slightly less than the prediction and smaller particles are more favorable for obtaining a better surface roughness.

  15. Hydrodynamics of R-charged black holes

    CERN Document Server

    Son, D T; Son, Dam T.; Starinets, Andrei O.

    2006-01-01

    We consider hydrodynamics of N=4 supersymmetric SU(N_c) Yang-Mills plasma at a nonzero density of R-charge. In the regime of large N_c and large 't Hooft coupling the gravity dual description involves an asymptotically Anti- de Sitter five-dimensional charged black hole solution of Behrnd, Cvetic and Sabra. We compute the shear viscosity as a function of chemical potentials conjugated to the three U(1) \\subset SO(6)_R charges. The ratio of the shear viscosity to entropy density is independent of the chemical potentials and is equal to 1/4\\pi. For a single charge black hole we also compute the thermal conductivity, and investigate the critical behavior of the transport coefficients near the boundary of thermodynamic stability.

  16. On some hydrodynamical aspects of quantum mechanics

    CERN Document Server

    Spera, Mauro

    2009-01-01

    In this note we first set up an analogy between spin and vorticity of a perfect 2d-fluid flow, based on the Borel-Weil contruction of the irreducible unitary representations of SU(2), and looking at the Madelung-Bohm velocity attached to the ensuing spin wave functions. We also show that, in the framework of finite dimensional geometric quantum mechanics, the Schr\\"odinger velocity field on projective Hilbert space is divergence-free (being Killing with respect to the Fubini-Study metric) and fulfils the stationary Euler equation, with pressure proportional to the Hamiltonian uncertainty (squared). We explicitly compute the pressure gradient of this "Schr\\"odinger fluid" and determine its critical points. Its vorticity is also calculated and shown to depend on the spacings of the energy levels. These results follow from hydrodynamical properties of Killing vector fields valid in any (finite dimensional) Riemannian manifold, of possible independent interest.

  17. On some hydrodynamical aspects of quantum mechanics

    Science.gov (United States)

    Spera, Mauro

    2010-02-01

    In this note we first set up an analogy between spin and vorticity of a perfect 2d-fluid flow, based on the complex polynomial (i.e. Borel-Weil) realization of the irreducible unitary representations of SU(2), and looking at the Madelung-Bohm velocity attached to the ensuing spin wave functions. We also show that, in the framework of finite dimensional geometric quantum mechanics, the Schrödinger velocity field on projective Hilbert space is divergence-free (being Killing with respect to the Fubini-Study metric) and fulfils the stationary Euler equation, with pressure proportional to the Hamiltonian uncertainty (squared). We explicitly determine the critical points of the pressure of this "Schrödinger fluid", together with its vorticity, which turns out to depend on the spacings of the energy levels. These results follow from hydrodynamical properties of Killing vector fields valid in any (finite dimensional) Riemannian manifold, of possible independent interest.

  18. Study of hydrodynamic characteristics in tubular photobioreactors.

    Science.gov (United States)

    Zhang, Qinghua; Wu, Xia; Xue, Shengzhang; Liang, Kehong; Cong, Wei

    2013-02-01

    In this work, the hydrodynamic characteristics in tubular photobioreactors with a series of helical static mixers built-in were numerically investigated using computational fluid dynamics (CFD). The influences of height and screw pitch of the helical static mixer and fluid inlet velocity on the cell trajectories, swirl numbers and energy consumption were examined. In order to verify the actual results for cultivation of microalgae, cultivation experiments of freshwater Chlorella sp. were carried out in photobioreactor with and without helical static mixer built-in at the same time. It was shown that with built-in helical static mixer, the mixing of fluid could be intensified, and the light/dark cycle could also be achieved which is of benefit for the growth of microalgae. The biomass productivity of Chlorella sp. in tubular photobioreactor with helical static mixer built-in was 37.26 % higher than that in the photobioreactor without helical static mixer.

  19. Separation of blood cells using hydrodynamic lift

    Science.gov (United States)

    Geislinger, T. M.; Eggart, B.; Braunmüller, S.; Schmid, L.; Franke, T.

    2012-04-01

    Using size and deformability as intrinsic biomarkers, we separate red blood cells (RBCs) from other blood components based on a repulsive hydrodynamic cell-wall-interaction. We exploit this purely viscous lift effect at low Reynolds numbers to induce a lateral migration of soft objects perpendicular to the streamlines of the fluid, which closely follows theoretical prediction by Olla [J. Phys. II 7, 1533, (1997)]. We study the effects of flow rate and fluid viscosity on the separation efficiency and demonstrate the separation of RBCs, blood platelets, and solid microspheres from each other. The method can be used for continuous and label-free cell classification and sorting in on-chip blood analysis.

  20. Quantum hydrodynamics in the rotating reference frame

    CERN Document Server

    Trukhanova, Mariya Iv

    2016-01-01

    In this paper we apply quantum hydrodynamics (QHD) to study the quantum evolution of a system of spinning particles and particles that have the electric dipole moments EDM in the rotating reference frame. The method presented is based on the many-particle microscopic Schrodinger equation in the rotating reference frame. Fundamental QHD equations for charged or neutral spinning and EDM-bearing particles were shaped due to this method and contain the spin-dependent inertial force field. The polarization dynamics in systems of neutral particles in the rotating frame is shown to cause formation of a new type of waves, the dipole-inertial waves. We have analyzed elementary excitations in a system of neutral polarized fluids placed into an external electric field in 2D and 3D cases. We predict the novel type of 2D dipole-inertial wave and 3D - polarization wave modified by rotation in systems of particles with dipole-dipole interactions.